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FIBER DYNAMICS IN TURBULENT FLOWS: SPECIFIC TAYLOR
DRAG∗
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Abstract. In [N. Marheineke and R. Wegener, SIAM J. Appl. Math., 66 (2006), pp. 1703–1726],
an aerodynamic force concept for a general air drag model based on a stochastic k-ε description for
a turbulent flow field is derived. The turbulence effects on the dynamics of a long, slender, elastic
fiber are specifically modeled by a correlated random Gaussian force and in its asymptotic limit on a
macroscopic fiber scale by Gaussian white noise with flow-dependent amplitude. The present paper
states quantitative similarity estimates and numerical comparisons for the choice of a Taylor drag
model in a given application.
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1. Introduction. The understanding of the motion of long flexible fibers sus-
pended in highly turbulent air flows is of great interest for textile manufacturing in
the melt-spinning process of nonwoven materials. Disregarding the fiber’s influence
on the flow, the authors of [13] stated a stochastic partial differential system that
describes the dynamics of a single slender elastic fiber in a turbulent flow. The tur-
bulence effects are modeled by a correlated Gaussian aerodynamic force. Applying a
global-from-local force concept for general air drag models, we can derive these effects,
particularly, on the basis of homogeneous Gaussian fields for the randomly fluctuating
local velocity components of the flow. Their construction satisfies the requirements of
the stochastic k-ε turbulence model and Kolmogorov’s universal equilibrium theory
on local isotropy. On macroscopic scales, white noise with flow-dependent amplitude
turns out be a good approximation for the original correlated force according to L2-
and L∞-similarity estimates. In the following, we show the applicability of this general
force concept under conditions of a real melt-spinning process by choosing an empir-
ically motivated Taylor drag; see Figure 1. Then, the simplified force model satisfies
the demands of accuracy on the relevant fiber scale while drastically facilitating the
numerical computations at the same time.

For convenience we start with a brief summary of the models for fiber dynam-
ics and aerodynamic force. Dimensional analysis of turbulence and fiber behavior
reveals the characteristic interaction scales for our application in section 2. On the
fiber macroscale the mean flow dominates the swinging of the fiber, whereas the
energy-bearing turbulent vortices of the mesoscale cause the entanglement and fine-
loop forming on the fiber that are crucial for the quality of the resulting nonwoven
materials. The interest in a macroscopic description of the fiber dynamics justifies
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Fig. 1. From left to right: Turbulent flow in a melt-spinning process, mean velocity flow field
by the k-ε model, and turbulence effects on fiber dynamics. Photo by industrial partner.

the use of the simplified force model, as it contains all crucial correlation information
of the mesoscale according to the stated quantitative similarity estimates. From the
choice of the Taylor drag model, we derive a linear drag operator and thus the con-
crete correlated and uncorrelated global forces in section 3. Their effects on the fiber
dynamics are numerically compared in section 4 by using an introduced curvature
measure which yields very convincing results.

1.1. General aerodynamic force model. In the following, we recall the basic
models from [13] that are crucial for the description of the fiber dynamics in a turbu-
lent flow. Consider a single long flexible fiber that is fixed at one end and suspended
in a subsonic highly turbulent air flow with small pressure gradients and Mach num-
ber Ma < 1/3. Let l denote the fiber length and d its diameter with aspect ratio
d/l � 1. Whereas the fiber influence on the turbulence is negligibly small due to the
slender geometry, the turbulent flow essentially determines the dynamics of the fiber.
The motion is modeled by a system of stochastic partial differential equations with
algebraic constraint of inextensibility that is deduced from the dynamical Kirchhoff–
Love equations for a Cosserat rod being capable of large, geometrically nonlinear
deformations,

ρA∂ttr(s, t) = ∂s[T (s, t) ∂sr(s, t)] − EI ∂ssssr(s, t) + ρAg + fair(r(.), s, t),(1.1)

‖∂sr(s, t)‖2 = 1,(1.2)

with Dirichlet boundary conditions at the fixed end, Neumann at the free end, and the
position of rest as the initial condition. Here, r : [0, l]×R

+
0 → R

3 might be interpreted
as the center line of the fiber with arc-length s and time t; its constant line weight
is denoted by ρA. The internal line forces stem from bending stiffness indicated by
Young’s modulus E and moment of inertia I as well as from traction. In this spirit,
the Lagrangian multiplier T : [0, l] × R

+
0 → R can be viewed as the modified tractive

force T = Tt+EI‖∂ssr‖2
2 containing tension Tt and curvature ‖∂ssr‖2

2 due to bending.
The external line forces acting on the fiber arise from gravity g and aerodynamics fair.

The aerodynamic force term acts as the additive Gaussian noise in (1.1) due to
the applied general global-from-local force concept that is based on the stochastic
k-ε description of the underlying turbulent flow. In particular, we consider here a
correlated Gaussian aerodynamic force faircc and its uncorrelated asymptotic limit on
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macroscopic scales fairuc ,

faircc (r(.), s, t) = f(v̄(s, t), ∂sr(s, t)) + Lf (s, t)

∫
N(r(.),s,t)

wσ,τ
f (s, t) dWσ,τ

(
∫
N(r(.),s,t)

dσ dτ)1/2
,(1.3)

fairuc (r(.), s, t) = f(v̄(s, t), ∂sr(s, t)) + Lf (s, t) Ds,t p(s, t),(1.4)

which depend on the chosen air drag model f : R
3×R

2 → R
3 and its respective linear

drag operator Lf . A feasible air drag model is prescribed as a function of the mean
relative velocity between fluid and fiber, i.e., v̄(s, t) = ū(r(s, t), t)− ∂tr(s, t), and the
fiber tangent ∂sr(s, t). In analogy to the k-ε turbulence model, the forces are split
into a deterministic part f̄ , resulting from the mean flow velocity ū : R

3 × R
+
0 → R

3,
and a stochastic part f ′ coming from the turbulent fluctuations that are character-
ized by the turbulent kinetic energy k : R

3 × R
+
0 → R

+ and the dissipation rate
ε : R

3 × R
+
0 → R

+. In (1.3) the random fluctuations are modeled as Ito-integral
over a family of locally isotropic, homogeneous, incompressible Gaussian velocity
fields along the fiber {(wσ,τ

f )s,t, (s, t) ∈ [0, l] × R
+
0 ), (σ, τ) ∈ [0, l] × R

+
0 }, where

(Wσ,τ , (σ, τ) ∈ [0, l] × R
+
0 ) denotes a Wiener process (Brownian motion). The

underlying fiber region N(r(.), s, t) = {(σ, τ) ∈ [0, l] × R
+
0 | ‖r(s, t) − r(σ, τ) −

ū(r(s, t), t)(t − τ)‖2 ≤ lT ∧ |t − τ | ≤ tT} is determined by the turbulent large-
scale length lT and time tT. Moreover, the construction of the correlation tensors
γσ,τ

0 (s1 − s2, t1 − t2) := E[wσ,τ
f (s1, t1) ⊗ wσ,τ

f (s2, t2)] corresponding to the centered
velocity fields complies with the requirements of the k-ε model, Kolmogorov’s uni-
versal equilibrium theory on local isotropy, as well as Taylor’s hypothesis of frozen
turbulence pattern, by choosing the following energy spectra Eσ,τ ∈ C2(R+

0 ):

Eσ,τ (κ) =

⎧⎪⎨
⎪⎩
Kσ,τ κ

−5/3
1

∑6
j=4 aj ( κ

κ1
)j , κ < κ1,

Kσ,τ κ−5/3, κ1 ≤ κ ≤ κ2,

Kσ,τ κ
−5/3
2

∑9
j=7 bj ( κ

κ2
)−j , κ > κ2,

(1.5)

∫ ∞

0

Eσ,τ (κ) dκ = k(r(σ, τ), τ),

∫ ∞

0

Eσ,τ (κ)κ2 dκ =
ε(r(σ, τ), τ)

2ν
(1.6)

with viscosity ν, Kolmogorov constant Kσ,τ = CK ε(r(σ, τ), τ)2/3, and further pre-
scribed constant fitting parameters aj , bj . In contrast, in (1.4) the integral effects
of the localized random fluctuations are incorporated into the amplitude Ds,t of the
Gaussian white noise (ps,t, (s, t) ∈ [0, l] × R

+
0 ), i.e., the R

3-valued random variable
lim(�s,�t)→0

√

s
tp(s, t) ∼ N (0, I) is centered, reduced, and normally distributed.

In particular,

(1.7) Ds,t =

(
2π

v̄n(s, t)

∫ ∞

0

Es,t(κ)

κ2
dκ

)1/2

Pt,n(s,t)

is proportional to the projector Pt,n onto the plane spanned by fiber tangent t = ∂sr
and normal n = (v̄−(v̄ ·t)t)/‖v̄−(v̄ ·t)t‖2, where v̄n = v̄ · n. Note that the existence
of the amplitude in (1.7), and thus of the uncorrelated force in (1.4), presupposes the
linear independence of fiber tangent and mean relative velocity.

2. Fluid-fiber interaction scales. The handling of fiber-turbulence interaction
is very difficult, as it is governed by many complex factors, including nature of the
flow field, turbulent length scales, and size and behavior of the fiber. The applicability
of the uncorrelated aerodynamic force fairuc particularly depends on the characteristic
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Table 1

Typical fiber and flow parameter values in melt-spinning processes.

Fiber

Diameter d 3.0 · 10−5 m
Length l 2.5 m
Line weight ρA 9.0 · 10−7 kg/m
Bending stiffness EI 4.7 · 10−10 Nm2

Absolute velocity W 1.0 · 101 m/s
Acceleration of gravity g 9.81 m/s2

Suspended height H 1 m

Flow

Density ρair 1.22 kg/m3

Absolute mean velocity ū 1.0 · 102 m/s
Turbulent kinetic energy k 1.0 · 102 m2/s2

Dissipation rate ε 1.0 · 105 m2/s3

Viscosity ν 1.5 · 10−5 m2/s

interaction scales of the considered fiber-flow problem. In a typical melt-spinning
process, fiber and flow are specified by the parameter values of Table 1. These yield
the following quantitative scales and similarity estimates between the correlated and
uncorrelated force by using dimensional analysis.

2.1. Turbulence scales. Turbulence is characterized by its wide range of length
and time scales. As their significance plays a decisive role in the coming analysis, we
focus on them and their interpretation.

Due to the underlying k-ε turbulence model, we already distinguish between the
length and time scales of the mean motion and those of the fluctuations. The mean
motion and its scales are derived from the boundary conditions (geometry) and the
absolute mean flow velocity ū. On the other hand, the fluctuations might be in-
terpreted as the turbulent effects of overlapping vortices of different sizes that are
indicated by the turbulent kinetic energy k, dissipation rate ε, and viscosity ν. The
smallest, viscously determined vortices are given by the Kolmogorov scales

η =

(
ν3

ε

)1/4

, tK =
(ν
ε

)1/2

.

Apart from that, the local correlation tensor γ0 [12, 13] provides additional
information about the size of the present turbulent structures. The structures in
the dissipation area (small lengths, thus high frequencies) are determined by the run
of the one-dimensional longitudinal correlation function c1(z) = 2/z3

∫∞
0

∂κ(E(κ)/κ)

sin(κz) dκ, z ∈ R
+
0 around the origin and hence by k and ε; see (1.6). For z � 1,

c1(z) = 2/3k− ε/(30 ν) z2 +O(z4) then describes a parabola that intersects the z-axis
at the dissipation length λT, i.e., c1(λT) = 0. Thus,

λT =

(
20kν

ε

)1/2

represents the turbulent fine or microscale for the decay of the correlations.
In contrast, the large, macro, or integral scale

ΛT =

∫∞
0

trγ0(z) dz

trγ0(0)
=

π

2

∫∞
0

E(κ)/κ dκ∫∞
0

E(κ) dκ



FIBER DYNAMICS IN TURBULENT FLOWS 5

characterizes the mean coherence scale independently of longitudinal and lateral cor-
relations and can be interpreted as the typical size of the energy-bearing vortices. In
this context, the turbulent length proposed by the k-ε model,

lT =
k3/2

ε
,

can be understood as the leading order term of ΛT; compare with the modeled energy
spectrum of (1.5). The energy spectrum gives

ΛT =
π CK

2

ε2/3

k

(
A1κ

−5/3
1 + B1κ

−5/3
2

)
,

where κ1 and κ2 with κ2 > κ1 > 0 are the solutions of the nonlinear system

Akκ
−2/3
1 + Bkκ

−2/3
2 =

k

CKε2/3
= fk,

Aεκ
4/3
1 + Bεκ

4/3
2 =

ε1/3

2CKν
= fε =

fk
δ2

,(2.1)

stemming from (1.6). After nondimensionalizing, δ = (2kν/ε)1/2 ∼ O(λT) with
λT/H � 1 turns out to be small, whereas the other coefficients Ai, Bi, fk ∼ O(1).
Thereby, Ai, Bi, i = 1, k, ε, denote linear combinations of the fitting parameters arising

in (1.5), and CK = 0.5 is the Kolmogorov constant. Substituting xi = κ
2/3
i , i =

1, 2, we write x1 = fk/Ak − Bk/Ak x2. Inserting this expression into (2.1) yields
a 4th order equation for x2 that has two complex as well as two real solutions—
a negative and a positive. The feasible positive solution can be expanded in δ as

x2 = x
(1)
2 δ + x

(3)
2 δ3 + O(δ4), which results directly in a δ-series for ΛT,

(2.2) ΛT = F1 lT + O(δ) with F1 =
π

2

A1

C
3/2
K A

5/2
k

≈ 1.05.

In spite of the use of Ai in (2.2), the magnitude of F1 can be treated as independent
of the differentiability order of the underlying chosen energy model. An ansatz for
a smoother energy spectrum, E ∈ Cl(R+

0 ), l ≥ 3, certainly contains more fitting
parameters, but their influence cancels out in the definition of F1. In this work, we
refer to lT as the turbulent large-scale length.

Concerning the turbulent time scale for the decay of the energy-bearing vortices,
the length lT and velocity scale uT = k1/2 of the k-ε model imply

tT =
k

ε
.

As this scale does not take into account the advective influence of the mean flow, we
suggest additionally

tA =
lT
ū

=
k3/2

ε ū
.

Moreover, the amplitude D of the uncorrelated force in (1.7) might also be
expressed by k and ε, since it contains a moment of the energy spectrum. In our

case, we get
∫∞
0

E(κ)/κ2 dκ = CKε
2/3(A2κ

−8/3
1 + B2κ

−8/3
2 ), where A2, B2 ∼ O(1)
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are linear combinations of the fitting parameters. Following the approach above and
introducing the small parameter δ, the expansion for the energy moment reads

(2.3)

∫ ∞

0

E(κ)

κ2
dκ = F2

k4

ε2
+ O(δ) with F2 =

A2

C3
K A4

k

≈ 0.80.

In leading order, the amplitude is consequently given by

(2.4) D(0) =

(
2πF2

v̄n

)1/2
k2

ε
Pt,n .

Thus, the resulting correlations along the fiber (D(0))2 δ0(s) δ0(t) can be interpreted
as being proportional to the turbulent energy k acting over the mean coherence length
lT and over the characteristic turbulent fiber time τfT = lT/v̄n that depends on the
geometrical relation between fiber orientation and mean relative velocity.

2.2. Fiber scales. For a better understanding of the fiber behavior in the tur-
bulent flow, dimensional analysis is applied on the fiber system (1.1), (1.2). Therefore,
we introduce a dimensionless zooming parameter h = L/H as a ratio of the typical
varying length of interest L ∈ [0, l] and the fixed height of the suspended fiber H,
where l denotes the fiber length.

Apart from H, the problem contains nine parameters: diameter d, line weight
ρA, bending stiffness EI, fiber velocity W , acceleration of gravity g, flow density ρair,
mean flow velocity ū, mean relative velocity between flow and fiber v̄, and kinetic
turbulent energy k. The number of parameters can be reduced to four dimensionless:

Fr =
W 2

g H
, Gr =

ρA gH3

EI
, P̄ =

d ρair H3 v̄2

EI
, P′ =

d ρair H3 k1/2 v̄

EI
.

The Froude number Fr states the ratio of kinetic and gravitational potential energy,
the dimensionless gravity Gr the ratio of gravitational and flexural energies, and the
dimensionless mean P̄ and fluctuating aerodynamic force P′ the ratio of aerodynamic
and flexural energies. Introducing dimensionless variables gives

r(s, t) =H r∗(s∗, t∗), Tt(s, t) =
EI

LH
T ∗
t (s∗, t∗),

f̄(s, t) = d ρair
( v̄
h

)2

f̄∗(s∗, t∗), f ′(s, t) = d ρairk1/2
( v̄
h

)
f ′

∗
(s∗, t∗),

with s = Ls∗ and t = (L/W ) t∗. Here, two different scalings are used for fiber curve r
and arc-length s, r is scaled by the suspended height of the fiber H, and s by the typical
length of interest L. This choice is motivated by our interest in the whole spatial
domain of the fiber line while zooming in on certain fiber lengths. This allows us to
investigate the characteristic fiber behavior, e.g., bending, loop forming, crimping or
stiffness, arising on typical scales. Hence, the interplay of the fixed outer H and the
varying inner length L appears also in the factor of the tension part Tt. The bending
part is treated separately due to the composed structure of T . For the scaling of the
aerodynamic force fair, it is sufficient to utilize its proportionality to the dynamic
pressure, since ‖fair‖2 ∼ dρair‖v‖2

2 in the following. Thereby, the deterministic force
part f̄ is based on the quadratic mean relative velocity, and the stochastic part f ′ on
the product of mean relative velocity and flow fluctuations that are expressed by k1/2.
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Fig. 2. Scales of fiber-turbulence interactions in melt-spinning processes (cf. Tables 1 and 2).

The magnitude of the mean relative velocity v̄ depends particularly on the direction
of mean flow and fiber velocity according to

(2.5) v̄(s, t) = ‖ū ū∗ −W/h ∂t∗r
∗‖2 v̄∗(s∗, t∗) = (v̄/h) v̄∗(s∗, t∗).

It is minimal if ū� and ∂t�r
� are similarly directed, and maximal if they are opposite

directed; thus v̄ ∈ [ |hū−W |, |hū+W | ]. The time scaling in (2.5) that is chosen with
respect to the fiber dynamics of the typical length L incorporates here the zooming
ratio h into the definition of v̄. Then, the dimensionless fiber system reads

Fr Gr ∂tt�r
� = ∂s�((h

−1 T �
t + h−4 ‖∂ss�r�‖2

2) ∂s�r
�) − h−2 ∂ssss�r

� − h2 Gr e3

+P̄ f̄� + hP′ f ′
�
,

(∂s�r
�)2 = h2.

For a melt-spinning process, the typical fiber and flow parameter values listed in
Table 1 yield

Fr ∼ 101, Gr ∼ 104, P̄ ∼
{

108 − 109, h ∼ 1,
106 − 107, h � 1,

P′ ∼
{

107 − 108, h ∼ 1,
106 − 107, h � 1,

where the aerodynamic similarity quantities P̄ and P′ are roughly estimated by means
of the range of v̄. Varying the length of interest L and thus the zooming parameter
h = L/H reveals three characteristic scales for the fiber-turbulence problem in the
technical application that are worth considering in more detail; cf. Figure 2. In the
following we suppress the superscript ∗ to keep the expressions short.

Macroscale: 1 ≥ h > 10−1.

Fr Gr ∂ttr = −h2 Gr e3 + P̄ f̄ + hP′ f ′.

Over the whole length of the fiber l, the fiber dynamics is caused by the external
forces. In particular, the mean flow affects the fiber swinging.

Mesoscale: 10−1 ≥ h > 10−3.

Fr Gr ∂ttr = ∂s((h
−1Tt + h−4‖∂ssr‖2

2) ∂sr) − h−2 ∂ssssr + P̄ f̄ + hP′ f ′.
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Table 2

Overview of turbulence and fiber scales as well as dimensionless numbers for the fiber-turbulence
problem deduced from the typical parameter values in melt-spinning processes (cf. Table 1).

Turbulence scales

Large length scale lT 1.0 · 10−2 m
Fine length scale λT 5.4 · 10−4 m
Kolmogorov length scale η 1.4 · 10−5 m
Turbulent time scale tT 1.0 · 10−3 s
Advection time scale tA 1.0 · 10−4 s

Fiber scale

Typical length of interest L [0, 2.5] m

Dimensionless numbers of fiber-turbulence problem

Zooming ratio h [0, 2.5]
Froude number Fr 101

Gravity number Gr 104

Mean force number P̄ [108 − 109], h ∼ 1, [106 − 107], h � 1
Fluctuating force number P′ [107 − 108], h ∼ 1, [106 − 107], h � 1
Spatial smoothing parameter αs 10−2

Temporal smoothing parameter αt 10−3

This fiber scale coincides with the turbulent large-scale lT of the energy-bearing
vortices. Here, the inner and outer forces acting on the fiber balance each other.
But the fluctuating part of the aerodynamic force f ′ causes entanglement and fine-
loop forming which crucially determine the fiber dynamics.

Microscale: h ≤ 10−3.

∂s(h
−4‖∂ssr‖2

2 ∂sr) = 0, Fr Gr ∂ttr = −h−2 ∂ssssr + P̄ f̄ .

The inner forces, in particular the bending stiffness, dominate the total fiber behavior.
In contrast, the effects of the fine-scale λT and Kolmogorov vortices of size η are
irrelevant for the fiber dynamics; here η < d (cf. Tables 1 and 2).

The time scales of the problem provide no further information, as they are related
to the length scales using the reciprocal of the fiber velocity W as a proportionality
factor. Due to its inertia, the fiber shows thus no reaction to turbulent structures
decaying faster than tinertia = hmicroH/W ∼ 10−4 s, which includes the whole fine-
scale turbulence. The natural decay of the large-scale vortices in contrast is indicated
by tT ∼ 10−3 s and, under consideration of advection, by the mean flow by tA ∼ 10−4 s.

Summing up, fine-scale vortices do not affect a fiber in the melt-spinning pro-
cess because of bending stiffness of the fiber. Thus, their influence (correlations)
might be neglected in the model of the stochastic aerodynamic force. In contrast,
the turbulent large-scale vortices cause entanglement and loop-forming, which play a
decisive role in the fiber behavior. But instead of resolving their effects explicitly, it
is sufficient to model them on the macroscale, as our interest focuses exclusively on a
macroscopic description for the fiber dynamics. This motivates the idea of approxi-
mating the correlated force by an integrated—still correlated—force. In the following,
the introduced uncorrelated aerodynamic force fairuc of (1.4) that contains the mean
turbulent coherences (integral correlations) turns out to satisfy the stated demands
on approximability.

2.3. Quantitative similarity estimates. To justify the applicability of the
uncorrelated force as a substitute for the original correlated force in our problem,
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we analyze its approximation properties by means of the similarity estimates taken
from [13].

Similarity estimates (see [13]). Let αs, αt ∈ R
+
0 be spatial and temporal

smoothing parameters of the fiber-flow problem. Define E(κ1, κ2) :=
∫

R
E(‖κ1, κ2, l‖2)/

(κ1, κ2, l)
2 dl with E0 := E(0, 0) and S := supκ∈[0,1]2‖∇κE(κ1, κ2)‖2. Then, the ap-

proximability of the correlated by the uncorrelated aerodynamic force given in (1.3),
(1.4) is expressed by the following estimates:

L2-similarity:

(2.6) IL2 ≤
√
αs αt√
6π v̄n

√
S2

(
α2
s

(
1 +

v̄2
t

v̄2
n

)
+

α2
t

v̄2
n

)
+

8E2
0

3π

(
α3
s +

α3
t

(v̄n + |v̄t|)3

)
;

L∞-similarity:

IL∞≤
√

2αs αt

π2 v̄n

[
S
(
αs

(
1 +

v̄t

v̄n

)(
c

2
+ ln

(
1

αs

))
+

αt

v̄n

(
c

2
+ ln

(
v̄n + |v̄t|

αt

)))

+ E0

(
αs +

αt

v̄n + |v̄t|

)]
,(2.7)

where v̄t, v̄n are the tangential and normal component of the mean relative velocity

with respect to the (t, v̄)-induced fiber basis of section 1.1 and c =
∫ 1

0
(1 − cos ι)/ι dι.

The limit αi → 0, i = s, t, describes the smoothing over the whole R
2. This

is unrealistic, as the fiber length l prescribes a natural upper bound for the spatial
smoothing parameter αs. Thus, αs = lT/l is certainly a reasonable value for the
macroscopic description of the turbulent flow effects on the fiber. The temporal flow
and fiber scales are related to the spatial ones by the respective velocities ū and W ,
which motivates the choice of αt = tAW/l = αsW/ū.

Inserting the typical parameter values of Tables 1 and 2 yields for the dimension-
less smoothing values αs ∼ 10−2 and αt ∼ 10−3 as well as for the quantities S and E0 in
standard international units (SI-units) S ∼ 1 [m5/s2] and E0 ∼ k4/ε2 ∼ 10−2 [m4/s2]
according to (2.3). The order of the relative velocity can be approximated by v̄ ∼ 102

which implies |v̄t| ∈ [0, 102] and v̄n ∈ [0, 102]. Thus, quantitative similarity estimates
in SI-units depend drastically on the relation between fiber direction t = ∂sr and
mean relative velocity v̄, as they are expressed by

I2
L2

<∼ 10−10 v̄−2
n + 10−6 v̄−4

n , IL∞
<∼ 10−8 v̄−1

n + 10−6 v̄−2
n

with n = (v̄ − (v̄ · t)t)/‖v̄ − (v̄ · t)t‖2. In the case of t ⊥ v̄, we have v̄n ∼ 102 such

that IL2
<∼ 10−7 and IL∞

<∼ 10−10 indicate very good approximation properties. But
even for smaller normal velocity components—down to v̄critn ∼ 10−1—the uncorre-
lated force is a good substitute for the correlated one, since the deviations are little,

i.e., IL2
<∼ 10−1, IL∞

<∼ 10−4. In fact, v̄n ∼ 1 in general, and the events v̄n < v̄critn

might be viewed as elements of a nullset, because the perturbing influence of turbu-
lence and fiber inertia prevents the fiber from moving continuously within the mean
streamlines. However, further numerical realization also requires their treatment, so
in section 3.3 we will deal with the arising singularity for v̄n → 0 which results from
the definition of the force amplitude D, (1.7).

3. Air drag model and its consequences. The numerical simulations of the
fiber dynamics imposed by the correlated and/or uncorrelated aerodynamic force rely
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essentially on the choice of an appropriate air drag model f and the derivation of the
corresponding linear drag operator Lf . We particularly distinguish between linear and
quadratic drag relations and discuss their applicability as well as their consequences
for our application.

3.1. Choice of drag model.

Stokes drag for turbulent flow. For slow viscous flows with Re < 1, Cox [4]
has developed an insightful analytical series approximation for the force distribution
along the length l of a straight fiber. As the Reynolds number based on the fiber
diameter d approaches zero, the drag force per unit length along the fiber is propor-
tional to the relative velocity between fluid and fiber v(s, t) = u(r(s, t), t) − ∂tr(s, t)
at fiber point s and time t. So,

(3.1) f(v, t) = Cdrag(t) v, Cdrag(t) = ct t ⊗ t + cn (I − t ⊗ t)

gives the linear Stokes drag relation, where the drag tensor Cdrag depends on the
fiber orientation t = ∂sr in the surrounding flow. From the Stokes flow approximation,
Keller and Rubinow [10] have determined the drag coefficients cn, ct up to leading order
for smooth ellipsoidal filaments which also conform for small surface variations [1].
Götz and Unterreiter [7], in contrast, have derived an integral equation model for the
drag force by applying a matching principle to the asymptotic expansions of the flow
field around slender ellipsoidal and cylindrical fibers of circular cross sections in the
framework of Stokes’ and Oseen’s equations. Then with μ = ρairν,

cellipsoidn =
8πμ

Re

(
ln

(
2l

d

)
+

1

2

)−1

, cellipsoidt =
4πμ

Re

(
ln

(
2l

d

)
− 1

2

)−1

,

ccylindern =
8πμ

Re

(
ln

(
4l

d

)
− 1

2

)−1

, ccylindert =
4πμ

Re

(
ln

(
4l

d

)
− 3

2

)−1

.

However, there is no slender-body theory that is strictly valid for the turbulent
flow with high Re that is of interest here, Re ≈ 200. In the analysis of turbulence
effects on particles, a linear Stokes drag has successfully been applied to predict
particle motions in turbulent flows [15, 16, 18, 20]. Drag relations based on empirical
correlations have also been used [3, 14] as well as a modified Stokes drag that takes
into account particle oscillations [9]. As a necessary simplification, the form of the
drag force, (3.1), on the fiber under creeping flow conditions is assumed to be retained
for high Re turbulent flows. But (3.1) has been derived for a small Reynolds number
flow. Thus, it is only valid for infinitely thin, small fibers with d ≤ η and l ≤ η.
Anyhow, the relation is conferrable to longer fibers suspended in turbulent flow by
imposing the free-draining approximation, which has been used to model flexible fiber
motion [17] and polymer dynamics [6]. In this model, the fiber is considered to be
composed of a series of elements of length Δl, where Δl ≤ η. Each element meets the
necessary conditions for (3.1) to be valid. Assuming hydrodynamic independence of
each element allows (3.1) to be applied to all elements and thus to the entire fiber.

Taylor drag. For high Reynolds number flow indicated by Re ∈ (20, 106), Taylor
[19] has investigated the behavior of drag forces experimentally. Thereby, he has
discovered the nonlinear relation between drag and angle of attack α between the
flow direction and center line of an immersed straight slender body as well as the
influence of the surface roughness on the drag, which Lee [11] has applied successfully
to long, flexible fibers within a carding process.
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s2 > s1

s1

α(s, t)

r(s, t)

∂sr(s, t)

= t(s, t)

v(s, t)

n(s, t)

Fig. 3. Drag-relevant angle α ∈ [0, π] enclosed by relative velocity v and fiber tangent ∂sr.

As the drag force f lies in the plane spanned by the fiber tangent and the relative
velocity, it can be split into a tangential ft and a normal component fn with respect
to the fiber orientation, i.e., t = ∂sr, n = (v − (v · t)t)/‖v − (v · t)t‖2; cf. Figure 3.
Then

(3.2) f(v, t) = fn(v, t) + ft(v, t),

where

fn = 0.5 ρair dv2

⎛
⎝sin2 α + 4

√
sin3 α

Re

⎞
⎠ n,(3.3)

ft = 0.5 ρair dv2

(
5.4 cosα

√
sinα

Re

)
t,(3.4)

with sinα = (v · n)/‖v‖2, cosα = (v · t)/‖v‖2, and Re = dv/ν, respectively. Equa-
tions (3.3), (3.4) suggest that a straight fiber with smooth surface does not feel any
drag when it is aligned parallel to the direction of the incoming flow. This does not
correspond to the experiments in [19] revealing that for small α, α → 0, ft can be
approximated by ft(α

◦ = π/36). In contrast, for a rough surface this situation of zero
drag does not appear because the Taylor expression reads

(3.5) f = 0.5 ρair dv2

[(
sin2 α +

4 sinα√
Re

)
n + cosα t

]
.

For technical reasons, we rewrite (3.3)–(3.5) as

(3.6) fn = 0.5 ρair d cn ‖vn‖2 vn, ft = 0.5 ρair d ct ‖vt‖2 vt

with the empirical drag coefficients for smooth, resp., rough, fibers

csmooth
n = 1 + 4

√
ν/(d‖vn‖2), csmooth

t = 5.4
√
ν‖vn‖2/(d‖vt‖2

2),(3.7)

croughn = 1 + 4
√
ν‖v‖2/(d‖vn‖2

2), crought = ‖v‖2/‖vt‖2.

The high Reynolds number flow and the presence of very small vortices indicated
by the relation η < d in our application conflicts with the use of the heuristic linear
Stokes drag. Hence, we determine the aerodynamic forces on the smooth polymer fiber
under consideration by means of the empirically motivated nearly quadratic Taylor
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drag (3.6), (3.7), although this concept is examined only for high Re, but still laminar
inflow regime. Additionally, to exclude the zero drag in the case of parallelism of t
and v, we suggest a slight modification of the drag coefficient csmooth

t that provides
more realistic results. As a smooth fiber lying parallel to the direction of the relative
velocity experiences the same tangential drag force as one being rotated by α◦, and
as vn = v − (v · t)t, we define

(3.8) v◦
n :=

{
vn, c◦ ≥ ‖vt‖2/‖v‖2,
v − sgn(v · t)c◦‖v‖2 t else

with c◦ = cosα◦. Here, the sign function, sgn(x) = 1 if x ≥ 0, sgn(x) = −1 else,
includes equal and opposite directed vectors t and v. We have ‖v◦

n‖2 = 0 if and only
if ‖v‖2 = 0. Setting

(3.9) csmooth
t = 5.4

√
ν‖v◦

n‖2/(d‖vt‖2
2)

thus yields a reasonable tangential drag model that is not only continuous but proves
to also be differentiable.

3.2. Linear drag operator. Proceeding with the derivation of the linear drag
operator Lf , we consider a generalized linearization approach for the modified Taylor
drag model f ,

(3.10) f(v̄ + u′, t) ≈ f(v̄, t) + Lf (v̄, t, k) u′,

with mean relative velocity between fluid and fiber v̄ and random Gaussian fluctuation
of the flow velocity u′. In the context of (1.3), (1.4), the first term represents the
deterministic part of the aerodynamic forces and the second term the stochastic one.

Model for linear drag operator. Let f : R
3 × R

2 → R
3 be the modi-

fied Taylor drag model of (3.6)–(3.9). Then construct the linear drag operator Lf as
continuous composition

Lf (v̄, t, k) =

⎧⎪⎪⎨
⎪⎪⎩

∇vf(v̄, t), � > 1,

(1 −�)
(
an0(k) (I − Pt) + at0(k) Pt

)
+� ∇vf(�

−1 v̄, t), � ≤ 1,

(3.11)

with � = ‖v̄‖2 (2k)−1/2. The parameters are given by

an0
(k) =

(
2a2

n1
k + 5

√
25/
√

33/2π gam(5/4)an1
an2

k3/4 + 16/
√

3π a2
n2
k1/2

)1/2

,(3.12)

at0(k) =
√

8/(3π)1/2 atk
1/4(3.13)

with an1 = 0.5ρaird, an2 = ρair
√
dν, at = 1.35an2 , c◦ = cosα◦, and gamma func-

tion gam.
Let the projectors on fiber tangent t = ∂sr, normal n = (v̄−(v̄·t)t)/‖v̄−(v̄·t)t‖2,

and binormal b = t× n be described by P[x,y] = x⊗ y. In particular, we abbreviate
Px := P[x,x] and Px,y := Px +Py, x,y ∈ R

3. Then, the operator ∇vf resulting from
(3.6)–(3.9) reads

∇vf(v̄, t) = (an1‖v̄n‖2 + 2an2‖v̄n‖1/2
2 ) Pn,b + (an1‖v̄n‖2 + an2‖v̄n‖1/2

2 ) Pn

+ 2at‖v̄◦
n‖

1/2
2 Pt + at‖v̄◦

n‖
−1/2
2 (v̄ · t)P[t, v̄◦

n‖v̄◦
n‖−1]

+χ(v̄, t) at‖v̄◦
n‖

−3/2
2 c◦(c◦ − ‖v̄t‖2‖v̄‖−1

2 )(‖v̄t‖2
2 Pt + (v̄ · t)‖v̄n‖2 P[t,n]).
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Although the use of the indicator function χ(v̄, t) = 1 for (‖v̄t‖2‖v̄‖−1
2 ) ≥ c◦ and

χ(v̄, t) = 0 else, the introduction of v◦
n in (3.8) yields a continuous Gâteaux derivative.

In the limit to t‖v̄, additionally it stays bounded, which is a big difference from an
ansatz based on Taylor’s original zero drag model with missing tangential component.

The Gâteaux derivative ∇vf(v̄, t)u
′ is a good representative for the stochastic

part in (3.10) if the mean relative velocity is much higher than the fluctuations that

are characterized by the turbulent kinetic energy k, i.e., ‖v̄‖2
2 � E[u′2] = 2k. In

contrast, in case of v̄ = 0 it would provide a zero drag since

f(v̄ + u′, t)|v̄=0 = f(0, t) + ∇vf(0, t)u
′ + O((u′)2) = 0 + O((u′)2),

which is absurd, as the velocity fluctuations affect the fiber though vanishing mean
relative velocity

(3.14) f(u′, t) = (an1
‖u′

n‖2 + 2an2
‖u′

n‖
1/2
2 ) u′

n + 2at‖u′
n
◦‖1/2

2 u′
t.

Note that in (3.14) the direction n is exceptionally determined by u′, i.e., u′
n =

u′ − u′
t. The fact that the expectations of drag and velocity fluctuations are equal,

i.e., E[f(u′, t)] = E[u′] = 0, motivates the stated extension of the linearized approach
for v̄ = 0. Keeping the directional vectors u′

n,u
′
t, the coefficients with the specific

norms are replaced by the respective averaged quantity expressed by the kinetic energy
k such that the variance is correctly reproduced. Therefore abbreviate f := f(u′, t)
and consider

E[f ⊗ f ] = E[(f · t)2] t ⊗ t + E[(f · n1)2]n1 ⊗ n1 + E[(f · n2)2]n2 ⊗ n2

+ E[(f · t) (f · n1)] (t ⊗ n1 + n1 ⊗ t)

+ E[(f · t) (f · n2)] (t ⊗ n2 + n2 ⊗ t)

+ E[(f · n1) (f · n2)] (n1 ⊗ n2 + n2 ⊗ n1)

with arbitrarily chosen orthogonal normal vectors n1,n2. The mixed expectations
vanish thereby due to the independence and odd appearance of the underlying veloc-
ity components, as for E[f ] above. Because of the identical distribution of the drag
in the normal plane, we have E[(f · n1)2] = E[(f · n2)2] such that it is sufficient to

consider E[(f · n)2]. Using E[u′2] = 2k and the identical distribution of the veloc-
ity components yields their variance E[(u′ · e)2] = σ2 = 2k/3 with unit vector e.
The general (centered) moments are prescribed by the gamma function according to

E[|u′ · e|2m] = (2πσ2)−1/2
∫
x2me−x2/(2σ2) dx = (2σ2)m gam(m + 1/2)/

√
π, m ∈ R

+.
Then

E[(f · t)2] = 4a2
t E[|u′ · n◦|] E[(u′ · t)2] = (at0(k)σ)2,

E[(f · n)2] = a2
n1

E[(u′ · n)4] + 4an1an2E[|u′ · n|7/2] + 4a2
n2

E[|u′ · n|3] = (an0(k)σ)2

by means of (3.12), (3.13) such that

f0(u
′, t, k) := an0

(k)u′
n + at0(k)u′

t = an0
(k) (u′ − u′

t) + at0(k)u′
t

describes a Gaussian random variable that has the same stochastic parameters, i.e.,
expectation and variance, as the original drag of (3.14). Moreover, it is linear in u′,
although we suggest that its coefficients depend on k. But the turbulent kinetic energy
has to be viewed as an input parameter for the generation of the flow fluctuations in
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the context of this work. Hence, Lf (v̄, t, k) = an0
(k) (I−Pt) + at0(k) Pt is taken as

the drag operator in the case v̄ = 0.
For the secant complement that combines the two determined drag operators, all

functional dependencies of � might be imaginable, e.g., squared, linear, or quadratic
in ‖v̄‖2. But because of the lack of information about this intermediate domain,
i.e., ‖v̄‖2

2 ∈ (0, 2k), they are mathematically and physically as less motivated as our
proposed linear ansatz in (3.11).

3.3. Technical modification of force amplitude. Since the defined drag
operator Lf has a finite, nonvanishing limit for v̄n → 0, it is unable to balance the
arising singularity of the force amplitude in (1.7),

D =

(
2π

v̄n

∫ ∞

0

E(κ)

κ2
dκ

)1/2

Pt,n

(2.4)
≈
(

2πF2

v̄n

)1/2
k2

ε
Pt,n.

Consequently, the uncorrelated aerodynamic force fairuc diverges in the case of the
linear dependence of t and v̄, whereas the correlated force faircc stays bounded, as we
have already seen in the similarity estimates (2.6), (2.7). Although the occurrence of
this single discrepancy is negligibly small, the further numerical realization requires its
handling. Thus, we suggest a slight technical modification of the amplitude that has
no influence on the proved approximation quality of the uncorrelated force. Replace
D by

(3.15)

D̆ = (2πF2)
1/2 k2

ε

⎧⎪⎨
⎪⎩

v̄
−1/2
n Pt,n, ω > 1,

(1 − ω) (v̄critn )−1/2 (Pt + (I − Pt)/2) + ω v̄
−1/2
n Pt,n, ω ≤ 1,

with ω = v̄n/v̄
crit
n ; then

lim
v̄n→0

fairuc = f +

(
2πF2

v̄critn

)1/2
k2

ε

⎧⎪⎪⎨
⎪⎪⎩

l|| Pt p, � > 1,

((1 −�) (an0(k)/2 (I − Pt) + at0(k) Pt)
+� l|| Pt) p, � ≤ 1,

coincides with the limit of the correlated force regarding the formal structure of the
terms. Here, the deterministic force part given by the modified Taylor drag of (3.6)
and (3.9) reads f = ft for ‖v̄‖2 �= 0 and f = 0 else, and furthermore

l|| := at

(
2v̄◦ 1/2

n +
v̄t

v̄
◦ 1/2
n

+
(c◦ 2 − c◦)v̄2

t

v̄
◦ 3/2
n

)

with v̄◦n = (1 − sgn(v̄ · t)c◦)‖v̄‖2 < ∞. The modification in (3.15) can be interpreted
as cutting the amplitude D at the critical velocity v̄n = v̄critn and matching it contin-
uously with a linear extension. As the underlying (t, v̄)-induced set {t,n,b} loses its
basis properties in the limit v̄n = 0, we distinguish between the tangential and the
remaining projectors and introduce the normal independent splitting (Pt+(I−Pt)/2)
instead of the original (Pt +Pn). Thus, the direction of fairuc is no longer specified by
the mean relative velocity for � → 0, as already indicated by faircc .

The needed technical modification of the amplitude reveals the deficiency of the
modeled fluctuation velocity fields wσ,τ

f whose dynamics is based on a locally frozen
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turbulence pattern. Hence, the fiber experiences no temporal change of the corre-
lations if it moves within the mean streamlines, i.e., v̄n = 0. Alternatively to the
modification, one might question the underlying concept of frozen turbulence that
neglects the natural decay of vortices because of its large time tT and slow turbulent
velocity scale uT = k1/2 in comparison to the advection scales of the mean flow tA,
ū. However, for a fiber suspended in turbulence, the actual temporal change of the
experienced turbulent coherences is prescribed by the velocity vfT = max{v̄n, uT}.
This could be incorporated into the definition of the flow-dependent force amplitude
D̆ by substituting v̄critn with uT. Then the characteristic turbulent fiber time reads

τfT = min{lT/v̄n, tT}. The consequences of the choice of the parameter v̄critn are
illustrated in the numerical results of the next section.

4. Numerical simulations. The input flow data for the following numerical
simulations of the fiber dynamics stem from k-ε computations of FLUENT 6.1 that
have been adapted with user-specific procedures to reflect the realistic turbulent flow
behavior of a melt-spinning process. The implementation of the fiber system (1.1),
(1.2) is based on a standard method of lines. The use of spatial finite differences of
higher order thereby yields the appropriate approximation of the algebraic constraint
(1.2). The time integration is realized by a semi-implicit Euler method, where an
adaptive time step control ensures stability and accuracy. The arising nonlinear sys-
tem of equations is iteratively solved by a modified Newton–Raphson method. As
the Jacobian matrices show a band structure, the computational effect of an iteration
step is proportional to the number of fiber points. Note that the aerodynamic forces
are explicitly included. Their quality depends crucially on the available flow data that
are linearly interpolated on the spatial and temporal fiber grid.

In the following, we briefly present the numerical algorithms for the realization of
the correlated and uncorrelated aerodynamic forces before we compare their effects
on the fiber dynamics by means of an introduced curvature measure.

4.1. Algorithms. Let Inm = {l ∈ N0 | m ≤ l ≤ n}. Let the spatial and temporal
fiber discretization be given by si = iΔs and tj = tj−1 + Δtj−1, t0 = 0 with fixed
space increment Δs, and adaptive time step Δtj , (i, j) ∈ In0 × Im0 . Then denote
the respective function values at the fiber point si at time tj with subscript i and

superscript j , e.g., rji = r(si, tj).
The numerical generation of the correlated aerodynamic force faircc utilizes

autoregressive moving average (ARMA) processes [2] for the centered, homogeneous,
independent, local fluctuation velocity fields wσ,τ

f along the fiber, whereas the imple-

mentation of the uncorrelated force fairuc is exclusively based on Gaussian white noise
p,

lim
(Δs,Δtj)→0

(ΔsΔtj)
1/2 pj

i ∼ N (0, I).

Algorithm 4.1 (computation of correlated force). Choose lT and tT as charac-
teristic turbulent large scales of the problem. Consider a fixed fiber and a time point
that is indicated by the index tuple (i, j) ∈ In0 × Im0 .

1. Determine its corresponding index set N j
i ,

N j
i =

⎧⎨
⎩(φ, τ) |

∥∥∥∥∥rji − rτφ − ūj
i

j−τ∑
q=1

Δtj+1−q

∥∥∥∥∥
2

≤ lT ∧
j−τ∑
q=1

Δtj+1−q ≤ tT

⎫⎬
⎭

with feasible tuples (φ, τ) ∈ (In0 × Ij−1
0 ) ∪ (Ii0 × Ijj ).
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2. Compute the centered, homogeneous, local fluctuations (w�
f )ji for all � =

(�1, �2) ∈ N j
i . For this purpose, consider a fixed �:

(a) Set the turbulent fine-scale length λ�
T = (20k�ν/ε�)1/2.

(b) Determine the correlation index set (J�)ji ,

(J�)ji =

⎧⎨
⎩(φ, τ) |

∥∥∥∥∥rji − rτφ − ū�

j−τ∑
q=1

Δtj+1−q

∥∥∥∥∥
2

≤ λ�
T

⎫⎬
⎭

with feasible tuples

(φ, τ) ∈

⎧⎪⎪⎨
⎪⎪⎩

Ii−1
�1

× I�2�2 , �2 = j, �1 < i,

(In�1 × I�2�2 ) ∪ (Ii−1
0 × Ijj ), �2 = j − 1,

(In�1 × I�2�2 ) ∪ (In0 × Ij−1
�2+1) ∪ (Ii−1

0 × Ijj ), �2 < j − 1,

∅ otherwise.

(c) If (J�)ji �= ∅,
then:

i. Define a bijective mapping ρ : {1, . . . , |(J�)ji |} → (J�)ji and set
ρ(0) = (i, j).

ii. Consider the vectorial ARMA process

(4.1) (w�
f )ji = (w�

f )ρ(0) =

|(J�)ji |∑
q=1

Aq(w
�
f )ρ(q) + (ξ�)ji

with unknown coefficients Aq ∈ R
3×3 and noise (ξ�)ji ∼ N (0,K)

that is assumed to be independent of (w�
f )ρ(q).

iii. Define C(p,q) := E[(w�
f )ρ(p) ⊗ (w�

f )ρ(q)] for p, q = 0, . . . , |(J�)ji | by

means of the correlation tensor γ�
0 in the canonical basis represen-

tation. Then particularly, C(p,p) = γ�
0(0) and C(p,q) = C(q,p) hold.

iv. Approximate the lateral correlation function of γ�
0 by c�

1(z) = 2k�/3−
ε�z2/(30ν), i.e., γ�

0(z) = (c1(z) + z∂zc1(z)/2)I− ∂zc1(z)/(2z)z⊗ z,
z = ‖z‖2 [13].

v. Compute the coefficients Aq by solving

(4.2)

|(J�)ji |∑
q=1

C(p,q) Aq = C(p,0), p = 0, . . . , |(J�)ji | − 1.

vi. Calculate the covariance K of the noise term (ξ�)ji from

K = C(0,0) −
|(J�)ji |∑
p=1

ApC(p,p)A
T
p

−
|(J�)ji |−1∑

p=1

|(J�)ji |∑
q=p+1

ApC(p,q)A
T
q −

|(J�)ji |−1∑
p=1

|(J�)ji |∑
q=p+1

AqC(q,p)A
T
p .



FIBER DYNAMICS IN TURBULENT FLOWS 17

vii. Generate the correlated noise term (ξ�)ji = (ξ1, ξ2, ξ3) according to
its covariance K = (Kpq)p,q=1,2,3 and the ansatz

ξ1 ∼ N (0,K11),

ξ2 = αξ1 + ξ′2,(4.3)

ξ3 = β1ξ1 + β2ξ2 + ξ′3,

where the parameters α, β1, β2 and the independent random numbers
ξ′2, ξ

′
3 are prescribed by

α = K22/K12 and

2∑
q=1

Kpq βq = Kp3 for p = 2, 3,

ξ′2 ∼ N (0,K22 − α2K11),

ξ′3 ∼ N (0,K33 − β2
1K11 − β2

2K22 − 2β1β2K12).

viii. Plug the determined coefficients Aq of (4.2) and the correlated noise

(ξ�)ji of (4.3) into the ARMA process (4.1).

else, (J�)ji = ∅:
Set

(4.4) (w�
f )ji =

(
2k�

3

)1/2

(ξ�)ji with (ξ�)ji ∼ N (0, I).

3. Determine the correlated aerodynamic force

(4.5) (faircc )ji = f(v̄j
i , t

j
i ) + Lair(v̄j

i , t
j
i , k

j
i ) |N j

i |−1/2
∑

�∈Nj
i

(w�
f )ji .

Algorithm 4.2 (computation of uncorrelated force). Consider a fixed fiber
and a time point that is indicated by the index tuple (i, j) ∈ In0 × Im0 . Set �j

i =

‖v̄j
i ‖2/(2k

j
i )

1/2, ωj
i = (v̄n)ji/v̄

crit
n and let the projectors P depend on space and time

discretization. Then, the uncorrelated aerodynamic force is determined by

(4.6) (fairuc )ji = f(v̄j
i , t

j
i ) +

√
2πF2

ΔsΔtj

(kji )
2

εji

√
(v̄n)ji

φj
i ,
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where

φj
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇vf(v̄
j
i , t

j
i ) P(t,n)ji

ξji , �j
i > 1, ωj

i > 1,

∇vf(v̄
j
i , t

j
i )

[
(1 − ωj

i )
√
ωj
i

(
Ptji

+ (I − Ptji
)/2
)

+ ωj
i P(t,n)ji

]
ξji ,

�j
i > 1, ωj

i ≤ 1,

[
(1 −�j

i )
(
at0(k

j
i ) Ptji

+ an0
(kji ) Pnj

i

)
+�j

i ∇vf((�
j
i )

−1 v̄j
i , t

j
i ) P(t,n)ji

]
ξji , �j

i ≤ 1, ωj
i > 1,

[[
(1 −�j

i ) at0(k
j
i ) I + �j

i ∇vf((�
j
i )

−1 v̄j
i , t

j
i )
]
(1 − ωj

i )
√
ωj
i Ptji

+(1 −�j
i ) at0(k

j
i )ω

j
i Ptji

+
[
(1 −�j

i ) an0(k
j
i ) I + �j

i ∇vf((�
j
i )

−1 v̄j
i , t

j
i )
]
,[

(1 − ωj
i )
√
ωj
i (I − Ptji

)/2 + ωj
i P(t,n)ji

]
g

]
ξji , �j

i ≤ 1, ωj
i ≤ 1,

and ξji ∼ N (0, I); i.e., the components (ξl)
j
i ∼ N (0, 1), l = 1, 2, 3, are independent

and normally distributed.
Regarding memory and computational effort, Algorithm 4.1 is extremely costly.

Apart from the two searching procedures in steps 1 and 2(b), it requires in general the
solving of |N | linear systems of 3|J | equations for each fiber and time point specified
by (i, j), step 2(c)v. Thereby, the cardinal numbers |N | and |J | depend not only
on the fiber dynamics at (i, j), but also crucially on the spatial and temporal grid
size, which should be chosen to be a compromise between computational capacity
and desirable accuracy of the correlation structures to be realized. The required 3|N |
Gaussian deviates for step 2(c)vii are here generated by the Box–Muller method [5].
In comparison to Algorithm 4.1, Algorithm 4.2 is obviously enormously cheaper and
faster. Its evaluation is independent of the chosen discretization and needs only three
Gaussian deviates per fiber and time point.

In case of large-scale resolution, where N j
i = {(i, j)} and (J�)ji = ∅ for all (i, j)

in Algorithm 4.1, the correlated aerodynamic force faircc is obviously approximated
numerically by the uncorrelated fairuc , since (4.4), (4.5) correspond to the white noise
approach of Algorithm 4.2 with Δs ∼ lT and Δt ∼ tT in (4.6). But, also for fine-scale
resolution, the respective numerical representatives match very well as far as their
effects on the fiber dynamics are concerned. To show the statistical coincidence of their
influence, we analyze the imposed fiber dynamics by means of a curvature measure in
the following. Thereby, we restrict the comparison exemplarily on a fixed appropriate
fiber discretization because of the extremely long run-time and the enormous memory
demands of Algorithm 4.1.

4.2. Results. Simulating the motion of an inextensible slender fiber swinging
freely in a turbulent flow field, we show the similarity of the macroscopic effects on
the fiber that are caused by the correlated and uncorrelated force model. For this
purpose, we introduce the following curvature measure.

Definition 4.1 (curvature measure). Let rji , (i, j) ∈ In
0 ×Im

0 , be the spatially and
temporally discretized fiber line that is imposed by the aerodynamic forces according
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Fig. 4. k-ε simulation results for turbulent flow. Top to bottom: Stationary two-dimensional
vertical mean stream ‖ū‖2, kinetic energy k in SI-units.

to (1.1), (1.2). Then, its curvature measure at time tj is defined by

Kj =
1

n− 1

n−1∑
i=1

‖Δssr
j
i‖2

using the central difference Δssr
j
i = (rji+1 − 2rji + rji−1)/Δs2.

Evaluating the fiber line over a certain time interval gives statistically comparable
parameters for K, i.e., its mean μ and its standard deviation σ.

Apart from the similarity, the curvature measure states the significance of the tur-
bulent aerodynamic force for entanglement and loop-forming of the fiber. To illustrate
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Fig. 5. From top to bottom: Fiber exposed to faircc and fairuc with v̄critn = 10−3 m/s, resp., v̄critn =
(2k)1/2. Left: Instantaneous fiber dynamics. Right: Two-dimensional projections zoomed in.

these effects, we consider a fiber of length l = 1 m and material properties according
to Table 1 that is initially hanging in the symmetry axis of a stationary, vertically
directed two-dimensional mean flow field ū (cf. Figure 4). The turbulent fluctuations
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Fig. 6. Curvature measures K over 500 time points for fiber exposed to stochastic forces for
5 · 10−2 s. From left to right: Results for faircc , fairuc with v̄critn = 10−3 m/s, resp., v̄critn = (2k)1/2.

are prescribed by the stationary kinetic energy k and dissipation rate ε. Then, the
resulting deterministic force part f̄ is mainly vertically directed and the stochastic part
f ′ is determined almost exclusively by the small horizontal fiber oscillations. Hence, if
the turbulent influence is neglected, the fiber is not excited out of its position of rest.
It has the characteristic curvature properties μ = 0 and σ = 0 which will prescribe
our reference state. The used underlying flow data represent a realistic turbulent
stream, as might be expected in the deposition region of a melt-spinning process; see
the parameter values in Tables 1 and 2. Note that the illustrated geometry in Figure 4
is distorted in width to stress the flow behavior around the symmetry axis, e3-axis.

Exposing the fiber to the stochastic force models, we obtain the representatives of
a momentary fiber position that are visualized in Figure 5. Apart from the correlated
force, we distinguish hereby between the uncorrelated force effects by choosing two
variants for v̄critn , i.e., v̄critn = 10−3 m/s and v̄critn = (2k)1/2. At first glance, the
behavior of the fibers seems to be straightforward and meaningless due to the chosen
draw ratio of meters. But, indeed, all three representatives show similar curvatures,
which becomes evident by zooming into the two-dimensional fiber projections; see
Figure 5 (right). Near the mounting, they hang down almost straight for the first
2 · 10−1 m before they start to form loops. The observed oscillations then have a
typical range of 10−3 up to 10−2 m, which corresponds with our asymptotic analysis
of section 2.2; see Figure 2. Considering the respective fiber motions for a period of
5 · 10−2 s, we provide further results by the curvature measures K that are plotted
and statistically evaluated for comparable samples of 500 time points; see Figure 6
and Table 3. Thereby, all temporal evolutions turn out to be normally distributed.
The mean curvature measure of the uncorrelated force, v̄critn = 10−3 m/s, differs less
than 1% from that of the correlated force. Also, the standard deviations fit very well,
and we obtain differences of only 2%. This shows very good agreement. This choice
of v̄critn overcomes simply the singularity stemming from the underlying correlated
frozen turbulence pattern and therefore yields better approximation properties than
the other variant that additionally incorporates the decay of the vortices.

Summing up, the uncorrelated force model is undeniably a good substitute for the
correlated one on the macroscopic fiber scale. Leading to a statistically similar fiber
behavior, it requires—instead of days—only a few minutes of computational time for
the simulation of 5 · 10−2 s real time motion. Thus, it makes long-time fiber studies
possible, which is essential for practical application. Note that for the computation
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Table 3

Statistic parameters for the curvature measures K of Figure 6.

Stochastic Correlated Uncorrelated Without

force v̄critn = 10−3[m/s] v̄critn = (2k)1/2

K [1/m]
μ 86.93 (100%) 86.33 (−0.69%) 82.99 (−4.53%) 0
σ 13.83 (100%) 14.10 (+2.00%) 14.94 (+8.03%) 0

CPU-time Days ∼4.5 min ∼4 min ∼1.5 min

of the deterministic reference case, Algorithm 4.2 is not needed. Moreover, due to the
absence of stochastic forces, a larger (adaptive) time step can be used. The increase
of Δt by one order, up to Δt ∼ 10−5 s, together with the skipping of Algorithm 4.2,
leads to the bisection of the CPU-time observed in Table 3. Thus, it takes only
1.5 min CPU-time instead of 4 min as in the turbulent cases. All calculations have
been performed on an Intel Xeon processor, 2.8 GHz.

5. Conclusions. In [13], a general aerodynamic force concept is derived on the
basis of a stochastic k-ε turbulence model for the flow field. The turbulence effects
on the dynamics of a long slender elastic fiber are modeled by a correlated Gaussian
force and in its asymptotic limit on a macroscopic fiber scale by Gaussian white noise
with flow-dependent amplitude. Choosing a specific Taylor drag model, this paper
has shown the applicability of the force concept for the handling of the complex fiber-
turbulence interactions as they occur in a typical melt-spinning process of nonwoven
materials. Moreover, it has stated the very good theoretical and numerical approx-
imation properties of the uncorrelated force. The introduction of the uncorrelated
aerodynamic force changes the character of the perturbation term into a localized
linear integrator such that the fiber dynamics is described by a system of partial
differential equations with additive Gaussian white noise. This enables not only a
theoretical analysis but also an efficient numerical realization. Adapting the fiber
system with appropriate boundary and initial conditions, the FIber DYnamics Sim-
ulation Tool (FIDYST) [8] developed at Fraunhofer ITWM, Kaiserslautern, applies
the presented algorithm to simulate the turbulent deposition region of melt-spinning
processes with hundreds of individual endless fibers. The simulation results are val-
idated with experimental data. However, note that for this purpose, further aspects
have to be taken into account, such as fiber-fiber interactions, sticky fiber bunches,
conveyor belt effects, or the affection of the turbulence by higher concentrated fiber
curtains.
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ANISOTROPY RECONSTRUCTION FROM WAVE FRONTS
IN TRANSVERSELY ISOTROPIC ACOUSTIC MEDIA∗

JOYCE R. MCLAUGHLIN† , DANIEL RENZI† , AND JEONG-ROCK YOON‡

Abstract. This paper considers an inverse problem for a transversely isotropic three-dimensional
acoustic medium, where there is one preferred direction called the fiber direction along which the
wave propagates fastest and there is no preferred wave propagation direction in the isotropic plane,
which is the plane orthogonal to the fiber direction. In this medium the parameters to be recovered
are (1) the wave speed for a wave propagating in the direction along the fiber; (2) the wave speed for
a wave propagating in any direction which is orthogonal to the fiber direction; and (3) the unit fiber
direction itself. So four scalar functions are to be recovered. The data are the positions of four distinct
wave fronts as the corresponding waves propagate through the medium. The mathematical relation,
which is the Eikonal equation, between the wave front locations and the four unknown functions,
is nonlinear. Here it is established, perhaps surprisingly, that corresponding to the given data set,
there can be up to four possible solution quadruples. We present and implement an algorithm to
compute each of the possible solutions and show our selection criteria to obtain the correct solution.
The Eikonal equation, which relates the wave front positions to the unknown functions, is the same
equation obtained for the horizontally polarized shear wave (SH wave) which propagates in a linear
elastic system.

Key words. elastography, inverse problem, arrival time, anisotropic wave equation, transversely
isotropic medium, fiber direction

AMS subject classifications. 35R30, 62P10, 92C55
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1. Introduction. Motivated by wave propagation directional dependence in tis-
sue, the goal of this paper is to identify directionally dependent stiffness properties
from multiple wave fronts. The wave propagation model is an anisotropic wave equa-
tion, where the medium has one preferred direction, which we designate as the fiber
direction, where it has a faster wave speed and the waves propagating in the plane or-
thogonal to this preferred direction are slower and exhibit no directional dependence.
Our goal is the recovery of the unit fiber direction and the ratio of each of two distinct
stiffness coefficients to the density. The square roots of these two ratios define the
wave speed in the fiber direction and in the plane orthogonal to the fiber. We show
that in three dimensions there can be up to four discrete solution triples of two wave
speeds and the fiber direction, from four distinct wave fronts. The fact that there is
a discrete set of solutions is a direct result of the nonlinear relations, governed by the
Eikonal equation, between wave front directions, wave speeds, and the fiber direction.

Shear stiffness recovery has been of interest for about 15 years, and several
experiments are being investigated as follows:
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(1) tissue that is compressed as stiff tissue compresses less [4, 17];
(2) single frequency excitation, where stiff tissue exhibits low amplitude and stiff-

ness characteristics can be recovered from amplitude variations [8, 15, 19, 20];
(3) crawling or holographic waves, which are produced with excitations at two

nearby frequencies, and where phase wave speed can be recovered [14, 22];
(4) interior radiation force excitation at a single point produced by a single

ultrasound beam [16];
(5) interior radiation force excitation produced with two ultrasound beams whose

excitation frequency difference is in the KHz range [7];
(6) tissue surface line sources, or supersonic imaging that effectively produce line

sources orthogonal to the tissue surface and produce propagating waves with
identifiable fronts [2, 3]; the propagating front locations can be utilized to
recover tissue properties.

In each of the above six cases the goal is to image either (a) shear wave speed
which is roughly 3 m/sec in normal isotropic tissue and can more than double in
abnormal tissue; or (b) shear stiffness which can increase more than four times in
abnormal tissue. The goal is to identify abnormal inclusions, which are tumors.

Here we utilize the supersonic imaging experiment, in which a line source is
approximated by a set of interior radiation force pushes, produced by focused
ultrasound beams all at the same frequency, and made successively along a line. This
effectively induces a conical wave in three dimensions whose angle with the line of the
source is determined by how fast the succession of pushes is made and whether or not
the pushes begin deep in the tissue and move successively toward the surface or vice
versa; see Figure 1.1.

Our goal in this paper is to recover anisotropic tissue properties. Our motivations
are (a) that some normal, e.g., muscle, tissue is anisotropic and so mathematical
models must include this property; and (b) that it has been conjectured [18, 21]
that benign and cancerous tumors may have their own distinguishing anisotropic
properties. If indeed the latter conjecture is true, the recovery of anisotropic tumor
properties could be of considerable medical importance.

To give some background about what is known in the isotropic case, for con-
trast with the anisotropic case, we recall that previously we established uniqueness
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Fig. 1.1. Illustration of three possible conical wave fronts (two-dimensional view) produced by
a succession of interior radiation force pushes. A transducer focuses ultrasound beams to produce
interior radiation force pushes and changes focal depth successively, either from top to bottom or
vice versa.
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results [10, 11], and the arrival time algorithm [10, 12, 13], to reconstruct wave speed
in isotropic media. There we showed that the positions of one propagating front es-
tablished the wave speed uniquely, and that there is at most one pair of the shear
stiffness μ and the density ρ, corresponding to a given single displacement data as a
function of space and time, provided the medium is initially at rest. In this paper, we
establish that four distinct wave fronts in three dimensions yield up to four triples:
two distinguishing wave speeds and a fiber direction. We note also that if we are
given one of the possible triples and the solution of the anisotropic wave equation (as
opposed to only the wave front positions), then also there is at most one density ρ
corresponding to that triple.

Our paper is organized as follows. In section 2 we establish that our model has
finite propagation speed, that Lipschitz continuous fronts, defined by their arrival
times, satisfy an anisotropic Eikonal equation, and we refer to our very recent result
that establishes that arrival times are actually Lipschitz continuous; in section 3 we
give our analysis that there can be up to four discrete solution triples corresponding
to four distinct wave fronts; and in section 4 we show numerical results that includes
recoveries of an anisotropic inclusion embedded in an isotropic background.

2. Anisotropic acoustic models. We consider anisotropic models, where the
wave speed represented by

√
c44/ρ in one preferred direction, which we call the fiber

direction, �f , is larger than the wave speed
√

c66/ρ in the plane orthogonal to the
fiber direction. In this plane, which we call the isotropic plane, the wave speed is
independent of direction. Our language and notation here are consistent with SH-
wave propagation in incompressible transversely isotropic linear elastic models, which
we will consider in a later paper.

Let Ω be a bounded C2 open connected subset in R
n for n = 2, 3. Assume

(2.1)
ρ ∈ C0(Ω̄), M ∈

[
C1(Ω̄)

]n×n
is a symmetric matrix function, and

∃α0 > 0 such that ρ(x) ≥ α0, �v ·M(x)�v ≥ α0|�v|2 ∀x ∈ Ω̄, ∀�v ∈ R
n.

Then our anisotropic wave propagation model is

(2.2) ∇ · (M∇u) = ρutt in Ω × (0, T )

with homogeneous initial condition, u(x, 0) = ut(x, 0) = 0 in Ω, and the boundary
condition is either Dirichlet or Neumann; u|∂Ω×(0,T ) = g or (ν ·M∇u)|∂Ω×(0,T ) = h,
where ν is the unit outward normal to ∂Ω. This is an anisotropic extension of the
frequently used isotropic elastography model; see [1]. We refer the reader to [6]
for techniques to establish existence and uniqueness for the initial-boundary value
problem associated with (2.2).

Remark 1. In terms of the SH-wave motivated assumptions mentioned above,
the stiffness matrix M is represented by

(2.3) M = c66I + (c44 − c66)�f ⊗ �f,

where |�f | = 1, c44 > c66 > 0 in Ω̄, and I and ⊗ denote the identity matrix and
tensor product, respectively. Here our assumption that c44 > c66 is natural since in
biological tissue, e.g., muscle tissue, the wave speed is fastest in the direction aligned
with the fibers [9].

Since our medium is initially at rest, the wave propagates into the medium from
the boundary with a propagating front. In our next two theorems, following [10, 11],
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we establish that the wave whose propagation is governed by the above model has
(1) finite propagation speed, and (2) an arrival time, which we assume to be Lipschitz
continuous, that, under this assumption, satisfies the Eikonal equation.

Theorem 2. Assume ρ and M satisfy (2.1). Let u ∈ H2(Ω × (0, T )) be a
solution of (2.2). Then for any open ball Bε(x0) ⊂ Ω, u has a finite propagation speed
in Bε(x0) × (0, T ) with the maximum speed

c = sup
x∈Bε(x0)

√
σM (x)/ρ(x),

where σM (x) is the largest eigenvalue of M(x).
The proof of the above theorem is along the same lines as that in the isotropic

case (Theorem 3.4 in [11]), once we redefine the energy by

e(s) :=
1

2

∫
Cs

{
ρ|ut|2 + ∇u ·M∇u

}
dx, Cs := Bε−cs(x0) × {t = t0 + s}.

So we omit the proof.
As in [10] we define the arrival time, T̂ (x), of the wave as

(2.4) T̂ (x) := inf{t ∈ (0, T ) : |u(x, t)| > 0}, x ∈ Ωu �=0,

where Ωu �=0 := {x ∈ Ω : u(x, t) 	= 0 for some t ∈ (0, T )}, and we assume the solution u

of (2.2) is continuous. If T̂ ∈ C1(Ω), then existing unique continuation results would
apply to show that the arrival time, T̂ , satisfies the Eikonal equation given below.
Since our target medium is inhomogeneous, we then expect waves originating at more
than one point on the boundary to arrive simultaneously at the same interior points
of Ω. In this case, T̂ (x) could have kinks or at least be nondifferentiable there. Hence
we assume T̂ (x) is Lipschitz continuous and establish the following theorem.

Theorem 3. Assume ρ ∈ C1(Ω̄) in addition to (2.1). Let u ∈ H2(Ω × (0, T )) ∩
C0(Ω × (0, T )) be a solution of (2.2) with u(x, 0) = ut(x, 0) = 0 in Ω, and either
of the following Dirichlet or Neumann boundary conditions: u|∂Ω×(0,T ) = g or (ν ·
M∇u)|∂Ω×(0,T ) = h. Suppose further that the arrival time T̂ : Ωu �=0 → [0, T ] is

Lipschitz continuous. Then T̂ satisfies the Eikonal equation

(2.5) ρ = ∇T̂ ·M∇T̂ a.e. in Ωu �=0.

In particular, when M is given in the form of (2.3), our Eikonal equation becomes

(2.6)
1

|∇T̂ |2
=

c66
ρ

+

(
c44
ρ

− c66
ρ

) ∣∣∣∣∣ ∇T̂

|∇T̂ |
· �f

∣∣∣∣∣
2

.

Proof. Since T̂ is Lipschitz continuous, ∇T̂ is well defined almost everywhere.
Note that (2.5) is merely a necessary condition for t = T̂ (x) to be a characteristic
surface with respect to the hyperbolic equation ρutt = ∇ · (M∇u). If we suppose
that t = T̂ (x) is a noncharacteristic surface, we can draw a contradiction, as done in
Theorem 2.10 in [10], which is based on Theorem 3.6 in [5] and a lemma on page 544
of [6]. See [10] for the details.

Remark 4. In fact, T̂ according to the definition (2.4) may be discontinuous even
if the solution u is infinitely smooth. However, in this paper we adopt this definition
to make arguments simpler and clearer. Modifying the definition of arrival time by

T̂ (x) := inf{t ∈ (0, T ] : ||u||L2(V×(0,t)) > 0 ∀ open V ⊂ Ω with x ∈ V }, x ∈ Ω \ ΩE ,
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where ΩE :=
⋃
{V ⊂ Ω is an open set satisfying ||u||L2(V×(0,T )) = 0}, we have recently

established that T̂ : Ω \ΩE → (0, T ] is actually Lipschitz continuous. This result will
be addressed soon.

Note that in the anisotropic case, the wave does not always propagate in the
direction orthogonal to the wave front (group or ray velocity is not always the same as
phase velocity). Nevertheless, under the assumption that T̂ (x) is Lipschitz continuous,
the phase wave speed, c(x), in the direction orthogonal to the front, satisfies

(2.7) c(x)|∇T̂ | = 1, c(x) = c
(
x,∇T̂

)
,

and can be determined by the methods given in [10, 12, 13]. In later sections, we
will assume that this speed, c(x), has been determined from T̂ so when we solve the
inverse problem,

find (c66/ρ, c44/ρ, �f) from multiple arrival times,

we will assume we know both T̂ (x) and c(x).
Remark 5. In a later paper we will consider a transversely isotropic elastic

medium. Note that then (2.6) will be the Eikonal equation with M defined as in (2.3),
satisfied by the SH-wave phase ψ(x) in a geometric optics expansion, �u = �aeiω(t−ψ(x)),
where �a = �a0 + 1

iω�a1 + 1
(iω)2�a2 + · · · is an asymptotic series with ω � 1.

3. Reconstruction using four measurements. Having established the intrin-
sically nonlinear Eikonal equations (2.6) and (2.7) in section 2, we address the uti-

lization of these equations to recover the three unknown quantities (c66/ρ, c44/ρ, �f)

from wave fronts T̂ . Since |�f | = 1, this means that in three dimensions we have four
scalar functions to recover. It is natural then to investigate the inverse problem,

(3.1) find

(
c66
ρ

,
c44
ρ

, �f

)
from four distinct wave fronts {T̂j}4

j=1.

Perhaps surprisingly, our analysis establishes that we can have a finite discrete (up
to four) set of triples that correspond to given four distinct propagating wave fronts.
We make this statement more precise below.

Let {T̂j}4
j=1 be four given arrival time data. Define the unit wave normal and the

corresponding phase wave speed by �nj := ∇T̂j/|∇T̂j | and cj := 1/|∇Tj |, respectively.
Recall cj can be estimated by solving (2.7) based on the methods given in [10, 12, 13].
Then the Eikonal equation (2.6) becomes

(3.2) c2j = c̃66 + (c̃44 − c̃66)|�f · �nj |2, j = 1, 2, 3, 4,

where we define c̃66 := c66/ρ and c̃44 := c44/ρ for convenience. As described in
section 2, we are assuming c̃44 > c̃66, which is a reasonable assumption, as the fiber
in biological tissue is normally stiffer than the background matrix. Thus c̃44 and c̃66
are the upper and lower bounds of all possible c2j , respectively. So we can define

dj :=
√
c2j − c̃66 ≥ 0 and �g :=

√
c̃44 − c̃66 �f 	= 0, and from (3.2) we establish linear

relations for �g,

(3.3) �g · �nj = ±dj , j = 1, 2, 3, 4.

Then our task is to determine (c̃66, �g) from the data {(�nj , cj)}4
j=1. Once we determine

c̃66, knowing �g is equivalent to knowing c̃44 and �f , since c̃44 = c̃66 + |�g|2 and �f = �g/|�g|.
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In this section, we will show that c̃66 is a root of a fourth order polynomial p(x)
(Theorem 13), and hence we may have four possible c̃66. For each c̃66, we have
a generic uniqueness to determine �g (Corollary 20) and an explicit formula for �g

(Theorem 14). So we will have at most four possible solutions (c̃66, c̃44, �f). Since c̃66
can be a multiple root of p(x), despite the generic uniqueness, it may look like we have

multiple c̃44 and �f corresponding to a single c̃66 (Theorems 15 and 17). However, to
realize this special case, the data {(�nj , cj)}4

j=1 must satisfy one of a very special set
of conditions (3.10)–(3.12) that are unlikely to occur in the actual experiments.

3.1. Coordinate system and data preparation. For convenience, we assume
we have a well prepared data set, defined below, and fix an appropriate coordinate
system, defined as follows.

Definition 6. We define two concepts for our data and a coordinate system.
(a) Data {(�nj , cj)}4

j=1 are called compatible if c1 > c2 > c3 > c4 > 0 and all of
the following are not vanishing:

D̂1 := det (�n2, �n3, �n4) , D̂2 := det (�n1, �n3, �n4) ,

D̂3 := det (�n1, �n2, �n4) , D̂4 := det (�n1, �n2, �n3) ,

where det denotes the determinant of a matrix consisting of three vectors.
This means that at any given point the normals to any three of the four wave
fronts are linearly independent.

(b) Data {�nj , cj}4
j=1 are called well prepared if they are compatible and �n3, �n4 are

oriented so that D̂3 > 0 and D̂4 > 0.
(c) For convenience, set the coordinate system {�e1, �e3, �e3} utilizing �n1 and �n2 by

�e1 := �n1, �e2 :=
�n2 − (�n1 · �n2)�n1

|�n1 × �n2|
, �e3 :=

�n1 × �n2

|�n1 × �n2|
.

Since −�n3 and −�n4 also satisfy (3.3), any compatible data can be processed into
well prepared data. For well prepared data, we have

�n1 = �e1, �n2 = (�n1 · �n2)�e1 + |�n1 × �n2|�e2,

�n3 = (�n1 · �n3)�e1 +
(�n1 × �n2) · (�n1 × �n3)�e2

|�n1 × �n2|
+

D̂4�e3

|�n1 × �n2|
=: α3�e1 + β3�e2 + γ3�e3,

�n4 = (�n1 · �n4)�e1 +
(�n1 × �n2) · (�n1 × �n4)�e2

|�n1 × �n2|
+

D̂3�e3

|�n1 × �n2|
=: α4�e1 + β4�e2 + γ4�e3.

Here we have γ3, γ4 > 0.

3.2. Lemmas based on two or three measurements. Two lemmas using
only two or three measurements are presented to show what information can be
obtained with the limited data sets.

Lemma 7 (two measurements). Using only two data {(�nj , cj)}2
j=1, c̃66 can be any

arbitrary number in (0, c22], and the first two components of �g = �g(c̃66) are determined
up to four possibilities in terms of c̃66 and the measured data:

(�g · �e1, �g · �e2) = ±
(
d1,

−d2 − d1(�n1 · �n2)

|�n1 × �n2|

)
or ±

(
d1,

d2 − d1(�n1 · �n2)

|�n1 × �n2|

)
,

where d1 =
√
c21 − c̃66 and d2 =

√
c22 − c̃66.
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Proof. From (3.3) for j = 1, 2 we have �g · �e1 = �g · �n1 = ±d1 and

±d2 = �g · �n2 = �g ·
[
(�n1 · �n2)�e1 + |�n1 × �n2|�e2

]
= (�n1 · �n2)(�g · �e1) + |�n1 × �n2|(�g · �e2).

Thus we get �g · �e2 = ±d2−(�n1·�n2)(�g·�e1)
|�n1×�n2| , which completes the proof.

Lemma 8 (three measurements). Using only three data {(�nj , cj)}3
j=1, c̃66 can be

any arbitrary number in (0, c23], and �g = �g(c̃66) is determined up to four possibilities
in terms of c̃66 and the measured data:

�g1 = d1�e1 + η�e2 + 1
γ3

(d3 − ω)�e3, �g2 = −d1�e1 − η�e2 + 1
γ3

(d3 + ω)�e3,

�g3 = d1�e1 + η̃�e2 + 1
γ3

(d3 − ω̃)�e3, �g4 = −d1�e1 − η̃�e2 + 1
γ3

(d3 + ω̃)�e3,

where dj =
√
c2j − c̃66 for j = 1, 2, 3, η = −d2−d1(�n1·�n2)

|�n1×�n2| , η̃ = d2−d1(�n1·�n2)
|�n1×�n2| , ω =

d1α3 + ηβ3, and ω̃ = d1α3 + η̃β3. Note that �gk · �n3 = d3 > 0, k = 1, 2, 3, 4.
Proof. From (3.3) for j = 3 we get ±d3 = �g ·�n3 = α3(�g ·�e1)+β3(�g ·�e2)+γ3(�g ·�e3).

From Lemma 7 we get

�g · �e3 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
γ3

(±d3 − α3d1 − β3η) = 1
γ3

(±d3 − ω) if (�g · �e1, �g · �e2) = (d1, η),
1
γ3

(±d3 + α3d1 + β3η) = 1
γ3

(±d3 + ω) if (�g · �e1, �g · �e2) = −(d1, η),
1
γ3

(±d3 − α3d1 − β3η̃) = 1
γ3

(±d3 − ω̃) if (�g · �e1, �g · �e2) = (d1, η̃),
1
γ3

(±d3 + α3d1 + β3η̃) = 1
γ3

(±d3 + ω̃) if (�g · �e1, �g · �e2) = −(d1, η̃).

Thus we have eight possibilities:⎛
⎝ �g · �e1

�g · �e2

�g · �e3

⎞
⎠ =

⎛
⎝ d1

η
d3−ω
γ3

⎞
⎠ ,

⎛
⎝ −d1

−η
d3+ω
γ3

⎞
⎠ ,

⎛
⎝ d1

η̃
d3−ω̃
γ3

⎞
⎠ ,

⎛
⎝ −d1

−η̃
d3+ω̃
γ3

⎞
⎠ ,

⎛
⎝ d1

η
−d3−ω

γ3

⎞
⎠ ,

⎛
⎝ −d1

−η
−d3+ω

γ3

⎞
⎠ ,

⎛
⎝ d1

η̃
−d3−ω̃

γ3

⎞
⎠ ,

⎛
⎝ −d1

−η̃
−d3+ω̃

γ3

⎞
⎠ .

Since the second line is the same as the first line with opposite sign, which gives the
same fiber direction (�g and −�g) in transversely isotropic media, we select the first
line that satisfies �g · �n3 = d3 > 0, and label the four triples in that line as �g1, �g2,
�g3, �g4.

Remark 9. Note that (�g1 · �nk)
3
k=1 = (d1,−d2, d3), (�g2 · �nk)

3
k=1 = (−d1, d2, d3),

(�g3 · �nk)
3
k=1 = (d1, d2, d3), and (�g4 · �nk)

3
k=1 = (−d1,−d2, d3).

3.3. Four measurements. In the previous subsection, we showed that from
three measurements, c̃66 is a continuous parameter that can be anything in (0, c23] and
our solution (c̃66, �g) can be any of four continuous families

{(c̃66, �gk(c̃66)) : c̃66 ∈ (0, c23]}4
k=1.

But in this subsection we will show that for four measurements the set of possible
c̃66 becomes discrete, with a maximum number of at most four, and will provide an
explicit formula for �g corresponding to each c̃66.

Lemma 10. For {�gk}4
k=1 in Lemma 8, we get

�g1 · �n4 =
d1D̂1 + d2D̂2 + d3D̂3

D̂4

, �g2 · �n4 =
−d1D̂1 − d2D̂2 + d3D̂3

D̂4

,

�g3 · �n4 =
d1D̂1 − d2D̂2 + d3D̂3

D̂4

, �g4 · �n4 =
−d1D̂1 + d2D̂2 + d3D̂3

D̂4

.
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Proof. Because all of the others are analogous, we will show only the first case.
From Lemma 8, we have

�g1 · �n4 = d1α4 + ηβ4 +
d3γ4

γ3
− ωγ4

γ3
=

d1α4γ3 + ηβ4γ3 − ωγ4

γ3
+

d3D̂3

D̂4

.

Since d1�e2 − η�e1 = d1�n2+d2�n1

|�n1×�n2| = γ3(d1�n2+d2�n1)

D̂4
, we get

d1α4γ3 + ηβ4γ3 − ωγ4

γ3
=

d1(α4γ3 − α3γ4) − η(β3γ4 − β4γ3)

γ3

=
(d1�e2 − η�e1) · (�n3 × �n4)

γ3
=

d1D̂1 + d2D̂2

D̂4

,

which completes the proof.
Theorem 11. Let well prepared data {�nj , cj}4

j=1 be given. Then c̃66 ∈ (0, c24] is
the first function, c66/ρ, in the solution of the inverse problem (3.1) if and only if c̃66
satisfies one of the following eight equations:

(3.4) ±d1D̂1 ± d2D̂2 + d3D̂3 ± d4D̂4 = 0, dj :=
√

c2j − c̃66 ≥ 0.

Proof. If c̃66 ∈ (0, c24] is a solution, then there exist �g and {dj ≥ 0}4
j=1 that

satisfy (3.3). By Lemma 8, �g should be one of {�gk}4
k=1, and by Remark 9 we have

(�g · �n1, �g · �n2, �g · �n3, �g · �n4) = (±d1,±d2, d3,±d4). Thus we have AX = 0, where

A :=

⎛
⎜⎜⎝

�n1 ∓d1

�n2 ∓d2

�n3 −d3

�n4 ∓d4

⎞
⎟⎟⎠ , X :=

(
�g
1

)
.

For X to be a nontrivial solution, we must get 0 = detA = ∓d1D̂1 ± d2D̂2 − d3D̂3 ±
d4D̂4, which proves the necessity. For sufficiency, from Remark 9 we know that all
four of the �gk in Lemma 8 already satisfy (3.3) for j = 1, 2, 3 for any c̃66 ∈ (0, c23]. In
addition, if c̃66 satisfies one of (3.4), then c̃66 ≤ c24, and one of �gk · �n4 in Lemma 10
satisfies �gk · �n4 = ±d4. So these particular �gk and c̃66 satisfy (3.3) for j = 1, 2, 3, 4.
Therefore c̃66 is the first function in a solution of (3.1).

Lemma 12. Let Π(a, b, c, d) be the alternating product

Π(a, b, c, d) :=
∏

i,j,�∈{0,1}

(
(−1)ia + (−1)jb + c + (−1)�d

)
.

Then we have Π(a, b, c, d) = (A4 +A2)
2(A4−A2)

2 +4(A1−A3)(A1A
2
4−A3A

2
2), where

A1 = a2 + b2, A2 = a2 − b2, A3 = c2 + d2, A4 = c2 − d2.
Proof. The proof can be easily shown by tedious calculation.
Theorem 13 (determination of c̃66). c̃66 satisfies one of (3.4) if and only if c̃66 ∈

(0, c24] is a root of p(x) := Π(d̂1D̂1, d̂2D̂2, d̂3D̂3, d̂4D̂4), where d̂j = d̂j(x) :=
√

c2j − x.

Here p(x) becomes a fourth order polynomial

(3.5) p(x) = (l4 + l2)
2(l4 − l2)

2 + 4(l1 − l3)(l1l
2
4 − l3l

2
2), lj := lj(x) = ajx− bj ,

where a1 = D̂2
1 + D̂2

2, a2 = D̂2
1 − D̂2

2, a3 = D̂2
3 + D̂2

4, a4 = D̂2
3 − D̂2

4, b1 = c21D̂
2
1 + c22D̂

2
2,

b2 = c21D̂
2
1 − c22D̂

2
2, b3 = c23D̂

2
3 + c24D̂

2
4, and b4 = c23D̂

2
3 − c24D̂

2
4.
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Proof. By definition, p(x) = Π(d̂1D̂1, d̂2D̂2, d̂3D̂3, d̂4D̂4) is simply a product of
the following eight factors:

±d̂1D̂1 ± d̂2D̂2 + d̂3D̂3 ± d̂4D̂4.

Since dj = d̂j(c̃66), the fact that c̃66 satisfies one of (3.4) is equivalent to finding a
root of p(x). Moreover, using Lemma 12 with Aj = −lj(x), we can easily show that
p(x) is the fourth order polynomial given in (3.5).

Since p(x) is a fourth order polynomial, we have at most four possible c̃66, and each
c̃66 satisfies at least one of (3.4), or equivalently, one of the following four equations:

(d1D̂1 + d2D̂2 + d3D̂3)
2 = d2

4D̂
2
4,(3.6)

(d1D̂1 + d2D̂2 − d3D̂3)
2 = d2

4D̂
2
4,(3.7)

(d1D̂1 − d2D̂2 + d3D̂3)
2 = d2

4D̂
2
4,(3.8)

(d1D̂1 − d2D̂2 − d3D̂3)
2 = d2

4D̂
2
4.(3.9)

Each equation corresponds to a product of two equations in (3.4). So we obtain the

following theorem, which provides the corresponding �g (i.e., c̃44 and �f) for each case
when c̃66 solves one of the above four equations.

Theorem 14 (determination of �g). Let c̃66 ∈ (0, c24] be a root of p(x) given in
(3.5). Then c̃66 satisfies at least one of (3.6)–(3.9), and for each case the corresponding
�g is determined by

�g =

⎧⎪⎪⎨
⎪⎪⎩
�g1 if and only if c̃66 satisfies (3.6),
�g2 if and only if c̃66 satisfies (3.7),
�g3 if and only if c̃66 satisfies (3.8),
�g4 if and only if c̃66 satisfies (3.9),

where {�gk}4
k=1 are defined as in Lemma 8.

Proof. By Remark 9, (3.3) is already satisfied for j = 1, 2, 3. For j = 4, i.e.,
�g · �n4 = ±d4, it is easily checked by Lemma 10 for each case.

Later we will show that generically only one of (3.6)–(3.9) is satisfied for each c̃66,
and hence the maximum number of possible solutions (c̃66, �g) will be at most four.

3.4. Multiple �g for a single c̃66. Throughout the rest of the paper we will
assume that the data sets are well prepared. We define three special types of data
allowing multiple �g corresponding to a single c̃66:

|D̂1| < |D̂2|, D̂3 < D̂4, c21D̂
2
1 < c22D̂

2
2, c23D̂3 < c24D̂

2
4,

(c24D̂
2
4 − c23D̂

2
3)(D̂

2
2 − D̂2

1) = (c22D̂
2
2 − c21D̂

2
1)(D̂

2
4 − D̂2

3),
(3.10)

|D̂1| < D̂3, |D̂2| < D̂4, c21D̂
2
1 < c23D̂

2
3, c22D̂2 < c24D̂

2
4,

(c24D̂
2
4 − c22D̂

2
2)(D̂

2
3 − D̂2

1) = (c23D̂
2
3 − c21D̂

2
1)(D̂

2
4 − D̂2

2),
(3.11)

|D̂1| < D̂4, |D̂2| < D̂3, c21D̂
2
1 < c24D̂

2
4, c22D̂2 < c23D̂

2
3,

(c23D̂
2
3 − c22D̂

2
2)(D̂

2
4 − D̂2

1) = (c24D̂
2
4 − c21D̂

2
1)(D̂

2
3 − D̂2

2).
(3.12)

First, note that we should have c̃66 < c24 in order to have more than one �g: the
reason is that if d4 =

√
c24 − c̃66 = 0, then by Theorem 14 at least two of (3.6)–(3.9)

are satisfied, implying that at least one of d1D̂1, d2D̂2, d3D̂3 is zero, which is a
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contradiction. In the following theorem we will see that each of (3.10)–(3.12) actually
enforces c̃66 < c24.

Theorem 15 (two �g for a single c̃66).

(a) Both �g1 and �g2 are solutions ⇔ the data satisfy (3.10) and D̂1D̂2 < 0

⇔ c̃66 ∈ (0, c24) and it solves d2D̂2 = −d1D̂1 and d4D̂4 = d3D̂3.

Both �g3 and �g4 are solutions ⇔ the data satisfy (3.10) and D̂1D̂2 > 0

⇔ c̃66 ∈ (0, c24) and it solves d2D̂2 = d1D̂1 and d4D̂4 = d3D̂3.
For the above two cases,

c̃66 =
c22D̂

2
2 − c21D̂

2
1

D̂2
2 − D̂2

1

=
c24D̂

2
4 − c23D̂

2
3

D̂2
4 − D̂2

3

∈ (0, c24).

(b) Both �g1 and �g3 are solutions ⇔ the data satisfy (3.11) and D̂1 < 0

⇔ c̃66 ∈ (0, c24) and it solves d3D̂3 = −d1D̂1 and d4D̂4 = ±d2D̂2.

Both �g2 and �g4 are solutions ⇔ the data satisfy (3.11) and D̂1 > 0

⇔ c̃66 ∈ (0, c24) and it solves d3D̂3 = d1D̂1 and d4D̂4 = ±d2D̂2.
For the above two cases,

c̃66 =
c23D̂

2
3 − c21D̂

2
1

D̂2
3 − D̂2

1

=
c24D̂

2
4 − c22D̂

2
2

D̂2
4 − D̂2

2

∈ (0, c24).

(c) Both �g1 and �g4 are solutions ⇔ the data satisfy (3.12) and D̂2 < 0

⇔ c̃66 ∈ (0, c24) and it solves d3D̂3 = −d2D̂2 and d4D̂4 = ±d1D̂1.

Both �g2 and �g3 are solutions ⇔ the data satisfy (3.12) and D̂2 > 0

⇔ c̃66 ∈ (0, c24) and it solves d3D̂3 = d2D̂2 and d4D̂4 = ±d1D̂1.
For the above two cases,

c̃66 =
c24D̂

2
4 − c21D̂

2
1

D̂2
4 − D̂2

1

=
c23D̂

2
3 − c22D̂

2
2

D̂2
3 − D̂2

2

∈ (0, c24).

Proof. Because all of the others are analogous, we will show only (c). For �g1

and �g4 to be the solutions, from Theorem 14 c̃66 must satisfy (3.6) and (3.9). Since

d1D̂1 	= 0, we must have d3D̂3 = −d2D̂2, and so d4D̂4 = ±d1D̂1. For �g2 and �g3 to be
the solutions, from Theorem 14 c̃66 must satisfy (3.7) and (3.8). Since d1D̂1 	= 0, we

must have d3D̂3 = d2D̂2, and so d4D̂4 = ±d1D̂1.
Now we will show that the data satisfy (3.12) and D̂2 ≶ 0, respectively, if c̃66 ∈

(0, c24) solves d3D̂3 = ∓d2D̂2 and d4D̂4 = ±d1D̂1. First note that D̂2 ≶ 0, respectively,
since d2, d3 > 0. For both cases, we get

D̂2
3(c

2
3 − c̃66) = d2

3D̂
2
3 = d2

2D̂
2
2 = D̂2

2(c
2
2 − c̃66),

D̂2
4(c

2
4 − c̃66) = d2

4D̂
2
4 = d2

1D̂
2
1 = D̂2

1(c
2
1 − c̃66),

and thus we should have c̃66 =
c23D̂

2
3−c22D̂

2
2

D̂2
3−D̂2

2

=
c24D̂

2
4−c21D̂

2
1

D̂2
4−D̂2

1

. So we have

(c23D̂
2
3 − c22D̂

2
2)(D̂

2
4 − D̂2

1) = (c24D̂
2
4 − c21D̂

2
1)(D̂

2
3 − D̂2

2).

Moreover, since d1 > d2 > d3 > d4, we get |D̂1| < D̂4 and |D̂2| < D̂3. From c̃66 > 0,

we also get c21D̂1 < c24D̂
2
4 and c22D̂

2
2 < c23D̂

2
3.
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Finally, we will show c̃66 ∈ (0, c24), and it solves d3D̂3 = ∓d2D̂2, d4D̂4 = ±d1D̂1 if

the data satisfy (3.12) and D̂2 ≶ 0, respectively. Set c̃66 :=
c23D̂

2
3−c22D̂

2
2

D̂2
3−D̂2

2

=
c24D̂

2
4−c21D̂

2
1

D̂2
4−D̂2

1

>

0. Since c21 > c24, we get c̃66 =
c24D̂

2
4−c21D̂

2
1

D̂2
4−D̂2

1

<
c24D̂

2
4−c24D̂

2
1

D̂2
4−D̂2

1

= c24. Thus c̃66 ∈ (0, c24) and

solves d2
3D̂

2
3 = d2

2D̂
2
2 and d2

4D̂
2
4 = d2

1D̂
2
1. Since D̂2 ≶ 0, c̃66 solves d3D̂3 = ∓d2D̂2,

respectively, and d2
4D̂

2
4 = d2

1D̂
2
1.

In each case in (3.10)–(3.12), the fourth order polynomial p(x) for c̃66 in
Theorem 13 is now further simplified. We will use the following theorem to show
the generic uniqueness of �g in Corollary 20.

Theorem 16. In each case in (3.10)–(3.12), p(x) in Theorem 13 becomes

p(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
(D̂2

2 − D̂2
1)x− (c22D̂

2
2 − c21D̂

2
1)
)2

q1(x) if the data satisfy (3.10),(
(D̂2

3 − D̂2
1)x− (c23D̂

2
3 − c21D̂

2
1)
)2

q2(x) if the data satisfy (3.11),(
(D̂2

4 − D̂2
1)x− (c24D̂

2
4 − c21D̂

2
1)
)2

q3(x) if the data satisfy (3.12),

where q1, q2, and q3 are second order polynomials.
Proof. Because all of the others are analogous, we will show only the case (3.11).

First note that

D̂2
1 =

a1 + a2

2
, D̂2

2 =
a1 − a2

2
, D̂2

3 =
a3 + a4

2
, D̂2

4 =
a3 − a4

2
,

c21D̂
2
1 =

b1 + b2
2

, c22D̂
2
2 =

b1 − b2
2

, c23D̂
2
3 =

b3 + b4
2

, c24D̂
2
4 =

b3 − b4
2

,

and define

A :=
a4 + a3 − a2 − a1

2
= D̂2

3−D̂2
1 > 0, B :=

b4 + b3 − b2 − b1
2

= c23D̂
2
3−c21D̂

2
1 > 0.

Since we can show (a4 − a2)(b3 − b1) = (a3 − a1)(b4 − b2) from (3.11), we also get
A(b3 − b1) = B(a3 − a1) and A(b4 − b2) = B(a4 − a2). Thus we get

A(l1(x) − l3(x)) = (a1 − a3)(Ax−B), A(l2(x) − l4(x)) = (a2 − a4)(Ax−B).

Hence the polynomial in (3.5) becomes

p(x) = C2
2 (Ax−B)2(l4 + l2)

2 − 4C1(Ax−B)Q(x),

where C1 = a3−a1

A , C2 = a4−a2

A , and

Q(x) = l1l
2
4 − l3 [l4 − C2(Ax−B)]

2

= (l1 − l3)l
2
4 − l3(Ax−B)

[
−2l4C2 + C2

2 (Ax−B)
]

= (Ax−B)
[
2C2l3l4 − C1l

2
4 − C2

2 l3(Ax−B)
]

= (Ax−B)
[
2C2l3l4 − C1l

2
4 + C2l3(l2 − l4)

]
= (Ax−B)

[
C2l3(l4 + l2) − C1l

2
4

]
.

Hence we get p(x) = (Ax−B)2q2(x), where q2 is a second order polynomial given by
q2(x) = C2

2 (l4 + l2)
2 + 4C2

1 l
2
4 − 4C1C2l3(l2 + l4).
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For three possible �g corresponding to a single c̃66, we consider another special
type of data that satisfies

(3.13)

|D̂1| < |D̂2| < D̂3 < D̂4, c21D̂
2
1 < c22D̂

2
2 < c23D̂3 < c24D̂

2
4,

and there exists a single K :=
c2jD̂

2
j − c2i D̂

2
i

D̂2
j − D̂2

i

∈ (0, c24) ∀j > i.

Note that (3.13) implies {(xj , yj) = (D̂2
j , c

2
jD̂

2
j )} are on a single straight line with

slope K > 0. From Theorem 15, we can easily prove the following theorem, showing
exactly when we shall get three �g corresponding to a single c̃66.

Theorem 17 (three �g for a single c̃66).

(a) �g1, �g2, �g3 are solutions ⇔ the data satisfy (3.13), D̂1 < 0, and D̂2 > 0

⇔ c̃66 ∈ (0, c24) and it solves d4D̂4 = d3D̂3 = d2D̂2 = −d1D̂1.

(b) �g1, �g2, �g4 are solutions ⇔ the data satisfy (3.13), D̂1 > 0, and D̂2 < 0

⇔ c̃66 ∈ (0, c24) and it solves d4D̂4 = d3D̂3 = −d2D̂2 = d1D̂1.

(c) �g1, �g3, �g4 are solutions ⇔ the data satisfy (3.13), D̂1 < 0, and D̂2 < 0

⇔ c̃66 ∈ (0, c24) and it solves d4D̂4 = d3D̂3 = −d2D̂2 = −d1D̂1.

(d) �g2, �g3, �g4 are solutions ⇔ the data satisfy (3.13), D̂1 > 0, and D̂2 > 0

⇔ c̃66 ∈ (0, c24) and it solves d4D̂4 = d3D̂3 = d2D̂2 = d1D̂1.
In each case, we should have c̃66 = K ∈ (0, c24) as given in (3.13).

As in Theorem 16, the fourth order polynomial p(x) for c̃66 in Theorem 13 is also
further simplified when the data satisfy (3.13). The following theorem will also be
used to show the generic uniqueness of �g in Corollary 20.

Theorem 18. If the data satisfy (3.13), p(x) in Theorem 13 becomes

p(x) = (x−K)3

(
Π(D̂1, D̂2, D̂3, D̂4)x− Π(c1D̂1, c2D̂2, c3D̂3, c4D̂4)

K3

)
,

where K ∈ (0, c24) is given as in (3.13).
Proof. Since a2, a4, a1 − a3 < 0 and K = b2

a2
= b4

a4
= b1−b3

a1−a3
, we get

l2(x) = a2l(x), l4(x) = a4l(x), l1(x) − l3(x) = (a1 − a3)l(x),

where l(x) := x − K. Hence the polynomial in (3.5) becomes p(x) = [l(x)]3Q(x),
where

Q(x) = (a2
4 − a2

2)
2l(x) + 4(a1 − a3)(a

2
4l1(x) − a2

2l3(x)).

Here Q(x) is definitely a linear function, and from

Q′(0) = (a2
4 − a2

2)
2 + 4(a1 − a3)(a1a

2
4 − a3a

2
2) = Π(D̂1, D̂2, D̂3, D̂4),

Q(0) =−K(a2
4 − a2

2)
2 + 4(a1 − a3)(a

2
2b3 − a2

4b1)

=− (b24 − b22)
2 + 4(b1 − b3)(b1b

2
4 − b3b

2
2)

K3
= −Π(c1D̂1, c2D̂2, c3D̂3, c4D̂4)

K3
,

we conclude Q(x) = Π(D̂1, D̂2, D̂3, D̂4)x− 1
K3 Π(c1D̂1, c2D̂2, c3D̂3, c4D̂4).

Remark 19. From Theorem 17 we can easily prove that the four �g1, �g2, �g3, �g4

cannot all be solutions at the same time for a single c̃66: If so, then d1D̂1 = 0, which
is a contradiction.
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3.5. Generic uniqueness of �g for a single c̃66. In this subsection we show
that generically only one of (3.6)–(3.9) is satisfied for each root c̃66 ∈ (0, c24] of p(x),

and hence generically the maximum number of possible solutions (c̃66, c̃44, �f) is at
most four.

Corollary 20.

(a) Let c̃66 ∈ (0, c24] be a root of p(x) in (3.5) and m be its multiplicity. If we
denote by G(c̃66) the number of possible �g corresponding to this c̃66, then
1 ≤ G(c̃66) ≤ min(m, 3).

(b) The number of all possible (c̃66, c̃44, �f) is less than or equal to the number of
(multiply counted) roots of p(x) in (0, c24], which cannot exceed four.

(c) Unless the data satisfy one of the special conditions (3.10)–(3.12), there exists
only one �g corresponding to a single c̃66. So in this case, the number of
all possible (c̃66, c̃44, �f) is exactly the same as the number of (not multiply
counted) roots of p(x) in (0, c24], which cannot exceed four.

Proof. We first prove (a). For any root c̃66, at least one of (3.6)–(3.9) is satisfied,
so by Theorem 14 we have G(c̃66) ≥ 1. Also Remark 19 says that G(c̃66) ≤ 3. Hence
it suffices to show G(c̃66) ≤ m for m = 1, 2. For a simple root (m = 1), if G(c̃66) ≥ 2,
then by Theorems 15 and 16 we get m ≥ 2, which is a contradiction. So we should
have G(c̃66) ≤ 1. For a double root (m = 2), if G(c̃66) ≥ 3, then by Theorems 17
and 18 we get m ≥ 3, which is a contradiction. So we should have G(c̃66) ≤ 2. (b) is
straightforward from (a), and so is (c) from Theorems 14 and 15.

From all the above, we can summarize our algorithm as follows:
1. Make the compatible data to be well prepared.
2. Determine possible c̃66 ∈ (0, c24] by finding roots of the fourth order polyno-

mial p(x) in (3.5).
3. For each c̃66 ∈ (0, c24] obtained above, check which one among (3.6)–(3.9) is

satisfied.
4. For each case, use Theorem 14 to determine �g (equivalently, c̃44 and �f).

Remark 21. If we use all of the information about the solution u of (2.2) (as
opposed to only the wave front positions T̂ ), which is actually measured in experi-
ments, then we can apply the same arguments of section 5 in [11]. That is, for one

of the possible triples (c̃66, c̃44, �f) given there corresponds at most one density ρ cor-
responding to that triple under the Neumann boundary condition (for the Dirichlet
boundary condition, ρ needs to be specified on the boundary). Therefore, in this case,

we have at most four possibilities in determining four parameters (ρ, c66, c44, �f) from
the data set {uj(x, t) | x ∈ Ω, t ∈ (0, T )}4

j=1.

3.5.1. Examples. Here a complete set of examples is presented showing that
sometimes there exist no solution, a unique solution, two solutions, three solutions,
or four solutions. Here we converted the final solution into the standard coordinate
system to represent �f .

Example 22 (no solution). Consider the following well prepared data:

�n1 = (1, 0, 0), �n2 =

(
− 1√

2
,− 1√

2
, 0

)
, �n3 = (0, 0,−1), �n4 =

(
0,

1

2
,−

√
3

2

)

with c21 = 9, c22 = 3, c23 = 5
2 , and c24 = 1. Then the fourth order polynomial for c̃66 is

given by p(x) = 1
65536 (18145 + 34592x + 21440x2 + 7168x3 + 1024x4), which has no

root in (0, c24]. Hence there exists no solution matching the data.
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Example 23 (unique solution). Consider the same �nj as in Example 22 with
c21 = 8, c22 = 7, c23 = 2, and c24 = 1. Then p(x) = 1

64 (−188 + 252x+ 53x2 − 18x3 + x4),

which has only one root c̃66 = 1
2 (9 −

√
137 − 32

√
6) ≈ 0.6719 in (0, c24]. Since c̃66

satisfies (3.7), from Theorem 14 we get the unique solution given by

⎛
⎝ c̃66

c̃44
�f

⎞
⎠ ≈

⎛
⎝ 0.6719

10.0514
(−0.8839,−0.2777,−0.3763)

⎞
⎠ .

Example 24 (two solutions). Consider the same �nj as in Example 22 with c21 = 9,
c22 = 5, c23 = 4, and c24 = 3. Since these data satisfy none of (3.10)–(3.12), only one of
�g will correspond to each root of the fourth order polynomial given by

p(x) = 1
4096 (481 − 1488x + 1264x2 − 384x3 + 64x4).

This polynomial has two roots ξ1 ≈ 0.5194 and ξ2 ≈ 1.2439 in (0, c24], where c̃66 = ξ1
satisfies (3.7) and c̃66 = ξ2 satisfies (3.8). So by Theorem 14, we get two solutions:

⎛
⎝ c̃66

c̃44
�f

⎞
⎠ ≈

⎛
⎝ 0.5194

12.4873
(−0.8418,−0.0235,−0.5393)

⎞
⎠ ,

⎛
⎝ 1.2439

42.2907
(0.4347,−0.8625,−0.2591)

⎞
⎠ .

Example 25 (three solutions). Consider the same �nj as in Example 22 with

c21 = 3, c22 = 5
3 , c23 = 4

3 , and c24 = 5
4 . Since these data satisfy (3.12) and D̂2 > 0, by

Theorem 15(c) we get two solutions �g2 and �g3 for c̃66 =
c24D̂

2
4−c21D̂

2
1

D̂2
4−D̂2

1

= 2
3 . Moreover,

we have p(x) = 1
576 (3x− 2)2

[
x−

(√
2 − 1

6

)] [
x +

(√
2 + 1

6

)]
, which has another root

c̃66 =
√

2 − 1
6 ≈ 1.2476 in (0, c24] satisfying (3.6). So we get three solutions:

⎛
⎝ c̃66

c̃44
�f

⎞
⎠ ≈

⎛
⎝ 0.6667

3.6795
(−0.8800, 0.0653,−0.4704)

⎞
⎠ ,

⎛
⎝ 1.2476

3.2525
(0.9349,−0.2883,−0.2069)

⎞
⎠ ,

⎛
⎝ 0.6667

12.3205
(0.4475,−0.8617,−0.2392)

⎞
⎠ .

Example 26 (four solutions). Consider the following well prepared data:

�n1 = (0, 0, 1), �n2 =

(
0,

1√
2
,

1√
2

)
, �n3 =

(
−
√

3

2
,
1

2
, 0

)
, �n4 = (−1, 0, 0)

with c21 = 11, c22 = 10, c23 = 9.9, and c24 = 9.8. Since these data satisfy none of
(3.10)–(3.12), only one of �g corresponds to each root of

p(x) =
1

160000
(14055561 − 6614520x + 1150900x2 − 88000x3 + 2500x4).

This polynomial has four roots ξ1 ≈ 6.2722, ξ2 ≈ 9.4936, ξ3 ≈ 9.6576, and ξ4 ≈ 9.7766
in (0, c24], where c̃66 = ξ1 satisfies (3.8), and c̃66 = ξ2 satisfies (3.7), and c̃66 = ξ3 and
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c̃66 = ξ4 satisfy (3.9). From Theorem 14, we get four solutions:

⎛
⎝ c̃66

c̃44
�f

⎞
⎠ ≈

⎛
⎝ 6.2722

14.8371
(−0.6418, 0.1900, 0.7430)

⎞
⎠ ,

⎛
⎝ 9.4936

16.2959
(0.2122, 0.8564,−0.4706)

⎞
⎠ ,

⎛
⎝ 9.6576

11.2520
(−0.2989, 0.2622,−0.9176)

⎞
⎠ ,

⎛
⎝ 9.7766

11.2149
(−0.1275, 0.3649,−0.9223)

⎞
⎠ .

4. Numerical implementation. Here we indicate the success of the approach
of using four data sets to solve the inverse problem. That is, find the triple (c̃66, c̃44, �f)
from four propagating fronts, where the four normals and corresponding (estimated)
wave speeds {(�nj , cj)}4

j=1 are compatible; that is, the wave speeds are all different
and any three normals are linearly independent (see Definition 6(a)).

Furthermore, since we develop our theory under the assumption that the medium
properties may not be symmetric about the image plane, we calculate the three-
dimensional wave front in the neighborhood of the image plane. Our supersonic
excitations are assumed to be slightly out of the image plane to easily achieve the
linear independence mentioned above, and we expect that this configuration could
be realizable with a full planar array of transducers for three-dimensional imaging or
three lines of closely spaced transducers in a so-called 2 1

2 -dimensional imaging setting
(see Figure 4.1(a)). For this synthetic data experiment we calculate the wave fronts
using a first order anisotropic Eikonal solver based on fast marching methods with
code developed at Rensselaer.

The successive supersonic imaging pushes to create the approximate line sources
are made at a sweeping speed faster than the background shear wave speed and
indicated by the multiple of the background shear wave speed (Mach number); hence
the label supersonic (see [3]). The background wave speed is indicated in each of the
labeled figures and also is given in our text description below. In our examples, the
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�

�
�
�
�

�

�

�

�

��� ���

� ��

��

�

���� �������	 ����
 �� ��

� ��

��

�

���� �������	 ����
 �� ���

Fig. 4.1. (a) Configuration: Data are collected on three consecutive image planes (dashed
lines) by either a full planar array or three parallel, closely spaced linear arrays. Supersonic excita-
tions are slightly off the imaging planes (gray line). A generated conical wave front yields parabolic
intersections with each image plane. The shapes of parabola depend on the location and the sweeping
speed of supersonic excitations. (b) Observed conical wave fronts on the central image plane, when
the supersonic excitation line is 8mm away from the central image plane and 6mm away from the
left side.
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pushes are either made slowly from top to bottom (1.1 sweeping speed), slowly from
bottom to top (−1.1 sweeping speed), fast from top to bottom (25 sweeping speed),
or fast from bottom to top (−25 sweeping speed). Each set of pushes produces a
conical wave front in three dimensions whose intersection with the image plane is
generally a parabola but looks like a straight line for high sweeping speeds like ±25.
See Figure 4.1(b).

We show two numerical reconstructions. For the first we have uniform anisotropy,
where the fiber direction is out of the image plane; see Figure 4.2. The uniform
anisotropic cube is 40 mm on a side with two excitation lines for the pushes, each
being 6 mm from the outside edge; note that the excitation lines are at different
distances from the image plane with one 8 mm from the image plane and the other
12 mm from the image plane. We take separately the two sweeping speeds, ±1.1,
yielding four propagating fronts. It is assumed that

√
c̃66 = 1,

√
c̃44 = 2. Setting

up the three orthogonal coordinates with the x coordinate out of the plane, we show
our results for

√
c̃44,

√
c̃66, the wave speeds along and across the fiber direction,

respectively, and the squares of the fiber direction coordinates f2
x , f

2
y , f

2
z . In addition

we exhibit
√
c̃66,

√
c̃44, and {cj}4

j=1 along the line z = 25, 0 < y < 40.
As we have seen in section 3, sometimes the fourth order polynomial for c̃66 may

have multiple roots in (0, c24], which is the source of our nonuniqueness. In this case,
we have chosen to select the largest possible root in (0, c24], as in all of our simulations
that choice consistently gave the correct recovery. Note that there are artifacts near
the projections of the excitation lines, y = 6, onto the image plane because the fourth
order polynomial is not well defined there (there four wave normals, �nj , are on one

plane perpendicular to our image plane, i.e., D̂j = 0, which yields p(x) ≡ 0). But
otherwise the recovery is quite acceptable.

For our second simulation the excitation lines are in the same locations, but along
one line we take the sweeping speeds ±1.1, 25, and along the second line the sweeping
speed is 25. Here the fiber is again out of the plane but only in the anisotropic
cube inclusion with 10mm on each side. The anisotropic inclusion is embedded in an
isotropic medium; see Figure 4.3. Again the recovery is quite acceptable; note that in
all images of the material properties we observe anisotropic cube edge effects, except
in the image for

√
c̃66.

Here, also in the first simulation, the points where all four wave speeds {cj}4
j=1

are so close (using some threshold) are considered as isotropic points. We established
a threshold, δ = 0.01 for the first simulation and 0.04 for the second simulation, and
consider the points isotropic when max{cj}4

j=1 − min{cj}4
j=1 ≤ δmax{cj}4

j=1. For

isotropic points, we assign a zero vector to the fiber direction and set
√
c̃44 =

√
c̃66.

As mentioned before, the fourth order polynomial is not well defined on the excitation
lines, which stems from the fact that all four wave speeds are so close there. Because
those points are considered as isotropic points, they are buried in the isotropic back-
ground in the second simulation, while in the first simulation the isotropic excitation
line stands out in the anisotropic background. Compare the graphs near y = 6 in
Figures 4.2 and 4.3.

5. Conclusion. Here we address the following question: How do we obtain
anisotropic medium properties from a set of wave fronts? Our target application is
tissue shear stiffness imaging and we assume the medium is three-dimensional. There
is a fiber direction along which the wave speed,

√
c̃44, is faster than in the plane or-

thogonal to the fiber where the wave speed is
√
c̃66 and directionally independent in

that plane. We show that from four wave fronts, where any three normals at each
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Fig. 4.2. Top left: Orientation of fibers, central image plane (neighboring planes are omitted)
and supersonic line sources. (a) Target wave speeds for uniform anisotropy, and fiber direction.
Gray dashed line depicts the line source projections in the image plane. (b) Reconstructed wave
speed along the fiber. (c) Reconstructed wave speed across the fiber. Top right: Graph shows the
wave speed traces for z = 25, 0 < y < 40, dashed lines in (b) and (c): along the fiber (top dotted
line), across the fiber (bottom dotted line), estimated wave speeds cj in the directions �nj orthogonal
to the four wave fronts (middle solid lines). (d)–(f) Squares of the fiber direction components.

point are linearly independent, we can have up to four distinct triples (c̃66, c̃44, �f),

where �f is the unit fiber direction. We exhibit examples to show that multiple solu-
tions can occur and show numerical reconstructions with synthetic data. The multiple
solutions are a result of the nonlinearity in the Eikonal equation.

From our work to obtain reconstructions we have observed the importance of
(1) having well-separated normals to the wave fronts, and that necessitates some
normals having out of image plane components; (2) the need for multiple image planes
to capture all three components of the normals; and (3) the fact that in a high
contrast subregion embedded in a constant medium, initially well-separated normals
may align themselves (the angle between their normals becomes smaller) at some
points, and at other points the angle may become larger. This angle change may
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Fig. 4.3. Top left: Orientation of fibers in the anisotropic cube inclusion and supersonic line
sources. (a) Target wave speeds and fiber direction in the background and in the anisotropic cube.
(b) Reconstructed wave speed along the fiber. (c) Reconstructed wave speed across the fiber. Top
right: Graph shows the wave speed traces for z = 25, 0 < y < 40, dashed lines in (b) and (c):
along the fiber (top dotted line), across the fiber (bottom dotted line), estimated wave speeds cj in
the directions �nj orthogonal to the four wave fronts (middle solid lines). (d)–(f) Squares of the fiber
direction components.

occur also at points beyond that subregion. The degree of this angle change depends
on the wave speed contrast, size of inclusion, and the initial incident directions. This
indicates important features in experimental design when wave fronts are used to
image anisotropic properties of the kind modeled in this paper.
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THE ATOMIC MIX APPROXIMATION FOR CHARGED
PARTICLE TRANSPORT∗
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Abstract. The classic atomic mix approximation for particle transport in a stochastic spatial
medium is accurate when the material chunks in the medium are small compared to a mean free path.
In this paper, we show that for charged particle transport in a stochastic medium, the atomic mix
approximation is accurate when the chunk sizes are small compared to a transport mean free path.
For charged particle transport, the transport mean free path is generally several orders of magnitude
larger than the mean free path. Therefore, the result obtained in this paper greatly extends the
known range of applicability of the atomic mix approximation. Numerical results are given that
validate the asymptotic theory, and an application of the theory to a practical problem in radiation
oncology is discussed.
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1. Introduction. The atomic mix approximation is a classic technique in physics
and chemistry that has also been used for many years in the particle (radiation) trans-
port community [1]. The underlying (particle transport) problems are described by a
linear Boltzmann equation [1, 2, 3, 4], applied to a heterogeneous spatial medium con-
sisting of randomly located “chunks” of two or more materials. If the chunk diameters
are small compared to a typical mean free path and the chunks are distributed in
a statistically uniform way throughout the system, the atomic mix approximation
applies and the highly space-dependent cross sections can be replaced by their vol-
ume averages. The resulting approximate “atomic mix” Boltzmann equation, with
volume-averaged cross sections, then accurately determines the radiation flux. The
approximate atomic mix problem is much simpler than the original problem because
(i) it is not necessary to know the detailed structure of the physical system (it is only
necessary to know the cross sections and volume fractions of the constituent parts),
and (ii) the atomic mix Boltzmann equation with volume-averaged cross sections
is much easier to solve than the original Boltzmann equation, with highly space-
dependent cross sections.

Recently, Dumas and Golse have proved that the atomic mix approximation is
an asymptotic limit of the Boltzmann equation, for stochastic physical systems in
which the chunk sizes are small compared to a typical mean free path [5]. (This is the
physical regime in which the atomic mix approximation is commonly understood to
hold.) More recently, Larsen [6] and Larsen, Vasques, and Vilhena [7] have shown—
by a formal asymptotic analysis—that for 1-D (one-dimensional) diffusive stochastic
systems the atomic mix approximation is valid when the chunk sizes are comparable
to a mean free path.
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In the present paper, we consider 3-D charged particle transport problems that
are dominated by “soft” collision processes in which the particles experience very
small changes in direction and energy. We show that for such problems the atomic
mix approximation is a formal asymptotic limit of the linear Boltzmann equation in a
stochastic medium in which the chunk sizes are small compared to a transport mean
free path. For charged particle transport, the transport mean free path is usually
several orders of magnitude greater than a mean free path. Therefore, the result
obtained in this paper greatly extends the known range of applicability of the atomic
mix approximation.

Our theoretical approach employs two different asymptotic limits. First, we use
an asymptotic approximation developed by Pomraning [8]—valid when the mean
free path is small and particles experience very small changes in the direction of
flight and energy in a collision—to approximate the soft collision operator by its
Fokker–Planck limit [9]. This reduces the original linear Boltzmann equation to a
Boltzmann–Fokker–Planck (BFP) equation [10, 11]. Then we apply a generalization
of the asymptotic analysis of Dumas and Golse to the BFP equation to show that when
chunk sizes are small compared to a transport mean free path, the BFP equation limits
to its atomic mix approximation. The resulting atomic mix BFP equation is identi-
cal to the equation obtained by (i) formally replacing the original Boltzmann equa-
tion by its atomic mix approximation and (ii) applying Pomraning’s Fokker–Planck
approximation to the resulting atomic mix soft collision operator.

Therefore, the atomic mix BFP equation is an asymptotic limit of both the original
linear Boltzmann equation and its atomic mix approximation. This implies that, for
charged particle transport problems in a stochastic medium in which (i) soft collisions
dominate hard collisions and (ii) a typical chunk size within the medium is small
compared to a transport mean free path, the atomic mix model is an asymptotic
approximation to the linear Boltzmann equation.

The remainder of this paper is organized as follows. In section 2 we introduce
the original Boltzmann equation and present our formal asymptotic analysis. To
validate the predictions of the asymptotic theory, we present in section 3 the results
of realistic Monte Carlo simulations of electron beams penetrating random binary
systems of water and air. In work presented elsewhere [12], we have used the results
in this paper to develop a practical computer model of the human lung, in order to
assess the accuracy of certain treatment planning techniques in radiation oncology.
This application of the asymptotic theory is discussed in the concluding section 4 of
the present paper.

2. Asymptotic analysis. We consider the following particle transport problem:

Ω ·∇Ψ(x,Ω, E) + Σ(x, E)Ψ(x,Ω, E)

=

∫ ∞

0

∫
4π

Σ(x,Ω · Ω′, E′ → E)Ψ(x,Ω′, E′) dΩ′dE′, x ∈ V,(2.1a)

Ψ(x,Ω, E) = Ψb(x,Ω, E), x ∈ ∂V, Ω · n < 0.(2.1b)

Our notation is standard:

x = (x, y, z) = position,(2.2a)

Ω = (
√

1 − μ2 cos γ,
√

1 − μ2 sin γ, μ) = direction of flight,(2.2b)

E = energy,(2.2c)



CHARGED PARTICLE ATOMIC MIX 45

and

Ψ(x,Ω, E) = angular flux (intensity),(2.3a)

Σ(x,Ω′ · Ω, E′ → E) = differential scattering cross section,(2.3b)

Σ(x, E) =

∫ ∞

0

∫
4π

Σ(x,Ω′ · Ω, E′ → E) dΩ′dE′

= scattering cross section.(2.3c)

Problem (2.1) describes a particle transport process within a physical system V .
The process is driven by a specified incident angular flux Ψb on the outer surface ∂V
of V . V is spatially heterogeneous, consisting of a large number of chunks of two
or more materials. Also, the scattering process in V is dominated by soft collisions
(in which particles experience very small changes in direction of flight and energy),
but rare hard collisions (in which the changes in direction of flight and energy are
not small) can also occur. To separate these two types of scattering events, we use
μ0 = Ω′ · Ω = scattering cosine and write

(2.4) Σ(x, μ0, E
′ → E) = Σh(x, μ0, E

′ → E) + Σr(x, μ0, E
′ → E),

where Σh = differential scattering cross section for hard collisions and Σr = differen-
tial scattering cross section for soft collisions (also called the “restricted” differential
scattering cross section). We define

Σh(x, E) =

∫ ∞

0

∫
4π

Σ(x,Ω · Ω′, E → E′) dΩ′dE′

= hard scattering cross section,(2.5a)

Σr(x, E) =

∫ ∞

0

∫
4π

Σ(x,Ω · Ω′, E → E′) dΩ′dE′

= soft (restricted) scattering cross section,(2.5b)

and clearly,

(2.5c) Σ(x, E) = Σh(x, E) + Σr(x, E).

We also define the phase function for hard collisions:

ph(x, μ0, E
′ → E) =

Σh(x, μ0, E
′ → E)

Σh(x, E′)
,(2.6a)

which by (2.5a) and (2.6a) satisfies∫ ∞

0

∫
4π

ph(x,Ω′ · Ω, E′ → E) dΩdE = 1.(2.6b)

Introducing (2.4)–(2.6) into (2.1a), we obtain

Ω ·∇Ψ(x,Ω, E) + Σh(x, E)Ψ(x,Ω, E)

=

∫ ∞

0

∫
4π

Σh(x, E′)ph(x,Ω′ · Ω, E′ → E)Ψ(x,Ω′, E′) dΩ′dE′

+LrΨ(x,Ω, E),(2.7a)
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where Lr is the restricted collision operator:

LrΨ(x,Ω, E) =

∫ ∞

0

∫
4π

Σr(x,Ω · Ω′, E′ → E)Ψ(x,Ω′, E′) dΩ′dE′

−Σr(x, E)Ψ(x,Ω, E).(2.7b)

To this point we have made no approximations; (2.7) are equivalent to the original
Boltzmann equation (2.1a).

Now we make our first approximation. Because soft collisions generate very small
changes in direction of flight and energy, the restricted (soft) differential scattering
cross section Σt(x, μ0, E

′ → E) is very highly peaked near μ0 ≈ 1 and E′ ≈ E. In
this situation, Pomraning [8] has shown that Lr is asymptotically approximated by
the Fokker–Planck operator:

LrΨ(x,Ω, E) ≈ LFPΨ(x,Ω, E)

=
Σr,tr(x, E)

2

[
∂

∂μ
(1 − μ2)

∂

∂μ
+

1

1 − μ2

∂2

∂γ2

]
Ψ(x,Ω, E)

+
∂

∂E
Sr(x, E)Ψ(x,Ω, E),(2.8)

where

Σr,tr(x, E) =

∫ ∞

0

∫
4π

(1 − Ω′ · Ω)Σr(x,Ω
′ · Ω, E → E′) dΩ′dE′

= restricted transport cross section,(2.9a)

Sr(x, E) =

∫ ∞

0

∫
4π

(E − E′)Σr(x,Ω
′ · Ω, E → E′) dΩ′dE′

= restricted stopping power.(2.9b)

Introducing (2.8)–(2.9) into (2.7a) and using the boundary condition (2.1b), we obtain
the following BFP problem:

Ω ·∇Ψ(x,Ω, E) + Σh(x, E)Ψ(x,Ω, E)

=

∫ ∞

0

∫
4π

Σh(x, E′)ph(x,Ω · Ω′, E′ → E)Ψ(x,Ω′, E′) dΩ′dE′

+
Σr,tr(x, E)

2

[
∂

∂μ
(1 − μ2)

∂

∂μ
+

1

1 − μ2

∂2

∂γ2

]
Ψ(x,Ω, E)

+
∂

∂E
Sr(x, E)Ψ(x,Ω, E), x ∈ V,(2.10a)

Ψ(x,Ω, E) = Ψb(x,Ω, E), x ∈ ∂V, Ω · n < 0.(2.10b)

The BFP equation is well known in the literature [10, 11]. It provides an accu-
rate way to simulate transport problems in which soft collisions dominate but rare
hard collisions can also occur. The advantage of the BFP equation (2.10a) over the
Boltzmann equation (2.1a) is that the BFP equation contains neither a large scat-
tering cross section nor a highly peaked differential scattering cross section. (Hard
collisions, which produce large changes of direction and energy loss, have a relatively
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smooth differential scattering cross section.) Also, because the soft differential scat-
tering cross section is highly peaked near μ0 ≈ 1, (2.9a) and (2.5b) imply

(2.11) Σr,tr(x, E) � Σr(x, E) < Σ(x, E).

Here Σ−1 is the mean free path (the mean distance between collisions), and Σ−1
r,tr is

the (restricted) transport mean free path (the mean distance a particle must travel
for its direction of flight to change by an O(1) amount). Equation (2.11) implies that
the restricted transport mean free path is much larger than the mean free path.

The restricted stopping power Sr(x, E) has units of MeV/cm and the interpreta-
tion

Sr(x, E)ds = the energy loss that a particle at (x, E) experiences

through soft collisions while traveling a distance ds.(2.12a)

Therefore, the function

(2.12b) T (x, E) =
Sr(x, E)

E

has units of cm−1 and the interpretation

T (x, E)ds = the fractional energy loss that a particle at (x, E) experiences

through soft collisions while traveling a distance ds.(2.12c)

Now we write the functions Σh(x, E), Σr,tr(x, E), and T (x, E) in a useful dimen-
sionless form. These functions are highly space-dependent, due to the assumption
that the physical system V consists of a large number of “chunks” of two or more
materials. We define a characteristic length λch by

(2.13) λch = typical width of a chunk in V ,

and we introduce the dimensionless spatial variable

(2.14) y =
x

λch
.

In terms of y, a typical chunk width is O(1).
We also define the characteristic lengths λh, λr,tr, and λr by

1

λh
= typical value of Σh(x, E),(2.15a)

1

λr,tr
= typical value of Σr,tr(x, E),(2.15b)

1

λr
= typical value of T (x, E).(2.15c)

These characteristic lengths have straightforward physical interpretations: λh is the
typical distance a particle must travel to experience a hard collision; λr,tr is the
typical distance a particle must travel for its direction of flight to be altered through
soft collisions only by an O(1) amount; and λr is the typical distance that a particle
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must travel to lose an O(1) fraction of its energy through soft collisions. We make
the following assumptions:

(2.16) A1 :
λh

λr,tr
= O(1),

λr

λr,tr
= O(1), ε ≡ λch

λr,tr
� 1.

Thus, λh, λr,tr, and λr are comparable to each other and large compared to λch.
Physically, this implies that a typical chunk width is small (O(ε)) compared to the
distances over which the effect of hard collisions, soft angular deflections, and soft
energy loss are O(1). Alternatively, when a particle travels across a typical chunk,
the effects of hard collisions, soft angular deflections, and soft energy loss are small
(O(ε)).

Since λh, λr,tr, and λr are comparable, the dimensionless functions

σh(y, E) ≡ λr,trΣh(λchy, E) = λr,trΣh(x, E),(2.17a)

σr,tr(y, E) ≡ λr,trΣr,tr(λchy, E) = λr,trΣr,tr(x, E),(2.17b)

t(y, E) ≡ λr,trT (λchy, E) = λr,trT (x, E) = λr,tr
S(x, E)

E
(2.17c)

are O(1) in magnitude and vary by O(1) amounts when y varies by an O(1) amount.
Introducing (2.17) into the BFP equation (2.10a), we obtain

Ω ·∇Ψ(x,Ω, E) +
1

λr,tr
σh(y, E)Ψ(x,Ω, E)

=
1

λr,tr

∫ ∞

0

∫
4π

σh(y, E′)ph(y,Ω · Ω′, E′ → E)Ψ(x,Ω′, E′) dΩ′dE′

+
σr,tr(y, E)

2λr,tr

[
∂

∂μ
(1 − μ2)

∂

∂μ
+

1

1 − μ2

∂2

∂γ2

]
Ψ(x,Ω, E)

+
1

λr,tr

∂

∂E
Et(y, E)Ψ(x,Ω, E).(2.18)

Now we express Ψ in terms of dimensionless spatial variables. Two fundamental
length scales are present in (2.18): λch = a typical chunk width, and λr,tr = a typical
restricted transport cross section. In (2.14), we defined the “fast” dimensionless spa-
tial variable y = x/λch, which describes O(1) variations in the problem data that take
place over the length scale of a chunk width. We now define the “slow” dimensionless
spatial variable

(2.19) z =
x

λr,tr
,

which describes O(1) variations in Ψ that take place on the length scale of a restricted
transport mean free path, and we assume that Ψ is a function of both y and z:

Ψ(x,Ω, E) = ψ(y,z,Ω, E).(2.20a)

Then

(2.20b) Ω ·∇Ψ(x,Ω, E) = Ω ·∇yψ(y,z,Ω, E)
1

λch
+ Ω ·∇zψ(y,z,Ω, E)

1

λr,tr
.
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Introducing (2.20) into (2.18), multiplying by λr,tr, and using ε defined in (2.16),
we obtain

1

ε
Ω ·∇yψ(y,z,Ω, E) + Ω ·∇zψ(y,z,Ω, E) + σh(y, E)ψ(y,z,Ω, E)

=

∫ ∞

0

∫
4π

σh(y, E′)ph(y,Ω · Ω′, E′ → E)ψ(y,z,Ω′, E′) dΩ′dE′

+
σr,tr(y, E)

2

[
∂

∂μ
(1 − μ2)

∂

∂μ
+

1

1 − μ2

∂2

∂γ2

]
ψ(y,z,Ω, E)

+
∂

∂E
Et(y, E)ψ(y,z,Ω, E).(2.21)

Equation (2.21) is mathematically equivalent to the BFP equation (2.10).
Now we derive the leading-order term in a formal asymptotic solution of (2.21)

for ε � 1. To do this, we assume that y and z are independent spatial variables, we
introduce the ansatz

(2.22) ψ(y,z,Ω, E) =
∞∑

n=0

εnψn(y,z,Ω, E)

into (2.21), and we equate the coefficients of different powers of ε.
The first [O(1/ε)] equation in the resulting asymptotic hierarchy is

(2.23) Ω ·∇yψ0(y,z,Ω, E) = 0,

which requires that ψ0 be independent of the fast spatial variable y in the direction
of flight Ω. The general solution of (2.23) is

(2.24) ψ0(y,z,Ω, E) = ψ̃0[y − (y · Ω)Ω,z,Ω, E],

where ψ̃0 is arbitrary. Thus, the leading-order term ψ0 in the asymptotic expansion
can exhibit fast spatial dependence in directions orthogonal to Ω. A less general
solution of (2.23) is

(2.25) ψ0(y,z,Ω, E) = ψ̂0(z,Ω, E),

which has no fast spatial variation. In the following, we assume that (2.25) holds,

rather than the more general (2.24), and we systematically derive an equation for ψ̂0 in
(2.25). To accomplish this we make an additional assumption A2, stated below, which
places a condition on the randomness of the media and is consistent with (2.25). If
A2 is not satisfied, then there may be circumstances in which the more general (2.24)
might hold. We discuss this in more detail in the final paragraph of this section.

Assuming that ψ0 is given by (2.25), where ψ̂0 is undetermined, the next (O(1))
equation in the asymptotic hierarchy becomes

Ω ·∇yψ1(y,z,Ω, E) + Ω ·∇zψ̂0(z,Ω, E) + σh(y, E)ψ̂0(z,Ω, E)

=

∫ ∞

0

∫
4π

σh(y, E′)ph(y,Ω · Ω′, E′ → E)ψ̂0(z,Ω
′, E′) dΩ′dE′

+
σr,tr(y, E)

2

[
∂

∂μ
(1 − μ2)

∂

∂μ
+

1

1 − μ2

∂2

∂γ2

]
ψ̂0(z,Ω, E)

+
∂

∂E
Et(y, E)ψ̂0(z,Ω, E).(2.26)
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Integrating this equation over the line y + sΩ, −R ≤ s ≤ R, using

Ω ·∇yψ1(y + sΩ,z,Ω, E) =
d

ds
ψ1(y + sΩ,z,Ω, E),

and then dividing by 2R, we obtain

1

2R
[ψ1(y + RΩ,z,Ω, E) − ψ1(y −RΩ,z,Ω, E)]

+Ω ·∇zψ̂0(z,Ω, E) +

[
1

2R

∫ R

−R

σh(y + sΩ, E) ds

]
ψ̂0(z,Ω, E)

=

∫ ∞

0

∫
4π

[
1

2R

∫ R

−R

σhph(y + sΩ,Ω′ · Ω, E′ → E) ds

]
ψ̂0(z,Ω

′, E′) dΩ′dE′

+
1

2

[
1

2R

∫ R

−R

σr,tr(y + sΩ, E) ds

] [
∂

∂μ
(1 − μ2)

∂

∂μ
+

1

1 − μ2

∂2

∂γ2

]
ψ̂0(z,Ω, E)

+
∂

∂E
E

[
1

2R

∫ R

−R

t(y + sΩ, E) ds

]
ψ̂0(z,Ω, E).(2.27)

Now we let R → ∞. Using the assumption that ψ1 is bounded, and introducing the
notation

(2.28) 〈f〉Ω(y) = lim
R→∞

1

2R

∫ R

−R

f(y + sΩ) ds,

which denotes averaging over the infinite line passing through the point y in the
direction Ω, we obtain

Ω ·∇zψ̂0(z,Ω, E) + 〈σh〉Ω(y, E)ψ̂0(z,Ω, E)

=

∫ ∞

0

∫
4π

〈σhph〉Ω(y,Ω′ · Ω, E′ → E)ψ̂0(z,Ω
′, E′) dΩ′dE′

+
1

2
〈σr,tr〉Ω(y, E)

[
∂

∂μ
(1 − μ2)

∂

∂μ
+

1

1 − μ2

∂2

∂γ2

]
ψ̂0(z,Ω, E)

+
∂

∂E
E〈t〉Ω(y, E) ψ̂0(z,Ω, E).(2.29)

Now we make another fundamental assumption:

A2 : Each line-averaged quantity in (2.29) equals its volume average.(2.30)

More explicitly, if we define the volume average

(2.31) σh(E) = lim
R→∞

3

4πR2

∫
|y|≤R

σh(y, E) dy,

then we assume

(2.32) 〈σh〉Ω(y, E) = σh(E),

and similarly for the other line averages in (2.29). Assumption A2 places constraints
on the uniformity and isotropicity of the randomness in the physical system. These
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constraints are not true for all heterogeneous systems. For example, they are not true
for certain Ω for crystalline systems in which the spatial heterogeneities are small but
spatially periodic. However, for the randomized media considered in this paper, it is
reasonable to assume that A2 is satisfied. Equation (2.29) then becomes

Ω ·∇zψ̂0(z,Ω, E) + σh(E) ψ̂0(z,Ω, E)

=

∫ ∞

0

∫
4π

σhph (Ω′ · Ω, E′ → E) ψ̂0(z,Ω
′, E′) dΩ′dE′

+
σr,tr(E)

2

[
∂

∂μ
(1 − μ2)

∂

∂μ
+

1

1 − μ2

∂2

∂γ2

]
ψ̂0(z,Ω, E)

+
∂

∂E
Et(E) ψ̂0(z,Ω, E).(2.33)

Finally, we convert (2.33) back to the original independent variables. We define

(2.34) Ψ0(x,Ω, E) = ψ̂0

(
x

λr,tr
,Ω, E

)
,

and we use (2.17) to obtain

1

λr,tr
σh(E) = Σh(E) = volume average of Σh(x, E),(2.35a)

1

λr,tr
σhph(Ω′ · Ω, E′ → E) = Σh(Ω′ · Ω, E′ → E)

= volume average of Σh(x,Ω′ · Ω, E′ → E),(2.35b)

1

λr,tr
σr,tr(E) = Σr,tr(E) = volume average of Σr,tr(x, E),(2.35c)

1

λr,tr
Et(E) = Sr(E) = volume average of Sr(x, E).(2.35d)

Introducing (2.34) and (2.35) into (2.33), we obtain that the solution ψ(x,Ω, E) of
(2.1) has the asymptotic approximation

(2.36) Ψ(x,Ω, E) = Ψ0(x,Ω, E) + O(ε),

where Ψ0(x,Ω, E) satisfies the BFP problem:

Ω ·∇xΨ0(x,Ω, E) + Σh(E) Ψ0(x,Ω, E)

=

∫ ∞

0

∫
4π

Σh (Ω′ · Ω, E′ → E) Ψ0(x,Ω
′, E′) dΩ′dE′

+
Σr,tr(E)

2

[
∂

∂μ
(1 − μ2)

∂

∂μ
+

1

1 − μ2

∂2

∂γ2

]
Ψ0(x,Ω, E)

+
∂

∂E
Sr(E) Ψ0(x,Ω, E),(2.37a)

(2.37b) Ψ0(x,Ω, E) = Ψb(x,Ω, E), x ∈ ∂V, Ω · n < 0.

Equations (2.37) are the atomic mix approximation to the BFP equation (2.10), with
the boundary condition (2.1b). We note that (2.37b) is the same as the original
boundary condition (2.1b). This is because we tacitly assumed that the prescribed
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incident flux Ψb varies spatially on the slow spatial scale of λr,tr, not on the fast
spatial scale of λch.

To summarize: we have formally shown that by separating the hard and soft
collision operators, and requiring the soft collision operator to be sufficiently peaked
for μ0 ≈ 1 and E ≈ E′, one can asymptotically approximate the Boltzmann equations
(2.1) by the BFP equations (2.10). Also, if (A1) the characteristic lengths defined
by (2.13) and (2.15) satisfy (2.16), and (A2) the average of the problem data over
any line equals the volume average, then the BFP equations (2.10) are asymptotically
approximated by the atomic mix BFP equations (2.37).

Now let us formally consider the atomic mix model of (2.1):

Ω ·∇Ψ(x,Ω, E) + Σ(E)Ψ(x,Ω, E)

=

∫ ∞

0

∫
4π

Σ(Ω · Ω′, E′ → E)Ψ(x,Ω′, E′) dΩ′dE′, x ∈ V,(2.38a)

(2.38b) Ψ(x,Ω, E) = Ψb(x,Ω, E), x ∈ ∂V, Ω · n < 0.

If we split the scattering operator in (2.38a) into the hard and soft collision opera-
tors and asymptotically apply the Fokker–Planck approximation, just as was done to
(2.1a), we will obtain exactly (2.37a).

Therefore, under the assumptions described above, (2.37) is an asymptotic limit
of both the Boltzmann equations (2.1) and their atomic mix version, (2.38). This
implies that the atomic mix (2.38) asymptotically approximates the original Boltz-
mann equations (2.1). This is the main result of this paper.

We note that (2.33) is consistent with the assumption (2.25) that the leading-
order term in the asymptotic expansion is independent of the fast spatial variable y.
(None of the cross sections in (2.33) depend on y. This follows from assumption A2,
(2.31), that any line average of each cross section must equal its volume average.) If
for a specified problem assumption A2 is not valid, then the cross sections in (2.28)

depend on y, and it seems inevitable that ψ̂0 will also depend on y. In this case, the
much more complicated (2.24) should be used as the solution of (2.23). We will not
consider this here because the application that we intend for the preceding asymptotic
theory satisfies A2.

3. Numerical results. To test the asymptotic theory, we have devised and
run a set of computer experiments using the Monte Carlo code PENELOPE [13].
We consider a sequence of 6.0 cm deep targets consisting of small droplets of water
randomly mixed in air. The volume fraction occupied by the water droplets is 0.201.
In the first set of experiments, a circular (radius = 1.0 cm) 2.0 MeV monodirectional
electron beam is normally incident on these targets. The electrons enter the targets
and deposit energy, slowing down to 0.1 MeV, at which point their remaining energy is
deposited locally. The asymptotic theory predicts that as the water droplets decrease
in size, the dose deposited by the electron beam will limit to the dose deposited in
the homogenized (atomic mix) target.

To predict the size of the water droplets for which the atomic mix approximation
becomes accurate, let us consider Figure 1, which provides data for electrons with
energies between 0.1 MeV and 10.0 MeV in water. (All the data shown in Figure
1 was taken from PENELOPE.) In this figure, the quantities Σ−1

r,tr(E) = transport
mean free path, T−1(E) = E/S(E) = restricted range (the distance a particle with
energy E would travel while slowing down through soft collisions to zero energy if
its stopping power while slowing down were equal to S(E)), Σ−1

h (E) = hard mean
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Fig. 1. Transport MFP, restricted range, CSDA range, hard MFP, and MFP of electrons in
water.

free path, and Σ−1
t (E) = mean free path are plotted for water at normal density (1.0

gm/cm−1). Also plotted in Figure 1 is the continuous slowing down approximation
(CSDA) range R(E), defined by

(3.1) R(E) =

∫ E

0

dE′

S(E′)
;

this is the pathlength that a particle with energy E will travel while slowing down
through soft collisions to zero energy. R(E) is included in Figure 1 because it provides
an alternate way to measure the distance in which O(1) changes in energy occur.
Figure 1 shows that R(E) and T−1(E) are comparable, and that there is a clear
separation between the electron mean free path and the more “macroscopic” transport
and hard mean free paths.

The asymptotic theory predicts that the atomic mix approximation is accurate if
the chunk sizes lie below the transport mean free path (MFP), restricted range, and
hard MFP curves in Figure 1. Interpreting this literally would place an upper limit
on the chunk size of about λch = 3 × 10−3 cm. However, the definition of the hard
mean free path is somewhat arbitrary. (This definition depends on parameters chosen
to run the PENELOPE simulation; the distinction between hard and soft collisions is
not well defined.) Also, for most of the energy range of the electrons, the transport
MFP, CSDA range, and hard MFP lie well above λch = .003 cm. A less conservative
upper bound on the chunk size is λch = .01 cm, which is just below the minimum
values of Σ−1

r,tr(E) and T−1(E).
For the given electron beam, we ran a series of simulations in which the (uniform)

diameter of the droplets (λch) was set to λch = 0.1, 0.05, and 0.01 cm. We also
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Fig. 2. 2.0 MeV electron beam contour plots.

simulated the homogenized (atomic mix) target. The results of these experiments are
shown in Figure 2, which depicts isodose contours, normalized so that the maximum
dose is unity.

This figure shows that as the chunk sizes decrease from λch = 0.1 cm to 0.01
cm, the dose contours limit very well to the atomic mix result. The only significant
difference between the λch = 0.01 cm and atomic mix plots occurs on the 95% isodose
contour, within 1.0 cm of the boundary. All of our electron beam simulations indicate
such a phenomenon. The flux gradients are steep in these boundary locations, and
λch = 0.01 cm is not quite small enough for the atomic mix approximation to be valid
there.
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In the second set of simulations, a circular (radius = 1.0 cm) 3.4 MeV photon beam
is normally incident on the same targets as above. (The energy of the photon beam
was selected so that the electrons produced by Compton scattering would have roughly
the same energy range as in the electron beam experiments.) These simulations have
two Boltzmann equations: one for the photons and one for the electrons. The source
term for the photon Boltzmann equation is the prescribed incident photon boundary
flux. The source term for the electron Boltzmann equation is a volumetric term,
proportional to the rate at which photons Compton scatter. The photon mean free
path is on the order of cm, so the atomic mix approximation of these problems easily
applies to the photon Boltzmann equation. The relevant electron data is shown in
Figure 1, so as before, we predict that the atomic mix approximation for the electron
Boltzmann equation should be accurate when the chunk sizes are about 0.01 cm or
less.

The results (contour plots) of the photon beam experiments are depicted in
Figure 3. The four plots in this figure exhibit the same trends as in Figure 2; as
the chunk sizes decrease to about 0.01 cm, the contour plots converge to the contour
plot for the atomic mix approximation. The only noteworthy difference is that the
boundary effects seen in Figure 2 are not significant in Figure 3. This is likely because,
in the photon beam experiments, electrons are produced by the Compton scattering
of photons, and hence the electron “source” for the Figure 3 problems is much more
spatially distributed than in Figure 2.

Figures 2 and 3 are typical. (We ran multiple realizations for each plot shown in
the figures.) They indicate that when the chunk sizes become sufficiently small, the
atomic mix limit is attained, and that the asymptotic theory well predicts the chunk
sizes (λch ≈ 0.01 cm) for which the atomic mix approximation becomes accurate.
Figure 1 shows that this size is about two orders of magnitude greater than a typical
electron mean free path.

4. Discussion. We have presented a formal asymptotic theory and accompany-
ing numerical results showing that the atomic mix approximation for charged particle
transport is valid for physical systems in which (i) soft collisions dominate, (ii) a typ-
ical chunk size is small compared to a transport mean free path, and (iii) the average
of any cross section over a line equals its volume average. The asymptotic theory uses
earlier work by Pomraning [1] and Dumas and Golse [5]. The Monte Carlo results,
generated by PENELOPE [13], are consistent with the asymptotic theory.

This work was motivated by the problem of theoretically assessing certain treat-
ment planning procedures used in radiation oncology (radiation cancer therapy). In
this field of medicine, carefully sculpted beams of high-energy photons and electrons
coverage inside a patient, with the intent of sterilizing a malignant tumor [14, 15, 16].
(Photon beams also produce electrons, through Compton scattering, and these elec-
trons deposit all the dose.) To model radiation beams penetrating the lung, standard
computer codes model the lung as a union of homogenized subvolumes of about 75%
air and 25% tissue (water), each subvolume having its own density, which is ob-
tained from computerized tomography (CT) scans [17, 18, 19]. (Thus, the atomic
mix approximation is used in each subvolume.) The proper resolution (size) of the
subvolumes is a matter of debate.

However, the lung is an extraordinarily complex organ, with a complicated hier-
archy of structures ranging from the principal bronchi (about 2 cm in diameter) to
the alveoli (about 10−4 cm in diameter) [20, 21]. The mean free path of photons is on
the order of several cm, so the atomic mix model for the entire lung is acceptable for
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Fig. 3. 3.4 MeV photon beam contour plots.

photons. The results of this paper show that for random 75% air–25% water systems
with uniformly sized “chunks” of water, the atomic mix approximation (i) is accurate
with chunk sizes less than about 0.01 cm in diameter, but (ii) may be inaccurate
when the chunk sizes are larger. Since the human lung contains structures with a
large hierarchy of sizes, this result cannot be directly used to predict an optimal CT
resolution for treatment planning.

However, the work in this paper suggests a way to examine this problem: first,
construct a lung model in which all structures larger than a specified critical size are
explicitly included and all structures less than the critical size are approximated by
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atomic mix [12]. (The critical size is chosen as large as possible so that it does not
significantly affect Monte Carlo calculations of dose.) Then, compare Monte Carlo
simulations of this first model to Monte Carlo simulations of a second CT model,
obtained by homogenizing the first model over the user-prescribed CT subvolumes.
The differences in dose for the two models are due to the partitioning of the lung into
subvolumes. These differences will diminish as the subvolumes become smaller.

We have used PENELOPE to run realistic Monte Carlo simulations on our lung
models and have found that λcr = 0.05 cm is an acceptable critical value. A detailed
description of our lung model and preliminary results of comparisons with CT res-
olutions are given in [12]. We have found that for large CT resolutions, significant
errors in predicted dose can occur, especially for narrow beams that pass through one
or more “large” structures.

To conclude, we note from Figure 1 that a typical electron mean free path in tissue
is about 10−4 cm. If it were necessary to explicitly model all lung structures compa-
rable to or greater than this size, then all structures within the lung would have to be
treated explicitly; this would be nearly an impossible computational task. Therefore,
the atomic mix result developed in this paper is a crucial theoretical element in the
strategy of using Monte Carlo techniques to assess the accuracy of existing treatment
planning methods for the lung.

We plan to continue this work—in particular, to more fully assess the accuracy
of different CT resolutions—and to report our results in future publications.

Acknowledgments. The authors gratefully thank Indrin Chetty for his encour-
agement and support.
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Abstract. We analyze the stochastic large time behavior of long supply chains via a traffic flow
random particle model. As items travel on a virtual road from one production stage to the next,
random breakdowns of the processors at each stage are modeled via a Markov process. The result is
a conservation law for the expectation of the part density which holds on time scales which are large
compared to the mean up and down times of the processors.

Key words. supply chains, traffic flow models, mean field theories, Boltzmann equation, fluid
limits

AMS subject classifications. 65N35, 65N05

DOI. 10.1137/060674302

1. Introduction. Traffic flow models for supply chains model the flow of items
through the chain as conservation laws for an item density ρ, depending on time
and a stage variable x. Stage x = 0 denotes the raw material, stage x = 1 denotes
the finished product, and the interval [0, 1] models the intermediate stages of the
production process and plays the role of the “road” in traffic flow theory. Traffic
models have been used to model supply chains in [1, 2, 13, 5, 8] and, more recently,
to optimize them in [6, 7, 9].

In previous work [3] we developed a traffic flow model for a chain of suppliers
with a given capacity and throughput time. It is of the form

(1.1) ∂tρ(x, t) + ∂xF (x, t) = 0, F (x, t) = min{μ(x), V (x)ρ}.

Here x denotes a continuous supplier index, i.e., the stage of the process. ρ(x, t)
denotes the density of parts in the supply chain. To compute the number of parts,
i.e., the work in progress (WIP) Wab(t) in a certain subset of processors, corresponding

to an interval (a, b) at a given time t, we have to compute Wab(t) =
∫ b

a
ρ(x, t) dx.

As long as the processors run below capacity, the movement of parts is given by the
velocity V . So dx

V (x) is proportional to the throughput time of the processor occupying

the infinitesimal interval dx. The processors are assumed to have a finite capacity,
meaning that they cannot process more that μ(x)dt parts in any infinitesimal time
interval dt. So the variables in (1.1) have units of parts/stage for ρ, parts/time for μ,
and stage/time for V . We prescribe a general, time-dependent influx of the form

(1.2) F (0, t) = λ(t)

for the conservation law (1.1).
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Equation (1.1) is derived rigorously in [3] from a discrete recursion for the times
each part arrives at each processor and from a limiting process for the number of parts
and the number of processors M → ∞. However, this recursion relation is completely
deterministic, and the supply chain is therefore assumed to work like an automaton.
The goal of this paper is to include random behavior of the processors, i.e., random
breakdowns and random repair times, into the model. We model the breakdown of
processors by setting the capacity μ(x) to zero. Thus, the model we consider consists
of (1.1), where μ = μ(x, t) is a time-dependent random variable. To be more precise,
we assume μ(x, t) to be piecewise constant in space and of the form

(1.3) μ(x, t) =
M−1∑
m=0

μm(t)χ[γm,γm+1)(x),

where 0 = γ0 < · · · < γM = 1 denotes a partition of the stage interval [0, 1], corre-
sponding to M processors, and the functions μm(t), m = 0, . . . ,M −1, take on values
of either μm(t) = 0 or μm = cm, where cm denotes the capacity of the processor in
the case when it is running. We assume that the on/off switches are exponentially
distributed in time; that is, we assume mean up and down times τupm and τdown

m and
generate the random signal μm(t) by the following algorithm:

• Assuming that at time t processor m has just switched from the off state to the
on state, choose Δtmup and Δtmdown randomly from the distributions dP[Δtmup =

s] = 1
τup
m

exp(− s
τup
m

)ds and dP[Δtmdown = s] = 1
τdown
m

exp(− s
τdown
m

)ds.

• Set μm(s) = cm for t < s < t + Δtmup and μm(s) = 0 for t + Δtmup < s <
t + Δtmup + Δtmdown.

• At t = t+ Δtmup + Δtmdown the processor is turned on again and we repeat the
above process.

In this way we generate M random time-dependent signals which produce the random
capacity μ(x, t) according to (1.3). For each realization of this process, we solve one
realization of the conservation law (1.1), thereby modeling the random breakdown of
elements in the chain. To illustrate this, Figure 1.1 shows one realization of one of
the signals, namely μ1(t), switching between μ1 = c1 and μ1 = 0, and one realization
of the solution of the corresponding conservation law. Note that the conservation
law (1.1) exhibits, despite its simple form, a rather interesting feature. Since the flux
function F is uniformly bounded from above by μ(x, t), it will necessarily become
discontinuous if the flux coming from the left exceeds this value. This can be the case
if μ(x, t) is discontinuous in the stage variable x, which will certainly occur if μ(x, t)
is generated randomly by the algorithm above. Since mass has to be conserved, the
discontinuity in the fluxes has to be compensated by δ-functions in the density ρ. The
temporary buildup of these δ-functions is what is observed in Figure 1.1.

The goal of this paper is to derive an evolution equation for the expectation
〈ρ(x, t)〉 of the density ρ given by the stochastic process above. This provides us
with a rather inexpensive way to estimate the behavior of long supply chains, with
random breakdowns of individual processors, by solving directly one rather simple
conservation law for the expectation. The main result of the present paper is that
the expectation 〈ρ(x, t)〉 satisfies an initial boundary value problem for a conservation
law of the form
(1.4)

(a) ∂t〈ρ(x, t)〉+∂xFE(τ̄ , C, V, 〈ρ〉) = 0, FE(τ̄ , C, V, 〈ρ〉) = τ̄C

[
1 − exp

(
−V 〈ρ

C

)]
,

(b) FE |x=0 = λ(t), 〈ρ(x, 0)〉 = 0,
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Fig. 1.1. Left panel: One realization of the random capacity μ1(t) of the first processor. Right
panel: Density ρ from one realization of the conservation law (1.1) with random capacities.

where the piecewise constant functions τ̄ and C are given by

(1.5) τ̄(x) =
M−1∑
m=0

χ[γm,γm+1)(x)
τupm

τupm + τdown
m

, C(x) =

M−1∑
m=0

χ[γm,γm+1)(x)cm.

The result is derived in a limiting regime for large time scales and many parts and
processors. So, it holds when the behavior of the chain, given by the stochastic version
of (1.1), is considered on a time scale where a large number of parts arrive and the
on/off switches of the processors occur very frequently. Similar models have been
used on a heuristic basis, in the context of clearing functions, in [11, 14]. Our result
basically states two facts as follows:

• For a large number of parts, the function min{μ, V ρ} is, under the expecta-
tion, replaced by the function μ[1 − exp(−V ρ

μ )], which has the same limiting

behavior for large and small densities (the limits ρ → 0 and ρ → ∞).
• The effect of the random on/off switches can be incorporated into the model

by replacing μ by the on-capacity c and multiplying the whole flux function
by the average time τup

τup+τdown the processor is on.
This paper is organized as follows. We prove the validity of the limiting equation

(1.4) in a somewhat roundabout way. We first discretize one realization of (1.1) by
a particle method, using the Lagrangian formulation of (1.1). Then we take the
appropriate limits. So, section 2 is devoted to the formulation of the particle method.
The limiting behavior is derived in section 3. In section 4 we verify our results
numerically and demonstrate the basic premise of the method, namely, that we can
accurately model the large time behavior of long chains with the mean field equation
(1.4). The proofs of section 3 are given in the appendix.

2. Particle formulation. As mentioned in the introduction, we will derive the
main result of this paper, the conservation law (1.4) for the expectation 〈ρ〉, from
a particle discretization of (1.1) in Lagrangian coordinates. Since we are going to
employ a mean field theory approach to the particle model in the next section, it is
essential that the particle formulation of (1.1) is invariant under permutations of the
particles. This will require some special considerations, and therefore we derive first
a particle formulation of the deterministic problem, i.e., for one fixed realization of
the random capacities μ(x, t). In section 2.2 we will then generalize this formulation
to the random case.
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2.1. The deterministic case. First, we reformulate problem (1.1) in Lagrangian
coordinates. The transformation from Eulerian to Lagrangian coordinates is given in
the usual manner by

(2.1) (a) ρ(x, t) =

∫
δ(x− ξ(y, t)) dy, (b) ρ(ξ(y, t), t) = − 1

∂yξ(y, t)
,

where ξ(y, t) denotes the position of a particle with continuous index y at time t. The
derivative ∂yξ = − 1

ρ denotes the specific volume of the flow, i.e., the infinitesimal
distance between two neighboring particles, and the minus sign indicates that we
number the particles, at least initially, in order of their arrival, i.e., y1 < y2 ⇒
ξ(y1) > ξ(y2) ⇒ ∂yξ < 0 holds. Note, that (2.1)(b) holds only in the absence of
caustics, that is, as long as the particles stay ordered and do not overtake one another,
whereas (2.1)(a) also holds in the presence of caustics. Using the transformation (2.1),
we see the conservation law (1.1) becomes

(2.2) ∂tξ(y, t) = v(ξ, t) = min

{
μ(ξ, t)

ρ(ξ, t)
, V (ξ)

}

and reduces to a parameterized ordinary differential equation (ODE) for the trajec-
tories ξ(y, t). We consider a particle discretization of one realization of the stochastic
version of the conservation law (1.1) by replacing ρ(x, t) by the measure corresponding
to N particles

(2.3) ρ(x, t) ≈ Δy
N∑

n=1

δ(x− ξn(t))

(where we choose the symbol Δy for the particle weight so as to be notationally
consistent with (2.1)) and solve the system of ODEs

(2.4) ∂tξn(t) = vn, vn ≈ min

{
μ(ξn)

ρ(ξn)
, V (ξn)

}
.

The following three aspects are still missing in the consistent formulation of the par-
ticle method (2.4):

• We have to decide on an appropriate weight Δy of each particle.
• We have to define initial conditions for the trajectories ξn to reproduce the

boundary condition (1.2) of the conservation law.
• We still have to define how to compute the density ρ(x, t) at x = ξn from the

particle ensemble.
To address the first issue, we assume that we start from an empty system. In this case,
the total mass over all time is given by the integral over the influx Λ =

∫∞
0

λ(t) dt,
which we assume to be finite. To match this total mass Λ to the total mass in (2.3),
we set Δy = Λ

N .
To address the second issue, we note that the flux F of the Lagrangian formulation

(2.2) is given by

F (x, t) =

∫
δ(x− ξ(y, t))v(ξ) dy ⇒ λ(t) = F (0, t) =

∫
δ(ξ(y, t))v(ξ) dy;

defining the initial condition ξ(y, a(y)) = 0 for the particles in the Lagrangian
formulation (2.2) implies

(2.5) λ(t) =

∫
δ(t− a(y)) dy ⇒ a−1(t) =

∫ t

0

λ(s) ds.
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Thus, the arrival times a(y) have to be chosen as the functional inverse of the mono-

tone antiderivative of the influx function λ(t), i.e., a(y) = t ⇐⇒ y =
∫ t

0
λ(s) ds has

to hold. In the deterministic case, treated in [3], this implies that the arrivals a(y)
satisfy the ODE

da(y)

dy
=

1

λ(a(y))
, a(0) = 0.

2.2. The random case. We now consider the stochastic process for the com-
putation of the capacity variables μm(t) in (1.3). The assumption of an exponential
distribution of the up and down times τupm and τdown

m implies a Markov process. This
means that at each infinitesimal time, we can decide whether to switch the processor
from on to off and back with a constant frequency ωm(μ) = 1

τ
up/down
m

. Thus, the

evolution of μm(t) can be expressed by the process

(a) μm(t + Δt) = (1 − rm)μm(t) + rm(cm − μm(t)), rm = 0 or rm = 1,(2.6)

(b) P[rm = 1] = Δtωm(μm(t)), P[rm = 0] = 1 − Δtωm(μm(t)).

This means that at each infinitesimal time step Δt, we flip a coin and decide whether
to switch, based on the probability Δtωm, with the frequency ωm given by

ωm(0) =
1

τdown
m

, ωm(cm) =
1

τupm
.

It is a standard exercise in the analysis of Monte Carlo methods (cf. [10]) that this
algorithm results in exponentially distributed up and down times with means τupm

and τdown
m .

Remark. Note that the assumption of exponentially distributed up and down
times τupm , τdown

m allows us to formulate the on/off switches as the Markov process (2.6).
For a general probability distribution, the decision whether to turn the processor on
or off at each time step depends on the time it has been in its present state (i.e., its
history), leading to a model that is nonlocal in time. The case of a general distribution
of up and down times will be the subject of a subsequent paper.

The motion of the particles ξn is now discretized in time, which leads to the
following time-discrete version of (2.4):

(2.7) ξn(t + Δt) = ξn(t) + Δtvn(
−→
ξ (t),−→μ (t)),

where the velocities vn depend on the whole particle ensemble
−→
ξ = (ξ1, . . . , ξN ) and,

in addition, on the random capacity vector −→μ (t) = (μ1, . . . , μM ). We still have to

define a way to compute the density ρ(ξn, t) from the particle ensemble
−→
ξ . As stated

before, the density ρ is given, in terms of the particle formulation, as the inverse of
the specific volume, i.e., the distance of two neighboring particles. Formulating this
in a way that is invariant under permutation of the particle index, we set

(2.8)
1

ρ(ξn, t)
= min

{
ξk − ξn

Δy
: ξk > ξn

}
.

Note that if the particles stay in descending order, this reduces to 1
ρ = ξn−1−ξn

Δy , which

would be just the difference approximation to (2.1). The significance of the formula
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(2.8) lies in the fact that it is also valid if particles pass each other and the descending

order is destroyed. Therefore, we choose the velocities vn(
−→
ξ ,−→μ ) as

vn(
−→
ξ (t),−→μ (t)) = min

{
V (ξn),

μ(ξn, t)

Δy
(ξk − ξn) : ξk > ξn

}
,(2.9)

μ(ξn, t) =
∑
m

χm(ξn)μm(t).

Turning to the boundary condition, we replace the influx density λ(t) in (2.5) by a
measure of the form

(2.10) λ(t) ≈ Δy

N∑
n=1

δ(t− an) =
Λ

N

N∑
n=1

δ(t− an).

The goal here is again to formulate (2.10) in such a way that the resulting particle
method is invariant under permutations of the particle index n. We do so by ran-
domizing (2.10), and we choose identically distributed random arrival times for each
particle, according to the probability distribution λ

Λ . So, we have

(2.11) ξn(an) = 0, dP[an = t] =
λ(t)

Λ
dt, Λ =

∫ ∞

0

λ(t) dt.

Equations (2.6)–(2.7), together with the definitions (2.9) and the initial condition

(2.11), give a complete set of rules to advance the particle positions
−→
ξ and the

capacities −→μ from one time step to the next, and these rules are independent under
permutations of the particle index. We will reformulate the system once more, to
essentially replace the boundary condition (1.2) by an initial condition. This is really
a technicality, and the reason for it is that, in the next section, we will derive equations
for the probability density of the particle ensemble. To this end it is notationally more
convenient to deal with a fixed number of particles in the system, instead of particles
which enter at random times an. So, instead of imposing the condition ξn(an) = 0,
we move the particles with an arbitrary, constant, and deterministic velocity—say
V (0)—as long as ξn(t) < 0 holds, and start them out at ξn(0) = −V (0)an. Obviously
ξn(t) = V (0)(t− an) will hold for ξn < 0 and the particle will arrive at ξn = 0 at the
correct time.

So, in summary, the stochastic particle system, which will be analyzed in the next
section, is of the following form.

Start out at t = 0 with

(a) μm(0) = cm, m = 0, . . . ,M − 1,(2.12)

(b) ξn(0) = −V (0)an, n = 1, . . . , N, dP[an = t] =
λ(t)

Λ
dt.

To move particle positions
−→
ξ and capacities −→μ for one time step Δt, compute

(a) μm(t + Δt) = (1 − rm)μm(t) + rm(cm − μm(t)), rm = 0 or rm = 1,(2.13)

(b) P[rm = 1] = Δtωm(μm(t)), P[rm = 0] = 1 − Δtωm(μm(t)),
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(c) ξn(t + Δt) = ξn(t) + Δtvn(
−→
ξ (t),−→μ (t)),

(d) vn(
−→
ξ (t),−→μ (t)) =

(
V (0) ξn < 0

min{V (ξn), μ(ξn,t)
Δy (ξk − ξn) : ξk > ξn} ξn ≥ 0

)
,

(e) μ(ξn, t) =
∑
m

χm(ξn)μm(t).

Remark. We assume in (2.12) for simplicity that all the processors in the beginning
are on.

3. The evolution of the expectation. This section is devoted to the deriva-
tion of main result (1.4) from the particle model (2.12)–(2.13). There are three steps
involved. In section 3.1 we derive a high dimensional Boltzmann-type equation for the

joint probability density of the particle positions
−→
ξ and the capacity variables −→μ of

the previous section. In section 3.2, we then reduce the dimensionality of the problem
by employing a type of mean field theory for the conditional probability of the particle
positions for a given realization of the capacities. In section 3.3 we compute averages
over time scales which are much longer than the mean on/off switching times τupm and
τdown
m . At leading order when the particle number tends to infinity, this procedure

leads to an evolution equation for the probability p(x, t) that an arbitrary particle in
(2.13) is at position x at time t. Up to a multiplicative constant, p can be identified
with the expectation 〈ρ〉 in (1.4).

3.1. The probability distribution. We now derive the evolution equation for
the probability distribution

F (X,Z, t)dXZ = dP[
−→
ξ (t) = X,−→μ (t) = Z],

where the particle ensemble
−→
ξ = (ξ1, . . . , ξN ) is at the N -dimensional position

X = (x1, . . . , xN ), while the processor capacities −→μ = (μ1, . . . , μm) are in the state
Z = (z1, . . . , zm). We have the following theorem.

Theorem 3.1. Let the evolution of particles
−→
ξ and capacities −→μ be given

by (2.12) and (2.13). Then, in the limit Δt → 0 the joint probability distribution
F (X,Z, t) satisfies the initial value problem for the Boltzmann equation

(a) ∂tF +
∑
n

∂xn [vn(X,Z, t)F ] =

∫
Q(Z,Z ′)F (X,Z ′, t) dZ ′,(3.1)

(b) F (X,Z, 0) = (ΛV (0))−N

[
N∏

n=1

λ

(
− xn

V (0)

)][M−1∏
m=0

δ(zm − cm)

]
,

with the integral kernel Q given by

(a) Q(Z,Z ′) =
∑
m

qm(zm, z′m)
∏
k �=m

δ(z′k − zk),(3.2)

(b) qm(zm, z′m) = ωm(z′m)[δ(cm − z′m − zm) − δ(z′m − zm)].

Proof. The proof of Theorem 3.1 consists of summing up over all the possibilities
of choosing the random variables rm in (2.13), and it is an exercise in multidimensional
Taylor expansion. It is deferred to the appendix.
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In terms of the probability distribution F (X,Z, t), the expectation 〈ρ(x, t)〉 in
(1.4) is then given by

(3.3) 〈ρ(x, t)〉 = Δy

N∑
n=1

∫
δ(x− ξn(t))F (

−→
ξ , Z, t) d

−→
ξ dZ = Δy

N∑
n=1

pn(x, t),

with pn(x, t) =
∫
F (ξ1, . . . , ξn−1, x, ξn+1, . . . , ξN , Z, t) dξ1, . . . , ξn−1, ξn+1, . . . , ξN dZ

being the probability density that particle number n is at position x at time t. The
density F (X,Z, t) is of course of too high a dimension to be of practical use, and the
goal of the next two sections is therefore to reduce the dimensionality of the problem.

3.2. Molecular chaos and mean field theory. Since the joint probability F
in (3.1) depends on the capacity variables Z as well, the usual assumption of statistical
independence (cf. [4]) has to be slightly modified. We first define the probability for
the capacity variables Z as G(Z, t) =

∫
F (X,Z, t) dX. Integrating out X in (3.1)

gives the initial value problem

(3.4) (a) ∂tG =

∫
Q(Z,Z ′)G(Z ′, t) dZ ′, (b) G(Z, 0) =

M−1∏
m=0

δ(zm − cm)

for G. Note that we obtain a closed equation for G, which is an expression of the fact
that the capacities −→μ evolve independently of the particles. Moreover, the individual
capacities μm evolve independently of each other. This can be seen by the fact that
(3.4) has a solution of the form G(Z, t) =

∏M−1
m=0 gm(zm, t), where the individual

probability densities gm(zm, t), for the state zm of the processor m at time t, satisfy
the Boltzmann equation

(3.5) ∂tgm(z, t) =

∫
qm(z, z′)gm(z′, t) dz′,

with the kernels qm given by (3.2)(b). We now define the conditional probability

density F c(X,Z, t)dX = dP[
−→
ξ = X | −→μ = Z], which is the probability of the particle

ensemble
−→
ξ for a given realization of the −→μ . The conditional probability density is

defined by

(3.6) F c(X,Z, t) =
F (X,Z, t)

G(Z, t)
, G(Z, t) =

∫
F (X,Z, t) dX.

Note that the definition (3.6) implies that F c(X,Z, t)dX is a probability measure for
every fixed Z, i.e.,

∫
F c(X,Z, t) dX = 1 ∀Z holds. Using the definition of F c, (3.1)

becomes

(3.7) ∂t[GF c] +
∑
n

∂xn [vn(X,Z, t)GF c] =

∫
Q(Z,Z ′)F c(X,Z ′, t)G(Z ′, t) dZ ′.

The standard molecular chaos assumption employed in particle physics (cf. [4]) now
takes the form that for a given fixed realization of the −→μ the different ξn are indepen-
dently and identically distributed, i.e., that

F c(X,Z, t) =
∏
n

fc(xn, Z, t),

∫
fc(x, Z, t) dx = 1 ∀Z, t
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holds. The molecular chaos assumption implies therefore the ansatz

F (X,Z, t) = G(Z, t)
∏
n

fc(xn, Z, t)

for the joint probability F in (3.1). fc(x, Z, t) is the conditional probability density
that any of the identical particles is at position x at time t for a given state Z of the
processors. To obtain an evolution equation for fc(x, Z, t), we integrate (3.7) with
respect to the variables x2 . . . xN and obtain

∂t[Gf c(x1, Z, t)] + ∂x1

[
Gf c(x1, Z, t)

∫
v1(X,Z)

N∏
n=2

fc(xn, Z, t)dx2 . . . xN

]
(3.8)

=

∫
dZ ′Q(Z,Z ′)fc(x1, Z

′)G(Z ′).

To close (3.8) we have to compute the average mean field velocity u(x1, Z, f
c), given by

u(x1, Z, f
c) =

∫
v1(X,Z)

N∏
n=2

fc(xn, Z, t)dx2 . . . xN ,

asymptotically for large N . To this end, we recall from (2.13)(d) that for x1 ∈
[γm, γm+1), the interval corresponding to processor number m, the velocity v1(X,Z)
is given by

v1(X,Z) = min

{
V (x1),

zm
Δy

(xk − x1) : xk > x1

}
.

Theorem 3.2 gives the asymptotic form of the mean field velocity u(x1, Z, f
c) in the

limit for a large number of independent particles (N → ∞).
Theorem 3.2. For a given probability measure f(x) and for given constants V

and z,

lim
N→∞Δy→0

∫
min

{
V,

z

Δy
(xk − x1) : xk > x1

} N∏
n=2

f(xn) dx2 . . . xN(3.9)

=
z

Λf(x1)

[
1 − exp

(
−ΛV f(x1)

z

)]

holds where Λ = NΔy is fixed.
Proof. The proof is deferred to the appendix.
Thus, in the mth cell [γm, γm+1), we have that the average mean field velocity is

asymptotically given by (3.9) and can therefore be expressed by the piecewise constant
function

(a) u(x1, Z, f
c) =

M−1∑
m=0

um(x1, zm, fc)χ[γm,γm+1)(x1),(3.10)

(b) um(x1, zm, fc) =
zm
Λfc

[
1 − exp

(
−ΛV (x1)f

c

zm

)]
.

Therefore (3.8) reduces, under the molecular chaos assumption of many independently
distributed particles, to the mean field Boltzmann equation

(3.11) ∂t[Gf c] + ∂x1 [u(x1, Z, f
c)Gf c] =

∫
dZ ′Q(Z,Z ′)fc(x1, Z

′)G(Z ′),
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with the mean field velocity u given by (3.10). The molecular chaos ansatz is compat-
ible with the initial condition (3.1)(b) for the probability density F (X,Z, t). Using
(3.1)(b), we obtain the initial conditions

(3.12) fc(x1, Z, 0) =
1

ΛV (0)
λ

(
− x1

V (0)

)
, G(Z, 0) =

M−1∏
m=0

δ(zm − cm)

for the evolution equations (3.11) and (3.4). Note that G still independently satis-
fies (3.4). This is essential, since it guarantees that fc(x1, Z, t)dx1 is a probability
measure, i.e.,

∫
fc(x1, Z, t) dx1 = 1 ∀Z, t holds.

The probability density pn(x, t) of particle number n being at position x at time
t in (3.3) is, under the molecular chaos assumption, of the form

pn(x, t) = p(x, t) =

∫
fc(x, Z, t)G(Z, t) dZ ∀n.

Since all the pn’s are now identical, the expectation 〈ρ〉 is, according to (3.3), given by

〈ρ(x, t)〉 = Λp(x, t).

So, the expectation 〈ρ〉 can be identified with the probability p up to the multiplicative
constant Λ, giving the total mass in the system. To obtain the evolution equation
(1.4) for the expectation 〈ρ〉 and the probability density p, we still have to average out
somehow the dependence of the conditional probability density fc on the processor-
state variables Z = (z0, . . . , zM−1). The evolution equation for p—and also for 〈ρ〉—is
obtained by integrating out the Z-variable in (3.11). This gives

(3.13)

∂tp(x, t) + ∂x[pU(x, t, p)] = 0, pU(x, t, p) =

∫
u(x, Z, fc)G(Z, t)fc(x, Z, t) dZ.

Because of the initial condition (3.12) for the conditional probability density fc, the
conservation law (3.13) is subject to the initial condition

(3.14) p(x, 0) =
1

ΛV (0)
λ

(
− x

V (0)

)
.

Note that fc still depends on all the capacity variables Z. Therefore (3.13) has to be
closed somehow by expressing f c in terms of p. In section 3.3 this closure is achieved
by considering a large time regime.

3.3. The large time regime. First, we note that in the setting of section 2.2
the capacities μm can assume only two discrete values, namely μm = 0 and μm = cm.
Therefore the probabilities gm(zm, t) in (3.5) are concentrated on these values, and
we have an exact solution of (3.5) given by

gm(z, t) = g0
m(t)δ(z) + g1

m(t)δ(z − cm).

Inserting this into (3.5) and using the form of the integral kernels qm in (3.2)(b) gives

δ(z)∂tg
0
m(t) + δ(z − cm)∂tg

1
m(t) = qm(z, 0)g0

m(t) + qm(z, cm)g1
m(t)

= [−ωm(0)δ(z) + ωm(0)δ(cm − z)]g0
m(t) + [−ωm(cm)δ(cm − z) + ωm(cm)δ(z)]g1

m(t).
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Comparing the coefficients of δ(z) and δ(z − cm), we obtain that g0,1
m (t) are given as

solutions of the ODE system

(3.15)
∂tg

0
m = −ωm(0)g0

m(t) + ωm(cm)g1
m(t), ∂tg

1
m = ωm(0)g0

m(t) − ωm(cm)g1
m(t),

which preserves the property of gm(z, t)dz being a probability measure, i.e., g0
m +

g1
m = 1 ∀t holds. We now consider a regime where the on/off switches of the pro-

cessors occur very frequently compared to the overall time scale, i.e., τ
up/down
m � 1,

ωm = 1
τm

 1. Thus we rescale the mean up and down times τ
up/down
m as well as

the frequencies ωm in (3.2) by τ
up/down
m → ετ

up/down
m and ωm → 1

εωm. Rescaling the
collision kernel Q in (3.11) correspondingly gives the system

(3.16) ∂t[Gf c] + ∂x[u(x, Z, fc)Gf c] =
1

ε

∫
Q(Z,Z ′)fc(x, Z ′, t)G(Z ′, t) dZ ′,

with the rescaled collision kernel Q given, according to (3.2), by

(a) Q(Z,Z ′) =
∑
m

qm(zm, z′m)
∏
k �=m

δ(z′k − zk),(3.17)

(b) qm(zm, z′m) = ωm(z′m)[δ(cm − z′m − zm) − δ(z′m − zm)].

From the above derivation, we have that the probability density G(Z, t) of the proces-
sor status factors into M independent densities, supported on zm = 0 and zm = cm,
satisfying the rescaled version of (3.15). Thus, we have

(a) G(Z, t) =

M∏
m=1

gm(zm, t), gm(z, t) = g0
m(t)δ(z) + g1

m(t)δ(z − cm),(3.18)

(b) ε∂tg
0
m = −ωm(0)g0

m(t) + ωm(cm)g1
m(t), ε∂tg

1
m = ωm(0)g0

m(t) − ωm(cm)g1
m(t),

where the small parameter ε denotes the ratio of τup/down to the overall time scale.

The ODE system (3.18)(b) has two distinct eigenvalues, namely zero and −ωm(0)+ωm(cm)
2ε .

This, together with the condition that g0
m + g1

m = 1 ∀t holds, implies that the g0,1
m

will converge exponentially on an O( t
ε ) time scale towards their steady state

(3.19) g0
m(∞) =

ωm(cm)

ωm(0) + ωm(cm)
, g1

m(∞) =
ωm(0)

ωm(0) + ωm(cm)
.

Therefore, we can, up to exponentially small terms, replace G(Z, t) by G(Z,∞) in
(3.16). Note that G(Z,∞) is a steady state of (3.4) and therefore satisfies

(3.20)

∫
dZ ′ Q(Z,Z ′)G(Z ′,∞) = 0 ∀Z.

Replacing G(Z, t) by G(Z,∞) in (3.16), we obtain

(a) G(Z,∞){∂t[fc] + ∂x[u(x, Z, fc)fc]} =
1

ε
QG[fc],(3.21)

(b) QG[fc] =

∫
dZ ′Q(Z,Z ′)fc(x, Z ′)G(Z ′,∞).

Expanding the conditional probability density fc formally in powers of ε gives that,
in zeroth order, QG[fc] = 0 holds. Note that, because of (3.20), functions f c which
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are independent of Z are automatically in the kernel of the collision operator QG in
(3.21). Theorem 3.3 states that the kernel of the collision operator consists essentially
of only such functions.

Theorem 3.3. Any element of the kernel of the collision operator QG defined
in (3.21)(b) is constant on the vertices of the hypercube

∏M−1
m=0 [0, cm]. So QG[f ] = 0

implies that

(3.22)

f(z1 . . . cm . . . zM ) − f(z1 . . . 0 . . . zM ) = 0 ∀m, ∀Z = (z0, . . . , zM−1) ∈
∏
m

{0, cm}
holds.

Proof. The proof is deferred to the appendix.
Theorem 3.3 allows us to compute the macroscopic velocity U(x, t, p) in the evo-

lution equation for the probability p in (3.13) in terms of p itself. Since in zeroth
order QG[fc] = 0 has to hold, fc(x, Z, t) has to be constant on the hypercube vertices

Z ∈
∏M−1

m=0 {0, cm}. In (3.13) we have to compute the flux as

(a) pU(x, t, p) =

∫
u(x, Z, fc)G(Z,∞)fc(x, Z, t) dZ,(3.23)

(b) p(x, t) =

∫
fc(x, Z, t) dZ.

Because of (3.18), G(Z,∞) is concentrated on the vertices
∏M−1

m=0 {0, cm}, where fc is
constant. Therefore the integral in (3.23)(a) factors, and we obtain

(3.24) U(x, t, p) = U(x, p) =

∫
u(x, Z, p)G(Z,∞) dZ.

The derivation above actually computes the zero order term in a Chapman–Enskog
procedure for the Boltzmann equation (3.21). The next term would produce a diffusive
O(ε) correction. However, this diffusive correction represents really only a small
correction since the mean velocity U of the zero order term is nonzero; i.e., we are
still in a primarily hyperbolic instead of a diffusive regime. We now have, in the large
time limit, closed (3.13) for the probability density p(x, t) that any of the identical
particles is at position x at time t. Since this density is up to the multiplicative
constant Λ identical to the expectation 〈ρ〉, i.e., 〈ρ〉 = Λp holds, we also obtain a
closed form equation for the expectation. This equation is of the form

(3.25) ∂t〈ρ(x, t)〉 + ∂x

[
〈ρ〉U

(
x,

〈ρ〉
Λ

)]
= 0.

Using the initial condition (3.14) for the probability density p, we obtain that the
conservation law (3.25) is subject to the initial condition

(3.26) 〈ρ(x, 0)〉 =
1

V (0)
λ

(
− x

V (0)

)
.

We have now assembled all the ingredients for the main result announced in (1.4).
Computing U(x, p) in (3.24), using the form (3.10) of the mean field velocity u(x, Z, fc),
we have that in the interval [γm, γm+1), corresponding to the mth processor,

U(x, p) =

∫
zm
Λp

[
1 − exp

(
−ΛpV (x)

zm

)]
G(Z,∞) dZ, x ∈ [γm, γm+1),
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holds. Using the fact that G(Z,∞) factors into a product of the gm, and integrating
out all variables, except zm, we obtain

U(x, p) =

∫
zm
Λp

[
1 − exp

(
−ΛpV (x)

zm

)]
gm(zm,∞) dzm, x ∈ [γm, γm+1).

Using the formulas (3.18) and (3.19) for gm(z,∞), we integrate with respect to zm
and replace p by 〈ρ〉

Λ , obtaining for the velocity U(x, 〈ρ〉
Λ ) in (3.25)

(3.27)

U

(
x,

〈ρ〉
Λ

)
=

ωm(0)

ωm(0) + ωm(1)

cm
〈ρ〉

[
1 − exp

(
−〈ρ〉V (x)

cm

)]
for x ∈ [γm, γm+1),

which yields the flux function FE = 〈ρ〉U(x, 〈ρ〉
Λ ) in (1.4)(a), since ωm(0)

ωm(0)+ωm(1) =
τup
m

τup
m +τdown

m
holds. Note that the ratio

τup
m

τup
m +τdown

m
is not affected by the rescaling of

the mean up and down times τ
up/down
m used in this section. Finally, we remove the

technicality of formulating the conservation law as a pure initial value problem, which
was used solely to keep the total mass constant in time and to define probability
densities. For x < 0 the velocities of the particles defined in section 2.2 are constantly
equal to V (0), and therefore also U(x, p) = V (0) for x < 0 will hold. The resulting
one way wave equation can be solved exactly and, using the initial condition (3.26),
we have

〈ρ(x, t)〉 = 〈ρ(x− tV (0), 0)〉 =
1

V (0)
λ

(
t− x

V (0)

)
for x < 0.

Because of flux continuity,

FE |x=0+ = 〈ρ〉U
(
x,

〈ρ〉
Λ

)
|x=0+ = V (0)〈ρ(0−, t)〉 = λ(t)

has to hold, which yields the boundary condition (1.4)(b). The boundary condi-
tion (1.4)(b) has to be interpreted in the following way. The flux function at influx
FE |x=0+ = 〈ρ〉U |x=0+ is, because of (3.27), bounded from above by the quantity

τup
0 c0

τup
0 +τdown

0
. If the influx λ(t) exceeds this value, as is possible in the transient regime,

this results in a flux discontinuity, and correspondingly in a δ-function concentration
of the expected density 〈ρ〉 at the influx boundary at x = 0.

Remarks.
• Equation (1.4)(a) says that the whole flux (and not just the capacity cm)

is multiplied with the effective up-time
τup
m

τup
m +τdown

m
of processor m. This is

reasonable, since even for an empty system 〈ρ〉 � 1, the flow will be slowed
by shutting down the processors.

• A somewhat puzzling fact is that (1.4) does not reduce to the deterministic
conservation law (1.1) in the limit τdown → 0, i.e., in the case when the
processors are always on. The explanation is that the derivation of (1.4) is
based on the assumption of molecular chaos for the individual particles, and
this assumption is apparently not valid for the deterministic system.

• More precisely, it is the frequent on and off switches of many or all of the
processors which create the conditions of molecular chaos and the resulting
approximate statistical independence of the states. Numerical experiments
(not included here) have shown that the presented theory is not applicable;
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cf. the case when only one processor switches and the other processors are
simply in the on state all the time. (So τdown

m = 0 holds for all but one of the
processors.)

• Note that we have made the somewhat arbitrary choice of first applying the
molecular chaos assumption in section 3.2 and then carrying out the asymp-
totics for large time scales; we could have reversed the order by carrying out
the large time scale asymptotics on the full equation (3.1) and then making
the assumption of molecular chaos on the manifold of the slow dynamics, i.e.,
on the kernel of the collision operator on the right-hand side of (3.1).

4. Numerical experiments. We now turn to numerically verifying the validity
of the approximate conservation law (1.4) for the expectation 〈ρ(x, t)〉. We do so
by comparing the average over realizations of the numerical solution of (1.1) to the
solution of (1.4). So, we first generate M random signals μm(t), μ = 0, . . . ,M − 1,
as depicted in Figure 1.1, and compute the corresponding time-dependent capacity
function μ(x, t) according to (1.3). For a given realization of μ(x, t), the conserva-
tion law (1.1) is then solved by a standard Godunov method (see [3] for details and
cf. [12] for details on the Godunov method). This process is repeated many times for
different realizations, and one approximation to the expectation 〈ρ(x, t)〉 is obtained
by calculating averages over different realizations. We compare this approximation to
the direct solution of the conservation law (1.4), also obtained by a Godunov method.
It should be pointed out that the Godunov method reduces to simple upwinding in
all cases, since the velocities always stay nonnegative. We employ only a first order
Godunov scheme since the individual realizations will develop δ-function concentra-
tions as soon as the processors are turned off and μ becomes zero in certain intervals.
The convergence of the first order Godunov method in this case is analyzed and doc-
umented in [3], whereas the convergence properties of higher order methods are not
so obvious. In all the example below we consider a chain of 40 processors (M = 40)
which are located in the stage interval x ∈ [0, 1]. For simplicity, we assume that
all processors have identical throughput times. This allows us to choose a constant
velocity V (x) = 1 in (1.1) and (1.4) by choosing an appropriate time scale. Thus,
T = 1 is the throughput time of a part through the whole chain if all processors run
below capacity, and T = 1

40 is the throughput time of an individual processor in this
case. We set τupm = τdown

m = 1
20 ∀m. The processors run, on average, only half the

time, and we are in the large time scale regime of section 3.3 since ε = 1
20 � 1 holds.

Experiment 1. In the first experiment we consider M = 40 identical processors
with a peak capacity cm = 2, m = 0, . . . , 39. Thus, the flux function FE in (1.4) is
bounded by the effective capacity cτup

τup+τdown = 1. We start with an empty system
ρ(x, 0) = 0 and use a constant influx λ(t) = 0.5, well below the effective capacity.
Figure 4.1 shows the expectation 〈ρ(x, t)〉 computed by averaging 200 realizations
of (1.1) and by solving (1.4). Note that we obtain a good quantitative agreement in
the size of the steady state distribution as well as in the transient behavior, i.e., the
velocity of the wave propagating from x = 0 to x = 1. From (1.4) we deduce that
the steady state density 〈ρ(x,∞)〉 is given by the equation FE( 1

2 , 2, 1, 〈ρ(x,∞)〉) = λ

or 1 − e−〈ρ(x,∞)〉/2 = 0.5.
Experiment 2. In the second experiment we keep the setup of the first experiment

but introduce a bottleneck in processors 11–20. The peak capacities cm are shown
in Figure 4.2. Note that, because of our choice of mean up and down times τupm and
τdown
m , the effective capacities are half the peak capacities shown in Figure 4.2. We

choose a constant influx λ = 0.27. Again, Figure 4.3 shows the expectation 〈ρ(x, t)〉
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Fig. 4.1. Experiment 1. Left panel: Density ρ from the deterministic conservation law (1.1)
with random capacities and constant influx λ = 0.5. Averaged over 200 realizations. Right panel:
Expectation 〈ρ〉 of the density ρ according to the mean field model (1.4) with constant influx λ = 0.5.
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Fig. 4.2. Experiment 2. Peak capacities cm for M = 40 processors.
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Fig. 4.3. Experiment 2. Left panel: Density ρ from the deterministic conservation law (1.1) with
random capacities and constant influx λ = 0.27, 40 cells, and bottleneck in cells 11–20. Averaged
over 200 realizations. Right panel: Expectation 〈ρ〉 of the density ρ according to the mean field model
(1.4) with constant influx λ = 0.27, 40 cells, and bottleneck in cells 11–20.

computed by averaging 200 realizations of (1.1) and by solving (1.4).
Experiment 3. The promise of conservation law models for supply chains lies in

their ability to provide a relatively inexpensive way to model the transient behav-
ior of supply chains far from steady state regimes. Therefore, we perform the third
experiment for a regime which is truly far from equilibrium. We keep the setup from
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Fig. 4.5. Experiment 3. Left panel: Density ρ from the deterministic conservation law (1.1)
with random capacities and transient influx, 40 cells, and bottleneck in cells 11–20. Averaged over
500 realizations. Right panel: Expectation 〈ρ〉 of the density ρ according to the mean field model
(1.4) with transient influx, 40 cells, and bottleneck in cells 11–20.

the second experiment but use a transient influx density, shown in Figure 4.4. Note

that the initial influx density λ = 0.7 is below the effective capacity
cmτup

m

τup
m +τdown

m
for

most processors but exceeds the effective capacity for the bottleneck processors for
m = 11, . . . , 20. Beyond t = 1 the transient influx λ(t) is then well below the effective
capacity for all processors. Thus, we will see a wave propagating through the first 10
processors 0 < x < 0.25, the buildup of queues in the next 10 bottleneck processors
0.25 < x < 0.5, and relaxation towards steady state after t = 1. Figure 4.5 shows the
expectation 〈ρ(x, t)〉 computed by averaging 500 realizations of (1.1) and by solving
(1.4). We observe again that the size of the peaks (the maximal queue length in front
of the processors) as well as their location in the (x, t) plane (the transient response)
are given accurately by the mean field model (1.4).

5. Appendix. We start by proving the evolution equation (3.1) for the joint
probability density F (X,Z, t) of the particle positions and processor states.

Proof of Theorem 3.1. Once the random variables rm in (2.6) are chosen, the rest
of the evolution is completely deterministic. Summing up over all possible choices of
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the vector R = (r1, . . . , rM ) and weighting them with their probabilities gives

F (X,Z, t + Δt) =

∫
F (X ′, Z ′, t)

∏
n

δ(x′
n + Δtvn(X ′, Z ′) − xn)

·
∏
m

[δ((1 − rm)z′m + rm(cm − z′m) − zm)]

·
∏
m

[δ(rm − 1)Δtωm(z′m) + δ(rm)(1 − Δtωm(z′m))]dX ′dZ ′dR.

We formulate the above relation weakly in X by integrating against a test function
ψ(X):∫

ψ(X)F (X,Z, t + Δt) dX =

∫
dX ′Z ′R F (X ′, Z ′, t)ψ(X ′ + ΔtV (X ′, Z ′))(5.1)

·
∏
m

[δ((1 − rm)z′m + rm(cm − z′m) − zm)]

·
∏
m

[δ(rm − 1)Δtωm(z′m) + δ(rm)(1 − Δtωm(z′m))],

where the vector V denotes (v1, . . . , vN ). We Taylor-expand the terms on the right-
hand side of (5.1) in Δt up to first order and obtain, after some calculus,∫

ψ(X)F (X,Z, t + Δt) dX

=

∫
dX F (X,Z, t)ψ(X) + Δt

∫
dX ′F (X ′, Z, t)V (X ′, Z) · ∇Xψ(X ′)

+Δt

∫
dXZ ′F (X,Z ′, t)ψ(X)Q(Z,Z ′),

with the integral kernel Q given by (3.2). Letting Δt → 0, we see this gives the weak
form of

∂tF +
∑
n

∂xn
[vn(X,Z, t)F ] =

∫
dZ ′Q(Z,Z ′)F (X,Z ′).

We now proceed to prove the form of the mean field velocity u(x1, Z, f
c) in (3.10);

i.e., we prove Theorem 3.2. To prove Theorem 3.2 we will need the following auxiliary
lemma, giving the expectation of the minimum of m independent random numbers,
which are equidistributed in the interval [0, 1].

Lemma. Let ω1, . . . , ωm be m independent random numbers, uniformly distributed
in the interval [0, 1]; then the expectation of the random function min{ω1, . . . , ωm} is
given by

(5.2)

Em =

∫
min{ωk : k = 1, . . . ,m}

m∏
k=1

χ(0,1)(ωk) dω1 . . . ωm =
1

m + 1
, m = 1, 2, . . . ,

where χ(0,1) denotes the usual indicator function on the interval [0, 1].
Proof. The proof is based on induction in m. We denote by Rm(s) the antiderivative

of the probability density of the function min{ωk : k = 1, . . . ,m}, where ω1, . . . , ωm

are m random variables, uniformly distributed in [0, 1]. So we have

R′
m(s)ds = dP[min{ωk : k = 1, . . . ,m} = s], Rm(0) = 0, Rm(1) = 1,
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and derive a formula for Rm recursively. The derivative R′(s) is given by

R′
m(s) =

∫
[0,1]m

δ(s− min{ω1, . . . , ωm})dω1 . . . ωm

=

∫
[0,1]m

δ(s− min{min{ω1, . . . , ωm−1}, ωm})dω1 . . . ωm

=

∫
[0,1]2

δ(s− min{r, ωm})R′
m−1(r) drωm

=

∫
[0,1]2

[H(r − ωm)δ(s− ωm) + H(ωm − r)δ(s− r)]R′
m−1(r) drωm

=

∫ 1

0

H(r − s)R′
m−1(r) dr + R′

m−1(s)

∫ 1

0

H(ωm − s) dωm.

Computing these integrals gives, because of Rm−1(1) = 1, the recursion

R′
m(s) = 1 −Rm−1(s) + (1 − s)R′

m−1(s) =
d

ds
[s + (1 − s)Rm−1(s)],

and because of Rm(0) = 0, ∀m we obtain the recursive formula

(5.3) Rm(s) = s + (1 − s)Rm−1(s), R1(s) = s.

Solving the recursion (5.3) via induction gives Rm(s) = 1 − (1 − s)m, m = 1, 2, . . . .
The expectation Em is now given by

Em =

∫ 1

0

sR′
m(s) ds = 1 −

∫ 1

0

Rm(s) ds =

∫ 1

0

(1 − s)m ds =
1

m + 1
.

With the aid of the above lemma we are able to prove the mean field result of
Theorem 3.2.

Proof of Theorem 3.2. In order to prove (3.9), we have to compute the limit of
the quantity

u(x1, z, V, f) =

∫
min

{
V,

z

Δy
(xk − x1), xk > x1, k = 2 . . . N

} N∏
n=2

f(xn) dx2 . . . xn

as N → ∞, Δy → 0 with NΔy = Λ remaining constant, for a given probability
measure f and constants z and V . u can be interpreted as the expectation of the
quantity min{V, z

Δy (xk − x1), xk > x1, k = 2 . . . N}, where x2, . . . , xN are random

variables independently and identically distributed according to the measure f(x).
We note that the variable xk contributes only to the minimum if x1 < xk < x1 + ΔyV

z

holds. For any k = 2, . . . , N let Δyp̄ denote the probability that xk ∈ (x1, x1 + ΔyV
z )

holds. Clearly, p̄ is given by

p̄ =
1

Δy

∫ x1+
ΔyV (x)

z

x1

f(s) ds =
V f(x1)

z
+ O(Δy),

and the probability that none of the xk, k = 2, . . . , N , is in the interval, i.e., the prob-
ability that u = V holds, is given by (1−Δyp̄)N−1. We now compute the probability
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pm that of the N − 1 variables x2, . . . , xN precisely m ≥ 1 lie in the interval. pm is
given by

(5.4) pm =

(
N − 1

m

)
(Δyp̄)m[1 − Δyp̄]N−1−m ,

where the binomial coefficient denotes the number of possible ways to choose m vari-
ables, and the other terms denote the probabilities that, for such a choice, the chosen
m lie in the interval and the others do not. In the case that precisely m variables
lie in the interval, their probability distribution can be replaced by the conditional
probability, given that we already know that they are in the interval. This conditional
probability is given by

q(s)ds = dP
[
xk = s | xk ∈

(
x1, x1 +

ΔyV

z

)]

or

(5.5) q(s) = χ[x1,x1+
ΔyV

z ](s)
f(s)

Δyp̄
.

Thus we obtain

u(x1, z, V, f) = p0V +

N−1∑
m=1

pm
z

Δy

∫
min{sk − x1 : k = 1, . . . ,m}

m∏
k=1

q(sk) ds1 . . . sm.

Substituting sk = x1 + ΔyV
z ωk in the integral gives

u(x1, z, V, f) = p0V +

N−1∑
m=1

pmV

∫
min{ωk : k = 1, . . . ,m}

·
m∏

k=1

[
ΔyV

z
q

(
x1 +

ΔyV

z
ωk

)]
dω1 . . . ωm.

Computing the probability density according to (5.5) gives

ΔyV

z
q

(
x1 +

ΔyV

z
ωk

)
=

V

z
χ[0,1](ωk)

f(x1 + ΔyV
z ωk)

p̄
= χ[0,1](ωk) + O(Δy).

Thus, the ωk are up to order O(Δy) uniformly distributed in [0, 1], and we have

(5.6) u(x1, z, V, f) = p0V +

N−1∑
m=1

pmV [Em + O(Δy)],

with the integral Em given by

Em =

∫
min{ωk : k = 1, . . . ,m}

m∏
k=1

χ(0,1)(ωk) dω1 . . . ωm.

Em is the expectation of the minimum of m uniformly distributed random variables
and, according to the auxiliary lemma (5.2), Em = 1

m+1 holds.
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Using this result in (5.6) gives

u(x1, z, V, f) = V

N−1∑
m=0

pm

[
1

m + 1
+ O(Δy)

]
.

Because of (5.4) we have that
∑N−1

m=0 pm = 1 holds. Therefore, the O(Δy) term can
be neglected, although it appears inside the summation, and we have

(5.7) u(x1, z, V, f) = V

N−1∑
m=0

1

m + 1

(
N − 1

m

)
(Δyp̄)m(1 − Δyp̄)N−1−m + O(Δy).

A simple application of the binomial theorem yields that

N−1∑
m=0

1

m + 1

(
N − 1

m

)
ambN−1−m =

(a + b)N − bN

Na
∀a, b

holds. With the obvious choice of a and b, we obtain from (5.7)

u(x1, z, V, f) = V
1 − (1 − Δyp̄)N

NΔyp̄
+ O(Δy) = V

1 − e−Λp̄

Λp̄
+ O(Δy).

(Remember Λ = NΔy = const holds!) Together with p̄ = V f(x1)
z + O(Δy), this gives

(3.9).
Finally, we prove the structure of the kernel of the collision operator QG in

Theorem 3.3.
Proof of Theorem 3.3. From (3.17) we have that the collision kernel Q of the

operator QG is of the form

Q(Z,Z ′) =
∑
m

qm(zm, z′m)
∏
k �=m

δ(zk − z′k),

qm(zm, z′m) = ωm(z′m)[δ(cm − zm − z′m) − δ(z′m − zm)].

At the same time, we have from (3.18) that the steady state G(Z,∞) of the processor

state distribution is supported only on the hypercube
∏M−1

m=0 {0, cm}. So G(Z,∞) is
of the form

G(Z,∞) =
∏
m

gm(zm), gm(zm) = g0
mδ(zm) + g1

mδ(zm − cm).

Inserting this into the definition (3.21)(b) of the collision operator QG gives

QG[f ] =
∑
m

∫
qm(zm, z′m)[g0

mδ(z′m) + g1
mδ(z′m − cm)]f(Z ′)

∏
k �=m

δ(zk − z′k)gk(z
′
k) dZ ′.

Integrating out all variables except z′m in each term of the sum above yields

QG[f ] =
∑
m

∫
qm(zm, z′m)[g0

mδ(z′m) + g1
mδ(z′m − cm)]f(z1 . . . z

′
m . . . zM ) dz′m

∏
k �=m

gk(zk)

=
∑
m

[qm(zm, 0)g0
mf(z10zM ) + qm(zm, cm)g1

mf(z1 . . . cm . . . zM )]
∏
k �=m

gk(zk).
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Using the form (3.17)(b) of the individual kernels qm gives

QG[f ] =
∑
m

{ωm(0)[δ(cm − zm) − δ(zm)]g0
mf(z1 . . . 0 . . . zM )

+ωm(cm)[δ(zm) − δ(cm − zm)]g1
mf(z1 . . . cm . . . zM )} ×

∏
k �=m

gk(zk) .

Using the form (3.19) of the coefficients g0
m(∞) and g1

m(∞) of the steady distribution,
and collecting terms, gives

QG[f ] =
∑
m

ωm(0)ωm(cm)

ωm(0) + ωm(cm)
[δ(cm − zm) − δ(zm)]

·[f(z1 . . . 0 . . . zM ) − f(z1 . . . cm . . . zM )]
∏
k �=m

gk(zk) .

Therefore QG[f ] can vanish identically ∀Z only if

f(z1 . . . cm . . . zM ) − f(z1 . . . 0 . . . zM ) = 0 ∀m, ∀Z ∈
∏
m

{0, cm}

holds.
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CREEP, RECOVERY, AND WAVES IN A NONLINEAR
FIBER-REINFORCED VISCOELASTIC SOLID∗

M. DESTRADE† AND G. SACCOMANDI‡

Abstract. We present a constitutive model capturing some of the experimentally observed
features of soft biological tissues: nonlinear viscoelasticity, nonlinear elastic anisotropy, and nonlinear
viscous anisotropy. For this model we derive the equation governing rectilinear shear motion in the
plane of the fiber reinforcement; it is a nonlinear partial differential equation for the shear strain.
Specializing the equation to the quasi-static processes of creep and recovery, we find that usual
(exponential-like) time growth and decay exist in general, but that for certain ranges of values for
the material parameters and for the angle between the shearing direction and the fiber direction,
some anomalous behaviors emerge. These include persistence of a nonzero strain in the recovery
experiment, strain growth in recovery, strain decay in creep, disappearance of the solution after a
finite time, and similar odd comportments. For the full dynamical equation of motion, we find kink
(traveling wave) solutions which cannot reach their assigned asymptotic limit.

Key words. fiber reinforcement, nonlinear creep and recovery, traveling waves

AMS subject classifications. 74D10, 74A10, 74H05, 74G30

DOI. 10.1137/060664483

1. Introduction. Many biological, composite, and synthetic materials must be
modeled as fiber-reinforced nonlinearly elastic solids. Hence, the anisotropy due to the
presence of collagen fibers in many biological materials has been studied extensively
within the constitutive context of fiber-reinforced materials by several authors (see,
for example, Humphrey (2002) and the references therein.) In nonlinear elasticity, the
macroscopic response of an anisotropic material is given in terms of a strain-energy
function, which itself depends on a set of independent deformation invariants. This
formulation captures a great variety of phenomena related to the behavior of fiber-
reinforced materials, e.g., the examination of fiber instabilities, using loss of ellipticity
(see Merodio and Ogden (2002), (2003), and the references therein).

Generally speaking, a reinforcement is added to a given material with the aim of
avoiding a possible failure under operating conditions. Therefore it is important to
develop a detailed study showing how to introduce reinforcements into a material in
order to control the possible development of a boundary layer structure. Our goal here
is to provide a first step in this direction. We make several simplifications and ad hoc
assumptions. First, we limit ourselves to the consideration of only one fiber direction
and second, we consider a one-dimensional motion in the bulk of an infinite body.
Here the motion is linearly polarized in a direction normal to the plane containing the
direction of propagation and the direction of the fibers. We acknowledge that more
complex anisotropies, geometries, and couplings arise in biomechanical applications.
For instance, the mechanics of the aorta involves two families of parallel fibers, tri-
axial motions, and blood flow/arterial wall coupling. However, we argue that some
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(giuseppe.saccomandi@unile.it).

80



NONLINEAR VISCOELASTIC ANISOTROPY 81

major characteristics of biological soft tissues are encompassed in the choices of trans-
verse isotropy, of infinite extent, and of a motion governed by an ordinary differential
equation. Indeed the anisotropy due to the presence of one family of parallel fibers
complicates the governing equations to an extent which is only marginally less than
that due to the presence of two families of parallel fibers. Also, soft biological tis-
sues are nearly incompressible, and a (compressive) longitudinal wave is difficult to
observe; it thus make sense to focus on transverse shear motions, which are useful in
imaging technologies. Our third assumption is that the elastic strain energy is the
sum of an isotropic part and an anisotropic part (called a reinforcing model), in order
to model an isotropic base material augmented by a uniaxial reinforcement in the
fiber direction. Albeit strong, this constitutive assumption is now common and used
by many authors (e.g., Triantafyllidis and Abeyaratne (1983), Qiu and Pence (1997),
Merodio and Ogden (2002)). Finally, we assume that the solid is viscoelastic, and
here we assume not only Newtonian viscosity (proportional to the stretching tensor)
but also fiber-oriented (anisotropic) viscosity. That latter assumption is strong but
can be removed from our calculations by taking a constant to be zero. We believe that
it might be useful in modeling the well-documented physiological effect of stretching
training in sport medicine, which is that it affects the viscosity of tendon structures
but not their elasticity (Taylor et al. (1990); Kubo, Kanehisa, and Fukunaga (2002)).

We divide the article into the following sections. Section 2 presents the constitu-
tive model and the derivation of the equation governing the rectilinear shear motion.
As expected, this equation is nonlinear in the shear strain: it is a second-order partial
differential equation, with cubic nonlinearity. To initiate its resolution, we first look
at the quasi-static experiment of recovery in section 3. Then we have a first-order
ordinary differential equation, and we find that it can lead to unusual behaviors when
certain conditions (strong anisotropy, large angle between the shearing direction and
the fibers) are met. The same is true of the case of creep, treated in section 4. Basi-
cally, it turns out that the nonlinearity introduces ranges of material parameters and
angles for which an expected behavior—say, strain growth in creep—can be turned
on its head, and lead to strain decay with time in creep, say. In the course of the
investigation we develop synthetic tools of analysis which highlight the boundaries of
these ranges. They also guide us for the resolution of the full dynamical equation of
motion, which we tackle in section 5 for traveling wave solutions. Again the solution
may behave in an unexpected way, provided that the anisotropy is strong enough and
the fibers are in compression. Finally, section 6 recaps the results and puts them into
a wider context.

2. Basic equations.

2.1. The viscoelastic anisotropic model. We describe the motion of a body
by a relation x = x(X, t), where x denotes the current coordinates of a point occupied
by the particle of coordinates X in the reference configuration at the time t.

We introduce F = ∂x/∂X, the deformation gradient, and C = FTF, the right
Cauchy–Green strain tensor. We focus on incompressible materials for which all
admissible deformations must be isochoric, or equivalently, for which the relation
detF = 1 must hold at all times.

The body is reinforced with one family of parallel fibers. Our first assumption
is that the unit vector a0, giving the fiber direction in the reference configuration, is
independent of X. The stretch along the fiber direction is

√
a0·Ca0 =

√
a · a, where

a = Fa0.
We may now introduce the elastic part of our constitutive model. We consider



82 M. DESTRADE AND G. SACCOMANDI

the so-called standard reinforcing model, which is a quite simple generalization to
anisotropy of the neo-Hookean model (Triantafyllidis and Abeyaratne (1983); Qiu
and Pence (1997)). For the standard reinforcing model, the strain-energy density is
given by

(2.1) W =
μ

2

[
(I1 − 3) + γ0(I4 − 1)2

]
, where I1 = tr C, I4 = a0·Ca0 = a · a.

Here μ > 0 is the infinitesimal shear modulus of the isotropic neo-Hookean matrix,
γ0 > 0 is the elastic anisotropy parameter, and the invariant I4 measures the squared
stretch in the fiber direction. Mechanical tests show that the neo-Hookean strain
energy function μ(I1−3)/2 fits uniaxial data rather well for arteries (Gundiah, Ratcliffe,
and Pruitt (2007)), while the anisotropic term γ0(I4 − 1)2 is adequate to describe a
reinforced material which penalizes deformation in the fiber direction (Merodio and
Ogden (2003)).

The spatial velocity gradient L(X, t) associated with a motion is defined as L =
grad v, where v = ∂x/∂t is the velocity, and the stretching tensor D is defined as
D = 1

2 (L + LT). For incompressible materials, tr D = 0 at all times. Newtonian
viscous fluids possess a constitutive term in the form 2νD, where ν is a constant. For
our special solid, we modulate the Newtonian viscosity with an anisotropic term, by
replacing ν with ν[1+γ1(I4−1)], where γ1 > 0 is the viscous anisotropy parameter. We
show in the course of the paper that this simple choice of anisotropic viscosity captures
the essential characteristics of attenuation in soft biological fibrous tissues. According
to Baldwin et al. (2006), ultrasonic measurements of freshly excised myocardium show
that “the attenuation coefficient was found to increase as a function of frequency in
an approximately linear manner and to increase monotonically as a function of angle
of insonification from a minimum perpendicular to a maximum parallel relative to the
direction of the myofibers.”

We are now ready to give the complete Cauchy stress tensor of our viscoelastic,
transversally isotropic material as

(2.2) T = −pI + μ[B + γ0(I4 − 1)a ⊗ a] + 2ν[1 + γ1(I4 − 1)]D,

where the p is the yet indeterminate Lagrange multiplier introduced by the incom-
pressibility constraint, and B = FFT is the left Cauchy–Green tensor.

2.2. Shear motion. We take a fixed orthonormal triad of vectors (i, j, k), and
call X, Y , Z the reference coordinates; hence X = Xi + Y j + Zk. The triad is such
that the unit vector in the fiber direction lies in the XY plane; hence,

(2.3) a0 = cos θi + sin θj

(say), where θ ∈ [0, π] is the angle between the X-axis and the fibers.
We then consider the rectilinear shearing motion,

(2.4) x = X + u(Y, t), y = Y, z = Z,

where the antiplane displacement u is real and finite. Then the components of the
gradient of deformation F and of its inverse are given by

(2.5) F =

⎡
⎣1 U 0

0 1 0
0 0 1

⎤
⎦ , F−1 =

⎡
⎣1 −U 0

0 1 0
0 0 1

⎤
⎦ ,
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Fig. 2.1. Variations of the squared stretch in the fiber direction: (a) with the angle and (b)
with the shear. When I4 > 1, the fibers are in extension; when I4 < 1, they are in compression.

where U = ∂u/∂Y is the amount of shear. The left and right Cauchy–Green tensors
are thus

(2.6) B =

⎡
⎣U2 + 1 U 0

U 1 0
0 0 1

⎤
⎦ , C =

⎡
⎣1 U 0
U U2 + 1 0
0 0 1

⎤
⎦ ,

respectively, from which the expressions of the invariants I1 and I4 follow,

(2.7) I1 = 3 + U2, I4 = 1 + U sin 2θ + U2 sin2 θ.

Figure 2.1(a) shows the variations of I4 with θ for several values of U between 0 and 1.
When I4 > 1 the fibers are in extension, and when I4 < 1 they are in compression; the
figure shows that this latter behavior occurs in a smaller and smaller angular range,
but is more and more pronounced, as the amount of shear is increased. Conversely,
Figure 2.1(b) shows the variations of I4 with U for several values of θ; when 0 < θ <
π/2, the fibers are always in extension, and when π− tan−1(2) = 2.034 < θ < π, they
are always in compression for 0 ≤ U ≤ 1. We refer to the paper by Qiu and Pence
(1997) for similar figures and closely related discussions.

In the deformed configuration, we find that a = (cos θ + U sin θ)i + sin θj. The
remaining tensors required to compute the Cauchy stress tensor (2.2) are

(2.8) a ⊗ a =

⎡
⎣ (cos θ + U sin θ)2 (cos θ + U sin θ) sin θ 0

(cos θ + U sin θ) sin θ sin2 θ 0
0 0 0

⎤
⎦

and

(2.9) D =
1

2

⎡
⎣ 0 Ut 0
Ut 0 0
0 0 0

⎤
⎦ ,
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so that the nonzero components of T are T33 = −p + μ and

T11 = −p + μ(1 + U2) + μγ0(I4 − 1)(cos θ + U sin θ)2,

T22 = −p + μ + μγ0(I4 − 1) sin2 θ,

T12 = μU + μγ0(I4 − 1)(cos θ + U sin θ) sin θ + ν[1 + γ1(I4 − 1)]Ut.(2.10)

Now the equations of motion div T = ρxtt reduce to the two scalar equations
−px +T12,y = ρutt and −py +T22,y = ρutt. Differentiating the former with respect to
y and the latter with respect to x, and eliminating pxy, we arrive at a single governing
equation for the rectilinear shear motion:

ρUtt = μUyy + μγ0 sin2 θ [U(2 cos θ + U sin θ)(cos θ + U sin θ)]yy(2.11)

+ νUtyy + νγ1 sin θ [UUt(2 cos θ + U sin θ)]yy .

Using the scalings t̃ = μt/ν and ỹ = y/L (where L is a characteristic length to be
specified later on a case-by-case basis), we write this equation in dimensionless form as

εUt̃t̃ = Uỹỹ + γ0 sin2 θ [U(2 cos θ + U sin θ)(cos θ + U sin θ)]ỹỹ(2.12)

+ Ut̃ỹỹ + γ1 sin θ [UUt(2 cos θ + U sin θ)]ỹỹ ,

where ε = ρμL2/ν2. This is the main equation of our study. For convenience we drop
the tildes in the remainder of the paper. We also introduce the functions

f(γ0, U, θ) = 1 + γ0 sin2 θ(2 cos θ + U sin θ)(cos θ + U sin θ),

g(γ1, U, θ) = 1 + γ1U sin θ(2 cos θ + U sin θ),(2.13)

so that (2.13) is now

(2.14) εUtt = [Uf(γ0, U, θ) + Utg(γ1, U, θ)]yy .

3. Nonlinear anisotropic recovery. Our first investigation is placed in the
quasi-static approximation, where we study the influence of elastic anisotropy and
viscous anisotropy on the classic experiment of viscous recovery. We imagine that the
material is sheared and that at t = 0 the shear stress is removed: T12(0) = 0. Here
the characteristic length L is the displacement at t = 0 from which the material will
relax to the unstressed state.

In the quasi-static case, we neglect the inertia term of (2.13) and may thus inte-
grate it twice to give the following first-order ordinary differential equation:

(3.1) Uf(γ0, U, θ) + Utg(γ1, U, θ) = 0.

Here we take the constants of integration to be zero, according to the context of
recovery, as explained above. We then solve the equation as

(3.2)

∫
g(γ1, U, θ)

Uf(γ0, U, θ)
dU = −t + const.,

where the constant is computed so that U(0) = 1.
When θ = 0, the fibers are not active with respect to the deformation, and we

recover the classical result of isotropic viscoelastic recovery: U(t) = e−t.
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Fig. 3.1. Time recovery function when θ = π/2: (a) γ1 = 0 and γ0 = 1, 5, 100; (b) γ0 = 5 and
γ1 = 0.5, 1.5, 2.5. The recovery function for an isotropic solid is also plotted (dotted curve).

When θ = π/2, the anisotropic effects are at their strongest. In that case the
integral above has a compact expression, and we find

(3.3) U

[
1 + γ0U

2

1 + γ0

] 1
2

(
γ1
γ0

−1
)

= e−t.

We now take γ1 = 0 (no anisotropic viscosity) and γ0 = 1, 5, 100 (recall that the fibers
are inextensible in the limit γ0 → ∞). Figure 3.1(a) shows that as the anisotropic
effect becomes more pronounced, the recovery is quicker; in other words, the influence
of elasticity becomes stronger as γ0 increases. Then we fix γ0 at 5, for instance, and
look at the role played by the anisotropic viscosity, by taking in turn γ1/γ0 = 0.5,
1.5, 2.5. We find in Figure 3.1(b) that, as expected, the viscous recovery is slower as
γ1 increases.

When θ �= 0, θ �= π/2, other behaviors arise, which call for a detailed analysis. In
particular, the exponential, or near-exponential, decay toward zero as t → ∞ is not
necessarily ensured, especially when the anisotropic effects are strong and the fibers
are oriented at a large angle θ > π/2. Clearly, Ut = 0 when f = 0, according to (3.2).
Also, Ut < 0 when f and g are of the same sign, and Ut > 0 when f and g are of
opposite signs. These two functions are quadratic in U . If they have no real roots in
U , then they are both of the positive sign and Ut < 0. (This is clearly the case in the
region 0 < θ < π/2.) If they have real roots, then they may change sign, and U might
be an increasing function of t. This happens for f and for g when π/2 < θ < π and

(3.4) γ0 ≥ 4

cos2 θ sin2 θ
, γ1 ≥ 1

cos2 θ
,

respectively. In Figure 3.2, the region C corresponds to the first inequality, where the
delimiting curve has a vertical asymptote at θ = π/2, a vertical asymptote at θ = π,
and a minimum at θ = π/4, γ0 = 16; we recall that Qiu and Pence (1997) showed that
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Fig. 3.2. Recovery: regions where the sign of Ut may change.

when γ0 > 16, “simple shear at certain fiber orientations involves negative shear stress
in the shearing direction for certain positive shears.” The region B corresponds to the
second inequality, where the delimiting curve has a vertical asymptote at θ = π/2 and
an horizontal asymptote at γ1 = 1. In the region A, neither inequality is satisfied.

3.1. Weak anisotropy. First, we take both γ0 and γ1 in region A. This is the
simplest case because f and g are then both positive, and so Ut is always negative
(damped recovery). We took several representative examples in this region (say,
θ = π/4, γ0 = 20, γ1 = 1) and checked, through integration and implicit plotting,
that the graphs are indeed of the same nature as those in Figure 3.1.

3.2. Strong elastic anisotropy. Second, we take γ1 in region A, by fixing it at
γ1 = 1, say. In that region, g > 0 always, and thus the sign of Ut is the opposite of the
sign of f . Then we take γ0 = 20, which is above the minimum of region C. In Figure
3.3, we plot the locus for the values of U as functions of θ such that f(20, U, θ) = 0.
Outside the resulting oval shape, f > 0, and inside, f < 0. We also plotted the line
U = 1, which intersects the oval at θmin = 2.136 and θmax = 2.221. Recall that
U(0) = 1.

When θ > θmax, U(t) starts at 1 and decreases because f > 0 so that Ut < 0; as
U decreases toward 0, Ut tends to zero according to (3.2)1, but takes an infinite time
to do so, according to (3.2)2; hence U = 0 is a horizontal asymptote and the recovery
is “classical”; see plot (i) in Figure 3.3, traced at θ = 2.4 (notice, however, that the
recovery is not exponential because the second derivative of U clearly changes sign as
t increases, in contrast with e−t, traced in dotted lines).

When θmin < θ < θmax, U(t) starts at 1 and then grows until it hits the upper side
of the oval, taking an infinite time to do so; then this upper bound gives a horizontal
asymptotic value, above the initial value (see plot (ii) in Figure 3.3), traced at θ = 2.2.



NONLINEAR VISCOELASTIC ANISOTROPY 87

00

0.50.5

1

1.51.5

2

2.52.5

2.12.1 2.22.2 2.32.3 2.42.4 2.52.5 2.62.6θmaxmaxminminθθm

U > U > 0

0

0.0.2

0.0.4

0.0.6

0.0.8

1

0.0.1 01 0.2.2 0.0.3 03 0.4.4 0.50.5 0.0.6

0.0.2

0.0.4

0.0.6

0.0.8

1

1.1.2

0 00 0.2.2 0.0.4 04 0.6.6 0.0.8 1 1.1.2 1.1.4 1.1.6

t

0.80.8

0.850.85

0.0.9

0.950.95

1

0 1 2 32 3 4 54 5 6

0

0.0.2

0.0.4

0.0.6

0.0.8

1

0.0.5 1 11 1.5.5 2 22 2.5.5 3

(i)(i)

(ii)(ii)

(iii)(iii)
(iv)(iv)

U

U

U

U

t

t

t

t

U
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When θm < θ < θmin, where θm = 2.124 is the angle at which the oval plot has a
vertical tangent, U(t) starts at 1 and then decreases until it hits the upper side of the
oval, below 1 but above 0; then this lower bound gives a horizontal asymptotic value,
above zero (see plot (iii) in Figure 3.3), traced at θ = 2.125.

Finally, when θ < θm, U(t) starts at 1 and then decreases until zero; then this
lower bound gives zero as a horizontal asymptotic value (see plot (iv) in Figure 3.3),
traced at θ = 2.05. Notice that the second derivative changes signs three times as t
increases.

3.3. Strong viscous anisotropy. Third, we take γ0 outside the C region, by
fixing it at γ0 = 1, say. In that region, f > 0 always, and thus the sign of Ut is
the opposite of the sign of g. Then we allow γ1 to be in region B, and thus allow g
(and Ut) to change sign with increasing θ, by taking γ1 = 3.0, say. In Figure 3.4, we
plotted the values of U as functions of θ such that g(3, U, θ) = 0 and obtained the
thick-line shape. Outside the shape, g > 0, and inside, g < 0. We also plotted the
horizontal line U = 1, which intersects the shape at θmin = 2.356 and θmax = 2.820,
and the vertical line θ = θm = 2.186, which is tangent to the shape.

Now when θ < θm or θ > θmax, U(t) starts at 1 and decreases until zero; as
U → 0, the denominator in the integral tends to zero, indicating that it takes an
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infinite time to do so; hence, zero is a horizontal asymptote in these cases. To draw
Figure 3.4(i) we took θ = 3.0, and for Figure 3.4(iv) we took θ = 2.1; both graphs
show a somewhat classical decay with time.

However, when θmin < θ < θmax, U(t) starts at 1 and then grows because Ut > 0
inside the thick line shape. Eventually U hits the upper face of the shape, where
g = 0; then by (3.1), either Uf = 0 or Ut → ∞. Clearly, the first possibility is
excluded because U �= 0 when it is larger than 1, and f �= 0 when γ0 is outside the C
region. It follows that U grows and hits the upper face of the shape with a vertical
asymptote after a finite time (and then stops because it cannot increase further since
Ut < 0 outside the shape, it cannot remain constant since Ut �= 0 on the shape, and
it cannot decrease since Ut > 0 inside the shape). Figure 3.4(ii) shows such behavior
for U(t), traced at θ = 2.4.

Finally, when θm < θ < θmin, U(t) decays from 1 until it hits the shape from
above after a finite time; see Figure 3.4(iii), traced at θ = 2.2. Notice how quickly
the final value is reached, compared to the isotropic exponential recovery.
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3.4. Strong elastic and viscous anisotropies. In the case where both γ0 and
γ1 are in the region C, any combination and overlaps of the thick curves presented in
Figures 3.3 and 3.4 may arise. The tools presented in the two previous subsections are
easily transposed to those possibilities. A special situation arises when the locus of
f = 0 intersects the locus of g = 0; then, the numerator and the denominator in (3.2)
may have a common factor so that the integrand simplifies and a regular behavior
may appear. This situation is, however, too special to warrant further investigation,
and we do not pursue this line of enquiry.

4. Nonlinear anisotropic creep. Our second investigation is again placed in
the quasi-static approximation, where we now study the influence of elastic anisotropy
and viscous anisotropy on the classic experiment of viscous creep. As the resulting
analysis is similar to that conducted for recovery, we simply outline the main results.

We imagine that the material is sheared and that the shear stress is maintained:
T12(∞) �= 0. Here the characteristic length L is an asymptotic value of the displace-
ment. We neglect the inertial term of (2.13) and integrate it twice to give the ordinary
differential equation

(4.1) Uf(γ0, U, θ) + Utg(γ1, U, θ) = const.,

where we took the constant of the first integration to be zero and the constant of the
second integration to correspond to the applied (constant) shear stress, as is usual in
the creep problem. More specifically, this constant is taken so that U(∞) = 1, and so
is equal to f(γ0, 1, θ); it follows that the equation above can be written as

(4.2) h(γ0, U, θ)(U − 1) + g(γ1, U, θ)Ut = 0,

where h is defined by

h(γ0, U, θ) = [Uf(γ0, U, θ) − f(γ0, 1, θ)]/(U − 1)

= 1 + γ0 sin2 θ[1 + cos2 θ + (U + 1) sin θ(U sin θ + 3 cos θ)].(4.3)

We then solve the equation as

(4.4)

∫
g(γ1, U, θ)

(U − 1)h(γ0, U, θ)
dU = −t + const.,

where the constant is computed so that U(0) = 0. Hence the equations governing
creep are almost identical to those governing recovery, with the difference that f is
now replaced by h.

Here we are mostly concerned with the question of how, if at all, a state of
shear can be reached such that, once removed, the unusual recovery behaviors of
the previous section emerge. Thus we concentrate on strong anisotropic effects, with
emphasis on strong elastic anisotropy (where the new function h is involved). We
traced the regions where g and h, and thus Ut, may change signs and found that
the resulting graph is similar to that of Figure 3.2, with the main difference that the
minimum of region C is now located at θ = 3π/4 and γ0 = 4. Thus unusual behavior
in creep may occur at much lower levels of elastic anisotropy than in recovery (where
the minimum is at γ0 = 16). We recall that Qiu and Pence (1997) showed that when
γ0 > 4, “simple shear at certain fiber orientations involves a nonmonotonic relation
between the shear stress in the shearing direction and the amount of shear.”



90 M. DESTRADE AND G. SACCOMANDI

0

0.2

0.4

0.6

0.8

1

2.1 2.3 2.4 2.5 2.6 2.7

U  < 0t

θ
M

θm θ
min

θmax

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2 2.5 3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.2 0.4 0.6 0.8 1

–0.008

–0.006

–0.004

–0.002

0
0.1 0.2 0.3 0.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1 1.2

(i)

(ii)

(iii)

(iv)

(v)

U

U

t

U

t

U

t

U

t

U

t

Fig. 4.1. Types of time creep functions for γ0 = 20, γ1 = 1 (strong elastic anisotropy). The
amount of shear U starts at 0 for t = 0. Outside the thick-line shape, Ut > 0 and U increases as
in (i) and (v): growth toward 1, and as in (ii) and (iv): growth toward a value below 1. Inside the
thick-line shape, U decreases as in (iii): decay toward a negative value. The creep function 1 − e−t

for an isotropic solid is also plotted (dotted curves).

4.1. Strong elastic anisotropy. We begin with the case where h plays a major
role, that is, when γ0 is greater than 4. For the purpose of direct comparison with
the recovery problem, we take γ0 = 20 and γ1 = 1, as in section 3.2. Figure 4.1
displays the curve where h(20, U, θ) = 0. Outside the thick-line curve, Ut > 0, and
inside, Ut < 0. The curve intersects the line U = 0 twice, at θmin = 2.136 and at
θmax = 2.221. These are the values at which f = 0 intersects U = 1 in section 3.2 (see
the thin-line shape), because by (4.3), h(20, 0, θmin) = f(20, 1, θmin) = 0 and similarly
h(20, 0, θmax) = f(20, 1, θmax) = 0. We also display the vertical lines θ = θM = 2.664,
where h = 0 intersects U = 1, and θ = θm = 2.042, where h = 0 has a vertical
tangent. Recall that for creep, U(0) = 0.

When θ > θM, U(t) starts at 0 and grows toward 1; then Ut tends to zero according
to (4.2) but takes an infinite time to do so; hence U = 1 is a horizontal asymptote and
the creep is “classical.” See plot (i) in Figure 4.1, traced at θ = 2.7 (the exponential
creep function of isotropic visco-elasticity (1 − e−t) is shown by the dotted line).

When θmax < θ < θM or when θm < θ < θmin, U(t) starts at 0 and then grows
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until it hits the oval shape, taking an infinite time to do so; then this upper bound
gives a horizontal asymptotic value, below 1; see plot (ii) in Figure 4.1, traced at
θ = 2.5, and plot (iv), traced at θ = 2.05.

When θmin < θ < θmax, U(t) starts at 0 inside the oval shape, and thus it decreases
until it hits the lower side of the shape, taking an infinite time to do so; then this
lower bound gives a horizontal asymptotic value, below 0; see plot (iii) in Figure 4.1,
traced at θ = 2.17.

Finally, when θ < θm, U(t) can again grow toward 1; see plot (v) in Figure 4.1,
traced at θ = 2.0. Notice, however, that the concavity of the curve changes as t
increases.

4.2. Strong viscous anisotropy. Here we remark that the function governing
the strength of the viscous anisotropy, namely g, is the same for creep as it is for
recovery. Thus, the region where Ut might change sign because of strong viscous
anisotropy is the region B of Figure 3.1. Also, the locus of points where g = 0 is
typically displayed by the thick-line shape of Figure 3.4, and because g(γ1, 0, θ) = 1 >
0 always, this curve never crosses the abscissa U = 0. It follows that there is only one
situation where viscous anisotropy leads to anomalous creep, when θmin < θ < θmax;
then U(t) starts at zero and grows toward the thick-line shape, which it reaches after
a finite time with a vertical asymptote.

4.3. Prestretch and nonlinear anisotropic creep. Here we show how anoma-
lous creep can be avoided (amplified) by stretching (compressing) the solid prior to
the shear. Hence, instead of (2.4), we consider the motion

(4.5) x = λ− 1
2X + λu(Y, t), y = λY, z = λ− 1

2Z.

The following decomposition of the associated deformation gradient shows that the
solid is stretched by a ratio λ in the Y direction:

(4.6) F = F2F1, where F2 =

⎡
⎣1 U 0

0 1 0
0 0 1

⎤
⎦ , F1 =

⎡
⎢⎣λ

− 1
2 0 0

0 λ 0

0 0 λ− 1
2

⎤
⎥⎦ .

(Note that F2F1 �= F1F2.) The kinematic quantities of section 2.2 are modified
accordingly. In particular,

(4.7) I4 = λ−1 cos2 θ + λ2 sin2 θ + Uλ
1
2 sin 2θ + U2λ2 sin2 θ.

The end result is that the differential equation governing creep is changed from (4.2)
to

(4.8) hλ(γ0, U, θ)(U − 1) + gλ(γ1, U, θ)Ut = 0,

where hλ and gλ are defined by

hλ(γ0, U, θ) = λ2
{
1 + γ0 sin2 θ[2λ2 sin2 θ + 3λ−1 cos2 θ − 1

+ (U + 1) sin θ(U sin θ + 3 cos θ)]} ,
gλ(γ1, U, θ) = 1 + γ1(λ

−1 cos2 θ + λ2 sin2 θ − 1 + Uλ
1
2 sin 2θ + U2λ2 sin2 θ).(4.9)

Figure 4.2 shows the loci of hλ = 0 in the case of a strong elastic anisotropy (γ0 = 30,
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Fig. 4.2. Effect of prestretch on time creep functions for γ0 = 30, γ1 = 1 (strong elastic
anisotropy). The amount of shear U starts at 0 for t = 0. Inside the thick-line shapes, U decreases;
this situation may arise when the solid is not prestretched (λ = 1) or when it is compressed (λ = 0.8).
Outside the thick-line shapes, Ut > 0 and U increases; this situation may arise when the solid is in
extension (λ = 2, λ = 2.7).

γ1 = 1), for several values of λ. The figure clearly shows that the prestretch λ can be
used to control the shape of these curves: if the solid is put in compression first, and
sheared for creep next, then the region of potential anomalous creep is increased; if
it is put under tension, then the area of the region rapidly decreases and eventually
disappears altogether.

5. Nonlinear traveling waves. So far we have looked at how the presence of
elastic and viscous fibers affects some quasi-static processes. Typically, creep and
recovery connect one state of constant shear (initial) to another (final). Now we
examine another class of solutions connecting two constant states of shear, this time
dynamically, by looking for traveling wave (kink) solutions.

The mathematical theory of one-dimensional transverse traveling waves in isotropic
viscoelastic materials with a Kelvin–Voigt type of constitutive equation is well groun-
ded; see, for example, Nishihara (1995) for a clear and complete mathematical ap-
proach, or Jordan and Puri (2005) for a specific and explicit example. A traveling
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wave is a solution to the equations of motion in the form

(5.1) U(Y, t) = U(ξ), ξ = Y − ct,

where c is the constant speed; also, U is such that

(5.2) lim
ξ→−∞

U(ξ) = UL, lim
ξ→∞

U(ξ) = UR,

where UL and UR are distinct constants. In what follows, we focus on the case where
UL = 0, UR = 1. This case is general up to a rigid translation. Here we take the
displacement corresponding to UR as the characteristic length L.

Substituting (5.1) into (3.2), we obtain

(5.3) εc2U ′′ = (Uf − cU ′g)
′′
,

and then by integration,

(5.4) cU ′g =
(
f − εc2

)
U + const.

By the requirement UL = 0, the constant must be zero. By the requirement UR = 1,
we have

(5.5) f(γ0, 1, θ) = εc2.

This equation prompts three remarks.
First, we must ensure that f(γ0, 1, θ) > 0. Recall that, according to (2.13),

(5.6) f(γ0, 1, θ) = 1 + γ0 sin2 θ(2 cos θ + sin θ)(cos θ + sin θ),

and so

(5.7) ∂f(γ0, 1, θ)/∂θ = γ0 sin θ(4 cos3 θ + 9 sin θ cos2 θ − 3 sin3 θ).

In Figure 5.1(a) we plot the variations of [f(γ0, 1, θ)−1]/γ0 with θ, as well as those of
its derivative with respect to θ (scaled to 1/8). Clearly, the function (5.6), viewed as
a function of θ, has an absolute minimum and an absolute maximum. The minimum
is at θ̂, say, such that tan θ̂ is that root of the cubic 4 + 9x− 3x3 = 0 corresponding
to π/2 < θ̂ < π; numerically, θ̂ = 2.1777. Then, solving f(γ0, 1, θ̂) = 0 for γ0, we
find that f(γ0, 1, θ) > 0 when 0 < γ0 < γ̂0 = 18.490; and that when γ0 > γ̂0, there
appears a range for θ where f(γ0, 1, θ) > 0 is not insured. Placing ourselves outside
that possibility, we deduce from (5.5) that, for a given γ0 and a given θ, the wave
travels with speed

(5.8) c = ±
√
f(γ0, 1, θ)/ε.

This is of course expressed in the dimensionless variables of length/L and time×μ/ν.
Turning back, if required, to physical variables, we would find that the wave travels
with the dimensional speed

√
μf(γ0, 1, θ)/ν.

The second remark is that, according to (5.5) and (5.6), the wave (when it exists)
travels with maximum speed at the angle θ̃, say, such that tan θ̃ is that root of the cubic
4 + 9x − 3x3 = 0 corresponding to 0 < θ̃ < π/2; numerically, θ̃ = 1.0910. Hence the
directions of extremal speeds of propagation are always the same, whatever the values
of the constitutive parameters μ, γ0, and γ1. This observation indicates the way for
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Fig. 5.1. (a) Variations with θ of [f(γ0, 1, θ)− 1]/γ0 and of its derivative, showing an absolute

minimum at θ̂ = 2.1777. (b) Variations of −3/ tan θ − 1 with θ, crossing the abscissa line at
θ0 = 1.8926.

an acoustic determination of the fiber orientation: if an experimental measurement of
the shear wave speed can be made in every direction of a fiber-reinforced viscoelastic
nonlinear material, then the fibers are at an angle θ̂ from the direction of the slowest
wave and at an angle θ̃ from the direction of the fastest wave. We recall that for
waves in an isotropic deformed neo-Hookean material, Ericksen (1953) found that the
fastest waves propagate along the direction of greatest initial stretch.

The third remark is that when (5.5) holds,

(5.9) f(γ0, U, θ) − εc2 = γ0U(U − 1) sin3 θ [U sin θ + 3 cos θ + sin θ] .

Then the separation of variables, followed by integration of the first-order differential
equation (5.4), leads to

(5.10)

∫
g(γ1, U, θ)

U(U − 1) sin3 θ[U sin θ + 3 cos θ + sin θ]
dU =

γ0

c
ξ + const.,

where the constant of integration is arbitrary; without loss of generality, we take it to
be such that U(0) = 1/2.

Clearly, critical issues arise when either the numerator or the denominator change
signs (because then U ′ changes sign, and it might not be possible to find a solution
satisfying the requirements (5.2)). We may take care of the numerator’s sign by
considering only elastic anisotropy (γ0 �= 0) and discarding viscous anisotropy (γ1 =
0); then g = 1. For the denominator, however, we note that U sin θ + 3 cos θ + sin θ
can change sign for certain ranges of U and θ. Figure 5.1(b) shows the curve U =
−3/ tan θ − 1; on its left side, the denominator is positive; on its right side, it is
negative. Accordingly, the wave connects 0 to 1 (see Figure 5.2(a)) or is unable
to do so (see Figure 5.2(b)). In that latter case, the wave front grows toward an
asymptotic value which is less than 1; a second solution exists (dotted curve) with 1
as an asymptotic value, but in the ξ → −∞ direction.
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Fig. 5.2. Traveling wave solution for anisotropic elasticity (γ1 = 0): (a) at θ = 1.8, (b) at θ = 2.1.

As a final remark, we note that when γ1 is large enough to allow for the possibility
that g = 0 (strong viscous anisotropy), then a “singular barrier” arises; see Pettet,
McElwain, and Norbury (2000).

6. Discussion. In the course of this investigation on nonlinear anisotropic creep,
recovery, and waves for fiber-reinforced nonlinear elastic materials, we unearthed some
complex mechanical responses. For some range of the constitutive parameters and for
some angle ranges of the fiber arrangement, we saw that unusual and possibly aberrant
behaviors can emerge.

From a mathematical point of view, we gave a detailed explanation of the reasons
for these behaviors, by linking them to the singularities of the determining equations
for the amount of shear.

From the mechanical point of view, we pointed out that nonstandard behaviors
always occur when the angle between the fiber family and the direction of shear is
such that the fibers are compressed; see Figure 2.1. It has been widely demonstrated
that several types of instabilities may develop in the case of fiber contraction; see
the detailed studies by Triantafyllidis and Abeyaratne (1983), Qiu and Pence (1997),
Merodio and Ogden (2002), (2003), (2005a), (2005b), or Fu and Freidin (2004). For
example, Merodio, Saccomandi, and Sgura (2007) recently investigated a nonhomo-
geneous rectilinear shear static deformation for the standard reinforcing model (2.1)
and found nonregular solutions (that is, deformations characterized by a discontinuous
amount of shear) in fiber-contracted materials.

From a numerical point of view, we recall that a simple model, together with a sim-
ple class of solutions, allows a step-by-step control of the simulations. It would indeed
be hard to detect nonstandard behaviors by relying solely on a complex numerical
finite element method (omitting to conduct a simple analytical methodology such as
the one presented in this paper). For example, Holzapfel and Gasser (2001) present a
detailed computational study of some viscoelastic fiber-reinforced nonlinear materials,
but use values for the material parameters and for the angles which place their simu-
lations outside the problematic ranges. Other studies are placed in the framework of
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linear models (even for polymeric materials; see Liu, Kasyanov, and Schoephoerster
(2007)), which fail to capture nonstandard behaviors.

From an experimental point of view, our results suggest some simple yet revealing
protocols. In particular, it would be most valuable to investigate the existence and
the persistence of asymptotic residual shear strains, sustained after the shear stress
is removed, at levels not only below the value at initial time but also above (as in
section 3). So far we have identified only reports of experimental results concerned
with elastomeric materials reinforced with inextensible fibers (and therefore with a
ratio between the shear modulus of the bulk matrix and that of the fibers of several
orders of magnitude), or concerned with moderate angles between the direction of
shear and the fiber direction.

From a biomechanical point of view, the results have meaningful implications for
biological soft tissues. First, the model captures adequately the elastic and the vis-
cous anisotropies of biological materials (Baldwin et al. (2006), Taylor et al. (1990)).
Second, although anomalous creep behaviors might preclude anomalous recovery
behaviors, it is still useful to study the latter, because they might nonetheless arise
in vivo following a stress-driven fiber orientation remodeling (Hariton et al. (2006)).
Third, the effect of the prestretch on nonstandard behaviors is significant theoreti-
cally (section 4.3) as well as practically. (In vivo experiments show that large static
prestretches of tendons reduce the risk of unexpected behaviors; see Kubo, Kanehisa,
and Fukunaga (2002).) Finally, the results of the traveling wave study (section 5)
may eventually lead to an acoustic (elastographic) determination of the fiber angle in
soft tissues, through an efficient, simple, and noninvasive investigation.

Obviously, our results must be improved, and several directions are possible.
Hence, two families of fibers have to be considered to give a better comparison with
in vivo results for soft tissues. Also, the more realistic models of fiber reinforcements
(such as the one proposed by Horgan and Saccomandi (2005) and by Gasser, Ogden,
and Holzapfel (2006)) must be incorporated into the present study, to identify with a
greater precision the range of parameters for which strange behaviors may occur.
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ACTIVATION THROUGH A NARROW OPENING∗
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Abstract. The escape of a Brownian motion through a narrow absorbing window in an otherwise
reflecting boundary of a domain is a rare event. In the presence of a deep potential well, there are
two long time scales, the mean escape time from the well and the mean time to reach the absorbing
window. We derive a generalized Kramers formula for the mean escape time through the narrow
window.
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1. Introduction. Kramers’ theory [12], [6] concerns the thermal activation of
a Brownian particle over a high potential barrier. It assumes that the barrier height
is much larger than the thermal energy. Its application to the theory of chemical
kinetics [20] gives the activation rate of the stochastic dynamics of a reactant molecule
over a potential barrier ΔE as the Arrhenius law

(1.1) k = Ae−ΔE/kBT ,

where A is a function of temperature, friction, and the potential landscape. A similar,
but different situation arises, if the chemical reaction can be described as the diffusion
of a Brownian particle through a small opening in the boundary of a domain, whose
remaining boundaries are practically reflecting. Such a situation can occur, if the
reflecting boundaries are due to a high potential barrier with a small opening, whose
energy is not necessarily much higher than the thermal energy. This can happen, for
example, if the reflecting boundaries are due to a dielectric barrier, as in biological
membranes, and the small opening is a protein channel embedded in an otherwise
impenetrable membrane [7]. The small absorbing window setup is also a model for
the forward rate of chemical reactions, in which there are small binding sites for the
diffusing reacting molecule in the boundary of the domain [9]. The same setup also
describes the process of trafficking receptors on biological membranes [8]. The escape
of a free Brownian motion (without drift) through a small window was discussed in
[17], [18], [19]. Here we consider the narrow escape problem for a Brownian motion
in a field of force. The closely related problem of computing the principal eigenvalue
of the Laplace operator for mixed boundary conditions on large and small pieces of
the boundary was considered in [22], [23], [24], [11] (see section 6 for discussion).

We derive an Arrhenius-like formula (1.1) for the activation rate through narrow
openings. Specifically, we consider the diffusion of a Brownian particle in a potential
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field in a bounded domain Ω, where activation occurs if the particle goes through a
small opening ∂Ωa in the boundary ∂Ω of the domain. We assume that the remain-
ing boundary ∂Ωr reflects the Brownian trajectories. We find the dependence of the
rate constant on the potential, specific geometry of the opening and on the volume
or surface area of the domain. As in Kramers’ theory, we obtain different rate con-
stants for low and high barriers. The activation rates for the different geometries are
summarized in (4.6)–(4.13).

2. Formulation. As in classical theories [12], [6], [20], our point of departure is
the Langevin dynamics in R

n (n = 2, 3),

(2.1) mẍ + ηẋ + ∇Φ(x) =
√

2ηkBT ẇ,

where m is the mass, η is the friction coefficient, Φ(x) is the potential, T is temper-
ature, kB is Boltzmann’s constant, and ẇ is a vector of n independent δ-correlated
Gaussian white noises. In the Smoluchowski (Kramers) limit of large friction, the
Langevin dynamics (2.1) reduces to the Smoluchowski equation [16], [4], [6]

(2.2) ẋ +
1

γ
∇φ(x) =

√
2kBT

mγ
ẇ,

where γ = η/m is the dynamics viscosity and φ = Φ/m is the potential per unit mass.
The motion of the Brownian particle is confined to a bounded domain Ω, whose

boundary ∂Ω is reflecting, but for a small absorbing window ∂Ωa (∂Ω = ∂Ωa ∪ Ωr).
The assumption that the window is small means that

(2.3) δ =

(
|∂Ωa|
|∂Ω|

)1/(n−1)

� 1

(δ is a small parameter).
The probability density function (pdf) pδ(x, t) of finding the Brownian particle

at location x at time t satisfies the Fokker–Planck equation

(2.4) γ
∂pδ
∂t

= εΔpδ + ∇ · (pδ∇φ) ≡ Lδpδ,

with the initial condition

(2.5) pδ(x, 0) = p0(x),

and the mixed Dirichlet–Neumann boundary conditions for t > 0

pδ = 0 for x ∈ ∂Ωa,(2.6)

ε
∂pδ
∂n

+ pδ
∂φ

∂n
= 0 for x ∈ ∂Ωr,(2.7)

where ε = kBT/m, n is the unit outer normal at the boundary, and p0(x) is the
initial pdf (e.g., p0(x) = 1

|Ω| for a uniform distribution). The function

(2.8) uδ(x) =

∫ ∞

0

pδ(x, t) dt,
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which is the mean time the particle spends at x before it escapes through the narrow
window, is the solution of the boundary value problem

Lδuδ = −γp0 for x ∈ Ω,(2.9)

uδ = 0 for x ∈ ∂Ωa,(2.10)

ε
∂uδ

∂n
+ uδ

∂φ

∂n
= 0 for x ∈ ∂Ωr.(2.11)

The function gδ = uδe
φ/ε is the solution of the adjoint problem

L∗
δgδ = −γp0e

φ/ε for x ∈ Ω,(2.12)

∂gδ(x)

∂n
= 0 for x ∈ ∂Ωr,

gδ(x) = 0 for x ∈ ∂Ωa.
(2.13)

Equation (2.12) can be written in the divergence form

(2.14) ∇
(
e−φ/ε∇gδ

)
= −γp0

ε
.

The adjoint operators Lδ and L∗
δ , defined by (2.4), (2.9), (2.10), (2.11), and

(2.12), (2.13), respectively, have biorthogonal systems of normalized eigenfunctions,
{ψi(x, δ)} and {ϕi(x, δ)} (i = 0, 1, . . .), and we can expand

(2.15) pδ(x, t) =

∞∑
i=0

ai(δ)ψi(x, δ)e
−λi(δ)t/γ ,

where λi(δ) are the eigenvalues of Lδ. The ai(δ) are the Fourier coefficients of the
initial function p0(x). In the limit δ → 0 the Dirichlet part of the boundary conditions,
(2.6), is dropped, so that λ0(δ) → 0 (the first eigenvalue of the problem (2.4), (2.7)
with ∂Ωr = ∂Ω), with the normalized eigenfunction

(2.16) ψ0(x, 0) =
exp{−φ(x)/ε}∫

Ω

exp{−φ(x)/ε} dx
,

and a0(δ) → 1. It follows from (2.8) and (2.15) that for all x ∈ Ω

(2.17) uδ(x) = γ

∞∑
i=0

ai(δ)ψi(x, δ)

λi(δ)
→ ∞ as δ → 0.

In particular, the first passage time τδ = inf{t > 0 | x(t) ∈ ∂Ωa} diverges. That is,
limδ→0 τδ = ∞ on almost every trajectory x(t). Obviously, the mean first passage
time,

(2.18) 〈τδ〉 =

∫
Ω

uδ(x) dx = γ

∞∑
i=0

ai(δ)

λi(δ)
,

also diverges as δ → 0. It is the purpose of this paper to find the orders of magnitude
of uδ(x) and 〈τδ〉 for small δ.
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3. The Neumann function. The Neumann function for Ω is the solution of
the boundary value problem

ΔyN(x,y) = −δ(x− y) for x,y ∈ Ω,

∂N(x,y)

∂ny
= − 1

|∂Ω| for x ∈ Ω, y ∈ ∂Ω,
(3.1)

with N(x,y) fixed at a given point, to ensure uniqueness. Using Green’s identity and
the boundary conditions (2.10)–(2.11) and (3.1) gives∫

Ω

N(x,y)Δyuδ(y) dy(3.2)

=

∫
Ω

uδ(y)ΔyN(x,y) dy +

∫
∂Ω

(
N(x,y)

∂uδ(y)

∂ny
− uδ(y)

∂N(x,y)

∂ny

)
dSy

= −uδ(x) +

∫
∂Ωa

N(x,y)
∂uδ(y)

∂ny
dSy − 1

ε

∫
∂Ωr

N(x,y)uδ(y)
∂φ(y)

∂ny
dSy

+
1

|∂Ω|

∫
∂Ωr

uδ(y) dSy.

On the other hand, (2.9) gives∫
Ω

N(x,y)Δyuδ(y) dy(3.3)

=

∫
Ω

N(x,y)

[
−γp0

ε
− 1

ε
∇ · (uδ∇φ)

]
dy

= −γ

ε

∫
Ω

N(x,y)p0(y) dy − 1

ε

∫
Ω

∇y · [N(x,y)uδ(y)∇yφ(y)] dy

+
1

ε

∫
Ω

uδ(y)∇yφ(y) · ∇yN(x,y) dy

= −γ

ε

∫
Ω

N(x,y)p0(y) dy − 1

ε

∫
∂Ωr

N(x,y)uδ(y)
∂φ(y)

∂n
dSy

+
1

ε

∫
Ω

uδ(y)∇yφ(y) · ∇yN(x,y) dy.

Combining (3.2) and (3.3) yields

−uδ(x) +
1

|∂Ω|

∫
∂Ωr

uδ(y) dSy +

∫
∂Ωa

N(x,y)
∂uδ(y)

∂ny
dSy(3.4)

= −γ

ε

∫
Ω

N(x,y)p0(y) dy +
1

ε

∫
Ω

uδ(y)∇yφ(y) · ∇yN(x,y) dy.

In view of (2.17), the integral
∫
Ω
N(x,y)p0(y) dy can be neglected to leading

order, because it is uniformly bounded for smooth initial distributions1 p0 as δ → 0,
while all other terms in (3.4) are unbounded. For x ∈ Ω, at a distance O(1) away
from the window, the Neumann function is uniformly bounded.

1For nonsmooth p0 the integral is not uniformly bounded. For example, for p0 = δ(x − x0)
we have

∫
Ω N(x, y)p0(y) dy = N(x,x0), which becomes singular as x → x0. However, this is an

integrable singularity, and as such it does not affect the leading order asymptotics in δ.
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Note that integrating (2.14) and using the boundary conditions (2.13), we obtain
the compatibility condition

(3.5)

∫
∂Ωa

∂uδ

∂n
dS = −γ

ε
.

Because of the fact that the normal derivative ∂uδ(y)
∂ny

is negative on ∂Ωa, (3.5) implies

that
∫
∂Ωa

N(x,y)∂uδ(y)
∂ny

dSy is uniformly bounded. It follows that for x ∈ Ω, at a

distance O(1) (with respect to δ) away from the window, the integral equation (3.4)
is to leading order

(3.6) uδ(x) ∼ 1

|∂Ω|

∫
∂Ω

uδ(y) dSy − 1

ε

∫
Ω

uδ(y)∇yφ(y) · ∇N(x,y) dy,

which is the integral representation of the boundary value problem Lδuδ = 0 with
the no flux boundary condition (2.11) on the entire boundary (i.e., with ∂Ωr = ∂Ω),
whose solution is the Boltzmann distribution

(3.7) uδ(x) ∼ Cδe
−φ(x)/ε.

Equation (3.7) represents the averaged time the particle spent at a point x at a
distance O(1) away from the absorbing window prior to absorption.

Due to the absorbing boundary condition (2.10), (3.4) reduces to∫
∂Ωa

N(x,y)
∂uδ(y)

∂ny
dSy(3.8)

=

{
−1

|∂Ω|

∫
∂Ωr

uδ(y) dSy +
1

ε

∫
Ω

uδ(y)∇yφ(y) · ∇yN(x,y) dy

}
(1 + o(1))

for all x ∈ ∂Ωa. Substituting (3.7) into (3.8) yields an integral equation for the flux
∂uδ

∂n into the absorbing window,

(3.9)

∫
∂Ωa

N(x,y)
∂uδ(y)

∂ny
dSy = −Cδe

−φ(x)/ε(1 + o(1)) for δ � 1.

If φ(x) does not change much in the window, we can use the constant approximation
φ(x) ≈ φ(window) = φ0.

In three dimensions

(3.10) N(x,y) =
1

4π|x− y| + vS(x,y),

where vS is a regular harmonic function [10], and so the leading order contribution
to (3.9) is due to the singular part of the Neumann function. Thus the leading order
approximation ∂u0

∂n to the absorption flux is the solution of

(3.11)
1

2π

∫
∂Ωa

∂u0(y)

∂ny

dSy

|x− y| = −Cδe
−φ0/ε.

Note that the singularity of the Neumann function at the boundary is twice as large
as it is inside the domain, due to the contribution of the regular part (the “image
charge”). For that reason the factor 1

4π in (3.10) was replaced by 1
2π .
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4. Narrow escape. von Helmholtz [21] (see also Rayleigh [1] and others, e.g.,
[13]) solved the integral equation (3.11) analytically for the case of an elliptical ab-
sorbing window ∂Ωa,

(4.1)
∂u0(y1, y2)

∂n
= − Cδe

−φ0/ε√
1 − y2

1

a2
− y2

2

b2

,

where a and b are the ellipse semiaxes, and y = (y1, y2) are local Cartesian coordinates
in the ellipse. The value of the constant Cδ is calculated using the compatibility
condition (3.5) to be

(4.2) Cδ =
γK(e)

2πεa
eφ0/ε,

where e is the eccentricity of the ellipse and K(·) is the complete elliptic integral of
the first kind. In a three-dimensional domain, the averaged time spent at point x
before escape through an elliptical absorbing window is given by (see (3.7))

(4.3) uδ(x) ≈ γK(e)

2πεa
exp

{
φ0 − φ(x)

ε

}
.

Equations (2.18) and (4.3) now give the mean escape time as

(4.4) 〈τδ〉 =
γK(e)eφ0/ε

2πεa

∫
Ω

exp

{
−φ(x)

ε

}
dx.

If the barrier is sufficiently high, we evaluate the integral in (4.4) by the Laplace
method, assuming that φ has a single global minimum φm at xm,

(4.5)

∫
Ω

exp

{
−φ(x)

ε

}
dx ≈ (2πε)n/2

n∏
i=1

ωi

exp

{
−φm

ε

}
,

where ωi are the frequencies at the minimum xm. For reactions that consist in passing
through a small elliptical window (assuming no returns are possible), the reaction rate
is the modified Kramers formula

(4.6) κδ =
1

〈τδ〉
∼ aω1ω2ω3√

2πε γK(e)
e−ΔE/ε,

where ΔE = φ0 − φm. In the special case of a circular window, we obtain

(4.7) κδ ∼ 4aω1ω2ω3

(2π)3/2γ
√
ε
e−ΔE/ε,

where a is the radius of the window. Note that ΔE is not the barrier height. We
conclude that the activation rate is of Arrhenius form and has two contributions. The
first is due to the potential, while the second is due to geometry of the absorbing
window alone. Unlike the free diffusion case [17], [18], [19], geometrical properties of
the domain, such as its volume, are not included in the leading order asymptotics of
the reaction rate.
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Second, in the limit of large ε, the power series approximation

e−(φ(x)−φ0)/ε = 1 − φ(x) − φ0

ε
+

(φ(x) − φ0)
2

2ε2
. . .

in (4.4) gives

(4.8) k ∼ 2πεa

γK(e)|Ω|

(
1 − 〈φ〉 − φ0

ε
+ O

(
ε−2

))−1

,

where 〈φ〉 = 1
|Ω|

∫
Ω
φ(x) dx is the spatial average of the potential. The rate can also

be rewritten into an Arrhenius form as

(4.9) k ∼ 2πεa

γK(e)|Ω| e
−〈ΔE〉/ε,

where 〈ΔE〉 = φ0 − 〈φ〉. In the case of large ε the reaction rate depends not merely
on the geometry of the window but also on the geometry of the domain itself through
its volume. Large ε means that the motion is diffusion limited; therefore, fine details
of the potential are less important and the spatial averaged potential has only an
O(ε−1) effect.

Finally, we give rate functions for small and large ε for several geometries. For
the case of diffusion in a ball of radius R, the results of [17] show that

k ∼ 4εa

γ|Ω|

[
1 +

a

R
ln

R

a
+ O

( a

R

)]−1

e−〈ΔE〉/ε for ε � ΔE,

k ∼ 4εaω1ω2ω3

γ(2π)3/2

[
1 +

a

R
ln

R

a
+ O

( a

R

)]−1

e−ΔE/ε for ε � ΔE.

(4.10)

We conjecture that the second order term is O(δ ln δ) also for a general three-
dimensional domain, though we were unable to prove it so far.

In two dimensions the singularity of the Neumann function is logarithmic, and so
the leading order approximation to the activation rate is

k ∼ πε

γ|Ω|
e−〈ΔE〉/ε[

ln
1

δ
+ O(1)

] for ε � ΔE,

k ∼ ε
√
ω1ω2

2γ

e−ΔE/ε[
ln

1

δ
+ O(1)

] for ε � ΔE.

(4.11)

The remainder O(1) is important, because in real life applications even if δ is small,
ln 1

δ is not necessarily large. In [18], [19] we have calculated the O(1) term for diffusion
in a circular disk, in a circular annulus, and on a sphere. These results extend in a
straightforward way to domains that can be mapped conformally onto these shapes
(e.g., all simply connected planar domains).

If the boundary of the absorbing window contains a singular point of ∂Ω, such as
a corner or a cusp, the order of magnitude of the activation rate may change. Thus,
if the window is at a corner of angle α, then the rate is [19]
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k ∼ αε

γ|Ω|
e−〈ΔE〉/ε[

ln
1

δ
+ O(1)

] for ε � ΔE,

k ∼ αε
√
ω1ω2

2πγ

e−ΔE/ε[
ln

1

δ
+ O(1)

] for ε � ΔE.

(4.12)

If the absorbing window is near a cusp, then 〈τδ〉 grows algebraically rather than
logarithmically. For example, in the domain bounded between two tangent circles,
the activation rate is

k ∼ (d−1 − 1)ε

γ|Ω|
[
δ + O(δ2)

]
e−〈ΔE〉/ε for ε � ΔE,

k ∼ (d−1 − 1)ε
√
ω1ω2

2πγ

[
δ + O(δ2)

]
e−ΔE/ε for ε � ΔE,

(4.13)

where d < 1 is the ratio of the radii.

5. Deep well—a Markov chain model. The modified Kramers formulas (4.6)
or (4.11) can be explained by coarse-graining the diffusive motion into a simplified
3-state Markov model, when the domain contains a deep well ΩW ⊂ Ω. The three
states of the Markov process are (i) state W—the trajectory is trapped in the deep
well; (ii) state D—the trajectory diffuses in the domain ΩD = Ω − ΩW , outside the
well; (iii) state A—the trajectory is absorbed into the small hole. Once the trajectory
is absorbed into the small hole, its motion is terminated, and so A is a terminal state
of the Markov chain. For simplicity, we assume Ω ⊂ R

2.
Not all transition times between the different states are finite with probability 1,

and so not all mean transition times are finite. The particle leaves the well to the
outer in finite mean time, that is,

(5.1) Pr{τW→D < ∞} = 1, EτW→D < ∞.

For small ε, the mean time spent in the well, EτW→D, is exponentially large and is
given by [14]

(5.2) EτW→D ∼
2π

√
∂2φ(xS)

∂s2√
−∂2φ(xS)

∂ν2

√
H(xW )

exp

{
φ(xS) − φ(xW )

ε

}
,

where ν and s are the distance to and arclength on ∂ΩW , respectively, xW is the
deepest point of the well, xS is the point on ∂ΩW , where φ achieves its minimum,
and H is the Hessian of φ.

The time τD→W , however, is not finite with probability 1, because there is a
finite probability Pr{τD→A < τD→W } of termination at A without returning to W ,
and there is no return from A to W . Consequently, EτD→W = ∞. However, EτD→A

and E[τD→W | τD→W < τD→A] are finite. For small ε, δ, the conditional mean time
E[τD→W | τD→W < τD→A] is asymptotically the same as EτD→W for a problem
without the small absorbing window, because the conditioning changes the drift only
near A, to repel the trajectory from the window, and so the effect on the conditional
mean time is small, regardless of whether this mean time is long or short. The



106 A. SINGER AND Z. SCHUSS

transition probabilities from the outer domain to the absorbing window and to the
well are

Pr{τD→A < τD→W } ∼ E[τD→W | τD→W < τD→A]

E[τD→W | τD→W < τD→A] + E[τD→A | τD→A < τD→W ]
,

(5.3)

Pr{τD→W < τD→A} ∼ E[τD→A | τD→A < τD→W ]

E[τD→W | τD→W < τD→A] + E[τD→A | τD→A < τD→W ]
,

respectively. The conditional mean transition time E[τD→W | τD→W < τD→A] from
ΩD to ΩW is similar to (5.2),

(5.4) E[τD→W | τD→W < τD→A] ∼
2π

√
∂2φ(xS)

∂s2√
−∂2φ(xS)

∂ν2

√
H(xD)

exp

{
φ(xS) − φ(xD)

ε

}
,

where xD is the deepest point of the potential in the outer domain, φ(xW ) < φ(xD) <
φ(xS). The mean transition time E[τD→A | τD→A < τD→W ] from ΩD to the absorbing
window is given by (4.11)

(5.5) E[τD→A | τD→A < τD→W ] ∼ 2γ ln δ−1

ε
√
H(xD)

exp

{
φ0 − φ(xD)

ε

}
.

If we assume that the effect of the small window on the mean escape time, ln δ−1 (or
1/δ in three dimensions), is larger than that of the energy barrier, exp{[φ0−φ(xS)]/ε},
then, according to our assumption that the potential is relatively flat outside the deep
well, E[τD→W | τD→W < τD→A] � E[τD→A | τD→A < τD→W ], and so (5.3) implies

(5.6) Pr{τD→A < τD→W } ∼ E[τD→W | τD→W < τD→A]

E[τD→A | τD→A < τD→W ]
.

The mean absorption times Eτi→A are finite for i = D,W . They satisfy the
renewal equations

EτD→A = Pr{τD→A < τD→W }E [τD→A | τD→A < τD→W ]

+ Pr{τD→W < τD→A}EτW→A,(5.7)

EτW→A = EτW→D + EτD→A(5.8)

(see [15]). Adding (5.7) and (5.8), and dividing by Pr{τD→A < τD→W } = 1 −
Pr{τD→W < τD→A}, we obtain

(5.9) EτW→A = E [τD→A | τD→A < τD→W ] +
EτW→D

Pr{τD→A < τD→W } .

Both E[τD→A | τD→A < τD→W ] and 1/Pr{τD→A < τD→W } have the same order of
magnitude as functions of δ; however, EτW→D is exponentially large. Therefore,

(5.10) EτW→A ∼ EτW→D

Pr{τD→A < τD→W } .
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Now, by (5.8), we have

(5.11) EτD→A ∼ EτW→D

(
1

Pr{τD→A < τD→W } − 1

)
∼ EτW→D

Pr{τD→A < τD→W } ,

because Pr{τD→A < τD→W } → 0 as δ → 0. The meaning of (5.10) and (5.11) is that
for each realization of the Markov chain, e.g., DWDWDWDWDWDWDWDA,
the number of visits in state D is larger by 1, or equal to the number of visits at
state W . The mean time that the particle spends at state W is exponentially larger
than the mean time spent at state D. Therefore, the mean time to absorption is
approximately the average number of visits at state D times the average time of
a single visit in the deep well. The average number of visits in state D prior to
absorption is 1/Pr{τD→A < τD→W }, as in a geometric distribution, and (5.10) follows.
We conclude that

(5.12) EτD→A ∼ EτW→A;

i.e., the initial state (or location) of the particle has no (leading order) significance
for the mean absorption time 〈τδ〉, which by (5.6) and (5.10) is

(5.13) 〈τδ〉 ∼ EτW→A ∼ EτW→D

Pr{τD→W < τD→A}
.

Substituting (5.2), (5.4)–(5.6) into (5.13) yields

(5.14) 〈τδ〉 =
2γ ln

1

δ
ε
√
H(xW )

exp

{
φ0 − φ(xW )

ε

}
,

in agreement with (4.11).

6. Summary and discussion. The narrow escape problem of a Brownian par-
ticle through a small absorbing window in an otherwise reflecting boundary was dis-
cussed in [8], [17], [18], and [19]. Here we solve the narrow escape problem for a
Brownian particle in a force field. In cases where there is a deep potential well inside
the domain, there are two time scales in the problem, the mean time to escape the
well and the mean time to reach the small window. We give explicit asymptotic ex-
pressions for the mean escape time when the time scales are comparable and in the
case where one is much longer than the other.

Matched asymptotics of two- and three-dimensional problems [22], [23], [24], [11]
yield the leading term in the expansion of the principal eigenvalue in three dimensions
and a full expansion in two dimensions. For the special case of the mixed Neumann
problem with a small Dirichlet window in the boundary, the leading term obtained
in [17], [18], [19] can be obtained by the application of the matched asymptotics
expansion to this problem. In this paper we generalize the method of [17], [18], [19]
to obtain the leading term for the corresponding boundary value problem for the
Fokker–Planck operator, though matched asymptotics can be applied to this problem
as well. The advantage of our method, as demonstrated in [17], is that it reveals
the order of magnitude of the second term in three dimensions, while the matched
asymptotics method does not indicate this in a simple way. In the particular case of
a ball with a small Dirichlet cap, the application of the special functions method of
Collins [2], [3] gave in [17] the unexpected estimate on the remainder term O(δ2 log δ)
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to the expected leading term O(δ). Another advantage of the present method is the
Helmholtz integral equation (3.11) for the flux and capacity of the small window. This
equation is easier to solve numerically than the mixed Neumann–Dirichlet problem for
a half space, as required in the boundary layer equation of the matched asymptotics
expansion.
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A SPATIO-TEMPORAL DESIGN PROBLEM FOR A DAMPED WAVE
EQUATION∗

FAUSTINO MAESTRE† , ARNAUD MÜNCH‡ , AND PABLO PEDREGAL†

Abstract. We analyze in this work a spatio-temporal optimal design problem governed by a
linear damped one-dimensional wave equation. The problem consists of simultaneously seeking the
spatio-temporal layout of two isotropic materials and the static position of the damping set in order
to minimize a functional depending quadratically on the gradient of the state. The lack of classical
solutions for this kind of nonlinear problem is well known. We examine a well-posed relaxation
by using the representation of a two-dimensional divergence-free vector as a rotated gradient. We
transform the original optimal design problem into a nonconvex vector variational problem. By means
of gradient Young measures we compute an explicit form of the “constrained quasi convexification” of
the cost density. Moreover, this quasi convexification is recovered by first order laminates which give
the optimal distribution of materials and damping set at every point. Finally, we analyze the relaxed
problem, and some numerical experiments are performed. The novelty here lies in the optimization
with respect to two independent subdomains, and our contribution consists of understanding their
mutual interaction.

Key words. optimal design, wave equation, relaxation, Young measure
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1. Introduction—Problem statement. Let us consider the following damped
wave equation posed in (0, T ) × Ω:

(1.1)

⎧⎨
⎩

utt −∇x([αXω1 + β(1 −Xω1)]ux) + d(x)Xω2ut = 0 in (0, T ) × Ω,
u = 0 on (0, T ) × ∂Ω,
u(0, x) = u0(x), ut(0, x) = u1(x) in Ω,

for any bounded interval Ω of R and any positive time T . Xω1
and Xω2

designate
respectively the characteristic function of two subsets ω1 ⊂ Ω × (0, T ) and ω2 ⊂ Ω,
both of positive Lebesgue measure |ω1| and |ω2|. We assume that 0 < α < β and that
the damping potential d ∈ L∞(Ω; R+) is such that d(x) ≥ d > 0 for all x ∈ ω2. Finally,
we assume that the initial data (u0, u1) are in H1

0 (Ω)×L2(Ω) and are independent of
ω1, ω2, and d. System (1.1) is then well posed, and there exists a unique weak solution
such that u ∈ C

(
[0, T ] ;H1

0 (Ω)
)
∩ C1

(
[0, T ] ;L2(Ω)

)
(see [16]).

As is well known, system (1.1) models the stabilization of an elastic string made of
two materials α and β located on ω1 and ((0, T )×Ω))\ω1, respectively, by an internal
dissipative mechanism located on ω2. The unknown u(t, x) represents the transversal
displacement of the string at the point x and at time t, while u0 and u1 designate the
initial position and velocity, respectively.
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Following similar works [9, 15], we address the very important question of deter-
mining the best space-time layout of materials α and β in Ω×(0, T ) and the best space
distribution of damping material in order to minimize some cost depending on the
square of the gradient of the underlying state u. Precisely, introducing the functions
aα, aβ ∈ L∞((0, T ) × Ω; R�

+) and

(1.2) a(t, x,Xω1) = Xω1aα(t, x) + (1 −Xω1)aβ(t, x),

we consider the following nonlinear optimal shape design problem:

(1.3) (P) inf
Xω1

,Xω2

I(Xω1
,Xω2) =

∫ T

0

∫
Ω

(u2
t + a(t, x,Xω1

)|ux|2)dxdt

subject to

(1.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

u fulfills (1.1),

Xω1 ∈ L∞(Ω × (0, T ); {0, 1}), Xω2 ∈ L∞(Ω; {0, 1}),∫
Ω

Xω1
(t, x)dx ≤ Lα|Ω| ∀t ∈ (0, T ), Lα ∈ (0, 1),∫

Ω

Xω2(x)dx ≤ Ld|Ω|, Ld ∈ (0, 1).

The constraint (1.4)3 requires that for all t ∈ (0, T ) the volume fraction of the α-
material be lower than Lα given in (0, 1). The constraint (1.4)4 requires that the
volume fraction of the damping material be lower than Ld given in (0, 1).

Optimal design problems in conductivity and elasticity have been extensively
studied in the last decade from various perspectives (e.g., the homogenization ap-
proach [1, 24], shape derivative [6, 7], topological derivative [27], variational formula-
tion [5, 26], simulation-oriented approaches [4, 12], etc). Under the hyperbolic laws,
much less is known. A pioneer work in this direction is [18], where the author ana-
lyzes the hyperbolic G-closure for a similar optimal control problem (see also [17] for
a general report on dynamic materials). On the other hand, an interesting analysis
for optimal control problems under the wave equation in greater dimensions is de-
scribed in [8], where the control is a time dependent coefficient. Let us also mention
[3], where the authors examine time-harmonic solutions of the wave equation, prove a
relaxation result for the corresponding design problem, and obtain existence of clas-
sical solutions for some particular cases. Finally, shape analysis for noncylindrical
evolution problems is considered in [7] (and the references therein).

More recently, a one-dimensional (1-D) hyperbolic optimal control design problem
with designs depending both on x and t has been addressed in [20]. This corresponds
to the problem (P) with ω2 = ∅ and a minimization with respect to ω1 only. A
full relaxation of the associated problem is given and numerically justified if the gap
β−α > 0 is large enough. On the other hand, the pure damping case (corresponding
to ω1 = ∅ and a minimization with respect to ω2 only) has been studied similarly in
[13, 21, 22]. Once again, it appears that the well-posed character of the problem relies
on the amplitude of the function d. In this work, we aim at mixing these two cases
and minimize I with respect to ω1 and ω2 simultaneously. In this respect, we derive
and analyze a well-posed relaxation of (P). The approach is based on an equivalent
variational reformulation of the original problem as a nonconvex vector variational
problem: following [2, 26], we transform our scalar problem with differential con-
straints into a vector variational problem with integral constraints (where the state
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equation is implicit in the new cost function). It is well known that the nonexistence
of optimal solutions for vector variational problems is related to the lack of quasi con-
vexity of the cost functional I (see [11]). Therefore, by using gradient Young measures
as generalized solutions of variational problems, we compute an explicit relaxation of
the original problem in the form of a relaxed (quasi-convexified) variational problem.

To the knowledge of the authors, this work is the first considering a bidesign
problem. Our contribution consists, first, of adapting relaxation techniques in this
case, and then, of studying the interaction between the two optimal designs ω1 and
ω2.

The rest of the paper is organized as follows. In section 2, we describe in detail the
equivalent variational reformulation (denoted by (VP)) as well as a general relaxation
result when integrands are not continuous and may take on infinite values abruptly.
Section 3 presents the computation of the constrained quasi convexification of the
underlying integrand of (VP). The first part is concerned with the computation of
a lower bound—the constrained polyconvexification—by using in a fundamental way
the weak continuity of the determinant. The second part is concerned with the search
for laminates furnishing the precise value of the lower bound in an attempt to show
equality of the three convex hulls (poly-, quasi-, and rank one convex hulls). This
provides the well-posed relaxation (RP) stated in Theorem 3.4. In addition, the
optimal Young measure permits us to describe precisely the optimal microstructure
(see Theorem 3.5). Section 4 is devoted to the analysis of the relaxed formulation. In
section 5, we present some numerical experiments which justify the introduction of
the relaxed formulation (RP) and present a simple penalization technique to obtain
some elements of a minimizing sequence for (P) from the relaxed optimal solution of
(RP).

2. Variational reformulation and relaxation. In order to apply suitable re-
sults of calculus of variations [11, 25], we first reformulate the problem (P) into a
classical vector variational one. To this end, following [2, 19, 26], we use a char-
acterization of divergence-free vector fields. Precisely, since the subset ω2 is time
independent, the state equation of system (1.1) can be written as

(2.1) div(ut + d(x)Xω2u, −[αXω1 + β(1 −Xω1)]ux) = 0,

where the operator div is defined as div = (∂t,∇x). Then, under the hypothesis
of simple-connectedness of Ω and from the characterization of the 2-D divergence-
free vector fields (see, for instance, [14], Chapter I), there exists a potential v ∈
H1(Ω × (0, T )) such that the above formula is equivalent to the pointwise constraint

(2.2)

(
ut

−(αXω1 + β(1 −Xω1))ux

)
−R∇v = −d(x)Xω2 ū,

where

(2.3) ū =

(
u
0

)
, ∇v =

(
vt
vx

)
, R =

(
0 −1
1 0

)
.

R is the counterclockwise π/2-rotation in the (x, t)-plane. We then introduce the
vector field U = (u, v) ∈ (H1(Ω × (0, T )))2 and the manifolds Λγ,λ as follows:

Λγ,λ = {A ∈ M2×2 : M−γA
(1) −RA(2) = λe1}, γ = α, β, and λ ∈ R,



112 FAUSTINO MAESTRE, ARNAUD MÜNCH, AND PABLO PEDREGAL

where A(i), i = 1, 2, stands for the ith row of the matrix and

(2.4) M−γ =

(
1 0
0 −γ

)
, e1 =

(
1
0

)
.

It is clear that we can identify the design variable (Xω1 ,Xω2) with the vector field U =
(u, v); conversely, a pair U = (u, v) which verifies (2.2) determines characteristic func-
tions (Xω1

,Xω2
), so that we can consider the new design variables U = (u, v), where

U : R
2 → R

2 and ∇U(t, x) ∈ R
2×2. Then, for any 2× 2 matrix A = (aij)(1≤i,j≤2), we

consider the following three functions:

W (t, x, U,A) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a2
11 + aα(t, x)a2

12 if A ∈ Λα,0 ∪ Λα,−d(x)U(1) ,

a2
11 + aβ(t, x)a2

12 if A ∈ (Λβ,0 ∪ Λβ,−d(x)U(1))

\(Λα,0 ∪ Λα,−d(x)U(1)),

+∞ else,

Vα(t, x, U,A) =

⎧⎪⎨
⎪⎩

1 if A ∈ Λα,0 ∪ Λα,−d(x)U(1) ,

0 if A ∈ (Λβ,0 ∪ Λβ,−d(x)U(1)) \ (Λα,0 ∪ Λα,−d(x)U(1)),

+∞ else,

Vd(t, x, U,A) =

⎧⎪⎨
⎪⎩

1 if A ∈ (Λβ,−d(x)U(1) ∪ Λα,−d(x)U(1)),

0 if A ∈ (Λβ,0 ∪ Λα,0) \ (Λβ,−d(x)U(1) ∪ Λα,−d(x)U(1)),

+∞ else.

Then, noting that

(2.5) {x ∈ Ω,Xω1
(x, t) = 1} = {x ∈ Ω, Vα(t, x, U,∇U) = 1} ∀t ∈ (0, T )

and

(2.6) {x ∈ Ω,Xω2(x) = 1} = {x ∈ Ω, Vd(t, x, U,∇U) = 1 ∀t ∈ (0, T )},

the optimization problem (P) is equivalent to the following vector variational problem:

(2.7) (VP) m = inf
U

∫ T

0

∫
Ω

W (t, x, U(t, x),∇U(t, x))dxdt

subject to
(2.8)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U = (U (1), U (2)) ∈ H1((0, T ) × Ω)2,

U (1)(0, x) = u0(x), U
(1)
t (0, x) = u1(x) in Ω,

U (1) = 0 in (0, T ) × ∂Ω,∫
Ω

Vα(t, x, U(t, x),∇U(t, x))dx ≤ Lα|Ω| ∀t ∈ [0, T ],∫
Ω

Vd(t, x, U(t, x),∇U(t, x)) × Vd(0, x, U(0, x),∇U(0, x))dx ≤ Ld|Ω| ∀t ∈ [0, T ].
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Therefore, this procedure transforms the scalar dynamical problem (P), with differ-
entiable, integrable, and pointwise constraints, into a nonconvex vector variational
problem (VP) with only pointwise and integral constraints.

We are now going to analyze the nonconvex vector problem (VP) by seeking its
relaxation. We use Young measures (see [25]) as a main tool in the computation of
the suitable density for the relaxed problem. Let us recall the following definition.

Definition 2.1. The constrained quasi convexification of the functional W is
defined as

(2.9) CQW (t, x, U,A, s, r) = inf
ν

{∫
M2×2

W (t, x, U,A)dν(A) : ν ∈ A
}
,

where

(2.10)

A =

{
ν : ν is a homogeneous H1-Young measure,

F =

∫
M2×2

Adν(A),

∫
M2×2

Vα(t, x, U,A)dν(A) = s,∫
M2×2

Vd(t, x, U,A)dν(A) = r ∀t ∈ [0, T ]

}
.

We then introduce the following minimization problem:

(2.11) (RP) m = inf
(U,s,r)

∫ T

0

∫
Ω

CQW (t, x, U(t, x),∇U(t, x), s(t, x), r(x))dxdt

subject to

(2.12)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U = (U (1), U (2)) ∈ H1((0, T ) × Ω)2,

U (1)(0, x) = u0(x), U
(1)
t (0, x) = u1(x) in Ω,

U (1) = 0, in (0, T ) × ∂Ω,

0 ≤ s(t, x) ≤ 1,

∫
Ω

s(t, x)dx ≤ Lα|Ω| ∀t ∈ [0, T ],

0 ≤ r(x) ≤ 1,

∫
Ω

r(x)dx ≤ Ld|Ω|.

The functions s and r denote the pointwise volume fraction associated with the α-
material and the damping set, respectively.

Then, the following relaxation result (initially obtained in the elliptic case in
[2, 26]) can be proved: (RP) is a full relaxation of (VP) in the sense of the following
theorem.

Theorem 2.2. Assume that the initial data of system (1.1) have the regularity

(2.13) (u0, u1) ∈ (H2(Ω) ∩H1
0 (Ω)) ×H1

0 (Ω).

Then, problem (RP) is well posed and the following equality holds:

(2.14) m = m (i.e., inf(VP) = min(RP)).

Moreover, the minimum (U, s, r) codifies (in the sense of Young measures) the optimal
microstructures of the original optimal design problem.
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Remark 2.3. In order to represent the limit of the cost function I associated with
a minimizing sequence, say {Xω1,j ,Xω2,j}j , through its associated Young measure,
we need equi-integrability for the sequence |ut,j |2 + a(t, x,Xω1,j)|∇uj |2 (see [25]).
Equation (2.13) is a sufficient condition to get this equi-integrability. We refer to
[22, 23] for the details.

Therefore, Theorem 2.2 reduces the determination of a relaxed formulation to the
computation of the constrained quasi convexification CQW associated with W .

3. Constrained quasi convexification. In this section, we solve the optimiza-
tion problem (2.9), leading for all (U,F, s, r) to the value of CQW (t, x, U, F, s, r). The
main difficulty is that we do not know explicitly the set of the admissible measures A
defined in (2.10). We then follow the same strategy as in [26]. Consider two classes
of a family of probability measures A�,A� such that

A� ⊂ A ⊂ A�.

We first calculate the minimum over the greater class of probability measures A�,
and then we check that the optimal value is attained by at least one measure over the
narrower class A�. This fact tells us that the optimal value so achieved is the same
in A, and hence we will have in fact computed the exact value CQW (t, x, U, F, s, r).

Following [26], we choose A� as the set of polyconvex measures, which are not nec-
essarily gradient Young measures, and therefore obtain a lower bound (the constrained
polyconvexification). The main property of these measures is that they commute with
the determinant. This constraint can be imposed in a more-or-less manageable way.
We also choose A∗ as the class of laminates which is a subclass of the gradient Young
measures. By working with this class, we would get an upper bound (the constrained
rank one convexification).

In what follows, in order to simplify the expression, we note Λγ,1 for Λγ,−d(x)U(1) .

3.1. Lower bound: Polyconvexification. We compute the constrained poly-
convexification defined as follows.

Definition 3.1. The constrained polyconvexification CPW of the functional W
is given by the following minimization problem:

(3.1) CPW (U,F, s, r) = min
ν

{∫
M2×2

W (U,A)dν(A) : ν ∈ A�

}
,

where

(3.2)

A�(F, s, r) =

{
ν :ν is a homogeneous Young measure,

ν commutes with the determinant,

F =

∫
M2×2

Adν(A),

s =

∫
M2×2

Vα(U,A)dν(A), r =

∫
M2×2

Vd(U,A)dν(A)

}
.

In this respect, we exploit that ν belongs to the class A�. First, from the volume
constraints (3.2)4, the measure ν has the following decomposition:

(3.3) ν = s(rνα,1 + (1 − r)να,0) + (1 − s)(rνβ,1 + (1 − r)νβ,0)
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with supp(νγ,λ) ⊂ Λγ,λ, γ = α, β, λ = 0, 1. Therefore, if we introduce

F γ,λ =

∫
Λγ,λ

Adνγ,λ, γ = α, β, λ = 0, 1,

then the first moment constraint (3.2)3 leads to the following expression:

(3.4) F = s(rFα,1 + (1 − r)Fα,0) + (1 − s)(rF β,1 + (1 − r)F β,0).

Now, from the property F γ,λ ∈ Λγ,λ, we have, for γ = α, β,

(3.5)

{
F γ,0

11 + F γ,0
22 = 0,

−F γ,0
21 − γF γ,0

12 = 0,
and

{
F γ,1

11 + F γ,1
22 = λ,

−F γ,1
21 − γF γ,1

12 = 0.

Substituting (3.5) into the system (3.4), we obtain a noncompatible system on F γ,λ

unless the condition

(3.6) F11 + F22 = rλ

holds. Assuming henceforth this compatibility condition, (3.4)–(3.6) lead to

(3.7)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fα,1
11 = c1, Fα,0

11 = c2, F β,0
11 = c3, Fα,1

12 = c4, F β,1
12 = c5,

F β,1
11 =

F11 − rsc1 − s(1 − r)c2 − (1 − s)(1 − r)c3
(1 − s)r

,

Fα,0
12 =

F21 + βF12 − (β − α)rsc4
(1 − r)s(β − α)

≡ f4(c4),

F β,0
12 =

−F21 − αF12 − (β − α)r(1 − s)c5
(1 − r)(1 − s)(β − α)

≡ f5(c5),

where ci ∈ R, i = 1, . . . , 5, are parameters.
On the other hand, if we take a matrix A = (aij)(1≤i,j≤2) ∈ Λγ,λ with γ = α, β

and λ = 0, 1, then the equality

detA = −A(1)M−γA
(1) − λA(1)e1

and the constraint on the commutation yield

(3.8)

detF =

∫
M2×2

detAdν(A)

= − S1 + λr(sFα,1
11 + (1 − s)F β,1

11 ) + αs(rSα,1 + (1 − r)Sα,0)

+ β(1 − s)(rSβ,1 + (1 − r)Sβ,0),

where

(3.9) Sγ,λ =

∫
Λγ,λ

a2
12dνγ,λ(A), γ = α, β, λ = 1, 0, S1 =

∫
M2×2

a2
11dν(A).

Similarly, the cost function can be written as
(3.10)∫
M2×2

W (U,A)dν(A) = S1 +aαs(rSα,1 +(1− r)Sα,0)+aβ(1− s)(rSβ,1 +(1− r)Sβ,0).
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Finally, using Jensen’s inequality, we obtain

(3.11) Sγ,λ =

∫
Λγ,λ

a2
12dνγ,λ ≥

∣∣∣∣∣
∫

Λγ,λ

a12dνγ,λ

∣∣∣∣∣
2

= |F γ,λ
12 |2

and

S1 ≥
∣∣∣∣
∫
M2×2

a11dν(A)

∣∣∣∣
2

= |F11|2.

As a conclusion, from (3.8), (3.10), (3.11), the polyconvexification problem (3.1) is
reduced to the following mathematical programming problem:

(MPP) min
(S1,Sγ,λ,ci)

S1 + aαs(rSα,1 + (1 − r)Sα,0) + aβ(1 − s)(rSβ,1 + (1 − r)Sβ,0)

subject to⎧⎪⎨
⎪⎩

detF = λr(sFα,1
11 + (1 − s)F β,1

11 ) − S1

+ αs(rSα,1 + (1 − r)Sα,0) + β(1 − s)(rSβ,1 + (1 − r)Sβ,0),

Sγ,λ ≥ (F γ,λ
12 )2, γ = α, β, λ = 0, 1; S1 ≥ (F11)

2.

The resolution of this problem leads to the following expression of CPW .
Proposition 3.2. The polyconvexification (3.1) is explicitly given by

(3.12) CPW (U,F, s, r) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

|F11|2 +
aα

s(β − α)2
|βF12 + F21|2

+
aβ

(1 − s)(β − α)2
|αF12 + F21|2

if ψ(F, s, r) = 0,

+∞ else,

where

(3.13)

ψ(F, s, r) = −detF − |F11|2 + λrF11 +
α

s(β − α)2
|βF12 + F21|2

+
β

(1 − s)(β − α)2
|αF12 + F21|2.

Proof. From (3.7), we obtain that

(3.14) r(sFα,1
11 + (1 − s)F β,1

11 ) = F11 − s(1 − r)c2 − (1 − s)(1 − r)c3.

Consequently, the problem is

min
(S1,Sγ,λ,ci)

S1 + aαs(rSα,1 + (1 − r)Sα,0) + aβ(1 − s)(rSβ,1 + (1 − r)Sβ,0)

subject to
(3.15)⎧⎪⎨
⎪⎩

detF = λ
(
F11 − s(1 − r)c2 − (1 − s)(1 − r)c3

)
− S1

+ αs(rSα,1 + (1 − r)Sα,0) + β(1 − s)(rSβ,1 + (1 − r)Sβ,0),

Sα,1 ≥ c24, Sβ,1 ≥ c25, Sα,0 ≥ f2
4 (c4), Sβ,0 ≥ f2

5 (c5), S1 ≥ (F11)
2.
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Since aα and aβ are positive, the minimum is obtained when the equalities hold in
(3.15)2 with a suitable choice of the constant c2 and c3 in (3.15)1. Therefore, the
minimum is

(3.16) |F 2
11| + aαs(rc

2
4 + (1 − r)f2

4 (c4)) + aβ(1 − s)(rc25 + (1 − r)f2
5 (c5)).

The minimization of (rc24 + (1 − r)f2
4 (c4)) with respect to c4 leads to

(3.17) c4 =
1

s(β − α)
(βF12 + F21) = Fα,1

12

and then

(3.18) (rc24 + (1 − r)f2
4 (c4)) =

(
1

s(β − α)
(βF12 + F21)

)2

= c24 = Sα,1.

Similarly, we obtain

(3.19) c5 = − 1

(1 − s)(β − α)
(αF12 + F21) = F β,1

12 .

Then, writing detF = F11F22 − F12F21 = −F 2
11 + λrF11 − F12F21 from (3.6), the

relation (3.15)1 becomes

λrF11 − F12F21 = λ

(
F11 − s(1 − r)c2 − (1 − s)(1 − r)c3

)
+

α

s(β − α)2
|βF12 + F21|2

+
β

(1 − s)(β − α)2
|αF12 + F21|2

and implies the equality λ(1 − r)F11 = λ(1 − r)(sc2 + (1 − s)c3), and then (sc2 +
(1 − s)c3) = F11. This leads to the expression of CPW . Moreover, note that since

c2 = Fα,0
11 and c3 = F β,0

11 , the relation F11 = sFα,0
11 + (1 − s)F β,0

11 implies

(3.20) Fα,0
11 = F β,0

11 = F11,

and then, from (3.15)2,

(3.21) Fα,1
11 = F β,1

11 = F11.

Remark 3.3. From (3.6), −detF − |F11|2 + λrF11 is simply F12F21 and
(3.22)

ψ(F, s, r) = F12F21 +
α

s(β − α)2
|βF12 + F21|2 +

β

(1 − s)(β − α)2
|αF12 + F21|2

=
1

s(1 − s)(β − α)2

[
F21 + F12(αs + β(1 − s))

][
αβF12 + F21(α(1 − s) + βs)

]

does not depend explicitly on r.

The polyconvexification CPW gives a lower bound of the constrained quasi con-
vexification. In the next section, we prove that this bound is in fact attained.
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Fig. 3.1. Geometrical decomposition of F .

3.2. Upper bound: Searching laminates. In order to prove that the lower
bound given by the polyconvexification is in fact the optimal value, we now search a
measure ν in the class A� of laminates which recover it. Precisely, we exhibit a ν with
the decomposition (3.3) and first moment F which satisfies a rank one condition.

First, from the optimality conditions (3.5), (3.17), (3.21) and the strict convexity
of the square function, we deduce that

ν(11) = δF11
and ν

(12)
γ,λ = δFγ,λ

12
,

and therefore

νγ,λ = δFγ,λ with γ = α, β, λ = 0, 1,

where the matrices F γ,λ are

F γ,1 =

(
F11 yγ
−γyγ −F11 − λ

)
, F γ,0 =

(
F11 yγ
−γyγ −F11

)

with γ = α, β and

(3.23) yα ≡ 1

s(β − α)
(βF12 + F21), yβ ≡ −1

(1 − s)(β − α)
(αF12 + F21).

The unique possible measure ν which admits the decomposition (3.3) is then
(geometrically; see Figure 3.1)

(3.24) ν = s(rδFα,1 + (1 − r)δFα,0) + (1 − s)(rδFβ,1 + (1 − r)δFβ,0).

Let us now check that ν is actually a laminate; i.e., we check that there is a rank one
connection between the support of deltas. On the one hand, for γ = α, β, the relation

F γ,1 − F γ,0 =

(
0 0
0 −λ

)
= b⊗ e2 with b = (0,−λ), e2 = (0, 1)
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indicates that the direction of lamination of the set of damping has to be with normal
e2. On the other hand, the relation

(3.25)
(rFα,1 + (1 − r)Fα,0) − (rF β,1+(1 − r)F β,0) =

(
0 yα − yβ

βyβ − αyα 0

)
= (0, yα − yβ) ⊗ e1 + (αyα − βyβ , 0) ⊗ e2

implies that ν is a laminate if and only if

det

(
0 yα − yβ

βyβ − αyα 0

)
= 0 ⇐⇒ (yα − yβ)(βyβ − αyα) = 0.

Furthermore, from (3.22) and (3.23), we obtain that

(3.26) ψ(F, s, r) = s(1 − s)(αyα − βyβ)(yα − yβ).

Consequently, the above rank one condition is equivalent to ψ(F, s, r) = 0, which is
precisely the necessary condition for the polyconvexification to be finite (see Proposi-
tion 3.2). We then conclude that ν is a first order laminate, i.e., belongs to the class
A�. Then, we remark that the conditions yα − yβ = 0 and αyα − βyβ = 0 are not
compatible because they imply yα = yβ = 0 and then F12 = F21 = 0. We conclude
that the direction of lamination of the α or β material is e2 = (0, 1) if yα − yβ = 0 or
e1 = (1, 0) if βyβ − αyα = 0.

In conclusion, for the measure (3.24), the quasi convexification CQW defined by
(2.9) coincides with CPW . Moreover, this provides an explicit expression of the full
relaxation problem (2.11) stated in the following paragraph.

3.3. Well-posed full relaxation (RP). From Proposition 3.2 and by setting
λ = −d(x)U (1)(t, x) = −d(x)u(t, x) and F = ∇U in (3.6), we obtain that the opti-
mization problem

(3.27) (RP) min
U,s,r

Î (U) =

∫ T

0

∫
Ω

CQW (t, x, U(t, x),∇U(t, x), s(t, x), r(x)) dxdt

subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U = (u, v) ∈ (H1([0, T ] × Ω))2, ψ(t, x,∇U(t, x), s(t, x), r(x)) = 0,

ut + vx = d(x)r(x)u(t, x) in Ω × (0, T ),

U (1)(0, x) = u0(x), U
(1)
t (0, x) = u1(x) in Ω,

U (1) = 0 in ∂Ω × [0, T ],

0 ≤ s(t, x) ≤ 1,

∫
Ω

s(t, x) dx ≤ Lα|Ω| ∀t ∈ [0, T ],

0 ≤ r(x) ≤ 1,

∫
Ω

r(x) dx ≤ Ld|Ω|,

where
(3.28)

CQW (U,F, s, r) = |F11|2 +
aα

s(β − α)2
|βF12 + F21|2 +

aβ
(1 − s)(β − α)2

|αF12 + F21)|2
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and
(3.29)

ψ(F, s, r) = −detF − |F11|2 + λrF11 +
α

s(β − α)2
|βF12 + F21|2

+
β

(1 − s)(β − α)2
|αF12 + F21|2

for any

F =

(
F11 F12

F21 F22

)
, s, r ∈ R,

is a full well-posed relaxation of (VP) in the following sense.
Theorem 3.4. The variational problem (RP) is a relaxation of the initial opti-

mization problem (VP) in the sense that
(a) the infima of both problems coincide;
(b) there are optimal solutions for the relaxed problem;
(c) these solutions codify (in the sense of the Young measures) the optimal micro-

structures of the original optimal design problem (see Theorem 3.5).
Moreover, we can compute explicitly optimal microstructures, as follows.
Theorem 3.5. Optimal Young measures leading to the relaxed formulation are

always first order laminates, which can be given in a completely explicit form:
• for the damping case the optimal microstructures are

(3.30) r(x)δ1 + (1 − r(x))δ0

with normal direction of lamination e2 = (0, 1);
• for the material case, the optimal microstructures are always

(3.31) s(x, t)δα + (1 − s(x, t))δβ

with normal direction of lamination e2 = (0, 1) (if yα− yβ = 0) or e1 = (1, 0)
(if αyα − βyβ = 0), depending on each point.

Remark 3.6.

• The direction of lamination of the set of damping equal to e2 = (0, 1) is in
full agreement with the time independence of the subset ω2, support of the
dissipative term.

• It is interesting to note the influence of the damping term Xω2d(x)ut on the
order of the laminates associated with the optimal Young measure. Without
this damping term (i.e., when ω2 = ∅), the analysis of the relaxation of (P)
(see [20]) reveals that the constrained quasi convexification is recovered by
either first- or second order laminates, obtained when ψ(∇U, s) ≤ 0 and
ψ(∇U, s) > 0, respectively. Here, even for arbitrarily small positive value of
||d||L∞(Ω) or |ω2|, the optimal laminates are always of first order, obtained
on the set ψ(∇U, s) = 0. This clearly highlights the smoother effect of this
term.

4. Interpretation of the relaxed problem (RP) in terms of u. The quasi-
convexified density depends on the gradient of U , verifies pointwise constraints, and
may take the value +∞ abruptly. For these reasons, the numerical approximation of
the problem (RP) is not standard and is a priori tricky. In this section, taking advan-
tage of the compatibility conditions, we analyze more deeply the relaxed formulation
(RP) and eliminate the auxiliary variable v = U (2) introduced in section 2.
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From the relation (3.26), the set {F ;ψ(F, s) = 0} is decomposed into two disjoint
sets, {F ; yα − yβ = 0} and {F ;αyα − βyβ = 0}. Then, noticing that

(4.1)

⎧⎨
⎩

yα − yβ = 0 ⇐⇒ F21 + F12(αs + β(1 − s)) = 0,

αyα − βyβ = 0 ⇐⇒ F21 + F12
1

α−1s + β−1(1 − s)
= 0,

we may eliminate the variable F21 (i.e., vt) and write the quasi-convexified in terms
of F11 and F12 only, as follows:

(4.2) CQW (U,F, s, r) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|F11|2 + (aαs + aβ(1 − s))|F 2
12| if yα − yβ = 0,

|F11|2 +
aαβ2s+aβα

2(1−s)
(α(1−s)+βs)2 |F 2

12| if αyα − βyβ = 0,

+∞ else.

We can now invoke the following lemma (we refer to [12] for the proof).
Lemma 4.1. For all s ∈ (0, 1) and 0 < α < β, we have

(4.3)

aβ
aα

≤ 2β

α + β
=⇒ aαs + aβ(1 − s) ≤ aαβ

2s + aβα
2(1 − s)

(α(1 − s) + βs)2
,

aβ
aα

≥ α + β

2α
=⇒ aαs + aβ(1 − s) ≥ aαβ

2s + aβα
2(1 − s)

(α(1 − s) + βs)2
.

We are thus led to introducing the following problem:

(4.4) (R̃P) : inf
s,r

Ĩ(s, r) =

∫ T

0

∫
Ω

(
ut(t, x)2 + G(s)ux(t, x)2

)
dxdt

subject to

(4.5)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

utt −∇x(H(s)ux) + d(x)r(x)ut = 0 in (0, T ) × Ω,

u = 0 on (0, T ) × ∂Ω,

u(0, x) = u0(x), ut(0, x) = u1(x) in Ω,

0 ≤ s(t, x) ≤ 1,
∫
Ω
s(t, x) dx ≤ Lα|Ω| in [0, T ] × Ω,

0 ≤ r(x) ≤ 1,
∫
Ω
r(x) dx ≤ Ld|Ω| in Ω,

where

(4.6) G(s) = aαs + aβ(1 − s), H(s) = αs + β(1 − s) if
aβ
aα

≤ 2β

α + β
,

and
(4.7)

G(s) =
aαβ

2s + aβα
2(1 − s)

(α(1 − s) + βs)2
, H(s) =

1

α−1s + β−1(1 − s)
if

aβ
aα

≥ α + β

2α
.

We assume henceforth that the positive functions aα and aβ fulfill, for all x ∈ Ω,
either the property aβ/aα ≤ 2β/(α + β) or aβ/aα ≥ (α + β)/2α.
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Problem (R̃P) with (4.6) (resp., (4.7)) is obtained from (RP) assuming that CQW
is given by (4.2)1 (resp., (4.2)2), then putting F = ∇U and λ = −d(x)u(t, x), and
finally by eliminating the auxiliary variable v. Note that in the first case, H is the
arithmetic mean of (α, β), while in the second case, H is the harmonic mean.

Moreover, one cannot affirm, a priori, that problem (R̃P) is equivalent to (RP)
because the pair U = (u, v) which solves (RP) does not necessarily fulfill for all
(t, x) ∈ (0, T ) × Ω the relation vt + ux(αs + β(1 − s)) = 0 (i.e., yα − yβ = 0; see (4.1)
with F = ∇U) or for all (t, x) the relation vt + ux(α−1s + β−1(1 − s))−1 = 0 (i.e.,
αyα−βyβ = 0). However, we may conjecture this equivalence thanks to the following
property.

Lemma 4.2. The equality inf(R̃P) = min(RP) holds.
Proof. Let us consider the first case in Lemma 4.1, i.e., aα/aβ ≤ 2β/(α + β),

leading to the arithmetic situation (4.6). In this case, (R̃P) is simply derived from
(VP) by replacing the set of characteristic functions Xω1 ∈ L∞((0, T ) × Ω, {0, 1}) by

the larger set of density functions s ∈ L∞((0, T ) × Ω, (0, 1)). Therefore inf(R̃P) ≤
inf(VP), and the conclusion follows from min(RP) = inf(VP) (see Theorem 2.2) and

min(RP) ≤ inf(R̃P). In the harmonic situation, we obtain the result using the same
arguments and Lemma 4.1.

We have transformed the problem (RP) into the problem (R̃P), where the auxil-
iary variable v does not occur anymore and is much easier to solve numerically. We
observe, however, that, since (R̃P) is not convex, one cannot ensure the existence of

solutions. The next section aims at investigating the numerical resolution of (R̃P).

5. Numerical analysis of the relaxed problem. We address in this sec-
tion the numerical resolution of the problem (R̃P) in the quadratic case for which
(aα, aβ) = (1, 1) and in the compliance case for which (aα, aβ) = (α, β). We first
describe an algorithm of minimization and then present some numerical experiments.
In order to simplify the presentation, we replace the volume constraint inequalities
(4.5)4 and (4.5)5 by constraint equalities.

5.1. Algorithm of minimization. We present the resolution of the relaxed
problem (R̃P) using a gradient descent method. In this respect, we compute the first
variation of the cost function with respect to s and r.

For any η ∈ R
+, η � 1, and any s1 ∈ L∞((0, T ) × Ω), we associate with the

perturbation sη = s + ηs1 of s the derivative of Ĩ with respect to s in the direction
s1 as follows:

∂Ĩ(s, r)

∂s
· s1 = lim

η→0

Ĩ(s + ηs1, r) − Ĩ(s, r)

η
.

Theorem 5.1. If (u0, u1) ∈ (H2(Ω) ∩H1
0 (Ω)) ×H1

0 (Ω), then the first derivative

of Ĩ with respect to s in any direction s1 exists and takes the form

(5.1)
∂Ĩ(s, r)

∂s
· s1 =

∫ T

0

∫
Ω

(
G,s(s)u

2
x + H,s(s)uxpx

)
s1 dxdt,

where u is the solution of (4.5) and p is the solution in C1([0, T ];H1
0 (Ω))∩

C1([0, T ];L2(Ω)) of the adjoint problem

(5.2)

⎧⎪⎨
⎪⎩

ptt −∇x(H(s)px) − d(x)r(x)pt = utt + ∇x(G(s)ux) in (0, T ) × Ω,

p = 0 on (0, T ) × ∂Ω,

p(T, x) = 0, pt(T, x) = ut(T, x) in Ω.
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Similarly, the first derivative of Ĩ with respect to r in any direction r1 ∈ L∞(Ω) is
given by

(5.3)
∂Ĩ(s, r)

∂r
· r1 =

∫
Ω

d(x)r1(x)

∫ T

0

ut(t, x)p(t, x)dtdx.

Proof. We introduce the Lagrangian

L(s, φ, ψ) =

∫ T

0

∫
Ω

(φ2
t + G(s)φ2

x) dxdt +

∫ T

0

∫
Ω

[
φtt −∇x(H(s)φx) + d(x)rφt

]
ψ dxdt

for any s ∈ L∞((0, T ) × Ω), φ ∈ C([0, T ];H2(Ω) ∩ H1
0 (Ω)) ∩ C1([0, T ];H1

0 (Ω)), and
ψ ∈ C([0, T ];H1

0 (Ω)) ∩ C1([0, T ];L2(Ω)) and then write formally that

dL
ds

· s1 =
∂

∂s
L(s, φ, ψ) · s1 +

〈
∂

∂φ
L(s, φ, ψ),

∂φ

∂s
· s1

〉
+

〈
∂

∂ψ
L(s, φ, ψ),

∂ψ

∂s
· s1

〉
.

The first term is

(5.4)
∂

∂s
L(s, φ, ψ) · s1 =

∫ T

0

∫
Ω

(
G,s(s)φ

2
x + H,s(s)φxψx

)
s1 dxdt

for any s, φ, ψ, whereas the third term is equal to zero if φ = u is the solution of (4.5).
We then determine the solution p so that, for all φ ∈ C([0, T ];H2(Ω) ∩ H1

0 (Ω)) ∩
C1([0, T ];H1

0 (Ω)), we have 〈
∂

∂φ
L(s, φ, p),

∂φ

∂s
· s1

〉
= 0,

which leads to the formulation of the adjoint problem (5.2). Next, writing that Ĩ(s) =
L(s, u, p), we obtain (5.1) from (5.4). The relation (5.3) is obtained in a similar
way.

In order to take into account the volume constraint on s and r, we introduce the
Lagrange multipliers γs ∈ L∞((0, T ); R), γr ∈ R and the functional

Ĩγ(s, r) = Ĩ(s, r) +

∫ T

0

γs(t)

∫
Ω

s(t, x)dxdt + γr

∫
Ω

r(x)dx.

Using Theorem 5.1, we then obtain easily that the first derivatives of Ĩγ are

∂Ĩγ(s, r)

∂s
· s1 =

∫ T

0

∫
Ω

(G,s(s)u
2
x + H,s(s)uxpx)s1 dxdt +

∫ T

0

γs(t)

∫
Ω

s1dxdt,

∂Ĩγ(s, r)

∂r
· r1 =

∫
Ω

d(x)r1(x)

∫ T

0

utp dxdt + γr

∫
Ω

r1(x)dx,

which lets us define the following descent directions, respectively:

(5.5) s1(t, x) = −(G,s(s)u
2
x + H,s(s)uxpx + γs(t)) ∀(t, x) ∈ (0, T ) × Ω,

and

(5.6) r1(t, x) = −
(
d(x)

∫ T

0

ut(t, x)p(t, x)dt + γr

)
∀x ∈ Ω.
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Consequently, for any function ηs ∈ L∞(Ω × (0, T ),R+) with ||ηs||L∞((0,T )×Ω)

small enough, we have Ĩγ(s + ηss1, r) ≤ Ĩγ(s, r). The multiplier function γs is then
determined so that, for any function ηs ∈ L∞((0, T )×Ω,R+), ||s+ηss1||L1(Ω) = Lα|Ω|
for all t ∈ (0, T ), leading to

(5.7) γs(t) =
(
∫
Ω
s(t, x)dx− Lα|Ω|) −

∫
Ω
ηs(t, x)(G,s(s)u

2
x + H,s(s)uxpx) dx∫

Ω
ηs(t, x)dx

.

Finally, the function ηs is chosen so that s + ηs1 ∈ [0, 1] for all (t, x) ∈ (0, T ) × Ω.
A simple and efficient choice consists of taking ηs(t, x) = εs(t, x)(1 − s(t, x)) for all
(t, x) ∈ (0, T ) × Ω with ε small and positive.

Similarly, the choice

(5.8) γr =
(
∫
Ω
r(x)dx− Ld|Ω|) −

∫
Ω
ηr(x)d(x)

∫ T

0
ut(t, x)p(t, x) dtdx∫

Ω
ηr(x)dx

with ηr(x) = εr(x)(1 − r(x)) for all x ∈ Ω permits us to ensure the condition ||r +
ηrr1||L1(Ω) = Ld|Ω|.

The descent algorithm to solve numerically the relaxed problem (R̃P) may be
structured as follows.

Let Ω ⊂ R, (u0, u1) ∈ (H2(Ω)∩H1
0 (Ω))×H1

0 (Ω), Lα, Ld ∈ (0, 1), T > 0, 0 < α <
β, aβ , aα ∈ L∞((0, T ) × Ω; R�

+), and ε < 1, ε1 � 1 be given;
• Initialization of the densities s0 ∈ L∞((0, T ×Ω; ]0, 1[) and r0 ∈ L∞(Ω; ]0, 1[);

• For k ≥ 0, iteration until convergence (i.e., |Ĩγ(sk+1, rk+1) − Ĩγ(sk, rk)| ≤
ε1|Ĩγ(s0, r0)|) as follows:

– Compute the solution usk,rk of (4.5) and then the solution psk,rk of (5.2),
both corresponding to (s, r) = (sk, rk).

– Compute the descent direction sk1 defined by (5.5), where the multi-
plier γk is defined by (5.7). Similarly, compute the descent direction rk1
defined by (5.6), where the multiplier γk is defined by (5.8).

– Update the density sk in (0, T ) × Ω and the density rk in Ω:

sk+1 = sk + εsk(1 − sk)sk1 , rk+1 = rk + εrk(1 − rk)rk1

with ε ∈ R
+ small enough to ensure the decrease of the cost function,

sk+1 ∈ L∞((0, T ) × Ω, [0, 1]) and rk+1 ∈ L∞(Ω, [0, 1]).

5.2. Numerical experiments. In this section, we present some numerical sim-
ulations for Ω = (0, 1) in the quadratic case—(aα, aβ) = (1, 1)—and in the compliance
case—(aα, aβ) = (α, β). Recalling the assumption 0 < α < β, these two cases fall into
the arithmetic (see (4.6)) and harmonic (4.7) cases, respectively. From a numerical
viewpoint, we highlight that the numerical resolution of the descent algorithm is a
priori delicate in the sense that the descent direction depends on the derivative of
u and p, both solutions of a wave equation with space and time coefficients only in
L∞((0, T ) × Ω; R�

+). To the knowledge of the authors, there does not exist any nu-
merical analysis for this kind of equation. We use a C0-finite element approximation
for u and p with respect to x and a finite difference centered approximation with
respect to t. Moreover, we add a vanishing viscosity and dissipative term of the type
(β − α)ε2div(H(s)uxtt) with ε of order h—the space discretization parameter. This
term has the effect of regularizing the descent term (5.5) and leading to a conver-
gent algorithm. Finally, this provides an implicit and unconditionally stable scheme,
consistent with (4.5) and (5.2), and of order two in time and space.
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Fig. 5.1. (aα, aβ) = (α, β). Optimal density slim on (0, T ) × Ω for (α, β, d) = (1, 1.1, 1) (top
left), (α, β, d) = (1, 1.1, 10) (top right), (α, β, d) = (1, 4, 1) (bottom left), and (α, β, d) = (1, 4, 10)
(bottom right).

In what follows, we treat the following simple and smooth initial conditions on
Ω = (0, 1):

(5.9) u0(x) = sin(πx), u1(x) = 0,

and α = 1. Results are obtained with h = Δt = 10−2 (Δt designates the time
discretization parameter), ε1 = 10−5, Lα = 2/5, Ld = 1/5, T = 1, s0(t, x) = Lα on
[0, T ] × Ω, r0(x) = Ld on Ω, and ε = 10−2 (see the algorithm).

We highlight that the gradient algorithm may lead to local minima of Ĩ with
respect to s and r. For this reason, we consider constant initial density s0 and r0 as
indicated above, which does not privilege any location for ω1 and ω2.

We discuss the result obtained with respect to the value of β and of the damping
function d(x) = dXΩ assumed constant in Ω: precisely, for (β, d) = (1.1, 1), (β, d) =
(1.1, 10), (β, d) = (4, 1), and (β, d) = (4, 10).

5.2.1. The compliance case—(aα, aβ) = (α, β). The compliance choice is
the most usual one, because the corresponding cost function I (see (1.3)) coincides
with the energy of the vibrating membrane described by system (1.1). This case falls
into the harmonic situation (4.7), G(s) = H(s) = (α−1s + β−1(1 − s))−1, and we
get easily that G,s(s) = (α − β)G2(s)/(αβ). We present some results obtained with
the following data: Figures 5.1 and 5.2 depict the iso-values of the optimal density
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Fig. 5.2. (aα, aβ) = (α, β). Solid line: Optimal density rlim for (α, β, d) = (1, 1.1, 10) (left) and

(α, β, d) = (1, 4, 10) (right). Dashed line: Optimal density rlim = X[0.4,0.6] for (α, β, d) = (1, 1.1, 1)
and (α, β, d) = (1, 4, 1).

slim and rlim, respectively (obtained at the convergence of the descent algorithm). In
agreement with [20] (case ω2 = ∅) and [22] (case ω1 = ∅), results depend qualitatively
on the gap β − α and d. When β − α and d are small enough (function of the data
of the problem), here (α, β, d) = (1, 1.1, 1), we observe that the optimal densities

are characteristic functions. In this case, problem (R̃P) coincides with the original
problem (P) (we check that when slim ∈ L∞((0, T )×Ω, {0, 1}), i.e., slim = Xω1 , then
H(slim) = αslim+β(1−slim) = αXω1 +β(1−Xω1)). The original problem is therefore
well posed in the class of characteristic function: Xω1

= slim ∈ L∞((0, T )×Ω; {0, 1})
and Xω2 = rlim ∈ L∞(Ω; {0, 1}).

Precisely, rlim = X[1/2−Ld/2,1/2+Ld/2] = X[0.4,0.6], and the optimal position for the
damping zone is—as expected according to the symmetry of u0—the centered one:
ω2 = [0.4, 0.6]. Moreover, the optimal distribution of (α, β)-material is time dependent
(see Figure 5.1(top left)), and we observe that the weaker material α (black zone on
the figure) is located, for each time t, on the point (x, t) where the amplitude of u(x, t)
is the lowest: on the extremities of Ω at time t = 0, and on the middle at time t ≈ 0.5.

If now we consider a larger gap β − α, for instance (α, β, d) = (1, 4, 1), the limit
density slim is no longer a characteristic function and takes values in (0, 1), highlight-
ing microstructure (Figure 5.1(bottom left)). This suggests that the initial problem
(P) is not well posed in the class of characteristic functions and does not coincide with

the relaxed problem (R̃P). This also fully justifies the search and introduction of a
relaxed well-posed formulation. We observe also that this gap is not enough larger to
influence the density rlim: we still have rlim = X[0.4,0.6].

Similarly, when we increase the value of the damping function d (and therefore
the dissipation of the system), the limit density rlim is no longer a characteristic
function (see Figure 5.2 for (α, β, d) = (1, 1.1, 10) (left) and (α, β, d) = (1, 4, 10)
(right)) but remains symmetric with respect to x = 1/2. The optimal domain is no
longer the centered position but an infinite union of disjoint intervals (see section
5.2.3). This damping term with d = 10 changes significantly the dynamic of u and
perturbs the optimal dynamical distribution of (α, β)-material (see Figure 5.1(right)).
For (α, β, d) = (1, 1.1, 10), the function slim remains a characteristic function.

Finally, we plot the integrand of the cost function Ĩ, i.e., the energy E(t) ≡∫
Ω
(|ut|2 + G(slim)|ux|2)dx with respect to time (Figure 5.3). Although the system is



DESIGN PROBLEM FOR THE WAVE EQUATION 127

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

t

(alpha,beta,d)=(1,1.1,1)
(alpha,beta,d)=(1,4,1)
(alpha,beta,d)=(1,1.1,10)
(alpha,beta,d)=(1,4,10)

Fig. 5.3. (aα, aβ) = (α, β). Evolution of
∫
Ω(|ut|2 + G(slim)|ux|2)dx versus t ∈ [0, T ].

not necessarily dissipative when ω2 = ∅—we have the relation

(5.10)

dE(t)

dt
= 2

∫
Ω

Ht(s)u
2
xdx− 2

∫
Ω

d(x)r(x)u2
tdx

= 2αβ(α− β)

∫
Ω

st
(α(1 − s) + βs)2

u2
xdx− 2

∫
Ω

d(x)r(x)u2
tdx

—we observe that the optimal (α, β)-distribution leads to a dissipative system and
that the dissipation is monotonous with respect to (β − α).

5.2.2. The quadratic case—(aα, aβ) = (1, 1). This case falls in the arith-

metic situation (see (4.6)), and the relaxed problem (R̃P) is then simply derived from
the original one by replacing (Xω1 ,Xω2) by (s, r).

Once again, the optimal distribution of (α, β) and damping material strongly de-
pends on the gap of the coefficients. Moreover, the numerical results still suggest that
the original problem is not well posed if these gaps exceed critical values depending
on the data (see Figure 5.4). The main difference with respect to the compliance case
is observed for (α, β, d) = (1, 4, 10): it appears that the density rlim is a characteristic
function: rlim = X[0.4,0.6] (see Figure 5.5). A greater value of d (for instance, d = 15)
is necessary to obtain values in (0, 1). This phenomenon is due to the dissipative effect
of the optimal (α, β)-distribution and highlights the interaction between s and r (or
equivalently between ω1 and ω2).

Contrary to the compliance case where the density varies somewhat smoothly (see
Figure 5.1), we observe in the bottom two panels in Figure 5.4 some high oscillations
of the optimal density s with respect to both t and x (especially with (α, β, d) =
(1, 4, 10)). Due to the nonconvexity of the functional Ĩ(s, r) with respect to s in
the quadratic case, we recall that we do not know a priori whether the problem
(R̃P) defined by (4.4) is well posed: we can only ensure that inf(R̃P) = min(RP)
(Lemma 4.2). The situation is different in the compliance case because Ĩ is convex.

Therefore, these oscillations may be related to the possible ill-posedness of (R̃P).
These oscillations may also be caused, at least partially, by the numerical sensitivity
of the approximation, as discussed above. Figure 5.6 depicts the evolution of the
energy for the different values of α, β, and d.
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Fig. 5.4. (aα, aβ) = (1, 1). Optimal density slim(t, x) on Ω×(0, T ) for (α, β, d) = (1, 1.1, 1) (top
left), (α, β, d) = (1, 1.1, 10) (top right), (α, β, d) = (1, 4, 1) (bottom left), and (α, β, d) = (1, 4, 10)
(bottom right).
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Fig. 5.5. (aα, aβ) = (1, 1). Solid line: Optimal density rlim for (α, β, d) = (1, 1.1, 10). Dashed

line: Optimal density rlim = X[0.4,0.6] for (α, β, d) = (1, 1.1, 1), (α, β, d) = (1, 4, 1), and (α, β, d) =
(1, 4, 10).

5.2.3. Extraction of a minimizing sequence (Xωk
1
,Xωk

2
) from the opti-

mal density (slim, rlim). Once we have the optimal microstructure of the (α, β)-
material and damping material codified by the optimal density s and r, it remains
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Fig. 5.6. (aα, aβ) = (1, 1). Evolution of
∫
Ω(|ut|2 + G(slim)|ux|2)dx versus t ∈ [0, T ].

(from a practical viewpoint) to extract from (slim, rlim), a sequence of characteristic

functions (Xωk
1
,Xωk

2
) such that limk→∞ Ĩ(Xωk

1
,Xωk

2
) = Ĩ(slim, rlim).

Recalling that rlim(x) is the volume fraction of the damping material at point
x, we proceed as follows. Let us decompose the interval Ω into M > 0 nonempty
subintervals such that Ω = ∪j=1,M [xj , xj+1]. Then, we associate with each interval
[xj , xj+1] the mean value mj ∈ [0, 1] defined by

(5.11) mj =
1

xj+1 − xj

∫ xj+1

xj

rlim(x)dx

and the division into two parts

(5.12) [xj , (1 −mj)xj + mjxj+1] ∪ [(1 −mj)xj + mjxj+1, xj+1].

Finally, we introduce the function rpenM in L∞(Ω, {0, 1}) by

(5.13) rpenM (x) =

M∑
j=1

X[xj ,(1−mj)xj+mjxj+1](x).

We easily check that ||rpenM ||L1(Ω) = ||rlim||L1(Ω) for all M > 0. The bivalued function

rpenM takes more advantage of the information codified in the density rlim. Similarly,
using that s(t, x) is the volume fraction of the α-material at point (t, x), we associate
with slim a sequence of bivalued functions spenN ∈ L∞((0, T ) × Ω, {0, 1}) (see [20]).

For (α, β, d) = (1, 4, 10) and (aα, aβ) = (α, β), Figure 5.7 represents the function
rpenM=30 associated with the density rlim of Figure 5.2(right). Similarly, Figure 5.8
represents the function spenN=30 associated with the optimal density slim of Figure

5.1(bottom right). Finally, we report in Table 5.1 values of Ĩ(spenN , rpenM ) for several

values of N and M . For M = N = 40, we obtain Ĩ(spen40 , rpen40 ) ≈ 2.9803 which is very
near from the minimal value I(slim, rlim) ≈ 2.9116. These numerical results suggest
the efficiency of this procedure to build optimal domains ω1, ω2 composed of a finite
number of disjoints components and arbitrarily near the optimal distributions.
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Fig. 5.7. (aα, aβ) = (α, β). Characteristic function associated with the optimal density rlim

for (α, β, d) = (1, 4, 10). Ĩ(slim, rlim) ≈ 2.9116. Ĩ(slim, rpenM=30) ≈ 3.0360.
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Fig. 5.8. (aα, aβ) = (α, β). Characteristic function associated with the optimal density slim

for (α, β, d) = (1, 4, 10). Ĩ(slim, rlim) ≈ 2.9116. Ĩ(spenN=30, r
lim) ≈ 3.0755.

Table 5.1

(aα, aβ) = (α, β). (α, β, d) = (1, 4, 10)—Value of the cost function Ĩ(spenN , rpenM ) for M,N ∈
{10, 20, 30, 40}.

N\M 10 20 30 40

10 5.6181 5.2869 4.7629 4.4181
20 5.0940 4.4721 4.0761 3.6712
30 4.4910 3.8931 3.4612 3.1321
40 4.2192 3.4821 3.0712 2.9803
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6. Concluding remarks and perspectives. We have analyzed the response of
a 1-D damped string with respect to the spatio-temporal distribution of its longitudi-
nal stiffness. The relaxed formulation highlights the smoothing effect of the damping
term on the optimal spatio-temporal layout. Moreover, the numerical experiments in-
dicate the strong dependence of the optimal distribution on the initial data (u0, u1).
In order to get free of this dependence, it would be interesting to consider, for instance,
an inf-sup problem of the form

(6.1) inf
Xω1

,Xω2

sup
(u0,u1)∈H1

0 (Ω)×L2(Ω)

I(Xω1
,Xω2

, u0, u1),

where I designates the cost function (1.3). Another approach may consist of averaging
the cost function over all initial data of unit energy (we refer to [10] in a similar con-
text). Finally, at the numerical level, it seems important to investigate the numerical
approximation of the fully relaxed problem (RP) and compare it with the simplified

formulation (R̃P). These aspects will be addressed in the near future.
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[26] P. Pedregal, Vector variational problems and applications to optimal design, ESAIM Control

Optim. Calc. Var., 15 (2005), pp. 357–381.
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Abstract. We study a spatially explicit harvesting model in periodic or bounded environ-
ments. The model is governed by a parabolic equation with a spatially dependent nonlinearity of
Kolmogorov–Petrovsky–Piskunov type, and a negative external forcing term −δ. Using sub- and
supersolution methods and the characterization of the first eigenvalue of some linear elliptic oper-
ators, we obtain existence and nonexistence results as well as results on the number of stationary
solutions. We also characterize the asymptotic behavior of the evolution equation as a function of
the forcing term amplitude. In particular, we define two critical values δ∗ and δ2 such that, if δ
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for studying the relationships between environmental fragmentation and maximum sustainable yield
from populations. We present numerical results in the case of stochastic environments.
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1. Introduction. Overexploitation has led to the extinction of many species [4].
Traditionally, models of ordinary differential equations (ODEs) or difference equations
have been used to estimate the maximum sustainable yields from populations and to
perform quantitative analysis of harvesting policies and management strategies [17].
Ignoring age or stage structures as well as delay mechanisms, which will not be treated
by the present paper, the ODEs models are generally of the type

(1.1)
dU

dt
= F (U) − Y (U),

where U is the population biomass at time t, F (U) is the growth function, and Y (U)
corresponds to the harvest function. In these models, the most commonly used growth
function is logistic, with F (U) = U(μ − νU) (see [5], [25], [35]), where μ > 0 is the
intrinsic growth rate of the population and ν > 0 models its susceptibility to crowding
effects.

Different harvesting strategies Y (U) have been considered in the literature and
are used in practical resource management. A very common one is the constant-yield
harvesting strategy, where a constant number of individuals are removed per unit
of time: Y (U) = δ, with δ a positive constant. This harvesting function naturally
appears when a quota is set on the harvesters [31], [32], [38]. Another frequently used
harvesting strategy is the proportional harvesting strategy (also called constant-effort
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harvesting), where a constant proportion of the population is removed. It leads to a
harvesting function of the type Y (U) = δU .

Much less has been done in this field using reaction-diffusion models (but see [23],
[26], [29]). The aim of this paper is to perform an analysis of some harvesting models,
within the framework of reaction-diffusion equations.

One of the most celebrated reaction-diffusion models was introduced by Fisher [15]
and Kolmogorov, Petrovsky, and Piskunov [22] in 1937 (we call it the Fisher-KPP
model). Since then, it has been widely used to model spatial propagation or spreading
of biological species into homogeneous environments (see books [25], [28], and [40] for
a review). The corresponding equation is

(1.2) ut = D∇2u + u(μ− νu),

where u = u(t, x) is the population density at time t and space position x, D is the
diffusion coefficient, and μ and ν still correspond to the constant intrinsic growth
rate and susceptibility to crowding effects. In the 1980s, this model was extended
to heterogeneous environments by Shigesada, Kawasaki, and Teramoto [37]. The
corresponding model (which we call the SKT model in this paper) is of the type

(1.3) ut = D∇2u + u(μ(x) − ν(x)u).

The coefficients μ(x) and ν(x) now depend on the space variable x and can there-
fore include some effects of environmental heterogeneity. More recently, this model
revealed that the heterogeneous character of the environment plays an essential role
in species persistence, in the sense that for different spatial configurations of the envi-
ronment a population can survive or become extinct, depending on the habitat spatial
structure [8], [12], [34], [36].

As mentioned above, the combination of a harvesting model with a Fisher-KPP
population dynamics model, leading to an equation of the form ut = D∇2u + u(μ−
νu)−Y (x, u), has been considered in recent papers, either using a spatially dependent
proportional harvesting term Y (x, u) = q(x)u in [26], [29], or a spatially dependent
and time-constant harvesting term Y (x) = h(x) in [23]. In these papers, the models
were considered in bounded domains with Dirichlet (lethal) boundary conditions.

Here we study a population dynamics model of the SKT type, with a spatially
dependent harvesting term Y (x, u):

(1.4) ut = D∇2u + u(μ(x) − ν(x)u) − Y (x, u).

We mainly focus on a “quasi-constant-yield” case, where the harvesting term depends
on u only for very low population densities (ensuring the nonnegativity of u). We
consider two types of domains and boundary conditions. In the first case, the domain
is bounded with Neumann (reflective) boundary conditions; this framework is often
more realistic for modeling species that cannot cross the domain boundary. In the
second case, we consider the model (1.4) in the whole space R

N with periodic coef-
ficients. This last situation, though technically more complex, is useful, for instance,
for studying spreading phenomena [7], [9], and for studying the effects of environmen-
tal fragmentation, independently of the boundary effects. Lastly, note that the effects
of variability in time of the harvesting function will be investigated in a forthcoming
publication [13].

In section 2, we define a quasi-constant-yield harvesting reaction-diffusion model.
We prove, on a firm mathematical basis, existence and nonexistence results for the
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equilibrium equations, as well as results on the number of possible stationary states.
We also characterize the asymptotic behavior of the solutions of (1.4). In section 3,
we illustrate the practical usefulness of the results of section 2, by studying the effects
of the amplitude of the harvesting term on the population density in terms of environ-
mental fragmentation. Lastly, in section 4, we give new results for the proportional
harvesting case Y (x, u) = q(x)u.

2. Mathematical analysis of a quasi-constant-yield harvesting reaction-
diffusion model. For the sake of readability, the proofs of the results of section 2
are postponed to section 2.5.

2.1. Formulation of the model. In this paper, we consider the model

(2.1) ut = D∇2u + u(μ(x) − ν(x)u) − δh(x)ρε(u), (t, x) ∈ R+ × Ω.

The function u = u(t, x) denotes the population density at time t and space position
x. The coefficient D, assumed to be positive, denotes the diffusion coefficient. The
functions μ(x) and ν(x) respectively stand for the spatially dependent intrinsic growth
rate of the population, and for its susceptibility to crowding effects. Two different
types of domains Ω are considered: either Ω = R

N or Ω is a smooth bounded and
connected domain of R

N (N ≥ 1). We qualify the first case as the periodic case, and
the second one as the bounded case. In the periodic case, we assume that the functions
μ(x), ν(x), and h(x) depend on the space variables in a periodic fashion. For that,
let L = (L1, . . . , LN ) ∈ (0,+∞)N . We recall the following definition.

Definition 2.1. A function g is said to be L-periodic if g(x + k) = g(x) for all
x = (x1, . . . , xN ) ∈ R

N and k ∈ L1Z × · · · × LNZ.
Thus, in the periodic case, we assume that μ, ν, and h are L-periodic. In the

bounded case we assume that Neumann boundary conditions hold: ∂u
∂n = 0 on ∂Ω,

where n is the outward unit normal to ∂Ω. The period cell C is defined by

C := (0, L1) × · · · × (0, LN )

in the periodic case, and in the bounded case we set

C := Ω,

for the sake of simplicity of some forthcoming statements.
We furthermore assume that the functions μ and ν satisfy

(2.2) μ, ν ∈ L∞(Ω) and ∃ ν , ν ∈ R s.t. 0 < ν < ν(x) < ν ∀ x ∈ Ω.

Regions with higher values of μ(x) and lower values of ν(x) will be qualified as
being more favorable, while, on the other hand, regions with lower μ(x) and higher
ν(x) values will be considered as being less favorable or, equivalently, more hostile.

The last term in (2.1), δh(x)ρε(u), corresponds to a quasi-constant-yield harvest-
ing term. Indeed, the function ρε satisfies

(2.3) ρε ∈ C1(R), ρ′ε ≥ 0, ρε(s) = 0 ∀s ≤ 0 and ρε(s) = 1 ∀s ≥ ε,

where ε is a nonnegative parameter. With such a harvesting function, the yield is
constant in time whenever u ≥ ε, while it depends on the population density when
u < ε. In what follows, the parameter ε is taken to be very small. As we prove in
the next sections, there are many situations where the solutions of the model always
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remain larger than ε. For these reasons, we qualify our model as a quasi-constant-yield
harvesting SKT model, the “dominant” regime being the constant-yield one. Note that
the function ρε ensures the nonnegativity of the solutions of (2.1). From a biological
point of view, ε can correspond to a threshold below which harvesting is progressively
abandoned. Considering constant-yield harvesting functions without this threshold
value would be unrealistic since it would lead to harvest on zero-populations.

Finally, we specify that δ ≥ 0 and that h is a function in L∞(Ω) such that

(2.4) ∃α > 0 with α ≤ h(x) ≤ 1∀x ∈ Ω.

We call h the harvesting scalar field, and δ designates in this way the amplitude of
this field.

Before starting our analysis of this model, we consider the no-harvesting case,
i.e., when δ = 0. We recall the main known results in this case. These results will
indeed be necessary for the analysis of the quasi-constant-yield harvesting SKT model.

2.2. The no-harvesting case. When δ = 0 in (2.1), our model reduces to the
SKT model described by (1.3). The behavior of the solutions of this model has been
extensively studied in [8] and [9].

Results are formulated in terms of first (smallest) eigenvalue λ1 of the Schrödinger
operator Lμ defined by

Lμφ := −D∇2 − μ(x)I,

with either periodic boundary conditions (on the period cell C) in the periodic case or
Neumann boundary conditions in the bounded case. This operator is the linearized
one of the full model around the trivial solution. Recall that λ1 is defined as the
unique real number such that there exists a function φ > 0, the first eigenfunction,
which satisfies

(2.5)

{
−D∇2φ− μ(x)φ = λ1φ in C,
φ > 0 in C, ‖φ‖∞ = 1,

with either periodic or Neumann boundary conditions, depending on Ω. The function
φ is uniquely defined by (2.5) [7] and belongs to W 2,τ (C) for all 1 ≤ τ < ∞ (see [1]
and [2] for further details). We set

φ := min
x∈C

φ(x).

We recall that a stationary state p of (1.3) satisfies the equation

(2.6) −D∇2p = p(μ(x) − ν(x)p).

The following result on the stationary states of (2.6) is proved in [8].
Theorem 2.2. (i) If λ1 < 0, then (2.6) admits a unique nonnegative, nontrivial,

and bounded solution, p0.
(ii) If λ1 ≥ 0, the only nonnegative and bounded solution of (2.6) is 0.
Moreover, in the periodic case, the solution p0 is L-periodic. Throughout this

paper, p0 always denotes the stationary solution given by Theorem 2.2.i.
In order to emphasize that this solution can be “far” from 0 (see Definition 2.5

and the commentary following (2.10)), we give a lower bound for p0.

Proposition 2.3. Assume that λ1 < 0; then p0 ≥ −λ1φ

ν in Ω.
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The asymptotic behavior of the solutions of (1.3) is also detailed in [8]. It is
proved that λ1 < 0 is a necessary and sufficient condition for species persistence,
whatever the initial population u0 is, as follows.

Theorem 2.4. Let u0 be an arbitrary bounded and continuous function in Ω
such that u0 ≥ 0, u0 
≡ 0. Let u(t, x) be the solution of (1.3), with initial datum
u(0, x) = u0(x).

(i) If λ1 < 0, then u(t, x) → p0(x) in W 2,τ
loc (Ω) for all 1 ≤ τ < ∞ as t → +∞

(uniformly in the bounded case).
(ii) If λ1 ≥ 0, then u(t, x) → 0 uniformly in Ω as t → +∞.
The situation (i) corresponds to persistence, while in the case (ii) the population

tends to extinction. In what follows, unless otherwise specified, we therefore always
assume that λ1 < 0, so that the population survives, at least when there is no har-
vesting. We are now in position to start our main analysis of steady states and related
asymptotic behavior of the solutions of (2.1).

2.3. Stationary states analysis. As is classically demonstrated in finite dimen-
sional dynamical systems theory and many problems in the infinite dimensional setting
(see, e.g., [39]), the asymptotic behavior of the solutions of (2.1) is governed in part
by the steady states and their relative stability properties. In that respect, we study
in this section the positive stationary solutions of (2.1), namely the solutions of

(2.7) −D∇2pδ = pδ(μ(x) − ν(x)pδ) − δh(x)ρε(pδ), x ∈ Ω,

in the periodic and bounded cases. When needed, we may write (2.7, δ) instead of
(2.7).

Note that, provided pδ ≥ ε in Ω, pδ is equivalently a solution of the simpler
equation

(2.8) −D∇2pδ = pδ(μ(x) − ν(x)pδ) − δh(x), x ∈ Ω.

This last equation has been analyzed in the case of Dirichlet boundary conditions
in [29], in the particular case of constant coefficients μ and ν.

Because of the type of harvesting function considered here, we are led to introduce
the following definition.

Definition 2.5. Set ε0 := ε
φ ≥ ε. We say that a nonnegative function σ is

remnant whenever maxC σ < ε0, whereas it is significant if it is a bounded function
satisfying minC σ ≥ ε0.

Remark 1. The concepts of remnant and significant solutions, as well as the
harvesting term δh(x)ρε(u), are not classical. In order to clarify these notions, we
present in Figure 1 a short graphical study of the nonspatial model

(2.9)
dU

dt
= U(μ− νU) − δρε(U) =: k(U), t ∈ R+,

with constant coefficients μ, ν > 0.
Since ε0 is assumed to be small in our model, the remnant solutions of (2.7)

correspond to very low population densities. On the other hand, significant solutions
are everywhere above ε0. In particular, a constant yield is ensured in that case.
In contrast to the ODE case, stationary solutions which are neither remnant nor
significant may exist, as outlined in the next theorems. However, as we will see while
studying the long-time behavior of the solutions of the model (2.1), they are of less
importance (see Theorem 2.11 and section 3). The threshold ε0 is different from ε
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μ
ν

U

δ∗

δb

δa

ε

Fig. 1. The logistic growth function U �→ U(μ − νU) (solid line), and the harvesting function
U �→ δρε(U) for three values of δ (dashed lines). The abscissae of the points of intersection of
the solid and dashed lines correspond, respectively, to remnant (if smaller than ε) and significant
(if strictly larger than ε) stationary solutions of (2.9). We observe that the number of significant
solutions is as follows: one if δ < k(ε) (case δ = δa); two if k(ε) ≤ δ < μ2/(4ν) (case δ = δb); one
if δ = μ2/(4ν) (case δ = δ∗); zero if δ > μ2/(4ν). The number of nonzero remnant solutions is
zero or more if δ ≤ k(ε) (depending on the shape of ρε); one or more if δ > k(ε), since, from (2.3),
ρ′ε(0) = 0. We assumed here that ε0 = ε.

in general. We had to define remnant and significant functions using ε0 for technical
reasons (see the proof of Theorem 2.10.ii, equation (2.27)). Since ε is assumed to
be very small, it has no implication on the biological interpretation of our results.
Moreover, most of our results still work when ε0 is replaced by ε.

Let us now start our analysis of (2.7). In what follows, we always assume that

(2.10) ε0 <
−λ1φ

4ν
,

so that, in particular, from Proposition 2.3, the solution p0 of (2.6) is significant.
We begin by proving that there exists a threshold δ∗ such that, if the amplitude

δ is below δ∗, (2.7) admits significant solutions, while it does not in the other case.
Theorem 2.6. Assume that λ1 < 0; then there exists δ∗ ≥ 0 such that
(i) if δ ≤ δ∗, there exists at least a positive significant solution pδ ≤ p0 of (2.7);
(ii) if δ > δ∗, there is no positive significant solution of (2.7).
Remark 2. There is no positive bounded solution of (2.7) whenever λ1 ≥ 0.
Under stronger hypotheses, we are able to prove that (2.7) admits at most two

significant solutions. In order to state this result, we need some definitions. Let G be
the space defined by

(2.11) G := H1(C)

in the bounded case, and by

(2.12) G := H1
per =

{
ψ ∈ H1

loc(R
N ) such that ψ is L-periodic

}
in the periodic case. Let us define the standard Rayleigh quotient: for all ψ ∈ G,
ψ 
≡ 0, and for all σ ∈ L∞(C),

(2.13) Rσ(ψ) :=

∫
C
D|∇ψ|2 − σ(x)ψ2∫

C
ψ2

.
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According to the Courant–Fischer theorem (see, e.g., [6]), the second smallest eigen-
value λ2 of the operator Lμ can be characterized by

(2.14) λ2 = min
Ek⊂G,dim(Ek)=2

max
ψ∈Ek, ψ �≡0

Rμ(ψ).

This characterization is equivalent to the classical one given in [18].
We are now in position to state the following theorem.
Theorem 2.7. Assume that λ1 < 0 ≤ λ2; then, in the bounded case, (2.7)

admits at most two significant solutions. In the periodic case, (2.7) admits at most
two L′-periodic significant solutions for all L′ ∈ (0,+∞)N . Moreover, under these
hypotheses, if two solutions p1,δ and p2,δ exist, they are ordered in the sense that, for
instance, p1,δ < p2,δ in Ω.

Remark 3. Similar methods also allow us to assess a result on the number of
solutions of (2.8). Indeed, if λ1 < 0 ≤ λ2, then we obtain that (2.8) admits at
most two nonnegative bounded (and periodic in the periodic case) solutions. If these
solutions exist, they are ordered.

In the periodic case, Theorem 2.7 also gives some information on the periodicity of
the significant solutions of (2.7), which are actually found to have the same periodicity
as the coefficients of (2.7), as seen in the next result.

Corollary 2.8. Assume that λ1 < 0 ≤ λ2. Then, in the periodic case, the
significant periodic solutions of (2.7) are L-periodic.

The fact that λ1 < 0 is directly related to the instability of the trivial solution
in the SKT model. The additional condition λ2 ≥ 0 in this theorem is linked to the
existence of a stable manifold or center manifold of the steady state 0 of the SKT
model, in some appropriate functional spaces (see [39]). Therefore, the assumptions
of Theorem 2.7, and the Krein Rutmann theory, allow us to conclude that under these
assumptions the unstable manifold of 0 is of dimension equal to one or equivalently
the stable manifold is of codimension 1. Such results on multiplicity of solutions of
elliptic nonlinear equations with a source or sink term have been investigated in the
past and are known nowadays as being of Ambrosetti-problem type. These results
also involve manifolds of codimension 1 (in the functional space of forcing) and first
and second eigenvalues (for the Laplace operator only) (see [27] for a survey of these
results).

In any event, Theorem 2.7 relies on the assumption that λ2 ≥ 0. In the next
proposition, we give conditions under which λ2 may become positive.

Proposition 2.9. (i) In the bounded case, if C is a (smooth) domain with
diameter d := maxx,y∈C ‖x− y‖RN , λ2(C) ≥ D(πd )2 − maxC μ.

(ii) In the periodic case, λ2(C) ≥ D( π
Ld

)2 −maxC μ, where Ld denotes the length
of the longest diagonal of the period cell C.

For instance, when C = [0, 1] × [0, 1], we have d = Ld =
√

2; thus, for D = 1 and
maxC μ = 4, we get λ2 > 0.9. However, this lower bound is far from being optimal.
Indeed, in all our computations of section 3, and under the same hypothesis on C and
D, we always had λ2 > 0, while maxC μ = 10. Sharper lower bounds for λ2 can be
found in [11]; however, those bounds are also more sensitive to the geometry of the
domain and thus less general. They are therefore not detailed here.

We now introduce a result which is important for more applied ecological ques-
tions. Indeed, one of the main drawbacks of Theorem 2.6 is that it gives no computable
bound for δ∗. Obtaining information on the value of δ∗ is precious for ecological
questions such as the study of the relationships between δ∗ and the environmental
heterogeneities. The next theorem states some computable estimates of δ∗.
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Let us define

(2.15) δ1 :=
λ2

1φ

ν(1 + φ)2
and δ2 :=

λ2
1

4αν
.

Note that neither δ1 nor δ2 depend on δ and ε.
Theorem 2.10. (i) If λ1 < 0 and δ ≤ δ1, then there exists a positive significant

(and L-periodic in the periodic case) solution pδ of (2.7) such that pδ ≥ − λ1φ
ν(1+φ) .

(ii) If λ1 < 0 and δ > δ2, the only possible positive bounded solutions of (2.7) are
remnant.

The lower bound of part (i), for pδ, does not depend on ε. Thus, there is a
clear distinction between the remnant and significant solutions. Note that, of course,
δ1 ≤ δ2.

The formulae (2.15) allow numerical evaluations. An important quantity to com-
pute is the size of the gap δ2 − δ1 and its fluctuations in terms of environmental
configurations. This question is addressed in section 3 through a numerical study.

2.4. Asymptotic behavior. In this section, we prove that the quantity δ∗ in
fact corresponds to a maximum sustainable yield, in the sense that when δ is smaller
than δ∗, the population density u(t, x) converges to a significant stationary state of
(2.1) as t → ∞, whereas when δ is larger than δ∗, the population density converges to a
stationary state which is not significant. In fact, when δ is larger than the quantity δ2
defined by (2.15) we even prove that the population converges to a remnant stationary
state of (2.1).

We assume here that the harvesting starts on a stabilized population governed by
the standard SKT model with δ = 0. From Theorem 2.4, this means that we study
the behavior of the solutions u(t, x) of our model (2.1), starting with the initial datum
u(0, x) = p0(x). Since we have assumed that λ1 < 0, it follows from Theorem 2.2,
Proposition 2.3, and (2.10) that p0 is well defined and significant.

Let us describe, with the next theorem, the long-time behavior of the population
density.

Theorem 2.11. Let u(t, x) be the solution of (2.1) with initial datum u(0, x) =
p0(x). Then u is nonincreasing in t and the following hold:

(i) If δ ≤ δ∗, u(t, x) → pδ(x) uniformly in Ω as t → +∞, where pδ is the maximal
significant solution of (2.7). Moreover, pδ is L-periodic in the periodic case.

(ii) If δ > δ∗, then the function u(t, ·) converges uniformly in Ω to a solution of
(2.7) which is not significant.

(iii) If δ > δ2, the function u(t, ·) converges uniformly in Ω to a remnant solution
of (2.7).

Remark 4. If, in addition, we assume that λ2 ≥ 0, then Theorem 2.7 says that,
whenever δ ≤ δ∗, (2.1) admits at most two significant stationary states (which are
periodic stationary states in the periodic case). In that case, the stationary state
pδ selected at large times is the higher one. If we do not assume that λ2 ≥ 0, this
stationary state can still be defined as “the maximal one” that can be constructed by
a sub- and supersolution method (see [3]).

From the above theorem, we observe that, whenever δ ≤ δ∗, the solution u(t, x)
of (2.1), with initial datum p0, remains significant for all times t ≥ 0. This ensures a
constant yield in time and justifies the name of the model.

Similar results could be obtained for a wider class of initial data. Indeed, with
similar methods, the convergence of u(t, x) to a significant solution of (2.7) can be
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obtained whenever δ ≤ δ∗ for all bounded and continuous initial data u(0, x) which
are larger than the smallest significant solution of (2.7). In particular, when u(0, x) is
larger than the maximal significant solution of (2.7), u(t, x) converges to this maximal
significant solution as t → +∞. A more detailed analysis of the basin of attraction
related to the maximal significant solution will be further investigated in the forth-
coming paper [13].

Theorem 2.11 shows that the practical determination of δ∗ is directly linked to
the size of the gap δ2 − δ1. As we will see in section 3, this gap (δ1, δ2) can be very
narrow in certain situations. In those cases, the numerical computation of δ1 and δ2
therefore gives a sharp localization of the maximum sustainable quota δ∗ ∈ [δ1, δ2],
which can be of nonnegligible ecological interest.

2.5. Proofs of the results of section 2.
Proof of Proposition 2.3. Let φ be defined by (2.5), with the appropriate boundary

conditions. Set κ0 := −λ1

ν . Then the function κ0φ satisfies

−D∇2(κ0φ) − μ(x)κ0φ + ν(x)(κ0φ)2 = λ1κ0φ + ν(x)(κ0φ)2

= κ0φ(λ1 + ν(x)κ0φ) ≤ 0.

Thus κ0φ is a subsolution of (2.6) satisfied by p0. Since for M ∈ R large enough
M is a supersolution of (2.6), it follows from the uniqueness of the positive bounded

solution p0 of (2.6) that p0 ≥ κ0φ ≥ −λ1φ

ν .
Before proving Theorem 2.6, we begin with the following lemma.
Lemma 2.12. For all δ > 0, if pδ is a nonnegative bounded solution of (2.7), then

pδ ≤ p0.
Proof of Lemma 2.12. Assume that there exists x0 ∈ Ω such that pδ(x0) > p0(x0).

The function pδ satisfies

−D∇2pδ − pδ(μ(x) − ν(x)pδ) = −δh(x)ρε(pδ) ≤ 0,

and thus pδ is a subsolution of (2.6) satisfied by p0. Since for M ∈ R large enough M is
a supersolution of (2.6), we can apply a classic iterative method to infer the existence
of a solution p′0 of (2.6) (with Neumann boundary conditions in the bounded case
since both pδ and M satisfy Neumann boundary conditions) such that pδ ≤ p′0 ≤ M .
In particular, p′0(x0) > p0(x0), which is in contradiction with the uniqueness of the
positive bounded solution of (2.6).

Proof of Theorem 2.6. Let us define

δ∗ := sup{δ ≥ 0, (2.7) admits a significant solution}.

For δ = 0, we know from Proposition 2.3 that p0 is a significant solution of (2.7).
Moreover, for δ large enough, the nonexistence of significant solutions of (2.7) is a
direct consequence of the maximum principle (it is also a consequence of the proof of
Theorem 2.10.ii). Thus δ∗ is well defined and bounded.

Assume that δ∗ > 0, and let us prove that (2.7, δ∗) admits a significant solution.
By definition of δ∗, there exists a sequence (pδk)k∈N of solutions of (2.7, δk) with
0 < δk ≤ δ∗ and δk → δ∗ as k → +∞. Moreover, from Lemma 2.12, ε0 ≤ pδk ≤ p0

for all k ≥ 0. Thus, from standard elliptic estimates and Sobolev injections, the
sequence (pδk)k∈N converges (up to the extraction of some subsequence) in W 2,τ

loc , for
all 1 ≤ τ < ∞, to a significant solution pδ∗ of (2.7, δ∗).
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Now, let 0 ≤ δ < δ∗. Then

−D∇2pδ∗ − pδ∗(μ(x) − ν(x)pδ∗) + δh(x) = (δ − δ∗)h(x) < 0,

and thus pδ∗ is a subsolution of (2.7, δ). Since p0 is a supersolution of (2.7, δ), and
pδ∗ ≤ p0, a classical iterative method gives the existence of a significant solution pδ
of (2.7, δ) (with Neumann boundary conditions in the bounded case since both p0

and pδ satisfy Neumann boundary conditions). This concludes the proof of Theorem
2.6.

Proof of Theorem 2.7. As a preliminary, we prove that if two solutions exist, then
they cannot intersect. Let p1,δ and p2,δ be two significant solutions of (2.7). In the
bounded case, we assume that p1,δ and p2,δ satisfy Neumann boundary conditions. In
the periodic case, we assume that there exists L′ ∈ (0,+∞)N such that p1,δ and p2,δ

are L′-periodic, and then denote the period cell by C ′. Let us set qδ := p2,δ − p1,δ.
Then qδ verifies

(2.16) −D∇2qδ − [μ(x) − ν(x)(p1,δ + p2,δ)]qδ = 0;

thus, setting ρ(x) := μ(x) − ν(x)(p1,δ + p2,δ), we obtain

(2.17) −D∇2qδ − ρ(x)qδ = 0,

with the same boundary conditions that were satisfied by p1,δ and p2,δ.

Let λ̂1 and λ̂2 be respectively the first and second eigenvalues of the operator
Lρ := −D∇2 − ρI. Let Rσ(φ), be defined by (2.13). Since ρ(x) < μ(x)− 2νε0 for all
x ∈ Ω, we get

Rρ(ϕ) ≥ Rμ(ϕ) + 2νε0

for all ϕ ∈ G′, where G′ := H1(C) in the bounded case and

G′ := H1
per =

{
ϕ ∈ H1

loc(R
N ) such that ϕ is L′-periodic

}
in the periodic case. Thus, by the classical min-max formula (2.14), it follows that

(2.18) λ̂2 ≥ λ2 + 2νε0 > 0.

Furthermore, from (2.17), 0 is an eigenvalue of the operator Lρ. Thus, (2.18) implies

that λ̂1 = 0. As a consequence, qδ is a principal eigenfunction of the operator Lρ.
The principal eigenfunction characterization thus implies that qδ has a constant sign.
Finally, we get that p1,δ and p2,δ do not intersect each other.

Let us now prove that (2.7) admits at most two significant solutions. Arguing by
contradiction, we assume that there exist three significant (L′-periodic in the periodic
case, for some L′ ∈ (0,+∞)N ) solutions p1,δ, p2,δ, and p3,δ of (2.7). From the above
result, we may assume, without loss of generality, that p3,δ > p2,δ > p1,δ > ε0. Set
q2,1 := p2,δ − p1,δ and q3,2 := p3,δ − p2,δ; then these functions satisfy the equations

(2.19) −D∇2q2,1 − ρ2,1(x)q2,1 = 0

and

(2.20) −D∇2q3,2 − ρ3,2(x)q3,2 = 0,
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with ρ2,1 := μ(x) − ν(x)(p1,δ + p2,δ) and ρ3,2 := μ(x) − ν(x)(p2,δ + p3,δ). More-
over, q2,1 > 0 and q3,2 > 0. Thus 0 is the first eigenvalue of the operators Lρ2,1 :=
−D∇2−ρ2,1I and Lρ3,2 := −D∇2−ρ3,2I with either Neumann or L′-periodic bound-
ary conditions.

From the strong maximum principle (see, e.g., [18]) (together with Hopf’s lemma
in the bounded case, and using the L′-periodicity of q3,2 in the periodic case), we
obtain the existence of θ > 0 such that q3,2 > θ. Since the operator Lρ3,2 is self-

adjoint, we have the following formula for its first eigenvalue λ̂1

3,2
:

λ̂1

3,2
= min

ϕ∈G′
Rρ3,2(ϕ).

Thus

λ̂1

3,2
= min

ϕ∈G′

{
Rρ2,1(ϕ) +

∫
C
ν(p3,δ − p1,δ)ϕ

2∫
C
ϕ2

}
≥ min

ϕ∈G′

{
Rρ2,1(ϕ)

}
+ νθ

≥ λ̂1

2,1
+ νθ,

where λ̂1

2,1
is the first eigenvalue of the operator Lρ2,1

. Since the first eigenvalues of
the operators Lρ2,1 and Lρ3,2

are both 0, we deduce that 0 ≥ 0 + νθ > 0, hence a
contradiction.

Proof of Corollary 2.8. Let pδ be a significant L′-periodic solution of (2.7), and

let k ∈
∏N

i=1 LiZ. From the L-periodicity of (2.7), pδ(·+ k) is also a solution of (2.7).
By periodicity of pδ, the functions pδ and pδ(· + k) intersect each other. Thus, from
Theorem 2.7, since pδ and pδ(· + k) are both L′-periodic, pδ ≡ pδ(· + k). Therefore,
pδ is an L-periodic function.

Proof of Proposition 2.9. In the bounded case, let C̃ be the convex hull of the set
C. It was proved in [30] that the second Neumann eigenvalue of the Laplace operator
−D∇2 on C̃ was larger than D(πd )2. Since C ⊂ C̃, we have H1(C) ⊂ H1(C̃). Using
formula (2.14), we thus obtain that the second eigenvalue of Lμ in the bounded case
satisfies λ2 ≥ D(πd )2 − maxC μ. This proves part (i) of Proposition 2.9.

In the periodic case, since H1
per can be seen as a subset of H1(C), it follows from

(2.14) that

(2.21) λ2 ≥ min
Ek⊂H1(C),dim(Ek)=2

max
ψ∈Ek, ψ �≡0

Rμ(ψ).

The period cell C is convex but not smooth enough to assert that the right-hand side
of (2.21) is equal to the second eigenvalue in the bounded case. Let Ld be the longest
diagonal of C. Then C is included in a ball BLd

of diameter Ld. Thus, from formula
(2.14), the right-hand side of (2.21) is larger than the second eigenvalue of Lμ on BLd

.
From (i), the conclusion of (ii) follows.

Proof of Theorem 2.10, part (i). Let λ1 and φ be defined by (2.5), and let κ be a
nonnegative real number such that κ > ε0. Then we have

(2.22)

−D∇2(κφ) − κφ(μ(x) − κφν(x)) + δh(x)ρε(κφ)≤λ1κφ + κ2φ2ν(x) + δ
≤κφ(λ1 + κφν(x)) + δ
≤max

τ∈I
{τ(λ1 + τν)} + δ,

where I = {κφ(x), x ∈ C}. Setting g(τ) := τ(λ1 + τν), since ‖φ‖∞ = 1, and since g
is a convex function, it follows from (2.22) that

(2.23) −D∇2(κφ) − κφ(μ(x) − κφν(x)) + δh(x)ρε(κφ) ≤ max{g(κ), g(κφ)} + δ.
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Let us take κ0 be such that g(κ0) = g(κ0φ), namely κ0 = − λ1

ν(1+φ) (note that κ0φ > ε).

We get

(2.24) −D∇2(κ0φ) − κ0φ(μ(x) − κ0φν(x)) + δh(x) ≤ −
λ2

1φ

ν(1 + φ)2
+ δ ≤ 0,

from the hypothesis on δ of Theorem 2.10.i. Therefore, κ0φ is a subsolution of (2.7)
with either L-periodic or Neumann boundary conditions. Moreover, if M is a large
enough constant, M is a supersolution of (2.7) with L-periodic or Neumann boundary
conditions. Thus, it follows from a classical iterative method that there exists a
solution pδ of (2.7), with the required boundary conditions, and which satisfies κ0φ ≤
pδ ≤ M in Ω. Moreover, in the periodic case, since κ0φ and M are L-periodic
and since (2.7) is also L-periodic, it follows that pδ is L-periodic. Theorem 2.10.i is
proved.

Proof of Theorem 2.10, part (ii). Assume that λ1 < 0, δ > δ2, and that there
exists a positive bounded solution pδ of (2.7) which is not remnant; i.e.,

(2.25) ∃ x0 with pδ(x0) ≥ ε0.

Since φ is bounded from below away from 0 and pδ is bounded, we can define

(2.26) γ∗ = inf {γ > 0, γφ > pδ in Ω} > 0.

It follows from the definition of γ∗ that γ∗φ ≥ pδ in Ω, and in particular, γ∗φ(x0) ≥
pδ(x0) ≥ ε0. Since ‖φ‖∞ = 1, we get γ∗ ≥ ε0. Thus,

(2.27) γ∗φ ≥ ε0φ = ε,

which implies ρε(γ
∗φ) = 1. Thus, h(x)ρε(γ

∗φ) ≥ α, and we get

−D∇2(γ∗φ) − γ∗φ(μ(x) − γ∗φν(x)) + δh(x)ρε(γ
∗φ) ≥ γ∗φ(λ1 + γ∗φν(x)) + δα

on Ω. Moreover, since γ∗φ > 0 and ν ≥ ν, we have γ∗φ(λ1 + γ∗φν(x)) ≥ −λ2
1

4ν . Using

the fact that δ > δ2 =
λ2

1

4αν , we thus get

(2.28) −D∇2(γ∗φ) − γ∗φ(μ(x) − γ∗φν(x)) + δh(x)ρε(γ
∗φ) ≥ −λ2

1

4ν
+ δα > 0

on Ω. Therefore, γ∗φ is a supersolution of (2.7). Set z := γ∗φ−pδ. From the definition
of γ∗, we know that z ≥ 0 and that there exists a sequence (xn)n∈N in Ω such that
z(xn) → 0 as n → +∞.

In the bounded case, up to the extraction of some subsequence, xn → x ∈ Ω as
n → +∞. By continuity, z(x) = 0. Moreover, subtracting (2.7) from (2.28), we get

(2.29) −D∇2z + [ν(x)(γ∗φ + pδ) + χ(x) − μ(x)]z > 0 in Ω,

where the function χ is defined by χ(x) = δh(x)ρε(γ
∗φ(x))−ρε(pδ(x))
γ∗φ(x)−pδ(x) whenever γ∗φ(x)−

pδ(x) 
= 0, and χ(x) = ρ′ε(pδ(x)) otherwise. Since ρε is C1, χ is bounded. Thus
b(x) := ν(x)(γ∗φ+ pδ) + χ(x)− μ(x) is a bounded function. Using the strong elliptic
maximum principle, we deduce from (2.29) that z ≡ 0. Thus γ∗φ ≡ pδ is a positive
solution of (2.7). It is in contradiction with (2.28).
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In the periodic case, we must also consider the situation where the sequence
(xn)n∈N is not bounded. Let (xn) ∈ C be such that xn − xn ∈

∏N
i=1 LiZ. Up to

the extraction of some subsequence, we can assume that there exists x∞ ∈ C such
that xn → x∞ as n → +∞. Set φn(x) = φ(x + xn) and pδ,n(x) = pδ(x + xn). From
standard elliptic estimates and Sobolev injections, it follows that (up to the extraction
of some subsequence) pδ,n converge in W 2,τ

loc , for all 1 ≤ τ < ∞, to a function pδ,∞
satisfying

−∇2(Dpδ,∞) − pδ,∞(μ(x + x∞) − pδ,∞ν(x + x∞)) + δh(x + x∞)ρε(pδ,∞) = 0

in R
N , while γ∗φn converges to γ∗φ∞ := γ∗φ(· + x∞), and

−∇2(Dγ∗φ∞) − γ∗φ∞(μ(x + x∞) − γ∗φ∞ν(x + x∞)) + δh(x + x∞)ρε(γ
∗φ∞) > 0

in R
N . Let us set z∞(x) := γ∗φ∞(x) − pδ,∞(x). Then z∞(x) = limn→+∞ z(x + xn),

and therefore z∞ ≥ 0 and z∞(0) = 0. Moreover, there exists a bounded function b∞
such that

(2.30) −D∇2z∞ + b∞z∞ > 0 in R
N .

It then follows from the strong maximum principle that z∞ ≡ 0, and we again obtain
a contradiction. Finally, we necessarily have pδ ≤ ε0, and the proof of Theorem 2.10.ii
is complete.

Proof of Theorem 2.11, part (i). Assume that δ ≤ δ∗. Let pδ be the unique
maximal significant solution defined in the proof of Theorem 2.10.i. Then, from
Lemma 2.12,

(2.31) pδ(x) ≤ p0(x) = u(0, x) ∀x ∈ Ω,

which implies

(2.32) pδ(x) ≤ u(t, x) in R+ × Ω,

since pδ is a stationary solution of (2.1). Moreover, since p0 is a supersolution of
(2.7), u is nonincreasing in time t, and standard parabolic estimates imply that u
converges in W 2,τ

loc (Ω), for all 1 ≤ τ < ∞, to a bounded stationary solution u∞ of
(2.1). Furthermore, from (2.32) we deduce that pδ ≤ u∞ ≤ p0. Since pδ is the
maximal positive solution of (2.7), it follows that u∞ ≡ pδ. Moreover, in the periodic
case, since p0 and (2.1) are L-periodic, u(t, x) is also L-periodic in x. Therefore the
convergence is uniform in Ω. Part (i) of Theorem 2.11 is proved.

Proof of Theorem 2.11, parts (ii) and (iii). Assume that δ > δ∗. Since 0 is
a stationary solution of (2.1) and u(0, x) = p0 > 0, we obtain that u(t, x) > 0 in
R

+ × Ω, and again, from standard parabolic estimates, we know that u converges in
W 2,τ

loc (Ω) (for all 1 ≤ τ < ∞) to a bounded stationary solution u∞ ≥ 0 of (2.1) as
t → +∞. Moreover, in the periodic case, from the L-periodicity of the initial data
and of (2.1), we know that u(t, ·) and u∞ are L-periodic. Therefore the convergence is
uniform in Ω. It follows from Theorem 2.6.ii that u∞ cannot be a significant solution
of (2.7). Moreover, if δ > δ2, Theorem 2.10.ii ensures that u∞ is a remnant solution
of (2.7).
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Ci

Ci

Fig. 2. The 4-neighborhood system: an element Ci of C and its four neighbors.

3. Numerical investigation of the effects of environmental fragmenta-
tion. We propose here to apply the results of section 2, on the estimation of the
maximum sustainable yield, to the study of the effects of environmental fragmenta-
tion. A theoretical investigation of the relationships between maximum sustainable
yield and fragmentation is difficult to achieve (see Remark 5). To overcome this dif-
ficulty, we propose a numerical study in the case of stochastic environments. First,
we show that the gap δ2 − δ1, obtained from (2.15) and Theorem 2.10, remains small
whatever the degree of fragmentation is. This gap corresponds to the numerical val-
ues of the harvesting quota δ for which we do not know whether the population
density will converge to a significant or a remnant solution of the stationary equation
(2.7). Second, we show that there is a monotone increasing relationship between the
maximal sustainable yield δ∗ and the habitat aggregation.

Remark 5. In a periodic environment, a simple way of changing the degree of frag-
mentation without changing the relative spatial pattern (favorable area/unfavorable
area ratio) is to modify the size of the period cell C. Assume that μ(x) = η( x

L ), for
some 1-periodic function η with positive integral and for some L > 0. This means that
the environment consists of square cells of side L. Setting λ1,L := λ1 and φL := φ, we
then have −DΔφL − η

(
x
L

)
φL = λ1,LφL on [0, L]N . The function ψL(x) := φL(Lx)

thus satisfies −DΔψL − L2η(x)ψL = L2λ1,LψL in [0, 1]N , with 1-periodicity. From
the Rayleigh formula we thus obtain

λ1,L = min
ψ∈H1

per

D

L2

∫
[0,1]N

|∇ψ|2∫
[0,1]N

ψ2
−

∫
[0,1]N

ηψ2∫
[0,1]N

ψ2
;

therefore λ1,L < 0 (since ψ ≡ 1 ∈ H1
per), and λ1,L decreases with L. It implies that δ2

increases with L. The relationship between δ1 and L is less clear since φL = minC φL

may not always be an increasing function of L.
In order to lessen the boundary effects and to focus on fragmentation, we place

ourselves in the periodic case. For our numerical computations, we assume that the
environment is made of two components, favorable and unfavorable regions. This is
expressed in the model (2.1) through the coefficient μ(x), which takes two values μ+

or μ−, depending on the space variable x. We also assume that

μ+ > μ−, ν(x) ≡ 1, h(x) ≡ 1, and D = 1.

Using a stochastic model for landscape generation [34], we built 2000 samples of
binary environments, on the two-dimensional period cell C = [0, 1]2, with different
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(a) s = 3400

0 1

1

(b) s = 3800

0 1

1

(c) s = 4200

0 1

1

(d) s = 4600

0 1

1

(e) s = 4800

0 1

1

(f) s = 4900

Fig. 3. Some samples of the landscapes used for the computations of δ1 and δ2, with different
values of the habitat aggregation index s. The black areas correspond to more favorable environment,
where μ(x) = μ+.

degrees of fragmentation. In all these environments, the favorable region, where
μ(x) = μ+, occupies 20% of the period cell. The environmental fragmentation is
defined as follows. We discretize the cell C into nC = 50 × 50 equal squares Ci.
The lattice made of the cells Ci is equipped with a 4-neighborhood system V (Ci)
(see Figure 2), with toric conditions. On each cell Ci, we assume that the function
μ takes either the value μ+ or μ−, while the number n+ = card{i, μ ≡ μ+ on Ci}
is fixed to nC × 20

100 = 500. For each landscape sample ω = (μ(Ci))i=1,...,nC
, we

set s(ω) = 1
2

∑
Ci⊂C

∑
Cj∈V (Ci)

11{μ(Cj) = μ(Ci)}, the number of pairs of neighbors

(Ci, Cj) such that μ takes the same value on Ci and Cj (11{·} is the indicator function).
The number s(ω) is directly linked to the environmental fragmentation: a landscape
pattern is all the more aggregated as s(ω) is high, and all the more fragmented as
s(ω) is small (Figure 3). Thus, we shall refer to s as the “habitat aggregation index.”

Remark 6. There exist several ways of obtaining hypothetical landscape dis-
tributions. The commonest are neutral landscape models, originally introduced by
Gardner et al. [16]. They can include parameters which regulate the fragmenta-
tion [20]. We preferred to use a stochastic landscape model presented in [34], since it
allows an exact control of the favorable and unfavorable surfaces and is therefore well
adapted for analyzing the effects of fragmentation per se. This model is inspired from
statistical physics. The number of pairs of similar neighbors s is controlled during
the process of landscape generation. This quantity can be measured a posteriori on
the landscape samples. Other measures of fragmentation could have been used, such
as fractal dimension (see [24]). For a discussion on the different ways of measuring
habitat fragmentation in real-world situations, the interested reader can refer to [14].

For our computations, we took μ+ = 10 and μ− = 0, and we computed the
corresponding values of λi

1, δi1, and δi2 on each landscape sample ωi of aggregation
index si, for i = 1, . . . , 2000. The eigenvalues λi

1 were computed with a finite elements
method. We fitted the data sets {(si, δi1)}i=1,...,2000 and {(si, δi2)}i=1,...,2000 using ninth
degree polynomials (it is enough to assess whether the relations between s and δ1, δ2
tend to be monotonic or not). The resulting fitted curves δ1,f and δ2,f are presented
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2,up
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1,lo

Remnant
solutions

Significant
solutions

Fig. 4. Solid lines: δ1,f and δ2,f correspond respectively to the data sets {(si, δi1)}i=1,...,2000

and {(si, δi2)}i=1,...,2000, fitted with ninth degree polynomials. Dashed lines: δ1,lo is a lower predic-
tion bound for new observations of δ1, and δ2,up an upper prediction bound for new observations of
δ2, with in both cases a certainty level of 99%.

in Figure 4. Under the assumption of normally distributed values of δ1 and δ2 for
fixed s values, we computed a lower prediction bound (δ1,lo) for new observation of δ1
and an upper prediction bound for δ2 (δ2,up), with a level of certainty of 99%. Thus,
given a configuration ω, with a fixed value of s, when δ is smaller than δ1,lo we take a
0.5% chance of being above δ1, while when δ is larger than δ2,up we take a 0.5% chance
of being below δ2. The small thickness of the intervals (δ1,lo, δ2,up) emphasizes the
quality of the relationship between the habitat aggregation index s and the maximum
sustainable yield δ∗ ∈ [δ1, δ2]. This also indicates that the criteria of Theorems 2.10
and 2.11 are close to being optimal, at least in some situations.

Furthermore, as we can observe, the values of δ1 and δ2 tend to increase as s
increases, and thus as the environment aggregates. Since δ∗ ∈ [δ1, δ2], we deduce from
the computations presented in Figure 4 that δ∗ tends to increase with environmental
aggregation.

These tests were performed for particular values of μ+ and μ−. However, the
thickness of the interval (δ1, δ2) can be determined for all values of μ+, μ− without
further numerical computations, provided that μ+ − μ− = 10. Indeed, let us set
B := μ+ − μ−. For a fixed value of B, let μ0(x) be a given L-periodic function
in L∞(RN ) taking only the two values μ+

0 = B and μ−
0 = 0. Let λ1,0 be the first

eigenvalue of the operator −∇2 − μ0I on C, with L-periodicity conditions, φ0 the
associated eigenfunction with minimal value φ0, and

δ1,0 :=
λ2

1,0φ0

(1 + φ0)2
and δ2,0 :=

λ2
1,0

4
.

We have the following proposition.
Proposition 3.1. Assume that μ(x) = μ0(x) + μ−, with μ− > λ1,0. Let δ1 and

δ2 be defined by (2.15). Then we have δ2 − δ1 = (1 − μ−

λ1,0
)2(δ2,0 − δ1,0).
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This result also indicates that the information on δ∗ is all the more precise as
the growth rate function takes low values. However, the “relative thickness” of the
interval (δ1, δ2), compared to δ1,

δ2−δ1
δ1

, does not depend on μ−, as can be easily seen.

Proof of Proposition 3.1. The relation λ1[μ(x)] = λ1,0−μ− is a direct consequence
of the uniqueness of the first eigenvalue λ1. We assume that μ− > λ1,0, so that
λ1[μ(x)] < 0. From the uniqueness of the eigenfunction φ associated with λ1, φ does

not depend on μ−. Therefore, δ1 and δ2 satisfy δ1 =
(λ1,0−μ−)2φ0

(1+φ0)2
and δ2 =

(λ1,0−μ−)2

4 .

The result immediately follows.

4. A few comments on the proportional harvesting model. In this model,
the population density u is governed by the equation

(4.1) ut = D∇2u + u(μ(x) − ν(x)u) − q(x)u, x ∈ Ω,

with L-periodicity of the functions μ(x), ν(x), and q(x) in the periodic case, and with
Neumann or Dirichlet boundary conditions in the bounded case. Setting

τ(x) := μ(x) − q(x),

this model becomes equivalent to the SKT model (1.3). Hence, many properties
of the solutions of this model are described in the existing literature. In particular
the existence, nonexistence, and uniqueness results of Theorems 2.2 and 2.4 apply.
The condition λ1[μ(x) − q(x)] < 0 is therefore necessary and sufficient for species
persistence. Furthermore, the theoretical results of [8], [12], [33], [34] on the effects of
habitat arrangement on species persistence are also true for this model.

For instance, when the function μ(x) is constant, with μ(x) ≡ μ1 > 0, and if the
domain Ω is convex and symmetric with respect to each axis {x1 = 0}, . . . , {xN = 0},
the next result is a straightforward consequence of the paper [8].

Theorem 4.1. (i) In the periodic case, λ1[μ1 − q∗k(x)] ≤ λ1[μ1 − q(x)].

(ii) In the bounded Dirichlet case, λ1[μ1 − q∗k(x)] ≤ λ1[μ1 − q(x)].

(iii) In the bounded Neumann case, if Ω is a rectangle, λ1[μ1 − q�k(x)] ≤ λ1[μ1 −
q(x)].

Here q∗k denotes the symmetric decreasing Steiner rearrangement of the function

q with respect to the variable xk, and q�k denotes the monotone rearrangement of
q with respect to xk (see [8] and [10] for the definition of these rearrangements).
These rearrangements of a function q preserve not only its mean value, but also its
distribution function. This means that if, for instance, q corresponds to a “patch”
function taking the values q1, q2, and q3 in some regions A1, A2, and A3, respectively,
with A1 +A2 +A3 = |C|, then the areas of the regions where the rearranged functions
q∗ and q� take the values q1, q2, and q3 remain equal to A1, A2, and A3, respectively.

Theorem 4.1 combined with Theorem 2.4 says that the spatially rearranged har-
vesting strategies are better for species survival. This result can be helpful from a
resource management point of view. Indeed, the authorities can rearrange the posi-
tion of the harvested areas in order to improve the chances of population persistence.
The result of Theorem 4.1 shows that, in the framework of these models, the creation
of a large reserve gives persistence more chances than the creation of several small
reserves, and is in accordance with the former results of [23] and [26] in the Dirich-
let case. See Figure 5 for some illustrations in the bounded case with Dirichlet and
Neumann boundary conditions.
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Fig. 5. Examples of applications of Theorem 4.1.ii–iii to reserves management. In panels
(a) and (b), the boundary Γ of Ω is lethal (Dirichlet boundary conditions). (a) The initial effort
function q(x) takes two values, q+ > 0 in the white area, and q− = 0 in the shadowed regions,
which correspond to reserves. (b) Position of the reserves after a symmetric decreasing Steiner
rearrangement along the Δ1 and Δ2 axes, successively. The rearranged configuration (b) always
give more chances of species persistence. In panels (c) and (d), the boundary Γ is divided into two
parts: Γ = Γ1 ∪ Γ2. Γ1 is represented with a solid line and can correspond to a coast, while Γ2 is
represented with a dashed line and can correspond to a nonphysical limit that the species cannot cross
(Neumann boundary conditions). (c) The effort function q(x) again takes two values, q+ > 0 in the
white area, and q− = 0 in the reserves. (d) Position of the reserves after monotone rearrangement
along the horizontal and vertical axes, successively. The chances of persistence are better in the
rearranged configuration (d).

5. Discussion. We have proposed a model for the study of populations in het-
erogeneous environments, for populations submitted to an external negative forcing
term. This forcing term could be regarded as a “quasi-constant-yield” harvesting,
depending only on the population density u when u is below a certain small threshold
ε. The introduction of such a threshold ε was necessary for ensuring the nonnegativity
of the solutions of our model, and therefore its actuality.

We carried out new mathematical results on the elliptic equation satisfied by
the stationary states of the model, and on the associated parabolic equation. Both
qualitative and quantitative results were obtained.

From the qualitative point of view, we described the behavior of the model solu-
tions in terms of the harvesting amplitude δ. Two main types of stationary solutions
were found: the remnant solutions, always below a small threshold ε0 and therefore
close to 0, and the significant solutions, always above this threshold, thus ensuring
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a time-constant yield. We discussed the maximum number of significant stationary
solutions, which we found equal to 2, under a hypothesis of positivity of the second
eigenvalue λ2 of a linear operator. We further investigated the long-time behavior of
the solution of our model, starting from a nonharvested population at equilibrium.
We found a critical value δ∗ of the harvesting term amplitude, below which the popu-
lation density tends over time to a significant stationary solution, and above which it
converges to a stationary solution which is not significant. We also established quan-
titative formulae for some lower and upper bounds for δ∗: δ1 and δ2, respectively.
The threshold δ2 has the additional property that, whenever the amplitude δ is above
δ2, the population density decreases to a remnant stationary solution.

The quantitative aspects of our study mainly consisted of discussing the effect
of environmental fragmentation on these thresholds δ1 and δ2, and therefore on the
interactions between environmental fragmentation and maximum sustainable yield.
Namely, when computing the values of δ1 and δ2 on 2000 samples of stochastically
obtained patchy environments, with different levels of fragmentation, we found an
increasing relationship between these two coefficients and an environmental aggrega-
tion index s. This indicates that, for given areas of favorable and unfavorable regions,
the harvesting quota that a species can sustain, while ensuring a time-constant yield,
is higher when the favorable regions are aggregated.

The reader may note that, in our model, the species mobility was not affected
by the environmental heterogeneity. Such a dependence could be modeled by using a
more general dispersion term, of the form ∇·(A(x)∇u), instead of D∇2u, where A(x)
stands for the diffusion matrix (see [8], [36]). In fact, most of our results still work
when the matrix A is of class C1,α (with α > 0) and uniformly elliptic, i.e., when
there exists τ > 0 such that A(x) ≥ τIN for all x ∈ Ω. Indeed, Theorems 2.2,
2.4, 2.7, 2.10, and 2.11 remain true under this more general assumption. However,
the effects of environmental heterogeneity may differ, depending on the way A(x)
and μ(x) are correlated (see [21]). In the proportional harvesting case, the results of
section 4 on the effects of the arrangements of the harvested regions may also not be
valid with this dispersion term. However, in situations where A(x) takes low values
(slow motion) when q(x) is low (“reserves”; see section 4), as underlined in [33], a
simultaneous rearrangement of the functions A(x) and q(x) would lead to lower λ1

values and therefore to higher chances of species survival.
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EFFECTS OF GENERAL INCIDENCE AND POLYMER JOINING
ON NUCLEATED POLYMERIZATION IN A MODEL OF PRION

PROLIFERATION∗

MEREDITH L. GREER† , P. VAN DEN DRIESSCHE‡ , LIN WANG§ , AND G. F. WEBB¶

Abstract. Two processes are incorporated into a new model for transmissible prion diseases.
These are general incidence for the lengthening process of infectious polymers attaching to and
converting noninfectious monomers, and the joining of two polymers to form one longer polymer.
The model gives rise to a system of three ordinary differential equations, which is shown to exhibit
threshold behavior dependent on the value of the parameter combination giving the basic reproduc-
tion number R0. For R0 < 1, infectious polymers die out, whereas for R0 > 1, the system is locally
asymptotic to a positive disease equilibrium. The effect of both general incidence and joining is to
decrease the equilibrium value of infectious polymers and to increase the equilibrium value of normal
monomers. Since the onset of disease symptoms appears to be related to the number of infectious
polymers, both processes may significantly inhibit the course of the disease. With general incidence,
the equilibrium distribution of polymer lengths is obtained and shows a sharp decrease in comparison
to the distribution resulting from mass action incidence. Qualitative global results on the disease free
and disease equilibria are proved analytically. Numerical simulations using parameter values from
experiments on mice (reported in the literature) provide quantitative demonstration of the effects of
these two processes.

Key words. prion diseases, nucleated polymerization, general incidence, polymer joining, prion
proliferation
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1. Introduction. Prion diseases, though widely studied at many levels, continue
to challenge understanding. A prion is an infectious protein. Several prion diseases
are known, or suspected, to be transmissible, both via ingestion and iatrogenically;
as a group, they are thus referred to as transmissible spongiform encephalopathies
(TSEs). Examples include scrapie, which affects sheep and goats; bovine spongiform
encephalopathy (BSE), which affects cows; chronic wasting disease (CWD), which
affects mule deer and elk; and variant Cruetzfeldt–Jakob disease (vCJD), which affects
humans [8, 9]. Additionally, mice and hamsters in laboratory experiments can be
infected with scrapie [30].

Though incidence of vCJD in humans has declined to just a few new cases per
year [36] and BSE incidence also appears to be declining [23], prion diseases warrant
ongoing study for reasons that include the following. First, there may be previously
unrecognized routes of infection: new research shows that prions can bind to some
soils and cause infection via inoculation with those soils [17], indicating that graz-
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ing animals may acquire TSEs despite having safely prepared feed. Second, prions
are extremely difficult to destroy, remaining infective despite heat or radiation that
would inactivate other known infectious agents [1, 5]. Third, prion replication offers
a new frontier in scientific understanding: protein-only replication cannot depend on
nucleic acids, but must occur somehow for TSEs to spread. Comprehending how this
replication works may provide great insight to other biological processes.

A specific naturally occurring protein is vulnerable to infection by prions; it is
therefore known as prion protein. In its noninfectious form prion protein is denoted
by PrPC, and in its infectious form it is denoted by PrPSc; see, for example, [22]
for discussion of this notation. The forms differ only in the folding of the protein
[27]. Humans, cows, sheep, and other animals susceptible to TSEs produce PrPC

normally [4]. There is evidence both that an accumulation of PrPSc may be toxic
[24, 21] and that a lack of PrPC may leave the brain overly susceptible to stress [29].
Either or both of these may lead to symptoms associated with TSEs. In the case of
transmissible prion disease, some portion of PrPSc is introduced into the system, and
this PrPSc can cause more infectious protein to be made. Though the mechanism for
such protein replication is not fully understood, nucleated polymerization is a likely
candidate [15, 18].

Nucleated polymerization involves PrPSc attaching to PrPC and converting it to
PrPSc. While proteins usually exist as individual units, also known as monomers,
it appears that PrPSc benefits from aggregating in some way [11, 16]. Aggregation
confers greater stability, and may even be necessary to maintain the alternate pro-
tein folding. We assume within this paper that these aggregates have a linear form
[18, 26], and we typically refer to the aggregates as polymers. In our nucleated poly-
merization model, each polymer may attach at either end to a PrPC monomer, quickly
converting it to the infectious form of PrPSc. Since the polymer has thus increased
its length by one unit of protein, we refer to this process as lengthening. Nucleated
polymerization also involves polymer splitting. We assume a minimum viable polymer
length, so that when polymer splitting results in pieces below the minimum length,
these pieces must break apart into their component units of PrPC. Additionally, our
model includes polymer joining, in which two PrPSc polymers join together to form
one longer polymer.

Models of nucleated polymerization for PrPC monomers and PrPSc polymers
containing a discrete number of monomers are formulated and analyzed in [20] and
[22]. Based on these, a model with continuous polymer length is introduced in [13]
and further analyzed in [12, 14, 28]. All these models assume mass action incidence for
the lengthening process of infectious polymers attaching to PrPC units. We generalize
this form of incidence in a way that reduces lengthening when the total amount of
infectious protein becomes large in proportion to the number of polymers. Some
research [24] has indicated that only truncated forms of polymers are able to lengthen
this way; it is also possible that polymers within a specific range of lengths are able
to lengthen at the fastest rate, but that all polymers are capable of lengthening [31].
Our general incidence term captures these features by reducing the rate of lengthening
when total PrPSc mass is large relative to the total number of PrPSc polymers. That
is, we reduce the rate of lengthening as the average polymer length becomes greater.
In addition, our model is the first to include polymer joining. Joining is implied by
the fact that large fibrils or aggregates of PrPSc are observed in late stages of disease
[2, 10].

We start in section 2 by incorporating the processes of general incidence and poly-
mer joining into an ordinary differential equation (ODE) for the number of monomers,
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coupled with a partial integro-differential equation for the density of polymers depend-
ing on polymer length. Under some assumptions, this system is converted to a system
of three ODEs, which is analyzed in section 3. Numerical simulations for parameters
obtained from experimental data on mice [30] are presented in section 4, and we
conclude in section 5 with a discussion.

2. Model formulation. A core model of nucleated polymerization exists in
[12, 13, 14, 28] with some extensions in [32]. We continue to use the same variables
and parameters and introduce two new parameters, ω and η, to account for general
incidence and polymer joining, respectively:

• V (t) is the number of PrPC monomers at time t;
• u(x, t) is the density of PrPSc polymers of length x at time t;
• x0 is the lower bound for polymer length; that is, polymers have length x

with x0 < x < ∞;
• U(t) =

∫∞
x0

u(x, t)dx is the number of PrPSc polymers at time t;

• P (t) =
∫∞
x0

xu(x, t)dx is the number of PrPSc monomers comprising polymers
at time t;

• W (t) = P (t)− x0U(t) is the number of PrPSc units not accounted for within
the minimal polymer lengths;

• λ is the source rate for naturally produced PrPC monomers;
• γ is the metabolic degradation rate for PrPC;
• τ is a rate associated with lengthening of PrPSc polymers by attaching to and

converting PrPC monomers;
• ω is a parameter associated with polymer lengthening;
• β(x) is the length-dependent rate of polymer breakage;
• κ(x, y) is the probability, when a polymer of length y breaks, that one of the

two resulting polymers has length x;
• μ(x) is the length-dependent metabolic degradation rate of PrPSc polymers;
• η is the rate at which PrPSc polymers join together.

All parameters are assumed to be positive with the exception of ω and η, which
may also be zero.

2.1. PDE model. Our model, incorporating both general incidence and poly-
mer joining into the model formulated and discussed in [12, 13, 14, 28], has monomer
dynamics governed by

(2.1) V ′(t) = λ− γV (t) − τV (t)U(t)

1 + ωP (t)
+ 2

∫ x0

0

x

∫ ∞

x0

β(y)κ(x, y)u(y, t)dydx

with V ′(t) = dV
dt , and polymer dynamics given by

ut(x, t) +
τV (t)

1 + ωP (t)
ux(x, t) = −(μ(x) + β(x))u(x, t) + 2

∫ ∞

x

β(y)κ(x, y)u(y, t)dy

+ η

∫ x

x0

u(x− y, t)u(y, t)dy − 2ηu(x, t)

∫ ∞

x0

u(y, t)dy,(2.2)

subject to nonnegative initial conditions and the boundary condition

(2.3) u(x0, t) = 0.

We write the polymer lengthening term in (2.1) in the general form τV (t)U(t)
1+ωP (t) .

Note that in the case ω = 0 this is a mass action term. Otherwise, as P (t) becomes
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large there is a saturation effect, with the result that less lengthening occurs overall.
This matches the in vitro observations of [24, 31].

The polymer joining term η
∫ x

x0
u(x− y, t)u(y, t)dy introduces the joining param-

eter η and indicates that a new polymer of length x results from the joining of two
smaller polymers of lengths x− y and y. Note that the upper integration limit can be
written as x or x− x0 with identical results, as there are zero polymers of length less
than x0. Changing the form of the integration limit does not affect analysis of the
model. The last term 2ηu(x, t)

∫∞
x0

u(y, t)dy describes the loss of a polymer of length
x when it joins with another polymer, of any length, to create a larger polymer.
Symmetry mandates the factor 2.

Note that with mass action incidence and no polymer joining, i.e., ω = 0 and
η = 0, our model reduces to that in [12, 13, 14, 28]. For this case, a model with
bounded β(x), μ(x), and a general kernel κ(x, y) is analyzed in [32].

2.2. Conversion to ODEs. Under an assumption of equidistributed splitting,
a system of three ODEs in V , U , and P can be obtained from (2.1) and (2.2). Equidis-
tributed splitting means that splitting is equally likely wherever two protein units have
joined together; hence the splitting rate β(x) is proportional to polymer length x, i.e.,
β(x) = βx. The accompanying splitting kernel is then

κ(x, y) =

{
1/y if y > x0 and 0 < x < y,
0 if y ≤ x0 or y ≤ x.

We make the additional assumption that polymer metabolic degradation occurs
at a constant rate, i.e., μ(x) = μ. A form of the PDEs that assumes mass action
and no polymer joining was converted to ODEs in [28] by integrating (2.2), and
integrating the product of x and (2.2), over [x0,∞). Proceeding similarly, the general
incidence term is independent of x and converts analogously. The joining integral∫∞
x0

u(x, t)
∫∞
x0

u(y, t)dydx simplifies to U2(t). The remaining joining integral from

(2.2) gives

∫ ∞

x0

∫ x

x0

u(y, t)u(x− y, t) dy dx =

∫ ∞

x0

∫ x−x0

0

u(x− z, t)u(z, t) dz dx

=

∫ ∞

0

∫ ∞

z+x0

u(x− z, t)u(z, t) dx dz

=

∫ ∞

0

∫ ∞

x0

u(w, t)u(z, t) dw dz

= U2(t).

The resulting system of equations is

U ′ = βP − μU − 2βx0U − ηU2,

V ′ = λ− γV − τV U

1 + ωP
+ βx2

0U,(2.4)

P ′ =
τV U

1 + ωP
− μP − βx2

0U.

It is useful to have equations for infectious polymers, noninfectious monomers,
and infectious monomers comprising polymers. To use analysis appropriate for com-
partmental models, we replace the U equation with an equation for x0U , and the
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Fig. 1. Compartmental diagram of system (2.5).

P equation with an equation for W = P − x0U . The x0U compartment contains all
PrPSc units that make up the minimum lengths of the polymers. The W compartment
contains all additional PrPSc units. The resulting system of equations is

(x0U)′ = βx0W − μ(x0U) − βx0(x0U) − η

x0
(x0U)2,

V ′ = λ− γV − τV (x0U)

x0(1 + ω(W + x0U))
+ βx2

0U,(2.5)

W ′ =
τV (x0U)

x0(1 + ω(W + x0U))
− (μ + βx0)W +

η

x0
(x0U)2.

The compartmental diagram of this system appears in Figure 1.

3. Model analysis.

3.1. Nondimensionalization. To facilitate analysis, rewrite the ODE system
(2.5) in a nondimensionalized form. Let α = μ + βx0 and T = αt. Rewrite U(t) =
α
τ X (T ), V (t) = α2

βτ Y(T ), and W (t) = α2

βτ Z(T ). Define σ = βλτ
α3 , ρ = γ

α , δ = βx0

α ,

ν = ωα2

βτ , and φ = η
τ . Then

X ′ = Z − X − φX 2,

Y ′ = σ − ρY − XY
1 + ν(Z + δX )

+ δ2X ,(3.1)

Z ′ =
XY

1 + ν(Z + δX )
−Z + δφX 2,

with X ′ = dX
dT . The nondimensionalization process reduces the number of parameters

from eight to five. Note that δ = βx0

βx0+μ ∈ (0, 1). Setting ν = 0 simplifies the incidence
term to mass action, whereas setting φ = 0 simplifies the model to the case with no
polymer joining.

In all that follows, disease is assumed to be initially present; thus the nonnegative
initial conditions for the nondimensional system are X (0) ≥ 0, Y(0) ≥ 0, Z(0) ≥ 0,
with X (0) + Z(0) > 0.

Proposition 3.1. Let ν, φ ≥ 0, σ, ρ > 0, and δ ∈ (0, 1). For each (X (0),Y(0),
Z(0)) ∈ R

3
+ the system (3.1) has a unique bounded solution in R

3
+ defined for all

T ≥ 0.
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Proof. Let F : R
3
+ → R

3
+ be given by

F ((X ,Y,Z)) = (F1, F2, F3)

=

(
Z − X − φX 2, σ − ρY − XY

1 + ν(Z + δX )
+ δ2X ,

XY
1 + ν(Z + δX )

−Z + δφX 2

)
,

and observe that F is Lipschitz continuous on bounded sets of R
3
+. For T ≥ 0 and

(X ,Y,Z) ∈ R
3
+, it follows that F1 ≥ 0 when X = 0, F2 ≥ 0 when Y = 0, and F3 ≥ 0

when Z = 0. Thus by Corollary A.5 in [35] there exists a unique nonnegative solution
to (3.1) in R

3
+ for T ∈ [0,∞). Since

d

dT
(δX (T ) + Y(T ) + Z(T )) = σ − (1 − δ)δX (T ) − ρY(T ) − (1 − δ)Z(T )

≤ σ − θ(δX (T ) + Y(T ) + Z(T )),

where θ = min{1− δ, ρ} > 0, it follows that δX (T )+Y(T )+Z(T ) ≤ max{σ
θ , δX (0)+

Y(0) + Z(0)} = M . Thus the existence of a unique global nonnegative bounded
solution is proved.

3.2. Computing and interpreting R0. The disease free equilibrium (DFE)
for this nondimensionalized general model of nucleated polymerization is (X̄ , Ȳ, Z̄) =
(0, σ

ρ , 0). Note that in the absence of disease, Ȳ is stable. The DFE may be used to
find the basic reproduction number R0, which indicates the average number of new
infections caused by a single infective introduced to an entirely susceptible population.
One technique [37] examines the infective compartments, in this case the equations
within (3.1) for X and Z. The Jacobian J of the (X ,Z) system about the DFE is
apportioned into two matrices F and G such that J = F − G, where F contains
all elements resulting from new infections and G contains all remaining movement
between compartments. Then R0 is the spectral radius of the matrix FG−1. For the
model given in (3.1),

F =

[
0 0
σ
ρ 0

]
, G =

[
1 −1
0 1

]
,

and the spectral radius of FG−1 is σ
ρ . Hence R0 = σ

ρ . The next result follows from

Theorem 2 of [37].
Lemma 3.2. If R0 < 1, then the DFE of (3.1) is locally asymptotically stable; if

R0 > 1, then the DFE is unstable.
In the biological variables,

(3.2) R0 =
βλτ

γ(βx0 + μ)2
.

The same R0 results from the model of nucleated polymerization in which the length-
ening mechanism proceeds according to mass action and polymer joining does not
occur [28]. This result makes it clear that general incidence and joining do not affect
the potential success of infection via nucleated polymerization. However, as shown
later, the inclusion of a generalized incidence term and polymer joining does affect
the distribution of polymer lengths as time progresses during disease and alters the
disease equilibrium.
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3.3. Global stability of the DFE. Assuming that ρ ≥ 1, the DFE of the
general model of nucleated polymerization given in (3.1) is globally attractive for
R0 ≤ 1 and globally asymptotically stable (GAS) for R0 < 1. The assumption that
ρ ≥ 1 is justified biologically; see data in section 4. To show the DFE results, first
consider the model in the case with ν = 0, that is, where polymer lengthening occurs
via mass action.

Lemma 3.3. If R0 ≤ 1, then the DFE (X̄ , Ȳ, Z̄) = (0, σ
ρ , 0) of the system

X ′ = Z − X − φX 2,

Y ′ = σ − ρY − XY + δ2X ,(3.3)

Z ′ = XY − Z + δφX 2

is globally attractive.
Proof. Consider the Liapunov function

Φ =
1

2
(Y − Ȳ)2 + k1(X + Z)

with k1 = (2 − δ2 − Ȳ). Since both δ < 1 and Ȳ = R0 ≤ 1, then k1 > 0. This
Liapunov function is the same as that used by [28] for the nondimensionalized model
with mass action and no joining. Its derivative given by

Φ′ = −ρ(Y − Ȳ)2 − φ(1 − δ)k1X 2 −X [(Y − 1)2 + (1 − δ2)(1 − Ȳ)]

is nonpositive for R0 ≤ 1. Also Φ′ = 0 only if Y = Ȳ and X = 0. Thus by LaSalle’s
invariance principle [19] the DFE (0, σ

ρ , 0) of (3.3) is globally attractive.

Theorem 3.4. Assume ρ ≥ 1. If R0 ≤ 1, then the DFE (X̄ , Ȳ, Z̄) = (0, σ
ρ , 0) of

the system (3.1) is globally attractive. If R0 < 1, then the DFE is GAS.
Proof. From systems (3.1) and (3.3), create the equivalent respective systems

X ′ = Z − X − φX 2,

Z ′ =
X (Y + Z) −XZ
1 + ν(Z + δX )

−Z + δφX 2,(3.4)

(Y + Z)′ = σ − ρ (Y + Z) + (ρ− 1)Z + δ2X + δφX 2,

and (with ν = 0)

X ′ = Z − X − φX 2,

Z ′ = X (Y + Z) −XZ −Z + δφX 2,(3.5)

(Y + Z)′ = σ − ρ (Y + Z) + (ρ− 1)Z + δ2X + δφX 2,

subject to the same nonnegative initial conditions. Since ρ ≥ 1, system (3.5) is
K-monotone. Then ν ≥ 0, δ ∈ (0, 1), X ≥ 0, and Z ≥ 0 imply by a standard
comparison theorem given in [34, Appendix B1] that (X ,Z,Y +Z)(3.4) ≤ (X ,Z,Y +
Z)(3.5). Let R0 ≤ 1. Since by Lemma 3.3, the DFE of (3.5) is globally attractive, and
by Proposition 3.1, X ≥ 0 and Z ≥ 0, it follows that X → 0 and Z → 0 for system
(3.4). From the second equation of (3.1), the theory of asymptotically autonomous
systems [6] shows that Y → σ

ρ . The global asymptotic stability result then follows
from Lemma 3.2.

In order to use the comparison theorem to show that the DFE of system (3.1) is
GAS, it is required that ρ ≥ 1 in Theorem 3.4. Next we apply the Liapunov method
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to establish that the DFE is GAS without assuming that ρ ≥ 1 but at a cost: R0 is
required to be less than 1 − δ2.

Theorem 3.5. The DFE of system (3.1) is GAS if R0 ≤ 1 − δ2.
Proof. Define

Φ = Y − Ȳ ln(Y/Ȳ) + Z + X .

Notice that σ = ρȲ. The derivative of Φ along the solution of system (3.1) is
given by

Φ′ = −ρ
(Y − Ȳ)2

Y − (1 − δ)φX 2 − δ2Ȳ X
Y + X

(
δ2 +

Ȳ
1 + ν(Z + δX )

− 1

)

≤ −ρ
(Y − Ȳ)2

Y − (1 − δ)φX 2 − δ2Ȳ X
Y + X

(
δ2 + Ȳ − 1

)
.

This shows that Φ′ is nonpositive for R0 = σ
ρ = Ȳ < 1 − δ2 and Φ′ = 0 only if

Y = Ȳ and X = 0. Again, by LaSalle’s invariance principle and Lemma 3.2, the DFE
is GAS.

3.4. Existence and stability of the EE. We now consider an endemic equi-
librium (EE) with disease present, i.e., X > 0, Y > 0, Z > 0.

Lemma 3.6. If R0 > 1, then system (3.1) has a unique EE. If φ = 0, then

that EE is given by (X ∗,Y∗,Z∗) =
(

σ−ρ
ρν(1+δ)+(1−δ2) ,

σν(1+δ)+(1−δ2)
ρν(1+δ)+(1−δ2) ,

σ−ρ
ρν(1+δ)+(1−δ2)

)
.

If R0 < 1, then (3.1) has no EE.
Proof. If φ > 0, then system (3.1) cannot be solved explicitly for the EE. However,

for φ ≥ 0, at equilibrium, Z and Y can be expressed in terms of X by

Z = X + φX 2,

Y =
1

ρ
[σ −X (1 + φX ) + δX (φX + δ)](3.6)

= [1 + νX (1 + δ + φX )] [1 + φX (1 − δ)] ,

and X satisfies the cubic equation

0 = ρνφ2(1 − δ)X 3 +
[
ρνφ + ρνφ(1 − δ2) + φ(1 − δ)

]
X 2

+
[
ρν(1 + δ) + ρφ(1 − δ) + (1 − δ2)

]
X + ρ− σ.(3.7)

Since the first three coefficients of (3.7) are positive and the constant term is negative
for R0 > 1, there is a unique positive root. The expressions in (3.6) show that unique
positive equilibrium values for Y and Z result from the unique positive X ; hence
there is a unique EE (X ∗,Y∗,Z∗) for R0 > 1. If φ = 0, then the solution of (3.7) is
given explicitly as X ∗ = σ−ρ

ρν(1+δ)+(1−δ2) , giving Y∗ and Z∗ from (3.6) as in the lemma

statement. If R0 < 1, then (3.7) has no positive root, and hence there is no EE.
The proof of the following result is standard, using the Routh–Hurwitz conditions.

For details, see Appendix A.
Theorem 3.7. If R0 > 1, then the unique EE of system (3.1) is locally asymp-

totically stable.
Remark 3.8. If R0 > 1 and ρ ≥ 1, then every solution of (3.1) approaches either

the EE or the DFE.
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Proof. Consider the equivalent system (X ,Z,Y +Z) of (3.1), namely (3.4). This
equivalent system’s matrix of partial derivatives has the sign pattern⎡

⎣ − + 0
+ − +
+ ∗ −

⎤
⎦

in the case when ρ ≥ 1 (where ∗ is + or 0), indicating an irreducible coopera-
tive system. Then by Theorems 2.3.2 and 4.1.2 on respective pages 18 and 57 of
[33], the system exhibits monotone dynamical flow and solutions must approach an
equilibrium.

The system equivalent to (3.1) has only two possible equilibria: the DFE (0, 0, σ
ρ )

and the EE (X ∗,Z∗,Y∗ + Z∗) from Lemma 3.6. If R0 ≥ 1, then by Lemma 3.2, the
DFE is unstable, and by Theorem 3.7, the EE is locally asymptotically stable. These
facts together with numerical simulations (see section 4) indicate that the EE is GAS
if R0 > 1 and ρ ≥ 1, but we do not have a proof.

A Liapunov function argument is used in section 3.4 of [28] to prove a global
asymptotic stability result in the case ω = η = 0.

3.5. Effects of ν and φ on the EE. The nucleated polymerization model
with mass action and without polymer joining has been well studied in earlier work
[12, 13, 14, 28]. It is useful to understand the effects of positive values of ν and φ
on the EE of model (3.1). By taking partial derivatives of (3.6) and (3.7) and using
parameter relationships at the EE, the following signs are determined. (For selected
details, see Appendix B.)

Proposition 3.9. At the EE of (3.1), for R0 > 1, ∂X∗

∂ν < 0, ∂Y∗

∂ν > 0, and
∂Z∗

∂ν < 0.

Proposition 3.10. At the EE of (3.1), for R0 > 1, ∂X∗

∂φ < 0 and ∂Y∗

∂φ > 0.

3.6. Summary of ODE results for biological variables. The previous results
are now summarized in terms of the original biological variables in system (2.5). Recall
that X , Y, and Z in (3.1) are respectively proportional to x0U (the number of PrPSc

units in the minimum lengths of the polymers), V (the number of PrPC monomers),
and W (the PrPSc units not accounted for within the minimum lengths of the poly-
mers), all satisfying system (2.5). With nonnegative initial conditions, system (2.5)
has a unique bounded solution in R

3
+ defined for all t ≥ 0. The basic reproduction

number R0 is given by (3.2). The DFE (x0U, V,W ) = (0, λ
γ , 0) is globally attractive

if γ ≥ βx0 + μ and R0 ≤ 1 and is GAS if R0 < 1. If R0 > 1 and γ ≥ βx0 + μ, then
the unique EE (x0U

∗, V ∗,W ∗) demonstrated in Lemma 3.6 is locally asymptotically

stable in R
3
+ \ [{0} × R+ × {0}]. For R0 > 1, at the EE, ∂(x0U

∗)
∂ω < 0, ∂V ∗

∂ω > 0,
∂W∗

∂ω < 0, ∂(x0U
∗)

∂η < 0, and ∂V ∗

∂η > 0. The sign of ∂W∗

∂η is undetermined in general,

since the sign of ∂Z∗

∂φ is unknown.

We can also interpret the results in terms of P (the number of PrPSc monomer
units comprising the polymers) from (2.4). At the DFE, P = 0, and at the EE,
P ∗ = W ∗ + x0U

∗. By adding the second and third equations in (2.4), it follows
that ∂P∗

∂ω < 0 and ∂P∗

∂η < 0 at the EE. The ratio P
U gives the mean polymer length.

Dividing the last equation of (2.4) by U and differentiating with respect to η, it is
seen that d

dη

(
P∗

U∗

)
> 0 at the EE.

3.7. A solution of the PDE system in the case of general incidence.
Returning to (2.1) and (2.2), consider the case of general incidence but no joining,
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i.e., η = 0. The corresponding system of ODEs given in system (2.4), again with
η = 0, has EE from Lemma 3.6 given by the following:

U∗ =
βγ(βx0 + μ)2 − β2λτ

(2βx0 + μ)[ωγ(βx0 + μ)2 + βμτ ]
,

V ∗ =
(βx0 + μ)2(ωλ + μ)

ωγ(βx0 + μ)2 + βμτ
,(3.8)

P ∗ =
γ(βx0 + μ)2 − βλτ

ωγ(βx0 + μ)2 + βμτ
.

To find an equilibrium distribution of polymer lengths, set ∂
∂tu(x, t) = 0 in (2.2).

Compute the derivative with respect to x of the rest of (2.2), substituting in values
of U∗, V ∗, and P ∗ from (3.8) to obtain

(3.9)
d2

dx2
[u(x)] +

β(βx + μ)

(βx0 + μ)2
d

dx
[u(x)] +

3β2

(βx0 + μ)2
u(x) = 0.

The boundary condition u(x0) = 0, first given in (2.3), can be used to find solutions
to (3.9) of the form

(3.10) u(x) = Ce
− β(x−x0)(βx+βx0+2μ)

2(βx0+μ)2 (x− x0)(βx + βx0 + 2μ).

Note that from (2.2) with x = x0,

(3.11)
d

dx
[u(x)] = 2βU∗

(
1 + ωP ∗

τV ∗

)
.

Substitute into (3.11) values of U∗, V ∗, and P ∗ from (3.8). Then compute the deriva-
tive of (3.10) and set it equal to (3.11) to find

C =
β3(βλτ − γ(βx0 + μ)2)

(βx0 + μ)3(2βx0 + μ)[ωγ(βx0 + μ)2 + μβτ ]
.

The equilibrium solution from (3.10), denoted by u∗(x), is thus

(3.12) u∗(x) =

(
e
− β(x−x0)(βx+βx0+2μ)

2(βx0+μ)2

)
β3(x− x0)(βx + βx0 + 2μ)[βλτ(1 − 1/R0)]

(βx0 + μ)3(2βx0 + μ)[ωγ(βx0 + μ)2 + μβτ ]
,

where R0 is given in (3.2). Note that the numerator of u∗(x) requires x > x0 and
R0 > 1. The denominator of u∗(x) shows that an increase in ω decreases the number
of polymers of length x at steady state for all viable lengths x.

From (3.10), it can be seen that the value of x at which u∗(x) achieves its maxi-
mum is independent of ω and is given by

(3.13) x = (
√

3 − 1)
μ

β
+
√

3x0.

However, from (3.12), the magnitude of this maximum decreases as ω increases.
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Fig. 2. Varying ω = 0, 10−5, 10−4, 10−3, 10−2 for populations U(t), V (t), and P (t) with x0 = 6,
λ = 4400, γ = 5, τ = 0.3, μ = 0.04, β = 10−4, η = 0. Range of ω runs top to bottom on U and P
graphs, bottom to top on V graph.
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Fig. 3. Steady-state polymer distribution u∗(x) with x0 = 6, λ = 4400, γ = 5, τ = 0.3,
μ = 0.04, β = 10−4, η = 0, and ω = 0, 10−5, 10−4, 10−3, 10−2. Range of ω runs from top curve to
bottom on graph.

4. Numerical simulations. To complement the previous analytical results, we
present some numerical simulations. All simulations shown, unless otherwise noted,
use the same parameters as in [14], namely x0 = 6/(SAF/sq), λ = 4400/day, γ =
5/day, τ = 0.3/(SAF/sq ∗ day), μ = 0.04/day, and β = 10−4(SAF/sq)/day, giving
ρ ≈ 2 × 105 > 1. These parameters follow from data and observations in [3, 7, 20,
25, 30]. Some broader ranges include that x0 ≈ 6–30 [20], PrPC has a half-life of
3–6 hours [3, 7, 25] and hence γ ≈ 3–5/day, μ 
 γ [20, 25], and λ ≈ 103–104/day
[20]. The units SAF/sq are a measure of scrapie-associated fibrils counted in spleens of
Compton white mice that had been given intracerebral injections of the 139A scrapie
strain [30]. Note that the above parameter set gives R0 ≈ 16. We vary values of ω
and η to investigate the changes introduced by these parameters.

First consider general incidence. The effects of the parameter ω on U , V , and P ,
discussed in section 3.6, are shown in Figure 2. Additionally, the equilibrium solution
for u(x) found in (3.12) allows a comparison of steady-state polymer distributions,
given differing values of ω. This appears in Figure 3, computed from (3.12). Note
that, for all values of ω, the maximum value of u(x) occurs at x ≈ 303, as can be
computed from (3.13).

Next consider joining. Section 3.6 describes the effects of η on the EE of system
(2.4), shown numerically in Figure 4. As discussed in section 3.6, the sign of ∂Z∗

∂φ is

undetermined; hence the sign of ∂W∗

∂η is also undetermined. It turns out that most

parameter combinations, but not all, support ∂Z∗

∂φ < 0. The opposite can occur in the
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Fig. 4. Varying η = 0, 10−4, 10−3, 10−2, 10−1 for populations U(t), V (t), and P (t) with x0 = 6,
λ = 4400, γ = 5, τ = 0.3, μ = 0.04, β = 10−4, ω = 0. Range of η runs top to bottom on U and P
graphs, bottom to top on V graph.

Fig. 5. Dependence of W ∗ on η with x0 = 6, λ = 4400, γ = 5, τ = 0.3, μ = 0.02, β = 10−4,
ω = 0.

case that δ → 1, which is possible in the case that μ is small or βx0 is large. A brief
explanation appears in Appendix C. Even so, it appears that ∂Z∗

∂φ > 0 for only small

values of φ. This effect is demonstrated in Figure 5 for ∂W∗

∂η , which is proportional

to ∂Z∗

∂φ > 0. The parameters used in Figure 5 are the same as those listed above, but
with smaller μ, namely μ = 0.02, and ω = 0.

Last, combine general incidence with joining. Lemma 3.2, Theorem 3.7, and
Remark 3.8 together suggest that the EE of system (3.1) is GAS. Numerical simula-
tions such as those shown in Figure 6 support this suggestion. The pair of surfaces
in this figure show long-term equilibrium values of U and P , denoted U∞ and P∞, as
both ω and η vary. For all shown pairs of ω and η values, both U∞ and P∞ remain
positive, indicating (as a consequence of Remark 3.8) that they correspond to U∗ and
P ∗. The shown ranges for ω and η correspond to the lower range of values used in
Figures 2, 3, 4, and 5. Similar graphs generated using higher values of ω and η also
result in positive values of U∞ and P∞. The parameter values used for x0, λ, γ, τ , μ,
and β are the same as those given at the beginning of this section.

Figures 2, 3, and 4 were computed using MATLAB, with ode15s for Figures 2
and 4. Figures 5 and 6 were computed using Mathematica.

5. Biological interpretation and discussion. We now discuss the analytical
results and numerical simulations (for the assumed parameter values) in terms of prion
biology. From sections 3.2 and 3.3, the system (2.4) always has a DFE (U, V, P ) =
(0, λ

γ , 0), which attracts all solutions if γ ≥ μ + β ∗ x0 and R0 = βλτ
γ(βx0+μ)2 ≤ 1. This

is the only equilibrium for R0 < 1, but for R0 > 1 there is a unique EE (U∗, V ∗, P ∗),
with P ∗ = W ∗ + x0U

∗ and V ∗ ≤ λ/γ, as can be seen from (3.6). This equilibrium
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Fig. 6. Long-term values U∞ and P∞ as η and ω vary. In both graphs x0 = 6, λ = 4400,
γ = 5, τ = 0.3, μ = 0.04, and β = 10−4. On the U∞ graph, 10−6 < η < 10−3, 10−6 < ω < 10−4,
and 50 < U∞ < 250. On the P∞ graph, 10−6 < η < 10−2, 10−6 < ω < 10−4, and 20, 000 < P∞ <
100, 000.

is given explicitly by (3.8) in the case of no joining, and with joining it can be found
from the solution of a cubic (see Lemma 3.6). If R0 > 1, then this EE is locally
asymptotically stable.

From section 3.6, both increased ω and increased η cause U∗ to decrease. The
change related to ω indicates that as the total population of PrPSc has a greater
effect on general incidence, the total number of polymers at the EE decreases. For
the parameters used, if ω ≥ 10−3, then the values of (U∗, V ∗, P ∗) are close to those at
the DFE, as seen in Figure 2. The change related to η indicates that a higher rate of
polymer joining results in fewer total polymers at the EE. Increased ω and increased
η cause V ∗ to increase. Hence the same biological changes cause both a decrease in
PrPSc polymers and an increase in PrPC at the EE. Additionally, increased ω and
increased η cause the equilibrium value P ∗ of total PrPSc to decrease. If η increases,
then at the EE the mean polymer length P∗

U∗ increases, with lnP ∗ decreasing more
slowly than lnU∗.

The effects on W ∗ are more complicated. Increased ω, that is, increased depen-
dence of incidence on the total PrPSc population, decreases W ∗. On the other hand,
an increased rate of polymer joining has a variable effect on W ∗. Differing parameter
combinations can cause W ∗ to either increase or decrease with a positive change in
η; see Figure 5. That noted, it is also true that most viable parameter combinations
cause W ∗ to decrease when η increases.

Recall that the form of R0 given in (3.2) is the same with either mass action or our
general incidence term, and with or without polymer joining. Despite the inability
of ω and η to affect disease persistence, however, each of these parameters has a
demonstrable effect on the steady-state values of U , V , and P . Also, increasing ω
clearly decreases the number of polymers of each possible length, with the maximum
for ω = 10−4 being about half the maximum for ω = 0; see Figure 3. From data
given by Rubenstein et al. [30], the onset of symptoms of scrapie can be estimated
[14] to occur as U(t) reaches a critical value of 130 SAF/sq. From Figures 2 and 4,
the inclusion of general incidence or joining may result in U∗ less than this critical
value, while V ∗ remains closer to its DFE value. Thus, if the effects of prion diseases
are caused by either an excess of PrPSc or a lack of PrPC [24, 29], then changing
the EE by increasing ω or η may be enough to delay or prevent the onset of disease
symptoms.
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Appendix A. Proof of Theorem 3.7. Consider a system equivalent to (3.1),
namely, the system given by (3.4). Setting each of the derivatives to zero gives

Z∗ = X ∗ + φ(X ∗)2,

(Y + Z)∗ −Z∗

1 + ν(Z∗ + δX ∗)
= 1 + φ(1 − δ)X ∗.

Set q = 1 + φ(1 − δ)X ∗ and r = 1 + νX ∗(1 + δ + φX ∗). Then the Jacobian of (3.4)
at the unique EE is given by⎡

⎢⎢⎢⎣
−1 − 2φX ∗ 1 0

2φδX ∗ + q − νδqX ∗

r
−1 − X ∗(1 + νq)

r

X ∗

r
δ2 + 2φδX ∗ ρ− 1 −ρ

⎤
⎥⎥⎥⎦ .

The Jacobian yields the characteristic equation

z3 + c1z
2 + c2z + c3 = 0

with

c1 = ρ + 2 + 2φX ∗ +
X ∗(1 + νq)

r
,

c2 = φX ∗(1 − δ) + 2ρ(1 + φX ∗) +
[2(1 + φX ∗) + (ρ + 1 + δ + 2φX ∗)νq]X ∗

r
,

c3 = (1 + 2φX ∗)

(
ρ +

ρνqX ∗

r
+

X ∗

r

)
− ρ

(
1 + φ(1 + δ)X ∗ − δνqX ∗

r

)

− X ∗

r
(δ2 + 2φδX ∗).

Notice that 0 < δ < 1 and X ∗ > 0 when R0 > 1. Clearly c1 > 0 and c2 > 0.
Additionally,

c3 > (1 + 2φX ∗)

(
ρ +

X ∗

r

)
− ρ(1 + φ(1 + δ)X ∗) − X ∗

r
(δ2 + 2φδX ∗) > 0.

Rewriting c3 as

c3 =
X ∗

r
[1 + 2φX ∗ − (δ2 + 2φδX ∗)] +

ρνqX ∗

r
(1 + 2φX ∗ + δ) + ρφX ∗(1 − δ),

it can be shown that

c1 c2 >
X ∗

r
(2 + 2φX ∗) +

ρνqX ∗

r
(2 + 2φX ∗) + ρ(2 + 2φX ∗) > c3.

Hence the Routh–Hurwitz conditions are satisfied and the proof is complete.

Appendix B. Selected proofs of Propositions 3.9 and 3.10. Differentiate
(3.7) implicitly to give ∂X∗

∂ν < 0, then compute from (3.6) that

∂Y∗

∂ν
= −∂X ∗

∂ν
(1 − δ2) − 2φX ∗ ∂X ∗

∂ν
(1 − δ) > 0.
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Differentiate (3.7) implicitly to obtain

∂X ∗

∂φ
=

−2νρφ(1 − δ)(X ∗)3 − [νρ + νρ(1 − δ2) + 1 − δ](X ∗)2 − ρ(1 − δ)X ∗

3νρφ2(1 − δ)(X ∗)2 + 2[νρφ + νρφ(1 − δ2) + φ(1 − δ)]X ∗ + νρ(1 + δ) + ρφ(1 − δ) + 1 − δ2
,

which shows that ∂X∗

∂φ < 0. Next compute ρ∂Y∗

∂φ and divide by (1 − δ) > 0 to find

ρ

1 − δ

∂Y∗

∂φ
= −2φX ∂X ∗

∂φ
− (X ∗)2 − ∂X ∗

∂φ
(1 + δ).

Substitute ∂X∗

∂φ from above, and write the full right-hand side over a common denom-
inator. The resulting numerator can be simplified to give

νρφ2(1 − δ)(X ∗)4 + 2νρφ(1 − δ2)(X ∗)3 + ρφ(1 − δ)(X ∗)2

+ νρ(1 − δ2)(1 + δ)(X ∗)2 + ρ(1 − δ2)X ∗.

The numerator is seen to be strictly positive, over a positive denominator, and hence
∂Y∗

∂φ > 0.

Appendix C. Computing values of φ for which ∂Z∗

∂φ
> 0. Given the EE

expressions for X ∗ and Z∗ in (3.6) and (3.7), clearly ∂Z∗

∂φ > 0 requires that

∂X ∗

∂φ
>

−(X ∗)2

2φX ∗ + 1
,

where ∂X∗

∂φ is given by

∂X ∗

∂φ
=

−2ρνφ(1 − δ)(X ∗)3 − [ρν + ρν(1 − δ2) + (1 − δ)](X ∗)2 − ρ(1 − δ)X ∗

3ρνφ2(1 − δ)(X ∗)2 + 2[ρνφ + ρνφ(1 − δ2) + φ(1 − δ)]X ∗ + ρν(1 + δ) + ρφ(1 − δ) + 1 − δ2
.

Letting δ ≈ 1,

∂X ∗

∂φ
≈ − ρν(X ∗)2

2ρνφX ∗ + 2ρν
> − ρν(X ∗)2

2ρνφX ∗ + ρν
= − (X ∗)2

2φX ∗ + 1
.

Hence for δ near 1, there are likely to be ranges of φ values for which ∂Z∗

∂φ > 0.
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EQUATIONS FOR SEMICONDUCTORS∗
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Abstract. A hierarchy of diffusive partial differential equations is derived by a moment method
and a Chapman–Enskog expansion from the semiconductor Boltzmann equation assuming dominant
collisions. The moment equations are closed by employing the entropy maximization principle of
Levermore. The new hierarchy contains the well-known drift-diffusion model, the energy-transport
equations, and the six-moments model of Grasser et al. It is shown that the diffusive models are of
parabolic type. Two different formulations of the models are derived: a drift-diffusion formulation,
allowing for a numerical decoupling, and a symmetric formulation in generalized dual-entropy vari-
ables, inspired by nonequilibrium thermodynamics. An entropy inequality (or H-theorem) follows
from the latter formulation.
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sion, entropy maximization, energy-transport model, higher-order moments
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1. Introduction. The semiconductor Boltzmann equation is of fundamental im-
portance for the modeling of classical transport of charged carriers in solids. Its
solution is the microscopic distribution function f(x, p, t) depending on the spatial
variable x, the (crystal) momentum p, and the time t. Macroscopic quantities, such
as the particle density, current density, and energy density, can be computed from
certain integrals over the momentum space, which are called moments. Since the
numerical solution of the Boltzmann equation, by direct or Monte Carlo methods, is
extremely time consuming and not suitable to simulate real problems in semiconduc-
tor production mode, approximate models have been derived, consisting of evolution
equations for a certain number of moments of the distribution function.

The idea of the moment method is to multiply the Boltzmann equation by certain
weight functions depending only on the momentum variable and to integrate over the
momentum space. This leads (for a finite number of weight functions) to the so-
called moment equations which are generally not closed; i.e., there are more moments
than equations. This is called the closure problem. In order to obtain a closed set
of equations, additional information is needed. Here we use a diffusion scaling and
follow the approach of Müller and Ruggeri [45] or Levermore [41], who closed the
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set of equations (essentially) by taking that distribution function in the definition
of the moments, which maximizes the kinetic entropy under the constraints of given
moments. This approach was first used in [18]. For a more recent reference, see [12].
In the context of semiconductor problems, entropy maximization has been introduced
in [3] (see also [2] for a complete list of references). We derive for the first time
diffusive moment models of arbitrary order and for collision operators under abstract
hypotheses.

Depending on the number of moments, one obtains a hierarchy of macroscopic
equations. The lowest-order model is the standard drift-diffusion model, consisting of
the mass conservation equation and a constitutive equation for the current density [44].
This model is often used in device simulations at an industrial level, but it cannot cope
with hot-electron or high-field phenomena, occurring in modern ultrasmall devices.
Hence, higher-order moments of the distribution function need to be included leading
to hydrodynamic or diffusive systems of equations.

First we review the hydrodynamic-type models which are mathematically hyper-
bolic conservation laws [41]. These models are derived from the Boltzmann equation in
the hydrodynamic scaling. As a closure condition, an expansion of the distribu-
tion function around a heated Maxwellian using Hermite polynomials [24, 46] or
using Grad’s expansion [42] has been employed, which gives the so-called hydrody-
namic equations [8], consisting of conservation laws for mass, momentum, and energy.
The equations may also be closed using the entropy maximization principle. When
13 moments are taken into account, so-called extended hydrodynamic models have
been derived [1, 4]. Hydrodynamic models of arbitrary order have been obtained in
[49, 53, 54]. Finally, we mention that recently this approach has been generalized
to (extended) quantum hydrodynamic models, which are obtained starting from the
Wigner equation [17, 37].

Performing the diffusion limit in the Boltzmann equation, combined with the
moment method, leads to diffusion-type moment equations. With the moments 1
and ε(p), where ε(p) is the carrier kinetic energy, energy-transport models [52] can
be derived [6, 7]. These models consist of conservation laws of mass and energy and
constitutive relations for particle and energy fluxes. They have been widely studied in
the engineering as well as in the mathematical literature (see, e.g., [5, 11, 30, 43, 48, 55]
for some engineering and [6, 13, 15, 22, 31, 32, 34] for some mathematical references).
Energy-transport equations allow for the modeling of hot-electron effects. However,
for ultrasmall devices, the numerical results are not sufficiently accurate compared to
Monte Carlo simulations of the Boltzmann equation.

Improved accuracy has been obtained by including further moments of the dis-
tribution function leading, for instance, to the six-moments model of Grasser et al.
[27] (also see [51]). The six-moments model consists of conservation laws for mass,
energy, and the so-called kurtosis and constitutive equations for the corresponding
three fluxes. Compared to the extended hydrodynamic models, the advantage of this
model is that it constitutes a system of parabolic equations instead of hyperbolic
ones, which simplifies the numerical discretization and solution considerably. Up to
now, the employed closure in the literature is only heuristic, and the determination of
the flux relations is based on approximations [30]. Our approach does not need any
approximation and works for general collision operators (under some conditions) and
general nonparabolic band structures.

More precisely, we derive, under suitable assumptions (see (H1)–(H4) below),
diffusive higher-order moment models of the form

∂tmi + divJi − iJi−1 · ∇V = Wi, i = 0, . . . , N,
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where mi are the moments (m0 being the particle density and m1 the energy den-
sity), Ji are the fluxes, V is the electric potential, and Wi are the averaged inelastic
scattering terms (with W0 = 0). The fluxes are given by

Ji = −
N∑
j=0

(
Dij∇λj + jDi,j−1∇V λj

)
,

where Dij are the diffusion coefficients, coming from the dominant scattering pro-
cesses, and λi are the Lagrange multipliers, coming from the constrained entropy
maximization problem. The moments mi depend nonlinearly on the Lagrange multi-
pliers λj . Besides our derivation, the main results of this paper are as follows:

• The diffusion matrix (Dij) is symmetric and positive definite under some
topological assumptions on the semiconductor band structure, and the de-
pendence of the moments mi on λj is monotone in the sense of operators.
Thus, the evolution problem is of parabolic type.

• The flux equations can be written equivalently in the drift-diffusion form

Ji = −∇di − Fi(d)di∇V, i = 0, . . . , N,

where di = Di0 and Fi(d) are nonlinear functions of d = (d0, . . . , dN ) (see
section 4.1 for details). This formulation allows for a numerical decoupling
and the use of local Slotboom variables for designing a discretization scheme
(see [15] and Remark 4.2 below).

• The convective parts including the electric field −∇V can be eliminated by
introducing generalized dual-entropy variables ν = (ν0, . . . , νN ), depending
on the Lagrange multipliers and the electric potential, such that

∂tρi(ν) + divFi = gi, Fi = −
N∑
j=0

Cij∇νj ,

where ρi depends on ν, gi depends on Wj and ∂tV , and the new diffusion
matrix (Cij) is symmetric and positive definite (see section 4.2 for details).
This formulation is useful for the numerical discretization of the equations
employing standard (mixed) finite elements [23]. Moreover, it extends the
dual-entropy notion known in nonequilibrium thermodynamics [19, 40].

• We are able to recover many well known diffusion models, such as the drift-
diffusion, energy-transport, and six-moments models of Grasser et al. Com-
pared to [29], no approximation of the highest-order moment is needed.

The originality of this paper consists in the facts (i) that we present for the first
time a complete hierarchy of diffusion moment models for general collision operators,
(ii) that we present a unifying approach of the derivation of these models, and (iii) that
the derived models have very pleasant features useful for the mathematical analysis
and the numerical discretization of the equations.

The paper is organized as follows. In section 2 we state our assumptions on the
band structure and the collision operator, and we derive the model equations by a
Chapman–Enskog expansion. Furthermore, some properties and several examples of
the diffusion matrix are given. In section 3 we show that the drift-diffusion, energy-
transport, and six-moments models can be recovered from the general theory. Section
4 is devoted to the drift-diffusion and dual-entropy formulation. We conclude in
section 5. Finally, in the appendix some technical results are proved.



174 ANSGAR JÜNGEL, STEFAN KRAUSE, AND PAOLA PIETRA

2. Derivation of the model equations. Let B ⊂ R
3 be the first Brillouin

zone of the semiconductor crystal under consideration. The set B is symmetric with
respect to the origin; hence, we can identify it with the three-dimensional torus.
We assume throughout this paper that all variables and functions are scaled. The
evolution of the charged particles in the semiconductor is described by a distribution
function f(x, p, t) ≥ 0 depending on time t > 0 and space-crystal momentum variables
(x, p) ∈ Ω×B, where Ω ⊂ R

3 is the semiconductor domain. The distribution function
f = fα is assumed to satisfy the (dimensionless) semiconductor Boltzmann equation
in diffusion scaling:

(2.1) α2∂tfα + α
(
u · ∇xfα + ∇xV · ∇pfα

)
= Q(fα);

i.e., we change the space and time scale according to x → x/α and t → t/α2, where
the Knudsen number α is the ratio of the (optical) phonon energy and the typical
kinetic energy of an electron (see [6] for details of the scaling). The Knudsen number
is assumed to be small compared to one (like in [6]). The group velocity u = u(p)
is defined by u = ∇pε(p), where ε(p) is the kinetic carrier energy given by the band
structure of the semiconductor crystal. The function V = V (x, t) denotes the electric
potential which is assumed to be given or to be determined from the Poisson equation

λ2ΔV =

∫
B

fdp− C(x),

where λ > 0 is the (scaled) Debye length and C(x) the doping profile, modeling fixed
charged background ions in the semiconductor crystal.

Below, we will perform the (formal) asymptotic limit α → 0. This limit avoids
any assumption on the distribution function (unlike in [25]), but, on the other hand,
we need some hypotheses on the collision operator. More specifically, we assume that
the collision operator can be decomposed into two parts: a dominant part and a small
part

Q(f) = Q1(f) + α2Q2(f).

This decomposition has been justified in [6, 20], for instance. We will suppose (see
section 2.2) that the kernel of Q1 consists of generalized Maxwellians introduced in
section 2.1 and that the moments of Q1(f) vanish. These assumptions are well known
in this context, and they are necessary to perform the diffusion limit α → 0.

In order to specify our assumptions on the collision operator, we need the so-called
generalized Maxwellian introduced in the following subsection.

2.1. Entropy maximization. We define the (scaled) relative entropy for f(x,
p, t) by

H(f)(x, t) = −
∫
B

f(log f − 1 + ε(p))dp.

Here and in the following, we consider only scaled quantities. The generalized Max-
wellian is defined as the maximizer of a certain constrained extremal problem. In
order to define this problem, let scalar weight functions κ(p) = (κ0(p), . . . , κN (p))
and moments m(x, t) = (m0(x, t), . . . ,mN (x, t)) be given. In [54], also vector-valued
weight functions are considered. We impose the following assumptions on κi and ε.

(H1) Let N ≥ 1. The weight functions κi(p) (i = 0, . . . , N) and the kinetic energy
ε(p) are smooth and even in p. Moreover, κ0 = 1 and κ1 = ε.

The case N = 0 is treated in section 3.
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Example 2.1. Examples for the weight functions are

(2.2) κ(1) = (1, ε, ε2, ε3 . . . ), κ(2) = (1, ε, |u|2, ε|u|2, |u|4, ε|u|4, . . . ).

The kinetic energy may be given, for instance, in the parabolic band approximation,
by ε(p) = 1

2 |p|2. Clearly, in this case κ(1) and κ(2) coincide (up to multiplicative
factors). A more refined model is the Kane dispersion relation, which takes into
account the nonparabolicity at higher energies, ε(1 + δε) = 1

2 |p|2, where δ > 0 is the
nonparabolicity parameter. In terms of ε, we have

(2.3) ε(p) =
|p|2

1 +
√

1 + 2δ|p|2
=

1

2δ

(√
1 + 2δ|p|2 − 1

)
.

If δ = 0, we recover the parabolic band approximation. The above examples for κ(i)

and ε satisfy (H1).
We recall that, instead of Kane’s dispersion relation, also the approximation

aε(p)b = |p|2/2 has been suggested, where the parameters a and b are fitted for
different energy ranges [9] (see the discussion in [30, sect. IV]).

We set 〈g〉 =
∫
B
g(p)dp for a function g(p), and we call the expression 〈κif〉 the

ith moment of f . Then we consider the constrained maximization problem

(2.4) H(f∗) = max
{
H(f) : 〈κf(x, ·, t)〉 = m(x, t) for x ∈ Ω, t > 0

}
.

The solution of this problem, if it exists, is given by

f∗(x, p, t) = exp
(
λ̃(x, t) · κ(p) − ε(p)

)
,

where λ̃ = (λ̃0, . . . , λ̃N ) are the Lagrange multipliers. Defining λ1 = λ̃1 − 1 and

λi = λ̃i for all i 	= 1, we have the more compact formulation

f∗(x, p, t) = eλ(x,t)·κ(p).

Remark 2.2. We notice that the mathematical solution of (2.4) is quite delicate.
In [33], it has been shown that (2.4) can be uniquely solved whenever the multipliers

λ̃ = λ̃(m) can be found. However, there are situations for which problem (2.4)
has no solution. This is the case if the momentum space is unbounded and the
polynomial weight functions have superquadratic growth at infinity [21, 35]. When
the constraint of the highest degree is relaxed (as an inequality instead of an equality),
the constrained maximization problem is always uniquely solvable [50]. In particular,
the maximization problem can be uniquely solved if one of the following conditions
holds:

1. General band structure: B is a bounded set and κ = (1, ε, ε2, . . . ).
2. Kane’s nonparabolic band approximation: B = R

3 and κ = (1, ε, ε2), where ε
is given by (2.3). Notice that ε(p) grows linearly with p at infinity such that
κi(p) is at most quadratic.

3. Kane’s nonparabolic band approximation: B = R
3 and κ = (1, ε, |u|2, ε|u|2,

|u|4, ε|u|4, . . . ), where ε is given by (2.3) [38]. Notice that the velocity u = ∇pε
is bounded, and, therefore, κi(p) is at most quadratic.

4. Parabolic band approximation: B = R
3 and κ = (1, |p|2/2).
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Given a function f(x, p, t) with moments mi = 〈κif〉 =
∫
B
κifdp, we call the

maximizer of (2.4) the generalized Maxwellian with respect to f , f∗ = Mf . In view
of the above comments, there are Lagrange multipliers λi such that

(2.5) Mf = eλ·κ.

By definition, Mf and f have the same moments; i.e., 〈κiMf 〉 = 〈κif〉 = mi.
Below, we employ Mf to close the moment equations. This closure implicitly

assumes nondegenerate Boltzmann statistics. For degenerate Fermi–Dirac statistics
in the context of the energy-transport model, we refer to [6, 7]. Furthermore, it has
been found that in certain semiconductor devices a mixture of hot and cold electrons
exists, and a superposition of two (Maxwellian-type) distribution functions has been
proposed as a closure [28].

Notice that generally the integrals relating the Lagrange multipliers and the mo-
ments cannot be solved analytically, so a numerical approach becomes necessary.
However, in the case of the parabolic band energy-transport model (see Example 3.4),
the integrals can be computed analytically. Moreover, for the fourth-order moment
model (see Example 4.4), we show below that the function λ 
→ m is invertible. We
also mention the approach of [4] where the exponentials in the integrals are expanded
around the thermal equilibrium.

2.2. Assumptions on the collision operators. With the above definition of
the generalized Maxwellian, we can state the following hypotheses on the collision
operators.

(H2) For all functions f(p) and all i = 0, . . . , N , 〈κiQ1(f)〉 = 0. Furthermore, the
null space N(Q1) of Q1 consists of generalized Maxwellians, N(Q1) = {f : f = Mf}.

(H3) For all functions f(p), it holds that 〈Q2(f)〉 = 0.
These hypotheses express the collisional invariants. For instance, for elastic col-

lisions, since κ0 = 1 and κ1 = ε by (H1), we have mass and energy conservation:

〈Q1(f)〉 = 0, 〈εQ1(f)〉 = 0.

Additionally, we suppose for Q1 conservation properties for all moments with respect
to the chosen weight functions. This assumption is rather strong; however, it is sat-
isfied, for instance, for relaxation-time operators (see Example 2.3). Hypothesis (H3)
simply expresses mass conservation for the collision operator Q2, which is physically
reasonable.

In [6], based on [20], the energy-transport model is derived by assuming that Q1

represents elastic scattering and Q2 includes inelastic and electron-electron scattering
terms. There may be two criticisms: First, the elastic scattering is assumed to be of
order one, but it can be seen from physics that elastic scattering gives only a small
contribution to the total scattering rate. Second, there are no first-order scattering
terms. For a derivation of the energy-transport model including first-order collision
terms, we refer to [16]. In this paper, we follow a more formal approach: We derive
diffusive models under the above assumptions on the collision operators which may
not need to be specified; only some properties are assumed. A refinement of this
argument may be the subject of future work. In the following example, we present
some simple collision operators satisfying the above hypotheses.

Example 2.3. (i) Consider the relaxation-time operator

(2.6) Q1(f) =
1

τ
(Mf − f),
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where τ > 0 is the (possibly space- and time-dependent) relaxation time. This collision
operator satisfies 〈κiQ1(f)〉 = 0 for all f (since f and Mf have the same moments),
and its null space consists of the functions f = Mf . Thus, Q1 satisfies (H2).

(ii) Let N = 1 and κ = (1, ε), and define the collision operator

Q1(f) = Qimp(f) + Qee(f)

as the sum of the impurity scattering operator Qimp and the electron-electron binary
collision operator Qee,

Qimp(f)(p) =

∫
B

φimp(p, p′)δ(ε′ − ε)(f ′ − f)dp′,

Qee(f)(p) =

∫
B

φee(p, p
′, p1, p

′
1)δ(ε

′ + ε′1 − ε− ε1)δp(p
′ + p′1 − p− p1)

× (f ′f ′
1 − ff1)dp1dp

′dp′1,

where φimp, φee > 0 are transition rates, δp is the periodized delta distribution,
and f ′ = f(p′), f1 = f(p1), f ′

1 = f(p′1) (see [7]). It has been shown in [7] that
〈κiQ1(f)〉 = 0 and that the kernel of Q1 consists of the functions Mf = eλ0+λ1ε; i.e.,
Q1 satisfies (H2) for N = 1.

(iii) Inelastic scattering may come from phonon collisions modeled by, for instance,

Qph(f)(p) =

∫
B

(
sph(p, p′)f ′ − sph(p′, p)f

)
dp′,

where sph(p, p′) = φph(p, p′)[(Nph+1)δ(ε−ε′+εph)+Nphδ(ε−ε′−εph)] and ε′ = ε(p′)
[6]. The number Nph is the phonon occupation number, and εph is the phonon energy.
An elementary computation shows that 〈Qph(f)〉 = 0; i.e., Qph satisfies (H3).

2.3. Chapman–Enskog expansion. First we derive the balance equations.
Proposition 2.4. Let (H1)–(H3) hold, and let fα be a solution to the Boltz-

mann equation (2.1). We assume that the formal limits F = limα→0 fα and G =
limα→0(fα − Mfα)/α exist. Then the moments mi = 〈κiMF 〉 and the fluxes Ji =
〈uκiG〉 and Ii = 〈∇pκiG〉 are solutions of

(2.7) ∂tmi + divJi −∇V · Ii = Wi, i = 0, . . . , N,

where Wi = 〈κiQ2(F )〉 are the averaged inelastic collision terms, W0 = 0, and the
divergence and gradient are to be taken with respect to x.

We notice that the definition of the moments is consistent with the notations in
section 2.1 since 〈κiMF 〉 = 〈κiF 〉.

Proof. We multiply the Boltzmann equation (2.1) by the weight functions κi,
integrate over the Brillouin zone B, and integrate by parts in the term involving the
electric potential:

(2.8) α2∂t〈κifα〉 + α
(
divx〈uκifα〉 − ∇xV · 〈∇pκifα〉

)
= 〈κiQ1(fα)〉 + α2〈κiQ2(fα)〉

for i = 0, . . . , N . Next, we perform the following Chapman–Enskog expansion (see,
e.g., [10]):

(2.9) fα = Mfα + αgα.

This equation in fact defines gα, and, by assumption, G = limα→0 gα. The generalized
Maxwellian Mfα is an even function in p, by hypothesis (H1), whereas p 
→ u(p)κi(p)
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and p 
→ ∇pκi(p) are odd functions in p. Therefore, 〈uκiMfα〉 = 0, 〈∇pκiMfα〉 = 0.
Then, substituting (2.9) into the moment equations (2.8), observing that the moments
of Q1(fα) vanish by (H2), and dividing the resulting equation by α2, we obtain

∂t〈κiMfα〉 + α∂t〈κigα〉 + divx〈uκigα〉 − ∇xV · 〈∇pκigα〉 = 〈κiQ2(fα)〉.

Performing the formal limit α → 0 in this equation leads to

(2.10) ∂t〈κiMF 〉 + divx〈uκiG〉 − ∇xV · 〈∇pκiG〉 = 〈κiQ2(F )〉.

These are the balance equations (2.7).
Remark 2.5. For i = 0, we have I0 = 0 and W0 = 0 such that the first balance

equation just expresses mass conservation:

(2.11) ∂tm0 + divJ0 = 0.

Example 2.6. The integrals Ii can be expressed in terms of the fluxes Ji for special
choices of the weight functions. For instance, if we choose κ = (1, ε, ε2, . . . ) (see (2.2)),
we obtain ∇pκi = iuεi−1 for i ≥ 1 and ∇pκ0 = 0, and thus Ii = iJi−1 for all i ≥ 0
(for i = 0, we have I0 = 0). In this situation the balance equations become

(2.12) ∂tmi + divJi − i∇V · Ji−1 = Wi.

If we choose κ = κ(2) in (2.2), we cannot express Ii in terms of the integrals J0, . . . , JN
since, for instance, ∇pκ2 = ∇p|u|2 = ε′′u, where ε′′ is the Hessian of ε(p), and this
cannot be written in general as a function of |u|2j and ε|u|2j .

Next, we specify the flux equations Ji. For this, we need to determine G. We
will see that this is equivalent to solving the operator equation LG = H, where
L = DQ1(MF ) is the Fréchet derivative of Q1 at MF = eλ·κ > 0 and H = u ·∇xMF +
∇xV · ∇pMF . We introduce the Hilbert space L2(B) with the scalar product

(g1, g2)F =

∫
B

g1g2M
−1
F dp

and the corresponding norm ‖·‖F . In order to solve the equation LG = H, we impose
the following hypothesis on the operator L.

(H4) The linear operator L = DQ1(MF ) is continuous, closed, and symmetric on
L2(B), and its null space is spanned by MF .

An example of an operator Q1 satisfying (H4) is presented in [6, sect. 3.2].
By the Fredholm alternative, the linear, continuous, and closed operator L on

the Hilbert space L2(B) satisfies the following property: The equation LG = H is
solvable if and only if H ∈ N(L∗)⊥ and its solution is unique in N(L∗)⊥. As L is
assumed to be symmetric, LG = H is solvable if and only if H ∈ N(L)⊥ and the
solution is unique in N(L)⊥. Since the null space of L consists of the generalized
Maxwellians, LG = H is solvable if and only if 0 = (H,MF )F =

∫
B
Hdp.

Proposition 2.7. Let (H1)–(H4) hold. Then the fluxes of Proposition 2.4 can
be written as

(2.13) Ji = −
N∑
j=0

(
Dij∇λj + Eij∇V λj

)
, i = 0, . . . , N,

where the diffusion matrices Dij ∈ R
3×3 and the matrices Eij ∈ R

3×3 are defined by

(2.14) Dij = −〈κiu⊗ φj〉, Eij = −〈κiu⊗ ψj〉,
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respectively, and φj = (φj1, φj2, φj3) and ψj = (ψj1, ψj2, ψj3) are the (unique) solu-
tions in N(L)⊥ of the operator equations

(2.15) Lφjk = ukκjMF , Lψj� =
∂κj

∂p�
MF , j = 0, . . . , N, k,  = 1, 2, 3.

Proof. Inserting the Chapman–Enskog expansion (2.9) into the Boltzmann equa-
tion (2.1), expanding formally the collision operator

Q1(fα) = Q1(Mfα) + αDQ1(Mfα)gα + O(α2),

and dividing the resulting equation by α, we obtain

α∂t(Mfα + αgα) + u · ∇x(Mfα + αgα) + ∇xV · ∇p(Mfα + αgα)

= α−1Q1(Mfα) + DQ1(Mfα)gα + O(α).

By (H2), we have Q1(Mfα) = 0. Hence, the formal limit α → 0 gives

(2.16) u · ∇xMF + ∇xV · ∇pMF = DQ1(MF )G = LG.

Now let j ∈ {0, . . . , N} be fixed. The operator equations (2.15) are solvable
in L2(B) since ukκjMF and (∂κj/∂p�)MF are odd functions in p, and hence, their
integrals over B vanish. The unique solution G in N(L)⊥ is given by

G =

N∑
j=0

(
φj · ∇xλj + ∇xV · ψjλj

)
,

since, observing ∇xMF =
∑

j ∇xλjκjMF and ∇pMF =
∑

j λj∇pκjMF , we have

LG =

N∑
j=0

(
Lφj · ∇xλj + ∇xV · Lψjλj

)
=

N∑
j=0

(
κju · ∇xλj + ∇xV · ∇pκjλj

)
MF

= u · ∇xMF + ∇xV · ∇pMF .

Hence, since Ji = 〈uκiG〉, we obtain (2.13).
Example 2.8. In the case of the relaxation-time operator of Example 2.3(i), the

function G can be found explicitly. Indeed, from Chapman–Enskog expansion (2.9)
and Boltzmann equation (2.1), we derive

gα =
1

α
(fα −Mfα) = − τ

α
Q1(fα)

= −τα(∂tfα −Q2(fα)) − τ(u · ∇xfα + ∇xV · ∇pfα),

and the formal limit α → 0 gives

G = −τ
(
u · ∇xMF + ∇xV · ∇pMF

)
= −τ

N∑
j=0

(
κju · ∇xλj + ∇xV · ∇pκjλj

)
MF .

Thus, the solutions φj and ψj of (2.15) are

(2.17) φj = −τuκjMF , ψj = −τ∇pκjMF .
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Lemma 2.9. Let κi = εi, i = 0, . . . , N . Then the coefficients Eij in (2.14) can
be expressed in terms of Dij:

(2.18) Eij = jDi,j−1, Ei0 = 0, j = 1, . . . , N.

Proof. The assumption κi = εi gives ∇pκi+1 = (i + 1)εi∇pε = (i + 1)uεi and
hence Lψi+1 = ∇pκi+1MF = (i+ 1)Lφi. By the unique solvability in N(L)⊥, ψi+1 =
(i+ 1)φi + cMF for all i ≥ 0 and ψ0 = cMF , where c is a constant vector. Therefore,

Eij = −
∫
B

κiu⊗ ψjdp = −j

∫
B

εiu⊗ φj−1dp = jDi,j−1,

proving the lemma.

2.4. Properties of the diffusion matrix. The diffusion matrix D = (Dij)
defined in (2.14) is symmetric; this expresses the Onsager principle [40].

Lemma 2.10. The matrices D = (Dij), E = (Eij) ∈ R
3(N+1)×3(N+1) are sym-

metric in the sense that

D�
ij = Dji, E�

ij = Eji for all i, j = 0, . . . , N.

Proof. We write Dij = (Dk�
ij ) ∈ R

3×3. Since L is symmetric on L2(B), we have

Dk�
ij = −(ukκiMF , φj�)F = −(Lφik, φj�)F = −(φik, Lφj�)F

= −(φik, u�κjMF )F = D�k
ji .

The symmetry of E is proven in a similar way.
Under additional assumptions on the derivative of the dominant collision operator

and on the band structure, we can show that the diffusion matrix is positive definite.
(H5) Let the operator −L = −DQ1(MF ) be coercive on N(L)⊥; i.e., there exists

a constant μ > 0 such that, for all g ∈ N(L)⊥,

(−Lg, g)F ≥ μ‖g‖2
F .

Example 2.11. We claim that the relaxation-time operator (2.6) satisfies (H5) if
the weight functions κ0, . . . , κN are linearly independent. Let g ∈ N(L)⊥. We show
first that Mg ∈ N(L). It is sufficient to prove that MMg = Mg. For this, let Mg = eλ·κ

and MMg = eλ̃·κ. Since the moments of Mg and MMg coincide by construction, we
have ∫

B

κ(eλ·κ − eλ̃·κ)dp = 0 and

∫
B

(λ · κ− λ̃ · κ)(eλ·κ − eλ̃·κ)dp = 0.

By the strict monotonicity of x 
→ ex, the integrand vanishes, and, therefore, (λ− λ̃) ·
κ = 0. Since κ0, . . . , κN are linearly independent, λ = λ̃. Hence, MMg = Mg, which
proves that Mg ∈ N(L). This property gives

(−Lg, g)F = −1

τ
(Mg − g, g)F = −1

τ
(Mg, g)F +

1

τ
‖g‖2

F =
1

τ
‖g‖2

F .

Lemma 2.12. Let (H5) hold, and let {ukκi : k = 1, 2, 3, i = 0, . . . , N} be linearly
independent functions in p. Then the diffusion matrix D = (Dij) is positive definite;
i.e., for all ξ0, . . . , ξN ∈ R

N+1, (ξ0, . . . , ξN ) 	= 0,

N∑
i,j=0

ξ�i Dijξj > 0.



DIFFUSIVE HIGHER-ORDER MOMENT EQUATIONS 181

The proof of the lemma can be found in the appendix. The diffusion matrices
Dij can be simplified under additional assumptions.

Proposition 2.13. Let κi = εi, i = 0, . . . , N and Q1(f) = (Mf − f)/τ . Then
the diffusion coefficients can be written as

Dij =
τ

3

∫
B

e( 1
2 |p|

2)i+je′( 1
2 |p|

2)2|p|2 exp

(
N∑

k=0

λke(
1
2 |p|

2)k

)
dp I,

where ε(p) = e( 1
2 |p|2) and I is the unit matrix in R

3×3.
Clearly, we may identify the matrix Dij with its diagonal elements and obtain

the (N ×N) matrix D = (Dij).
Proof. Since the collision operator Q1 is assumed to be a relaxation-time operator,

the solution of the operator equation (2.15) is equal to φj = −τuκjMF = −τεj∇pεMF

(see (2.17)). Thus, by definition (2.14),

Dij = −
∫
B

εi∇pε⊗ φjdp = τ

∫
B

εi+j∇pε⊗∇pεMF dp.

Since ∇pε(p) = pe′( 1
2 |p|2), we obtain

Dij = τ

∫
B

e( 1
2 |p|

2)i+je′( 1
2 |p|

2)2p⊗ pMF dp.

The function p 
→ p ⊗ p is odd in every off-diagonal element such that the above
integral vanishes except for the diagonal elements. Since each diagonal element has
the same value and MF = eλ·κ, the expression for Dij is proven.

The diffusion coefficients can be further simplified under additional assumptions
on the energy band structure. We consider three examples.

Example 2.14 (monotone energy band). Let the assumption of Proposition 2.13
hold. We suppose additionally that e( 1

2 |p|2) is strictly monotone in |p| and that
e(0) = 0 and e(∞) = ∞. This allows us to choose B = R

3. Then, with spherical
coordinates (ρ, θ, φ), for i, j = 0, . . . , N ,

Dij =
τ

3

∫ 2π

0

∫ π

0

∫ ∞

0

e( 1
2ρ

2)i+je′( 1
2ρ

2)2ρ4 exp

(
N∑

k=0

λke(
1
2ρ

2)k

)
sin θdρdθdφ.

Now we perform the change of variables ε = e( 1
2ρ

2), setting γ(ε) = ρ2. Then dρ =

(γ′(ε)/2
√
γ(ε))dε such that

(2.19) Dij =
8πτ

3

∫ ∞

0

εi+j γ(ε)3/2

γ′(ε)
exp

(
N∑

k=0

λkε
k

)
dε.

In the special case N = 1, the same diffusion coefficients have been derived in [6,
equations (3.36), (4.17)]. Notice that the above transformation allows us to simplify
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the expression for the moments:

mi =

∫
B

e( 1
2 |p|

2)i exp

(
N∑

k=0

λke(
1
2 |p|

2)k

)
dp

= 4π

∫ ∞

0

e( 1
2ρ

2)i exp

(
N∑

k=0

λke(
1
2 |p|

2)k

)
ρ2dρ

= 2π

∫ ∞

0

εi
√
γ(ε)γ′(ε) exp

(
N∑

k=0

λkε
k

)
dε,(2.20)

where i = 0, . . . , N .
Example 2.15 (nonparabolic band approximation). In the case of Kane’s non-

parabolic band approximation (2.3), we can further simplify the integrals (2.19) and
(2.20). Since γ(ε) = |p|2 = 2ε(1 + δε) and γ′(ε) = 2(1 + 2δε), we compute

Dij =
8
√

2π

3
τ

∫ ∞

0

εi+j+3/2 (1 + δε)3/2

1 + 2δε
exp

(
N∑

k=0

λkε
k

)
dε,

mi = 4
√

2π

∫ ∞

0

εi+1/2(1 + δε)1/2(1 + 2δε) exp

(
N∑

k=0

λkε
k

)
dε, i, j = 0, . . . , N.

Example 2.16 (parabolic band approximation). Setting δ = 0 in the formulas of
Example 2.15, we obtain

Dij =
8
√

2π

3
τ

∫ ∞

0

εi+j+3/2 exp

(
N∑

k=0

λkε
k

)
dε,

mi = 4
√

2π

∫ ∞

0

εi+1/2 exp

(
N∑

k=0

λkε
k

)
dε, i, j = 0, . . . , N.

3. Examples. In this section we derive the diffusive models for N = 0, leading to
the drift-diffusion equations, the case N = 1, leading to the energy-transport model,
and N = 2, leading to a higher-order model.

3.1. Drift-diffusion equations. We consider the case N = 0. Then κ0(p) = 1,
and the generalized Maxwellian reads MF = eλ0−ε(p). The balance equation is given
by (2.11). We need to compute the flux J0 since, in section 2.3, the case N = 0
was excluded. For this, we have to solve LG = u · ∇xλ0MF + ∇xV · ∇pMF =
u · ∇x(λ0 − V )MF . Let φ0 be the unique solution in N(L)⊥ of Lφ0 = uMF . It is not
difficult to check that G = ∇x(λ0 − V ) · φ0 solves the above operator equation. This
shows that

J0 = 〈uG〉 = 〈u⊗ φ0〉∇x(λ0 − V ).

The flux can be written in terms of the particle density m0. Indeed, since

m0 =

∫
B

MF dp = Aeλ0 , where A =

∫
B

e−ε(p)dp > 0,

we obtain ∇xλ0 = (∇xm0)/m0 and, hence,

J0 = −D0(∇xm0 −m0∇xV ), where D0 = − 1

m0

∫
B

u⊗ φ0dp.
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This gives the well-known drift-diffusion equations for the particle density n = m0

and the current density J = J0:

∂tn + divJ = 0, J = D0(∇n− n∇V ).

We specify the diffusion matrix D0 and the relation between m0 and λ0 in the following
example.

Example 3.1. Under the assumptions of Example 2.14, we obtain for the expres-
sions for D0 = D00/m0 and m0:

D0 =
8π

3

τ

m0
eλ0

∫ ∞

0

ε3/2 γ(ε)3/2

γ′(ε)
e−εdε,

m0 = 2π eλ0

∫ ∞

0

√
γ(ε)γ′(ε)e−εdε.

For nonparabolic bands γ(ε) = 2ε(1 + δε), this becomes

D0 =
8
√

2π

3

τ

m0
eλ0

∫ ∞

0

ε3/2 (1 + δε)3/2

1 + 2δε
e−εdε,(3.1)

m0 = 4
√

2π eλ0

∫ ∞

0

ε1/2(1 + δε)1/2(1 + 2δε)e−εdε,(3.2)

and, for parabolic bands, the formulas simplify to

m0 = 4
√

2π eλ0

∫ ∞

0

ε1/2e−εdε = 4
√

2π eλ0Γ( 3
2 ) = (2π)3/2eλ0 ,(3.3)

D0 =
8
√

2π

3

τ

m0
eλ0

∫ ∞

0

ε3/2e−εdε =
4τ

3
√
π

Γ( 5
2 ) = τ,(3.4)

where Γ is the Gamma function satisfying Γ(1
2 ) =

√
π and Γ(x + 1) = xΓ(x). The

expressions (3.3) and (3.4) coincide with the standard drift-diffusion model; see, for
instance, [36, 44].

3.2. Energy-transport equations. We take N = 1 and κ = (1, ε). Then
MF = eλ0+λ1ε. The balance equations are, according to Proposition 2.4 and Example
2.6,

(3.5) ∂tm0 + divJ0 = 0, ∂tm1 + divJ1 −∇V · J0 = W1.

The diffusion coefficients Dij are, by (2.14),

D00 = −〈u⊗ φ0〉, D01 = −〈u⊗ φ1〉, D10 = −〈εu⊗ φ0〉, D11 = −〈εu⊗ φ1〉,

and the coefficients Eij can be expressed in terms of Dij , according to (2.18),

E00 = E10 = 0, E01 = D00, E11 = D01.

Notice that D01 = D10 since 〈u⊗ φ1〉 = (Lφ0, φ1)F = (φ0, Lφ1)F = 〈εu⊗ φ0〉. Then
the particle and energy current densities (2.13) can be written as follows:

J0 = −D00(∇λ0 + ∇V λ1) −D01∇λ1,(3.6)

J1 = −D10(∇λ0 + ∇V λ1) −D11∇λ1,(3.7)
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and the moments are given by

(3.8) m0 = eλ0

∫
B

eλ1ε(p)dp, m1 = eλ0

∫
B

ε(p)eλ1ε(p)dp.

Equations (3.5)–(3.8) are called the energy-transport model.
Notice that, in [47], a related energy-transport model based on entropy maximiza-

tion has been derived. More precisely, the model is derived through the relaxation-
time limit from the hydrodynamic equations which have been found by a moment
method employing the entropy maximization principle. Moreover, an assumption of
small anisotropy for the Maxwellian has been used. Depending on the concrete scat-
tering terms, the diffusion coefficients seem to be different compared to our model,
but there are similar properties (such as positive definiteness of the diffusion matrix).

Example 3.2 (monotone energy band). In the situation of Example 2.14, we can
make the above expressions more explicit. As we have assumed that the constrained
maximization problem (2.4) is solvable, the integral expressions defining the moments
have to exist. Consequently, we must have λ1 < 0 in order to guarantee integrability
of MF = eλ0+λ1ε(p) in B = R

3. Thus, we can define T = −1/λ1, and we call T > 0
the particle temperature. Formulas (2.19) and (2.20) give

Dij =
8π

3
τeλ0

∫ ∞

0

εi+j γ(ε)3/2

γ′(ε)
e−ε/T dε,

mi = 2πeλ0

∫ ∞

0

εi
√
γ(ε)γ′(ε)e−ε/T dε, i, j = 0, 1.

Example 3.3 (nonparabolic band approximation). For nonparabolic bands accord-
ing to (2.3), i.e., γ(ε) = 2ε(1 + δε), we can specify the above formulas, as in Example
2.15:

Dij =
8
√

2π

3
τeλ0

∫ ∞

0

εi+j+3/2 (1 + δε)3/2

1 + 2δε
e−ε/T dε,

mi = 4
√

2πeλ0

∫ ∞

0

εi+1/2(1 + δε)1/2(1 + 2δε)e−ε/T dε, i = 0, 1.

These expressions coincide with those in [15].
Example 3.4 (parabolic band approximation). For δ = 0, the integrals of the

previous example can be computed explicitly. Since

(3.9) mi = 4
√

2πeλ0

∫ ∞

0

εi+1/2e−ε/T dε = 4
√

2πeλ0T i+3/2Γ(i + 3
2 ),

we compute the moments

m0 = (2π)3/2T 3/2eλ0 , m1 = 3
2 (2π)3/2T 5/2eλ0 = 3

2m0T.

Calling n = m0 the particle density, m1 = 3
2nT can be interpreted as the electron

energy with the temperature T . The diffusion coefficients become

Dij =
8
√

2π

3
τeλ0

∫ ∞

0

εi+j+3/2e−ε/T dε =
8
√

2π

3
τeλ0T i+j+5/2Γ(i + j + 5

2 ),
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and, computing the Gamma functions, we derive for D = (Dij)

D = τnT

(
1 5

2T
5
2T

35
4 T 2

)
.

The relaxation time τ may be defined as the inverse of the (averaged) collision
rate which generally depends on the energy. For instance, we may take

τ = τ0

(
〈MF 〉
〈εMF 〉

)β

,

where τ0 > 0 and β ∈ R [52]. Then τ = τ0(m0/m1)
β = ( 2

3 )βτ0T
−β , and the diffusion

matrix can be written as

D =
(2

3

)β

τ0m0T
1−β

(
1 5

2T
5
2T

35
4 T 2

)
.

We observe that D is very similar to the matrix derived in [15] for β = 1, but the
coefficients are different. The matrix of [15] can be obtained if the relaxation time
depends on the microscopic kinetic energy, τ = τ(ε) = ε0/ε for some ε0 > 0, such
that

Dij =
8
√

2π

3
eλ0

∫ ∞

0

τ(ε)εi+j+3/2e−ε/T dε =
8
√

2πε0

3
eλ0T i+j+3/2Γ(i + j + 3

2 ),

which gives the matrix

D =
2

3
ε0n

(
1 3

2T
3
2T

15
4 T 2

)
.

3.3. Fourth-order moment equations. Finally, we consider the case N = 2
and κ = (1, ε, ε2). The coefficients are taken from Example 2.15, which uses the
hypotheses of Proposition 2.13. The balance equations are given by (2.7), which,
taking into account Example 2.6, read as

∂tm0 + divJ0 = 0,(3.10)

∂tm1 + divJ1 −∇V · J0 = W1,(3.11)

∂tm2 + divJ2 − 2∇V · J1 = W2,(3.12)

where Wi are the averaged inelastic collision terms (see Proposition 2.4), and the
fluxes are given by (2.13):

Ji = −Di0(∇λ0 + ∇V λ1) −Di1(∇λ1 + 2∇V λ2) −Di2∇λ2, i = 0, 1, 2.

The diffusion coefficients are expressed as in Example 2.15 with N = 2. In the
limiting case δ → 0 we obtain the parabolic band approximation, which allows for
a more explicit formulation of the fourth-order model. Since the parabolic band
approximation cannot be taken directly in the case N = 2 (the entropy maximization
problem may be unsolvable; see Remark 2.2), we derive the model for δ = 0 by taking
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formally the limit δ → 0 in the expressions for Dij and mi in Example 2.15. This
leads to
(3.13)

mi = 4
√

2πeλ0

∫ ∞

0

εi+1/2eλ1ε+λ2ε
2

dε, Dij =
8
√

2π

3
τeλ0

∫ ∞

0

εi+j+3/2eλ1ε+λ2ε
2

dε,

where i, j = 0, 1, 2. We argue as in Example 3.2 to conclude that λ2 < 0 must hold.
Notice that we can express the diffusion coefficients in terms of the moments:

(3.14) Dij =
2τ

3
mi+j+1.

The moments mj for j ≥ 3 are defined as above. In section 4 we discuss several
reformulations of this model and compare it with higher-order models in the literature.

4. Properties of the model equations. We suppose that (H1)–(H5) hold and
that the weight functions are given by κi = εi, i = 0, . . . , N . Then, by (2.12), (2.13),
and (2.18), the higher-order moment model can be written as

(4.1) ∂tmi + divJi − iJi−1 · ∇V = Wi, Ji = −
N∑
j=0

(
Dij∇λj + jDi,j−1∇V λj

)
,

where i = 0, . . . , N , Di,−1 = 0, and the moments mi and the Lagrange multipliers λj

are related by the formula

(4.2) mi =

∫
B

ε(p)i exp

⎛
⎝ N∑

j=0

ε(p)jλj

⎞
⎠ dp.

In this section we show that these equations can be written in two different ways,
which allows us to recover some important properties of the model.

4.1. Drift-diffusion formulation. We can write the fluxes in a drift-diffusion
formulation which allows a numerical decoupling of the stationary higher-order mo-
ment model.

Proposition 4.1. Let (H1)–(H5) and the assumptions of Lemma 2.12 hold, and
let κi = εi for i = 0, . . . , N . Then we can write

Ji = −∇di − Fi(d)di∇V,

where di = Di0, d = (d0, . . . , dN )�, and

Fi(d) =

N∑
j=1

j
Di,j−1

Di0
λj , i = 0, . . . , N.

The Lagrange multipliers λj are implicitly given by the values of di:

di = −〈εiu⊗ φ0〉, Lφ0 = ueλ·κ.

The operator L is the linearization of the dominant collision operator; see (H4). The
mapping d = d(λ) can be inverted since det d′(λ) = detD > 0.
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Proof. We claim that the first sum in the second equation in (4.1) equals ∇D0i.
Indeed, from

L(∇φjk) = ukε
j

N∑
�=0

∇λ�ε
�MF =

N∑
�=0

∇λ�ukε
j+�MF = L

(
N∑
�=0

∇λ�φj+�,k

)

and the unique solvability in N(L)⊥, we obtain the relation

∇φj =

N∑
�=0

∇λ�φj+� + cMF ,

where c is a constant vector. Hence, by (2.14), setting j = 0,

∇Di0 = −〈εiu⊗∇φ0〉 = −
N∑
�=0

∇λ�〈εiu⊗ φ�〉 = −
N∑
�=0

∇λ�Di�.

Then (4.1) becomes

Ji = −∇Di0 −Di0∇V

N∑
j=0

j
Di,j−1

Di0
λj ,

showing the first assertion.
It remains to show that the determinant of the matrix d′(λ) is positive. Since

L
(∂φjk

∂λ�

)
= ukε

j ∂MF

∂λ�
= ukε

j+�MF = Lφj+�,k,

which gives ∂φ0/∂λ� = φ� + cMF and thus

(4.3)
∂Di0

∂λ�
= −

〈
εiu⊗ ∂φ0

∂λ�

〉
= −〈εiu⊗ φ�〉 = Di�,

the Jacobian of d(λ) consists of the elements ∂di/∂λj = ∂Di0/∂λj = Dij . The
matrix D = (Dij) is positive definite (see Lemma 2.12), and we have det d′(λ) =
detD > 0.

Remark 4.2. The decoupling of the higher-order moment model can be done as
follows. Under the assumptions of the above proposition, the stationary model reads

divJi = i∇V · Ji−1 + Wi, Ji = −∇di − Fi(d)di∇V, i = 0, . . . , N.

We assume that V is given, and Wi = Wi(d, V ) may depend on d and V . We also write
Ji = Ji(d, V ). During the iteration procedure, we may “freeze” the nonlinearities: Let

d̃ be given (e.g., from the previous iteration step), and consider the system

divJi(d, V ) = i∇V · Ji−1(d, V ) + Wi(d̃, V ), Ji(d, V ) = −∇di − Fi(d̃)di∇V.

This system is decoupled since each equation is a scalar elliptic differential equation
for di. Furthermore, the linear equations can by “symmetrized” by local Slotboom
variables as described, for instance, in [15] to treat the convective part Fi(d̃)di∇V .
Finally, the “symmetrized” equations can be numerically discretized by mixed finite
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elements [15, 32]. We will numerically explore this idea for a higher-order moment
model in a future paper.

Example 4.3 (energy-transport model). In the case of the energy-transport equa-
tions (N = 1), the functions Fi(λ) in Proposition 4.1 simplify. Introducing the particle
temperature T = −1/λ1 as in Example 3.2, we obtain F0(d) = F1(d) = λ1 = −1/T
and hence

Ji = −∇di +
di
T
∇V, i = 0, 1.

The temperature is implicitly defined through the relation

f(T ) =
d1

d0
=

D10

D00
=

〈εu⊗ φ0〉
〈u⊗ φ0〉

,

where φ0 solves Lφ0 = uMF . A similar expression has been given in [15] but only
in the case of monotone energy bands. For given d0 and d1, this defines T uniquely
since f ′(T ) = detD/(Td0)

2 > 0. In order to check this derivative, we first compute

L
(∂φ0

∂T

)
=

∂

∂T
(ueλ0−ε/T ) =

1

T 2
εuMF =

1

T 2
Lφ1.

Hence, ∂φ0/∂T = φ1/T
2 +cMF , where c is a constant. Thus, since 〈εu⊗φ0〉 = D10 =

D01 = 〈u⊗ φ1〉 and D11 = 〈εu⊗ φ1〉,

f ′(T ) =
1

T 2d2
0

(
〈εu⊗ φ1〉〈u⊗ φ0〉 − 〈εu⊗ φ0〉〈u⊗ φ1〉

)
=

1

T 2d2
0

(D11D00 −D10D01) =
detD

T 2d2
0

> 0.

Example 4.4 (fourth-order model). We take N = 2 and assume the parabolic
band approximation. The functions Fi(d) read as follows:

Fi(d) = λ1 + 2
di+1

di
λ2, i = 0, 1, 2.

Notice that, by (3.14), di = (2τ/3)mi+1. Moreover, integration by parts gives, using
(3.13),

mi = −4
√

2πeλ0

∫ ∞

0

2

2i + 3
εi+3/2(λ1 + 2λ2ε)e

λ1ε+λ2ε
2

dε

= − 2

2i + 3
(λ1mi+1 + 2λ2mi+2) = − 3

(2i + 3)τ
(λ1di + 2λ2di+1).(4.4)

Hence,

Fi(d) =
1

di
(λ1di + 2λ2di+1) = − (2i + 3)τ

3

mi

di
,

and the fluxes become, for constant relaxation time,

(4.5) Ji = −∇di − Fi(d)di∇V = −2

3
τ
(
∇mi+1 −

2i + 3

2
mi∇V

)
, i = 0, 1, 2.



DIFFUSIVE HIGHER-ORDER MOMENT EQUATIONS 189

Together with the balance equations (2.12), we obtain a system of three equations for
the unknowns m0, m1, and m2. If τ depends on x or t, the variables are τm0, τm1,
and τm2. In the expression for J2, the moment m3 is needed. However, it can be
computed from m0, m1, and m2 using the relation

(4.6) m3 = − 1

2λ2

(5

2
m1 + λ1m2

)
,

which comes from (4.4), where λ1, λ2 are functions of m = (m0,m1,m2). The fourth-
order model with the above current relations can be also seen as a system of parabolic
equations in the variables m1, m2, and m3; the particle density m0 is then a function
of m1, m2, and m3.

It remains to show that the function m(λ), with λ = (λ0, λ1, λ2), can be inverted.
This comes from the fact that the matrix m′(λ) = (mi+j)i,j ∈ R

3×3 is positive definite
(and hence, its determinant is positive) since it is equal to the Hessian of the strictly
convex function

λ 
→ m0 = 4
√

2πτ

∫ ∞

0

ε1/2eλ0+λ1ε+λ2ε
2

dε.

The final fourth-order model consists of the balance equations (3.10)–(3.12) and the
current relations (4.5) in the variables m1, m2, and m3.

Remark 4.5. Grasser et al. have derived a related fourth-order model, called the
six-moments transport equations (see (124)–(129) in [29]). The model equations are
given by (3.10)–(3.12) and (4.5), where

(4.7) m0 = n, m1 =
3

2
nT, m2 =

5 · 3
4

nT 2βn.

Here the variables are the particle density n, the electron temperature T , and the kur-
tosis βn. This notation is inspired from the energy-transport model in the parabolic
band approximation (see Example 3.4), where m2 = 15

4 nT 2 (see (3.9)). In this sense,

βn measures the deviation from the heated Maxwellian MF = eλ0−ε/T . More gener-
ally, the kurtosis is defined by

βn =
3

5

m0m2

m2
1

.

By the Cauchy–Schwarz inequality

m2
1 = 32π2e2λ0

(∫ ∞

0

ε1/4ε5/4eλ1ε+λ2ε
2

dε

)2

≤ 32π2e2λ0

∫ ∞

0

ε1/2eλ1ε+λ2ε
2

dε

∫ ∞

0

ε5/2eλ1ε+λ2ε
2

dε = m0m2,

we obtain the restriction βn ≥ 3/5.
Grasser et al. [29] define heuristically m3 in terms of the lower-order moments by

setting

(4.8) m3 =
7 · 5 · 3

8
nT 2βc

n,

where the constant exponent c is fitted from Monte Carlo simulations of the Boltzmann
equation, computing the numerical moment mMC

3 . It has been found that the choice
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c = 3 gives the smallest deviation of the ratio mMC
3 /m3 from the desired value of one

[29].
In the model derived in Example 4.4, m3 is implicitly defined in terms of the

lower-order moments; see (4.6). Using notation (4.7) and setting λ1 = −1/T as in the
energy-transport equations, we obtain from (4.6)

m3 = −15

8

(1 − βn)nT

λ2
.

The expression (4.8) is obtained by setting λ2 = −(1 − βn)/7T 2βc
n. Since it should

hold that λ2 < 0, we conclude the restriction βn ≤ 1. Together with the above
condition, the kurtosis has to satisfy the inequality 3/5 ≤ βn ≤ 1 [26]. Clearly,
βn = 1 corresponds to the energy-transport case for which λ2 = 0.

Thus, the model of Grasser et al. is contained in our model hierarchy with the
heuristic choice λ2 = −(1 − βn)/7T 2βc

n.

4.2. Dual-entropy variable formulation. It is well known from nonequili-
brium thermodynamics that the electric force terms in (4.1) can be removed by em-
ploying so-called dual-entropy variables [19, 40]. Here we extend this methodology
to higher-order moment models by defining the (generalized) dual-entropy variables
ν = (ν0, . . . , νN )� by λ = Pν, where λ = (λ0, . . . , λN )� are the Lagrange multipli-
ers (or the primal entropy variables), and the transformation matrix P = (Pij) ∈
R

(N+1)×(N+1) is defined by

Pij = (−1)i+j

(
j

i

)
aijV

j−i with aij =

{
1 if i ≤ j,
0 if i > j,

where i, j = 0, . . . , N . The dual-entropy formulation “symmetrizes” the system of
equations [13]. It is well known that the existence of such variables is equivalent to
the existence of an entropy functional [14, 39].

Proposition 4.6. Define the dual-entropy variables ν = (ν0, . . . , νN )�, the
transformed moments ρ = (ρ0, . . . , ρN )�, and the thermodynamic fluxes F = (F0, . . . ,
FN )� by

λ = Pν, ρ = P�m, and F = P�J,

respectively. Then the model equations (4.1) can be equivalently written as

∂tρi + divFi = (P�W + V −1∂tV Rm)i, Fi = −
N∑
j=0

Cij∇νi,

where W = (0,W1, . . . ,WN )�, R = (Rij) is given by Rij = (i − j)Pji, and the new
diffusion matrix C = (Cij) is defined by C = P�DP .

The proposition is proved in the appendix. Notice that the new diffusion matrix
C is symmetric and positive definite if and only if D is symmetric and positive definite
(see Lemma 2.12).

Example 4.7 (energy-transport model). The transformation matrix P and its
inverse Q read in the case N = 1 as

P =

(
1 −V
0 1

)
, Q =

(
1 V
0 1

)
.
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Defining the chemical potential μ by λ0 = μ/T , where T = −1/λ1 > 0 is the particle
temperature, the dual-entropy variable ν = Qλ becomes (see, e.g., [13, 40])

ν0 = λ0 + V λ1 =
μ− V

T
, ν1 = λ1 = − 1

T
.

The quantity μ− V is known as the electrochemical potential.
Example 4.8 (fourth-order model). For N = 2, the transformation matrix is given

by

P =

⎛
⎝1 −V V 2

0 1 −2V
0 0 1

⎞
⎠ .

Introducing the chemical potential and the temperature as in the previous example
and the second-order temperature θ as in [27] by λ2 = −1/θT , the dual-entropy
variables are

ν0 =
μ− V

T
− V 2

θT
, ν1 = − 1

T
− 2V

θT
, ν2 = − 1

θT
.

The dual-entropy formulation allows us to prove entropy dissipation. We define
the relative entropy H0 by

H0(t) = −
∫

R3

(m · (λ− λ̄) −m0 + m̄0)dx ≤ 0,

where λ = (λ0, . . . , λN )�, m = (m0, . . . ,mN )�, λ̄ = (V,−1, 0, . . . , 0)�, and m̄0 =
m0(λ̄) are the equilibrium values (since eλ̄·κ = eV−ε is the equilibrium distribution
function in the presence of an electric field). Notice that, in the situation of Example
3.4 (i.e., N = 1), the relative entropy becomes

H = −
∫

R3

(
n
(

lnn− 3

2
lnT − 5

2
− V

)
+

3

2
nT + eV

)
dx.

Proposition 4.9. Assume that

(4.9)

∫
R3

W · (λ− λ̄)dx ≤ 0.

Then any (smooth) solution λ to the higher-order moment equations (4.1) satisfies
the entropy inequality

−dH

dt
+

∫
R3

N∑
i,j=0

Cij∇νi · ∇νjdx ≤ 0.

The second integral on the left-hand side is called entropy dissipation. Clearly, it
is nonnegative if the diffusion matrix D is positive (semi)definite. Thus, the entropy
is nondecreasing in time.

Proof. We introduce the relative entropy density h(λ) = −m · (λ− λ̄) +m0 − m̄0.
The moments are given by (4.2) such that ∂m0/∂λi = mi, from which we obtain

∂h

∂λi
= −∂m

∂λi
· (λ− λ̄) −mi +

∂m0

∂λi
= −∂m

∂λi
· (λ− λ̄)
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and

(4.10) ∂tm · (λ− λ̄) =

N∑
i=0

∂m

∂λi
· (λ− λ̄)∂tλi = −

N∑
i=0

∂h

∂λi
∂tλi = −∂th(λ).

The balance equations (4.1) are formally equivalent to (A.2); multiplying the latter
equations by νi − ν̄i, where ν̄ = Qλ̄, and summing over i = 0, . . . , N , it follows that

(P�∂tm)�(ν − ν̄) + (divF )�(ν − ν̄) = (P�W )�(ν − ν̄).

Integrating over x and employing the definition ν = Qλ gives

∫
R3

∂tm
�PQ(λ− λ̄)dx +

∫
R3

N∑
i,j=0

div(Cij∇νj)(νi − ν̄i)dx =

∫
R3

W�PQ(λ− λ̄)dx.

Finally, integrating by parts in the second integral, taking into account that ∇ν̄ = 0,
and using (4.10) yields

−
∫

R3

∂th(λ)dx +

∫
R3

N∑
i,j=0

Cij∇νi · ∇νjdx =

∫
R3

W�(λ− λ̄)dx ≤ 0,

which proves the lemma.
In [7, Lem. 4.11], it has been shown that assumption (4.9) on W holds for an

inelastic phonon collision operator, in the case of the energy-transport model. This
hypothesis also holds if

Wi = − 1

τ1
(mi − m̄i), where m̄i = mi(λ̄),

since

W · (λ− λ̄) = − 1

τ1

∫
B

(eκ·λ − eκ·λ̄)(κ · λ− κ · λ̄)dp ≤ 0.

5. Conclusions. In this paper, we have derived a new hierarchy of diffusive
models from the semiconductor Boltzmann equation by using a moment method and
a Chapman–Enskog expansion, based on the entropy maximization principle of Lever-
more. The hierarchy contains well-known transport models, such as the drift-diffusion
equations, the energy-transport equations, and a variant of the six-moments model of
Grasser et al. Some features of the new models are (formally) shown: The diffusion
matrix is positive definite, the flux equations can be written in a drift-diffusion form
suitable for numerical discretizations, and the convective parts due to the electric field
can be eliminated by employing generalized dual-entropy variables.

We mention some limitations of this model hierarchy. First, one may criticize
hypothesis (H2) in which we require that all moments of the dominant part of the
collision operator vanish. The hypothesis is clearly satisfied by a relaxation-type op-
erator as shown in section 2.2, but it is not clear whether more realistic scattering op-
erators satisfy this hypothesis. Second, numerical experiments have to show whether
realistic simulation results for the higher-order models applied to small-channel de-
vices can be obtained and whether the numerical effort is moderate compared to other
(hydrodynamic or diffusive) models.
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An important question is how many moments are actually needed in order to
obtain accurate numerical results. In this direction, we mention the works of Schmeiser
and Zwirchmayr [49] and of Struchtrup [54] for hyperbolic transport equations. In
[54] the number of moments could be significantly reduced by a proper construction
of moments.

In a future work, we intend to implement the fourth-order moment model using
a mixed finite-element method and to compare the numerical results with those from
the (similar) six-moments model of Grasser et al. [28]. Moreover, we intend to extend
the hierarchy of diffusive models to Fermi–Dirac statistics (see, for instance, [6]). We
expect that the decoupled drift-diffusion formulation has the potential to keep the
computational cost down.

Appendix. We present the technical proofs of some results.

Proof of Lemma 2.12. The proof is inspired from the proof of Proposition IV.6
in [6]. We write as above Dij = (Dk�

ij ) and ξi = (ξik). Let (ξ0, . . . , ξN ) 	= 0. Then, by
the definition of the matrices Dij ,

N∑
i,j=0

ξ�i Dijξj =

N∑
i,j=0

3∑
k,�=1

ξikD
k�
ij ξj� = −

N∑
i,j=0

3∑
k,�=1

∫
B

ξikκiukφj�ξj�dp.

Since κiukMF = Lφik, we obtain

N∑
i,j=0

ξ�i Dijξj = −
N∑

i,j=0

3∑
k,�=1

∫
B

ξikLφikφj�ξj�M
−1
F dp

=
N∑

i,j=0

3∑
k,�=1

(
− L(ξikφik), ξj�φj�

)
F

=

(
−L

(
N∑
i=0

3∑
k=1

ξikφik

)
,

N∑
i=0

3∑
k=1

ξikφik

)
F

.

As φik ∈ N(L)⊥, assumption (H5) and the boundedness of L (with constant cL > 0)
give

N∑
i,j=0

ξ�i Dijξj ≥ μ

∥∥∥∥∥
N∑
i=0

3∑
k=1

ξikφik

∥∥∥∥∥
2

F

≥ μ

c2L

∥∥∥∥∥L
(

N∑
i=0

3∑
k=1

ξikφik

)∥∥∥∥∥
2

F

=
μ

c2L

∥∥∥∥∥
N∑
i=0

3∑
k=1

ξikukκiMF

∥∥∥∥∥
2

F

=
μ

c2L

∫
B

∣∣∣∣∣
N∑
i=0

3∑
k=1

ξikukκi

∣∣∣∣∣
2

MF dp > 0,

since the functions ukκi are linearly independent.

Proof of Proposition 4.6. First, we prove some properties of the transforma-
tion matrix P which is needed in the proof of the proposition.

Lemma A.1. (i) The matrix Q = (Qij) given by Qij =
(
j
i

)
aijV

j−i is the inverse
of P .

(ii) For all i, j = 0, . . . , N ,

N∑
k=0

(j − k)PikQkj = −
N∑

k=0

(j − k)QikPkj = jδi,j−1V,

where jδi,j−1 = 0 for j = 0.
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(iii) For all i = 0, . . . , N − 1, j = 1, . . . , N ,

−jPi,j−1 + (i + 1)Pi+1,j = 0.

Proof. (i) By the definition of the coefficients aij , we have
∑

k PikQkj = 0 for all
i > j. Let i < j. Then

N∑
k=0

PikQkj =

j∑
k=i

(−1)i+k

(
k

i

)(
j

k

)
V j−i = V j−i

j∑
k=i

(−1)i+k

(
j

i

)(
j − i

k − i

)

= V j−i

(
j

i

) j−i∑
�=0

(−1)�
(
j − i



)
= 0.

Furthermore, for i = j, we obtain

N∑
k=0

PikQki =

i∑
k=i

(−1)i+k

(
k

i

)(
i

k

)
= 1.

(ii) The definition of aij yields
∑

k(j−k)PikQkj = 0 for i ≥ j. Next, let i < j−1.
Then

N∑
k=0

(j − k)PikQkj = V j−i

j−1∑
k=i

(j − k)(−1)i+k

(
k

i

)(
j

k

)

= V j−i

j−1∑
k=i

(−1)i+kj

(
j − 1

i

)(
j − 1 − i

k − i

)

= jV j−i

(
j − 1

i

) j−1−i∑
�=0

(−1)�
(
j − 1 − i



)
= 0.

If i = j − 1, then

N∑
k=0

(j−k)PikQkj = V

j−1∑
k=j−1

(j−k)(−1)j−1+k

(
k

j − 1

)(
j

k

)
= V

(
j − 1

j − 1

)(
j

j − 1

)
= jV.

The second equality is shown in a similar way.
(iii) For i ≥ j we have Pi,j−1 = 0 and Pi+1,j = 0. If i < j, then

−jPi,j−1 + (i + 1)Pi+1,j = (−1)i+j+1V j−1−i
(
− j

(
j − 1

i

)
+ (i + 1)

(
j

i + 1

))
= 0.

This proves the lemma.
Now we proceed to the proof of Proposition 4.6. First we show the relation for

the new fluxes. Employing the definitions C = P�DP and ν = Qλ and the property
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QP = I (I being the identity matrix), we obtain

N∑
j=0

Cij∇νj =

N∑
j,k,�,n=0

PkiDk�P�j∇(Qjnλn)

=
N∑

j,k,�,n=0

PkiDk�(P�jQjn∇λn + P�j∇Qjnλn)

=

N∑
k,�=0

PkiDk�∇λ� +

N∑
k,�,n=0

PkiDk�

⎛
⎝ N∑

j=0

(n− j)P�jQjn

⎞
⎠V −1∇V λn,

since ∇Qjn = (n− j)V −1∇V Qjn. Now, using Lemma A.1(ii),

N∑
j=0

Cij∇νj =

N∑
k,�=0

PkiDk�∇λ� +

N∑
k,�,n=0

PkiDk�nδ�,n−1∇V λn

=

N∑
k,n=0

Pki(Dkn∇λn + nDk,n−1∇V λn) = −
N∑

k=0

PkiJk = −Fi.

Next we compute the transformed balance equations. By the definition of Fi,

divFi =

N∑
j=0

div(PjiJj) =

N∑
j=0

(PjidivJj + ∇Pji · Jj)

=

N∑
j=0

Pji(divJj − jJj−1 · ∇V ) +

N∑
j=0

(∇Pji · Jj + jPjiJj−1 · ∇V ).(A.1)

We show that the second sum vanishes. Observing that ∇Pji = (i − j)V −1∇V Pji,
we find that

A :=

N∑
j=0

(∇Pji · Jj + jPjiJj−1 · ∇V ) =

N∑
j=0

(
(i− j)PjiV

−1∇V · Jj + jPjiJj−1 · ∇V
)
.

Since the first sum can be rewritten, by Lemma A.1(ii), as

N∑
j=0

(i− j)PjiV
−1∇V · Jj =

N∑
j,k=0

(i− k)δjkPkiV
−1Jj · ∇V

=
N∑

j,k,�=0

(i− k)Pj�Q�kPkiV
−1Jj · ∇V =

N∑
j,�=0

(
N∑

k=0

(i− k)Q�kPki

)
Pj�V

−1Jj · ∇V

= −
N∑

j,�=0

iδ�,i−1Pj�Jj · ∇V = −
N∑
j=0

iPj+1,iJj · ∇V,

we obtain

A =

N−1∑
j=0

(−iPj,i−1 + (j + 1)Pj+1,i)Jj · ∇V = 0,
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using Lemma A.1(iii). Hence, with the balance equations (4.1), (A.1) becomes

(A.2) divFi =

N∑
j=0

Pji(−∂tmj + Wj).

We employ the definition ρ = P�m to rewrite the first sum:

N∑
j=0

Pji∂tmj =

N∑
j=0

(
∂t(Pjimj) − ∂tPjimj

)

= ∂tρi − V −1∂tV

N∑
j=0

(i− j)Pjimj = ∂tρi − V −1∂tV

N∑
j=0

Rijmj .

This finishes the proof.
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[14] P. Degond, S. Génieys, and A. Jüngel, Symmetrization and entropy inequality for general
diffusion equations, C. R. Acad. Sci. Paris, 325 (1997), pp. 963–968.
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A DIRICHLET-INTEGRAL–BASED DUAL-ACCESS
COLLOCATION-KERNEL APPROACH TO POINT SOURCE

GRAVITY-FIELD MODELING∗

ALAN RUFTY†

Abstract. Problems in R
3 are addressed where the scalar potential of an associated vector

field satisfies Laplace’s equation in some unbounded external region and is to be approximated by
unknown (point) sources contained in the complimentary subregion. Two specific field geometries
are considered: R

3 half-space and the exterior of an R
3 sphere, which are the two standard settings

for geophysical and geoexploration gravitational problems. For these geometries it is shown that a
new type of kernel space exists, which is labeled a Dirichlet-integral dual-access collocation-kernel
space (DIDACKS) and which is well suited for many applications. The DIDACKS examples studied
are related to reproducing kernel Hilbert spaces, and they have a replicating kernel (as opposed to
a reproducing kernel) that has the ubiquitous form of the inverse of the distance between a field
point and a corresponding source point. Underpinning this approach are three basic mathematical
relationships of general interest. Two of these relationships—corresponding to the two geometries—
yield exact closed-form inner products and thus exact linear equation sets for the corresponding point
source strengths of various types (i.e., point mass, point dipole, and/or point quadrupole sets) at
specified source locations. The given field is reconstructed not only in a point collocation sense, but
also in a (weighted) field-energy error-minimization sense.

Key words. Laplace’s equation, inverse problem, reproducing kernels, fundamental solutions,
point collocation, point source

AMS subject classifications. 35J05, 31B10, 86A22, 65D05

DOI. 10.1137/060659090

1. Introduction. The goal of this article is to set forth a mathematical frame-
work for the approximation of R

3 harmonic fields in unbounded domains by point
sources contained inside the complimentary region. The proposed Dirichlet-integral
dual-access collocation-kernel (DIDACK) approach has a mathematically and phys-
ically well-motivated underpinning. The associated space (DIDACKS) has certain
similarities to reproducing kernel Hilbert space (RKHS) but is distinct from it. Two
concrete R

3 geometries are considered: (A) The harmonic field region consisting of a
half-space (denoted Ω1). (B) The harmonic field region consisting of the exterior of a
sphere (denoted Ω0). Within this geometric context, the developed formalism easily
handles various combinations of diverse types of point sources (such as point masses,
point mass dipoles, or point mass quadrupoles); moreover, for a set of specified source
locations the formalism yields closed-form linear equation sets that simultaneously
minimize the volume integrals of (weighted) field energy densities (i.e., (weighted)
Dirichlet integrals).

Techniques introduced here can either be applied directly or adapted for use in
many mathematical and physical areas. Examples on the mathematical side include
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potential theory, point source elliptic boundary value modeling (i.e., method of funda-
mental solutions), fast multipole techniques, radial-basis function techniques, RKHS
techniques, geophysical collocation (GC) techniques, and standard energy minimi-
zation–based techniques (such as Galerkin and Raleigh–Ritz-based approaches). Also
see [22]. Examples on the physical side include geoexploration (where gravity is often
used to locate oil or other minerals), geophysics, and magnetostatics (for a survey of
these three areas, see [12, 25, 23, 4]), as well as general electromagnetic source analy-
sis, electrostatics, and hydrostatics (for the physical significance of these three areas,
and of field energy with regards to them, see [3]). Also somewhat similar mathemati-
cal structures arise in many other areas such as biophysical or biomedical engineering
(where, for example, electric dipole models are used in electrocardiographical (ECG)
modeling and current dipole models are used in electroencephalography (EEG) [2]).

While these diverse candidate application areas exist, DIDACKS theory was
developed to handle gravitational problems, and all of the author’s direct numeri-
cal experience with it is in this arena; hence, gravitation is the application setting
considered here. Geophysical gravitation has an easily understood notation and a
readily accessible mature literature [10, 19]. (Note that [10] is based on the earlier
book [9], which, in turn, was largely based on [8].) Geophysical gravitation also has a
direct historical association with potential theory (for example, Gauss played a very
significant role in the history of geophysics [10, p. 1]).

A family of significant and challenging problems (including representative geo-
physical inverse source problems) is associated with geophysical gravitation. In addi-
tion to Laplacian inverse source theory, where the goal is to determine source strength,
geophysical gravitation has two separate problem categories that point sources can be
used in: field modeling and field estimation. For gravitational modeling problems the
field is assumed to be known throughout the region of interest, and a more compact,
but accurate, representation is desired. For estimation problems it is assumed that
values are known accurately at a certain number of points in the field region and that
one wants to predict gravity values over some part of this field region. Besides combi-
nations of point sources, other techniques (such as GC) exist for treating gravitational
field modeling and field estimation problems. As currently understood, each of these
approaches has certain advantages on its own home ground, and the application areas
where they all can be considered direct competitors is somewhat limited. In a wider
mathematical context, since the fundamental solutions used here are reinterpreted as
kernels and satisfy a generalized collocation property, the DIDACKS modeling and
estimation approaches described here can also be considered harmonic interpolation
and extrapolation techniques, respectively. GC and its extensions are thus the family
of approaches that are mathematically closest to DIDACKS theory.

With minor differences these gravitation (�G) problems use the same standard

notation and techniques employed in electrostatics, where �E is the field [11], and
so this arena should be readily accessible to all interested applied mathematicians,
physicists, and engineers. (Within this electrostatic context the formalism developed
here handles multiple types of point sources—such as point charges, electrostatic
dipoles, or electrostatic quadrupoles.) Thus, although the notation used in the first
four sections is specialized to the gravitational setting, the intrusion of this setting is
otherwise minimal in these sections. In fact, the required mathematical background
for this “core part of the article” is limited to classical R

3 potential theory [13, 11]
and a basic understanding of functional analysis, as utilized in approximation theory.
Because no previous geophysical background is presupposed in these first four sec-
tions of the paper, the relevant overall geophysical and point mass modeling context
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is supplied in section 5. Since GC is the most commonly used approach for regional
gravitational data processing and estimation it is briefly described at the end of sec-
tion 5. While a knowledge of neither RKHS nor GC is a necessity in these first five
sections, a better understanding of both these areas is presupposed in section 6, which
describes the mathematical connections, noted above, of DIDACKS theory to other
kernel-based approaches. GC, which is often called least-squares collocation, is an
RKHS-based approach that differs from standard collocation techniques utilized by
applied mathematicians in several relevant ways and, as such, may not be familiar to
many readers. Moritz [19] provides a readily accessible treatment of both RKHS and
GC theory; nevertheless, the thrust of section 6 should be directly accessible to those
familiar with only standard RKHS theory ([17], [1], or [27] (which contains [1])).

On a first reading, the first four sections of the article should probably be con-
sidered only from a mathematical perspective. One implicit, but strong, motivation
exists for limiting the level of this core material—there is often a given mathemat-
ical level of sophistication from which certain research results tend to emerge, and
the same results may not be apparent at either a higher or lower level of mathemat-
ical sophistication. The first four sections and the geophysical applications setting
given in section 5 are aimed at this default level of sophistication; however, there are
open-ended physical and mathematical foundational issues associated with DIDACKS
theory implicitly touched on in the last half of section 2 that may be of primary inter-
est to only the type two and type four readers/researchers mentioned below. Other
readers may wish to simply skip this material in the second half of section 2 on a first
reading. From a general reader’s perspective, it is still worth noting that a central
theme that emerges from DIDACKS theory is that well-known kernels (such as the
fundamental solutions studied here) can be regarded as part of a new kernel setting,
and taking this perspective seriously seems to imply not only applied research but
also new mathematical results, of which the relationships given below are only one
example. To see that all of the various mathematical, applied, and physical facets of
DIDACKS theory hang together as a whole and then to envision what the research
possibilities are is surely not an easy task, but the material itself can be approached
in a step-by-step way and, when this is done, even cross-fertilization and educational
possibilities emerge. Given all of this, it is useful to set the stage for the rest of the
paper by taking a step back and previewing the basic mathematical relationships that
produce closed-form inner products. Closed-form (weighted) energy inner products
are the cornerstone of both the theory and application of the whole approach.

Basic DIDACKS relationships in R
3. The DIDACKS approach was con-

ceived and is best understood on its own merits as a new self-consistent mathematical
theory that is independent of the geophysical connections just indicated and, as noted
above, it is this exposition that occupies the first four sections. Underpinning this
mathematical side of the DIDACKS approach are three intrinsically interesting rela-
tionships that will now be briefly surveyed. First consider the notation employed. For
overall accessibility, for consistency with the geophysical and electrostatic literature,
and to avoid various possible notational conflicts, preference is given to a pedes-
trian but unambiguous notation: Cartesian coordinates are used and overset arrows
employed to denote R

3 vectors, �X = (x, y, z)T ∈ R
3 (for superscript T := transpose),

while for n �= 3, n-dimensional vectors and matrices are denoted by lower- and upper-
case bold letters, respectively. R0 is used to denote the radius of the sphere associated
with Ω0 that is centered over the origin: Ω0 := { �X ∈ R

3 | | �X| ≥ R0}. Likewise for

the half-space case, the origin is chosen in the plane ∂Ω1 := { �X ∈ R
3 | z = 0} so
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that Ω1 := { �X ∈ R
3 | z ≥ 0}. (Observe that the overall shape of the subscripts

here matches that of the associated boundary.) Frequently these two settings will be
denoted by a subscript j (for example, Ωj), where j = 0 or 1 is always implied.

Temporarily leaving aside the issue of admissible functions, these relationships can
be compactly stated in terms of a Dirichlet integral over some connected but possibly
unbounded region Ω, which is usually denoted by D[v, w] =

∫∫∫
Ω
�∇v · �∇w dV for

admissible harmonic functions v( �X) and w( �X), or in terms of the more inclusive
concept of a weighted Dirichlet integral for the region Ω denoted by D[v, w, μ, Ω],

where μ = μ( �X) is the weighting function so that D[v, w, μ, Ω] :=
∫∫∫

Ω
μ �∇v · �∇w dV .

Clearly D[v, w, 1, Ω] = D[v, w]. Let �−1 := 1/| �X − �X ′|, where �X ∈ Ωj and �X ′ is
in the corresponding closed source region := ΩSj

⊂ Ω′
j := compliment of Ωj . (By

convention, generally primed variables occur in Ω′
j and unprimed ones in Ωj .) Then

the first two relations give the replication (or generalized collocation) properties of
the DIDACKS kernel �−1:

(1.1) D[w, �−1, 1, Ω1] = 2π w(x′, y′,−z′)

and

(1.2a) D[w, �−1, μ0, Ω0] = 2π |�P | w(�P )/R2
0,

with μ0 = 1/r (r := | �X|) and where

(1.2b) �P =

(
R2

0

| �X′|2

)
�X ′.

Finally the third relationship ties the unweighted Dirichlet integral over Ω0 to the
weighted integral given on the left-hand side (LHS) of (1.2a) and can be written as

(1.3a) D[v, w, 1, Ω0] = R0 · D[v, w, μ0, Ω0] + (2πR0) · (v, w)
σ
,

where the surface inner product on the right-hand side (RHS) here is defined as

(1.3b) (v, w)
σ

:= (1/4π)

∫∫
σ

v(r, θ, φ)w(r, θ, φ) d σ

and where, as in [9] and [10], σ and d σ have the following meaning when associated

with the integral of f( �X):

(1.4)

∫∫
σ

f(r, θ, φ) d σ :=

∫ 2π

φ=0

∫ π

θ=0

[f(r, θ, φ)]
∣∣∣
r=R0

sin θ d θ d φ

for standard spherical coordinates r, θ, φ. (Occasionally the limits implicit in (1.4)
will be stated explicitly for emphasis.) Due to the way r dependence enters in (1.4) it
can be used to derive expressions that are otherwise not obvious, as will be apparent
in what follows.

Clearly (1.1) and (1.2a) give a means of performing closed-form inner products
based on the Dirichlet integral, while (1.3a) links the weighted Dirichlet inner product
to the unweighted one over Ω0. The general approximation and functional analysis
framework for these relationships is given in section 2. The derivation of (1.1) is given
in section 3, and that of (1.2a) and (1.3a) in section 4. In order to understand the
connections of these relationships to the applications described in section 5 and to
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put them in proper historical context, it is useful to briefly consider the history of
these relationships. Originally (1.2a) and (1.3a) were discovered in a different form
by the author in the early 1980s—namely, (4.8) and (4.3), where the “integral norm”
introduced in section 4 is used in place of the weighted Dirichlet integral. The history
of these relationships in this form and of their application from inception to the mid-
1990s can be found in [21]. The germane part of this internal history is summarized
and updated in section 5. As an aside, although (1.1) is not explicitly mentioned
in [21], the derivation here of (1.1) given in section 3 is the one originally found by
the author in the early 1980s. The direct relationship of the integral norm to the
weighted Dirichlet norm (4.13) is new. Also unless otherwise noted, the presentation
itself (including various terms and concepts) is completely new here. Finally, while the
general DIDACKS technique is a synthesis of several results that seem to have been
overlooked by the broader scientific community, for any mathematical approach that
directly touches on harmonic analysis, RKHS theory, and gravimetric inverse source
theory either precedents or specialized parallel lines of development would seem to be
a necessity. The known ones for R

3 DIDACKS theory are addressed in section 6. In
one way or another all of the discussions of section 6 pertain to the second DIDACKS
relation in weighted Dirichlet form, (1.2a). As discussed there, (1.2a) should clearly
be viewed as going back to Krarup in [15], since he derived it there in a directly
equivalent form. Aside from the author’s work, there are no known instances of (1.1)
and (1.3a), or for that matter for the second DIDACKS relation expressed in the
integral norm form (4.8).

Four types of readers. To motivate a further exploration of the paper’s scope
and limits it is useful to envision the possible reactions of four typical classes of readers
to the above relations. First, consider an applied mathematician, physicist, engineer,
or other scientist who may be familiar with the material in the first four chapters
of [11], but is not yet a seasoned practitioner and may benefit by consulting [17],
[19], or [13]. (The physical and historical importance of Dirichlet integrals and of the
associated Dirichlet principle may be obtained from other sources [3, 18, 6].) This
reader may find all three of the above field energy expressions somewhat surprising:
(1.1) and (1.2a) because they allow for the closed-form evaluation of volume integrals,
and (1.3a) since it allows for an unusual reexpression of the volume field energy. This
reader may also observe that (1.1) and (1.2a) appear to have some connection to
Green’s functions and the method of images [11] and may recognize (1.2b) as the
coordinate transformation part of a Kelvin transformation [13, 14]. These particular
connections arise from the nature of Green’s functions for Ωj , but the most direct
explanation requires some knowledge of RKHS theory. First, as noted in [3], the
existence of a closed-form reproducing kernel occurs when closed-form expressions for
both Neumann and Dirichlet Green’s functions exist. Second, for the cases studied
here a dual-action collocation kernel (DACK) arises from the result of a reflection,
(1.1), or Kelvin transformation, (1.2b), applied to a reproducing kernel of the right
form for the relevant geometry.

Second, while the possible reactions of any number of specialists might also be
examined, consider a reader who has a particular interest in integral kernels or RKHS
theory. For various reasons this reader may also find the above relationships somewhat
surprising. This reader might, for example, observe that �−1 plays the role of a kernel
and then recall that a symmetric reproducing kernel (SRK) of the form | �X − �Y |−1

for �X and �Y both in the same region cannot exist, since a SRK must be bounded
and this kernel is not. Here �X ′ is a fixed interior point and �X is in the exterior
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region, so �−1 is bounded, which is a very different situation and implies a change of
perspective. This in itself could raise further questions since although DACKs are not
reproducing kernels they have some properties analogous to them. In the previous
paragraph the kernels studied here were linked to reproducing kernels, but it is unclear
whether minimum norm DACKs can arise in other ways. Moreover, consideration of
DACKs as a separate class of kernels also raises the question as to how they fit into our
current overall understanding of kernel structures. These and other issues of a general
nature are outside the scope of the present article, but some specific topics that might
interest the second type of reader, such as the exact definition of the replication and
generalized collocation property mentioned above, are addressed in section 2.

Third, consider a reader who is very applications- and results-oriented. Such a
reader may be disappointed to discover that there is not a table containing numerical
examples and results; however, a discussion of point mass and point dipole DIDACKS
results and their associated applications settings can be found in section 5, where
global nonlinear least-squares (NLLSQ) results are emphasized. Due to the variety
and nature of regional gravity data, as well as other issues [21], no known easily repli-
cated example provides generic benchmark results, which is normally an expectation
for these tabulated examples. Moreover, point source fitting problems are part of a
general class of problems that are “notoriously” ill-conditioned and problematic [4,
pp. 214–222] so that each problem encountered should be tackled on its own terms,
which means that one or two simple table examples cannot serve to provide adequate
implementation guidance. Unfortunately, a thorough discussion of associated imple-
mentation strategies is outside the scope of the present article. Also observe that a
concrete example provides a replication check that can serve as a consistency test for
implementors, but this point is largely superfluous here since the DIDACKS approach
exhibits the generalized collocation property with respect to point sources, and thus,
when implemented correctly, any point mass or dipole fit replicates the point field
data that was used to produce it in the first place to within allowed round-off error,
and thus any implementation serves as its own self-consistency test.

Fourth and finally, consider a reader whose primary interest is in the theory
and application of Laplacian inverse source theory. Since there are many shared
implementation pitfalls common to both point source field modeling and inverse source
estimation problems, the comments just made in the last paragraph are also relevant
in this context. While specific mathematical tools and implementation strategies are
not discussed here, readers with solid applications experience should be able to make
direct use of the formalism presented. These readers may also be interested in the
topic of continuous parameterized distributions, which is raised in section 2. Finally, it
is worth noting that other source region shapes can be entertained within the contexts
of the two considered geometries, since the only real requirement is that source regions
be bounded and contained within the compliment of the unbounded harmonic field
region.

2. Generalized linear least-squares setting. This section addresses the gen-
eralized linear least-squares (GLLSQ) plan of approach and the associated functional
space setting. There are numerous approaches closely aligned to the GLLSQ method
adopted here, such as the Galerkin and Raleigh–Ritz-based techniques mentioned
in the introduction; however, the acronym GLLSQ is introduced to imply an im-
plicit change of perspective. In particular, connections to generalized collocation, as
discussed later in the section and explicitly formalized by the GLLSQ collocation
condition, are implied as well as an approach that is distinct from the usual linear
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least-squares (LLSQ) ones where sampling and discretization are introduced. Con-
nections to GC are also implied.

Both LLSQ and GLLSQ approaches minimize some cost function Φ′ = ‖v−w‖2,

where for the problems of interest v( �X) is a point source potential model and w( �X)
is some given canonical (or truth) reference potential. For a point mass fit with Nk

point masses, v has the form

(2.1) v( �X) = G

Nk∑
k=1

mk

| �X − �X ′
k|

,

where G is the Newtonian gravitational constant ≈ 6.6742 × 10−11m3s−2kg−1 [10,

p. 3]. As previously noted, �X ∈ Ωj and �X ′
k ∈ ΩSj

, which is a bounded and closed
subregion of the open region Ω′

j , so that the (kernel) basis functions occurring in (2.1)

are always bounded. Further �X ′
k′ �= �X ′

k for all k′ �= k is always assumed.
Five conventions are adopted here. First, in physics texts the potential function v

is interpreted as potential energy, and (2.1) has a negative sign since all gravitational
bodies attract and the resulting force is given by the negative of the gradient of the
potential. In geophysics these sign conventions are different and consistent with (2.1),
but in either case this should cause little difficulty since in fitting problems all that is
required is that the overall sign conventions for v and w be consistent. Second, it is
assumed that gravitational force is always acting on a unit test mass [10, p. 4], and
thus it will be treated as having the units of acceleration [10, p. 45]. Third, physical
geodesists distinguish between gravity field quantities, which include the effects of
the Earth’s rotation, and gravitational quantities like (2.1), which do not [10, p.
44]. This is a distinction physicists generally do not make, since rotational effects
can be easily tracked and accounted for as required. The physicist’s lead is followed
here, and this distinction is ignored. Fourth, both positive and negative masses will
be considered a possibility, since this is the usual convention adopted in point mass
fitting approaches. Specifically, for gravity modeling and estimation problems each
mk can clearly be viewed as a mathematical parameter that can assume either sign.
This convention also allows for the ready adaptation of material developed here to
other areas where both signs can occur. (Even regional geoexploration inverse mass
density estimation problems can be handled by assuming that all smoothed density
estimates are with respect to an average or ambient density.) Fifth, it is useful to
introduce scaled versions of the above potential functions in order to absorb the factor
of G: V = v/G and W = w/G. Thus the cost function to be minimized becomes
(with Φ := Φ′/G2)

(2.2) Φ = ‖V −W‖2
= ‖V ‖2 − 2 (V, W ) + ‖W‖2

.

(Notice that scaling a cost function leaves the minima unchanged.)
Next consider the philosophy behind the norm selection process. As discussed

later in section 5, the minimization philosophy of matching the observations as closely
as possible has generally been chosen for point mass fitting problems. This philosophy
is, however, not necessarily sound in all or even most cases. For modeling problems
a reference model, which is assumed to be accurate, is given, and one wishes to
match this reference as closely as possible in some physical sense. Here the desire is
to minimize the possible error differences that will result when this given reference
model is replaced by a new point mass (or point source) model, which invariably
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occurs in some sort of software emulation of a physical situation. Thus instead of
“matching the observables as closely as possible,” a sounder strategy is to “minimize
the type of errors that will lead to the greatest errors in the end product.” From
Newton’s second law, since these end-product errors here are most often the direct
result of gravity errors it is clear that the difference in the given gravity reference field
and the developed point mass gravity model should be minimized, say in a squared
residual sense at a large number of appropriate sample points. As this distribution of
sample points becomes uniformly dense over the entire global region of interest, the
following key integral condition results:

(2.3) Minimize Φ =

∫∫∫
Ωj

|�∇V − �∇W |2 dV = D[W − V, W − V, 1, Ωj ] .

Temporarily leaving aside fundamental issues, such as how to turn the RHS of
(2.3) into a proper norm structure, consider the general form of the linear equation
sets that result from minimizing this type of cost function. For concreteness consider
the minimization process in R

3 half-space (Ω1). Since the RHS of (2.3) is already
proportional to the field energy, it is natural to consider the half-space (j = 1) energy
norm:

(2.4) ‖V −W‖2

E1
:=

1

8π

∫∫∫
Ω1

|�∇V − �∇W |2 dV

(a factor of 8π has been inserted since it often occurs for various field energy expres-

sions in appropriate units). Because ‖V − W‖2

E1
= ‖V ‖2

E1
+ ‖W‖2

E1
− 2(V, W )

E1
,

the energy inner-product

(V, W )
E1

:= D[V, W, 1, Ω1]/8π

is also needed. In particular, if V is specified through (2.1), with �k := | �X − �X ′
k|, and

if W is an appropriate reference field, then

(2.5) ‖V −W‖2

E1
= ‖W‖2

E1
− 2

Nk∑
k=1

mk(�
−1
k , W )

E1
+

Nk∑
k=1

Nk∑
k′=1

mk mk′(�−1
k , �−1

k′ )
E1
.

Taking the partial of (2.5) with respect to mk′′ (for k′′ = 1, 2, 3, . . . , Nk), setting
the result to zero, then dividing by two yields a linear equation set that can be easily
inverted for the mass values, provided that (�−1

k , φ)
E1

can be easily computed for

φ = W and φ = 1/�k′ . The relationship which makes this possible is (1.1). By
introducing Tk,k′ = (�−1

k , �−1
k′ )

E1
and Ak = (W, �−1

k )
E1

, the linear equation set can be
written as

(2.6)

Nk∑
k′=1

Tk,k′ mk′ = Ak.

For the spherical exterior, matters proceed in much the same fashion except that
a weight function, μ0 = 1/r, must be introduced into (2.3). Not only is this weighting
required to turn �−1

k into a replicating kernel, but since regions closer to the Earth’s
surface are normally of greater interest for geophysical applications than regions fur-
ther away, it is also desirable.
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Obviously with regards to applications, (2.6) is pivotal and, as such, warrants at
least an informal examination. Before proceeding it is useful to clarify the differences
between reproducing, replication, and generalized collocation kernels. When a kernel,
like �−1

k , is not symmetric since its arguments are in different domains and there is a
relationship such as (1.1) or (1.2a) that allows for closed-form inner-product expres-
sions, it will be called a replication kernel and be said to have the point replication
property. Since reproducing kernels are necessarily symmetric they cannot be consid-
ered replicating kernels, so this terminology distinguishes replication and reproducing
kernels. Alternatively, the term generalized collocation property will be taken to be
a generalization of a point data and/or collocation matching condition, and as such
includes the possibility of not only reproducing kernels but also replicating kernels.
As discussed below, it also allows for the possibility that resulting inner products
may be obtainable by numerical means (after assuming that an underlying replica-
tion property also holds)—so long as the resulting inner products, Ak, occurring on
the RHS of (2.6) can be matched. (The Ak’s may also represent empirically obtained
data.)

As a concrete example of situations where numerical integration frequently enters,
consider fits based on the continuous analogue of (2.1) where the potential is due to
some parameterized density function ρ:

(2.7) V ( �X) =

∫∫∫
ΩS

ρ( �X ′, α)

| �X − �X ′|
dV ′.

Here α = (α1, α2, α3, . . . , αNk
)T . If ρ consists of a linear superposition of density

basis functions ψk (i.e., ρ =
∑Nk

k=1 αkψk( �X
′)), then minimizing ‖W − V ‖2 yields a

linear equation set similar to (2.6), where the Ak’s and Tk,k′ ’s must generally be com-
puted numerically; however, when (1.1) or (1.2a) is used, then great simplifications
result and continuous distributions are tractable. Besides parameterized volume dis-
tributions, parameterized surface and line distributions are also obviously possible.
One interesting choice for volume density basis functions ψk is the use of finite ele-
ment method (FEM) basis functions. Thus consider the case where �q ′

k are taken to be

a set of node points over ΩS and where the ψk( �X
′) are chosen to be a set of localized

FEM basis functions with the property that ψk′(�q ′
k) = 1 if k′ = k and ψk′(�q ′

k) = 0
otherwise. The αk determined directly from the analogue of (2.6) then represent the
density strengths at the node points �q ′

k.
Any additional structure that can help to clarify the possibilities inherent in (2.6)

is desirable. Toward that end, briefly consider a suggestive theorem from RKHS
theory. When a reproducing kernel, with specified kernel points �Qk ∈ Ω replacing
the values of �X ′

k in (2.1), is used for a basis functions expansion of V that is anal-
ogous to (2.1), and when (2.2) is replaced by the corresponding cost function based
on the reproducing kernel norm, then minimization of this cost function results in a
closed-form linear equation set that is just like (2.6)—except that the inner products

corresponding to Ak take on the simpler form W ( �Qk). This type of reproducing kernel
fit also satisfies a minimum norm collocation property: the function with the small-
est associated norm that matches the prescribed data set (i.e., the values W ( �Qk))
is the one which results from solving the analogue of (2.6) [19, pp. 207–220]. This
minimum norm property is a well-known functional analysis result [17], and it insures
that a reproducing kernel fit will simultaneously match the given point data and min-
imize both ‖V ‖ and ‖V −W‖ for the associated norm. This fact is of interest here
since it strongly suggests that if a replicating kernel expansion for V is used in (2.6),
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then generally any specified values for Ak are recovered and that D[V, V, 1, Ω1] or
D[V, V, μ0, Ω0] also is simultaneously minimized. While this may fail to happen due
to auxiliary restrictions placed on the basis functions or on the overall space of admis-
sible functions, the main way that it can fail to happen is if the kernel basis functions
themselves are not linearly independent. These possibilities are not usually addressed
in connection with general discussions of the minimum norm collocation property,
but in many settings linear independence may not always be transparent, especially
if combinations resulting from linear operators acting on kernel basis functions are
allowed. (These possibilities can be seen from, among other things, the consequences
of the fact that various restricted classes of functions, such as polynomials of fixed
degree, may have a reproducing kernel.) When (2.6) is invertible the source parame-
ters (mk) are uniquely determined, and in some sense one can say that the solution
to the inverse point source problem has been obtained. To preserve and extend these
inverse source interpretational possibilities, the conservative stance is adopted here
of requiring that all admitted basis function sets be invertible and that the solutions
to (2.6) replicate the specified Ak values. This condition is called the generalized
linear least squares collocation (GLLSQC) condition. There are two obvious ways
to enforce this condition: either on a computational case-by-case basis or by proving
general theoretical results about classes of particular basis functions. While it is not
comparatively well known outside geophysics, a demonstration exists that shows that
point mass basis functions are independent in R

n for finite n > 1 [24]. Thus, in a the-
oretical sense the GLLSQC condition holds for point mass fits, but on a case-by-case
basis some care is generally required in solving (2.6) due to ill-conditioning. (As a
matter of practice, either a singular value decomposition or a Householder triangula-
tion algorithm implemented to an appropriate number of significant digits should be
used.) Finally, it should be readily apparent that while continuous distributions may
well satisfy the GLLSQC condition, counterexamples can be easily constructed, with
perhaps the simplest example resulting from the consideration of several concentric
homogenous spherical shells.

With regard to the overall functional analysis setting, the standard course taken
nowadays is to adopt some type of general Banach space setting (such as one type
or another of Sobolev space), where the completeness of Cauchy sequences is presup-
posed. The limit of sequences of functions composed from basis functions that satisfy
the GLLSQC condition may not satisfy it; hence, admitting limits of sequences can
lead to unwanted interpretational difficulties here. Obviously, to solve (2.6) it is only
necessary that a finite linear span of basis functions be admitted, which requires only
an inner-product structure. In accord with the conservative stance outlined above,
a structured pre-Hilbert space setting is adopted since a pre-Hilbert space setting
presupposes an inner-product structure, but it does not make the usual assumptions
about admissible sequences of functions. (This way of specifying functions of interest
is somewhat dated, but prior to the mid-1950s it was the prevailing way of address-
ing Dirichlet inner-product spaces and was used, for example, in [3].) The adjective
“structured” here means that further auxiliary conditions are imposed on the class
of admissible functions. One such condition is that any set of basis functions consid-
ered must satisfy the GLLSQC condition stated above. Another requirement is that
all functions, f , must be harmonic over Ωj (including ∂Ωj). Additional structure is
needed to insure that (weighted) Dirichlet integrals over unbounded domains can be
regarded as defining a positive definite norm. This can be accomplished by assuming
one (or all) of the following four largely equivalent requirements:
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(i) D[f, f, 1, Ωj ] is bounded, and f tails off at least as fast as 1/r as r −→ ∞.
(ii) The first Sobolev norm of f over Ωj is bounded:

D[f, f, 1, Ωj ] +

∫∫∫
Ωj

|f |2 d V < ∞.

(iii) f is a potential function generated by a (well-behaved) localized source
distribution in ΩSj ⊂ Ω′

j \ ∂Ω′
j .

(iv) A well-behaved series representation for f always exists in the form of a
spherical harmonic expansion of f in powers of 1/r, for the exterior of some sphere
contained inside Ω′

j .
Notice that (i) is the historical approach [3] and that (ii) is equivalent to (i)

for Ωj = Ω0 since both the integrals occurring in the first Sobolev norm must be
separately bounded. Also for all f not identically zero, 0 < D[f, f, μ0, Ω0] <
D[f, f, 1, Ω0]/R0, where positivity can be easily proved using several standard proper-
ties of harmonic functions. (Specifically, if |f | �= 0 at some point in Ω0, then taking the

line integral of �∇f from this point to a point at infinity, one can infer that |�∇f | > 0
for at least one point along this line. Then from the mean-value theorem and the
maximum-modulus theorem, �d · �∇f > 0 must occur throughout some neighborhood
near ∂Ω0 for one fixed direction �d or another, and from this it follows immediately
that D[f, f, μ0, Ω0] > 0.) It is clear that (iii) and (iv) are largely equivalent to
(i) or (ii) (although (iii) and (iv) do not require harmonicity as a separate condition).
Requirement (iii) is more or less tantamount to the assumption that a collection of
point sources is being modeled.

3. Half-space (Ω1) relationships. For the class of admissible functions just
described with bounded source region, the following half-space analogue of Poisson’s
solution to the Dirichlet boundary value problem holds [5, p. 268]:

(3.1) W ( �X) =
1

2π

∫ ∞

−∞

∫ ∞

−∞

W (x′′, y′′, 0) z dx′′ dy′′

[(x− x′′)2 + (y − y′′)2 + z2]3/2
,

where z > 0 and �X ′′ ∈ ∂Ω1. Using the facts that the surface integral at infinity is
zero for the unbounded region Ω1, that ∂ /∂ n := − ∂ /∂z, and that dS = dx dy for
the boundary plane (∂Ω1) and applying Green’s first identity1 yields

(�−1
k , W )

E1
=

1

8π

∫∫∫
Ω1

�∇�−1
k · �∇W dV

= − 1

8π

∫ ∞

−∞

∫ ∞

−∞

[
W

∂

∂z

1

| �X − �X ′
k|

] ∣∣∣∣∣
z=0

dx dy.(3.2)

Next observe that

(3.3)

[
∂

∂z

1

| �X − �X ′
k|

]∣∣∣∣∣
z=0

=
z′k

[(x− x′
k)

2 + (y − y′k)
2 + (z′k)

2]3/2
,

where z′k < 0. Combining (3.1), (3.2), and (3.3) produces

(3.4) (�−1
k , W )

E1
= W (x′

k, y
′
k, −z′k)/4,

1
∫∫∫

Ω(φ∇2ψ + �∇ψ · �∇φ) dV =
∫∫

∂Ω φ ∂ψ
∂n

dS.
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Table 3.1

Point data/source correspondences for R
3 half-space.

Observation type Source type Invariance property

Potential Point mass Scalar
Gravity Point dipole Vector

Gravity gradient Point quadrupole 2nd rank tensor

which shows (1.1). This relation can be used to evaluate the terms Tk,k′ and Ak

occurring in (2.6):

(3.5) Tk,k′ =
1

4
√

(x′
k − x′

k′)2 + (y′k − y′k′)2 + (z′k + z′k′)2
, Ak =

W (x′
k, y

′
k, |z′k|)

4
.

Two final points are relevant. First, dipole and other higher order multipoles
can also be easily fit. In general, potentials for these point sources can be written as∑

k

∑
i SkiLki(�k

−1), where Ski are the associated source strengths and the Lki are
appropriate linear differential operators that can be expressed as a sum of partials
of various orders with respect to x, y, or z. For example, an electrostatic or point
mass dipole term is proportional to �Dk · �∇�−1

k . Since �∇�−1
k = −�∇′

k�
−1
k , where �∇′

k :=

(∂ /∂x′
k, ∂ /∂y′k, ∂ /∂z′k)

T , and components of �X ′
k serve only as parameters when they

occur inside the inner product here, all �X dependent derivative factors operating on
�−1
k that occur inside inner-products can be replaced with �X ′

k derivative factors; hence,
these differential operators can be moved inside or outside the inner-products entirely
as desired so that all required inner products for Tk,k′ and Ak can be easily evaluated
in closed form. For half-space, these possibilities and the associated measurable point
quantities are displayed in Table 3.1. Analogous possibilities exist for the spherical
exterior case.

Second, to improve the condition number of the matrix T in (2.6), it is often
desirable to use normalized basis functions ϕ̂k in place of �−1

k :

(3.6) ϕ̂k :=
Ñk

�k
, where Ñk :=

1

‖�−1
k ‖

in the general norm setting. Introducing T̃k,k′ := (ϕ̂k, ϕ̂k′) = Ñk Ñk′ Tk,k′ , Ãk :=

(W, ϕ̂k) = Ñk Ak, and m̃k := mk/Ñk allows (3.5) to be reexpressed as

(3.7)

Nk∑
k′=1

T̃k,k′ m̃k′ = Ãk.

For the R
3 half-space energy norm

Ñk = 2
3
2

√
|z′k| ,

T̃k,k′ =
2
√

z′kz
′
k′√

(x′
k − x′

k′)2 + (y′k − y′k′)2 + (z′k + z′k′)2
,(3.8)

Ãk =

√
|z′k|√
2

W (x′
k y′k, −z′k) ,

so that (3.7) can easily be inverted to determine the values of m̃k and thus mk.
While the use of normalized basis functions is not always required for point mass fits,
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their use in mixed type point source fits is always highly recommended due to the
diverse associated physical scales that occur there and the attendant large condition
numbers for T . (An experiment was performed on the results from one of the global
NLLSQ combined point mass/dipole fits discussed in section 5. At the specified source
locations a linear fit was done both with and without normalized basis functions. The
ratio of the two resulting condition numbers was over 1020.)

4. Spherical exterior (Ω0) relationships. The goal of this section is the
derivation of the two relevant spherical exterior DIDACKS relationships, (1.2a) and
(1.3a). Matters are more complex for this case than they were for the half-space case,
but all of the supporting issues raised in sections 2 and 3 can obviously be carried
over here, so they are not repeated.

Let f and g be two admissible functions as discussed in section 2 and consider
the integral norm [21]:

(4.1) (f, g)
I
:= − R2

0

4π

∫∫
σ

Dr(rf g) d σ = − R2
0

4π

∫∫
σ

[
Dr(f r g)

]∣∣∣
r=R0

d σ,

where Dr := ∂
∂ r . The last expression on the RHS here follows from the evaluation

convention of (1.4). The label “integral norm” was chosen by the author since, as
discussed below, the integrals required for point mass fitting in Ω0 can be evaluated
in closed form and there is little chance of confusing this norm with the usual norm
of square integrable functions.

Applying Green’s first identity to the Ω0 energy inner-product and noting that
the surface integral at infinity vanishes, while dS = R2

0 d σ and ∂ /∂ n := −Dr for the
bounding inner exterior surface of Ω0, yields

(f, g)
E0

:=
1

8π

∫∫∫
Ω0

�∇f · �∇g dV

= −R2
0

8π

∫∫
σ

gDrf d σ = − R2
0

16π

∫∫
σ

[
Dr(fg)

]∣∣∣
r=R0

d σ.(4.2)

From (4.1) and (4.2) it follows immediately that

(4.3) (f, g)
I
= 4R0(f, g)E0

− R2
0(f, g)σ.

After the second DIDACKS relation, (1.2a), is addressed, it will be shown that the
integral norm is proportional to the weighted Dirichlet integral, which will complete
the proof of the third DIDACKS relation, (1.3a).

First, observe that the following two equations can be shown through a relatively
straightforward evaluation of their respective LHS and RHSs:

(4.4)

[
r

�k

]∣∣∣∣∣
r=R0

=
R2

0

r′k

[
1

| �X− �Pk|

]∣∣∣∣∣
r=R0

and

(4.5)

[
Dr

(
r

�k

)]∣∣∣∣∣
r=R0

= −R2
0

r′k

[
Dr

1

| �X− �Pk|

]∣∣∣∣∣
r=R0

,
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where �Pk is given by (1.2b) with �X ′
k = �X ′ and r′k := | �X ′

k|. Employing (4.4) and (4.5)
yields

−R2
0

4π

∫∫
σ

[
Dr

(
rW

�k

)]∣∣∣∣∣
r=R0

dσ(4.6)

= − R4
0

4πr′k

∫∫
σ

[
(DrW )

| �X − �Pk|
− W Dr

1

| �X− �Pk|

]∣∣∣∣∣
r=R0

dσ.

Recall that W is harmonic for r > R0. Applying Green’s second identity2 to (4.6)
yields

−R2
0

4π

∫∫
σ

[
Dr

(
rW

�k

)]∣∣∣∣∣
r=R0

dσ = − R2
0

4πr′k

∫∫∫
Ω0

W ∇2

(
1

| �X− �Pk|

)
dV.

Then using ∇2(1/| �X − �Pk|) = −4πδ( �X− �Pk), where δ is the Dirac delta function [11,
p. 35], gives

(4.7) −R2
0

4π

∫∫
σ

[
Dr

(
rW

�k

)]∣∣∣∣∣
r=R0

dσ =
R2

0

r′k
W

(
�Pk

)

or finally, with Pk = |�Pk|:

(4.8) (�−1
k , W )

I
= Pk W

(
�Pk

)
.

Various other ways exist to prove (4.8). One way is to substitute spherical har-
monic expansions for W and �−1

k into the LHS of (4.7). A second way is to first observe
that (�−1

k , �−1
k′ )

I
can be evaluated in closed form by using spherical coordinates on the

LHS of (4.7). Next, this result can be generalized by substituting the integral form
of Poisson’s equation (not Poisson’s integral) for W into the LHS of (4.8) and then
reintroducing the closed-form expression just obtained for (�−1

k , �−1
k′ )

I
, which results

in the RHS of (4.8) reexpressed in terms of the integral form of Poisson’s equation. As
previously noted, these various steps were the ones originally followed by the author
and account for the nomenclature. Other proofs have also been discovered.

This leaves the proof of the relationship between the weighted Dirichlet integral
and the integral norm. Recalling the limit convention implicit for integration over σ,
(1.4), and expanding the RHS of (4.1) yields

(4.9) (f, g)
I
= −R2

0

4π

∫∫
σ

f g d σ − R2
0

4π

∫∫
σ

rDr(f g) d σ.

Next temporarily ignore the common factor of R2
0/4π and consider the two integrals

on the RHS of (4.9). Using the fact that Drf = ( �X/r) · �∇f , the first integral on the
RHS of (4.9) can be written as

(4.10)

−
∫∫

σ

f g d σ=

∫∫
σ

{ ∫ ∞

r=R0

Dr (f g) dr

}
d σ =

∫∫∫
Ω0

r−2 Dr (f g) dV

=

∫∫∫
Ω0

(g r−3) ( �X ·�∇f) dV +

∫∫∫
Ω0

(f r−3) ( �X ·�∇g) dV.

2
∫∫

∂Ω

(
φ ∂ψ

∂n
− ψ ∂φ

∂n

)
dS =

∫∫∫
Ω(φ∇2ψ − ψ∇2φ) dV.
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Green’s second identity in the following form will be useful in reexpressing the
second term on the RHS of (4.9):

(4.11)

∫∫∫
Ω0

�∇ψ ·�∇φ dV = −
∫∫

σ

r2 ψ (Drφ) dσ,

where φ is harmonic in Ω0, but ψ need not be, and both must vanish sufficiently
fast as r −→ ∞. Using this identity at the appropriate place twice in the following
expression (first with ψ = f/r and φ = g and then with f and g reversed), the second
term on the RHS of (4.9) can be rewritten as

−
∫∫

σ

rf (Drg) d σ −
∫∫

σ

r g (Drf) d σ

=

∫∫∫
Ω0

�∇g · �∇ (f/r) dV +

∫∫∫
Ω0

�∇f · �∇ (g/r) dV.(4.12)

Finally using �∇(f/r) = r−1�∇f − r−3 �Xf in (4.12) and substituting this result along
with (4.10) into (4.9) produces

(4.13) (f, g)
I
=

R2
0

2π

∫∫∫
Ω0

r−1 �∇f ·�∇g dV.

With the aid of (4.3), (4.8), and (4.13), the second and third DIDACKS relationship
(i.e., (1.2a) and (1.3a)) follow immediately. From (4.13) and the discussion at the end
of section 2 the integral norm is positive definite.

DIDACKS dipole and other higher order multipole implementations differ for the
half-space and spherical settings in one significant way. While closed-form expressions
for all the required inner-products for an integral-norm point-mass fit can be evaluated
just as discussed in section 3, for higher order multipole fits all the derivatives of the
potential for all the lower orders are also required in the spherical case because taking
partials with respect to the components of �X ′

k yields additional terms on the RHS
of (4.8). This means, for example, that a dipole fit requires not only point gravity
information, but point potential information as well. It is thus natural in this case to
perform not only a point dipole fit, but a combined point mass/dipole fit. With this
understanding the spherical case analogue of Table 3.1 is readily obtained.

When an integral norm higher order multipole fit is desired and the lower order
derivatives of W are not available, then it still may be possible to do the fit [21].
For example, if a dipole fit is desired and information about W is not available, but
the gradient of W is known along various intersecting lines, then potential data in
the form W ( �X) = W0 + δW ( �X), where W0 is an unknown constant, can be assumed

anywhere along these lines since the form of δW ( �X) can be found by numerical line
integration. For any assumed trial value of W0, a DIDACKS fit can be performed.
The results of this fit can then, in turn, be substituted into a standard LLSQ type
of cost function that is the analogue of (5.1) and is based on minimizing gravity
computations at various sample points. If gravity data itself is plentiful, then an
outer-loop optimization process can be based on minimizing this new cost function,
where W0 is treated as an unknown NLLSQ parameter. In this outer-loop process
sample point gravity differences are minimized throughout the fit region of interest
(which may be only a small part of Ω0). When its choice is not obvious, R0 can also
be treated as a parameter and optimized in the same fashion.
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5. Broader point mass fitting context. The goal of this section is to il-
luminate certain aspects of relevant geophysics and point mass fitting background
material by way of a brief synopsis (as such, this section is somewhat subjective).
Before considering the associated geophysical context it is useful to clarify the dis-
tinction between NLLSQ and GLLSQ or LLSQ problems and to briefly consider how
the pertinent DIDACKS applications history fits into these categories. In what fol-
lows, the distinction between GLLSQ and LLSQ is generally dropped and only the
acronym LLSQ is used, so that both classes can be referred to jointly. If all the
source locations are known, then linear equation sets result for the source strengths,
and in the DIDACKS approach these linear equation sets are exact due to (1.1) and
(1.2a). Alternatively, if both the locations and strengths are to be determined, then
an NLLSQ problem results since source locations enter as nonquadratic parameters
in the cost function. While only LLSQ problems have been addressed so far in this
article, accurate low degree and order spherical harmonic (tesseral) NLLSQ fits have
been obtained by the author, and this was, in fact, the first area of DIDACKS appli-
cations in the early 1980s [21]. These NLLSQ fits are discussed further below. While
rather varied approaches have been used by different researchers for point mass–based
geoexploration inverse source applications, for the gravity modeling and estimation
problems dealt with here far fewer point mass–based approaches have been employed;
nevertheless, not only have the associated research efforts been internationally diverse,
but the corresponding literature is also extensive, so that only a small part of it can
be considered here (see [26] for additional history and references). LLSQ and NLLSQ
point mass gravity models can also be produced to serve as synthetic gravity models
with realistic attributes, but DIDACKS applications in this area have not been con-
sidered, so these applications are not discussed below. Finally, two conventions are
adopted in the remainder: (a) a spherical harmonic expansion to degree and order N
will be called an N×N field or expansion, and (b) both field modeling and estimation
problems will be referred to as field reconstruction problems.

Next, consider the relevant geophysical aspects. Approximately a quarter of a
century ago one could divide the Earth’s gravity field into three parts corresponding
to their respective data sources:

(I) Global spherical harmonic field data derived directly from satellite tracking
data and historically considered accurate to around the degree and order 8
to 12 range. Here this part of the field is called “low degree and order,” and
it is taken to be 12 × 12 and below.

(II) An intermediate field taken here to be the part above 12×12 and below 120×
120, which before the evolution of more advanced radar equipped satellites
could not be accurately determined.

(III) Regional measurements of geophysical surface quantities known as gravity
anomaly and vertical deflections. (These data sets contain part (I) and (II)
contributions unless they are factored out.)

Parts (I) and (II) together will be taken as comprising the global part of the gravity
field. As discussed below, much higher accuracy is desirable for part (I) than part (II)
or part (III) data. Currently very accurate spherical harmonic expansions to a much
higher degree and order are available on the Internet, so the distinction between the
above three data sets is not as distinct as it once was, but to understand the context of
the methods discussed in this section it is useful to keep this historical data partition
in mind. (Expansions beyond 360×360 are common, and the recent Gravity Recovery
and Climate Experiment (GRACE) [10, 20] has already established new global gravity
accuracy benchmarks up through 110 × 110.)
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Next consider the origins of part (III) data. Regional data measurements are
often made at sea, and it is in this context that the concepts of gravity anomaly and
vertical deflection components are best understood. Suppose that the Earth were
composed of a homogenous liquid with the same overall mass and volume; then due
to rotational effects it would take on an ellipsoidal shape. Geophysicists set up a
mathematical model of this configuration that they call the reference ellipsoid. The
associated field is called the normal gravity field and is the predominant part of the
field. If transient effects (like tides and ocean waves) are accounted for, then under
the influence of gravity the oceans form an equal-potential surface (otherwise water
would flow from one part to another until an equilibrium was reestablished). If normal
gravity is subtracted off and if these transient effects are properly taken into account,
then the measurement taken by a gravimeter on a ship is called the gravity anomaly,
Δg, and it is a scalar since the measurement is taken along a plumb line. The angular
displacement of this plumb line from the vertical is called vertical deflection, which
can be resolved into north-south and east-west components. Due to the equipotential
effect just noted, this measurement is displaced from the specified reference ellipsoid
by a distance that is called the geoid height, but the measurement is recorded as
if it had been made at a point on the reference ellipsoid itself [10]. Geoid height
and scalar potential values are connected by Bruns formula [10]. Geoid height itself
can be determined by a radar-equipped satellite that has a known location. Gravity
anomaly is typically measured in units of milligal, where 1 milligal = 1 × 10−5m/s2.
A 1 milligal error is considered more-or-less acceptable for regional gravity anomaly
data processing [10, p. 274], and various underpinning geophysical relationships are
derived with an inherent approximation consistent with this 1 milligal requirement
[9, 10]. Much higher accuracy is desirable for part (I) than part (II) or part (III)
data since gravitational effects are cumulative for most uses and since low degree and
order errors tend not to cancel out. GRACE and other modern fields have error levels
considerably under a milligal for part (I) data, and for this part of the field it is also
desirable to have point mass models with errors somewhat under a milligal.

Historically, there have been three primary motivations for performing NLLSQ
fits to the low degree and order spherical harmonic part of the Earth’s gravity field:
(a) to find a more efficient computational scheme for gravity evaluations, (b) to gain
some insight into the distribution of matter in the Earth’s interior, (c) to conduct
goal-oriented pure research. Due to the computational ease and speed of low degree
and order spherical harmonic gravity evaluations that has resulted from computer
hardware and software advances, (a) has long ceased to be a realistic reason for
using point mass fits, and this point is totally irrelevant now. Other measurement
programs and advances have also emerged to address the issues raised by (b), but
in fact it was never clear that the small number of point masses used in NLLSQ
fits could provide truly significant mantle or deep core density information, which
leaves only (c). NLLSQ point mass fitting presents a very challenging problem that
can conceivably serve as a sort of test bed for developing techniques to tackle other
ill-conditioned problematic NLLSQ problems; moreover, aside from these NLLSQ
aspects, it is an intrinsically interesting potential theory problem that has associated
cross-fertilization possibilities.

The first step in attacking any LLSQ or NLLSQ problem is to set up a cost
function. A commonly chosen minimization philosophy for the NLLSQ point mass
fitting problem is that of matching the observed quantities as closely as possible.
Since there is a classical result in geophysics (Stokes’ integral) that says that if the
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gravity anomaly is known over the entire reference ellipsoid, then the external field
quantities can be reconstructed, standard approaches to performing global NLLSQ
low degree and order point mass fits often have been based on matching the gravity
anomaly at Ni different sample points, �Xi, specified on the reference surface. This
technique will be called the “classical point mass” approach. If ΔgPM ( �Xi) denotes

the anomaly generated by a collection of Nk point masses and Δgref ( �Xi) represents
the truth anomaly value at the same point, this classical NLLSQ point mass approach
can be framed through the requirement that the following cost function be minimized:

(5.1) Φ =

Ni∑
i=1

(
ΔgPM ( �Xi) − Δgref ( �Xi)

)2
,

where Ni � Nk. The usual prescribed number of point masses, Nk, is approxi-
mately 50 for an NLLSQ 9 × 9 fit, while Nk ≈ 80 for a 12 × 12 fit. The resulting
gravity anomaly error standard deviations (sigma) achieved by applying this classical
point mass fitting approach has typically been from 3/4 to several milligals. These
approaches normally have a much more sizable error in the smaller degree and order
terms than is desirable.

The global NLLSQ point mass fitting problem itself is inherently nonlinear, and
the point masses must be quite deep to obtain good results, which heightens numerical
difficulties and associated convergence problems. Given this state of affairs, coupled
with the facts that the smaller degree and order errors cannot be easily removed using
this classical approach and that it contains inherent sampling and discretization error,
there is an error floor of around 2/3 milligal that these approaches historically have
not been able to overcome. While the associated regional LLSQ approaches that have
been tried are remarkably diverse, far fewer low degree and order NLLSQ approaches
have been employed—nevertheless the diversity of attempted NLLSQ point mass
approaches in the literature is much wider than the above discussion indicates, but
still the accuracy levels and deficiencies of the classical point mass approach presented
above are thought to be representative of these other existing NLLSQ attempts as
well. In section 2 it was argued that the usual philosophy of matching measured
quantities is not the correct one and that an energy basis or weighted energy basis is
clearly called for in approaching both LLSQ and NLLSQ gravity modeling problems.

As noted above, accurate global NLLSQ low degree and order spherical harmonic
point mass fits using the DIDACKS approach were first obtained almost a quarter
of a century ago by the author, and in the past as better spherical harmonic data
has became available more accurate fits have been obtained [21]. This has been an
ongoing effort, and the current NLLSQ 50 point mass fit to the 9× 9 part of a recent
field has a sigma error of about 0.035 milligal, while the corresponding error in an
NLLSQ 80 point mass fit to the 12 × 12 part of the field is 0.030 milligal. As one
might expect, additional masses here can offer marked improvements in accuracy
but at a loss of efficiency. Combined point mass/dipole fits (cf. section 4), which
are combinations of point masses and dipoles at the same location, have also been
performed over the years [21]. Only about half as many of these combined point
sources are required for an accurate NLLSQ fit: 22 for a 9 × 9 field and 35 for a
12 × 12 field. These NLLSQ DIDACKS fits have all been based on the integral
norm introduced in section 4. Besides the basic DIDACKS formalism, these fits also
use additional specialized NLLSQ techniques developed by the author to handle the
existence of numerous false minima at various physical scales.

While the fits should be feasible, neither LLSQ nor NLLSQ DIDACKS fits to
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the complete global intermediate part of the field (part (II)) have been attempted,
although efficient and accurate DIDACKS fits for various regional and local gravity
modeling and estimation problems using both LLSQ and partial NLLSQ implemen-
tations have been obtained by the author [21]. Regional point mass gravity field
reconstruction (part (III)) based on the “classical point mass” approach epitomized
by (5.1) has also often been successfully done over the years by various researchers;
however, some have reported disappointing results. This is not surprising since consid-
erable patience is often required in order to obtain the best or even good results with
the DIDACKS approach due to source placement issues. Thus while both DIDACKS
and the classical point mass fitting approach can be viewed as alternatives to GC for
regional applications, they both clearly share the same sensitivity to and dependence
on point mass placement. This sensitivity to point mass placement is also apparent
from the low degree and order NLLSQ DIDACKS results, since NLLSQ iterations
have obviously reduced the errors by several orders of magnitude over those of initial
trial configurations. GC is designed to not be as sensitive to the placement of the
kernel measurement points (which is the corresponding placement issue for it), and
thus GC generally requires less patience and skill. Alternative part (II) and (III)
grid-based point mass approaches are referenced and discussed in [26].

It is thus useful to briefly describe GC in order to compare and contrast it with
the DIDACKS approach. Unlike DIDACKS, GC theory generally assumes that all
available data is used. GC as commonly practiced differs from standard collocation
techniques utilized by applied mathematicians in five basic ways:

1. An SRK basis is assumed, and emphasis is primarily focused on a statistical
(covariance) interpretation given to these kernels.

2. Laplace’s equation in R
3 is always assumed to hold over the region of interest.

3. This field region is assumed to be either half-space or the exterior of a sphere
(but the half-space setting is used only occasionally for localized regional distributions,
so it is not stressed).

4. The study of kernels is broken down into the standard empirically modeled
statistical covariance kernels and analytical collocation (where closed-form kernels
are studied)—analytical collocation is generally used only when the functional form
of the kernel is understood to be a workable representation of the statistical covariance
function.

5. Field measurement errors are allowed.
Practitioners of GC have cataloged most, if not all, useful kernel possibilities allowed
by these five differences. The main interpretational basis of GC is the GC or minimum
norm property, previously mentioned in connection with the GLLSQC condition in
section 2: under the assumption of errorless measurements, from all possible candidate
functions that reproduce the given point measurements, GC selects the one that is
smoothest—that is, the one with the smallest norm, where the norm is determined by
the underlying covariance function [19, pp. 207–220]. It is this minimum norm prop-
erty, in concert with the emphasis on statistical covariance functions indicated by the
first point above, that makes GC approaches less sensitive to kernel point placement
issues; however, as indicated above, this also implies a corresponding loss of fitting
responsiveness, and thus, for example, it would be hard to argue that GC is capable of
the overall level of economy and efficiency indicated above for the NLLSQ DIDACKS
low degree and order tesseral fits. Further observe that, just as in RKHS theory,
GC also satisfies a least-squares norm property [19], but in practice this property is
usually ignored by physical geodesists.
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For LLSQ gravity reconstruction problems GC has historically been the first
procedure of choice, and for these problems one could argue that when good covari-
ance data is available, these techniques are safe and easy to use; however, as classically
practiced, GC techniques do have notable limitations, which are not shared by the
DIDACKS approach:

(A) NLLSQ applications cannot be treated.
(B) GC techniques are customarily applicable only to the Earth’s gravitational

field environment since they require covariance information that is often avail-
able only in this context.

(C) The application of GC requires a certain level of familiarity, and thus it is
almost never adapted to problems outside the geophysical realm, even when
appropriate covariance data can be gathered. (There are, however, various
other areas that use somewhat related kernel techniques [22].)

(D) Inverse source estimation problems cannot be entertained.
In summary, for gravity reconstruction problems with accurate selected data sets

where either approach can be used, results using the DIDACKS approach can be either
much better or much worse than one might normally expect with GC approaches,
since the ingenuity, implementation skill, and patience of the practitioner have a
much more significant bearing on the outcome for DIDACKS approaches. GC is and
probably will always remain the primary mathematical tool employed for raw gravity
data processing and related uses where efficiency is not the primary concern, since
its behavior in these arenas is well understood and it can handle measurement errors
naturally.

6. Mathematical connections to geophysical collocation. As indicated in
section 1, (1.2a) can be related to a line of preexisting research performed by Krarup
in conjunction with his studies of GC [15]. Also an independent parallel line of
point source research exists that maintains direct connections to GC itself and can be
considered a direct outgrowth of Krarup’s original work. This alternative collocation-
based point source scheme is briefly considered after the connections of DIDACKS
theory to Krarup’s work are addressed. Since this alternative scheme and Krarup’s
work are primarily based on GC for spherical exteriors, only this geometry will be
considered in what follows.

Krarup first introduced the weighted integral occurring on the RHS of (4.13) in
conjunction with his study of GC [15, pp. 62–65]. The SRK corresponding to this
norm (the “Krarup kernel,” KK ) has the form

(6.1) KK (�P , �Q) =
R0√

R2
0 − 2 �P · �Q + (P Q/R0)

2
,

which Krarup and his followers extensively studied and applied. In (6.1), Q = | �Q|. To
understand how point mass fitting enters, observe that this SRK can be recast in the
form R2

0/(P | �Q− �X ′|), or | �X ′|/| �Q− �X ′| since �X ′ = �PR2
0/P

2, which is proportional to a

point mass potential at a fixed location. Making the ansatz �X ′ −→ �X ′
k and �Q −→ �X

allows one to transform a collocation fit into a point mass fit if the mass locations are
restricted to be at a fixed depth r′k = | �X ′

k| = constant, where r′k is simply treated as
an overall constant of proportionality. The relevant history of this and related ideas is
briefly touched on below. Here one possible next step, which Krarup and his followers
did not apparently take since it entails abandoning symmetric kernel forms altogether,
is to generalize this procedure to independent variable depths by absorbing the factors
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Pk := R2
0/r

′
k and R0 into each of the collocation fitting parameters separately and

then reinterpreting the resulting collocation fit as a point mass fit, which yields a fit
based on (1.2a) as the end product.

Conversely, DIDACKS point mass fits based on the integral norm can be rein-
terpreted as collocation fits [21]. The resulting fits are based on what is called the
reciprocal distance covariance function [19, p. 182], which corresponds to R2

0/PQ
times the Krarup kernel specified by (6.1). Notice that while the integral norm can
be reexpressed in terms of the “Krarup norm” by (4.13), it is useful to retain the inte-
gral norm as a distinct entity specified by (4.1) since (a) it is a surface integral rather
than a volume integral, (b) there are some consequences of this form, such as (4.3),
that are not apparent from the weighted Dirichlet integral form itself, and (c) the
Krarup norm is associated exclusively with the Krarup kernel in SRK form and is
primarily linked to GC theory where, as previously noted, the goals and practices are
quite different.

As summarized in [16] and as just indicated, starting in the early 1980s a distinct
line of point source research based on Krarup’s original work above was developed by
Marchenko and others (see [7]). This research is based on maintaining connections
to symmetric global GC covariance kernel forms. For the spherical case, assuming
the usual GC covariance properties, the general form of the allowed global covariance
kernel, C(�P , �Q), can be written as

(6.2) C(�P , �Q) =
∞∑

n=0

kn

(
R2

0

PQ

)n+1

Pn(cosψ) , where cosψ = (�P · �Q/P Q) ,

where the Pn are standard (unnormalized) Legendre polynomials and the kn are
constants [19, p. 181]. Here, as before, R0 is the radius of the spherical region.
Mathematically, a kernel specified by (6.2) can, in general, be simply considered

an SRK with an added layer of statistical interpretation. Solving (1.2b) for �X ′ =
�X ′(�P ) and substituting the result into (6.2) yields a kernel that is a function of
one interior point and one exterior point. For certain applications, when (6.2) is
reexpressed in terms of a smaller radius RB < R0, the resulting sphere is known
as a Bjerhammar sphere. For particular choices of kn if (6.2) can be rewritten as a
closed-form expression and if this expression has the correct form, such as (6.1), then
the result can be reexpressed as a point mass or other linear combinations of point or
line source potentials. As just noted in connection with (6.1), additional parameters
will occur in the resulting expressions that do not appear in the source potentials
themselves, but if the locations of the sources are restricted, these parameters can
be explained away as common constant factors. A Bjerhammar sphere is generally
used since it allows for an independent adjustment of the overall depth of the interior
source points. By maintaining connections to the symmetric kernel forms that are
allowed by (6.2), a statistical covariance interpretation is possible.

As one might expect there are notable differences between this approach and
DIDACKS since this alternative approach adopts the basic philosophy of maintaining
connections to GC and DIDACKS does not. In particular for a specified domain,
from RKHS theory one can deduce that the choice of inner product (or norm) and
reproducing kernel must be in one-to-one correspondence [19]; hence, the choice of
multipole form to be fit and norm are directly linked. A list of known covariance ker-
nel and multipole point source correspondences for this approach can be found in [16].
For example, in [7] some of the consequences of the Krarup norm choice, along with
its half-space approximation, are examined for point mass fits. By employing (6.2),



220 ALAN RUFTY

this approach allows for an underpinning statistical covariance interpretation, which
is important for many geophysical applications; nevertheless, implicitly retaining sym-
metric kernel forms also adds a layer of additional complexity, which has the effect
of greatly complicating the theory and of limiting the possible choices of dipole and
higher multipole forms. For uses outside geophysics there are also clearly interpreta-
tional difficulties that limit its use.

In DIDACKS theory all attempts at retaining connections to SRKs are dropped,
and the primary emphasis is placed on the (weighted) energy or integral norm and
the associated kernel form �−1. As noted earlier, this makes consideration of dipoles
and higher multipoles trivial since the required inner products are readily obtained.
Moreover, since the DIDACKS approach maintains the same norm choice for all source
types there are few interpretational issues—especially with regards to multipole fits
of all orders. The types of geophysical areas where one of these two approaches or
GC should be preferred over the others clearly warrant further study and consider-
ation since, to date, there have been no researchers proficient in applying all three
algorithms. (While GC has had many practitioners and this alternative collocation
based approach has had a few practitioners, so far DIDACKS development and use
has been limited to the author’s involvement.)
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MOISTURE TRANSPORT AND DIFFUSIVE INSTABILITY DURING
BREAD BAKING∗

H. HUANG† , P. LIN‡ , AND W. ZHOU§

Abstract. In this paper we study multiphase models for simultaneous heat and mass transfer
processes during bread baking. Our main objective is to provide an explanation and a remedy to the
observed erroneous and/or divergent results associated with an instantaneous phase change model
used in the literature. We propose a reaction-diffusion model based on the Hertz–Knudsen equation,
where phase change is not instantaneous but determined by an evaporation/condensation rate. A
splitting scheme is designed for the reaction-diffusion model so that a link between these two models
can be established and the nonintuitive numerical instability associated with the instantaneous phase
change model can be identified and eliminated. The evaporation/condensation rate is estimated by
comparing results of the reaction-diffusion model with experimental observations reported in the
literature. For evaporation/condensation rate beyond the estimated value, oscillatory solution with
multiple regions of dry and two-phase zones is observed. We show that these are caused by an
instability intrinsic to the model (which we call diffusive instability) using linear stability analysis
and numerical tests.

Key words. diffusive instability, finite difference method, heat and mass transfer, linear stability
analysis, multiphase modeling, phase change, reaction-diffusion equation
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1. Introduction. The bread baking process is difficult to model, partly due to
the fact that simultaneous heat and mass transfer are involved during the process.
During baking, heat transfer in dough is a combination of conduction/radiation from
band or tins to the dough surface, convection from air to the dough surface in the
absence of baking tins, conduction in the continuous liquid/solid phase of the dough,
and evaporation-condensation in the gas phase of the dough.

De Vries, Sluimer, and Bloksma [9] described a 4-step mechanism for the heat
transport inside dough: (1) water evaporates at the warmer side of a gas cell that
absorbs latent heat of evaporation; (2) water vapor then migrates through the gas
phase; (3) when meeting the cooler side of the gas cell, water vapor condenses and
becomes liquid; (4) finally, heat and water are transported by conduction and diffusion
through the gluten gel to the warmer side of the next cell. The water diffusion
mechanism becomes important to heat transfer, because dough tends to be a poor
conductor that limits the heat transfer rate via conduction.

The above described mechanism of diffusion, together with evaporation and con-
densation in dough, was subsequently adopted by Tong and Lund [22] and Thorvalds-
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son and Janestad [20]. With this mechanism, liquid water moved towards the loaf
center as well as the surface by evaporation and condensation, reducing the partial
water vapor pressure due to the temperature gradient. As a result, crumb temperature
change was accelerated.

In the model by Zanoni, Peri, and Pierucci [23], an evaporation front inside the
dough was assumed to always be at 100◦C. This evaporation front progressively ad-
vanced towards the center as the bread’s temperature increased. Crust was formed in
the bread portion above the evaporation front. With similar parameters, Zanoni, Peri,
and Pierucci [24] developed a 2-dimensional axisymmetric heat diffusion model. The
phenomena were described separately for the upper and lower parts (crust and crumb).
The upper part (crust) temperature was determined by equations including heat sup-
ply by convection, conductive heat transfer towards the inside, and convective mass
transfer towards the outside. The lower part (crumb) temperature was determined by
Fourier’s law. In addition to the Cartesian coordinate models, a 1-dimensional cylin-
drical coordinate model was also established by De Vries, Sluimer, and Bloksma [9].

Among the various models, the internal evaporation-condensation mechanism well
explains the fact that heat transfer in bread during baking is much faster than that
described by the conduction alone in dough/bread. It also supports the observation
that there is an increase in the liquid water content at the center of the bread dur-
ing the early stage of baking (Thorvaldsson and Skjoldebrand [21]) rather than a
monotonous decrease resulted from having liquid water diffusion and surface evap-
oration only. Therefore, a promisingly good model for bread baking might be a
multiphase model which consists of three partial differential equations for the simul-
taneous heat transfer, liquid water diffusion, and water vapor diffusion, respectively,
together with two algebraic equations describing water evaporation and condensation
in the gas cells. Indeed, Thorvaldsson and Janestad [20] used this multiphase model
to describe a 1-dimensional case where a baking tin was absent.

In [20], a slab of bread crumb being baked in a conventional oven was considered.
Their model assumes that vapor and liquid water diffuse separately and phase change
(evaporation and condensation) occurs instantaneously; i.e., vapor content V is di-
rectly proportional to saturated vapor content Vs at any given time, provided that
there is enough liquid water available. The authors showed reasonably good agree-
ment between the numerical results predicted by the model and their experimental
measurements. However, further investigations using the same model revealed that
instability occurs as time step size was refined [18, 25].

Zhou [25] demonstrated that numerically solving the model equations presented
a big challenge. Although various schemes of finite difference methods and finite
element methods were applied, the corresponding solutions were all shown to be highly
sensitive to the time step size, and satisfactory results were yielded only over a limited
range of time step sizes. Erroneous and/or divergent results were produced when the
time step size was either too small or too large. While it is reasonable to expect that
large time steps may lead to instability, failure of the numerical methods due to small
time step sizes is nonintuitive.

The main objective of this paper is to provide an explanation as well as a remedy
to this highly nonintuitive outcome of the instantaneous phase change model proposed
in [20]. In order to identify the source of instability in the instantaneous phase change
model, we construct a reaction-diffusion model by assuming that phase change follows
a modified Hertz–Knudsen equation, which can be derived using statistical mechanics
principles [13]. We show that the two models are related from a numerical point of
view when a special time stepping scheme is used for the reaction-diffusion model.
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The instantaneous phase change model is equivalent to the reaction-diffusion model
with a variable evaporation rate reciprocal to the time step size. Therefore, reducing
the time step size in the instantaneous phase change model increases the evaporation
rate in the reaction-diffusion model.

The reaction-diffusion model allows us to study the effects of the evaporation rate
in more detail by separating two types of instabilities, i.e., instability associated with
a particular numerical scheme and diffusive instability associated with the model.
Combining numerical tests and linear stability analysis, we show that diffusive insta-
bility is an intrinsic feature of the model, which does not disappear as time step size
is reduced. As a result, the two-phase region where vapor and liquid water coexist
may become unstable. For the parameter values used in [20, 18, 25], the constant
state solution in the two-phase region is linearly unstable even though the solution is
stable when phase change and diffusion are considered separately. Furthermore, the
rate of growth depends on the evaporation rate. A larger evaporation rate leads to
faster growth of the disturbances. Oscillation in solutions can occur in the two-phase
region before the dry region completely takes over.

We show that the reaction-diffusion model does not lead to numerical instability
when sufficiently small time step size is used. For the instantaneous phase change
model, reducing the time step size is equivalent to increasing the evaporation rate
while keeping the product of time step size and evaporation rate fixed. Therefore,
systematic refinement of the time step size induces faster growth of error, which
eventually causes numerical instability observed in the computations in [18, 25].

In order to put the problem we study in this paper in a broader context, we shall
give a brief overview of some relevant applications whose mathematical description
has certain similarity to the bread baking models discussed here. A general feature
of these problems is the coupling of thermal diffusion and phase change. We refer the
readers to [3, 5, 6, 7, 10] for treatments of phase change and heat transfer phenomena
in general. A closely related application is given in [16, 15], where a moisture transport
model for the wetting and cooking of a cereal grain is considered. The temperature
is decoupled from the moisture model, and it is used as a parameter in their model.
In [12, 11], the condensed phase combustion or gasless combustion is considered.
The model has applications in synthesizing certain ceramics and metallic alloys and
involves a reaction-diffusion system for temperature and fuel concentration, where
the diffusion coefficient of fuel concentration is set to be zero. In [2], a model for the
aggregate alkali reaction in fluid leaching processes, which is similar to the gasless
combustion problem, is studied numerically. All these models are similar to the one
studied in [20, 18, 25], with some differences in the way the phase change is handled
and in the parameters and coefficients. Numerical techniques used in those studies are
also similar, where either finite difference and finite element methods or pseudospectral
methods are used for spatial discretization.

The rest of the paper is organized as follows. In section 2, we describe a reaction–
diffusion model based on the Hertz–Knudsen equation. The relationship between our
model and the instantaneous phase change model is explored in section 2.2 when
numerical procedure is discussed. Numerical results for the reaction-diffusion model
are given in section 2.3. In section 3 we carry out linear stability analysis of our
new model. We finish the paper with a conclusion and a short discussion on future
directions in section 4.

2. A reaction-diffusion model. Following [20, 18, 25] we assume that the
bread slab can be treated as a 1-dimensional homogeneous porous medium (0 < x <
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L) with density ρ, specific heat capacity cp, and thermal conductivity k. While in
reality both cp and k depend on water content, they are assumed to be constants
in [20], where density ρ is given as a linear function of the liquid water content. The
main variables are temperature T , liquid water content W , and water vapor content
V inside the bread with respect to the total weight (both are dimensionless variables
defined as the percentage of liquid water and vapor mass with respect to that of the
mixture including the bread). Thus the total vapor and liquid water masses per unit of
volume can be computed as ρV and ρW , respectively. Vapor and liquid water can be
generated via evaporation and condensation, respectively, determined by the saturated
vapor concentration Vs (or saturation pressure Ps), which is temperature dependent.
Vapor and liquid water can also be transported via diffusion, with coefficients Dv and
Dw, respectively.

The governing equations for T , V , and W are

ρcp
∂T

∂t
=

∂

∂x

(
k
∂T

∂x

)
+ λΓ,(2.1)

∂V

∂t
=

∂

∂x

(
Dv

∂V

∂x

)
− Γ

ρ
,(2.2)

∂W

∂t
=

∂

∂x

(
Dw

∂W

∂x

)
+

Γ

ρ
.(2.3)

Here Γ is the rate of the phase change (mass per unit volume per unit time), given
by the modified Hertz–Knudsen equation (see [13], where this equation is used for
studying evaporation phenomena)

(2.4) Γ = E(1 − φ)

√
M

2πR

(Pv − cPs)√
T

,

where E is the condensation/evaporation rate, φ is the porosity of the bread slab, M
is the molecular weight of water and R is the universal gas constant, Pv and Ps are
the vapor pressure and saturation pressure, and c is a phase change constant. For
simplicity we have included the pore surface area in E, which is inversely proportional
to the pore size of the porous sample. Even for a unit pore surface, the value of evap-
oration rate E is subject to debate [13]. In this study, we estimate the value of E by
comparing numerical results of the current model with experimental observations [20].
We also use the fitted saturated vapor pressure data [19] by an exponential function

(2.5) Ps = Ps,0 exp[κ(T − T0)] − Ps,1.

Assuming the ideal gas law,

(2.6) Pv =
RρV T

φM
, Ps =

RρVsT

φM
,

we can rewrite (2.4) as

(2.7) Γ =
E(1 − φ)ρ

φ

√
RT

2πM
(V − cVs) .

It is worth noting that evaporation can occur only when there exists a sufficient
amount of liquid water. Thus, if V < cVs and W = 0, then no evaporation occurs
and Γ = 0.
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As in [20, 18, 25], we assume that initially the bread has certain moisture content
W0 (liquid water) at room temperature T0. At time zero, the bread is placed in an
oven preheated at temperature Ta by a radiator with temperature Tr. The boundary
conditions are mixed conditions at x = 0:

−k
∂T

∂x
= hr(Tr − T ) + hc(Ta − T ),(2.8a)

−∂V

∂x
= hv(Va − V ),(2.8b)

−∂W

∂x
= hw(Wa −W ),(2.8c)

and they are symmetric conditions at x = L:

(2.8d)
∂T

∂x
=

∂V

∂x
=

∂W

∂x
= 0.

Here hr, hc, hv, and hw are the radiative and convective heat transfer coefficients and
the vapor and liquid water mass transfer coefficients, respectively. Va and Wa are the
vapor and liquid water content in the oven air.

Finally, some of the coefficients are estimated experimentally and following ex-
pressions [20] will be used in this paper. The diffusion coefficient for water Dw is
approximated as a constant, while for vapor diffusion, we have Dv = D̄vT

2. Heat
transfer coefficients depend on temperature and sometimes water content, and they
are approximated by hv = h̄vT

−3, hw = h̄w0T + h̄w1W + h̄w2TW + h̄w3W
2, and

hr = σ(T 2
r +T 2)(Tr +T )/(ε−1

p + ε−1
r − 2+F−1

sp ), where Fsp is the shape factor and εp
and εr are the emissivities of the bread and radiator, respectively. Finally, the density
of the mixture is approximated by ρ = ρ̄0 + ρ̄W . The readers are referred to [20] for
more details on relevant parameter values.

2.1. Nondimensionalization. We now proceed to nondimensionalize the gov-
erning equations by choosing the following scaling:

θ =
T − T0

T̄
, τ =

t

t̄
, ξ =

x

L
, ρ′ =

ρ

ρ̄
.

Here T0 = 298 K is the initial temperature and T̄ = Tr − T0 is the difference be-
tween the radiator and initial temperature. We choose the diffusive time scale for the
temperature equation

t̄ =
ρ̄cpL

2

k
.

Drop the prime for simplicity and we have the following equations:

θτ =
1

ρ
θξξ + S,(2.9)

Vτ = D1[(θ + θ0)
2Vξ]ξ − αS,(2.10)

Wτ = D2Wξξ + αS,(2.11)

where the nondimensional density is given as ρ = W + ρ0 with ρ0 = ρ̄0/ρ̄. The other
dimensionless parameters are defined as

D1 =
D̄vρ̄T̄

2cp
k

, D2 =
Dwρ̄cp

k
, α =

T̄ cp
λ

.
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When there is sufficient amount of liquid water, the source term for phase change is
given by

(2.12) S = β
√
θ + θ0 (V − cVs) ,

where

β = λE(1 − φ)
ρ̄L2

φk

√
R

2πMT̄
,

and the saturated vapor content is

Vs =
Vs,0e

γθ − Vs,1

(ρ0 + W )(θ + θ0)
,

with parameters

Vs,0 =
Ps,0M

ρ̄T̄R
, Vs,1 =

Ps,1M

ρ̄T̄R
, γ = κT̄ .

The boundary conditions at x = 0 (ξ = 0) and x = L (ξ = 1) are nondimension-
alized similarly. At ξ = 0, we have

θξ = (h3 + h4)(θ − 1),(2.13a)

Vξ = h1(V − Va),(2.13b)

Wξ = h2(W −Wa),(2.13c)

where

h1 = hvL,

h2 = hwL,

h3 =
σT̄ 3L

k

[(1 + θ0)
2 + (θ + θ0)

2](θ + 1 + 2θ0)

ε−1
p + ε−1

r − 2 + F−1
sp

,

h4 =
hcL

k
.

Here we have assumed that the air temperature Ta equals the radiator temperature
Tr. At ξ = 1, we have

(2.13d) θξ = Vξ = Wξ = 0.

2.2. Numerical method. We now turn our attention to numerical procedures
by describing a splitting scheme for the reaction-diffusion model (cf. [4]). We will
revisit the instantaneous phase change model and establish a connection between our
model and the instantaneous phase change model. Numerical solutions of our new
model will be presented at the end of the section.

2.2.1. Reaction-diffusion model. Splitting scheme. We adopt a splitting
method for the reaction-diffusion model by separating diffusion from phase change
(reaction) and solving the equations in two steps.1 We first solve the vapor and liquid

1From the numerical method point of view, there is also a benefit to using the splitting. Since
we can obtain an explicit relation between W and V in the phase change stage, W can be computed
using V without treating the source term S in the W equation (or with that relation the source term
in the W equation can be written in terms of W and is dissipative). As a result, the algorithm is more
stable. We note that time splitting schemes have been used in the literature for reaction-diffusion
equations, and we refer interested readers to [1, 8] and the references therein.
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water equations by

Vτ = −αS,(2.14)

Wτ = αS.(2.15)

The second equation for liquid water can be replaced by an algebraic constraint

V + W = V 0 + W 0,

where V 0 and W 0 are the values at the beginning of the splitting step. Diffusion of
vapor and liquid water as well as temperature are solved in the second step by

θτ =
1

ρ0 + W
θξξ + S,(2.16)

Vτ = D1[(θ + θ0)
2Vξ]ξ,(2.17)

Wτ = D2Wξξ.(2.18)

Time stepping scheme. The numerical procedure in semidiscrete form can be
described as follows.

1. Vapor content is first solved using

(2.19a)
V c − V (n)

Δτ
= −αS1,

where

(2.19b) S1 = β
√
θ(n) + θ0(V̄ − cV (n)

s ).

Here superscript c denotes the solution updated due to phase change alone
and V̄ is the arithmetic average, i.e.,

(2.20) V̄ =
V c + V (n)

2
.

2. Evaporation can occur only if there exists a sufficient amount of the liquid
water. In other words, liquid water content must remain nonnegative. If
the available water W (n) is less than the amount V c − V (n) computed by
(2.19), then the amount of liquid water becomes zero. Otherwise, it is given
by W (n) − V c + V (n). Therefore,

(2.21) W c = max{W (n) + V (n) − V c, 0}.

3. As a consequence, vapor content needs to be corrected using the constraint

(2.22) V c = W (n) + V (n) −W c.

4. To account for the possibility of running out of liquid water, phase change
needs to be corrected using

(2.23) S2 =
W c −W (n)

αΔτ
.
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5. V (n+1) and W (n+1) are updated using the diffusion equations

V (n+1) − V c

Δτ
= D1[(θ

(n) + θ0)
2V

(n+1)
ξ ]ξ,(2.24)

W (n+1) −W c

Δτ
= D2W

(n+1)
ξξ .(2.25)

6. Temperature is solved by

(2.26)
θ(n+1) − θ(n)

Δτ
=

1

ρ0 + W (n+1)
θ
(n+1)
ξξ + S2,

where the rate of phase change S2 is given by (2.23).
The time discretizations described above are standard, and it is straightforward to
verify that the scheme is consistent and formally the order of accuracy is Δτ for
reasonably chosen V̄ , such as the arithmetic average used in this paper.

2.2.2. Instantaneous phase change model in [20]. The instantaneous phase
change model used and studied in [20, 18, 25] is essentially a discrete time model which
can be described as follows (in the nondimensional form).

1. Vapor and water contents are solved using

(2.27a) V ∗ = min{cV (n)
s , V (n) + W (n)}, W ∗ = V (n) + W (n) − V ∗

or

(2.27b) W ∗ = max{W (n) + V (n) − cV (n)
s , 0}, V ∗ = V (n) + W (n) −W ∗.

2. Rate of phase change is computed using

(2.28) S1 =
W ∗ −W (n)

αΔτ
.

3. Vapor content due to diffusion is updated by

(2.29)
V ∗∗ − V ∗

Δτ
= D1[(θ

(n) + θ0)
2V ∗∗

ξ ]ξ.

4. Vapor and water contents are updated again using

(2.30a) V (n+1) = min{cV (n)
s , V ∗∗ + W ∗}, W ∗∗ = V ∗∗ + W ∗ − V (n+1)

or

(2.30b) W ∗∗ = max{W ∗ + V ∗∗ − cV (n)
s , 0}, V (n+1) = V ∗∗ + W ∗ −W ∗∗.

5. Rate of additional phase change is computed using

(2.31) S2 =
W ∗∗ −W ∗

αΔτ
.

6. W (n+1) is updated using the diffusion equations

(2.32)
W (n+1) −W ∗∗

Δτ
= D2W

(n+1)
ξξ .

7. Temperature is solved by

(2.33)
θ(n+1) − θ(n)

Δτ
=

1

ρ0 + W (n+1)
θ
(n+1)
ξξ + S1 + S2.
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2.2.3. Simplified instantaneous phase change model. The rate of phase
change given by (2.31) is typically small compared to that from (2.28). Therefore, we
can simplify the model by eliminating steps (2.30) and (2.31) and using the following
procedure.

1. Vapor and water contents are solved using

(2.34) W ∗ = max{W (n) + V (n) − cV (n)
s , 0}, V ∗ = V (n) + W (n) −W ∗.

2. Rate of phase change is computed using

(2.35) S =
W ∗ −W (n)

αΔτ
.

3. Vapor content due to diffusion is updated by

(2.36)
V (n+1) − V ∗

Δτ
= D1[(θ

(n) + θ0)
2V

(n+1)
ξ ]ξ.

4. W (n+1) is updated using

(2.37)
W (n+1) −W ∗

Δτ
= D2W

(n+1)
ξξ .

5. Temperature is solved by

(2.38)
θ(n+1) − θ(n)

Δτ
=

1

ρ0 + W (n+1)
θ
(n+1)
ξξ + S.

2.2.4. Model comparison. Note that the diffusion part of the reaction-diffusion
model (2.24)–(2.26) is the same as that for the simplified instantaneous model (2.36)–
(2.38). The only difference between the reaction-diffusion model and the instanta-
neous phase change model lies in the way the phase change is computed, or more
precisely the way vapor content is computed. We now show that the two models are
related to each other in the following sense.

In the instantaneous phase change model, assuming there is a sufficient amount
of water,2 we set

(2.39) V ∗ = cVs.

Again assuming there is a sufficient amount of water, using the reaction-diffusion
model and V̄ defined in (2.20), we obtain

V c − V (n) = −ν(V c + V (n) − 2cV (n)
s ),

where

ν =
Δταβ

√
θ + θ0

2
.

When ν = 1, or

2When all the available water is evaporated, it is straightforward to show that the two models
are equivalent since V c = V ∗ = V (n) + W (n) and W c = W ∗ = 0.
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(2.40) β =
2

Δτα
√
θ + θ0

,

we obtain

V c = cV (n)
s .

Therefore, the instantaneous phase change model is numerically equivalent to the
reaction-diffusion model with a variable β inversely proportional to the time step size
Δτ . This suggests that the instantaneous phase change model can be viewed as an
inconsistent discretization of the reaction-diffusion model, which provides a possible
explanation for the observed divergence in the numerical solution as Δτ → 0.

2.3. Numerical results. The numerical solutions are obtained using parameter
values given in [20, 25]. The corresponding dimensionless parameters are D1 = 4.37,
D2 = 1.9×10−3, h1 = 5.05(θ+θ0)

−3, h2 = 2.6×10−3θ+2.7×10−3W−7.4×10−4θW−
7.7× 10−3W 2, h3 = 5.13× 10−2(θ + 1 + 2θ0)[(1 + θ0)

2 + (θ + θ0)
2], h4 = 7.14× 10−2,

Vs,0 = 3.51 × 10−5, Vs,1 = 1.45 × 10−5, α = 0.286, β = 1.735 × 105E, γ = 9.662,
ρ0 = 5.99 × 10−1, θ0 = 1.61.

To simulate the moisture transport during bread baking we need to determine
the evaporation or condensation rate E or its nondimensionalized quantity β. This is
done by choosing its value so that the numerical solution matches the experimental
results in [20]. The estimated value is β = 781 and the corresponding evaporation
rate is E = 4.5× 10−3. In Figure 2.1, the numerical results based on this evaporation
rate is given for two time step sizes Δt = 10 and 0.2 seconds using a coarse grid
(16 grid points in x) and a fine grid (128 grid points in x), respectively. The numerical
procedure remains stable as the time step size is reduced for a fixed grid size in x,
contrary to the instantaneous phase change model. We note that the nonsmoothness
of the solution in Figure 2.1(a) is due to the coarse spatial and temporary grids used
in the computation. When we refine the spatial grid, solution becomes smooth, as
shown in Figure 2.1(b).

Recall from (2.40) that reducing time step size in the instantaneous phase change
model is equivalent to increasing the value of E in the reaction-diffusion model. There-
fore, it will help us to understand the mechanism of the instability associated with
the instantaneous phase change model by carrying out computations using a larger
value of E. In Figure 2.2, computational results using the reaction-diffusion model
with E = 0.0045 and E = 0.045 are presented. Here we plot the snapshots of water
content at various times in order to show what can happen with the model if we
increase E. The results are obtained using 128 grid points for the x variable and a
time step size of 0.2 seconds. We have also done further refinement tests, but the
results remain virtually the same, indicating convergence of the numerical solutions.
Since evaporation rate is independent of the time step size, we can use a much smaller
time step size while keeping the evaporation rate unchanged, which is not possible
for the instantaneous phase change model. From Figure 2.2, it can be seen that the
solution for the larger evaporation rate starts to oscillate. However, this is not due to
numerical instability.

We have also experimented with the instantaneous phase change model, and the
results confirmed the observations in [18, 25]. Instead of repeating those results here,
we refer interested readers to [18, 25] for more details. In the next section we will pro-
vide an explanation for the observed oscillation in the solution of the reaction-diffusion
model associated with relatively large value of E (or small Δτ in the instantaneous
phase change model when the numerical procedure is still stable).
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Fig. 2.1. Computational results of V , W , and T obtained by using the reaction-diffusion model:
(a) Time and spatial step sizes are Δt = 10 seconds and Δx = 2−4×10−2 cm; (b) Time and spatial
step sizes Δt = 0.1 seconds and Δx = 2−8 ×10−2 cm. Here the dotted lines represent the quantities
at the surface of the slab (x = 0), the dashed lines are for those located in the middle of the domain
(x = L/2), and the solid lines represent the values at the center of the slab (x = L). The time is
measured in minutes in order to compare our results with those from previous studies in [20, 18, 25].
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Fig. 2.2. Snapshots of the water content computed using the reaction-diffusion model for two
values of the evaporation constant: (a) E = 0.0045; (b) E = 0.045. For the smaller value of E, the
water content remains monotonic in x and the interface between the dry and wet regions is clearly
defined. For the larger value of E, disturbance from the interface grows and eventually leads to
multiple dry-wet regions.

3. Linear stability analysis. We now turn our attention to the stability of the
solution of the nondimensional model (2.9)–(2.11) near a steady state in an infinite
domain. It is easy to see that the constant state V0, W0, and θ = 0 satisfies the
equations as long as

V0 =
c (Vs,0 − Vs,1)

θ0(ρ0 + W0)
.

To examine the stability of this constant state solution, we carry out linear sta-
bility analysis by assuming that

θ = θ̂ exp(sτ + imξ), V = V0 + v̂ exp(sτ + imξ), W = W0 + ŵ exp(sτ + imξ).

The equations for θ̂, v̂, and ŵ are

sθ̂ = − m2

ρ0 + W0
θ̂ + β̄

(
−V1θ̂ + v̂ +

V0

ρ0 + W0
ŵ

)
,(3.1)

sv̂ = −θ2
0D1m

2v̂ − αβ̄

(
−V1θ̂ + v̂ +

V0

ρ0 + W0
ŵ

)
,(3.2)

sŵ = −D2m
2ŵ + αβ̄

(
−V1θ̂ + v̂ +

V0

ρ0 + W0
ŵ

)
,(3.3)

where β̄ =
√
θ0β and

V1 =
c (Vs,0 − Vs,1)

θ0(ρ0 + W0)
− cVs,0γ

θ0(ρ0 + W0)
.

Rearranging (3.1)–(3.3) in the matrix form, we obtain

My = sy,

where
(3.4)

y =

⎛
⎜⎝ θ̂

v̂

ŵ

⎞
⎟⎠ , M =

⎛
⎜⎝

− m2

ρ0+W0
− β̄V1 β̄ β̄ V0

ρ0+W0

αβ̄V1 −θ2
0D1m

2 − αβ̄ −αβ̄ V0

ρ0+W0

−αβ̄V1 αβ̄ −D2m
2 + αβ̄ V0

ρ0+W0

⎞
⎟⎠ .
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3.1. A special case. We want to find out whether instability would occur in
this system. This requires us to find eigenvalues of (3.4). To avoid complicated
calculations we consider a special case where the linearized diffusion coefficients for
temperature and liquid water are the same, i.e.,

(3.5)
1

ρ0 + W0
= θ2

0D1.

For our choice of parameters in this bread-baking problem these two coefficients are
of similar sizes. Therefore, we expect that this assumption would not change the
nature of the stability of the system. Under this assumption the eigenvalues satisfy
the following equation:

(θ2
0D1m

2 + s)

[
s2 +

(
D2m

2 + θ2
0D1m

2 + β̄V1 + αβ̄ − αβ̄V0

ρ0 + W0

)
s

+ D2m
2(θ2

0D1m
2 + β̄V1 + αβ̄) − αβ̄V0

ρ0 + W0
θ2
0D1m

2

]
= 0.(3.6)

3.1.1. Reaction-only. When there is no diffusion, we have m = 0, and the
eigenvalues are s1 = s2 = 0 and

s3 = −αβ̄ −
(
V1

V0
− α

ρ0 + W0

)
β̄V0.

For our problem, α = 0.2864, γ = 9.662, ρ0 = 0.5986, θ0 = 1.6116, and W0 = 0.4.
Thus, s3 < 0 and the constant solution is stable.

3.1.2. Reaction-diffusion. We can easily see that the eigenvalue associated
with the first factor of (3.6) is negative. Note that the coefficient of s in the second
factor is

C1 = D2m
2 + θ2

0D1m
2 + β̄V1 + αβ̄ − αβ̄V0

ρ0 + W0
> 0.

The signs of two eigenvalues associated with the second factor are determined by the
sign of the coefficient of s0:

C0 = D2m
2(θ2

0D1m
2 + β̄V1 + αβ̄) − αβ̄V0

ρ0 + W0
θ2
0D1m

2

since the eigenvalues from the second factor are given by −C1 ±
√
C2

1 − 4C0. So if
C0 < 0 and C2

1 > 4C0, we will have a positive eigenvalue which indicates instability of
the system. If D2 is comparable to D1, then C0 will be positive and both eigenvalues
will be negative and the system is stable. Since in our case D2 is much smaller than
D1, C0 will be negative if m is not sufficiently large, in which case we will have one
positive eigenvalue which leads to instability.

Remark. It is interesting to note that in this case diffusion is actually destabilizing.
The instability discussed here is conceptually related to Turing instability or diffusive
instability observed in pattern formation, crystal, and tumor growth; cf. [17, 14].
However, the mathematical model and the nonlinearity related to bread baking are
quite different from those applications.
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Fig. 3.1. Plot of the normalized eigenvalue s̄ vs. the normalized wave number m̄. The circle
indicates the most unstable wave number, m̄max = 0.09. The square indicates the upper limit of the
unstable modes, m̄b = 0.4469.

3.2. The general case. In the case when diffusion coefficients for temperature
and vapor are not the same, analytical expression can still be obtained. However, it is
too complicated to provide useful insights. We can, nevertheless, find the eigenvalues
numerically by using the MATLAB routine eig.m. Again, for relevant parameter
values, two of the three eigenvalues have nonpositive real parts. The real part of
the third eigenvalue is plotted in Figure 3.1, where both the wave number and the
eigenvalue are normalized as s̄ = s/β̄ and m̄ = m2/β̄. It can be seen that there exists
a range of wave numbers between zero and a finite value, indicated by the square in
the figure, within which the perturbation will grow. Larger wave number disturbances
beyond the critical wave number will decay. Furthermore, there exists a wave number
which grows the fastest, indicated by the circle in the figure. Finally, the range of
unstable frequencies increases linearly with

√
β̄ and the growth rate increases linearly

with β̄. Therefore, a larger evaporation rate E (implies a larger β̄) leads to a wider
range of unstable modes and faster growth rates for all the unstable modes.

We now verify the results of the linear stability analysis by solving the reaction-
diffusion model with Dirichlet conditions which permit the constant solutions θ = 0,
V = V0, and W = W0. In Figure 3.2(a), computed liquid water content at the
end of 100 minutes is shown. The solutions are obtained by superimposing a small
disturbance in the form of ε cos[m(ξ − 0.5)] to a constant liquid water content W0

with m = 2πω, ω = 0.5, 1.5, and 4, and ε = 0.1. The evaporation rate is E = 0.0045
and the range of unstable frequencies is 0 < ω < 2.9738. The most unstable mode is
given by ω ≈ 1.3345, and the rate of growth is approximately exp

(
3.5056 × 10−4t

)
measured in dimensionless time. The results show that even though the disturbances
with wave numbers below ω ≈ 3 grow with time, it takes a relatively long period of
time (on the scale of 80 minutes for the fastest growing mode) to develop. On the
other hand, the evaporation of all the liquid water takes about 60 minutes (Figures 2.1
and 2.2(a)). Therefore, all liquid water in the bread would have already evaporated
before the instability develops and takes effect.

In Figure 3.2(b), computed liquid water content at the end of 10 minutes is shown
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Fig. 3.2. Computational results of liquid water content subjected to disturbances. (a) E =
0.0045 with ω = 0.5, 1.5, and 4. (b) E = 0.045 with ω = 1.5, 4, and 10. The dashed lines indicate
the initial states and the solid lines are the final solutions.
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Fig. 3.3. Damping rates for (a) E = 0.0045 and (b) E = 0.045. The liquid water content
in the middle of the domain where the growth is the fastest is plotted for wave numbers ω = 0.5,
1.5, and 4 in (a) and ω = 1.5, 4, and 10 in (b). The circles are predictions by the linear stability
analysis.

for a larger evaporation rate E = 0.045, subjected to the same small disturbances. In
this case, the range of unstable frequencies is 0 < ω < 9.4. The most unstable mode
is given by ω ≈ 4.22, and the rate of growth is approximately exp

(
3.5056× 10−3t

)
in

dimensionless time. Compared to the previous case, this leads to a more rapid growth
for the most unstable mode, on the order of 10 minutes in dimensional time, while it
takes about 30 minutes for all the liquid water to evaporate (cf. Figure 2.2(b), where
the effect of the instability is clearly visible).

The difference in the growth rates for the same disturbance under the two evapo-
ration rates can be seen in Figure 3.3, where liquid water content in the middle of the
domain is plotted. The prediction using linear stability analysis is also plotted. Note
that the linear stability analysis is valid only near the constant state. Nevertheless,
the two sets of data are not too far off. Thus, subject to random perturbation, the
initially constant solution in the two-phase region will become unstable. The fastest
growing mode eventually causes a multiple region of dry and two-phase zones, as
shown in Figure 2.2.



MOISTURE TRANSPORT AND DIFFUSIVE INSTABILITY 237

Remark. From the analysis we see that this diffusive instability occurs for any
positive β (or E). However, for relatively small β computational results in the previous
section are satisfactory. One reason is that the positive eigenvalue is small as β is
relatively small and the disturbances grow slowly. In addition, the oscillation (diffusive
instability) is visible only when the wave length of the unstable modes is shorter than
the domain size in x. This explains why no oscillation is observed in the case of the
smaller β (or E).

4. Conclusion. The work in this paper is motivated by the simulation results in
[18, 25], based on a multiphase model for bread baking proposed in [20]. This model
allows simultaneous heat, vapor, and liquid water transfer by assuming that the phase
change is instantaneous. However, previous studies [18, 25] showed that this model
produces reasonable solutions only for specific choices of spatial and time step sizes.
Reducing spatial and time step sizes usually leads to numerical instability and causes
the solution to blow up.

By constructing a reaction-diffusion model and establishing a link between our
model and the model in [20], we have identified the source of the instability associated
with the model in [20]. We have shown that the instability observed in [18, 25] is a
combination of two factors: the numerical instability as well as a diffusive instability.
Using our reaction-diffusion model, we showed that the numerical instability can
be eliminated by using a sufficiently small time step. This is due to the fact that
the reaction-diffusion model separates the numerical instability from the diffusive
instability. The diffusive instability, on the other hand, is an intrinsic feature of
the model, as demonstrated by linear stability analysis and numerical tests. For
relatively large evaporation rate, diffusive instability leads to an oscillatory solution
with multiple regions of dry and two-phase zones.

Our analysis of the reaction-diffusion model also reveals that diffusive instability
is related to the value of the evaporation rate, which is affected by the properties
of the porous medium, such as the surface area of the pore space. This suggests
that the phenomenon related to diffusive instability may be realized in the physical
process of bread baking. Further experimental investigation is necessary to validate
and improve our model for bread baking. On the other hand, the model itself is quite
general and may be applicable to similar problems with simultaneous heat and mass
transfer processes.

Finally, we wish to point out that a consistent instantaneous phase change model
may be derived based on our reaction-diffusion model, using asymptotic analysis and
β−1 as a small parameter, and this will be pursued in a future study.
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STATISTICAL RECONSTRUCTION OF VELOCITY PROFILES FOR
NANOPARTICLE IMAGE VELOCIMETRY∗

CHRISTEL HOHENEGGER† AND PETER J. MUCHA‡

Abstract. Velocities and Brownian effects at nanoscales near channel walls can be measured
experimentally in an image plane parallel to the wall by evanescent wave illumination techniques
[R. Sadr, M. Yoda, Z. Zheng, and A. T. Conlisk, J. Fluid Mech., 506 (2004), pp. 357–367], but
the depth of field in this technique is difficult to modify. Assuming mobility of spherical particles
dominated by hydrodynamic interaction between particle and wall, the out-of-plane dependence of
the mobility and in-plane velocity are clearly coupled. We investigate such systems computationally,
using a Milstein algorithm that is both weak- and strong-order 1. In particle image velocimetry
(PIV), image pairs are cross-correlated to approximate the mean displacement of n matched particles
between two windows. For comparison, we demonstrate that a maximum likelihood algorithm can
reconstruct the out-of-plane velocity profile, as specified velocities at multiple points, given known
mobility dependence and perfect mean measurements. We then test this reconstruction for noisy
measurements as might be encountered in experimental data. Physical parameters are chosen to be
as close as possible to the experimental parameters while we consider three types of velocity profiles
(linear, parabolic, and exponentially decaying).

Key words. stochastic differential equations, maximum likelihood estimate, particle image
velocimetry, velocity profile, wall effects
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1. Introduction. Fluid velocities in a channel can be measured by illumina-
tion and imaging of tracer particles under the assumption that they follow the flow,
with corrections possibly applied for effects including, e.g., the near-wall relationship
between particle translation and rotation [6]. For laser-Doppler velocimetry, Fuller
et al. [3] showed that it is possible to reconstruct the velocity gradient in a laminar
flow using light-scattering spectroscopy. This requires the knowledge of the intensity
function and the technical capacity of turning the sample to get a proper angle of
illumination. At microscales, Meinhart et al. (see [15], [11], [10]) developed an illu-
mination technique, particle image velocimetry (PIV), to replace spectroscopy, where
the tracers are illuminated using multiple laser sheets and the velocity profile is com-
puted as means over successive windows using cross-correlation techniques. Again the
sample has to be properly illuminated so that particles remain in the focal plane. If
it is possible to turn the sample, all components of the mean velocity profile can be
obtained.

At nanoscales, including the near-wall region of microchannels, Sadr, Li, and
Yoda [12] and Sadr et al. [14] extend PIV to flows illuminated with evanescent waves
generated by total internal reflection at the wall. Image pairs are captured on a cam-
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Fig. 1.1. Experimental setup: Region of interest, flow direction, and wall location.

era with a time interval ∼ 2ms, and in-image-plane mean velocities are obtained using
cross-correlation techniques. Figure 1.1 illustrates the experimental setup around the
region of interest and some of the inherent experimental restrictions. While Sadr, Li,
and Yoda [12] show that Brownian diffusion can cause additional errors in the mea-
surements as particles drop in and out of the imaged window, only limited information
about the velocity along or dependence on the out-of-plane coordinate has been ex-
perimentally accessed recently from the brightness of the images and the decay of the
illumination function [6], [7], [9]. Questions remain about the accuracy and range
of validity of processing based on image intensity, especially in the presence of the
highly heterogeneous distribution of fluorescent dye on the tracer particle surfaces,
while background noise pollutes the images causing reconstruction of velocity profile
based solely on intensity to be extremely challenging (see Li, Sadr, and Yoda [9]).

Another dominant difficulty of these measurements arises from the nonconstant
diffusion tensor induced by the proximity of the wall. Both the in-plane and out-of-
plane diffusion components strongly depend on the distance from the wall (see Figure
2.1(a)). While this dependence is well understood in terms of the hydrodynamic in-
teraction between particle and wall [1], the effect of such diffusion on the resulting
measurements has been only recently addressed experimentally (see, e.g., [14]). Mean-
while, significant effort has been put into extending the range of validity of particle
image velocimetry (PIV) and particle tracking velocimetry (PTV) to smaller ranges
of particles. For example, Guasto, Huang, and Breuer [4] use a statistical approach
assuming nearly constant diffusion to eliminate experimental noise (drop-in/-out, mis-
match, particles blinking) and obtain a distribution of velocities. Using a similar idea
with nonconstant diffusion, Jin et al. (see [6], [7]) notice in their attempts to assess
slip at the wall that a nonnegligible difference exists between the apparent measured
mean velocities and the imposed shear rate. Interpretations of such studies are further
complicated by the measured velocities representing those across a spatially extended
region away from the wall, typically with little mechanism for modifying the extent
of such a region.

In this work, we show that it is possible to reconstruct the out-of-plane depen-
dence of the in-plane velocity component as a collection of velocities at specified
out-of-plane distances (typically five points), based solely on in-plane images. The
unique assumption leading to the statistical reconstruction of the out-of-plane com-
ponent concerns the out-of-plane distribution of the particles between two window
measurements. For simplicity, here we assume that the computational and observa-
tional domains are the same, thereby eliminating errors due to particle drop-in/-out
for this proof-of-principle demonstration.
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The next two sections present the particle model incorporating the most impor-
tant parameters from the experiments and its numerical simulation with a strong
order 1 scheme. In the fourth section we develop the algorithm for the perfect case,
in which the mean displacements are known exactly. The reconstruction is illustrated
for three different specified velocity test profiles (see Figure 2.1(b)): a linear profile,
a parabolic profile, and a profile exponentially decaying to the bulk velocity. In the
fifth section we extend the idea to noisy mean displacements obtained through the
consideration of a measurement error similar to the one reported for cross-correlation
from simulated images (PIV techniques). Finally, we discuss the limitations of the
model and its possible improvement.

2. Particle model. We test the algorithmic reconstruction on a simple sto-
chastic model of particle motion. Each particle is assumed to have a fixed radius a
(a = 50 nm in the demonstrations here), and the hydrodynamic interaction between
the wall and a particle is captured by the model for mobility in terms of the out-of-
plane coordinate perpendicular to the wall, z. We ignore particle-particle hydrody-
namic interactions, which are relatively small for the dilute particle volume fractions of
the experiments. The tracer particles are dragged along with the fluid flow; additional
interactions between particles and the wall are feasible but not included here.

We consider a system of n (n = 64) Brownian particles obeying Stokes drag
relations, linearly dependent on the velocity. For time steps Δt bigger than the force
relaxation time, Ermak and McCammon [2] show that the displacement Δri can be
expressed as

(2.1) Δri =

3n∑
j=1

∂Dij

∂rj
Δt +

3n∑
j=1

DijFj

kΘ
Δt + Wi(Δt), i = 1, . . . , 3n,

where Wi(Δt) is a random displacement with a Gaussian distribution function whose
average value is zero and whose variance-covariance matrix is 2DΔt, D is the dif-
fusion tensor, F are the external forces, k is the Boltzmann constant, and Θ is the
temperature. The Brownian displacement can be expressed as [2]

(2.2) Wi(Δt) =

i∑
j=1

σijdWj , σ =
√

2D, dWj = N (0,Δt), j = 1, . . . , 3n,

where N (μ, σ2) indicates Gaussian random variables of mean μ and variance σ2.
While we ignore particle-particle interactions, hindered Brownian diffusion due

to hydrodynamic particle-wall interactions is an important effect for the near-wall
conditions in the experiments. A first approximation of the nonconstant diffusion
tensor is obtained by the methods of image singularities for Stokes flows, valid for
particle center-to-wall distances, z, that are large compared to the particle radius,
a. For our model system here, we include for simplicity only the lowest-order a/z
corrections for diffusion components parallel to the planar wall but instead employ
the Bevan–Prieve relation [1] for the out-of-plane diffusion perpendicular to the wall,
both because of its experimental verification and because it includes the physically
impermeable property that the diffusion coefficient goes to zero for a spherical particle
touching the wall (z = a):

(2.3) D =
kΘ

6πμa

⎛
⎜⎝

1 − 9
16

a
z 0 0

0 1 − 9
16

a
z 0

0 0 6z2−10az+4a2

6z2−3az−a2

⎞
⎟⎠ = D∞β(z),
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Fig. 2.1. (a) Dimensionless diffusion coefficients perpendicular β⊥ and parallel β|| to the wall.
(b) Dimensionless velocity profiles γ for the linear, parabolic, and exponentially decaying test cases.

for the three components of each individual particle, where D∞ = kΘ/(6πμa) is the
Stokes–Einstein relation in the bulk limit far from the wall, the z-component is along
the direction perpendicular to the wall, and z is the distance between the center of
the particle and the wall.

Here we consider a simulated channel of height H with three different test flows
u∞γ(z)ex with “bulk velocity” u∞, as might be encountered in shear flow, pressure-
driven flow, and electroosmotically pumped flow, respectively: linear flow γ(z) =

1
H−a (z − a), parabolic flow γ(z) = 4

(2H−a)2 z(2H − z), and an exponentially decaying

profile γ(z) = 1 − exp(1 − z/a) (Figure 2.1(b)). For simplicity, we consider the
above flows to be the force-free velocity profiles of the tracer particles themselves,
with the hydrodynamic balance given for the external forces on the particles F =
kΘD−1u∞γ(z)ex. In the physical experiments, additional corrections are required
to relate the force-free velocities of the tracers to those of the underlying flow (see,
e.g., [6]); we assume such corrections can be imposed if the particle velocities are
accurately measured, proceeding with simulations of imposed particle velocities whose
velocity profiles we will reconstruct. Here we include only flow along one (x) of the
two in-plane directions parallel to the wall, but since the statistical reconstructions
below will not process any displacements along the other in-plane direction (y), the
methods presented here can be equivalently applied to measure any in-plane flow
profile dependent on the out-of-plane (z-) direction.

Our model stochastic ODE Langevin equation for the displacement of an individ-
ual particle is then

dx = u∞γ(z) dt +
√

2D∞β||(z) dW1,(2.4)

dy =
√

2D∞β||(z) dW2,(2.5)

dz = D∞
dβ⊥(z)

dz
dt +

√
2D∞β⊥(z) dW3.(2.6)

Letting T be the time elapsed between two PIV-window observed images, we set T
and the radius a as the characteristic time and length scales, respectively. Letting
x = aX, y = aY , z = aZ, and t = Tτ define the dimensionless variables, the resulting
dimensionless parameters are Π1 = u∞T

a and Π2 = D∞T
a2 . For our tests reported here,

we select T = 2−9s, giving Π2 = 4 at Θ = 300, with u∞ selected to give Π1 = 3, of



RECONSTRUCTION OF VELOCITY PROFILES FOR NANO-PIV 243

a scale typical to those of the experiments. Our dimensionless Langevin model, with
dW = N (0, dτ), becomes

dX = Π1γ(aZ) dτ +
√

2Π2β||(aZ)dWX ,(2.7)

dY =
√

2Π2β||(aZ) dWY ,(2.8)

dZ = Π2
dβ⊥(aZ)

dZ
dτ +

√
2Π2β⊥(aZ) dWZ .(2.9)

3. Numerical simulation. Equations (2.7), (2.8), and (2.9) form a system of
stochastic differential equations of the form dX = f(X, t)dτ + g(X, t)dW. We solve
it with a Milstein scheme of weak and strong order of convergence one. The coupling
of the system through the Z-component yields a nondiagonal noise in the stochastic
differential equation sense. The resulting Milstein scheme is given by [8] (see also [5]):

Xj+1 = Xj + f1,jΔτ + g11,jΔW1,j +
1

2
g11,j

dg11(z)

dZ

∣∣∣∣
Z=Zj

I(3,1),(3.1)

Yj+1 = Yj + f2,jΔτ + g22,jΔW2,j +
1

2
g22,j

dg22(Z)

dZ

∣∣∣∣
Z=Zj

I(3,2),(3.2)

Zj+1 = Zj + f3,jΔτ + g33,jΔW3,j +
1

2
g33,j

dg33(Z)

dZ

∣∣∣∣
Z=Zj

(
(ΔW3,j)

2 − Δτ

)
,(3.3)

where fi,j = fi(Zj), gii,j = gii(Zj), and I(3,i) (i = 1, 2) are the double Itô stochastic

integrals defined as I(3,i) =
∫ tk+1

tk

∫ tk+1

tk
dW3dWi. Since I(3,i) has no closed analytical

solution, we approximate I(3,i) as the solution of a stochastic differential system:

(3.4) I(3,i) = Xi(tk+1), where

{
dXi = X3dWi, Xi(tk) = 0,

dX3 = dW3, X3(tk) = 0.

Equation (3.4) is solved using Euler–Maruyama steps, the stochastic equivalent of a
forward Euler step, with strong order of convergence 1

2 . To ensure convergence to an
accurate solution for the entire system, we choose Δτ = 2−10 in (3.1)–(3.3), resolving
each Itô integral I(3,i) with 210 time steps in (3.4).

4. Reconstruction with perfect means. We start our proof-of-principle cal-
culations by statistically reconstructing velocity profiles based on perfectly observed
mean displacements. By this we mean that the true position of each particle is known
and the mean displacement of the n particles between two image-pair windows is
computed exactly. Cross-correlation processing of image pairs in PIV extracts, up
to various sources of error, the mean displacement of the “matched” particles—those
that contribute to both images. If the true displacement of each particle could be ex-
perimentally determined, as in particle tracking, then the same reconstruction ideas
below do apply, but our various tests indicated that such particle tracking does not
improve the results, and may even require greater quantities of data than statistical
reconstruction based on mean displacements, presumably because of the statistical
reliance below on clearly characterized Brownian displacements.

Let fΔX be the probability distribution function of a displacement ΔX. From
(2.7) the X-displacement depends on the Z-position. Therefore we define fΔX|Z to
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be the probability density function of ΔX given Z. Then

(4.1) fΔX =

∫
fΔX|ZfZdZ,

where fZ is the probability density function of particles in Z. Because we restrict
ourselves to the case where the computation and observation domain are the same,
we make the following assumption about the Z distribution:

(4.2) fZ =
a

H − a
χ[1,H/a],

where χI is the characteristic function on an interval I.
Next we make a fundamental simplifying modeling assumption for the recon-

struction: that the particle displacements over the time T between two consecutive
windows can be approximated by an Euler step of the form

(4.3) ΔX ≈ Π1γ(aZ) +
√

2Π2β||(aZ)dW with dW = N (0, 1),

where γ(aZ) is the unknown velocity profile. From (4.3) we conclude that

(4.4) fΔX|Z =
1

2
√
πΠ2β||(aZ)

e
− (ΔX−Π1γ(aZ))2

4Π2β||(aZ) .

Finally, using (4.1), (4.2), and (4.4) we find that

(4.5) fΔX =
a

2
√
πΠ2(H − a)

∫ H
a

1

1√
β||(aZ)

e
− (ΔX−Π1γ(aZ))2

4Π2β||(aZ) dZ.

Let ΔX be the mean displacement of n matched particles over a window and let
fS be the probability density function of nΔX. Now let f be the joint probability
density function of N measured nΔX. A standard result of probability, together with
the assumption of independence between two windows measurement, yields

(4.6) fS = fΔX ∗ · · · ∗ fΔX and f =

N∏
i=1

fS ,

where ∗ denotes the convolution. This independence assumption is, of course, incor-
rect, since consecutive ΔX displacements are correlated by the continuity-in-time of
the particles z positions; we nevertheless proceed under this modeling assumption,
counting on the effect of the correlations to be sufficiently small.

Figure 4.1 compares the histogram of a nΔX data set with Z ∈ [1, H/a] for
the parabolic test profile with the probability density function obtained with (4.5)
(dashed line). The integral in (4.5) is computed with a Gauss–Legendre quadrature
formula under the assumption of a uniform z-distribution. This demonstrates the rea-
sonable validity of assumption (4.3). Going even further, the dotted line in Figure 4.1
represents the probability density function obtained by fitting the data set nΔX for
Z ∈ [1, H/a] by a single Gaussian. The differences between the integrated Gaussian
(dashed line) and the fitted Gaussian (dotted line) are minimal in the height and lo-
cation of the peak. These minimal distinctions make the desired optimization highly
sensitive. Despite these expected difficulties, we nevertheless continue both with our
assumption (4.3) and the fundamental ideas of the velocity profile reconstruction.
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Fig. 4.1. Comparison of the parabolic profile between the histogram of the distribution of nΔX,
the probability density function (4.5), and a fitted Gaussian.

Given N measured mean values nΔX, Π1, Π2, and β||(aZ), the maximum like-
lihood estimate of γ(aZ) is the value of γ(aZ) that makes the observed means most
likely. Led by the independence assumption, we define the log-likelihood function

(4.7) φ({γj}Mj=1) = − ln f
(4.6)
= −

N∑
i=1

ln fS(nΔX),

where M is the number of discrete points Z at which we estimate γ. The most likely
values for γj , j = 1, . . . ,M , are obtained by minimizing the log-likelihood function φ
(4.7) of the M variables γ1, . . . , γM for a data set nΔX of size N .

The statistical reconstruction problem has thus been reduced to two numerical
algorithms. First, we evaluate the probability density function fS in (4.6) by repeated
convolution of the probability density function fΔX as in (4.5), computing the integral
by Gauss–Legendre quadrature for given γj values at the Legendre collocation points
Zj ∈ [1, H/a] for j = 1, . . . ,M . We subsequently minimize the function φ (4.7) with
a direct simplex algorithm penalizing solutions that do not produce an increasing
sequence, since we know that the velocity profile is increasing to the bulk velocity
away from the wall. We also experimented with the alternative scheme of minimizing
φ over low-order polynomials for γ(aZ) but did not obtain results any more promising
than those presented below. Not surprisingly, the minimization routine is highly
sensitive to the choice of the initial guess. Therefore, when reconstructing velocity
values for a small number of points M , we first search the M -dimensional space for a
suitable initial guess by evaluating the function at a fixed number of increasing grid
points. When reconstructing velocity values at M points for M larger (say, M ≥ 7),
we interpolate the initial guess from the reconstructed velocity values for smaller M .

Figure 4.2 illustrates the reconstruction for the linear and parabolic profiles at five
points (M = 5) for two different data sizes. Since the accuracy of the reconstructed
points does not appear to improve when N increases from 214 to 218, we are motivated
to instead consider breaking one block of data up into separate reconstructions over
each of B blocks of size 2b. Figure 4.3 contains semilog plots of the L2 relative error of
the reconstructed γj , j = 1, . . . ,M , with respect to the true γ(aZj), j = 1, . . . ,M , for
individual blocks, the errors averaged over the number of blocks B for four different
values of M (3, 5, 7, and 9 points). For the linear profile on the left, we observe
the same behavior as in Figure 4.2, namely, that increasing the data size does not
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Fig. 4.3. L2 relative error averaged over the number of blocks B of size 2b at M = 3, M = 5,
M = 7, M = 9.

predictably improve the accuracy of the reconstruction after some point. For the
parabolic profile on the right, we find a decay of the relative error in the function of the
data size b which appears to be roughly (2b)−1/4 up to another apparent stagnation
of the decaying error for data sizes larger than 214 or 215. We next consider the
plot of the L2-norm of the relative error of the block-averaged reconstructed values
γj = 1

B

∑B
k=1 γ

k
j , j = 1, . . . ,M (where γk

j is the reconstructed value at Zj for the
block Bk), with respect to the true γ(aZj), j = 1, . . . ,M (Figure 4.4). We deduce
from the relative errors of the block-averaged values, especially for the parabolic test
profile, that errors can be reduced by such averaging over a limited number of blocks.
As above, the parabolic profile follows a decay close to (2b)−1/4 up to 215. We do not
at present have any explanation for this particular power law of decay. We conclude
that the best reconstruction on a data set of the size N = 218 will be achieved when
the average of the reconstructed profile is done over 8 or 16 blocks. We also notice
that increasing the number of discrete points to M = 7 or M = 9 does not produce
significantly different normed errors but provides more detail about the calculated
profile at the cost of a lengthier computation.

In practice, of course, the goal of the reconstruction is to obtain an approximation
of the velocity profile, the true profile being unknown. So, finally, we compare the L1-
norm of the variance of the reconstructed profiles from the individual blocks, plotted
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Fig. 4.4. L2 relative error with γ averaged over the number of blocks B of size 2b at M = 3,
M = 5, M = 7, M = 9.
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Fig. 4.5. L1-norm of the variance of γ averaged over the number of blocks B at M = 3, 5, 7, 9
for the linear and parabolic profile.

versus the exponent b in the block size 2b. Again, we note for both the linear and
the parabolic profiles that the variance increases for data sizes bigger than 215. That
is, the L1-norm of the variance of reconstructed values from individual data blocks
appears to trend very similarly to the true L2-norm errors, and so we propose using
the former as a stand-in for the latter in deciding how to block-divide the data in the
present setting. Figure 4.5 thereby confirms that a better result can be both obtained
and recognized here when averaging over B = 8 or B = 16 blocks corresponding to
blocks of size 215 or 216. We remark that there are numerous sources of error in the
present reconstruction, including errors in the numerical integration, the numerical
convolution, and the minimization itself.

Using the result of the block-averaging technique investigated in the previous three
error plots (Figures 4.3, 4.4, and 4.5) we can now reconstruct the velocity profile at
five points, M = 5, for the linear case with B = 16 blocks. In Figure 4.6 we examine
both the spread of the values obtained for each block and the average γj , j = 1, . . . ,M ,
and standard deviation (plotted as 90% confidence interval error bars for the block
reconstruction values).

Finally, we apply the block-averaging technique on the parabolic (Figure 4.7(a))
and exponentially decaying (Figure 4.7(b)) test velocity profiles at M = 5 points and
B = 16 blocks. During our proof-of-principle calculations, we sometimes encountered
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Fig. 4.6. Scatter plot of the different block reconstructed values γk
j , j = 1, . . . ,M , k = 1, . . . , 16,

and block-averaged γj , j = 1, . . . ,M , with 90% confidence interval for the linear test profile with
B = 16 and M = 5.

1 2 3 4 5 6 7 8 9
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Z

γ(
aZ

)

 

 
Approximation
Exact value

(a) Parabolic profile

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Z

γ(a
Z)

 

 
Approximation
Exact value

(b) Exponentially decaying profile

Fig. 4.7. Errorbar reconstruction for the parabolic and exponentially decaying profile with
B = 16, M = 5, and 90% confidence interval.

data sets for which the reconstruction performed particularly poorly, as evidenced
by clear jumps in the reconstructed values as might suggest discontinuous velocity
profiles. Such poorly performing data was a simple consequence of the state of the
random number generator in the simulations; presumably similarly quirky experi-
mental data is not wholly uncommon, and so such reconstructions must therefore,
of course, always be questioned, particularly if they indicate highly unlikely results.
Finally, we additionally remark that the near-wall region velocity profile is usually
assumed to be linear or parabolic, and the exponential case is experimentally unlikely
for the present purposes except when the imaged region is large compared to the scale
of electroosmotic layers.

To conclude this section we plot the averaged reconstructed mean γj , j = 1, . . . ,M
(full symbols), compared to their true values (open symbols) at three (M = 3) and
seven (M = 7) points for both the linear (square) and the parabolic (circle) test pro-
files together in the same figure (Figure 4.8). Figures 4.7 and 4.8 clearly demonstrate
that we are able to statistically reconstruct the main behaviors of and distinguish
between different profiles (linear, parabolic, and exponentially decaying test profiles)
using multiple collocation points (M = 3, 5, 7) across the measured region.
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Fig. 4.8. Block-averaged reconstruction (B = 16) at M = 3 and M = 7 points for the linear
(square) and parabolic (circle) test profiles (full symbols) together with their respective exact values
(empty symbols), with 90% confidence intervals on the reconstructed values.

5. Reconstruction with cross-correlated velocities. In the previous section
we used perfect mean displacements between two image windows. In this section, first
we describe the idea behind PIV approximate mean measurements and then how they
influence the reconstruction algorithm.

PIV is an illumination technique combined with image processing to obtain com-
ponents of the mean velocity by measuring the mean displacement over a lag time.
At microscales, the sample is illuminated with laser sheets and cross-correlation tech-
niques (see [15], [11], [10]) producing a three-dimensional velocity profile. In nano-PIV
(nPIV), total internal reflection fluorescence microscopy is used to image tracer par-
ticles [12], [14]. When light undergoes total internal reflection for angle of incidence
larger than the critical angle, an evanescent wave is created and propagates paral-
lel to the interface with an exponentially decaying intensity. Zettner and Yoda [16]
report errors in the approximation of the mean of the order of 10%, while Sadr, Li,
and Yoda [13] estimate that nPIV leads to an error of about 6% in the approxima-
tion of the mean x-displacement. We remark that for the well-established technique
of μPIV, Meinhart, Wereley, and Santiago [11] conclude that the ensemble-averaged
displacements lie within 2% of their true values.

The parameters in our computer simulations are chosen to closely match experi-
mental parameters [12]: the sizes of the region of interest are δx = 25μm, δy = 5μm,
and δz = 450 nm, the radius of a particle is a = 50 nm, and the number of particles
is 64. We note that both background image noise and particle drop-in/-out between
the two images also degrade the PIV measurement, but we ignore both effects here
for simplicity. Therefore the particles are uniformly distributed in the z-direction
between two measurements. Once the image matrix is generated, the approximate
x- and y-displacement over a window is determined using cross-correlation [15], [11],
[10]. The cross-correlation function is the two-dimensional discrete convolution of
two image matrices. The location of the maximum peak of the cross-correlation func-
tion gives the mean x- and y-displacement between two windows. To gain subpixel
accuracy, a Gaussian surface fitting algorithm with 8 to 11 neighbors is typically used.

Because the previously described technique requires significant experimental agil-
ity in the choice of the size of the window over which the displacements are obtained
and in the ratio of overlapping of the windows, a threshold criteria for eliminating
bad displacement vectors has to be adopted (see [7]). Instead of using a computer
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Fig. 5.1. Reconstruction with 5% and 10% approximated PIV means averaged over B = 16
blocks and compared with reconstruction from perfect means for the linear case.
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Fig. 5.2. Reconstruction with 5% and 10% approximated PIV means averaged over B = 16
blocks and compared with reconstruction from perfect means for the parabolic case.

analogue to PIV techniques with a threshold which will lead to the generation of
more data, here we mimic the effect of these additional experimental errors by adding
normally distributed relative errors with standard deviations of 5% and 10% with
respect to the overall mean of the perfect mean displacements from our simulations.
Then we apply the statistical reconstruction algorithm at M = 5 with averaging over
B = 16 blocks on those two distinct noisy data sets to obtain the results of Figure 5.1
for the linear case and Figure 5.2 for the parabolic test profile. The increasing spread
in the extent of the confidence intervals with increasing measurement error demon-
strated in Figures 5.1 and 5.2 shows that, while error in the measurement of the mean
x-displacement on the scale of that described in the PIV literature definitely affects
the reconstructed results and confidence intervals, even at 10% relative errors the
reconstructed values are promising. Moreover, if experimental uncertainties can be
reduced to about 5%, as pursued in the literature [12], [14], then the block-averaging
statistical reconstruction here appears to perform essential as well as with perfectly
measured displacements, as illustrated in both Figures 5.1(a) and 5.2(a). We remark
that the approximation at the last point ZM is the worst. This might be caused by
some numerical artifacts imposed by the artificial upper wall elastic boundary con-
dition, but we have not been able to pinpoint it precisely so far. However, since the
goal is to obtain a better approximation of the velocity profile in the very near-wall
region, this is not a major drawback.
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6. Discussion. We have successfully demonstrated that it is possible to use the
correlation between unknown velocity profiles γ(aZ) and known wall-hindered diffu-
sion coefficient D(z) to reconstruct the velocity values with reasonable precision at
multiple collocation points within the depth of an imaged window, reconstructing the
out-of-plane z-dependence using only measured in-plane displacements, with examples
from three basic test flows (linear, parabolic, and exponentially decaying).

We emphasize that all previously reported experimental values, except the re-
cently developed multilayer nPIV (see [9]), obtain a single value for the velocity over
the entire region of observation, namely the mean located in the center of the field
of focus. The present reconstruction algorithm, approximating the behavior of the
deterministic velocity at M (typically M = 3, 5, 7) points scattered over the imaged
region, is thus a significant improvement.

The reconstruction uses block averaging, and the error plots have demonstrated
that it is better to approximate the profile individually over data set blocks of size 214

and to average the result over 8 or 16 consecutive blocks than processing all of our
simulated data at once. Importantly, this is computationally fast: the mimimum
of the likelihood function φ in (4.7) is found in less than 30 minutes on a desktop
machine. In contrast, each Milstein-scheme simulation used to generate data here
required on the order of 10 days on the same processor. This reconstruction does not
use any information about the intensity function and offers an alternative approach
to the recently developed multilayer PIV techniques [6], [9] which attempt to infer
distance from the wall from image intensities. An interesting direction for future
development is the possibility of combining the imperfect (from polydispersity) out-
of-plane intensity information with the present statistical method.

The amount of data used in the reconstruction process may seem staggering,
but a comparison with data actually captured in experiments indicates that such
data sets can be achieved in a reasonable time. For example, Guasto, Huang, and
Breuer [4] track over 140000 single quantum dots from 900 image pairs to obtain a
single approximation over the entire region. Li, Sadr, and Yoda [9] cite a framing rate
of about 26Hz leading to a sequence of 100 frames of about 30 particles recorded within
5 seconds. Keeping the same interframe ratio, it will take between 20 minutes and
4 hours to obtain the necessary 218 frames. Moreover, Li et al. report using in their
computer simulated multilayer nPIV 2000 frames with 120 particles and 3 windows
for each one of their three layers. In other words they use, after having thrown away
an unquantified amount of bad data, about 214 mean displacements for 27 particles.

The present demonstration assumes that the particles are uniformly distributed
between two measurements; once the computational and observation domain are no
longer the same, the uniform distribution assumption will be broken due to particle
drop-in and drop-out from the window between two measurements. Provided that
this distribution can be computed a priori [13], the reconstruction is simply modified
to include the nonuniform probability density function of matched particles. The
present results are, of course, only a computer-simulated proof of concept, and more
physical effects need to be included for proper use on experimental data, perhaps
including the effects of background noise in the images, particle polydispersity, and
particles dropping in and out of the field of vision.

Acknowledgments. The authors would like to thank Minami Yoda, Haifeng
Li, and Reza Sadr in the Woodruff School of Mechanical Engineering at the Geor-
gia Institute of Technology for providing the experimental problem and for fruitful
discussions.
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COUPLED FORWARD-ADJOINT MONTE CARLO SIMULATIONS
OF RADIATIVE TRANSPORT FOR THE STUDY OF OPTICAL

PROBE DESIGN IN HETEROGENEOUS TISSUES∗
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Abstract. We introduce a novel Monte Carlo method for the analysis of optical probe design
that couples a forward and an adjoint simulation to produce spatial-angular maps of the detected light
field within the tissue under investigation. Our technique utilizes a generalized reciprocity theory for
radiative transport and is often more efficient than using either forward or adjoint simulations alone.
For a given probe configuration, the technique produces rigorous, transport-based estimates of the
joint probability that photons will both visit any specified target subvolume and be detected. This
approach enables the entire tissue region to be subdivided into a collection of target subvolumes to
provide a phase-space map of joint probabilities. Such maps are generated efficiently using only one
forward and one adjoint simulation for a given probe configuration. These maps are used to identify
those probe configurations that best interrogate targeted subvolumes. Inverse solutions in a layered
tissue model serve to illustrate and reinforce our analysis.
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1. Introduction. The use of light for noninvasive, in vivo determination of op-
tical and physiological properties of tissue volumes is established for a host of appli-
cations in biomedical optics. In some cases, other imaging modalities, such as x-ray,
ultrasound, or MRI, are used in conjunction with optical techniques to identify het-
erogeneous tissue regions that require further analysis. Knowledge of this structural
information can provide information critical to the design of optical probes to target
these regions effectively or to provide information regarding both the target region
and its surroundings.

With these goals in mind, much effort has been expended in improving the de-
sign of optical probes. For example, there have been attempts to enhance the light
delivered to specific tissue regions by varying source and detector characteristics such
as orientation, size, angle of emission (for sources), angle of acceptance (for detec-
tors), source-detector (s-d) separation, and/or distance between the target volume
and the source/detector [6, 8, 14, 16, 21, 22, 31]. These optical probes are configured
in an attempt to enhance the light that is both delivered to the targeted volume and
subsequently detected at the tissue surface. Clearly, detailed knowledge of the spatial-
angular distribution of the detected light field for a given probe configuration would
serve to assess the effectiveness of these approaches and provide a basis to compare
competing probe designs.
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Previous studies of radiative transfer in tissue from source to detector have been
based mainly on the diffusion approximation to the radiative transport equation [3, 7,
15, 17]. However, the validity of diffusion-based models is compromised when (a) s-d
separations are small or (b) the tissue absorption is comparable to or greater than
scattering. While analytic [27] and specific Monte Carlo [2] approaches have been
investigated, it is unclear how these methodologies would extend to heterogeneous
media. Moreover, conventional Monte Carlo simulations provide results with large
uncertainties in the detected signals due to the small detector sizes often used in
optical probes.

To address this problem in the context of radiative transport, we have developed
a novel Monte Carlo method that produces phase-space maps to provide quantitative
measures of the ability for a given probe configuration to detect light delivered to
specific regions within the tissue. This general approach can be applied to complex,
heterogeneous media. The method makes use of coupled forward-adjoint simulations
to estimate the joint probability of both visitation of a target region and subsequent
detection at the tissue surface. Bayes’s theorem [12] is used to decompose this joint
probability into the product of an absolute and a conditional probability. These two
probabilities are then estimated using separate and efficient simulations. In cases for
which the targeted volume is large compared to both source and detector volumes,
the gains in efficiency over the use of either a forward or an adjoint simulation alone
can be substantial.

In this paper, we describe the foundations of our method as well as its operational
details. We then apply the method to investigate how a layered epithelial tissue is
interrogated by optical probe designs in which we allow variation in s-d separation.
Forward and adjoint simulations are generated for various probe configurations. The
simulation results are used to produce maps that provide both qualitative and quan-
titative information regarding the phase-space distribution of the detected light. This
information provides a basis for the comparison of prospective probe designs to deter-
mine the merits of each. Accurate recovery of optical properties from heterogeneous
tissues via inverse solutions serves to confirm the comparative analysis of candidate
probe designs as evaluated by the coupled forward-adjoint Monte Carlo simulations.

2. Method. To determine the probability of detecting light that has visited a
targeted volume, one could utilize a conventional Monte Carlo simulation in which
one follows photon trajectories from the source to a target volume and then tallies the
final photon weight for those photons that are subsequently detected. Alternatively,
one could use an adjoint Monte Carlo simulation, in which one follows backward-
propagating photons from the detector to the target volume, and then to the source.
However, when the source and detector are each small relative to the target volume,
sole use of a forward or adjoint simulation engenders low signal-to-noise ratios (SNRs).
Such a situation is exceedingly common in biomedical optics.

Our approach is to break the problem into two components and determine sepa-
rately (a) the probability of source to target trajectories, P (V ) (“target visitation”),
and (b) the probability of detection conditioned by target visitation, P (D|V ) (“de-
tection given target visitation”). The combination of these two probabilities using
Bayes’s theorem provides the rigorous joint transport probability of “target visitation
and detection”:

(2.1) P (V ∩D) = P (V ) · P (D|V ).

We use a conventional Monte Carlo simulation to determine P (V ). However, for
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P (D|V ), we utilize an adjoint simulation to combat the inherently low SNR in its
estimation in the reverse direction. This is done by modifying a generalized reciprocity
principle [5, 19, 25, 29] to convert P (D|V ) to a coupled forward-adjoint computation
at the surface of the target volume.

In the next section, we describe our application of coupled forward-adjoint Monte
Carlo methods for the determination of P (V ∩D). This includes a review of classical
reciprocity theory and basic equations. We then describe generalized reciprocity, for
which classical reciprocity is a special case. Finally, we develop our extension of
generalized reciprocity theory to arrive at an estimate of P (V ∩D). This will set the
stage for the application of this methodology to problems in biomedical optics.

3. Coupled forward-adjoint Monte Carlo methods. A series of publica-
tions [5, 19, 20, 25, 24, 30, 29] has developed and described the “midway” forward-
adjoint coupling method to increase the efficiency of estimating detector responses in
radiative transport problems. The idea is to simulate both forward and adjoint Monte
Carlo transport and combine the tallies from each at an intermediate surface to esti-
mate the total system response. The midway method is made rigorous by appealing
to a generalized reciprocity theory for transport equations [19, 20, 29, 30]. The mid-
way method has been shown to be particularly efficient in problems that involve deep
penetration and/or complex streaming pathways taken by the radiation as it moves
from source(s) to detector(s) [19, 20, 24, 25].

We modify the midway method in order to apply it to the estimation of the
conditional probability P (D|V ). Photons are launched at a physical source and are
propagated until they exit the phase space. At each interaction within the tissue,
the photon weight is reduced according to its survival probability, a technique some-
times referred to as “absorption weighting” [23]. Only photon trajectories that have
intersected the target volume V contribute to the estimate of P (V ). These “visiting”
photons generate an induced source internal to V that produces a surface source on
∂V. This surface source is then paired with the adjoint flux on ∂V in a bilinear inte-
gration that produces an estimate of P (D|V ). The product of the two probabilities
P (V ) and P (D|V ) then provides the probability that photons will both visit and sub-
sequently be detected from subvolumes within the phase space. We use this product
to provide quantitative information to assess the characteristics of potential probe
designs.

3.1. Classical reciprocity. We begin with the integro-differential form of the
radiative transport equation (RTE) assumed to hold in the interior of a closed,
bounded subset D of R

3:

(3.1) ∇ · ΩΦ(r,Ω) + μt(r)Φ(r,Ω) = μs(r)

∫
4π

f(Ω′ → Ω)Φ(r,Ω′) dΩ′ + Q(r,Ω),

where Φ(r,Ω) is the photon flux, μt(r) = μs(r)+μa(r) is the total attenuation coeffi-
cient, μs(r) is the scattering coefficient, μa(r) is the absorption coefficient, f(Ω′ → Ω)
is the single scattering phase function, and Q(r,Ω) is an internal (volumetric) source
function, with r = (x, y, z) and Ω = (sin θ cosφ, sin θ sinφ, cos θ) representing position
and unit direction vectors, respectively. A unique solution Φ(r,Ω) is assured for all
r ∈ D, Ω ∈ S2 by specifying the photon flux Φinc(r,Ω) incident on ∂D from outside
the tissue. We introduce an abbreviated form of (3.1):

(3.2) ∇ · ΩΦ + BΦ = Q,

where B denotes the transport operator less the divergence term.
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A typical optical probe is an instrument that both introduces light at the tissue
boundary and collects light reemitted from the boundary using or more detectors
positioned at fixed distances from the source. Assuming that there are no other
(external) sources of light, the unique solution Φ of this RTE can be written as a
superposition of the photon fluxes produced by the internal source Q and the boundary
source Qs defined by

(3.3) Qs(rs,Ω) = −Ω · nsΦinc(rs,Ω) for rs ∈ ∂D, Ω · ns < 0,

where ns is the outward-pointing unit normal at rs:

Φ(r,Ω) =

∫
D×S2

G[(r0,Ω0) → (r,Ω)]Q(r0,Ω0) dr0 dΩ0

+

∫
∂D×S2

Gs[(r0,Ω0) → (r,Ω)]Φinc(rs,Ωs) dr0 dΩ0,(3.4)

where G is the volume Green’s function and Gs is the surface Green’s function for the
problem. An alternate, equivalent representation that uses only the volume Green’s
function is

(3.5) Φ(r,Ω) =

∫
D×S2

G[(r0,Ω0) → (r,Ω)]Q(r0,Ω0) dr0 dΩ0,

where the second term in (3.4) is replaced by the boundary condition

(3.6) Φ(rs,Ωs) = Qs(rs,Ωs)

and Qs is defined as in (3.3) [4]. The relationship (3.3) and the equivalence between
the representations (3.4) and (3.5) together with (3.6) will be utilized in section 3.3.

The response of either a virtual or a physical detector can then be described in
terms of a linear functional of Φ:

(3.7) I =

∫
D×S2

Q∗Φ dr dΩ,

where Q∗ characterizes the detector position, size, and acceptance angle. Both the
source function Q and detector function Q∗ may be described mathematically using
characteristic functions associated with the source and detector. For example, if the
tissue D is assumed to occupy the half space characterized in rectangular coordinates
by z > 0, and a fiber-optic laser source of radius q and unit strength is normally
incident at (0, 0, 0), we have

(3.8) Qs(xs, ys, 0,Ω) =

⎧⎪⎨
⎪⎩

1,
x2
s + y2

s ≤ q2 and

−1 ≤ nD · Ω < − cos θQ,

0 otherwise,

where nD denotes the outward-pointing unit normal at the bounding surface z = 0
and the source is confined to an emission angle θQ. A similar description characterizes
a typical fiber-optic detector placed elsewhere on the tissue surface z = 0, except that
it collects light that scatters into the half space z < 0 at location (XQ∗ , YQ∗ , 0) within
the detector radius q∗ and acceptance angle θQ∗ . Specifically,

(3.9) Q∗
s(xs, ys, 0,Ω) =

⎧⎪⎨
⎪⎩

1,
(xs −XQ∗)2 + (ys − YQ∗)2 ≤ (q∗)2 and

1 ≥ nD · Ω > cos θQ∗ ,

0 otherwise.
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It is well known that classical reciprocity theory also permits the detector response
I to be expressed as a linear functional of the solution to the RTE that is adjoint to
(3.1) [23]:

(3.10)

−∇ · ΩΦ∗(r,Ω) + μt(r)Φ
∗(r,Ω) = μs(r)

∫
4π

f(Ω → Ω′)Φ∗(r,Ω′) dΩ′ + Q∗(r,Ω)

and

(3.11) I =

∫
D×S2

QΦ∗ dr dΩ.

Upon comparing the detector response representations (3.7) and (3.11), we notice
that the roles of the source function Q and detector function Q∗ are interchanged in
this statement of reciprocity, so that Q acts as a “detector” function for the adjoint
formulation and Q∗ plays the role of a “source” function for the adjoint equation.

Using operator notation, (3.10) can be written as

(3.12) −∇ · ΩΦ∗ + B∗Φ∗ = Q∗,

where B∗ is the operator adjoint to B. For (3.11) to be valid, it is also understood
that the boundary condition satisfied by Φ∗ on ∂D is dual to that specified for Φ. For
example, in our application ∂D is the surface of the tissue that is composed of the
source region AQ, the detector region AQ∗ , and the complement of these two regions
∂D\(AQ ∪ AQ∗). Here we assume for simplicity that both the source emission angle
and the detector acceptance angle are fully open; i.e., cos θQ = cos θQ∗ = 0. For this
case, the boundary condition at z = 0 satisfied by Φ is

(3.13) Φ(xs, ys, 0,Ω) = Qs(xs, ys, 0,Ω) for (xs, ys) ∈ AQ,

where the right-hand side is defined by (3.8) with cos θQ = 0. The dual boundary
condition for Φ∗ becomes

(3.14) Φ∗(xs, ys, 0,Ω) = Q∗
s(xs, ys, 0,Ω) for (xs, ys) ∈ AQ∗ ,

where the right-hand side is defined by (3.9) with cos θQ∗ = 0. From (3.13) and
(3.14) we have ΦΦ∗ = 0 on ∂D establishing that the boundary conditions are dual to
each other. Note that (3.13) and (3.14) are incomplete statements of the boundary
conditions for r ∈ ∂D\(AQ ∪ AQ∗), as they do not include the full range of Ω. The
missing conditions for our case accommodates a tissue-air refractive index mismatch
using the Fresnel relations for unpolarized light [28]. This results in a mixed boundary
condition comprised of a linear combination of reflecting and nonreentrant conditions,
each component of which leads to duality as shown by Aronson [1].

The duality of the governing equations and boundary conditions enables a detector
response to be computed either in the context of forward Monte Carlo sampling or
adjoint Monte Carlo sampling via this “classical” reciprocity for the RTE. Usually one
of these formulations will lead to a more efficient simulation than the other. However,
many problems in biomedical optics utilize both small sources and small detectors,
making neither formulation efficient.
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However, we can improve the efficiency of classical reciprocity by utilizing a mid-
way surface between source and detector. The midway method combines forward and
adjoint sampling that characterizes those photons that have migrated from source to
detector through a separating midway surface. Application of generalized reciprocity
to the estimation of P (D|V ) using this midway method will then lead us to our final
evaluation of P (V ∩D). In section 3.2 we explain generalized reciprocity and the mid-
way method. In section 3.3 we extend these ideas to compute the joint probability of
visitation and detection P (V ∩D).

3.2. Generalized reciprocity. Let us first consider VM to be an arbitrary
closed, bounded subset of D and ∂VM its surface. Multiplying (3.2) by Φ∗ and (3.12)
by Φ, subtracting the latter product from the former, and integrating the difference
over all locations and directions within VM , we get

(3.15)

∫
VM×S2

∇ · ΩΦΦ∗ dr dΩ =

∫
VM×S2

[QΦ∗ −Q∗Φ] dr dΩ.

Use of Green’s theorem to replace the volume integral on the left-hand side of (3.15)
by a surface integral leads to

(3.16)

∫
∂VM×S2

nM · ΩΦΦ∗ dr dΩ =

∫
VM×S2

[QΦ∗ −Q∗Φ] dr dΩ,

where nM is the outward-pointing unit vector normal to ∂VM . Equation (3.16) is
often referred to as the global reciprocity theorem [30]. Note that if VM = D and the
boundary conditions at the air-tissue interface cause the integral on the left-hand side
to vanish (as is the case in our problem), we then arrive at the “classical” statement
of reciprocity:

(3.17)

∫
VM×S2

[QΦ∗ −Q∗Φ] dr dΩ = 0.

While (3.16) is valid generally, it becomes particularly useful when VM encloses
either the source or the detector region. The surface of VM , ∂VM , can then be
identified as a “midway” surface between source and detector. In this case, every
photon that is detected from the source must intersect the midway surface.

The function ΦΦ∗ that occurs in (3.16) has been called a “contributon” response
function [5, 19, 20, 24, 25, 29, 30] and used to define a unit of information that charac-
terizes transport from source to detector. The integral of this function appearing on
the left-hand side of (3.16) plays a similar role here. It captures the flow of information
across the boundary of the midway volume VM .

If VM encloses the source region as shown in Figure 3.1(a) and Q∗ = 0 in VM ,
the left-hand side of (3.16) is positive and equals

∫
VM×S2 QΦ∗, which is the adjoint

representation of the detector response. If VM encloses the detector region, and
Q = 0 in VM , the left-hand side of (3.16) is negative and equals −

∫
VM×S2 Q

∗Φ,
which is the forward representation of the detector response. Reversing the sense
of nM by replacing the outward-pointing unit normal with the inward-pointing unit
normal changes the sign in the surface integral on the left-hand side of (3.16) and
also reverses the sense of enclosure. That is, if VM is treated as an enclosure for the
source, then nM points outward. However, if the complement of VM in D, D\VM , is
treated as an enclosure for the detector, then nM points inward.
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(b)(a)
QQ

VM

∂VM

VM

∂VM

Q∂VM

Q∗Q∗

Fig. 3.1. Geometry of (a) generalized reciprocity with the midway surface ∂VM enclosing the
physical source, and (b) an extension to generalized reciprocity with an induced boundary source
Q∂VM

out of VM used to compute conditional probabilities.

In many situations, this midway surface method proves to be more efficient than
using either the forward or adjoint simulation alone [19, 20]. The gains in efficiency
will largely be the consequence of the relatively larger “size” of VM compared with
either the size of the source region, where Q 	= 0, or of the detector region, where
Q∗ 	= 0. Here “size” is to be interpreted in a probability sense as opposed to a
strict physical size. More precisely, the relevant condition is that the probability of
reaching V from either the source or detector should be larger than the corresponding
probabilities in the reverse directions.

3.3. Probability of visitation and detection. The probe design problem
requires an understanding of more than the total system response at the detector from
the original optical source. It requires, in addition, knowledge of the detector response
due only to those photons that have visited a targeted tissue region V. For our
application, V is a region that encloses neither the source nor the detector. Thus, to
make use of generalized reciprocity, we treat V as a region that generates a secondary
or “virtual” source, induced by the original physical source. This construct allows us
to decompose the problem into two subproblems. The first problem deals only with
the estimation of P (V ) and is handled using conventional Monte Carlo simulation.
The second problem handles the estimation of P (D|V ) and will be accomplished by
a suitable application of the generalized reciprocity relation (3.16).

Accordingly, the midway volume VM can be considered as an arbitrary volume
enclosing neither source nor detector with surface ∂VM . A possible geometry is shown
in Figure 3.1(b). This arbitrary volume VM is one at whose boundary, ∂VM , infor-
mation will be collected from both forward and adjoint photons for the estimation
of P (V ) and P (D|V ), respectively. We estimate the first factor of (2.1), P (V ), by
launching photons from the original source Q characterized in (3.8) and, for those
photons that enter VM , tally the entering weight of each photon. These photons pro-
duce estimates of P (V ) and generate samples drawn from an induced source Q∂VM

impinging on ∂VM from inside VM . The boundary surface ∂VM then defines the
surface for the midway method applied to the problem of estimating the conditional
probability, P (V |D).

The details of the required computation deserve elaboration. Denote Φ(r,Ω) as
the solution of the boundary-value problem of (3.1) with source described as in (3.8),
and let ΦVM

(r,Ω) denote the restriction of Φ(r,Ω) to r ∈ VM . The photon flux
Φ∂VM

(r,Ω) for r ∈ ∂VM , Ω · n∂V < 0, where n∂V = unit normal out of VM (into
D\V) then generates a boundary source Q∂VM

(rs,Ωs) = −Ωs ·n∂VM
Φ∂VM

(rs,Ωs) on
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∂VM . If we merely replace the source function Q by the source function Q∂V(r,Ω)
and repeat the derivation that led to (3.16), we obtain

(3.18)

∫
∂VM×S2

n∂VM
· ΩΦVM

Φ∗ dr dΩ =

∫
VM×S2

[Q∂VM
Φ∗ −Q∗ΦVM

] dr dΩ.

We replace Q∗(r,Ω) by Q∗(r,−Ω) to generate an adjoint flux, Φ∗(r,−Ω), inside the
tissue. This, of course, reverses the direction in the arguments of Q∗ and Φ∗ in (3.18),
which then reads∫

∂VM×S2

n∂VM
· ΩΦVM

(r,Ω)Φ∗(r,−Ω) dr dΩ

=

∫
VM×S2

[Q∂VM
(r,Ω)Φ∗(r,−Ω) −Q∗(r,−Ω)ΦVM

(r,Ω)] dr dΩ

=

∫
VM×S2

Q∂VM
(r,Ω)Φ∗(r,−Ω) dr dΩ(3.19)

since Q∗ = 0 inside VM . Estimation of (3.19) is performed using an adjoint simulation
and provides the detected response due to the induced source Q∂VM

, or P (D|V ).
The forward simulation of photons exiting an arbitrary target volume VM is used

to determine P (V ) and is matched with the adjoint simulation estimate of P (D|V )
at ∂VM . The joint probability of visitation and detection P (V ∩ D) (see (2.1)) is
formed by the product of these two factors. The resulting probability characterizes
a three body system involving radiative transport from (a) the original source Q to
(b) the target volume VM and finally to (c) the detector. In what follows, we shall
refer to joint probability of visitation and detection of the target volume, P (V ∩D),
as interrogation of the target volume.

4. Implementation. Monte Carlo simulations of both the forward RTE equa-
tion (3.1) and the adjoint RTE (3.10) are quite conventional [10, 26]. Photon and ad-
joint photon biographies are generated by alternately sampling from exponential dis-
tributions representing intercollision distances and angular deflections sampled from
the Henyey–Greenstein phase function [11, 28]. The resulting random walks are fol-
lowed until they escape the tissue phase space.

We utilize our coupled forward-adjoint methodology to create quantitative maps
of the entire tissue that illustrate how the light interrogates various regions in the
tissue. We shall refer to these maps as “interrogation maps.” To create such maps,
the tissue is subdivided into a finite number of voxels, each treated as a target volume
V. The matching of photon trajectories between the forward simulation and the
adjoint simulation occurs at the boundary of each voxel. The integration shown on
the left-hand side of (3.19) requires the pairing of estimates of the photon current
J = n∂VM

·ΩΦ̃ from the forward simulation with the estimation of the photon flux Φ∗

from the adjoint simulation. Upon exiting a voxel V, both the location and orientation
of the photon’s track are assigned to one of N∂V ·Nμ ·Nφ spatial-angular bins:

(4.1) Δijk :

⎧⎪⎪⎨
⎪⎪⎩

r ∈ ∂Vi, i = 1, . . . , N∂V,
2(j−1)
Nμ

< (μ + 1) ≤ 2j
Nμ

, j = 1, . . . , Nμ,

2π(k−1)
Nφ

< φ ≤ 2πk
Nφ

, k = 1, . . . , Nφ.

Each solid angle bin is determined by μ = cos θ and φ, where θ is the polar angle and
φ is the azimuthal angle. The north pole for the directional system is taken to be the
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outward-pointing normal on each voxel side. Trajectories in the forward simulation
that exit bin Δijk are matched with trajectories in the adjoint simulation that enter
the same angular bin. We determine P (V ∩ D) for each voxel V by summing the
product of the tallies of the forward and adjoint photons in the matched spatial-
angular pairs over all bins:

(4.2) P (V ∩D) =

N∂V∑
i

Nμ∑
j

Nφ∑
k

JijkΦ
∗
ijkΔ∂ViΔμjΔφk.

In (4.2), Jijk is estimated by tallying the photon weight wijk per unit area and solid
angle upon exiting the voxel surface

(4.3) Jijk =
1

NF

NF∑
n=1

w
(n)
ijk

Δ∂ViΔμjΔφk
,

where NF is the number of photons launched in the forward simulation. The adjoint
simulation converts the adjoint current to an adjoint flux via the relation

(4.4) Φ∗
ijk =

J∗
ijk

μj
,

where μj is the polar cosine of the entering photon. The weight w∗
ijk of each adjoint

photon entering the voxel surface is then used in the estimate of the adjoint current

(4.5) J∗
ijk =

1

NA

NA∑
n=1

w
∗(n)
ijk

Δ∂ViΔμjΔφk
,

where NA is the total number of adjoint photons launched. For simplicity, we use
uniform spatial and angular bins. In practice, however, we anticipate the need to
utilize finer binning closer to the tissue surface and at other locations where the
distribution of the light field either is highly anisotropic or possesses large spatial
gradients. Sufficiently deep in the tissue, where the flux is expected to be nearly
isotropic, a coarse uniform angular grid should suffice.

The variance of our P (V ∩ D) estimates is derived as specified in the midway
method literature [20]. Specifically, the relative variances of the forward current Jijk
and the adjoint flux Φ∗

ijk are determined by

(4.6) r2[Jijk] =

∑NF

n=1

[
w

(n)
ijk

]2

[∑NF

n=1 w
(n)
ijk

]2 − 1

NF

and

(4.7) r2[Φ∗
ijk] =

1

μ2
j

⎧⎪⎨
⎪⎩

∑NA

n=1

[
w

∗(n)
ijk

]2

[∑NA

n=1 w
∗(n)
ijk

]2 − 1

NA

⎫⎪⎬
⎪⎭ ,

respectively. Since the quantities of Jijk and Φ∗
ijk are estimated from forward and

adjoint random walks that are sampled independently, a first-order approximation of
the relative variance of their product is provided by the sum of their relative variances

(4.8) r2[JijkΦ
∗
ijk] ≈ r2[Jijk] + r2[Φ∗

ijk].
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The variance of P (V ∩D) is obtained by summing the variances of the products over
all bins:

(4.9) σ2[P (V ∩D)] =

N∂V∑
i

Nμ∑
j

Nφ∑
k

r2[JijkΦ
∗
ijk]J

2
ijkΦ

∗2
ijk.

Note that (4.9) provides the variance for each target volume. For a fixed number
of launched (forward and adjoint) photons, an increase in N∂V, Nμ, and Nφ results
in an increase in r2[JijkΦ

∗
ijk] because there are fewer photons per bin and will tend

to increase the relative error in the estimate for each bin. While an increase in the
number of bins will tend to increase the variance σ2[P (V ∩ D)], it will also reduce
the discretization error. Optimal choices for N∂V, Nμ, and Nφ vary depending on the
precise location of the voxel in the tissue. For the purposes of the results presented
in this initial study, we chose uniform spatial and angular binning. An analysis of
the optimal binning allocation strategy is beyond the scope of this paper and, in any
event, will be highly problem-dependent.

As a means to eliminate the discretization error, we investigated a method pro-
posed by Cramer [5] in which two sets of trajectories are launched at the voxel bound-
ary in exactly opposite directions. Each set is then followed until possible detection
at the source or detector. However, due to the small size of the fiber-optic source
and detector and the large number of target volumes treated in our application, this
method was not particularly efficient and was not employed in this study.

Note that while we are summing over all spatial-angular bins in this study, we
could easily provide maps containing information for photons entering and exiting at
any particular set of orientations or locations. This more refined information would
enable an evaluation of the impact of angular variations in the light distribution on
the conditional system response. Such angular detail will be especially important for
voxels in regions in which the light field is highly anisotropic, for example, in the
proximity of collimated sources or interfaces of refractive index mismatch.

5. Numerical results. We apply our methodology to a test case depicting ep-
ithelial tissue consisting of a thin upper cellular layer (0 < z < 0.5 mm) situated above
a much thicker structural (stromal) layer (z > 0.5 mm). The goal of this study is to
assess the effect of probe s-d separation on the interrogation of each layer. We first
examine the forward problem; that is, we generate P (V ∩D) spatial-angular maps for
normal tissue. We refer to this as our “background” tissue problem. The purpose of
these maps is to indicate the effectiveness of a given probe configuration to detect and
isolate transformations in each of the layers associated with the formation of precan-
cerous tissue. Simulated data of measured reflectance is then generated that contains
information characterizing physiologically relevant changes in one or both layers. This
measured data is then used to predict changes in the layered optical properties via an
inverse solution that employs a special perturbation and differential Monte Carlo op-
timization method developed previously [9, 10]. For our particular study in epithelial
tissue, we will discuss possible relationships between the information provided by the
P (V ∩D) maps and the quality of the inverse solution results.

5.1. Background tissue forward problem. We first consider a homogeneous
background tissue with a refractive index n = 1.4 and optical properties typical of
normal stromal tissue [13] at an optical wavelength of 849 nm: μa = 0.034/mm,
μs = 6.11/mm, g = 0.9. Here g is the average cosine of the Henyey–Greenstein single-
scattering phase function commonly used for tissue [28]. The probe configurations
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considered consist of both source and detector oriented normal to the tissue surface
with s-d separations ranging from 1–3 mm. The source and detector have emission
and acceptance angles θQ = θQ∗ = 15.3◦ relative to their central axis and are 200 μm
in radius. To efficiently present the P (V ∩ D) results, which constitute a three-
dimensional data set, we sum the results of (4.2) along the y-axis and project them
onto the x-z plane in 0.1 mm × 0.1 mm pixels, each of which represents a different
target volume V.

Figure 5.1 displays the interrogation P (V ∩D) maps for the background tissue.
In this analysis, we compare probe features consisting of s-d separations of 1, 2, and
3 mm. In these plots, the color of every voxel represents the absolute (unscaled)
conditional probability of detection (conditioned by visiting the voxel in question).
We shall refer to this quantity as the “conditional system response.” To enable the
visualization of a greater dynamic range in P (V ∩D), the colors are represented on
a log scale with a spectrum ranging from large (red (10−8)) to small (blue (10−11))
probability. A dashed white line at a z = 0.5 mm delineates the interface between
the two layers of interest. Note that in each of these maps, we display the conditional
system response for each voxel. The database so constructed provides the raw material
for the analysis of competing probe configurations.

Fig. 5.1. Interrogation map of the background problem for s-d separations of 1, 2, and 3 mm
(left to right).

The results of Figure 5.1 can be normalized by the sum of P (V ∩ D) over the
whole domain D to produce a true probability density function which we will refer to
as an “interrogation density function”:

(5.1) pV ∩D =
P (V ∩D)∫
D
P (V ∩D)

.

Equation (5.1) provides an appropriate function to assess how a particular region of
interest is interrogated. This normalized function allows different probe configurations
to be compared on an equivalent basis. For example, we can integrate pV ∩D over the
top layer T or bottom layer B, resulting in

∫
T
pV ∩D and

∫
B
pV ∩D, respectively. This

will provide the relative contribution from each layer to the detected signal in the
form of a probability.

Figure 5.2 presents the integration of pV ∩D over the top and bottom layers as
a function of s-d separation. These results reveal that roughly four times as much
detected signal has interrogated the bottom layer as opposed to the top layer. The
bottom layer probabilities increase by 4.5% (from 0.805 to 0.841) as the s-d separation
increases from 1 to 3 mm, revealing that the larger s-d separations are more effective
in interrogating the bottom layer than the smaller ones. Recall that by “interrogate”
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Fig. 5.2. Interrogation density function (5.1) integrated over the top T and bottom B layers as
a function of s-d separation.

we mean that the light both has visited the region and is subsequently detected. This
is not surprising, as the detected photons using probes with larger s-d separations
will possess longer trajectories that will typically penetrate deeper into the tissue.
Consistent with this bottom layer analysis, the top layer probabilities decrease by
nearly 20% (from 0.195 to 0.159) as the s-d separation increases from 1 to 3 mm,
indicating that the smaller s-d separations provide a considerable improvement in
the interrogation of the top layer. This information drawn from our transport model
assists in the design of probes for the accurate recovery of optical properties in each
layer.

We next solve the inverse problem using similar probe configurations to verify
the expected correlation between information given by our P (V ∩D) maps and the
ability of specific probe designs to determine optical property changes in one of the
layers.

5.2. Perturbed tissue inverse problem. Here we discuss the impact of the
interrogation maps on the accurate recovery of optical properties. To utilize informa-
tion gained from our P (V ∩D) maps, which are generated for various s-d separations,
probes with similar features are employed for the recovery of optical properties. How-
ever, for the purpose of performing a two-parameter inverse solution, at least two
detectors are required. To perform the inversion, we choose to employ six detectors
to make the inverse solution more robust with respect to signal noise in the measured
reflectance signal. These detectors are 200 μm in diameter and are positioned adjacent
to each other to form a linear detector array that spans 1.2 mm. We solve the inverse
problem with this detector array immediately adjacent to the source, resulting in s-d
separations that span [0–1.2] mm. We also consider the quality of the inverse problem
results in seven other configurations by moving the detector array progressively away
from the source in increments of 0.2 mm. This provides measurements with eight dis-
tinct ranges of s-d separations: [0–1.2] mm, [0.2–1.4] mm, [0.4–1.6] mm, [0.6–1.8] mm,
[0.8–2.0] mm, [1.0–2.2] mm, [1.2–2.4] mm, and [1.4–2.6] mm. These configurations of
six detectors with a single source provide a spatially resolved measurement of reflected
light. Clearly, the progressive movement of the detector array away from the source
results in the interrogation of deeper layers, as already seen in Figure 5.2.

We examine two test cases that represent transformations in each layer typical
of optical properties changes occurring from the development of precancer: (a) an
increase in optical absorption within the lower layer due to the recruitment of in-
creased blood flow and (b) an increase in optical scattering within the upper layer
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due to local cellular transformations. Simulated spatially resolved reflectance data are
generated using two-region Monte Carlo simulations with 2% Gaussian noise added.
Our method to determine μa and μs uses starting values taken from our background
(homogeneous) case. Perturbation and differential Monte Carlo methods [9, 10, 18]
are used in a two-parameter optimization algorithm to determine the changes to these
optical properties, μ̂a = μa + δμa and μ̂s = μs + δμs, prescribed in one of the layers
that best fit the simulated measured data. The solution identifies the layer optical
properties that best match the measured data in the least squares sense. Details of
the inverse solution method are described elsewhere [9, 10, 18].

5.2.1. Bottom layer μa perturbation. In our first test case we consider a
200% increase to μa relative to the background optical properties in the bottom
layer. All other optical properties are held fixed. This results in the following set of
optical properties: μs = 6.11/mm, μa = 0.034 in the top layer and μ̂s = 6.11/mm,
μ̂a = 0.068/mm in the bottom layer. Our two-parameter inverse solution seeks to
identify and decouple both μ̂s and μ̂a successfully.

Figure 5.3 displays the recovered optical properties in the bottom layer as a
function of the separation between the source and the linear array of detectors. Error
bars representing one standard deviation confidence intervals are shown. The solid
and dashed horizontal lines represent the true μ̂s and μ̂a values in the bottom layer,
respectively. The μ̂s recovery for all ranges of s-d separation is excellent. The quality
of the μ̂a estimates improves as the s-d separation increases, as is evidenced by more
accurate mean values and smaller confidence intervals. This is consistent with the
improved interrogation of the bottom layer at larger s-d separations as predicted by
Figure 5.2.
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Fig. 5.3. Recovered bottom layer absorption (◦) and scattering (•) coefficients due to a 200%
μa perturbation in the bottom layer as a function of the range of s-d separations provided by the
detector array.

While the inverse solution results are consistent with the features shown in Fig-
ures 5.1 and 5.2, it must be noted that these interrogation maps were generated from
the background, not the perturbed system. To focus on changes in the interrogation
provided by the perturbed system, we examine a map that displays the relative dif-
ference in the interrogation of the perturbed tissue as compared to the background
problem (shown in Figure 5.1). Figure 5.4 provides this result, specifically a map of
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Fig. 5.4. Plots of the relative difference between the interrogation density function for a 200%
μa perturbation in the bottom layer and the background system for s-d separations of 1, 2, and
3 mm (left to right).

[(p̂V ∩D − pV ∩D)/pV ∩D] for s-d separations of 1, 2, and 3 mm.
These maps display regions in which the relative difference between the inter-

rogation of the perturbed and background medium is zero (green (0 contour)), in-
creasingly negative (deeper blues (−0.2, −0.4 contours)), and increasingly positive
(yellow-orange-red (0.2, 0.4 contours)). Negative values indicate diminished interro-
gation in the perturbed medium relative to the background system, while positive
values indicate enhanced interrogation.

From these maps we observe that the enhancement of interrogation penetrates
deeper into the bottom layer with increasing s-d separation. This is consistent with the
improved inverse solution results at larger s-d separation. However, this interrogation
at larger s-d separation is offset by the increased absorption in the bottom layer of
the perturbed system, which depletes the detected signal. This may explain why the
μ̂s predictions do not improve markedly.

To understand the contributions from each layer, we integrate the data in Fig-
ure 5.4 over the top and bottom layers, (

∫
T
p̂V ∩D−

∫
T
pV ∩D)/

∫
T
pV ∩D and (

∫
B
p̂V ∩D−∫

B
pV ∩D)/

∫
B
pV ∩D, respectively. From these results (shown in Figure 5.5) we see that

the probability of interrogating the bottom layer is degraded slightly in the perturbed
medium due to the increased absorption in that layer. Despite the detrimental effect
of the increased bottom layer absorption, interrogation of the bottom layer still im-
proves with increases of the s-d separation. This again is consistent with the inverse
results shown in Figure 5.3. Figure 5.5 also displays the integrated top layer results.
Although these results are not pertinent to the bottom layer inverse problem con-
sidered here, they may shed light on other inverse problems in which determination
of top layer optical properties is desired within a system that is simultaneously un-
dergoing a change in the bottom layer absorption. All top layer values are positive,
indicating improved interrogation in this layer of the perturbed medium compared to
the background medium due to the increased absorption in the bottom layer.

5.2.2. Top layer μs perturbation. We now examine a second test case involv-
ing a 120% increase in μs in the top layer relative to the background value. All other
optical properties in both layers are held fixed. This results in the following set of op-
tical properties: μ̂s = 7.332/mm, μ̂a = 0.034/mm in the top layer and μs = 6.11/mm,
μa = 0.034/mm in the bottom layer. Figure 5.6 displays the recovered optical prop-
erties in the top layer as a function of the separation between the source and the
linear array of detectors. The results show improved estimates in the mean values of
μ̂s as well as smaller confidence intervals when the linear detector array is closer to
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Fig. 5.5. Relative difference between the interrogation density function for a 200% μa pertur-
bation in the bottom layer versus the background, integrated over the top T and bottom B layers as
a function of s-d separation.
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Fig. 5.6. Recovered top layer absorption (◦) and scattering (•) coefficients due to a 120% μs

perturbation in the top layer as a function of the range of s-d separations provided by the detector
array.

the source. This is in line with the results shown in Figure 5.2 that showed improved
interrogation of the top layer at the smaller s-d separations. The recovered mean
values of μ̂a display no correlation with s-d separation.

For this case it is also useful to examine plots of the relative difference between
the perturbed and background medium which are shown in Figure 5.7. The increased
scattering in the top layer of the perturbed medium results in enhanced interrogation
of this layer. This is especially true when the s-d separation is small, as evidenced
by the deep red colors (0.2 contour) in the top layer. However, this enhancement
dissipates rapidly as the s-d separation increases and indicates that the increased
scattering in the top layer plays a diminishing role in the detected signal. This is
easily discerned by focusing attention on the top layer and noticing that while this
area is primarily red (0.2 contour) at small s-d separations, it rapidly changes to
orange, yellow, and green (0.1 and 0 contours) at larger separations. Moreover, for
even larger separations (not shown), this region changes to blue (−0.2 contour). This
illustrates that as the s-d separation increases, the increased scattering in the top layer
no longer provides an enhanced interrogation of the top layer. This occurs because the
photon pathlengths between source and detector increase for larger s-d separations,
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Fig. 5.7. Plots of the relative difference between the interrogation density function for a 120%
μs perturbation in the top layer and the background system for s-d separations of 1, 2, and 3 mm
(left to right).

resulting in the depletion of the detected signal by absorption in the top layer. This is
the principal cause for the lack of significant improvement in the μ̂a predictions with
increasing s-d separation shown in Figure 5.6.

The relative difference maps integrated over each layer are shown in Figure 5.8.
These plots confirm that the integrated sampling of the top layer is enhanced in the
perturbed medium but that this enhancement decreases rapidly with increasing s-d
separation. Again, while the integrated bottom layer results are not directly relevant
to our top layer inversion, it is interesting to observe that the increased scattering
in the top layer has a diminishing effect on the bottom layer interrogation as the s-d
separation increases.
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Fig. 5.8. Relative difference between the interrogation density function for a 120% μs pertur-
bation in the top layer versus the background, integrated over the top T and bottom B layers as a
function of s-d separation.

It is important to note that for a given medium, the P (V ∩D) maps (Figures 5.1,
5.4, and 5.7) for all s-d separations were created from a single forward and a single
adjoint Monte Carlo simulation. To achieve this degree of computational efficiency, we
have made use of the symmetry of the layered problem and the probe configuration.
This enables the application of linear superposition to align the two simulations for any
selected s-d separation for the generation of the resulting P (V ∩D) maps. While the
use of the coupled forward-adjoint Monte Carlo technique is already more efficient
than conventional Monte Carlo simulation, use of symmetry further enhances the
computational efficiency of our methodology. A study of the comparative efficiency
of conventional Monte Carlo simulation and the coupled forward-adjoint technique
developed here is beyond the scope of this paper.
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6. Summary and conclusions. We have developed a transport-based tech-
nique that determines the joint probability that photons will visit any tissue subvol-
ume and subsequently be detected. Calculation of this conditional system response
(system interrogation) is based on an extension of classical reciprocity theory for radia-
tive transport that couples the responses of forward and adjoint Monte Carlo simula-
tions at the boundary of any designated tissue subvolume. These maps of conditional
response provide insight as to how s-d configurations affect the spatial distribution
of tissue interrogation. While our maps that display the conditional system response
were integrated over all angles, it is important to reiterate that angle-specific P (V ∩D)
maps can also be generated easily and will be of interest for many applications.

We then applied this computational methodology using data descriptive of a two-
layer epithelial/stromal tissue and produced P (V ∩ D) maps for varying s-d sepa-
rations. Moreover, we provided evidence that the maps produced by our coupled
forward-adjoint Monte Carlo method provide useful and reliable guidelines for the
choice of preferred probe designs, as measured by the successful recovery of optical
properties from selected tissue regions.

In biomedical optics applications, the tissue volume targeted for further examina-
tion is typically large compared to both the source and detector. In these cases, the
coupled forward-adjoint Monte Carlo approach will be especially advantageous from
a computational efficiency standpoint. Use of variance reduction methods applied to
both forward and adjoint simulations will further increase the efficiency of this new
computational method.
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IDENTIFYING SCATTERING OBSTACLES BY THE
CONSTRUCTION OF NONSCATTERING WAVES∗

D. RUSSELL LUKE† AND ANTHONY J. DEVANEY‡

Abstract. There are many methods for identifying the shape and location of scatterers from
far field data. We take the view that the connections between algorithms are more illuminating than
their differences, particularly with regard to the linear sampling method [D. Colton and A. Kirsch,
Inverse Problems, 12 (1996), pp. 383–393], the point source method [R. Potthast, Point Sources
and Multipoles in Inverse Scattering Theory, Chapman & Hall, London, UK, 2001], and the MUSIC
algorithm [A. J. Devaney, IEEE Trans. Antennas and Propagation, 53 (2005), pp. 1600–1610]. Using
the first two techniques we show that, for a scatterer with Dirichlet boundary conditions, there is a
nontrivial incident field that does not generate a scattered field. This incident field, written as an
expansion of eigenfunctions of the far field operator, is used in the MUSIC algorithm to image the
shape and location of the obstacle as those points z where the incident field is orthogonal to the far
field pattern due to a point source located at z. This has two intriguing applications, one for inverse
scattering and the other for signal design. Numerical examples demonstrate these ideas.

Key words. inverse scattering, MUSIC, linear sampling, point source method
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1. Introduction. The inverse scattering literature abounds with methods to
determine the shape of scatterers from far field data. Of principal concern here are
the MUSIC algorithm [11], the linear sampling method [7], the point source method
[26], and the connections between these methods. The connection between the MUSIC
algorithm and Kirsch’s factorization method [17] has been detailed by Cheney [5] and
Kirsch [18] for scattering from point-like inhomogeneities. More recent studies [1, 16,
12, 13] approach an application of the MUSIC algorithm to scatterers of some specified
size, relative to the wavelength, and are based on the finite-dimensional multistatic
response matrix for point-like scatterers. Our results complement those of Hazard and
Ramdani [15], although they were concerned with the mathematical justification of the
decomposition of time-reversal operator (DORT) method [27]. The DORT method
also relies on the asymptotic behavior of the time-reversal operator as the scatterers
become small. Our goal here is to provide an analysis in the continuum of the inverse
problem of determining geometric information about scatterers of arbitrary size and
shape that are illuminated by fields of arbitrary frequency.

Our central result, Theorem 3.1, is built upon the linear sampling method of
Colton and Kirsch [7] and shows that, on the boundary of a scatterer with Dirichlet
boundary conditions, there is a nontrivial incident field that has an arbitrarily small
far field pattern. With the help of the point source method of Potthast [26], we
show in Corollary 3.2 that such an incident field does not generate a scattered field.
Theorem 3.5 combines these results as the foundation for a MUSIC algorithm [11] for
determining the shape and location of an obstacle. The technique indicates intriguing
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possibilities for the construction of nonscattering fields that might be used to shield
obstacles from interrogating waves.

To our knowledge the analysis presented here shows for the first time the feasibility
of the MUSIC algorithm for determining the shape and location of Dirichlet obstacles
without dependence on the size of the obstacle or the frequency of the incident field.
The next section introduces our notation and the background for our main theoretical
results presented in section 3. Practical implementations of a MUSIC-type algorithm
are discussed in section 4. We illustrate the effectiveness of the algorithm with two
examples presented in section 5.

2. Scattering background. We consider acoustic scattering of small-amplitude,
monochromatic, time-harmonic waves from one or more impenetrable, sound-soft ob-
stacles embedded in an isotropic homogeneous medium. The obstacles are identified
by the domain Ω ⊂ R

m, m = 2 or 3. The domain Ω is assumed to be bounded with a
simply connected exterior and C2 boundary ∂Ω and the unit outward normal ν. The
governing equation is the Helmholtz equation

(2.1)
(
� + k2

)
v(x) = 0, x ∈ Ωo ⊂ R

m,

where � denotes the Laplacian, k ≥ 0 is the wavenumber, Ωo := R
m \Ω, and the

closure of the open exterior is denoted by the complement of Ω, that is, Ωc. The
surface of the obstacle is assumed to be perfectly absorbing or sound-soft. This is
modeled with Dirichlet boundary conditions: v = f on ∂Ω, where f is continuous on
∂Ω.

2.1. General incident fields. Let

(2.2) v = vi + vs,

where the total field v : Ωc → C solves (2.1) on Ωo with boundary data

(2.3) v(x) := 0 for x ∈ ∂Ω.

The incident field vi : R
m → C solves (2.1) on R

m. The scattered field vs : Ωc → C

solves (2.1) on Ωo with boundary data

(2.4) vs(x) = −vi(x) for x ∈ ∂Ω

and

(2.5) r
m−1

2

( ∂

∂r
− ik

)
vs(x) → 0, r = |x| → ∞,

uniformly in all directions.
By Green’s formula we can express the scattered field on Ωo by the boundary

integral

(2.6) vs(x) =

∫
∂Ω

{
∂Φ(x, y)

∂ν(y)
vs(y) − Φ(x, y)

∂vs

∂ν
(y)

}
ds(y),

where x ∈ Ωo and Φ(x, y) is the outgoing free-space fundamental solution to (2.1),
also referred to as Green’s function. As |x| → ∞ one can see that the scattered field
has the behavior

(2.7) vs(x) =
eik|x|

|x| (m−1)
2

{
v∞(x̂) + O

(
1

|x|

)}
, |x| → ∞,
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where the function v∞ is the far field pattern on the unit sphere S := {x̂ ∈ R
m | |x̂| = 1}

given by

(2.8) v∞(x̂) = β

∫
∂Ω

(
∂e−ikx̂·y

∂ν
(y)vs(y) − e−ikx̂·y ∂v

s

∂ν
(y)

)
ds(y)

for x̂ ∈ S with

(2.9) β =

{
ei

π
4√

8πk
, m = 2,

1
4π , m = 3,

k > 0.

We define next the Herglotz wave operator H : L2(S) → H1
loc(R

m) by

(2.10) (Hg)(x) :=

∫
S

e−ikη̂·xg(−η̂)ds(η̂), x ∈ R
m.

The corresponding Herglotz wave function is denoted vg(x) := (Hg)(x). Here H1

denotes the Sobolev space of order 1. The signs in our definition are not standard,
but they are chosen to assure consistency between the directions of incident waves
and measurement points on the far field sphere. The physical interpretation of the
signs is more apparent in a limited aperture setting [20].

Lemma 2.1 (Herglotz wave functions). Herglotz wave functions vg(x) := (Hg)(x)
with g ∈ L2 are dense with respect to the H1(Ω)-norm in the space of solutions to the
Helmholtz equation.

Proof. The proof is found in Theorem 2.3 of [10]. See also [9, Theorem 2.3].
By Lemma 2.1 and the trace theorems for elliptic equations [23], we can construct

the density gz such that vgz (x) ≈ Φ(x, z) and
∂vgz

∂ν (x) ≈ ∂Φ(x,z)
∂ν on ∂Ω arbitrarily

closely for z ∈ Ωo with respect to the H1/2- and H−1/2-norms, respectively. By (2.6)
and (2.8), for z ∈ Ωo we have

vs(z) =

∫
∂Ω

{
∂Φ(z, y)

∂ν(y)
vs(y) − Φ(z, y)

∂vs

∂ν
(y)

}
ds(y)

≈
∫
∂Ω

{
∂vgz (y)

∂ν(y)
vs(y) − vgz (y)

∂vs

∂ν
(y)

}
ds(y)

=

∫
S

∫
∂Ω

{
∂eik(−x̂)·y

∂ν(y)
vs(y) − eik(−x̂)·y ∂v

s

∂ν
(y)

}
ds(y)gz(−x̂)ds(x̂)

=
1

β

∫
S

v∞(x̂)gz(−x̂)ds(x̂).(2.11)

Note that the boundary of the scatterer is no longer involved in the expression for the
scattered field. Moreover, the above approximation does not depend on the boundary
condition. At each point z ∈ Ωo, by the correct choice of the density gz, we can,
in principle, reconstruct the scattered field. In the case of obstacles with Dirichlet
boundary conditions, knowing the scattered field allows one to determine the shape
and location of the scatterer as the zeros of the total field, or by constructing an
indicator function for the scatterer via the eigenfunction expansion theorem [21]. The
problem, however, is that the accuracy of this reconstruction depends on finding a
density g that approximates the fundamental solution on the boundary of the scat-
terer, which we do not know! The point source method is concerned mainly with
strategies for constructing the density g (see, for example, [24, 25, 26, 20]). Note also
that the density g must contain information about the evanescent fields in vs since
none of this information is present in the far field pattern v∞.



274 D. RUSSELL LUKE AND ANTHONY J. DEVANEY

2.2. Plane wave scattering. There are two ways to view the last integral in
(2.11) that distinguish many numerical methods in inverse scattering. By the first
interpretation the last integral in (2.11) is an integral operator with the far field
pattern v∞ as a kernel. By the second interpretation, the kernel of the operator is
the density g, and the operator acts on the far field data v∞. These two different
approaches are best illustrated by considering the case of scattering from incident
plane waves

(2.12) ui(x; η̂) := eik(η̂)·x,

where the incident field is parameterized by the direction of propagation η̂ ∈ S. The
corresponding scattered field and far field patterns are denoted us(x; η̂) and u∞(x̂, η̂).

When the scattering is from an incident plane wave with direction η̂, we define
the far field operator F : L2(S) → L2(S) :

(2.13) Ff(x̂) :=

∫
S

u∞(x̂, η̂)f(η̂) ds(η̂).

This operator corresponds to the view of (2.11) as an integral operator with the data
u∞ as the kernel. In this case (2.11) becomes

(2.14) us(z; η̂) ≈ 1

β

∫
S

u∞(x̂, η̂)gz(−x̂)ds(x̂) =
1

β

∫
S

u∞(−η̂,−x̂)gz(−x̂)ds(x̂),

where the last equality follows from the reciprocity relation

(2.15) u∞(x̂, η̂) = u∞(−η̂,−x̂).

The fact that (Fgz)(−η̂) ≈ βus(z, η̂) is a coincidence of having selected the correct
function gz to operate on.

By the second interpretation the last integral in (2.11) is an integral operator
with the density gz as a kernel: Agz : L2(S) → X(z), defined as

(2.16) Agzf(z) :=
1

β

∫
S

gz(x̂)f(x̂) ds(x̂).

Here we have left the image space X ambiguous because the dependence of the kernel
of Agz on the points z is not specified. Acting on the far field pattern corresponding
to an incident plane wave with direction η̂, the operator Agz can be seen to be a
backpropagation operator that propagates the far field back to the scattered field at
z ∈ Ωo. We will occupy ourselves mostly with the latter interpretation, but our
principal tool will be the far field operator of the first interpretation.

Lemma 2.2 (far field operator). The far field operator F : L2(S) → L2(S) is
compact. F is injective with dense range if and only if there does not exist a Dirichlet
eigenfunction for Ω which is a Herglotz wave function.

Proof. Compactness follows from the fact that the kernel is continuous. For the
remainder of the statement see [8, Corollary 3.18].

The far field operator has a useful factorization in terms of a Herglotz wave
function and the mapping of radiating solutions to the Helmholtz equation from the
boundary data to the far field pattern, denoted by B.

Lemma 2.3 (B). Assume that k2 is not an eigenvalue of −� in Ω. The mapping
of radiating solutions to the Helmholtz equation from the boundary data to the far field
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pattern, B : H1/2(∂Ω) → L2(S), is a compact, injective bounded linear operator with
dense range and rangeB = range(F∗F)1/4, where F∗ denotes the adjoint of the far
field operator. Moreover, the far field pattern of the outgoing fundamental solution to
the Helmholtz equation, Φ∞(·; z), is in the range of B if and only if z ∈ Ω.

Proof. For the proof, see [17, Theorem 3.6] and [17, Theorem 3.7]. See also
[4].

For any incident wave vi restricted to ∂Ω we have −Bvi = v∞, and, in particular,
incident fields that can be written as superpositions of plane waves, vi = Hg, yield
the desired factorization

(2.17) −BHg = Fg.

We slightly abuse the notation since, by our definitions of H and vi, we need to include
a trace operator restricting them to the boundary ∂Ω. This should be clear from the
context.

3. Nonscattering fields. The next theorem, modeled after the linear sampling
method of [4], shows that there is a nontrivial density ĝ that converges to the null
space of the far field operator.

Theorem 3.1 (normalized linear sampling). Let Ω be a domain with smooth
boundary and assume that k2 is not a Dirichlet eigenvalue for −� on Ω. If z ∈ Ω,
then for every ε > 0 there exists a solution gz to

(3.1a) ‖Fgz(·) − Φ∞(·; z)‖L2(S) < ε

such that

(3.1b) lim
z

Ω→∂Ω

‖F ĝz‖L2(S) = 0 and lim
z

Ω→∂Ω

∥∥∥∥Hĝz −
fz

‖gz‖L2(S)

∥∥∥∥
H1/2(∂Ω)

= 0,

where

(3.1c) ĝz :=
gz

‖gz‖L2(S)

and fz solves Bfz(·) = −Φ∞(·; z).

Here
Ω→ indicates that the limit is taken by points from within Ω.

Proof. Our proof is modeled after that of [6, Theorem 2.2]. Since −Φ∞(·; z) ∈
range(B), by Lemma 2.3 there is a solution fz to

(3.2) Bfz(·) = −Φ∞(·; z).

By Lemma 2.1 and the trace theorem [23], since k2 is not a Dirichlet eigenvalue for
the negative Laplacian on Ω, the Herglotz wave operator is injective with dense range
in H1/2(∂Ω). Hence for any ε′ > 0 there is a solution gz ∈ L2(S) to

(3.3) ‖Hgz − fz‖H1/2(∂Ω) ≤ ε′

and hence

(3.4)

∥∥∥∥Hĝz −
fz

‖gz‖L2(S)

∥∥∥∥
H1/2(∂Ω)

≤ ε′

‖gz‖L2(S)
.

Then by the continuity of B and the factorization (2.17) we have∥∥∥∥−F ĝz(·) +
Φ∞(·; z)
‖gz‖L2(S)

∥∥∥∥ =

∥∥∥∥BHĝz − B fz
‖gz‖L2(S)

∥∥∥∥
H1/2(∂Ω)

≤ ε

‖gz‖L2(S)
,(3.5)
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where ε′ is small enough that Cε′ < ε, where C is the norm of B. Now as z → ∂Ω, we
have fz(x) → −Φ(x, z) for x ∈ ∂Ω; hence ‖fz‖H1/2(∂Ω) → ∞ as z → ∂Ω. Since fz is
approximated by Hgz, it then follows that ‖Hgz‖H1/2(∂Ω) → ∞ as z → Ω. Note also
that ‖Hgz‖H1/2(∂Ω) ≤ ‖Hgz‖H1(Ω); thus by the Cauchy–Schwarz inequality we have
‖gz‖L2(S) → ∞ as z → ∂Ω. In light of (3.5) this yields

lim
z

Ω→∂Ω

∥∥∥∥−F ĝz(·) +
Φ∞(·; z)
‖gz‖L2(S)

∥∥∥∥ = lim
z

Ω→∂Ω

‖F ĝz‖ = 0,

while by (3.4) we have

lim
z

Ω→∂Ω

∥∥∥∥Hĝz −
fz

‖gz‖L2(S)

∥∥∥∥
H1/2(∂Ω)

= 0.

This completes the proof.

Note that we make no statement about the behavior of fz/‖gz‖L2(S) as z
Ω→ ∂Ω;

hence it is unclear from (3.1b) what the behavior of Hgz is in the limit as z
Ω→ ∂Ω. It

is an open problem to characterize the rate at which ‖gz‖ → ∞ and ‖fz‖ → ∞.
Since the far field pattern is zero if and only if there is no scattered field, the

above theorem implies that the incident Herglotz wave function Hĝz does not scatter
in the limit as z → ∂Ω. That is, the following corollary holds.

Corollary 3.2 (nonscattering incident fields). Fix any ε > 0 and let gz satisfy
(3.1a) with

lim
z

Ω→∂Ω

‖F ĝz‖L2(S) = 0 and lim
z

Ω→∂Ω

∥∥∥∥Hĝz −
fz

‖gz‖L2(S)

∥∥∥∥
H1/2(∂Ω)

= 0,

where

ĝz :=
gz

‖gz‖L2(S)

and fz solves Bfz(·) = −Φ∞(·; z).

Then the scattered field, vsĝz , corresponding to the incident Herglotz wave function

viĝz = Hĝz, has the behavior

lim
z

Ω→∂Ω

vsĝz (x) = 0 for x ∈ Ωo, while lim
x
Ωo
→∂Ω

lim
z

Ω→∂Ω

viĝz (x) = 0.

Our proof relies on the backpropagation interpretation of (2.11) that is central to
the point source method.

Lemma 3.3 (backpropagation). Assume that k2 is not a Dirichlet eigenvalue of
−� on Ω and let x ∈ Ωo. Given any δ′ > 0, there exists an ε′(x) > 0 such that for
all px ∈ L2(S) satisfying

(3.6)
∥∥∥Φ(·, x) −Hpx(·)

∥∥∥
H1/2(∂Ω)

< ε′(x)

one has

(3.7)
∣∣∣us(x, η̂) − (Apx

u∞)(x, η̂)
∣∣∣ < δ′,

where Apx
is defined by (2.16).
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Proof. The proof is a special case of [26, Theorem 5.1.2]. See also [20, Theorem
1].

Proof of Corollary 3.2. To show the first limit we construct a backpropagation
operator Apx to approximate vsĝz . For δ′ > 0 and x ∈ Ωo, by Lemma 3.3 there is an

ε′(x) > 0 such that px ∈ L2(S) satisfying (3.6) also satisfies (3.7). The existence of
such a px follows from the denseness of the Herglotz wave operator. Next denote

(3.8) v∞ĝz := F ĝz,

where ĝz is the density in Theorem 3.1. By [8, Lemma 3.16] the scattered field
corresponding to v∞ĝz is

(3.9) vsĝz (x) =

∫
S

us(x;−η̂)ĝz(−η̂) ds(η̂);

hence by (2.16), (3.9), and the Cauchy–Schwarz inequality

(3.10)∣∣vsĝz (x) − (Apxv
∞
ĝz

)(x)
∣∣

=

∣∣∣∣
∫

S

us(x;−η̂)ĝz(−η̂) ds(η̂) − 1

β

∫
S

px(ŷ)

(∫
S

u∞(ŷ;−η̂)ĝz(−η̂) ds(η̂)

)
ds(ŷ)

∣∣∣∣
=

∣∣∣∣
∫

S

ĝz(−η̂)

(
us(x;−η̂) − 1

β

∫
S

px(ŷ)u∞(ŷ;−η̂) ds(ŷ)

)
ds(η̂)

∣∣∣∣
< Cδ′‖ĝz‖L2(S) = Cδ′,

where C is the surface area of the unit sphere. For x and δ′ fixed, Apx is bounded
and linear, independent of ĝz; thus, since lim

z
Ω→∂Ω

‖v∞ĝz‖L2(S) = 0, it follows that

lim
z

Ω→∂Ω
|Apxv

∞
ĝz

(x)| = 0. Hence by (3.10) and the triangle inequality,

(3.11) lim
z

Ω→∂Ω

∣∣vsĝz (x) − (Apxv
∞
ĝz

)(x)
∣∣ = lim

z
Ω→∂Ω

|vsĝz (x)| < Cδ′

for arbitrary δ′ > 0, which completes the proof of the first statement.
To see the corresponding incident field behavior, note that the total field viĝz +vsĝz

is continuous and since Ω has Dirichlet boundary conditions,

(viĝz + vsĝz )(x) = 0 for x ∈ ∂Ω.

Thus, given any ε′′ > 0, there is a ρ > 0 such that for all z ∈ Ω and x ∈ Ωo with
dist (x,Ω) < ρ, we have

|viĝz (x) + vsĝz (x)| < ε′′

2
.

Now, since lim
z

Ω→∂Ω
|vsĝz | = 0 pointwise, we have by the triangle inequality, |viĝz (x)| ≤

ε′′ for arbitrary ε′′ > 0 and x near enough to ∂Ω. This completes the proof.
Remark 3.4. By Theorem 3.1, the fact that lim

x
Ωo
→∂Ω

lim
z

Ω→∂Ω
viĝz (x) = 0 implies

that the gradient of this field is the sole contribution to the H1/2-norm on ∂Ω. Also
note that we have made no assumptions about the frequency or the size of the scat-
terers, other than to assume that the wavenumber is not a Dirichlet eigenvalue for
the scatterer.
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Following [15] we interpret the integral operator on the right-hand side of (2.14)
as a time-reversal operator for the multistatic data of an antenna array arranged on
the aperture S emitting time-harmonic fields. A transducer located at rη̂ for r � 1
emits a spherically spreading field Φ(rη̂, x) which, in the region of the scatterer Ω,
is approximately the plane wave ui(x,−η̂). The resulting scattered field is measured
in the far field at the antenna element located at rx̂. The recorded data u∞(x̂,−η̂)
is reversed, or backpropagated, in order to reconstruct the scattered field around the
obstacle. This multistatic data array is thus the discrete realization of the far field
operator F . The connection between the MUSIC algorithm and Kirsch’s factorization
method for scattering from an inhomogeneous medium has been detailed in [5, 18]. We
will have more to say about the discrete operator in section 4.2, where we investigate
the spatial resolution as a function of the far field sampling frequency and the number
of incident fields.

Denote the singular system of F by (σn, ξn, ψn), where

(3.12) Fξn = σnψn and F∗ψn = σnξn

with singular values |σn| > |σm| for m > n, and left and right singular functions ψn

and ξn, respectively. Then, by (2.14), for the correct gz we have

F∗us(z, ·) ≈ ΨΣΞ∗gz,

where Ψ and Ξ are the singular operators corresponding to ψn and ξn, respectively,
and Σ is a diagonal operator with the singular values σn on the diagonal.

By Lemma 2.2, F has at most a countable number of discrete eigenvalues with
zero as the only possible cluster point. In fact, zero is an eigenvalue if and only if
k2 is an eigenvalue of the negative Laplacian on the interior of Ω with corresponding
eigenfunction a Herglotz wave function. Such k, if they exist, form a discrete set
[23]. Thus, the null space of F is almost always trivial, though the eigenvalues decay
exponentially by the analyticity of the kernel of F .

The MUSIC algorithm is based on the observation that the set of Green’s functions

(3.13) Φ∞(η̂; z) := lim
r→∞

Φ(rη̂, z) = βeik(−η̂)·z,

for z near ∂Ω and all η̂ ∈ S, are nearly orthogonal to the noise subspace of F . We
discuss what we mean by the noise subspace in more detail in the next section. In
precise terms we have the following theorem.

Theorem 3.5 (MUSIC). Let Ω be a domain with smooth boundary and assume
that k2 is not a Dirichlet eigenvalue for the negative Laplacian on Ω. Let (σn, ξn, ψn),
n ∈ N, be the singular system for the far field operator F with |σn| ≤ |σm| for n > m.
Given any γ > 0, there is a vector a ∈ l2 with ‖a‖2 = 1 and ρ > 0 such that for any
x ∈ Ωo satisfying dist (x,Ω) < ρ we have

(3.14)

∞∑
n=1

∣∣an〈ξn,Φ∞(·;x)〉L2(S)

∣∣ < γ.

Proof. Let gz and ĝz satisfy (3.1a)–(3.1b). By Corollary 3.2, there are δ > 0 and
ρ > 0 such that
(3.15)
|viĝz (x)| < γ whenever dist (z, ∂Ω) < δ (z ∈ Ω) and dist (x,Ω) < ρ (x ∈ Ωo).
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The density ĝz can be written as a linear combination of the singular functions ξn [8,
Theorem 4.8]:

(3.16) ĝz =

∞∑
n=1

ânξn, where ân =
1

σn
(Ĝz, ψn) and Ĝz := F ĝz.

This and (3.15) yield

(3.17)

∣∣∣∣∣
∑
n

ân
〈
ξn, u

i(x,−·)
〉∣∣∣∣∣ < γ for dist (x,Ω) < ρ.

Next, we construct a new density g̃z from ĝz by rotating the coefficients ân in the
complex plane in such a way that the sum corresponding to (3.17) is of the magnitudes
of the individual terms. Define
(3.18)

g̃z =

N∑
n=1

ãnξn, where ãn := eiθn ân for θn := −
(
arg(

〈
ξn, ui(x,−·)

〉
) + arg(ân)

)
.

Note first that ‖g̃z‖L2(S) = ‖g̃z‖L2(S) and ‖F g̃z‖L2(S) = ‖F ĝz‖L2(S). As in the proof of
Corollary 3.2 we construct a backpropagation operator Apx to approximate vsg̃z . For

δ′ > 0 and x ∈ Ωo, by Lemma 3.3 there is an ε′(x) > 0 such that px ∈ L2(S) satisfying
(3.6) also satisfies (3.7). Next denote

v∞g̃z := F g̃z.

Again by [8, Lemma 3.16] the scattered field corresponding to v∞g̃z is

(3.19) vsg̃z (x) =

∫
S

us(x;−η̂)g̃z(−η̂) ds(η̂);

hence by (2.16), (3.19), and the Cauchy–Schwarz inequality,∣∣vsg̃z (x) − (Apxv
∞
g̃z

)(x)
∣∣

=

∣∣∣∣
∫

S

g̃z(−η̂)

(
us(x;−η̂) − 1

β

∫
S

px(ŷ)u∞(ŷ;−η̂) ds(ŷ)

)
ds(η̂)

∣∣∣∣
< Cδ′‖g̃z‖L2(S) = Cδ′,(3.20)

where C is the surface area of the unit sphere. For x and δ′ fixed, Apx is bounded and
linear, independent of g̃z; thus, since lim

z
Ω→∂Ω

‖v∞g̃z‖L2(S) = lim
z

Ω→∂Ω
‖v∞ĝz‖L2(S) = 0, it

follows that lim
z

Ω→∂Ω
|Apxv

∞
g̃z

(x)| = 0. Hence by (3.20) and the triangle inequality,

(3.21) lim
z

Ω→∂Ω

∣∣vsg̃z (x) − (Apx
v∞g̃z )(x)

∣∣ = lim
z

Ω→∂Ω

|vsg̃z (x)| < Cδ′

for arbitrary δ′ > 0.
As in the proof of Corollary 3.2, the corresponding incident field behavior follows

from the continuity of the total field and the fact that Ω has Dirichlet boundary
conditions; that is, |vig̃z (x)| ≤ ε′′ for arbitrary ε′′ > 0 and x near enough to ∂Ω. In
summary, the scattered and incident fields corresponding to the density g̃z have the
behavior

lim
z

Ω→∂Ω

vsg̃z (x) = 0 for x ∈ Ωo and lim
x
Ωo
→∂Ω

lim
z

Ω→∂Ω

vig̃z (x) = 0;
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hence given any γ > 0, there are δ > 0 and ρ > 0 such that
∣∣∑

n ãn
〈
ξn(·), ui(x,−·)

〉∣∣ <
γ whenever dist (z, ∂Ω) < δ (z ∈ Ω) and dist (x,Ω) < ρ (x ∈ Ωo). But by our
construction of ãn the summands are all nonnegative real numbers; that is,

(3.22)
∑
n

∣∣ãn 〈ξn(·), ui(x,−·)
〉∣∣ < γ for dist (x,Ω) < ρ.

Finally, recalling that ui(x,−η̂) = 1
βΦ∞(η̂;x), after normalization of the coefficients

ãn the result (3.14) follows.
Remark 3.6. Inequality (3.17) alone could be used for imaging with the MUSIC

methodology; however, the contrast of the resulting images is not strong enough for
adequate results. In other words, x need not be very close to Ω in order to satisfy
(3.17), and the resulting image does not have a sharp cutoff near the boundary.

4. Practical implementation.

4.1. The MUSIC algorithm. Theorem 3.1 only states that there exists a den-
sity ĝz that can be used to construct nonscattering incident fields; it does not, however,
suggest how one might calculate such a density. Arens [3] has shown that for a sound-
soft scatterer as we have here a regularization strategy such as Tikhonov regularization
or spectral cutoff gives rise to a density with the desired properties. In other words,
if at a point z ∈ Ω we solve (3.1a) using Tikhonov or spectral cutoff regularization,
then the corresponding density ĝα,z can be used to construct an incident field satis-
fying Corollary 3.2 in the limit as the regularization parameter α → 0. There are two
reasons why this is impractical: first, we do not know where the scatterer lies, and
second, we do not know about the behavior of ĝz for points z ∈ Ωo. Note, however,
that the location of point z in the computation of the density ĝz is arbitrary, so long
as it is not in the exterior of Ω. This suggests that the orthogonality of ĝz with the
fundamental solution far fields Φ∞(·;x) expressed in (3.14) is a phenomenon more
intimately tied to the spectrum of the far field operator F than to the particular
density ĝz. Indeed, as (3.1b) shows, the desired density is in the “noise space” of
F . Denote the noise subspace of F by Nγ corresponding to the span of the singular
functions ξn with singular values |σn| < γ for n > Nγ . In the numerical experiments
detailed below we take ĝ to be simply a linear combination of the elements ξn ∈ Nγ

for a large enough cutoff.
In the conventional MUSIC application one usually works with the MUSIC γ-

pseudospectrum defined by

(4.1) P(x) :=
1∑

n>Nγ

∣∣an〈ξn(·),Φ∞(·;x)〉L2(S)

∣∣ ≥ 1

γ
.

This is what is usually imaged as a function of x. Note that for x ∈ Ωo, we have
P(x) → ∞ as x → ∂Ω, yielding the image of the support of the obstacle as the points
where P(x) is large.

Our focus thus far has been on finding the location and shape of the scatterer,
but the fact that the constructed incident field is arbitrarily small at the boundary of
the scatterer opens the door to the construction of fields that avoid certain obstacles
that one might like to protect, while targeting others. In other words, the constructed
incident field viĝz effectively does not scatter. In order to illustrate this point, in our
numerical experiments, instead of the usual MUSIC implementation, we show the
inverse of the γ-pseudospectrum.
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4.2. Resolution analysis. The analysis above is in the continuum. In any prac-
tical application one will sample the far field at a finite number of discrete points x̂i

for a finite number of incident fields with direction η̂j ; that is, the far field operator F
given by (2.13) is replaced with the discrete multistatic response matrix F ∈ C

M×N .
In this section we apply sampling criteria derived from the physical optics approx-
imation in order to estimate how many incident fields and far field measurements
one needs in order to achieve a specified spatial resolution. Other approaches are
presented in [2, 16].

The criteria we develop are based on the physical optics approximation which is
valid for very large wavenumbers k. The technique discussed above is not dependent
on the wavenumber. Indeed, it works especially well at small wavenumbers in the
resonance region for the scatterer, that is, where the wavelength is on the order of
the scatterer. Our estimates for sampling rates are overestimates in the sense that
the spatial resolution predicted from a particular sampling rate in the far field is not
as fine as what is actually achieved. The analysis of this section thus provides lower
bounds on the predicted spatial resolution from a given sampling rate.

To begin, we recall the physical optics, or Kirchhoff approximation. Our treat-
ment is standard (see [8, 19]), with the exception that our derivation also holds in R

2.
The calculation follows [20] where R

2 and R
3 are considered, but is short enough to

include here. For very large wavenumbers, that is, very small wavelengths relative to
the curvature of the obstacle, the face upon which the incident field impinges is nearly
planar. As such, we can then approximate the normal derivative of the scattered field
by the normal derivative of the incident field. Define Ω+ to be the illuminated side of
the scattering domain Ω+ := {x ∈ ∂Ω | 〈ν(x), η̂〉 < 0} . The shadow of the scattering
domain, Ω−, is defined as Ω− := ∂Ω \Ω+. The physical optics approximation for the
scattered field is written

(4.2)
∂us(x, η̂)

∂ν(x)
≈

⎧⎨
⎩

∂ui(x,η̂)
∂ν(x) , x ∈ Ω+,

−∂ui(x,η̂)
∂ν(x) , x ∈ Ω−,

k � 0.

This leads to the physically intuitive approximation that the normal derivative of the
total field is twice the normal derivative of the incident field on the illuminated side
and zero on the shadow of the scatterer.

Together with the representation for the scattered field [8, Theorem 3.12],

(4.3) us(x, η̂) = −
∫
∂Ω

Φ(x, y)
∂u(y, η̂)

∂ν(y)
ds(y)

for x ∈ Ωo, the Kirchhoff approximation yields

(4.4) us(x, η̂) ≈ −2

∫
∂Ω+

Φ(x, y)
∂

∂ν(y)
ui(y, η̂) ds(y),

and
(4.5)

u∞(x̂, η̂) ≈ −2β

∫
∂Ω+

e−iky·x̂ ∂

∂ν(y)
ui(y, η̂) ds(y) = −2ikβ

∫
∂Ω+

eiky·(η̂−x̂)η̂ ·ν(y) ds(y).

Similarly, on the shadow region we have
(4.6)

u∞(x̂,−η̂) ≈ 2β

∫
∂Ω−

e−iy·x̂ ∂

∂ν(y)
ui(y,−η̂) ds(y) = 2ikβ

∫
∂Ω−

e−iky·(η̂+x̂)η̂·ν(y) ds(y).



282 D. RUSSELL LUKE AND ANTHONY J. DEVANEY

Fig. 1. Sampling in the Fourier domain of the scatterer Ω corresponding to the geometry of the
far field pattern in R

2. The far field data are depicted here with wavenumber k = 3 at four incident
fields with directions η̂ = (−1, 0), (0,−1), (1, 0), and (0, 1). For each fixed η̂ the far field samples are
depicted here as a continuum on a full aperture S.

The divergence theorem together with (4.5)–(4.6) yields

u∞(x̂, η̂) + u∞(−x̂,−η̂) ≈ −2ikβ

∫
∂Ω

eiky·(η̂−x̂)η̂ · ν(y)ds(y) + R(x̂, η̂)

= 2βk2(1 − η̂ · x̂)

∫
Ω

eikz·(η̂−x̂) dz + R(x̂, η̂)

= 2(2π)m/2βk2(1 − η̂ · x̂)X̂Ω(k(x̂− η̂)) + R(x̂, η̂),(4.7)

where X̂Ω is the Fourier transform on R
m(m = 2 or 3) of the indicator function of the

obstacle and

(4.8) R(x̂, η̂) = 4ikIm(β)

∫
∂Ω−

eiky·(η̂−x̂)η̂ · ν(y)ds(y).

In most discussions of the physical optics approximation (see, for example, [19]) the
setting is R

3, and here the remainder term does not appear since by (2.9) Im(β) =
Im(1/(4π)) = 0. In R

2, however, β is complex-valued, which gives rise to the unusual
remainder term in the calculations above.

The connection to the Fourier transform above allows us to estimate the sampling
requirements for the scatterer via the Whittaker–Shannon sampling theorem. Our
data, the far field pattern, are in the so-called Fourier or frequency domain of the
scatterer. These data lie on circles in the Fourier domain of the scatterer centered
at the point −kη̂, where η̂ is the direction of the incident field. This is depicted in
Figure 1.

For our purposes it is not necessary to carry out a detailed sampling calculation
for the geometry shown in Figure 1—an estimate based on sampling on a rectangular
grid suffices. Our discussion of the sampling theory is terse; interested readers are
referred to [14] for more details. We consider a cubic lattice of samples of some smooth
function ϕ on R

m defined by

(4.9) ϕs := comb
( x

Δx

)
ϕ(x),
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where Δx is distance between the samples and comb (x) is the m-dimensional “comb”
function

comb (x) :=

∞∑
|n|=−∞

δ(x− n)

for n a multi-index depending on the dimension m = 2 or 3. By the convolution
theorem, the Fourier spectrum of the sampled function is

ϕ̂s(ξ) = (Δx)m comb (Δxξ) ∗ ϕ̂(ξ),

where ξ is the Fourier dual variable to x and ∗ denotes convolution. It can be shown
[14, eq. (2–53)] that the sampled Fourier spectrum has the explicit representation

(4.10) ϕ̂s(ξ) =

∞∑
|n|=−∞

ϕ̂
(
ξ − n

Δx

)
,

where, again, n is a multi-index. If we assume that ϕ is bandlimited, then ϕ̂ has
compact support. Suppose ϕ̂ is supported on the cube R. If the sample spacing
1/Δx is large enough that for all ξ ∈ R

ϕ̂
(
ξ − n

Δx

)
= ϕ̂s (ξ) ,

then by (4.10) the sampled Fourier spectrum is just a periodic extension of the true
Fourier spectrum; hence we can reconstruct ϕ exactly from the spectrum of the sam-
pled function. If r is the length of the smallest cube that supports the spectrum of
ϕ, then the sampled spectrum will exactly represent the true spectrum as long as

Δx ≤ 1

2r
.

When equality holds, the sampling is said to be at the Nyquist frequency. At the
Nyquist frequency, we have the Whittaker–Shannon sampling theorem

(4.11) ϕ(x) =
∞∑

|n|=−∞
ϕ
( n

2r

)
sinc

(
2r

(
x− n

2r

))
,

where sinc is the m-dimensional sinc function.
Let us suppose that the smallest feature of our scatterer is 1/M of the size of

the illuminating wavelength. By the Whittaker–Shannon sampling theorem, a sam-
pling rate of at least 1/(2M) in the physical domain represents a highest frequency
component of M in each direction and thus 2M sample points on a Cartesian grid
along each dimension in the Fourier domain. In Figure 1 we see that the “frequency
domain” is covered by circles of radius k centered at −kη̂. The gaps in the frequency
domain are determined by the smallest sampling rate with respect to either the direc-
tion of incidence η̂ or the far field samples x̂. Suppose that the far field is sampled at
infinitesimal intervals and the directions of incidence are sampled at 4N points evenly
distributed on [−π, π]. The largest gap in the frequency domain for this sampling
geometry is bounded above by 2πk

√
2/N . In order to achieve the same resolution as

could be achieved by sampling on the Cartesian grid, N must be chosen so that

(4.12)
2π

√
2

N
≤ 1

M
.
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This yields a conservative lower bound on the sampling frequency N of the far field
pattern and incident field directions needed to achieve a desired spatial resolution
1/M relative to the wavelength of the illuminating field. Since this analysis is based
on the physical optics approximation, we expect these sampling requirements in the
far field to be greater than what will actually be needed to resolve the scatterers. This
is illustrated in section 5.

5. Examples.

5.1. An infinite cylinder. As a first example we consider scattering from an
infinite cylinder over which the field satisfies homogeneous Dirichlet conditions. While
this example is didactic it has the advantage that the fields have explicit formulations.
Taking advantage of radial symmetry, we parameterize directions on the unit sphere S

by the angles α, where αi is the direction of the incident field and α0 is the observation
point on the far field sphere. The incident and scattered fields can be represented in
series of Bessel and Hankel functions, respectively. Let b be the cylinder radius, and
let Jn and H+

n denote Bessel and Hankel functions of the first kind, respectively; then

(5.1) u∞(α0, αi) = −
∞∑

n=−∞

Jn(kb)

H+
n (kb)

ein(αi−α0).

It is easy to verify that the singular system {ψn, ξn, σn} is, in this case, given by

ψn(α0) =
1√
2π

e±inα0 , ξn(αi) =
eiφn

√
2π

e±inαi ,

σn =

∣∣∣∣ Jn(kb)

Hj(kb)

∣∣∣∣ ,(5.2)

where φn = Arg [Jn(kb)/Hn(kb)] and the plus sign gives one of the two singular
vectors and the minus sign the second for each singular value σn.

For the density

g =
∞∑
n

anξn(η̂)

we construct the incident Herglotz wave function

vig(x) :=

∫
S

g(−η̂)ui(x,−η̂) ds(η̂) =

∞∑
n

anvn(x), where

vn(x) =

∫
S

ξn(−η̂)ui(x,−η̂) ds(η̂).(5.3)

By (3.12), the corresponding far field is given by

(5.4) v∞g (x̂) :=

∫
S

g(−η̂)u∞(x̂,−η̂) ds(η̂) =

∞∑
n

an(Fξn)(x̂) =

∞∑
n

anσnψn(x̂).

For this simple geometry, the incident and scattered fields have explicit formula-
tions. The scattered field corresponding to vig has the representation

(5.5) vsg =
∑
n

anσnv
s
n(x), where vsn(x) =

∫
S

ξn(−η̂)us(x,−η̂)ds(η̂)
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Fig. 2. Top: Plot of the singular values σn = |Jn(kb)/Hn(kb)| with k = 1 for a cylinder having
radius b = 35. Bottom: Plots of the left-hand side of (5.8) and the right-hand side of this equation
for Nγ = 35, for N = Nγ + 20, and for b = 35. Also shown is a plot of the right-hand side of this
equation for the case where Nγ = 39.

and us is the scattered field corresponding to an incident plane wave. In cylindrical
polar coordinates, x = (r, θ), this simplifies to

vin(r, θ) =
√

2πinJn(kr)e±inθ,(5.6)

vsn(r, θ) =
√

2πeiφninH+
n (kr)e±inθ.(5.7)

For details see [22].
For a Dirichlet obstacle, the total field is zero on the boundary, and, by Theorem

3.5, the incident field constructed from the finite collection of singular functions from
Nγ to N is approximately zero:

lim
r→b

N∑
n=Nγ

∣∣∣∣Jn(kr) − Jn(kb)

Hn(kb)
Hn(kr)

∣∣∣∣
2

≈ lim
r→b

N∑
n=Nγ

|Jn(kr)|2 ≈ 0(5.8)

with N > Nγ and Nγ such that σn < γ, for all n > Nγ .
We present a plot of the singular values σn = |Jn(kb)/Hn(kb)| using unit wave-

length (k = 2π) and cylinder radius b = 35λ = 35 in the top of Figure 2. It is clear
from this figure that the cutoff Nγ ≈ [kb] ≈ 220, where [x] indicates the nearest in-
teger approximation of x. In the bottom of the figure we show plots of the sums on
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Fig. 3. Sound-soft obstacles to be recovered.

the left- and right-hand sides of (5.8) for the cases where Nγ = [kb], Nγ = [kb] + 4,
and N = Nγ + 20. The boundary of the cylinder is identified by where the incident
field amplitude falls below a chosen cutoff. If this cutoff is chosen to be .02, then one
would estimate the radius of the cylinder to be about 35 for the case Nγ = 35, while
one would estimate the radius to be 36 for the case Nγ = 39. We obtained similar
results for other choices of the cylinder radius b. We observed in our experiments that
the sharpness of the zero of the constructed incident field at the boundary depends
on the cutoff Nγ . The closer Nγ is to the optimal cutoff, kb, the higher the contrast.

5.2. Two ellipses. Our second example is of two ellipses in R
2 shown in Figure

3. We use potential theoretic techniques to calculate the far field pattern for an
incident plane wave. We introduce the acoustic single- and double-layer operators
given, respectively, by

(Sϕ)(x) := 2

∫
∂Ω

ϕ(y)Φ(x, y) ds(y), x ∈ ∂Ω,

(Kϕ)(x) := 2

∫
∂Ω

ϕ(y)
∂Φ(x, y)

∂ν(y)
ds(y), x ∈ ∂Ω,(5.9)

where Φ is the two-dimensional outgoing free-space fundamental solution to the
Helmholtz equation, a zeroth-order Hankel function of the first kind. It can be shown
[8] that, if the potential ϕ satisfies the integral equation

(5.10) (I + K − iS)ϕ(·; η̂) = −ui(·; η̂),

then the scattered and far fields are given by

us(x, η̂) =

∫
∂Ω

(
∂Φ(x, y)

∂ν(y)
− iΦ(x, y)

)
ϕ(y; η̂) ds(y), x ∈ Ωo,(5.11a)

u∞(x̂; η̂) = β

∫
∂Ω

(
∂e−iκx̂·y

∂ν(y)
− ie−iκx̂·y

)
ϕ(y; η̂) ds(y), x̂ ∈ S.(5.11b)

We do not use a sophisticated quadrature rule to resolve the point source on the
boundary. This introduces a numerical error of about 10% which has the advantage
of introducing noise into our calculations, albeit systematic noise.
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For x ∈ R
2 fixed, we calculate the nonscattering incident field vig shown in Figures

4–6 as

(5.12) vig(x) =

N∑
n=Nγ

|vin(x)|,

where vin is given by (5.3). The corresponding scattered field is vsg =
∑N

n=Nγ
σnv

s
n(x)

for vsn given by (5.5) with us given by (5.11a).
To illustrate the resolution limits we sample the far field at N = 16, 32, 64,

and 128 points uniformly distributed over S with 16, 32, 64, and 128 incident field
directions, respectively, also uniformly distributed over S. The wavenumber is k = 3,
and the smaller ellipse has minor axis of radius 0.25. By the resolution analysis of
section 4.2, our smallest physical feature is 1/6 the illuminating wavelength, which
according to (4.12) suggests that we need to sample the far field at N ≥ 2π

√
2(6) ≈ 53

points with more than 53 incident directions. This is more than is actually required,
as an examination of the singular values of the far field operator shows. In Figure
4 we show the magnitude of the constructed incident field for N = 32 through 128
with Nγ = N − 12. This value of Nγ was chosen based on the decay of the singular
values shown in the left column of Figure 4. The singular values decay rapidly after
the 7th singular value as predicted by the eventual exponential decay of the singular
values of the far field operator. They flatten out, however, beyond the 20th singular
value because of the error, or noise, in our calculation of the far field pattern. In other
words, the 20th and higher singular vectors of the far field operator appear to be in
the noise subspace. For a sampling rate of 32, we have Nγ = N − 12 = 20, and our
constructed incident field then consists of all available singular vectors in the noise
subspace. For higher sampling rates of 64 and 128 there is not a significant difference
in resolution when only the last 12 singular vectors are used.

The case N = 16 shown in Figure 5 illustrates the reduction in resolution that
results from constructing the incident field from singular vectors that are not in the
noise subspace of F . In Figure 5(b) we used the 12 smallest singular vectors to
construct the incident field. As Figure 5(a) shows, most of these are still well within
the signal subspace of the far field operator. With only the last 4 singular vectors we
are able to achieve remarkably good results, as demonstrated in Figure 5(c).

To illustrate the relative robustness of the method with respect to the choice
of the cutoff Nγ , so long as it is above the critical cutoff, in Figure 6 we show the
constructed incident field with Nγ = 25, 78, and 124. The incident fields are not
normalized in order to gauge the relative contrast between the images.

To verify that the constructed scattered field, vsg, is indeed small outside the scat-
terer, we show in Figure 7 the computed scattered field using (5.5). The constructed
scattered field is O(10−13) around the scatterer and decays to zero rapidly away from
the scatterer. The corresponding incident field, in contrast, is at least O(10−4) on the
exterior of the scatterer. This demonstrates Corollary 3.2.

6. Conclusion. Our main results, Theorem 3.1, Corollary 3.2, and Theorem
3.5, show that there is a density ĝ that approaches, nontrivially, the null space of the
far field operator corresponding to some fixed, smooth scatterers. A superposition
of plane waves weighted by such a density is a nonscattering incident field for these
scatterers. The density can be constructed from the singular functions of the far field
operator and the nonscattering phenomenon understood as the orthogonality of the
singular functions to the far field pattern of a point source with sources located on
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Fig. 4. (a)–(c) Decay of the singular values of the multistatic response matrix for the far field
sampled at 32 (a), 64 (b), and 128 (c) points for 32, 64, and 128 incident field directions, respectively,
evenly distributed on S. The far field pattern is calculated by (5.11b) to only about 10% accuracy,
which introduces noise into the experiment reflected in the lower plateau of the singular values.
(d)–(f) The magnitude of the corresponding incident field |vi| calculated by (5.12) and (5.3) for the
far field sampled at 32 (d), 64 (e), and 128 (f) points for 32, 64, and 128 incident field directions,
respectively, evenly distributed on S. The cutoff for each of these examples is Nγ = N − 12, where
N = 32, 64, and 128, respectively.

the boundary of the scatterer. Our statement of Theorem 3.1 also raises unanswered
questions about the rate of blowup of the densities in the linear sampling method.

The point source method of Potthast [24, 25] rests on the approximation of the
scattered field us by computing the correct density for the construction of a backprop-
agation operator (2.16). As already noted, constructing such a density is a nontrivial
task since this requires some knowledge of the boundary of the scatterer which we
assume is unknown. The linear sampling method approaches the problem of finding
the shape and location of the scatterer by looking for points where the fundamental
solution far field pattern is not in the range of the far field operator, but still, one
must solve an ill-posed linear integral equation at each point in some computational
domain. One of the disadvantages of the linear sampling methodology, however, is
that, since it is not constructive, it provides very little information about numerical
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Fig. 5. (a) Decay of the singular values of the multistatic response matrix for the far field
sampled at 16 points for 16 incident field directions evenly distributed on S. (b) The magnitude of
the incident field |vi| calculated by (5.12) and (5.3) with cutoff Nγ = 4, N = 16. (c) Incident field

with Nγ = 12 and N = 16.
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Fig. 6. The magnitude of the incident field |vi| calculated by (5.12) and (5.3) for the far field
sampled at 128 points with 128 incident field directions evenly distributed on S. For each of these
examples N = 128 with cutoff Nγ = 104 (a) and Nγ = 20 (b).

algorithms. Any numerical implementation will involve some sort of regularization
strategy. The actual behavior of regularized solutions, or indeed any indication that a
particular regularization strategy will deliver the desired behavior, remains open with
the exception of the analysis of [3].

Our numerical experiments indicate, however, that particular details about imple-
menting the linear sampling or point source methods are somewhat beside the point:
it is not necessary to create an approximate domain as with the point source method,
nor is it necessary to solve many ill-posed linear integral equations as in the linear
sampling method. We need only work with incident plane waves and the known sin-
gular functions of the far field operator. This remains to be proved. We believe that
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Fig. 7. The magnitude of the scattered field calculated via (5.5) and (4.3) for the far field
sampled at 128 points with 128 incident field directions evenly distributed on S. Here N = 128, and
Nγ = 116.

the answer lies with a closer examination of the connections between linear sampling
and the factorization method as detailed in [3]. This is the subject of future research.

These results have intriguing implications for inverse scattering and signal design.
The method works very much like the linear sampling method for inverse scattering
in that the proposed incident field is constructed from the measured far field data and
the scatterer is identified by those points in the domain where the incident field (and
scattered field) is small. For signal design the method opens the door to the possibility
of constructing signals that avoid certain known obstacles while irradiating others.
Our application of the linear sampling method to the MUSIC algorithm is novel and
clarifies the connections between many different inverse scattering approaches.
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CONVECTIVE STABILIZATION OF A LAPLACIAN MOVING
BOUNDARY PROBLEM WITH KINETIC UNDERCOOLING∗

UTE EBERT† , BERNARD MEULENBROEK‡ , AND LOTHAR SCHÄFER§

Abstract. We study the shape stability of disks moving in an external Laplacian field in two
dimensions. The problem is motivated by the motion of ionization fronts in streamer-type electric
breakdown. It is mathematically equivalent to the motion of a small bubble in a Hele–Shaw cell
with a regularization of kinetic undercooling type, namely, a mixed Dirichlet–Neumann boundary
condition for the Laplacian field on the moving boundary. Using conformal mapping techniques,
linear stability analysis of the uniformly translating disk is recast into a single PDE which is exactly
solvable for certain values of the regularization parameter. We concentrate on the physically most
interesting exactly solvable and nontrivial case. We show that the circular solutions are linearly stable
against smooth initial perturbations. In the transformation of the PDE to its normal hyperbolic form,
a semigroup of automorphisms of the unit disk plays a central role. It mediates the convection of
perturbations to the back of the circle where they decay. Exponential convergence to the unperturbed
circle occurs along a unique slow manifold as time t → ∞. Smooth temporal eigenfunctions cannot
be constructed, but excluding the far back part of the circle, a discrete set of eigenfunctions does
span the function space of perturbations. We believe that the observed behavior of a convectively
stabilized circle for a certain value of the regularization parameter is generic for other shapes and
parameter values. Our analytical results are illustrated by figures of some typical solutions.

Key words. moving boundaries, kinetic undercooling, Laplacian growth, streamer discharges,
convective stabilization
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1. Introduction.

1.1. Problem formulation in physical and mathematical context. The
mathematical model considered in this paper is motivated by the physics of electric
breakdown of simple gases like nitrogen or argon [1, 2, 3, 4, 5]. During the initial
“streamer” phase of spark formation, a weakly ionized region extends in a strong
externally applied electric field. As the ionized cloud is electrically conducting, it
screens the electric field from its interior by forming a thin surface charge layer.
This charged layer moves by electron drift within the local electric field and creates
additional ionization, i.e., additional electron-ion pairs, by collisions of fast electrons
with neutral molecules. We here approximate the ionized and hence conducting bulk
of the streamer as equipotential. In the nonionized and hence electrically neutral
region outside the streamer, the electric field obeys the Laplace equation. The thin
surface charge layer can be approximated as an interface which moves according to
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the electric field extrapolated from the neutral region onto the interface. We therefore
are concerned with a typical moving boundary problem.

Such moving boundary problems occur in various branches of physics, chemistry,
or biology. The most extensively studied examples are viscous fingering observed in
two-fluid flows [6] or the Stefan problem of solidification from an undercooled melt [7].
Other physical phenomena like the motion of voids in current carrying metal films [8]
lead to similar mathematical models [9].

We here discuss the streamer model in two spatial dimensions, where in the
simplest “unregularized” version the basic equations coincide with those describing the
motion of a small bubble in a liquid streaming through a Hele–Shaw cell [10, 11, 12, 13],
which is a special case of two-fluid flow. The unregularized streamer model has been
discussed in [4, 14]. Restriction to two dimensions in space allows us to use standard
conformal mapping techniques [6, 15] to reduce the moving boundary problem to the
analysis of the time dependence of the conformal map that maps the unit disk to the
exterior of the streamer.

It is well known that unregularized moving boundary problems of this type are
mathematically ill posed [15], in the sense that the moving interface generically de-
velops cusps within finite time which leads to a breakdown of the model. To suppress
such unphysical behavior, the models are regularized by imposing nontrivial boundary
conditions on the interface. For viscous fingering typically some curvature correction
to the interfacial energy is considered. For the streamer problem a mixed Dirichlet–
Neumann boundary condition can be derived [14, 16] by analyzing the variation of the
electric potential across the screening layer. Such a boundary condition is well known
from the Stefan problem, where it is termed “kinetic undercooling.” It rarely has
been considered for Hele–Shaw-type problems. There are strong hints [15, 17, 18, 19]
but no clear proof that it suppresses cusp formation. In particular, it has been shown
that an initially smooth interface stays smooth for some finite time interval.

Here we consider the linear stability of uniformly translating circles in a Lapla-
cian potential ϕ that approaches a constant slope ϕ ∝ x far from the circle; this
means that the electric field E = −∇ϕ is constant far from the circle. Though this
field breaks radial symmetry, uniformly translating circles are exact solutions of the
regularized problem [14]. However, perturbations of these circles do not simply grow
or decay locally as on a planar front or on circles in a radially symmetric force field
[17, 18], but are also convected along the boundary; this convection turns out to be a
determining part of the dynamics. Though physical streamers are elongated objects
frequently connected to an electrode, the front part of a streamer is well approxi-
mated by a circular shape. Since it is this part that determines the dynamics, our
analysis should be relevant also for more realistic shapes like fingers where no closed
analytical solutions of the regularized uniformly translating shape are known [19]. In
what follows we will use the term “streamer” to denote the translating circles, being
aware that this is a slight abuse of the term.

1.2. Overview of content and structure of the paper. Regularization of
the streamer model introduces some parameter ε that measures the effective width of
the interface relative to the typical size of the ionized region. The regularized problem
allows for a class of solutions of the form of uniformly translating circles, and linear
stability analysis of these solutions can be reduced to solving a single PDE. For the
special case ε = 1, the general solution of this PDE can be found analytically, as we
briefly discussed in [14]. The present paper is restricted to this special case as well.

The main results of the letter [14] are the following: The dynamics of infinitesi-
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mal perturbations is governed by a subgroup of the automorphisms of the unit disk.
Generically, these automorphisms convect the perturbations to the back of the moving
body. Initially, perturbations might grow, but they decay exponentially for t → ∞.
Furthermore, this final convergence back to the unperturbed circle follows some uni-
versal slow manifold.

The present paper contains a detailed derivation, discussion, and extension of the
results presented in [14]. Furthermore, the analyticity and completeness of temporal
eigenfunctions and the Fourier decomposition of perturbations are discussed, limit
cases of the dynamics are worked out analytically, and results are demonstrated in a
set of figures.

In detail, the time evolution determined by a PDE is often analyzed in terms of
temporal eigenfunctions. For the present problem in a space of functions representing
smooth initial perturbations of the moving circle, no such eigenfunctions exist. They
can be constructed only if we allow for singularities on the boundary. We find here that
a subset of these functions with time dependence e−nτ , n ∈ N0, is intimately related to
the asymptotic convergence of the perturbations. These functions show singularities
only at the backside of the circle, and the front part of any smooth perturbation
can be expanded in this set of functions. The spatial domain of convergence of this
expansion increases with time and, asymptotically for t → ∞, it covers almost the
whole streamer. In this restricted sense these eigenfunctions form a complete set.

These results dealing with infinitesimal perturbations, of course, do not imply the
asymptotic stability of the circular shape against finite perturbations. To solve this
problem, the full nonlinear theory must be considered. Nevertheless, a first hint might
be gained by considering the evolution of a finite perturbation under the linearized
dynamics. Due to the conformal mapping involved, the absence of cusps under this
evolution is not a completely trivial question. We show here that for a large range of
smooth initial conditions, the shape of the streamer stays smooth under the linearized
dynamics.

All the present work deals with the exactly solvable case ε = 1, whereas the phys-
ically most interesting case is ε � 1. We believe, however, that the features we could
identify explicitly for ε = 1 are generic for all ε > 0. In particular, the subgroup of
automorphisms of the unit circle leads to the basic mechanism of convective stabi-
lization, it is for all ε > 0 intimately related to the characteristic curves of the PDE,
and it also governs the dynamics in another exactly solvable case, namely, for ε = ∞.
Furthermore, it can be shown [20] that the temporal eigenvalues λn(ε) emerging from
λn(1) = −n stay negative for all ε > 0, which also indicates that the circle might be
asymptotically stable for arbitrary ε > 0.

This paper is organized as follows. In section 2 we introduce the model, and the
linear stability analysis of translating circles is carried through in section 3. These
two sections are extended versions of [14]. Analytical results based on the PDE of
linear stability analysis are derived in section 4, in particular, center of mass motion,
internal motion, (non)analyticity and completeness of eigenfunctions, intermediate
growth and asymptotic decay of perturbations, Fourier representation, and motion
of nonanalytical points in the complex plane of the conformal map. These dynamic
features are illustrated by explicit examples in section 5. The appendix contains a
discussion of the case ε = ∞.

2. Physical model and conformal mapping approach.

2.1. The model. We assume the ionized bulk of the streamer to be a compact,
simply connected domain D̄i of the (x, y)-plane (see Figure 2.1). Outside the streamer,
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Fig. 2.1. Geometry of the streamer model; �E is the constant far field.

i.e., in the open domain Dn, there are no charges and the electric potential obeys the
Laplace equation

(2.1) Δϕ = 0 for (x, y) ∈ Dn.

The streamer moves in an external electric field that becomes homogeneous far from
the ionized body; therefore the electric potential ϕ at infinity obeys the boundary
condition

(2.2) ϕ → E0x + const for
√

x2 + y2 → ∞.

This condition excludes a contribution to ϕ diverging as ln(x2 + y2), which implies
that the total charge due to the sum of all electrons and ions vanishes within D̄i and
that the far field has the form

�E = −∇ϕ → −E0x̂,

where x̂ is the unit vector in the x-direction. On the surface of the streamer we impose
the boundary condition

(2.3) ϕ = � n̂ · ∇ϕ,

where n̂ is the unit vector normal to the surface pointing into Dn. Here as well as in
(2.4) below it is understood that the surface is approached from Dn. As mentioned
in the introduction, this boundary condition results from the analysis of the variation
of the potential across the interface, and the length parameter � can be interpreted
as the effective thickness of the screening layer. The case � = 0 corresponds to the
unregularized case with a pure Dirichlet condition on the moving boundary. Dynamics
is introduced via the relation

(2.4) vn = n̂ · ∇ϕ,

which holds on the boundary and determines its normal velocity vn. This defines our
model. For further discussion of its physical background, we refer to [1, 2, 3, 4, 5, 16].
Now obviously, E0 can be absorbed into a rescaling of the potential ϕ and of the time
scale inherent in the velocity vn; therefore we henceforth take E0 = 1. Clearly the
model defined here is most similar to a model of the motion of a small bubble in a
Hele–Shaw cell [11, 12], except that the boundary condition (2.3) is of the form of a
kinetic undercooling condition [17, 18].
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2.2. Conformal mapping. A standard approach to such moving boundary
problems proceeds by conformal mapping [6, 14]. We identify the (x, y)-plane with
the closed complex plane z = x+ iy, and we define a conformal map f(ω, t) that maps
the unit disk Uω in the ω-plane to Dn in the z-plane, with ω = 0 being mapped on
z = ∞:

(2.5) z = f(ω, t) =
a−1(t)

ω
+ f̂(ω, t), a−1(t) > 0.

Here the function f̂ is holomorphic for ω ∈ Uω, and we assume that the deriva-
tives ∂n

ω of all orders n exist on the unit circle ∂Uω. This restricts our analysis to
smooth boundaries of the streamer. (Weaker assumptions on boundary behavior will
be discussed briefly in section 4.8.) We recall that the closed physical boundary can
now be retrieved as xα(t) = �f(eiα, t) and yα(t) = 	f(eiα, t)), where the interface
parametrization with the real variable α ∈ [0, 2π[ is fixed by the conformal map.

By virtue of (2.1), the potential ϕ restricted to Dn is a harmonic function; there-
fore it is the real part of some analytic function Φ̃(z, t), which under the conformal
map (2.5) transforms into

(2.6) Φ(ω, t) = Φ̃ (f(ω, t)) =
a−1(t)

ω
+ Φ̂(ω, t).

Here the holomorphic function Φ̂ obeys the same conditions as f̂ above. The pole
results from the boundary condition (2.2) with E0 = 1 and (2.5).

Conditions (2.3) and (2.4) take the form

|ω∂ωf | �[Φ] = −�� [ω∂ωΦ] for ω ∈ ∂Uω,(2.7)

�
[

∂tf

ω∂ωf

]
=

� [ω∂ωΦ]

|ω∂ωf |2
for ω ∈ ∂Uω.(2.8)

Equations (2.5)–(2.8) form the starting point of our analysis.

3. Linear stability analysis of translating circles.

3.1. Uniformly translating circles. A simple solution of (2.7), (2.8) takes the
form

(3.1)

⎧⎪⎪⎨
⎪⎪⎩

f (0)(ω, t) =
R

ω
+

2R

R + �
t,

Φ(0)(ω, t) = R

[
1

ω
− R− �

R + �
ω

]
.

In physical coordinates x and y, it describes circles of radius R > 0 centered at
x(t) = v0t and moving with velocity v0 = 2R/(R + �) in direction x̂. Thus the point
ω = 1 maps to a point at the front, and the point ω = −1 maps to a point at the
back of the streamer. These points will play a crucial role in our analysis.

We note that the one-parameter family (3.1) of solutions parametrized by R,
which is found in the regularized model, is a subset of the two-parameter family
found in the unregularized case � = 0. As is well known, for � = 0 all ellipses with
one axis parallel to x̂ are uniformly translating solutions [10].

3.2. Derivation of the operator Lε for linear stability analysis. We now
derive the equation governing the evolution of infinitesimal perturbations of the circles
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(3.1). In general, the parameter R can become time dependent. We use the ansatz

(3.2)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

f(ω, t) =
R(t)

ω
+ x(t) + η β(ω, t) ,

Φ(ω, t) = R(t)

[
1

ω
− R(t) − �

R(t) + �
ω + η χ(ω, t)

]
,

∂tx(t) =
2R(t)

R(t) + �
, R(t) > 0,

where β and χ are holomorphic functions of ω and where η is a small parameter.
However, working to first order in η it is found that R stays constant. This results
from the fact that the dynamics embodied in (2.8) strictly conserves the area |D̄i| of
the streamer, which in this context is equivalent to the temporal conservation of the
zero order Richardson moment [13, 15, 21], but integrated over the complement of
Dn. In terms of the mapping f , the conserved area

∣∣D̄i

∣∣ can be written as

∣∣D̄i

∣∣ =

∣∣∣∣
∫ 2π

0

dα
(
�
[
f(eiα, t)

]
− x(t)

)
∂α	

[
f(eiα, t)

]∣∣∣∣
= πR2(t) − η2

∫ 2π

0

dα�
[
β(eiα, t)

]
∂α	

[
β(eiα, t)

]
.(3.3)

Now introducing the time independent length R0 through
∣∣D̄i

∣∣ = πR2
0, we find R(t) =

R0+O(η2), which proves that R is time independent within linear perturbation theory.
In what follows we will use R0 as our length scale, introducing

(3.4) ε =
�

R0
and τ =

2

1 + ε

t

R0
,

and rescaling f and Φ by factors 1/R0. We note that within a dimensionless time
interval τ of order unity, the streamer moves a distance of the order of its size.

With the thus simplified ansatz (3.2), equations (2.7) and (2.8) evaluated to first
order in η take the form

(3.5)

⎧⎪⎨
⎪⎩

�
[
ω(∂ω − ∂τ )β − 1 + ε

2
ω∂ωχ

]
= 0,

�
[
ε(ω2 + 1)ω∂ωβ − (1 + ε)(1 + εω∂ω)χ

]
= 0,

for ω ∈ ∂Uω.

Since β and χ are holomorphic for ω ∈ Uω, these equations imply

(3.6)

⎧⎨
⎩ ω(∂ω − ∂τ )β − 1 + ε

2
ω∂ωχ = 0,

ε(ω2 + 1)ω∂ωβ − (1 + ε)(1 + εω∂ω)χ = ia(t),
for ω ∈ Uω,

where a(t) is some real function of time. χ is eliminated by substituting the expressions
for ∂ωχ and ∂2

ωχ from the first equation and its derivative into the second equation
differentiated with respect to ω. This yields

(3.7) Lεβ = 0,

where Lε is the operator

(3.8) Lε =
ε

2
∂ω (ω2 − 1)ω ∂ω + ε ω∂ω∂τ + (1 + ε) ∂τ − ∂ω.
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3.3. Normal form of Lε and induced automorphisms of the unit disk. It
is instructive to transform Lε to the normal form of a hyperbolic differential operator.
We introduce

(3.9) T = tanh
τ

2
,

mapping the time interval τ ∈ [0,∞[ to T ∈ [0, 1[, and

(3.10) ζ =
ω + T

1 + ωT
,

to find

Lε = εh(ζ, T )∂T∂ζ +
∂h(ζ, T )

∂T
∂ζ + (1 + ε)∂T ,(3.11)

h(ζ, T ) =
ω

∂ζω
=

(ζ − T )(1 − Tζ)

1 − T 2
.(3.12)

This identifies the manifolds T = const or ζ = const as the characteristic manifolds
of our problem for all ε 
= 0.

As function of the “time-like” parameter T , 0 ≤ T < 1, the transformation
ζ = ζ(ω, T ) in (3.10) represents a semigroup of automorphisms of the unit disk, with
fixed points

ζ = ω = ±1.

For T → 1, corresponding to τ → ∞, all points ω 
= −1 are mapped into ζ = +1, so
that the large time behavior of any perturbation is governed by this attractive fixed
point.

3.4. Analytical solutions of (3.7) for special values of ε. The general
solution of (3.7) can be found analytically for the special values ε = 0, ε = ±1, and
ε = ∞. In the unregularized case ε = 0, evidently any function

β(ω, τ) = β̃(ω + τ)

is a solution, and any singularity of β̃ found in the strip

0 < �[ω] < ∞, −1 ≤ 	[ω] ≤ 1,

will lead to a breakdown of perturbation theory within finite time. This is the finger-
print of the ill-posedness of the problem for ε = 0.

For ε = −1, β(ω, τ) generically for all τ > 0 has a logarithmic singularity at
ω = −T (τ). We recall that negative values of ε = �/R0 imply negative thickness of
the screening layer and thus are of no physical interest.

The case ε = +1 is discussed in detail in the remainder of the paper. Though
a regularization length � identical to the object size R0 is somewhat artificial, it is
accessible to rigorous analytical treatment and, as explained in section 1.2, we expect
it to reveal generic features of the behavior for all ε > 0.

This is supported by the results for ε = ∞ which show essentially the same
features as the results for ε = 1 below. Though the limit ε → ∞ is physically absurd
when applied to streamers, it is worth studying with respect to the properties of the
operator Lε, and we present a short discussion in the appendix.
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4. Strong screening: Analytical results for ε = 1.

4.1. Analytical solution of the general initial value problem. With the
form (3.11) of Lε, the PDE (3.7) for ε = 1 reduces to

(4.1) ∂T (2 + h(ζ, T )∂ζ)β = 0,

showing that the function

(4.2) G(ζ) = (2 + h(ζ, T )∂ζ)β

is independent of T . To determine β, we use (3.12), h(ζ, T ) = ω/∂ζω, to find

(4.3) (2 + ω∂ω)β(ω, τ) = G(ζ), ζ = ζ(ω, T (τ)).

The solution regular at ω = 0 takes the form

(4.4) β(ω, τ) =

∫ ω

0

x dx

ω2
G

(
x + T (τ)

1 + xT (τ)

)
.

A second independent solution is singular in ω = 0:

(4.5) βsing(ω, τ) ≡ 1

ω2
.

The function G in the regular solution (4.4) is determined by the initial condition
β(ω, 0) through

(4.6) G(ω) = (2 + ω∂ω)β(ω, 0).

It thus is holomorphic for ω in the unit disk Uω, and all derivatives exist on ∂Uω, since
we assume the initial surface to be smooth. Equation (4.4) then shows that β(ω, τ)
inherits these properties for all τ < ∞.

4.2. Automorphism of the unit disk and a bound on the perturbation.
It is now clear that the automorphisms ζ(ω, T ) of Uω from (3.12) contain the basic
dynamics, and, as shown in the appendix, this also holds for ε = ∞. This is to be
contrasted to the unregularized case ε = 0, where the dynamics amounts to a trans-
lation of the unit disk. With the present dynamics, in the course of time larger and
larger parts U(δ) of the unit disk Uω are mapped to an arbitrarily small neighbor-
hood |ζ − 1| < δ of the attractive fixed point ζ = 1. According to (4.4) and (4.6),
the initial condition in the neighborhood |ω − 1| < δ then determines the evolution
of β(ω, τ) in all U(δ). As a consequence, any pronounced structure found initially
near ω0, |ω0 − 1| > δ, is convected towards ω = −1. Quantitatively this behavior is
embodied in (4.17) below, and explicit examples will be presented in section 5; see,
in particular, Figure 5.4(b).

For the further discussion we normalize G(ω) so that

(4.7) max
|ω|=1

|G(ω)| = 1.

Equations (4.4), (4.7) yield a bound on β(ω, τ):

(4.8) |β(ω, τ)| ≤ 1

2
, |ω| ≤ 1, 0 ≤ T ≤ 1.

Thus the perturbation can shift the position of the streamer by at most η/2, and
therefore it cannot affect the asymptotic velocity of the propagation.
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4.3. Center of mass motion for 0 ≤ τ < ∞. In precise terms the position
of the streamer can be defined as the center of mass

(4.9) zcm = xcm + iycm =
1

|D̄i|

∫
Di

dx dy (x + iy),

where the integral is related to the first order Richardson moment. Evaluating (4.9)
and (4.4), we find to first order in η

zcm = τ + η β(0, τ),(4.10)

β(0, τ) =
G(T (τ))

2
.(4.11)

Here τ is the uniform translation of the unperturbed circle. The additional center
of mass motion (4.11) for all times is explicitly given by the initial condition β(ω, 0)
through (4.6) and the transformed time variable T (τ) from (3.9); for τ → ∞, it
approaches β(0, τ) → G(1)/2.

4.4. Internal motion: Convergence along a universal slow manifold for
τ → ∞. We now concentrate on the perturbation of the circular shape, given by

(4.12) β̃(ω, τ) = β(ω, τ) − β(0, τ).

The explicit expression

(4.13) β̃(ω, τ) =

∫ 1

0

dρ ρ

[
G

(
ρω + T

1 + ρωT

)
−G(T )

]

yields

(4.14) lim
τ→∞

β̃(ω, τ) = 0

for arbitrary G, i.e., for arbitrary initial condition (4.6). Thus the shape perturbation
converges to zero as τ → ∞, and the circular shape is linearly stable.

We note that this holds despite the fact that the limits ω → −1 and τ → ∞ (i.e.,
T → 1) do not commute:

lim
T→1

lim
ω→−1

G(ζ(ω, T )) = G(−1),

lim
ω→−1

lim
T→1

G(ζ(ω, T )) = G(+1).

This peculiar behavior near the backside of the streamer, at ω = −1, shows up only
in the rate of convergence.

Investigating the rate of convergence for τ → ∞, we first exclude a neighborhood
of ω = −1 and expand G in the integral (4.13) as

G

(
ρω + T

1 + ρωT

)
= G(T ) + (1 − T 2)

ρω

1 + ρωT
G′(T ) + O(1 − T 2)2,

where G′(ω) = ∂ωG(ω).

With

1 − T 2 = 4e−τ + O(e−2τ ),
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the integral yields

(4.15)
β̃(ω, τ)

G′(1)
=

4

ω2

[
ln(1 + ω) − ω +

ω2

2

]
e−τ + O(e−2τ ),

valid for

|1 + ω|  |ω|e−τ .

Thus outside the immediate neighborhood of ω = −1, the shape for all smooth initial
conditions with G′(1) 
= 0 converges exponentially in time as e−τ along a universal
path in function space, given in (4.15). For G′(1) = 0 the first nonvanishing term in
the expansion of G dominates the convergence.

To analyze the neighborhood of ω = −1 we take the limit τ → ∞, with

(4.16) s = (1 + ω)eτ

fixed. We find

β̃(ω, τ)

G′(1)
= 4 (ln(2 + s) − τ) e−τ

+

{
2G′(1) + 4 ln

(
2 + s

4

)(
G′

(
s− 2

s + 2

)
−G′(1)

)

+ (2 + s)

(
G(1) −G

(
s− 2

s + 2

))
− 4

∫ 4/(2+s)

0

dy ln y G′′(1 − y)

}
e−τ

G′(1)

+ O
(
τe−2τ

)
.(4.17)

In terms of ω, the first contribution on the right-hand side takes the form

4 (ln(2 + s) − τ) e−τ = 4e−τ ln
(
2e−τ + 1 + ω

)
,

which shows that a logarithmic cut of β̃(ω, τ) reaches ω = −1 for τ → ∞, but with a
prefactor vanishing exponentially in that limit. We thus have found a weak anomaly
of the asymptotic relaxation near ω = −1: In a spatial neighborhood of order e−τ the
exponential relaxation is modified by a factor τ . Furthermore, as mentioned above,
all the initial structure of β(ω, 0) is compressed into that region. This is obvious from
the occurrence of G

(
s−2
s+2

)
etc. in (4.17).

To summarize, we have found that the shape of the interface for τ → ∞ converges
to the circle along a universal slow manifold (4.15), except for a weak anomaly (4.17)
at the backside at ω = −1.

4.5. (Non)analyticity of temporal eigenfunctions. In many cases, a full
dynamical solution for arbitrary initial values cannot be found, and rather temporal
eigenfunctions are searched for. However, in the present problem, functions β(ω, τ)
resulting from smooth initial conditions cannot exhibit exponential behavior in time
for all τ , 0 ≤ τ < ∞. This is seen easily by introducing

(4.18) G(x) = Ĝ

(
x− 1

x + 1

)
,
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writing G(ζ) in the equivialent form

(4.19) G

(
ω + T

1 + ωT

)
= Ĝ

(
ω − 1

ω + 1
e−τ

)
,

and substituting this form into (4.4). Postulating strict exponential time behavior
β ∼ e−λτ , one finds

(4.20) β(ω, τ) ∝ eλτ βλ(ω), βλ(ω) =

∫ 1

0

dρ ρ

(
ωρ− 1

ωρ + 1

)λ

.

Any eigenfunction βλ(ω, 0) with λ 
= 0 clearly is singular at ω = +1, at ω = −1, or at
both points. It therefore conflicts with smooth initial conditions. On the other hand,
omitting a neighborhood of ω = −1, eigenfunctions exist for all −λ ∈ N0.

4.6. Completeness of the eigenfunctions near ω = 1. In some neighbor-
hood of ω = 1, we can even show that any regular solution β(ω, τ) can be expanded in
terms of the “eigenfunctions” β−n(ω), n ∈ N0. This results from the Taylor expansion

(4.21) Ĝ(y) =
∞∑

n=0

ĝny
n,

which by assumption converges in a disk of radius r̂ > 0. Rewriting (4.4) as

β(ω, τ) =

∫ 1

0

x dx

ω2
G

(
x + T

1 + xT

)
−
∫ 1

ω

x dx

ω2
G

(
x + T

1 + xT

)

=
M(T )

ω2
−

∞∑
n=0

ĝn e
−nτ

∫ 1

ω

x dx

ω2

(
1 − x

1 + x

)n

(4.22)

and β−n(ω) in a similar form as

(4.23) β−n(ω) =
Mn

ω2
−
∫ 1

ω

x dx

ω2

(
1 − x

1 + x

)n

,

we find

(4.24) β(ω, τ) =
M(T )

ω2
+

∞∑
n=0

ĝn

[
β−n(ω) − Mn

ω2

]
e−nτ .

Provided that e−τ < r̂, we can separate the sum into the contribution ∝ 1/ω2 and the
rest. Since both β(ω, τ) and β−n(ω) are regular at ω = 0, the contributions ∝ 1/ω2

have to cancel, which yields the final result

(4.25) β(ω, τ) =

∞∑
n=0

ĝn β−n(ω) e−nτ .

This result is valid for e−τ < r̂ in the disk∣∣∣∣1 − ω

1 + ω

∣∣∣∣ e−τ < r̂.

It generalizes the asymptotic result (4.15). Indeed, the universal shape relaxation
found in (4.15) together with the center of mass relaxation (4.11) precisely follows the
slowest eigenfunction from (4.21) with λ = −n = −1. Furthermore this result shows
that the range of validity of the expansion (4.25) increases with τ and asymptotically
covers the whole complex plane except for the special point ω = −1.
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-6 -4 -2 2 4

0.1

0.2

Fig. 4.1. β̃(eiα, τ) from (4.27) for α = 0 as a function of subtracted time θ = τ − ln 2k.

4.7. Intermediate temporal growth and coupling of Fourier modes.
Having found that the space of regular functions does not allow for strictly exponential
time behavior, we now consider the typical time variation of smooth perturbations.
Before the exponential relaxation sets in, such perturbations typically will grow, and
this growth can be quite dramatic. As an illustration we consider a perturbation
defined by

G(ω) = ωk, k  1,

corresponding to initial conditions

(4.26) β(ω, 0) =
ωk

k + 2
.

For T = 1 − e−θ/k, corresponding to times τ = θ + ln(2k) + O(1/k), we can write

G

(
ω + T

1 + ωT

)
=

(
1 − e−θ

1+ω
1
k

1 − ωe−θ

1+ω
1
k

)k

= exp

[
−e−θ 1 − ω

1 + ω

](
1 + O

(
1

k

))
,

where we again exclude some neighborhood of ω = −1. Substituting this expression
into (4.13), we find on the unit circle ω = eiα

β̃(eiα, τ)

=

∫ 1

0

dρ ρ exp

[
−e−θ 1 − ρ2 − 2iρ sinα

1 + ρ2 + 2ρ cosα

]
− 1

2
exp

[
−e−θ

]
+ O

(
1

k

)
.(4.27)

Figure 4.1 shows this function, evaluated at α = 0 (ω = 1). The behavior is quite
peculiar. Up to times of order ln k the perturbation stays of order 1/k � 1, then it
increases roughly exponentially up to values of order 1, and finally it decreases again
exponentially, approaching the slow manifold (4.15). Thus for very large k the initial
perturbation β(ω, 0) ∼ 1/k in some time interval can be amplified by a factor of order
k, and (4.27) shows that the leading behavior in that time interval is independent
of k.

Closer analysis shows that in terms of a formal Fourier expansion

(4.28) β̃(eiα, τ) =

∞∑
n=1

an(τ)einα,
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the amplification is carried by the low modes, n = O(1). As will be illustrated by
an explicit example below (cf. Figure 5.2(b)), in such a mode representation the time
evolution feeds the strength of the perturbation successively into lower and lower
modes. This is equivalent to the observation that the automorphism eiα → ζ(eiα, T )
drives all the perturbative structure towards α = π and smooths the remainder of the
interface. Note, however, that, starting with a perturbation ∼ ωk, in the course of
time modes n > k are also (weakly) populated to build up a complicated structure
near ω = −1. We recall that for the unregularized model ε = 0, the time evolution of
a perturbation ∝ ωk populates only modes k ≤ n [4].

4.8. Motion of the zeros of ∂ωf and cusps. So far we have shown that
the propagating circle is linearly stable; i.e., we implicitly considered perturbations of
infinitesimal strength η. The full nonlinear evolution of a finite perturbation is beyond
the scope of this paper. Still, it clearly is a question of practical interest, whether a
finite perturbation evolving under the linearized dynamics for all times satisfies the
assumptions underlying the conformal mapping approach. For the mapping to stay
conformal, all the zeros of ∂ωf(ω, τ) must stay outside the unit circle. Thus, here we
analyze the roots of the equation

(4.29) 0 = ∂ωf(ω, τ) = − 1

ω2
+ η ∂ωβ(ω, τ).

Using (4.3), (4.4), we can rewrite this equation as

(4.30) 2η

∫ 1

0

dρ ρ

[
G

(
ω + T

1 + ωT

)
−G

(
ρω + T

1 + ρωT

)]
=

1

ω
.

With our normalization (4.7) of G, for all ω in the closed unit disk the left-hand side
of this equation is bounded by 2|η|. We conclude that the bound

(4.31) |η| < 1

2

guarantees that within the framework of first order perturbation theory the mapping
stays conformal for all times. We now will show that in general this bound cannot be
improved.

For τ → ∞, zeros of ∂ωf(ω, τ) reach ω = −1, which is a consequence of the fact
that in this limit an infinitesimally small neighborhood of ω = −1 under the mapping
ω → ζ is mapped essentially on the whole complex plane. We now analyze this limit
for the simple example G(ω) = ω. Substituting this form into the asymptotic behavior
(4.17) and using the definition (4.16) of s, we find

∂ωβ =
4

2 + s
+ O(τe−τ ).

Equation (4.29) reduces to s = 4η−2, showing that a zero ω0 of ∂ωf(ω, τ) approaches
ω = −1 as

ω0 = −1 + (4η − 2)e−τ .

For ω0 to come from outside the unit circle we clearly must have

(4.32) �[η] <
1

2
.
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To get some feeling for the estimate (4.31), we note that for G(ω) = ωk the map
initially (for τ = 0) is conformal provided that |η| < 1+2/k. We conclude that under
the linearized dynamics a large part of smooth initial conditions relaxes to the circle.

Throughout this section we have assumed the initial boundary to be smooth, so
that all derivatives ∂n

ωG(ω) exist on the boundary |ω| = 1. Inspecting the results, it is
obvious that this assumption can be considerably relaxed, since only those derivatives
which show up explicitly have to exist. Thus, for exponential relaxation (4.15) outside
the neighborhood of ω = −1 to prevail, the existence of ∂ωG(ω) is sufficient, which
amounts to the condition that the curvature of the initial boundary is well defined.
For the circle to be linearly stable, as in (4.14), it is sufficient that G(eiα) is bounded
and continuous, which implies that the boundary has a well-defined slope.

If the initial boundary shows a cusp, the time evolution sensitively depends on
the details. If the cusp is found in the forward direction, so that G(ω) diverges for
ω → 1, the streamer will be strongly accelerated. In a related model [12], such an
effect has been pointed out before. Furthermore, the shape will not relax to a circle,
and the conformal map will presumably break down at finite time. If the cusp does
not affect the analyticity of G(ω) near ω = 1, it is convected towards the back and
broadened, whereas the front of the streamer approaches the circular shape. Still,
however, conformality of the map may break down at finite time.

5. Explicit examples for ε = 1. We here illustrate the general results by some
examples.

5.1. The evolution of Fourier perturbations. We first consider perturba-
tions of the form

(5.1) β[k](ω, 0) =
ωk

k + 2
, i.e., G(ω) = ωk.

The integral (4.4) is easily evaluated to yield

β[k](ω, τ) =
1

2ω2T 2

{
T k +

(
(Tω)2 − 1

)
ζk

+ k
(
1 − T 2

) [
T k − (ωT + 1)ζk +

1 + k + T 2(1 − k)

T k

·
(

ln(1 + ωT ) −
k−1∑
ν=1

T ν

ν
(ζν − T ν)

)]}
,(5.2)

where T = T (τ) and ζ = ζ(ω, T (τ)) are given by (3.9) or (3.10), respectively. In Fig-
ure 5.1 we have plotted snapshots of the resulting motion of the interface, determined
as

(5.3) z = x + iy =
1

ω
+ τ + η β[k](ω, τ), ω = eiα, 0 ≤ α ≤ 2π.

The direction of motion, i.e., the positive x-direction, is downwards. Together with
the moving interface, we show the unperturbed circular streamer at different times as
gray disks with the center moving according to

(5.4) zcm(τ) = τ +
η

2
G(T (τ)) = τ +

η

2
tanhk τ

2
,
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Fig. 5.1. Snapshots of the evolution of the streamer for k = 2 (left column) and k = 10 (right
column) at the indicated instants of time. The solid lines represent the perturbed interfaces. The
gray disks move with the center of mass velocity (5.4) of the perturbed circles. One gray disk has
been omitted for clarity. See the text for further discussion.

as predicted for the center of mass motion for the perturbed streamer in (4.10).
In Figure 5.1 we perturbed the circle by η β[k], k = 2 or k = 10, using the same

parameter η = 0.6eiπ/4 in both cases. The starting position for k = 10 is shifted
relative to that for k = 2 by a distance corresponding to Δτ = ln 5. As discussed
below (4.27), for 1 � k1 < k2 we expect

β[k1](ω, τ) ≈ β[k2](ω, τ + ln(k2/k1)).

Figure 5.1 illustrates that such a “universality” for the gross structure holds down to
very small k. (Of course the choice of differing values of η would distort the figures
and mask this feature.) Basically during time evolution the initial maximum closest
to the forward direction is smeared out and builds up the asymptotic circle, whereas
all other structures are compressed at the backside. For k = 10 the complicated
structure at the back is magnified in Figure 5.2(a). Figure 5.2(b) shows the time
dependence of the coefficients an of the low modes einα in the expansion (4.28), again
for k = 10. It illustrates how the strength of the perturbation cascades downwards
in n and increases in time, until it is completely absorbed into the lowest mode, i.e.,
the overall shift of the circle. We should recall, however, that modes n > k are also
weakly populated to build up the structure at the back.
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a) -1.1 -1.05 -1

-0.4

-0.2

0

0.2

b)
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0.4
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0.2
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Fig. 5.2. (a) Magnified plot of the backside of the streamer for k = 10, η = 0.6 eiπ/4 (as in the
right column of Figure 5.1) for the τ values given. The overall motion is subtracted. We observe the
compression of the fine structure and the intermediate growth of the perturbation. Asymptotically
for τ → ∞, the structure converges to the gray circle. In the comoving frame, the gray dot marks
x + iy = −1, which is the point to which the structure finally is contracted. Note that the scale of
x is stretched compared to that of y, and that the figure is turned relative to Figure 5.1. (b) The
amplitudes an as in (4.28) as a function of T for k = 10; the values of n are given.

Fig. 5.3. Motion of the zeros of ∂ωf in the ω-plane for k = 2 and η = 0.6 eiπ/4 (as in the left
column of Figure 5.1). The dots give the position for τ = 0, 1, 2. The horizontal line is the cut for
τ = 2.51, where one zero enters the second sheet (broken curve). The unit disk is also shown.

For k = 2, Figure 5.3 shows the motion of the zeros of ∂ωf(ω, τ) in the complex
ω-plane, as discussed in section 4.8. It corresponds to the k = 2 part of Figure 5.1.
Two zeros, which initially are close to the backside of the unit circle, approach ω = −1
for τ → ∞. They clearly are associated with the two maxima that in the comoving
frame are convected towards z = x + iy = −1. The third zero, originally found close
to ω = +1, after a large excursion leaves the physical sheet at time τ � 2.51. The
logarithmic cut is on the negative axes, with the branchpoint ωbp = −1/T (τ) reaching
ω = −1 for τ → ∞.

5.2. The evolution of localized perturbations. We finally consider some
more localized perturbation, defined by
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-0.2 0.2 0.4 0.6
0.7

0.9

1.1

Fig. 5.4. (a) Time evolution of a localized perturbation as described in the text. (b) Evolution
of the initial peak for shorter times as indicated. The overall motion of the streamer is subtracted.
A part of the asymptotic circle is shown in gray.

(5.5) G(ω) =
(1 − γ)eiα0

ω − γeiα0
, γ > 1,

corresponding to an initial perturbation

(5.6) η β(ω, 0) = η
(1 − γ)γ

ω2
e2iα0

[
ln

(
1 − ω

γ
e−iα0

)
− ω

γ
e−iα0

]
.

The result for β(ω, τ) reads

(5.7) β(ω, τ) =
(γ − 1)eiα0

γe−iα0 − T (τ)

{
T (τ)

2b(τ)
−
(

1 − T (τ)

b(τ)

)
ln(1 + b(τ)ω) − b(τ)ω

(b(τ)ω)2

}
,

where

(5.8) b(τ) =
1 − T (τ)γeiα0

T (τ) − γeiα0
.

We note that b(τ) → 1 for T (τ) → 1, so that in the large time limit the logarithmic
cut reaches ω = −1. As discussed in the context of (4.17), this is a generic feature
of the present problem. Our choice of parameters (γ = 1.1, α0 = −π/12, η = 1.5)
almost produces a cusp in the initial condition: The only zero of ∂ωf(ω, 0) is found at
ω0 = 1.001 exp(−.243i). This zero, however, is driven away from the unit circle and
leaves the physical sheet. Another zero, which entered the physical sheet somewhat
earlier, for τ → ∞ reaches ω = −1. Figure 5.4(a) shows snapshots of the time
evolution of the perturbed interface in a representation like Figure 5.1. It illustrates
how the peak is rapidly smeared out and the interface becomes smooth. Figure 5.4(b)
follows the evolution of the peak for short times and shows how it is convected and
broadened.



CONVECTIVE STABILIZATION OF A MOVING BOUNDARY 309

We finally note that, in the special case where the initial peak strictly points
in the forward direction (α0 = 0), convection cannot take place. The peak simply is
broadened and vanishes, whereas some new peak shows up at the back for intermediate
times.

Appendix A. The limit ε → ∞. For ε → ∞, the PDE (3.7) with the form
(3.11) of Lε reduces to

(A.1)
(
h(ζ, T ) ∂ζ + 1

)
∂T β̂(ζ, T ) = 0, where β̂(ζ, T ) ≡ β(ω, τ).

Equation (A.1) allows for a large set of solutions obeying the same initial condition

(A.2) β(ω, 0) = β0(ω),

but imposing regularity on the unit disk Uω, we single out the simple form

(A.3) β(ω, τ) = β0(ζ).

Thus for ε = ∞, the dynamics is simply given by the automorphisms ω −→ ζ(ω, T ).
This implies that β(ω, τ) is bounded uniformly in τ as

(A.4)
∣∣β(ω, τ)

∣∣ ≤ max
ω∈∂Uω

∣∣β0(ω)
∣∣,

so that in contrast to the case ε = 1, there is no intermediate growth of the pertur-
bations.

The shift of the center of mass is given by (cf. (4.10))

(A.5) β(0, τ) = β0(T (τ)) = β0(1) − 2β′
0(1) e−τ + O

(
e−2τ

)
,

and except for the point ω = −1, the shape again converges exponentially in time to
the circle along the universal slow manifold

(A.6) β(ω, τ) − β(0, τ) = β′
0(1)

4ω

1 + ω
e−τ + O

(
e−2τ

)
;

cf. (4.15) for ε = 1. Again the neighborhood of ω = 1 for time τ = 0, more precisely
β0(1) and β′

0(1), determines the long time convergence. Since by assumption β0(ω) is
analytical at ω = 1, evidently an eigenfunction expansion in the sense of subsection 4.5
exists.

The only major difference compared to the case ε = 1 concerns the point ω = −1.
Clearly,

(A.7) β(−1, τ) ≡ β0(−1)

independently of τ , and indeed for τ → ∞ the conformality of the mapping breaks
down in the neighborhood of ω = −1 since ∂ωβ(ω, τ)

∣∣
ω=−1

diverges.
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INVERSE SCATTERING IN MULTIMODE STRUCTURES∗

OLE HENRIK WAAGAARD† AND JOHANNES SKAAR‡

Abstract. We consider the inverse scattering problem associated with any number of interact-
ing modes in one-dimensional structures. The coupling between the modes is contradirectional in
addition to codirectional and may be distributed continuously or in discrete points. The local cou-
pling as a function of position is obtained from reflection data using a layer-stripping-type method,
and the separate identification of the contradirectional and codirectional coupling is obtained using
matrix factorization. Ambiguities are discussed in detail, and different a priori information that can
resolve the ambiguities is suggested. The method is exemplified by applications to multimode optical
waveguides with quasi-periodical perturbations.
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1. Introduction. In waveguides that support several modes, scattering, or cou-
pling between the different modes, may appear due to different kinds of perturbations.
Possible perturbations are reflectors, gratings, bends, tapering, and other kinds of ge-
ometrical or material modulation along the waveguide. The coupling may be both
codirectional (coupling between modes that propagate in the same direction) or con-
tradirectional (coupling between modes that propagate in opposite directions). The
direct scattering problem of computing the scattered field when the probing waves
and the scattering structure are known has been extensively discussed in the liter-
ature [24, 38, 21]. The inverse scattering problem associated with two interacting
modes is also well understood and has been treated in several contexts since the pi-
oneering work by Gel’fand and Levitan [13], Boutet de Monvel and Marchenko [3],
and Krĕın [22]. In geophysics the so-called dynamic deconvolution or layer-stripping
(layer-peeling) methods emerged for the identification of layered-earth models from
acoustic scattering data [28, 31, 2, 6, 5]. More recently the inverse scattering meth-
ods have been applied to the design and characterization of optical devices involving
two interacting modes. Both contradirectional coupling and codirectional coupling
have been treated. Optical components based on contradirectional coupling include
thin-film filters and fiber Bragg gratings [40, 10, 37, 30, 36, 34], while codirectional
coupling is present in, e.g., grating-assisted codirectional couplers and long-period
gratings [19, 39, 9, 42, 4]. While the inverse scattering problem associated with two
interacting modes is well known, the inverse scattering problem of several, possibly
nondegenerate modes (i.e., with different propagation constants) seems unsolved so
far. Some work has been done in the case of four degenerate modes, that is, two
polarization modes in each direction [35, 41], and several degenerate modes with only
contradirectional coupling [1].

On the other hand, several methods for the inverse scattering of acoustic or elec-
tromagnetic waves in two or three dimensions have been reported. In particular,
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Yagle et al. have developed layer-stripping methods for the multidimensional case
[45, 43, 44]. By Fourier transforming the problem with respect to the transversal
coordinates, the multidimensional problem may be regarded as one-dimensional with
several interacting modes.

In this paper we will extend these lines of thought to cover the general inverse scat-
tering problem associated with any number of interacting modes in one-dimensional,
reciprocal structures. In the model (section 2) both codirectional and contradirec-
tional coupling may be present simultaneously. We limit ourselves to the case where
the known probing waves and the scattered waves propagate in opposite directions. In
other words the scattered wave is considered as a reflection from the unknown struc-
ture. A layer-stripping inverse scattering algorithm is presented in section 3. Ambi-
guities related to the simultaneous presence of co- and contradirectional coupling are
discussed in detail. Possible a priori information that can resolve these ambiguities
will be suggested. The formalism is particularly useful for the quasi-periodical case
(section 4), since only the slowly varying envelope needs to be represented rather than
the structure itself, yielding an efficient algorithm. In section 5, the method is applied
for the numerical reconstruction of a quasi-periodical waveguide structure. Sections
4 and 5 are exemplified by a multimode fiber Bragg grating: an optical fiber with
quasi-periodic refractive index perturbation along the fiber axis, giving rise to both
co- and contradirectional coupling. Finally, analogies to the multidimensional case
are discussed in section 6.

2. Continuous and discrete coupling model. Consider a structure with P
modes propagating in each direction along the x-axis. We visualize the x-axis as be-
ing directed to the right and say that the +x-direction is the forward direction. The
propagation constant of the pth mode is ±βp; i.e., the x-dependence of the complex
field associated with mode p is described by the factor exp(±iβpx), where the upper
(lower) sign applies to forward (backward) propagating modes. Note that the prop-
agation constants of different modes may or may not be different. The propagation
constants are related to frequency through the dispersion relation of the structure.
The propagation constants may be expressed as βp = npω/c, where ω is the angular
frequency, c is some fixed reference velocity (common for all modes), and np accounts
for the actual phase velocity. (However, in some cases it may rather be convenient to
express the propagation constants in the form npω/c−π/Λ, where Λ is a constant; see
section 4.) For electromagnetic waves, it is natural to set c equal to the vacuum veloc-
ity, and consequently we will refer to np as the effective index associated with mode
p. In principle, the effective indices may be complex and dependent on frequency,
meaning that modal loss and dispersion are permitted in the model. However, the
dispersion must be limited by relativistic causality in the sense that any signal carried
by the modes travels no faster than the vacuum light velocity. Also, the modal field
profiles are assumed to have uniform phases such that they can be written real.

Coupling may occur due to a continuous or discrete scattering structure. In the
first case, the field is assumed to be governed by the coupled-mode equation

(2.1)
dE

dx
= iCE,

where E is a column vector containing the 2P mode amplitudes. In the absence of
the scattering structure (Cσ = Cκ = 0; see below), the first P elements are the mode
amplitudes of the forward propagating modes (propagating in the +x-direction) and
the last P elements are those of the backward propagating modes. The coupling
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matrix C can be decomposed into three contributions:

(2.2) C = D + Cσ + Cκ.

The contributions can be expressed as 2×2 block matrices consisting of P ×P blocks:

D =

[
β 0
0 −β

]
,(2.3a)

Cκ =

[
0 κ

−κ∗ 0

]
,(2.3b)

Cσ =

[
σ 0
0 −σ∗

]
,(2.3c)

where * denotes complex conjugate. The first term D describes the frequency depen-
dence due to the propagation of the different modes (“self-coupling”) and is indepen-
dent on x; and β = diag{β1, β2, . . . , βP }. Only this term is permitted to be lossy in
the model (β may be complex). In practice, we should require ImβpL � 1, where L is
the total length of the structure; otherwise the field at the far end of the structure may
be close to zero (i.e., the mode will be bound at the left interface to the structure, and
very little reflection will originate from the far end). The second term Cκ describes
the coupling between counterpropagating modes, whereas the last term Cσ accounts
for the coupling between copropagating modes. The coupling coefficients κ and σ are
dependent on x but assumed independent on frequency. As will become clear shortly,
the above forms of Cκ and Cσ are consequences of reciprocity and losslessness. It
should be noted that in structures such as long-period gratings, where the coupling
is purely codirectional, the coupling is described by κ = 0 and a σ with nonzero
off-diagonal elements. The conventional way of describing such structures would be
to consider only the upper-left P × P block of C. The layer-stripping method in
section 3 cannot be used to reconstruct such structures since the reflection response
is zero.

The coupling region in the waveguide is discretized into N layers, each of thickness
Δx = L/N . If N is sufficiently large so that the matrices in (2.3) can be treated as
constants in each layer, we can solve (2.1):

(2.4) E(xj + Δx) = exp (iCΔx)E(xj), xj = jΔx.

This transfer matrix relation can be used to propagate the fields through the piecewise
uniform structure. With the help of the connection between the transfer matrix
and the scattering matrix (Appendix B) we can find the reflection and transmission
response from the total transfer matrix, obtained as a product of the transfer matrices
exp (iCΔx) of each layer (direct scattering).

While direct scattering is achieved straightforwardly using the piecewise-uniform
discretization, for inverse scattering it is convenient to push the discretization further,
in order to identify the different contributions to the transfer matrix exp (iCΔx). To
first order in Δx, we have exp(iCΔx) = exp(iDΔx) exp(iCκΔx) exp(iCσΔx). For
a continuous structure of finite thickness, the bandwidth where the reflection spec-
trum is significantly different from zero is finite. Thus we need only be concerned
with frequencies satisfying |ω| ≤ ωb for some positive constant ωb. Note that this
model may give entirely incorrect results for |ω| > ωb. For instance, if P = 1, the
reflection spectrum calculated with the discrete model will be periodic with period
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πc/(n1Δx), while the spectrum associated with a continuous structure tends to zero
for large frequencies. For inverse scattering, the reflection spectrum and therefore ωb

are known. Therefore, provided Δx is chosen sufficiently small we can approximate
each layer by a cascade of three sections: a section with codirectional coupling, a
section with contradirectional coupling, and a time-delay section. The physical im-
plication of this factorization is that the mode coupling appears in a discrete point
within the layer rather than distributed along the whole layer. The contradirectional
section may therefore be pictured as a discrete reflector. The transfer matrix of the
jth layer becomes

(2.5) Tj = TZTρj
TΦj ,

where

(2.6a)

TZ ≡ exp(iDΔx) =

[
Z−1 0
0 Z

]
, Z−1 = exp(iβΔx),

(2.6b)

Tρj
≡ exp(iCκΔx) =

[
t−1∗
j −t−1∗

j ρ∗
j

−t−1
j ρj t−1

j

]
,

ρj = i tanh[(κ∗κ)1/2Δx](κ∗κ)−1/2κ∗,

tj = cosh[(κ∗κ)1/2Δx]−1,

(2.6c)

TΦj
≡ exp(iCσΔx) =

[
Φj 0
0 Φ∗

j

]
, Φj = exp(iσΔx).

The form of the matrix in (2.6b) may, for example, be verified by evaluating the power
series expansion of the matrix exponential. In principle, it suffices to express (2.6) to
first order in Δx; however, the exact form is kept to emphasize the properties of each
of the three sections, to ensure that each section is lossless regardless of the value of
Δx, and to retain the correspondence to the discrete case (below).

We are now in the position that we can argue for the forms of the coupling matrices
(2.3). Note that while we have permitted loss in the propagation section Z−1, the
coupling sections are assumed lossless. Since the coupling sections also are assumed
to be reciprocal, their transfer matrices satisfy (B.10) and (B.11) (Appendix B).
Allowing a more general Cκ by substituting κ∗ → κ21 into the (2, 1) block and
expanding exp(iCκΔx) to first order in Δx, the lossless and reciprocity conditions
give κ12 = −κ∗ and dictate κ to be symmetric. Similarly, we can derive the form of
Cσ and establish that Φj must be unitary; i.e., σ is hermitian.

From the discussion above, each layer is characterized by a unitary codirectional
coupling matrix Φj and a discrete reflector. Let superscript T denote transpose and let
‖·‖ be the usual matrix 2-norm. The discrete reflector satisfies ρj = ρT

j and ‖ρj‖ < 1

and has an associated, positive definite transmission matrix tj with t2j = I − ρjρ
∗
j .

So far we have considered a continuous scattering structure and discretized it
into a cascade of codirectional coupling, reflection, and pure propagation. Obviously,
we can also describe discrete coupling directly. The most general, lossless, reciprocal
coupling element can be described as a discrete reflector sandwiched between two
codirectional coupling sections (Appendix B). Compared to our discrete model above,
there is an extra codirectional coupling section on the right-hand side of the reflector.
In the special case where all modes have equal effective index, Z−1 ∝ I, this coupling
section commutes with the delay section, and as a result it can be absorbed into the
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next, adjacent layer on the right-hand side. However, in the general case this extra
coupling section does not commute with the delay section and cannot be ignored. For
inverse scattering, this coupling section should therefore not be present since it would
not be possible to determine the transmission through the layer uniquely from the
reflection which prevents unique reconstruction, at least when only using the reflection
response as the starting point. Under this assumption, tj is positive semidefinite and
uniquely determined by t2j = I −ρjρ

∗
j . We restrict ourselves to reflectors that satisfy

‖ρj‖ < 1; otherwise the reflector will mask the later part of the structure such that
the inverse scattering procedure will not be possible. Also, with two or more layers
with ‖ρj‖ = 1, the structure may behave as an ideal resonator with bound modes.

Writing out the transfer matrix (2.5) of each layer, we obtain

(2.7) Tj =

[
Z−1t−1∗

j Φj −Z−1t−1∗
j ρ∗

jΦ
∗
j

−Zt−1
j ρjΦj Zt−1

j Φ∗
j

]
=

[
Z−1Kj 0

0 ZK∗
j

] [
I −Υ∗

j

−Υj I

]
,

where Υj = ΦT
j ρjΦj and Kj = t−1∗

j Φj . The transfer matrix can be converted into
a scattering matrix (Appendix B):

(2.8) Sj =

[
ΦT

j ρjΦj ΦT
j tjZ

−1

Z−1t∗jΦj −Z−1t−1∗
j ρ∗

j tjZ
−1

]
.

Thus, Υj represents the reflection response from the left of layer j.
The combined transfer matrix describing the total structure with N layers is given

by

(2.9) T = TN−1TN−2 · · ·T1T0.

From this matrix we can determine the reflection and transmission response using
(B.3). For example, the reflection response from the left is

(2.10) R(ω) ≡ S11 = −T−1
22 T 21,

where T kl are the P × P blocks in T. Assuming ‖ρj‖ < 1 for all j, it can be
proven by induction that T 22 is invertible on and above the real frequency axis in the
complex ω-plane for any number of layers. Physically this is obvious since T−1

22 is the
transmission response from the right, and therefore it must exist and be causal and
stable.

Reciprocity (B.4a) gives R(ω) = R(ω)T. Using ‖ρj‖ < 1 for all j, it can be
shown by induction that ‖R(ω)‖ < 1 for a passive structure (a passive structure is
characterized by Imβp ≥ 0 for all p). By causality the reflection response can be
written in the form

(2.11) R(ω) =

∫ ∞

0

h(t) exp(iωt)dt,

where h(t) is called the time-domain impulse response.
When the modes are nondispersive, i.e., β is linearly related to frequency, h(t)

equals a train of nonequally spaced, weighted delta pulses:

(2.12) h(t) =
∞∑
k=0

hkδ(t− tk).
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Here hk and tk are the weight and arrival time of the kth pulse, respectively. Substi-
tuting (2.12) into (2.11) gives

(2.13) R(ω) =

∞∑
k=0

hk exp(iωtk).

The weights hk can, in principle, be calculated from R(ω) using an inverse transform
of the form

(2.14) hk = lim
ωmax→∞

1

2ωmax

∫ ωmax

−ωmax

R(ω) exp(−iωtk)dω.

The arrival times are determined by the delay from one layer to the next of each
mode. Let Δtp be the delay of mode p through a single layer. A delta pulse at t = 0
is incident to the structure on the left-hand side. Consider the reflection from the
different layers, as seen from the left-hand side of the structure. From layer 0, the
arrival times in all modes will be zero. An impulse in mode p reflected from layer 1
into mode q will arrive at Δtp + Δtq. Thus, considering layer 1, the arrival times are
any combinations of two unit delays Δtp. Considering layer 2, the arrival times are
any combinations of four unit delays, and so forth.

When the modes are dispersive, the impulse response is no longer a train of delta
functions. Nevertheless, for t = 0 it can still be written as h0δ(t), and the weight h0

can be found from (2.14).
Equation (2.13) clearly demonstrates that, in principle, for a discrete structure

the reflection response R(ω) does not approach zero for large frequencies. Only in
the special case where the modal effective indices are rational numbers with common
denominator is the reflection spectrum periodic. Fortunately, in practice, it is not
necessary to represent the entire bandwidth to enable inverse scattering for a dis-
crete structure. As shown in the next section, what is needed in the layer-stripping
algorithm is the zeroth point of the impulse response at time t = 0. Since the next
nonzero value is for t = 2 minp Δtp,

1 the zeroth point is computed accurately, pro-
vided the represented bandwidth ωmax satisfies ωmax � 1/minp Δtp. Then, if the
true reflection spectrum is multiplied by a smooth window function W (ω) that goes
to zero at ω = ±ωmax, the inverse Fourier transform evaluated around zero is ap-
proximately w(t)h0, where w(t) is the inverse Fourier transform of W (ω). Since
w(0)h0 ≈ 1

2π

∫ ωmax

−ωmax
W (ω)R(ω)dω, we can find h0 from a measurement of R(ω) in

the bandwidth (−ωmax, ωmax):

(2.15) h0 ≈
∫ ωmax

−ωmax
W (ω)R(ω)dω∫ ωmax

−ωmax
W (ω)dω

.

In many practical cases, the structure to be reconstructed is quasi-sinusoidal.
More generally, the structure is often quasi-periodic, and, e.g., the first “Fourier com-
ponent” is to be reconstructed. In such cases, one can define modal field envelopes
which vary slowly with respect to x (compared to a wavelength). Similarly, one can
extract slowly varying coupling coefficient envelopes. As a result, all quantities in
(2.1) vary slowly with x. The relevant bandwidth in (2.15) will then be centered
about a chosen “design frequency” rather than zero. The main advantage of this

1For simplicity it is assumed to be a nondispersive structure.
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procedure is that it leads to considerably fewer requirements on the spatial resolution
and, as a result, efficient inverse scattering. This modification to the model is detailed
in section 4.

3. Layer-stripping method. The inverse scattering problem can now be stated
as follows: Given a structure consisting of N layers, each layer consists of three sections
(sublayers), the first (Φj) responsible for coupling between copropagating modes, the
second (ρj) responsible for coupling between counterpropagating modes, and the third

a pure propagating section (Z−1). The propagation constants of the involved modes
are known and specified in terms of Z−1.2 From a set of excitation-response pairs
(that is, R(ω)), we want to reconstruct ρj and Φj for all j.

The structure itself and the medium to the right are assumed to be at rest at time
t = 0. For incident waves from the left, the reflection response from the structure is
described by the matrix R(ω) of dimension P × P . This matrix can be viewed as
the operator which takes the excitation field vector to the reflected field vector. Its
columns can be interpreted as the responses for orthonormal excitation basis vectors
e1, e2, . . . ,eP , respectively. Here ep has only one nonzero element (equal to unity)
at position p. Similarly, we can define the forward (uj(ω)) and backward (vj(ω))
propagating field matrices as P × P matrices where the columns are the fields for
orthonormal excitations e1, e2, . . . ,eP . A subscript j is specified to emphasize that
uj(ω) and vj(ω) are the fields at the beginning (left-hand side) of layer j. The field
matrices of layer j + 1 are related to the field matrices of layer j by

(3.1)

[
uj+1(ω)
vj+1(ω)

]
= Tj

[
uj(ω)
vj(ω)

]
,

where Tj is given by (2.7).

The layer-stripping algorithm is based on the simple fact that the leading edge of
the impulse response is independent on later parts of the structure due to causality.
Hence, one can identify the first layer of the structure and subsequently remove its
effect using the associated transfer matrix.

For layer 0, we initialize u0(ω) = I and v0(ω) = R(ω). We define a local reflection
spectrum Rj(ω) = vj(ω)uj(ω)−1 and the associated impulse response hj(t) as the
response of the structure after removing the first j−1 layers. Similarly to the impulse
response of the entire structure, hj(t) contains an isolated delta function at t = 0.
Due to causality, this pulse is equal to the reflection from the zeroth layer alone.
Denoting the weight of this pulse h0

j , we find from (2.8) that

(3.2) h0
j = Υj ≡ ΦT

j ρjΦj .

Note that Rj(ω) is symmetric for all ω as a result of reciprocity; thus h0
j is symmetric

as well. Writing out (3.1) and (2.7) and substituting vj(ω) = Rj(ω)uj(ω), we obtain

uj+1(ω) = Z−1Kj

[
I − Υ∗

jRj(ω)
]
uj(ω),(3.3a)

vj+1(ω) = ZK∗
j [Rj(ω) − Υj ]uj(ω),(3.3b)

2The effective indices may contain small, real, unknown parts Δnp, i.e., np = np,known + Δnp,
where np,known are known. Provided Δnp is sufficiently small, the variation of the associated phase
factor exp(iωΔnpΔx/c) may be small over the relevant bandwidth. In such cases the unknown parts
can be absorbed into the Φj ’s.
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and therefore

(3.4) Rj+1(ω) = ZK∗
j [Rj(ω) − Υj ]

[
I − Υ∗

jRj(ω)
]−1

K−1
j Z.

Provided Υj and Kj are known, (3.4) shows that the local reflection spectrum of layer
j + 1 can be calculated directly from the local reflection spectrum of layer j without
calculating the fields uj+1 and vj+1. Note the similarity to the Schur formula used
in scalar layer-stripping [6].

To characterize layer j completely and to identify Kj , we must determine ρj and
Φj . By counting the available degrees of freedom (in Υj), we immediately find that
this cannot be done uniquely. It is therefore necessary to use a priori information on
ρj and/or Φj . The available information may vary from situation to situation. Here
we will consider the following situations, where ρj and Φj can be found using the
methods in sections A.1 and A.2.

(a) Φj = I. In this case there is no codirectional coupling. The identification of
the layer is now particularly simple, as ρj = Υj uniquely. Note that while
there is no codirectional coupling, ρj describes reflection from all modes into
all modes. Thus the different modes may still interact.

(b) ρj is diagonal and nonnegative. Now ρj is a simple partial reflector which
reflects only light into the same mode as the incident field (no reflection into
other modes). The coupling between different modes is instead described
by Φj . Since Υj = ΦT

j ρjΦj , ρj is found uniquely as the singular value
matrix associated with Υj up to reordering of the singular values. Once the
order of the singular values has been established, the unitary Φj is found
uniquely up to the sign of its rows, provided all singular values are distinct
and nonzero (see section A.1). When one or more singular values of Υj

are zero, the corresponding row(s) of Φj cannot be determined uniquely.
More precisely, Φj is determined up to a premultiplicative unitary matrix J
operating on the associated mode(s). Physically, this is obvious since when
a singular value is zero, the associated mode is not reflected from the layer.
When two or more nonvanishing singular values are equal, Φj is determined
up to a premultiplicative, real unitary J operating on the associated modes.
Physically, this means that these modes experience the same reflection, and
thus an arbitrary (real) “rotation” of the modes is not detected. In such cases,
the unitary section Φj , as determined by the method in section A.1, does not
necessarily correspond to the physical section. This error will propagate to
the next layers according to (3.4).

(c) Φj is symmetric and ρj is real and positive semidefinite. A special case
in which there are only two degenerate modes in each direction is treated
in [41]. The reflector matrix ρj can be written PT

j ΣjP j , where P j is a
real, special unitary matrix and Σj is diagonal and nonnegative. Since Υj =

ΦT
j ρjΦj = ΦT

j P
T
j ΣjP jΦj , we find Σj and P jΦj as in the previous case,

with the identical ambiguity issues. The separate identification of P j and Φj

is accomplished using the factorization method in section A.2, with certain
ambiguities related to the sign of the eigenvalues of Φj .

The ambiguities when determining Φj in situation (b) are in fact very similar to
the well-known ambiguities in the scalar case with a single mode in each direction. In
the scalar case any π phase-shift sections between the reflectors cannot be identified
since the associated round-trip phase accumulated to and from a reflector becomes
2π. In our multimode case, the sign of the rows of the “phase-delay” section (Φj)
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between two reflectors cannot be identified. Similarly, in the scalar case, any phase-
shift section preceding a zero reflector cannot be determined uniquely. Instead it is
chosen arbitrarily (e.g., removed) and attributed to the next layer with a nonzero
reflector.

When the structure to be reconstructed is a discretized version of a smooth struc-
ture, the smoothness can be used to resolve ambiguites. First we consider situa-
tion (b). For small Δx, Φj is close to identity; thus the sign of the rows of Φj can
be determined uniquely. If ρj has distinct eigenvalues, valid for all j, the order of the
eigenvalues of ρj can be determined from the order of the eigenvalues of ρj−1 using
the smoothness of κ = κ(x). If there are equal eigenvalues for a certain reflector ρj ,
or if ρj is singular, the ambiguities of Φj are characterized by the premultiplicative
J matrix (section A.1). In other words, the chosen Φj is related to the corresponding
true matrix (Φj,true) by Φj = JΦj,true. By choosing J such that ‖Φj − Φj−1‖ is
minimum, the resulting J is close to identity (that is, ‖J − I‖ ≤ 2‖Φj,true −Φj−1‖).
Since tj and Z−1 are close to identity as well, the order of three sections J , tj , and
Z−1 can be interchanged (see section 2). Thus the error due to wrong choice of Φj can
be absorbed into Φj+1. More generally, provided only a few neighboring layers have
singular or degenerate ρj ’s, only the corresponding and following Φj sections may be
determined erroneously, and the determination of the later part of the structure is
(approximately) unaffected.

In situation (c), the order of eigenvalues of ρj can be determined as in situa-
tion (b). However, P jΦj is not necessarily close to identity. Nevertheless, the sign
of its rows can be determined from P j−1Φj−1 if κ = κ(x) is sufficiently smooth.
(Recall that P jΦj is unitary, which means that in each row there exists at least one

element of magnitude ≥ 1/
√
P .) Finally, since Φj is close to identity, its eigenvalues

are close to unity. It follows that the factorization of P jΦj into P j and Φj is unique
(section A.2).

From the discussion above, we summarize the layer-stripping algorithm, anal-
ogously to the scalar version described in [6, 5], that can be applied to identify a
structure supporting multiple modes:

(1) Initialize j = 0. Set Rj(ω) = R(ω).
(2) Compute the zeroth weight h0

j of the impulse response. In practice this is

achieved by the substitutions h0 → h0
j and R(ω) → Rj(ω) in (2.15).

(3) Use a model-specific factorization of h0
j = ΦT

j ρjΦj to find Φj and ρj .

(4) Calculate tj = (I−ρjρ
∗
j )

1/2 such that the associated eigenvalues are positive,

and set Kj = t−1
j Φj .

(5) Calculate the next, local reflection response Rj+1(ω) using (3.4).
(6) If j < N − 1, increase j and return to (2).

When the scattering structure is continuous, one can use the true reflection spec-
trum as input to the layer-stripping algorithm, even though the structure is modeled
discrete. This can be justified as follows: The layer thickness Δx is chosen small such
that the first order approximations of exp(iCκΔx) and exp(iCσΔx) are accurate.
(Thus an upper bound on ‖Cκ‖ and ‖Cσ‖ should be known a priori.) Let ω ≤ ωb

be the bandwidth where the true reflection spectrum is significantly different from
zero. For sufficiently small Δx, the first order approximation of exp(iDΔx) is valid,
and the true reflection spectrum is approximately equal to that of the corresponding
discrete model in the bandwidth ω ≤ ωb. In the limit t → 0+, the (p, q) element of
the impulse response of the continuous structure can be calculated exactly from (2.1)



320 OLE HENRIK WAAGAARD AND JOHANNES SKAAR

using the Born approximation, yielding

(3.5) hpq(t = 0+) ≡ 1

2π
lim
t→0+

∫ ∞

−∞
Rpq(ω) exp(−iωt)dω = iκ∗

pq(x = 0+)c/(np + nq).

Here κpq(x = 0+) is the (p, q) element of κ(x) at x = 0+. For practical computations,
the integral in (3.5) must be truncated at ±ωb; thus, to find the leading edge of
hpq(t), one can take t = 0 in the integral and multiply the result by a factor of two.
(Recall that by causality limt→0− hpq(t) = 0.) Once κ for the zeroth layer is found,
one can propagate the fields using (3.4). Since we have not identified the codirectional
coupling Φ0 of the zeroth layer, Φ0 is associated with the next layer. Thus, after the
zeroth layer has been stripped off, the leading edge of the impulse response of the
remaining structure becomes

(3.6) ΦT
0

[
iκ∗

pq(x = Δx+)c/(np + nq)
]
Φ0,

where the square bracket denotes a matrix formed by the elements inside. The iden-
tification of Φ0 and

[
iκ∗

pq/(np +nq)
]

can now be accomplished using the factorization
methods described above. The algorithm continues in the same way, until finally the
bandwidth of the reflection spectrum of the remaining structure exceeds ωb. This
remaining part of the structure can be made arbitrarily thin by choosing a sufficiently
small Δx.

The difference between the latter “quasi-continuous” formulation and the discrete
algorithm is essentially the factor np + nq and the method for evaluating the leading
edge or first point of the impulse response. When the effective indices can be approxi-
mated by some number n0 for all p, np ≈ n0, one can in fact use the discrete algorithm
directly: A periodic extension of the true reflection spectrum outside a principal band-
width [−ωmax, ωmax] corresponds then to a discrete model with Δx = πc/(2n0ωmax).
The first point of the impulse response is calculated by (2.15) using a rectangular
window function W (ω). For a broad class of waveguides of practical interest, the
effective indices are similar (see section 4). While the phase relation between the
modes, as described by Z−1, may still result in a nontrivial multimode coupling, the
discrete algorithm gives accurate results. The errors due to this periodic spectrum
approximation can be corrected to some extent by including the factor (np+nq)/(2n0)
in the elements on the right-hand side of (2.15). This can be justified, e.g., using the
Born approximation.

4. Quasi-sinusoidal coupling structures. Continuous coupling in acoustical,
radio frequency, or optical waveguides may be obtained by perturbation of the effective
indices np associated with each mode. This can be achieved by modulation of the
wall profile or waveguide medium properties. As a concrete example, we will discuss
fiber Bragg gratings [17], which have attracted large interest recently due to their
applications in fiber optical communications and sensors. A fiber grating is formed in
an optical fiber by modulating the refractive index of the core periodically or quasi-
periodically. The main peak of the reflection spectrum appears for the frequency where
the reflection from a crest in the index modulation is in phase with the next reflection.
Permanent gratings are fabricated by UV-illumination. In fibers doped with certain
dopants such as germanium, the UV-illumination will permanently rise the refractive
index of the core. Advanced fabrication methods have made it possible to manufacture
complex gratings with varying index modulation amplitude and period. The layer-
stripping algorithm is the most widely used method for designing the index profile to
obtain a given reflection spectrum [10, 37, 36].
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In most cases, the fiber grating is formed in a single-mode fiber, and coupling is
considered only between the forward-propagating and backward-propagating funda-
mental mode. The field matrices uj(ω) and vj(ω) are then scalar functions. However,
in some cases it is not sufficient to consider only one forward-propagating mode and
one backward-propagating mode. For instance, a single mode fiber is always slightly
birefringent, and the photosensitivity can be polarization-dependent [16]. In this case,
two forward-propagating and two backward-propagating polarization modes must be
considered. An inverse scattering algorithm that takes into account polarization mode
coupling is described in [41]. The coupling between the two polarization modes is de-
scribed by Jones matrices [20]. Both polarization modes have approximately the same
effective index, and so Z−1 = exp(iβΔx)I, where the common propagation constant
β is scalar.

In a multimode fiber, the modulation of the refractive index may result in coupling
between the fundamental mode and other modes. Each mode has a transversal field
profile Ψp(r, φ) which is a solution to the scalar wave equation in polar coordinates r
and φ [38]:3

(4.1)
{
∇2

t + k2(n̄2(r) − n2
p)
}

Ψp(r, φ) = 0.

Here n̄(r) is the unperturbed, refractive index profile of the fiber, which is assumed to
be real, ∇t is the transversal nabla operator, and k = ω/c. The field Ψp(r, φ) and its
first derivatives are continuous. For bound modes, the fields are real and orthonormal
such that

∫
A∞

Ψp(r, φ)Ψq(r, φ)dA = δ(p − q), where δ(p − q) denotes the Kronecker
delta, and A∞ is the entire transversal plane. The effective indices np are eigenvalue
solutions to (4.1). A mode p is bound when ncl < np ≤ nco, where nco and ncl are
the refractive indices of the fiber core and cladding, respectively. Ignoring radiation
modes, which in the vicinity of the core decay rapidly away from the excitation source,
the total electric field E(r, φ, x) can be written as a superposition of forward- and
backward-propagating bound modes:

(4.2) E(r, φ, x) =

P∑
p=1

(b+p (x) + b−p (x))Ψp(r, φ).

Here b±p (x) contain all x-dependence including the harmonic propagation factor
exp(±iβpx), where βp = knp.

Coupling between the modes originates from longitudinal modulation of the re-
fractive index. Let the refractive index be perturbed quasi-periodically with a spatial
period Λ,

(4.3) n(r, φ, x) = n̄(r) + Δnac(r, φ, x) cos

(
2π

Λ
x + θ(x)

)
+ Δndc(r, φ, x),

where Δnac(r, φ, x), Δndc(r, φ, x), and θ(x) are slowly varying with x over a distance
Λ. We assume that Δnac(r, φ, x) � n̄, and Δndc(r, φ, x) � n̄, which is the case for
practical fiber gratings. The total electric field must satisfy the scalar wave equation
for the perturbed fiber, i.e.,

(4.4)

{
∇2

t +
∂2

∂x2
+ k2n2(r, φ, x)

}
E(r, φ, x) = 0.

3To find the exact electromagnetic modes, the vector wave equation must be solved. However,
for weakly guiding waveguides (waveguides with small difference between the refractive index of the
core and the cladding), the scalar wave equation can be used. This is the case for most conventional
fibers.
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We now substitute (4.2) into (4.4), take (4.1) into account, and multiply the resulting
equation by Ψq(r, φ). By integration over the entire transversal plane and recalling
that the modes are orthonormal, the resulting set of second order differential equations
can be decomposed into first order coupled mode equations [38],

db+p (x)

dx
− iβpb

+
p (x) = i

P∑
q=1

Cpq(x)(b+q (x) + b−q (x)),(4.5a)

db−p (x)

dx
+ iβpb

−
p (x) = −i

P∑
q=1

Cpq(x)(b+q (x) + b−q (x)),(4.5b)

where

(4.6) Cpq(x) =
k

2np

∫
A∞

(n2(r, φ, x) − n̄2(r))Ψp(r, φ)Ψq(r, φ)dA.

Note that the frequency dependence of (4.6) can be ignored in practice, since the
normalized bandwidth of interest is usually much less than unity, and the field profiles
and effective indices are approximately constant in this bandwidth. Also note that
since the fiber is assumed to be weakly guiding, np can be set equal to nco; thus
Cpq = Cqp.

In the case of a quasi-periodic structure it is natural to write the coupling coeffi-
cient as a quasi-Fourier series:

Cpq(x) = σpq(x) + κpq(x) exp

(
i
2π

Λ
x

)
+ κ∗

pq(x) exp

(
−i

2π

Λ
x

)

+
∑

|m|≥2

κ(m)
pq (x) exp

(
i
2πm

Λ
x

)
,

(4.7)

where the “Fourier coefficients” κpq(x), σpq(x), and κ
(m)
pq (x) are slowly varying over a

period Λ. For a fiber grating the index modulation n(r, φ, x) − n̄(r) is given by (4.3)
and is small compared to n̄(r), and so the zeroth and first order Fourier components
dominate. Note that arg{κpq(x)} = θ(x).

The field amplitudes b±p (x) vary rapidly; it is therefore convenient to introduce
the slowly varying field envelopes up(x) and vp(x) by setting

b+p (x) = i1/2up(x) exp
(
i
π

Λ
x
)

exp

(
i
θ(x)

2

)
,(4.8a)

b−p (x) = i−1/2vp(x) exp
(
−i

π

Λ
x
)

exp

(
−i

θ(x)

2

)
.(4.8b)

Since an identical phase factor is removed from all modes, the reflection response as
calculated from b+p and b−q will differ only from that calculated from up and vq by
a constant phase factor not dependent on p and q. Inserting (4.7) and (4.8) into
(4.5) and ignoring rapidly oscillating terms (since they contribute little to dup/dx
and dvp/dx), we obtain an alternative set of coupled-mode equations

dup(x)

dx
= iδpup(x) − i

2

dθ(x)

dx
up(x) + i

P∑
q=1

σpq(x)uq(x) +

P∑
q=1

|κpq(x)|vq(x),(4.9a)

dvp(x)

dx
= −iδpvp(x) +

i

2

dθ(x)

dx
vp(x) − i

P∑
q=1

σpq(x)vq(x) +

P∑
q=1

|κpq(x)|uq(x),(4.9b)
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where δp = βp − π/Λ = npω/c− π/Λ is the wavenumber detuning of mode p. Thus,
−i|κpq(x)| is the coupling coefficient between modes p and q propagating in opposite
directions, while σpq(x) − δ(p − q)(dθ(x)/dx)/2 is the coupling coefficient between
modes p and q in the same direction. With E = [u1, u2, . . . , uP , v1, v2, . . . , vP ]T we
find that (4.9) coincides with (2.1), where σpq(x)−δ(p−q)(dθ(x)/dx)/2 and −i|κpq(x)|
are the (p, q) elements of σ and κ, respectively, and δp are the diagonal elements of
β. Note that δp do not correspond to the actual propagation constants but rather
their detuning from π/Λ. Approximating the effective indices by nco, this means that
the bandwidth of interest is not centered about zero but rather about the “design
frequency” ω0 ≡ πc/(ncoΛ). The frequency interval of integration in (2.15) should
be centered about ω0. As in the scalar case [36], we also note that, in general, the
geometrical phase variation θ(x) cannot be distinguished from the phase variation
associated with the dc index term Δndc(r, φ, x).

We observe that σ is real and symmetric, and κ is imaginary and symmetric.
Moreover, it is not difficult to realize that iκ is positive semidefinite.4 Thus Φj de-
fined in (2.6) is unitary and symmetric, and −ρj is real and positive semidefinite.
It follows that we can use the layer-stripping method together with the factoriza-
tion approach (c), as given in section 3, to identify the coupling sections ρj and Φj

(and therefore the coupling matrices κ and σ as a function of position x). Since
(iΦj)

T(−ρj)(iΦj) = ΦT
j ρjΦj , the factorization approach gives −ρj and iΦj .

For a fiber grating it is usually reasonable to assume that the ac and dc in-
dex modulations can be written in the forms Δnac(r, φ, x) = Δn(r, φ)Δnac(x) and
Δndc(r, φ, x) = Δn(r, φ)Δndc(x), respectively. Here Δn(r, φ) accounts for the trans-
versal variation of the index modulation profile, and Δnac(x) and Δndc(x) are the
ac and dc modulations as a function of x. As before, we assume that the index
modulation and nco − ncl are small, yielding

κ(x) = −i
Δnac(x)

2
η,(4.10a)

σ(x) = Δndc(x)η − 1

2

dθ(x)

dx
I,(4.10b)

where η is independent on x. The elements of η are

(4.11) ηpq = k

∫
A∞

Δn(r, φ)ΨpΨqdA.

When the mode profiles and Δn(r, φ) are known, this means that the entire coupling
matrix κ(x) is determined from only a single nonvanishing element. For σ, two
elements are needed (including at least one diagonal element). Note that, in this
case, it is indeed possible to distinguish between the dc index modulation Δndc(x)
and the geometrical phase variation dθ(x)/dx using information contained in σ.

For characterization of multimode gratings, measurements of the reflection from
every mode to every mode are required. Executing such a measurement is not trivial.
Reference [33] describes using an auxiliary long-period grating (LPG), i.e., a grating
with purely codirectional coupling, to characterize another interrogated LPG. With
the auxiliary LPG, both modes were excited. Due to the difference in propagation

4The real matrix given by the elements ΨpΨq is clearly positive semidefinite, since∑
p,q apΨpΨqaq = (

∑
p Ψpap)2 ≥ 0 for any real ap. For a fiber grating Δnac(r, φ, x) ≥ 0 for all

r and φ; thus |κpq(x)| adopts the positive semidefinite property from ΨpΨq .
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Fig. 4.1. Measurement setup for characterization of multimode gratings.

constant, the difference in delay between the modes was large enough to separate
the response from the two modes in the time domain. Figure 4.1 shows how this
method can be adopted to characterization of multimode fiber Bragg gratings (FBGs)
using optical frequency domain reflectometry [12]. Here light is coupled into the
fundamental mode of the input fiber and the wavelength of the highly coherent source
is swept. The coupler splits the light equally into the two fibers. The LPG couples
light from the fundamental modes into the other modes so that the total optical
power is distributed between all modes. The light returned by the FBG will again
propagate through the LPG, and some light from each mode will be coupled back
into the fundamental mode. The mirror reflects only the fundamental mode, and
at the coupler the reflected light from the mirror interferes with the light in the
fundamental mode out of the LPG. If the fiber between the LPG and FBG is so long
that the difference in the delay between the modes is larger than the length of the
impulse response of the grating, the individual elements of the reflection matrix will
be separable in the time domain, provided that there is no degenerated modes.

5. Numerical example. A potential application of the multimode layer-strip-
ping method is to characterize coupling from the core mode to cladding modes in
a single mode fiber. Cladding modes are bound not within the core of the fiber
but by the cladding/air boundary [8]. A single mode fiber may support as many as
100 cladding modes. The power in these modes will eventually be lost to the environ-
ment. The core-cladding mode coupling can be seen clearly in the transmission spectra
of strong gratings. For chirped gratings [26] and chirped, sampled gratings [27], the
bandwidth may become larger than the separation in resonant wavelength between
the core-core mode coupling and the core-cladding mode coupling. Then the core-
cladding mode coupling will interfere with the reflection spectrum associated with the
core mode [11]. This unwanted coupling is often handled by writing the grating in
fibers with depressed cladding modes [7]. There has also been some attempts to take
into account the core-cladding mode coupling in the design of the grating [23, 14].
Here direct scattering is treated with multiple mode coupling, but the inverse scat-
tering has so far been purely single-mode. The layer-stripping algorithm described in
section 3 can be used for characterization of such coupling and possibly for design. In
contrast to the methods in [23, 14], multiple modes can be taken into account in the
inverse scattering part of an iterative design process.

A simpler, but nevertheless interesting, problem is to characterize coupling in an
optical fiber with a few bound modes. Here we will present a numerical experiment
simulating a grating in a fiber with nco = 1.452, ncl = 1.437, and core radius rco =
5 μm. By solving the eigenvalue equation for a circular fiber [38], we find that this
fiber supports four modes: LP01, LP11, LP21, and LP02 at the design wavelength
λ0 = 1.55 μm. Here the index l in LPlm means that the transversal field profile
can be written in the form flm(r) cos(lφ). In the further discussion, these modes are
denoted 1 to 4 in the order indicated above. The eigenvalue equation gives the modal
indices n1 = 1.449, n2 = 1.444, n3 = 1.439, and n4 = 1.437. We assume that the
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refractive index is modulated uniformly in the core of the fiber but not at all in the
cladding. This is quite realistic since, during fabrication, the fiber usually is made
sensitive to UV exposure only in the core. By evaluating (4.11), we find that there
will be no coupling between modes with different azimuthal indices l:

(5.1) η =
2π

λ0

⎡
⎢⎢⎣

0.957 0 0 −0.116
0 0.874 0 0
0 0 0.707 0

−0.116 0 0 0.491

⎤
⎥⎥⎦ .

There is no coupling to or from modes 2 and 3; thus the grating profile can be found by
applying a scalar layer-stripping method separately to the responses associated with
these modes. On the other hand, modes 1 and 4 are coupled, so that the multimode
layer-stripping method must be applied when using the associated responses as a
starting point.

Defining the nominal mode index n0 = (n1 + n4)/2, the grating period is set to
Λ = λ0/(2n0). The length of the grating is L = 20 mm, and Δnac(x) has the form
of a raised cosine window with maximum value 1 · 10−3. Furthermore, Δndc(x) is
chosen as a sine-modulated Gaussian window with a full-width-at-half-maximum of
7 mm and a maximum value 5 ·10−4; the period of the sine modulation is 4 mm. The
grating is chirped by varying the grating phase according to

(5.2)
dθ

dx
=

π

8
· 104

(
x− L

2

)
m−1.

The reflection matrix as a function of frequency detuning is generated using the piece-
wise uniform approximation (section 2) with Δx = 10 μm, which gives N = 2000.
Zero detuning is taken to be the frequency f0 = c/λ0. Figure 5.1(a) shows the result-
ing reflection matrix spectrum. The maximum values are [|R11|, |R22|, |R33|, |R44|,
|R14|]max = [99.6, 99.6, 97.0, 83.0, 28.3]%. Note that the large chirp has resulted in
significant spectral overlap between the different elements.

The reflection matrix is applied as input to the layer-stripping method. As the
modal indices are similar in magnitude, we use the discrete algorithm directly, and
Υj is calculated by taking into account the factor (np + nq)/(2n0) as discussed in
section 3. Moreover, κ(x) and σ(x) are calculated by inverting the expressions for ρj

and Φj in (2.6b) and (2.6c), respectively. Figure 5.1(b) shows Δnac(x) along with its
reconstructed version. The reconstructed Δnac(x) is calculated by a least square fit to
(4.10a) using the diagonal elements of the reconstructed κ(x). We find that the error
in reconstructed profile is less that 4 · 10−6 m−1. Also shown is the ac modulation
profile calculated using scalar layer-stripping on R11. Due to the strong coupling
between mode 1 and 4, the scalar layer-stripping method does not reconstruct the
profile accurately. Figures 5.1(c) and (d) show that it is possible to separate the dc
index variations Δndc(x) from the grating phase gradient dθ(x)/dx. The separation
is based on a least square fit to (4.10b) using the diagonal elements of σ(x). The error
in reconstructed Δndc(x) is less than 6 · 10−5 m−1, while the error in reconstructed
dθ(x)/dx is less than 300 m−1. Errors are mainly due to the finite Δx in addition
to the fact that the reflection matrix spectrum of the discretized structure is strictly
nonperiodic (see the last paragraph of section 3).
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Fig. 5.1. (a) Magnitude of the reflection spectrum |R11| (solid curve), |R22| (dashed curve),
|R33| (dashed-dotted curve), |R44| (solid point-marked curve), and |R14| = |R41| (dotted curve).
(b) Reconstructed longitudinal ac modulation Δnac(x) (solid curve), actual ac modulation (solid
point-marked curve), and ac modulation calculated using scalar layer-stripping on R11 (dashed-
dotted curve). (c) Reconstructed longitudinal dc modulation Δndc(x) (solid curve) and actual dc
modulation (solid point-marked curve). (d) Reconstructed grating phase gradient dθ/dx (solid curve)
and actual grating phase gradient (solid point-marked curve).

6. Analogies to three-dimensional inverse scattering. An important in-
verse scattering problem is the three-dimensional problem associated with the Schrö-
dinger equation [25]

(6.1)
{
∇2 + k2 − V (x, y, z)

}
ψ(x, y, z; k) = 0,

where ψ(x, y, z, k) is the wave function and V (x, y, z) is a smooth and nonnegative
potential with compact support. In particular, solutions to this problem are applica-
ble to inverse seismic scattering. This problem has been solved using a generalized
Marchenko method in [25] and [32], while layer-stripping solutions are suggested in
[45] and [43]. Note the close resemblance between (6.1) and (4.4), indicating that a
similar method as that in section 4 can be used.

We express the solution as a superposition of the eigenmodes of the Schrödinger
equation with V (x, y, z) = 0. Writing ψ(x, y, z; k) = Ψ(y, z; ky, kz) exp(ikxx), these
eigenmodes are given by

(6.2) Ψ(y, z; ky, kz) = exp(i(kyy + kzz)),
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where ky and kz are the wavenumbers in the y-direction and z-direction, respectively,
and k2 = k2

x + k2
y + k2

z .
In a discrete model, the wavenumbers ky and kz can, for example, be discretized

in equal intervals Δk, such that ky = pΔk and kz = qΔk. In the yz-plane, this means
that only a principal range (−π/Δk, π/Δk) is considered, and the fields are extended
periodically outside this range. The integers p and q are the modal indices satisfying
p2 + q2 ≤ (k/Δk)2 for propagating (not evanescent) modes. The modal field profiles
are written in normalized form Ψpq(y, z) = (Δk/2π)Ψ(y, z; pΔk, qΔk). The total field
ψ(x, y, z; k) is expressed as the superposition

(6.3) ψ(x, y, z; k) =
∑
p,q

(b+pq(x) + b−pq(x))Ψpq(y, z),

where b±pq(x) includes all x-dependence of the fields, and ± indicate the sign of kx,
i.e., the propagation direction of the mode.

As in section 4, we insert (6.3) into (6.1), multiply by Ψ∗
pq(y, z), and integrate

over the principal range of the yz-plane. This leads to the coupled mode equations

db+pq(x)

dx
− ikx,pqb

+
pq(x) = i

∑
r,s

Cpq,rs(x)(b+rs(x) + b−rs(x)),(6.4a)

db−pq(x)

dx
+ ikx,pqb

−
pq(x) = −i

∑
r,s

Cpq,rs(x)(b+rs(x) + b−rs(x)),(6.4b)

where the coupling coefficients are given by

Cpq,rs(x) = − 1

2kx

∫
Ψ∗

pq(y, z)V (x, y, z)Ψrs(y, z)dydz

= − 1

2kx

(
Δk

2π

)2 ∫
V (x, y, z) exp [iΔk((r − p)y + (s− q)z)] dydz,

(6.5)

and kx,pq = [k2 − (Δk)2(p2 + q2)]1/2. We restrict ourselves to the situation where
V (x, y, z) is known to be quasi-periodic along the x-direction. Then an expansion
of Cpq,rs(x) as in (4.7) together with the transformation (4.8) can be used, resulting
in the exact same problem as that described in section 4. Thus the layer-stripping
method in section 3 can be applied. The required input data is the reflection into all
plane waves upon excitation of the different plane waves onto the plane x = 0. The
scattering potential V (x, y, z) is found from the inverse of (6.5).

There are two complications. First, in order to use the factorization methods
developed in section 3, we must ensure that reciprocity implies symmetric scattering
matrices. This is guaranteed when the mode profiles can be written real. Thus we
define real mode fields by the transformation

(6.6)

⎡
⎢⎢⎣
Ψ++

Ψ−+

Ψ+−
Ψ−−

⎤
⎥⎥⎦ → M

⎡
⎢⎢⎣
Ψ++

Ψ−+

Ψ+−
Ψ−−

⎤
⎥⎥⎦ , M =

1

2

⎡
⎢⎢⎣

I I I I
−iI +iI −iI +iI
iI −iI +iI +iI−
I I I −I

⎤
⎥⎥⎦ .

Here Ψ++ denotes a column vector containing the modal field amplitudes Ψpq with
positive p and q, Ψ−+ denotes a column vector containing the modal field amplitudes
with negative p and positive q, and so forth. The dimension of the identity matrices in
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the blocks of M corresponds to the dimension of Ψ++. If C denotes the matrix formed
by the elements Cpq,rs, the coupling matrix transforms C → M∗CMT. Inspection of
(6.5) shows that the transformed −C is real and positive semidefinite (recall that
V (x, y, z) ≥ 0), thus enabling the factorization method in section 3.

Second, the causality argument of the layer-stripping method works only when
the coupling matrix C is independent on frequency. Equation (6.5) shows that this
condition can be justified only when the relevant frequency band is narrow. Therefore
the structure must, in addition to being quasi-periodic along the x-direction, vary
slowly along the transversal direction. The variation must be sufficiently slow such
that the modes with (p2 + q2)Δk2 � k2 contain sufficient information about the
transversal dependence, and the other modes may be neglected.

7. Conclusion. A layer-stripping method for the inverse scattering of multi-
mode structures has been proposed. Ambiguities related to factorization of each
layer’s response into codirectional and contradirectional coupling have been discussed.
When there is no codirectional coupling, the ambiguities disappear. Also, when the
structure to be reconstructed is smooth, there are important cases with simultaneous
co- and contradirectional coupling that can be reconstructed uniquely, provided the
reflector eigenvalues are nonzero and nondegenerate. Applications to quasi-periodical
structures and analogies to multidimensional inverse scattering have been discussed.

Appendix A. Matrix factorizations.

A.1. Takagi factorization of complex symmetric matrices. Any complex
symmtric matrix Υ can be written

(A.1) Υ = UTΣU ,

where U is unitary and Σ is diagonal and nonnegative (see, e.g., [18, Chapter 4.4]).
Equation (A.1) is called Takagi factorization.

A constructive proof, suitable for implementation, can be given as follows: Sin-
gular value decomposition yields

(A.2) Υ = V 1ΣV 2,

where V 1,2 are unitary, and Σ is diagonal and nonnegative. Using Υ = ΥT and

(ΥΥ†)T = Υ†Υ we find that WΣ = ΣWT = ΣW , where W ≡ V ∗
2V 1. Thus, pro-

vided Υ is nonsingular, W is symmetric. Then
√
W can be chosen such that it com-

mutes with Σ and is symmetric, and we obtain Υ = V T
2 WΣV 2 = (

√
WV 2)

TΣ
√
WV 2,

or

(A.3) Υ = UTΣU ,

where U ≡
√
WV 2 is unitary and Σ is diagonal and positive.

If Υ is singular, we write

(A.4) Σ =

[
Σ′ 0
0 0

]
and W =

[
W 11 W 12

W 21 W 22

]
,

where we have arranged Σ so that the zero singular values are the last ones, Σ′ is a
diagonal matrix with the nonzero singular values, and W 11 has the same dimension
as Σ′. We now find Σ′W 11 = W 11Σ

′, W 12 = W 21 = 0, and W 11 = WT
11. The
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commutation relations do not provide any information on W 22. Choose
√
W such

that

(A.5)
√
W =

[√
W 11 0
0

√
W 22

]
,

where
√
W 11 is symmetric and

√
W 11 and Σ′ commute. Write Υ = UT

1 ΣU2, with

U1 =
√
W

T
V 2 =

[
U ′

U ′′
1

]
,(A.6)

U2 =
√
WV 2 =

[
U ′

U ′′
2

]
.(A.7)

The matrices U ′′
1 and U ′′

2 are the rows of U1 and U2 that correspond to the zero
singular values, and they do not give any contribution to Υ. We may therefore
replace the rows U ′′

1 by U ′′
2 , which gives U1 = U2 = U .

The matrix Σ is unique up to reordering of the singular values. When the order of
the singular values is established, U is unique up to the replacement JU → U , where
J is a unitary matrix satisfying (JU)TΣJU = UTΣU . This leads to JTΣJ = Σ.
Assuming the singular values are sorted in, say, descending order, we find that J is a
unitary block-diagonal matrix, where each block has a dimension equal to the number
of corresponding repeated singular values. For zero singular values, the corresponding
block in J is an arbitrary unitary matrix. For repeated nonzero singular values,
the corresponding block in J is real. For a distinct, nonzero singular value, the
corresponding block of J is either 1 or −1.

A.2. Factorization of a unitary matrix into a symmetric matrix and an
orthogonal matrix. A unitary matrix U can be factorized into U = PΦ, where
P is a real unitary matrix (orthogonal matrix) and Φ is a symmetric unitary matrix
(see, e.g., [18, Chapter 3.4]). A constructive proof, suitable for implementation, can be
given as follows. First we note that the symmetric unitary matrix Φ can be factorized
into Φ = P 1DPT

1 , where D is a diagonal unitary matrix and P 1 is a real unitary
matrix (a simple, constructive proof for this particular spectral decomposition is given
in [18, Chapter 4.4]). Thus, an equivalent problem is to show that

(A.8) U = P 2DPT
1 ,

where P 2 = PP 1. The decomposition in (A.8) is very similar to singular value
decomposition of real matrices, except that D may have complex elements.

The matrix UTU is unitary and symmetric; thus we can write

(A.9) UTU = P 1ΛPT
1 ,

where P 1 is a real unitary matrix and Λ is a diagonal unitary matrix. Define

(A.10) P 2 = UP 1D
∗,

where the diagonal matrix D is a solution to D2 = Λ. The matrix P 2 is unitary since
it is produced by multiplication of unitary matrices; thus P ∗

2P
T
2 = I. The matrix is

also real since

(A.11) PT
2 P 2 = D∗PT

1 U
TUP 1D

∗ = D∗PT
1 P 1D

2PT
1 P 1D

∗ = I,
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which gives P 2 = (P ∗
2P

T
2 )P 2 = P ∗

2(P
T
2 P 2) = P ∗

2.

From (A.10) we therefore conclude that the decomposition in (A.8), with real
unitary P 1 and P 2 and diagonal D, is always possible. It follows that any unitary
matrix can be written U = PΦ, where P is real and unitary, and Φ is symmetric and
unitary. Note that any global phase of P can instead be assigned to Φ, and so without
loss of generality we can assume that P is special (detP = 1 and detΦ = detU).

Since D is calculated from D2 = Λ, the signs of its elements are arbitrary. The
ambiguities when determining P 1 in (A.9) give rise to ambiguities in P and Φ. The
possible P and Φ can be expressed as P = UP 1JD

∗JTPT
1 and Φ = P 1JDJTPT

1

for a real unitary J that commutes with D2. Here P 1 is fixed. If the signs of the
elements of D are known to be such that any equal elements of D2 correspond to
equal elements of D, then J commutes with D and can be ignored.

Appendix B. Linear, reciprocal, and lossless components.

S
v

u u

v2

1 2

1

Fig. B.1. A linear component with P input and P output modes on each side.

Consider a linear component with P input and P output modes on the left-hand
side and P input and P output modes on the right-hand side; see Figure B.1. The
component is completely characterized by the (2P×2P )-dimensional scattering matrix
S which relates the input and output fields:

(B.1)

[
v1

u2

]
= S

[
u1

v2

]
=

[
S11 S12

S21 S22

] [
u1

v2

]
.

The field vectors that propagate to the right and left are denoted u and v, respectively,
and the subscripts 1 and 2 indicate the left- and right-hand sides of the component.
The scattering matrix is a block matrix; the blocks S11 and S22 are the reflection
from the left- and right-hand sides of the device, respectively, and S21 and S12 the
transmission through the device from the left and right, respectively. These blocks
have the dimension P × P .

There exists a similar relation, a transfer matrix relation, that connects the fields
on the left-hand side to the fields on the right-hand side:

(B.2)

[
u2

v2

]
= T

[
u1

v1

]
.

Comparing (B.1) and (B.2) we find the blocks of T:

(B.3) T =

[
S21 − S22S

−1
12 S11 S22S

−1
12

−S−1
12 S11 S−1

12

]
.

To describe a device with a transfer matrix, S12 must be invertible; that is, the
transmission from the right cannot be zero for any input field vector. Thus, ideal
mirrors, for example, cannot be described by a transfer matrix.

Provided the mode profiles can be written real, reciprocity means that the scat-
tering matrix is symmetric [29, 15], i.e.,
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S11 = ST
11,(B.4a)

S22 = ST
22,(B.4b)

S21 = ST
12.(B.4c)

Moreover, the lossless condition is expressed as the unitarity condition S†S = I:

S†
11S11 + S†

21S21 = I,(B.5a)

S†
12S12 + S†

22S22 = I,(B.5b)

S†
12S11 + S†

22S21 = 0.(B.5c)

With (B.4) in mind, we introduce Takagi factorization of S11 and −S22 (see sec-
tion A.1):

S11 = ΦT
l ρΦl,(B.6a)

S22 = Φr(−ρ′)ΦT
r ,(B.6b)

S21 = Φrt
′Φl.(B.6c)

Here Φl and Φr are unitary matrices, ρ and ρ′ are diagonal and nonnegative, and
t′ = Φ†

rS21Φ
†
l . By substituting into (B.5) and using (B.4) we obtain

t′†t′ = I − ρ2,(B.7a)

t′t′† = I − ρ′2,(B.7b)

ρ′ = t′ρt′∗−1.(B.7c)

Introducing the singular value decomposition t′ = U ′tV ′, we obtain from (B.7a) that

t2 = V ′(I − ρ2)V ′†, which means t = V ′√I − ρ2V ′†. Backsubstitution shows that

t′ can be written t′ = U
√
I − ρ2 for a unitary U ; thus (B.7c) reduces to ρ′ = UρUT.

With these properties, it is straightforward to show that (B.6) can be written

S11 = ΦT
l ρΦl,(B.8a)

S22 = Φr(−ρ)ΦT
r ,(B.8b)

S21 = ST
12 = ΦrtΦl,(B.8c)

where U has been absorbed into Φr, ΦrU → Φr, and

(B.9) t =
√

I − ρ2.

Note that (B.7) implies that ‖ρ‖ ≤ 1.
Equations (B.8) and (B.9) can be interpreted as follows: The component can be

viewed as a discrete reflector sandwiched between two unitary transmission sections.
The discrete reflector provides coupling between equal modes that propagate in op-
posite directions, and the unitary sections provide coupling between different modes
in the same direction. For the discrete reflector, the reflection response from the left
and right is ρ and −ρ, respectively, and the transmission is t. For the two unitary
sections, there are no reflections, and the transmission responses from the left are Φl

and Φr, while the transmission responses from the right are ΦT
l and ΦT

r . Note that
this interpretation is consistent with the reciprocity and lossless conditions (B.4) and
(B.5) for each of the three sections separately. By inspection, we find that (B.8) is
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invariant if PρPT → ρ, PtPT → t, PΦl → Φl, and ΦrP
T → Φr, where P is a

real unitary matrix. Here P represents an arbitrary rotation of the eigenaxes of the
reflector (ρ and t are now real and positive semidefinite).

Using (B.8), the transfer matrix (B.3) can be written

(B.10) T =

[
A∗ B∗

B A

]
,

where the blocks A = Φ∗
rt

−1Φ∗
l and B = −Φ∗

rt
−1ρΦl satisfy

A†A−BTB∗ = I,(B.11a)

ABT −BAT = 0,(B.11b)

ATB∗ −B†A = 0.(B.11c)
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FILTERED BACKPROJECTION INVERSION OF THE CONE BEAM
TRANSFORM FOR A GENERAL CLASS OF CURVES∗
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Abstract. We extend a cone beam transform inversion formula, proposed earlier for helices
by one of the authors, to a general class of curves. The inversion formula remains efficient, because
filtering is shift-invariant and is performed along a one-parametric family of lines. The conditions that
describe the class are very natural. Curves C are smooth, without self-intersections, have positive
curvature and torsion, do not bend too much, and do not admit lines which are tangent to C at one
point and intersect C at another point. The notions of PI lines and PI segments are generalized, and
their properties are studied. The domain U is found, where PI lines are guaranteed to be unique.
Results of numerical experiments demonstrate very good image quality.
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1. Introduction. Image reconstruction from projections is important both in
pure mathematics (as a problem of integral geometry) and in applications (as a prob-
lem of computed tomography (CT)). Cone beam CT is one of the most common
medical imaging modalities. Here one recovers a function f(x), x ∈ R

3, knowing the
integrals of f along lines that intersect a curve C. The curve C is usually called a
source trajectory. The ever-increasing needs of medical imaging require the develop-
ment of inversion algorithms for more and more general source trajectories.

A number of theoretically exact algorithms have been proposed in the past several
years. They can be classified into three groups: filtered backprojection (FBP) algo-
rithms, slow-FBP algorithms, and backprojection filtration (BPF) algorithms. Slow-
FBP and BPF algorithms are quite flexible, allow some transverse data truncation,
and can be used for virtually any complete source trajectory [20, 19, 27, 21, 25, 23, 26].
FBP algorithms are less flexible, but they are by far the fastest and have been devel-
oped for a range of source trajectories. They include constant pitch helix [9, 12, 13, 15],
dynamic pitch helix [7, 6], circle-and-line [11], circle-and-arc [14, 3], circle-and-helix
[2], and saddle [22]. A very nice FBP algorithm was recently proposed by Pack and
Noo [20]. It applies to almost any reasonable source trajectory. However, it some-
times leads to excessive detector requirements. The problem is that the algorithm
is too general and does not take the geometry of the curve into account. Significant
progress has also been achieved in the development of quasi-exact algorithms [1, 16].

With one exception, FBP algorithms have been proposed only for certain types of
well-defined trajectories: helices, saddles, etc. There is no FBP algorithm developed
specifically for a general class of curves. Ideally, such a class would be described
only in terms of some basic geometric properties (e.g., smoothness, curvature, etc.)
rather than specifying the types of curves (helices, etc.). In this paper we develop a
theoretically exact shift-invariant FBP algorithm for a wide class of source trajectories.

∗Received by the editors October 24, 2006; accepted for publication (in revised form) July 16,
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The conditions describing our class are very natural. We consider curves C that
are smooth, have no self-intersections, have positive curvature and torsion, do not
bend too much, and do not admit lines which are tangent to C at one point and
intersect C at another point. Our algorithm applies to any curve with these properties.
The inversion algorithm of this paper is a generalization of the formula proposed for
constant- and variable-pitch helices in [9, 12, 7].

The importance of our results is twofold. First, the algorithm can be used in
a variety of applications. For example, in electron-beam CT/micro-CT there arise
source trajectories that can be described as helices with variable radius and pitch
[24]. The FBP algorithms of [9, 12, 7] do not work for such curves, but the new
algorithm can easily handle them. Second, the results have theoretical value as well.
They provide a deeper understanding of the available algorithms, put them into the
context of a more general approach, and demonstrate which geometrical properties
the curve is required to have for an efficient FBP algorithm to apply.

The paper is organized as follows. In section 2 we define PI lines for general curves,
describe precisely the class of curves considered in the paper, and study properties of
their PI segments. In section 3 we find the set U where PI lines are guaranteed to be
unique. The result is based on the notions of maximal and minimal PI lines. These
critical PI lines can be viewed as a generalization of the axial direction for regular
helices. Also we find the special planes, such that the stereographic projection of C
onto these planes has very useful properties. In section 4 we study more properties
of the PI segments of C. Then the inversion formula is given. Finally, the results of
numerical experiments are presented in section 5.

2. PI lines and their properties. The objective of this section is to define
PI lines for a general class of smooth curves and study their properties. Let C be a
smooth curve:

(2.1) I := [a, b] � s → y(s) ∈ R
3, |ẏ(s)| �= 0.

Here and below, the dot above a variable denotes differentiation with respect to s.
Define the functions

(2.2) Φ(s, s0) := [y(s) − y(s0), ẏ(s), ÿ(s)], Q(s, s0) := [y(s) − y(s0), ẏ(s0), ẏ(s)],

where [e1, e2, e3] := e1 · (e2 × e3) denotes the scalar triple product of three vectors.
If C is a helix, then Φ and Q are precisely the functions that have been introduced
under the same names in [7]. Similarly to [7], it turns out later that Φ is intimately
related to the convexity of the projection of C onto a detector plane (cf. (4.6) below),
and Q is related to the uniqueness of PI lines (cf. Definitions 2.1 and 2.2, (3.6), and
the proof of Proposition 3.3). Given any s0, s1 ∈ I, H(s0, s1) denotes the line segment
with the endpoints y(s0), y(s1) ∈ C.

Definition 2.1. Pick two points y(s0), y(s1) ∈ C, s0 < s1. The line segment
H(s0, s1) is called a PI segment if Q(s0, q) �= 0 for any q ∈ (s0, s1).

Definition 2.2. Pick two points y(s0), y(s1) ∈ C, s0 < s1. The line segment
H(s0, s1) is called a maximal PI segment if Q(s0, s1) = 0, but Q(s0, q) �= 0 for any
q ∈ (s0, s1).

If C is a helix, Definition 2.1 gives the usual PI segments H(s, q), 0 < q− s < 2π,
and Definition 2.2 gives the maximal PI segments H(s, s + 2π).
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Fig. 1. Critical case.

Next we discuss how a smooth curve bends. Consider two points: y(s0), y(s) ∈ C.
Assume y(s0) is fixed, and y(s) moves along C. The line segment joining y(s0) and
y(s) rotates about the instantaneous axis e(s, s0) = (y(s) − y(s0)) × ẏ(s)/|(y(s) −
y(s0)) × ẏ(s)|. The point y(s) rotates also about the instantaneous axis, which is
obtained by finding the circle of curvature of C at y(s) (also known as the osculating
circle). The corresponding axis of rotation is b(s), i.e., the binormal vector. If s → s0,
then e(s, s0) → b(s). Thus, the difference in directions of the two vectors can measure
how much the curve bends between the two points. The maximum possible “bent”
occurs when the two axes point in the opposite directions: e(s, s0) = −b(s) (see
Figure 1).

For the convenience of the reader we recall the definitions of the curvature κ and
torsion τ of a smooth curve:

(2.3) κ(s) :=
|ẏ(s) × ÿ(s)|

|ẏ(s)|3 , τ(s) :=
[ẏ(s), ÿ(s),

...
y (s)]

|ẏ(s) × ÿ(s)|2 .

Now we can formulate the main assumptions on the curve C.
C1. C is smooth, and the curvature and torsion of C are positive;
C2. C does not self-intersect within any PI segment (or a maximal PI segment)

of C;
C3. given any PI segment (or a maximal PI segment) H(s0, s) of C, there is no

line tangent to C at y(s1) and intersecting C at y(s2), with s1, s2 ∈ [s0, s],
s1 �= s2;

C4. C does not bend too much; i.e., given any PI segment (or a maximal PI
segment) H(s0, s) of C, one has e(s1, s2) �= −b(s2) for any s1, s2 ∈ [s0, s],
s1 �= s2.

If a curve satisfies conditions C1–C4, then its PI segments have a number of nice
properties.

Proposition 2.3. Let C be a curve which satisfies conditions C1–C4, and let
H(s0, s1) be its (possibly maximal) PI segment. Then for any s, q ∈ [s0, s1] one has
Φ(s, q) > 0 if s > q and Φ(s, q) < 0 if s < q.

Proof. By shrinking the PI line if necessary, the proposition follows if we show
that Φ(s, s0) �= 0 for any s ∈ (s0, s1] and Φ(s, s1) �= 0 for any s ∈ [s0, s1). We prove
only the first statement, because the proof of the second one is analogous.
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Fig. 2. Projection of y(s0) onto the plane through y(s) with normal vector ẏ(s).

Let us assume that the parameterization of y(s) is natural, i.e., |ẏ(s)| ≡ 1. For
convenience, recall the Frenet–Serret formulas:⎡

⎣ ṫ
ṅ

ḃ

⎤
⎦ =

⎡
⎣ 0 κ 0

−κ 0 τ
0 −τ 0

⎤
⎦
⎡
⎣ t

n
b

⎤
⎦ ,(2.4)

where t(s),n(s),b(s) are the unit tangent and the normal and binormal vectors,
respectively, κ(s) is the curvature, and τ(s) is the torsion of the source trajectory (cf.
(2.3)). Using (2.4), we get

Φ(s, s0) = [y(s) − y(s0), ẏ(s), ÿ(s)] = κ(s)[y(s) − y(s0), t(s),n(s)]

= κ(s)b(s) · (y(s) − y(s0)).
(2.5)

Since we are interested in the sign of Φ(s, s0) and κ(s) > 0, we determine the sign of

b(s) · (y(s) − y(s0)) =

∫ s

s0

(b(t) · (y(t) − y(s0)))
′
t dt

= −
∫ s

s0

τ(t)n(t) · (y(t) − y(s0))dt.

(2.6)

Let t⊥(s) denote the plane passing through y(s) and perpendicular to t(s). We assume
that n(s) and b(s) are the coordinate axes on the plane, and y(s) is the origin (see
Figure 2).

Let Πosc(s) denote the osculating plane of C at y(s). Recall that Πosc(s) contains
y(s) and is parallel to ẏ(s) and ÿ(s). If y(s0) projects onto the ray L := y(s) −
λn(s), λ > 0, then y(s0) belongs to Πosc(s). Moreover, the two rotation axes—one
determined by rotation of y(s) around y(s0) and the other, b(s), determined by
rotation of y(s) relative to the intrinsic center of rotation—are parallel and point in
opposite directions. This is prohibited by the assumption that the curve does not
bend too much (see C4), so y(s0) never projects onto L.

Let ŷ(s0) denote the projection of y(s0) onto t⊥(s). The Taylor series expansions
show that τ > 0 and κ > 0 imply

(2.7) n(t) · (y(s) − y(s0)) < 0, b(s) · (y(s) − y(s0)) > 0,
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Fig. 3. Illustration of the containment property: orthogonal projection onto H⊥(s0, s1).

for s − s0 > 0 small enough. Hence, initially ŷ(s0) is located in the third quadrant
(see Figure 2). Suppose now s increases. If ŷ(s0) appears in the third quadrant,
then n(t) · (y(t) − y(s0)) < 0. So b(s) · (y(s) − y(s0)) increases and ŷ(s0) moves
down and does not cross the n-axis. If ŷ(s0) appears in the fourth quadrant, then
n(t) · (y(t) − y(s0)) > 0 and b(s) · (y(s) − y(s0)) decreases. This implies that in
the fourth quadrant ŷ(s0) moves up. However, our assumption precludes ŷ(s0) from
crossing L. Consequently, ŷ(s0) never crosses the n-axis and Φ(s, s0) > 0 for any
s ∈ (s0, s1].

Let H(s0, s1) be a PI segment (possibly maximal) and C(s0, s1) the correspond-
ing curve segment. Project C(s0, s1), ẏ(s0), and ẏ(s1) orthogonally onto a plane
perpendicular to H(s0, s1). Such a plane is denoted H⊥(s0, s1). The corresponding
projections are denoted Ĉ(s0, s1), ˆ̇y(s0), and ˆ̇y(s1), respectively (see Figure 3). Let O
be the projection of H(s0, s1). Because of condition C3, the vectors ˆ̇y(s0) and ˆ̇y(s1)
determine two rays:

R+(s0, s1) := {x ∈ H(s0, s1)
⊥ : x = O + λˆ̇y(s0), λ ≥ 0},

R−(s0, s1) := {x ∈ H(s0, s1)
⊥ : x = O + λ(−ˆ̇y(s1)), λ ≥ 0}.

(2.8)

Proposition 2.4. Let C be a curve which satisfies conditions C1–C4. If H(s0, s1)
is a (possibly maximal) PI segment of C, then one has the following:

(1) Ĉ(s0, s1) is contained inside the wedge with vertex O and formed by the rays
R+(s0, s1) and R−(s0, s1);

(2) Ĉ(s0, s1) is smooth, and no line through O is tangent to Ĉ(s0, s1) at an inte-
rior point;

(3) if H(s0, s1) is not maximal, the angle between R+(s0, s1) and R−(s0, s1) is
less than π. If H(s0, s1) is maximal, the angle between the rays equals π;

(4) no line through O intersects the interior of Ĉ(s0, s1) at more than one point.
The property of C described in statement (1) of the proposition is important for

us, so it will be given the name containment property. In other words, statement (1)
says that PI segments of curves which satisfy conditions C1–C4 have the containment
property.

Proof. To show that Ĉ(s0, s1) is contained inside the wedge, we first consider
Ĉ(s0, s1), where s1 = s0 + ε for some 0 < ε � 1. As is easily seen, containment
follows from the two inequalities:

[y(t) − y(s0), y(s1) − y(s0), ẏ(s0)] > 0 ∀t ∈ (s0, s1),

[y(t) − y(s0), y(s1) − y(s0), ẏ(s1)] > 0 ∀t ∈ (s0, s1).
(2.9)
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To prove the first inequality introduce the function
(2.10)

Ψ(s1, t) :=

[
y(t) − y(s0) − ẏ(s0)(t− s0)

(t− s0)2
,
y(s1) − y(s0) − ẏ(s0)(s1 − s0)

(s1 − s0)2
, ẏ(s0)

]
.

By using the Taylor series expansions we see that Ψ(s1, t) is smooth and bounded on
compact sets. Notice also that

(2.11) Ψ(s1, s1) = 0, Ψ′
t(s1, t) < ∞.

Hence Ψ(s1, t)/(s1 − t) is bounded as well, which implies

[y(t) − y(s0), y(s1) − y(s0), ẏ(s0)]

=
(t− s0)

2(s1 − s0)
2(s1 − t)

12
([ẏ(s0), ÿ(s0),

...
y (s0)] + o(1)) > 0,

(2.12)

where o(1) → 0 as s1 → s0. We used the argument based upon the function Ψ,
because we needed an asymptotic result that holds when t → s0 and when t → s1.
The second inequality in (2.9) can be proven for small s1−s0 > 0 in a similar fashion.

Suppose now that s1 − s0 is not necessarily small. Note that Ĉ(s0, s1) is tangent
to the rays R+(s0, s1) and R−(s0, s1) at the point O of order precisely one. Consider,
for example, the ray R+(s0, s1). To determine the order of tangency we need to find
the asymptotics of the first expression in (2.9) as t → s0, with s0 and s1 fixed. We
have

[y(t) − y(s0), y(s1) − y(s0), ẏ(s0)]

= [ÿ(s0), y(s1) − y(s0), ẏ(s0)]
(t− s0)

2

2
+ O

(
(t− s0)

3
)

= −Φ(s0, s1)
(t− s0)

2

2
+ O

(
(t− s0)

3
)
.

(2.13)

Similarly,

[y(t) − y(s0), y(s1) − y(s0), ẏ(s1)] = Φ(s1, s0)
(t− s1)

2

2
+ O

(
(t− s1)

3
)
, t → s1.

(2.14)

By Proposition 2.3, Φ(s0, s1) < 0, Φ(s1, s0) > 0, and the desired assertion follows.
Suppose C(s0, s1) does not have the containment property. Assume, for example,

that the first inequality in (2.9) is violated. A violation of the other inequality can
be considered analogously. From (2.13) and Proposition 2.3, the inequality holds for
some t > s0, where t− s0 is sufficiently small. Thus there exists t ∈ (s0, s1) such that

(2.15) [y(t) − y(s0), y(s1) − y(s0), ẏ(s0)] = 0.

Let us show that (2.15) defines t as a function of s1. Formally differentiating (2.15)
with respect to s1 gives

(2.16)
dt

ds1
= − [y(t) − y(s0), ẏ(s1), ẏ(s0)]

[ẏ(t), y(s1) − y(s0), ẏ(s0)]
.

The denominator in (2.16) does not vanish. Otherwise, from the linear indepen-
dence of ẏ(s0) and y(s1) − y(s0) (property C3) and (2.15) we get Q(t, s0) = [y(t) −



340 ALEXANDER KATSEVICH AND MIKHAIL KAPRALOV

y(s0), ẏ(s0), ẏ(t)] = 0. Since H(s0, s1) is a PI line, this is a contradiction. Thus (2.15)
does define t as a function of s1, and C(s0, s1) does not have the containment property
for all s1 in an open set. Hence we can consider the function t(s) for some s ≤ s1

using the fact that Q(t, s0) �= 0 for t ∈ (s0, s1). As s decreases from s1 towards s0,
one of the following must happen:

(a) s, t → s∗ �= s0. Replacing s1 with s and t with t(s) in (2.15) gives Q(s∗, s0) =
[y(s∗)−y(s0), ẏ(s0), ẏ(s

∗)] = 0, which contradicts the assumption that H(s0, s1)
is a PI line.

(b) t → s0, s → s∗ > s0. From (2.15), Φ(s0, s
∗) = [y(s0)−y(s∗), ẏ(s0), ÿ(s0)] = 0,

which contradicts Proposition 2.3.
Note that s, t �→ s0 because of (2.12). Thus the containment property is estab-

lished.
To prove the second statement we argue by contradiction. Suppose there exists

t ∈ (s0, s1), where either Ĉ(s0, s1) is nonsmooth or where the line through O and ŷ(t)
is tangent to Ĉ(s0, s1). Here ŷ(t) is the projection of y(t) onto H⊥(s0, s1). In both
cases

(2.17) [y(s1) − y(s0), ẏ(t), y(t) − y(s0)] = 0.

Just as in the proof of statement (1), (2.17) defines t as a function of s1. Differentiating
(2.17) with respect to s1 gives

(2.18)
dt

ds1
= − [ẏ(s1), ẏ(t), y(t) − y(s0)]

[y(s1) − y(s0), ÿ(t), y(t) − y(s0)]
.

The denominator in (2.18) does not vanish. Otherwise, together with (2.17) this gives
Φ(t, s0) = [y(t) − y(s0), ẏ(t), ÿ(t)] = 0, which contradicts Proposition 2.3. Here we
have used the fact that y(s1)−y(s0) and y(t)−y(s0) are not parallel (cf. (2.9)). Hence
we can consider the function t(s) for some s ≤ s1 using the fact that Φ(t, s0) �= 0 for
t ∈ (s0, s1]. As s decreases from s1 towards s0, one of the following must happen:

(a) s, t → s∗ �= s0. Replacing s1 with s and t with t(s) in (2.17) gives [y(s∗) −
y(s0), ẏ(s

∗), ÿ(s∗)] = 0, which contradicts Proposition 2.3.
(b) t → s0, s → s∗ > s0. Then (2.17) implies [y(s∗) − y(s0), ẏ(s0), ÿ(s0)] = 0,

which is again a contradiction.
(c) s, t → s0. Now (2.17) implies [ẏ(s0), ÿ(s0),

...
y (s0)] = 0, i.e., τ(s0) = 0. This

contradicts the assumption τ(s0) > 0.
Our argument proves that (2.17) does not happen, so statement (2) is established.

To prove statement (3), first consider H(s0, q) for q−s0 > 0 sufficiently small. As
follows from statements (1) and (2), Ĉ(s0, q) is contained between the rays R+(s0, q)
and R−(s0, q), which are close to each other. As q increases towards s1, the two
rays cannot collapse into one. Because of the containment, Ĉ(s0, q) is always located
between the rays. So if the two rays collapse into one for some q > s0, then C(s0, q)
is a planar curve, which contradicts the assumption τ > 0. Hence Q(s0, s1) = 0 if and
only if R+(s0, s1) and R−(s0, s1) point in opposite directions (see Figure 5).

Statements (1)–(3) imply that (i) whenever a line through O intersects Ĉ(s0, s1),
then all of the intersection points (IPs) are on one side of O and (ii) neither R+(s0, s1)
nor R−(s0, s1) intersects the interior of Ĉ(s0, s1). By (i) we can replace “line” with
“ray” in statement (4). Suppose there is a ray γ with a vertex at O, which intersects
Ĉ(s0, s1) at two interior points. Clearly, by rotating γ around O towards either
R+(s0, s1) or R−(s0, s1) we can make the two IPs collide. As soon as the IPs collide,
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we get a ray tangent to Ĉ(s0, s1) at an interior point, which contradicts statement
(2).

Corollary 2.5. No plane intersects C(s0, s1) at more than three points.
Proof. Suppose there is a plane Π that has at least four IPs with C(s0, s1):

s0 ≤ t1 < t2 < t3 < t4 ≤ s1. Consider C(t1, t4), and project it onto the plane
perpendicular to H(t1, t4) (as was done in the proof of Proposition 2.4). As before,
let O denote the projection of H(t1, t4). The projection of Π gives the line through
O which intersects Ĉ(t1, t4) at least at two points, which contradicts statement (3) of
Proposition 2.4.

Corollary 2.6. Pick any x ∈ H(s0, s1) and s ∈ (s0, s1). Consider a plane Π
rotating around the line through x and y(s). The number of IPs of Π and C(s0, s1)
changes from one to three when Π passes through H(s0, s1).

Proof. Consider the critical case when Π contains H(s0, s1). As follows from
Proposition 2.4, the vectors ẏ(s0) and −ẏ(s1) point into the opposite half-planes
relative to Π. Hence, a small rotation of Π around β(s, x) in one direction gives
one IP and in the opposite direction three IPs. See section 4 in [15] for more
details.

3. Establishing uniqueness of PI lines. To establish uniqueness of PI lines,
we generalize the standard argument from helices [17, 8, 7] to general curves.

Fix some reconstruction point x ∈ R
3 \ C. For each s ∈ I, fix a vector N(s),

|N(s)| ≡ 1 (a specific N(s) will be chosen later). Define the functions q(s) and λ(s)
so that q(s) > s, H(s, q(s)) is a PI segment, 0 < λ(s) < 1, and the point

(3.1) x(s) := y(s) + λ(s)(y(q(s)) − y(s)) ∈ H(s, q(s))

has the property

(3.2) x(s) − x ‖ N(s).

We assume that the functions q(s) and λ(s) with the required properties exist. Later
(see (3.11) and the proof of Proposition 3.3) we find an open set U such that for any
x ∈ U the functions q(s) and λ(s) do exist.

Condition (3.2) means that the parallel projection of x(s) onto the plane through
x with normal vector N(s) coincides with x. Note that the vector-valued function
N(s) is determined independently of q(s) and λ(s). A similar idea is used in proving
the uniqueness of PI lines for the standard helix, the difference being that the vector
N(s) is constant and directed along the axis of the helix.

Figure 4 illustrates the setup: The functions q(s) and λ(s) are defined in such a
way as to ensure that the parallel projection of x(s) onto the plane through x with
normal N(s) always coincides with x. Denote Δy(s) := y(q(s)) − y(s). Thus,

(3.3) ε(s) := N(s) · {(y(s) + λ(s)Δy(s)) − x}

is the signed distance from y(s)+λ(s)Δy(s) to x, i.e., ε(s) = 0 if and only if the chord
H(s, q(s)) passes through x. We are interested in calculating ε′(s).

Combining (3.1)–(3.3) gives

(3.4) y(s) + λ(s)(y(q(s)) − y(s)) = x + ε(s)N(s).

Differentiate (3.4) with respect to s:

(3.5) ẏ(s) + λ′(s)Δy(s) + λ(s)(ẏ(q(s))q′(s) − ẏ(s)) = ε′(s)N(s) + ε(s)Ṅ(s).
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Fig. 4. Parallel projection onto the plane N⊥(s) through x.

Computing the dot product of (3.5) with Δy(s)×ẏ(q) on both sides gives the following
expression:

ε′(s) = A(s) + ε(s)B(s),

A(s) := −(1 − λ(s))
Q(s, q(s))

[N(s),Δy(s), ẏ(q(s))]
, B(s) := − [Ṅ(s),Δy(s), ẏ(q(s))]

[N(s),Δy(s), ẏ(q(s))]
,

(3.6)

where we have used (2.2).
The goal is to obtain the uniqueness of PI lines. We start by choosing a vector

N(s) in such a way as to ensure that the denominator in (3.6) is never zero as long as
H(s, q(s)) is a PI line. Denote the supremum (respectively, infimum) of all q such that
H(s, q) is a PI line by qmax(s) (respectively, qmin(s)). Since I = [a, b] is a compact
interval, qmax(s) and qmin(s) are well-defined.

Now we study the properties of the function qmax(s). Pick any s0 ∈ (a, b) such
that qmax(s0) < b. Consider the equation

(3.7) Q(qmax(s), s) = [y(qmax(s)) − y(s), ẏ(s), ẏ(qmax(s))] = 0

for s in a neighborhood of s0. In particular, qmax(s) satisfies (3.7) when s = s0.
Formally differentiating (3.7) with respect to s gives

(3.8) q′max(s0) = − [y(qmax(s0)) − y(s0), ÿ(s0), ẏ(qmax(s0))]

[y(qmax(s0)) − y(s0), ẏ(s0), ÿ(qmax(s0))]
.

By assumption C2, y(qmax(s0)) − y(s0) and ẏ(s0) are not parallel. Hence, if the
denominator in (3.8) is zero, together with (3.7) this implies

(3.9) [y(qmax(s0)) − y(s0), ẏ(qmax(s0)), ÿ(qmax(s0))] = 0,

which contradicts Proposition 2.3. By the implicit function theorem, in a neighbor-
hood of the point (s0, qmax(s0)) there exists a locally unique solution q(s) to (3.7), and
this solution satisfies q(s0) = qmax(s0). By construction, q(s) < b in a neighborhood
of s0. Clearly, qmax(s) is continuous at s0. Otherwise we can find sj → s0 such that
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qj := qmax(sj) �→ qmax(s0). Thus we can choose a subsequence qjk which converges to
some q̄ �= qmax(s0). By the definition of qmax, qmax(sj) ≤ q(sj) < b, so Q(qj , sj) = 0.
By the continuity of Q, Q(q̄, s0) = 0. Since q̄ �= qmax(s0), by the definition of qmax

we must have q̄ > qmax(s0). This is a contradiction, because, by using the continuity
of q(s), there must exist K such that qmax(sjk) > q(sjk) for all k > K.

Using (3.7) and assumption C2 gives ẏ(qmax(s0)) = c1ẏ(s0) + c2(y(qmax(s0)) −
y(s0)), c1 �= 0. Substituting into (3.8) we obtain after simple transformations:
q′max(s0) = −c21Φ(s0, qmax(s0))/Φ(qmax(s0), s0). By Proposition 2.3, q′max(s0) > 0.

Our argument implies that the function qmax(s) has the following properties:
(1) qmax(s) is continuous on [a, b]. If qmax(a) < b, then there exists s∗max ∈ (a, b)
such that (2) qmax(s) ∈ C∞([a, s∗max]), qmax(s) < b and q′max(s) > 0 on [a, s∗max), and
qmax(s) ≡ b on [s∗max, b), and (3) to compute qmax(s) on [a, s∗max] we can find qmax(s0)
at any s0 ∈ [a, s∗max] and then extend it to the entire interval by solving (3.7).

Properties of qmin(s) are completely analogous: (1) qmin(s) is continuous on [a, b].
If qmin(b) > a, then there exists s∗min ∈ (a, b) such that (2) qmin(s) ∈ C∞([s∗min, b]),
qmin(s) > a and q′min(s) > 0 on (s∗max, b], and qmin(s) ≡ a on (a, s∗min], and (3)
to compute qmin(s) on [s∗min, b] we can find qmin(s0) at any s0 ∈ [s∗min, b] and then
extend it to the entire interval by solving (3.7) (with qmax replaced by qmin).

From the monotonicity of qmax(s) we immediately obtain the following.
Proposition 3.1. Pick any s0 ∈ [a, b). If s, q ∈ (s0, qmax(s0)] and s �= q, then

H(s, q) is a PI line.
Proposition 3.1 is a generalization of a similar property for helices: Any line

segment connecting two different points within one turn of a helix is a PI line [4, 5, 7].
Note also the following immediate corollary to Proposition 3.1: qmin(qmax(s0)) = s0

if qmax(s0) < b.
Define

(3.10) Nmax(s) :=
y(qmax(s)) − y(s)

|y(qmax(s)) − y(s)| , Nmin(s) :=
y(qmin(s)) − y(s)

|y(qmin(s)) − y(s)| , s ∈ (a, b).

Thus, Nmax(s) (respectively, Nmin(s)) is the unit vector along H(s, qmax(s)) (respec-
tively, H(qmin(s), s)).

Proposition 3.2. Pick any t ∈ (s, qmax(s)). One has [y(t)−y(s), ẏ(t), Nmax(s)]
�= 0, and the curve segments C(s, t) and C(t, qmax(s)) are located on opposite sides of
the plane containing H(s, qmax(s)) and y(t). Similarly, pick any t ∈ (qmin(s), s). One
has [y(t) − y(s), ẏ(t), Nmin(s)] �= 0, and the curve segments C(t, s) and C(qmin(s), t)
are located on opposite sides of the plane containing H(qmin(s), s) and y(t).

Proof. We prove only the statements concerning qmax(s). The other half of the
proposition is completely analogous.

The assertion [y(t)− y(s), ẏ(t), Nmax(s)] �= 0 follows immediately from statement
(2) of Proposition 2.4 (see also its proof). This proposition also implies that any
line which contains O and passes between the rays R+(s, qmax(s)) and R−(s, qmax(s))
divides Ĉ(s, qmax) into two segments located in the opposite half-planes (see Figure 5).
This means that the curve segments C(s, t) and C(t, qmax(s)) are located on opposite
sides of the plane containing H(s, qmax(s)) and y(t).

Next we determine the region where PI lines, if exist, are unique. Even though
the curve C is well-behaved locally, very little can be said about the global behavior
of C. So we choose a “local” piece of C: I0 := [a0, b0] ⊂ (a, b). The word local is made
precise later. For each s ∈ I0 consider the curve Ĉ(s, qmax) in the plane N⊥

max(s). By
construction, Ĉ(s, qmax) is closed. Let Cylmax(s) be the infinite open cylinder with
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Fig. 5. Projection onto the plane Nmax(s)⊥ in the case qmax(s) < b.

axis Nmax(s), whose base is the interior of Ĉ(s, qmax). In the same fashion we define
the cylinders Cylmin(s) using Ĉ(qmin, s) and Nmin(s). Define U as the intersection
of all such open cylinders:

(3.11) U := ∩s∈I0 (Cylmin(s) ∩ Cylmax(s)) .

If the curve turns too much, U can be empty. As an example, imagine a “slinky” toy.
Locally it looks like a section of a helix. However if the slinky twists too much and the
interval I0 is sufficiently large, there can be no x that belongs to all of the cylinders.
We assume that a sufficiently “local” piece of C is taken, so U �= ∅. In other words,
the only condition we assume for the interval I0 is that the set U defined by (3.11)
be nonempty. Note that in the case of a helix all cylinders Cylmin(s) and Cylmax(s)
are identical, so (3.11) gives the usual domain inside the helix.

Proposition 3.3. Pick x ∈ U . If x admits a PI line, it is unique in the sense
that there is no other PI line with an end point inside I0.

Proof. Choose N(s) := Nmax(s) in (3.2). Since x ∈ U , x projects along N(s)
into the interior of Ĉ(s, qmax(s)) for any s ∈ I0. Hence the functions q(s) and λ(s)
and the map s → x(s) (cf. (3.1), (3.2)) are well-defined on I0. By Proposition 3.2,
[Δy(s), ẏ(q(s)), N(s)] �= 0 for any s ∈ I0. By Proposition 3.1, H(s, q(s)) are PI
segments, so Q(s, q(s)) �= 0 on I0. By construction, λ(s) < 1 on I0.

Our argument implies that A(s) (cf. (3.6)) is bounded away from zero and of con-
stant sign on I0. Consider now B(s) (cf. (3.6)). As we already know, the denominator
is bounded away from zero. Differentiating (3.10) gives

Ṅmax(s) =
1

|y(qmax(s)) − y(s)|
× {[ẏ(qmax(s))q′max(s) − ẏ(s)] −N (N · [ẏ(qmax(s))q′max(s) − ẏ(s)])} .

(3.12)

By assumption C1, C has no self-intersections, so |y(qmax) − y(s)| is bounded away
from zero. From (3.8) and the subsequent discussion, it follows that q′max(s) is
bounded away from zero. Hence, Ṅmax(s) is bounded, and B(s) is bounded as well.

From the properties of A(s) and B(s) we get that ε(s) cannot have more than
one root on I0. This follows immediately from the fact that the signs of ε′(s) and
A(s) in a neighborhood of any s where ε(s) = 0 are the same. Hence x cannot have
more than one PI segment with sb(x) ∈ I0.

Choosing N(s) := Nmin(s) in (3.2) and repeating the same argument gives that
x cannot have more than one PI segment with st(x) ∈ I0.

4. Reconstruction algorithm. In order to derive an inversion formula we need
to study the curve C some more.
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Proposition 4.1. Let H(s0, s1) be a (possibly maximal) PI segment of C. Then
Ĉ(s0, s1) has everywhere nonvanishing curvature.

Proof. Recall that Ĉ(s0, s1) is smooth by Proposition 2.4. Pick any t ∈ (s0, s1).
Up to a nonzero factor the curvature of Ĉ(s0, s1) at the point t is given by [y(s1) −
y(s0), ẏ(t), ÿ(t)]. Using (2.2) we see that this expression equals Φ(t, s0) − Φ(t, s1).
Since s0 < t < s1, Proposition 2.3 gives the desired result. We can think of Φ(t, s) as
a signed “distance” from y(s) to Πosc(t), so Proposition 2.3 also gives that the line
segment H(s0, s1) intersects Πosc(t) for any t ∈ (s0, s1).

Corollary 4.2. Let H(s0, s1) be a (possibly maximal) PI segment of C. For
any x ∈ H(s0, s1) and t ∈ (s0, s1), the vectors ẏ(t) and x− y(t) are not collinear.

Proof. By Proposition 2.3, Ĉ(s0, qmax(s0)) is strictly convex. x ∈ H(s0, s1)
implies that x projects into the domain bounded by Ĉ(s0, qmax(s0)). Thus ẏ(t) and
x− y(t) are not collinear.

Proposition 4.3. Let H(s0, s1) be a (possibly maximal) PI segment of C. For
any x ∈ H(s0, s1) there exists the unique s∗(x) ∈ (s0, s1) such that x ∈ Πosc(s

∗(x)).
Proof. As follows from the proof of Proposition 4.1, Πosc(t) intersects H(s0, s1)

for any t ∈ [s0, s1]. Hence we can write

(4.1) y(s0) + λ(t)(y(s1) − y(s0)) = y(t) + a(t)ẏ(t) + b(t)ÿ(t)

for some scalar functions λ, a, and b. Differentiate (4.1) with respect to t, multiply
the resulting equation by ẏ(t) × ÿ(t), and solve for λ′:

(4.2) λ′(t) = b(t)
[ẏ(t), ÿ(t),

...
y (t)]

[y(s1) − y(s0), ẏ(t), ÿ(t)]
.

Since the torsion of C is nonzero, the numerator in (4.2) does not vanish. From
the proof of Proposition 4.1, the denominator in (4.2) is nonzero. By Corollary 4.2,
b(t) �= 0, t ∈ (s0, s1). Hence λ(t) is a smooth monotone function on [s0, s1]. Obviously,
Πosc(s0) (respectively, Πosc(s1)) intersects H(s0, s1) at y(s0) (respectively, y(s1)).
Thus λ(s0) = 0, λ(s1) = 1, and the proposition is proven.

Due to the containment property (statement (1) of Proposition 2.4), the curve
C(s, qmax(s)) (respectively, C(s, qmin(s))) is on one side of the plane passing through
y(s) and parallel to ẏ(s) and Nmax(s) (respectively, Nmin(s)). This makes it very
convenient to project C(s, qmax(s)) (respectively, C(s, qmin(s))) onto a plane parallel
to ẏ(s) and Nmax(s) (respectively, Nmin(s)). The corresponding projections turn out
to be smooth. Let DP+(s) (respectively, DP−(s)) denote a plane not passing through
y(s) and parallel to ẏ(s) and Nmax(s) (respectively, Nmin(s)). We think of DP+(s)
and DP−(s) as detector planes, so they are chosen on the same side of y(s) as the set
U . More precisely, the rays with vertex y(s) passing through U intersect DP+(s) and
DP−(s). The stereographic projection of C(s, qmax(s)) onto DP+(s) is denoted Γ+,
while the stereographic projection of C(qmin(s), s) onto DP−(s) is denoted Γ−.

Proposition 4.4. Γ+ and Γ− are smooth and have nonvanishing curvature at
every point.

Proof. We consider only Γ+. The statement about Γ− is proven analogously.
Suppose, for simplicity, that the origin is at y(s) and the equation of DP+(s) is
x3 = 1. Thus, x1 and x2 are the coordinates on DP+(s). Let x1(t) and x2(t) be the
coordinates of the projection of y(t), t ∈ (s, qmax(s)), onto DP+(s). Then

(4.3) x1(t) =
y1(t)

y3(t)
, x2(t) =

y2(t)

y3(t)
.
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Applying (2.3) to a planar curve gives

(4.4) κ(t) =
ẋ2

1

(ẋ2
1 + ẋ2

2)
3/2

(
ẋ2

ẋ1

)′
.

Differentiating (4.3) gives

(
ẋ2

ẋ1

)′
=

(
ẏ2y3 − ẏ3y2

ẏ1y3 − ẏ3y1

)′

=
(ÿ2y3 − ÿ3y2)(ẏ1y3 − ẏ3y1) − (ẏ2y3 − ẏ3y2)(ÿ1y3 − ÿ3y1)

(ẋ1y2
3)2

=
1

(ẋ1y2
3)2

∣∣∣∣∣∣
y1 y2 y3

ẏ1 ẏ2 ẏ3

ÿ1 ÿ2 ÿ3

∣∣∣∣∣∣ .
(4.5)

Substituting (4.5) into (4.4) and using (4.3) (recall that y(s) = 0 is the origin) gives
the curvature of Γ+:

(4.6) κ(t) =
Φ(t, s)

y4
3(t) (ẋ2

1(t) + ẋ2
2(t))

3/2
.

By the properties of C(s, qmax(s)) mentioned prior to this proposition, y3(t) �= 0, t ∈
(s, qmax(s)). Also, y3(s) = 0, and, if H(s, qmax(s)) is maximal, y3(qmax(s)) = 0. It
remains to show that ẋ2

1(t)+ ẋ2
2(t) �= 0. This would also imply that Γ+ is smooth. We

argue by contradiction. Suppose ẋ1(t) = ẋ2(t) = 0. Then ẏ2y3 = ẏ3y2, ẏ1y3 = ẏ3y1.
Consequently, y(t)× ẏ(t) is parallel to the x3-axis. Thus, either both y(t) and ẏ(t) are
parallel to DP+(s) or y(t) and ẏ(t) are parallel to each other. Both cases are impossible
because of the convexity of Ĉ(s, qmax(s)) (cf. Proposition 4.1). Since Φ(t, s) �= 0 for
t ∈ [s, qmax(s)] (cf. Proposition 2.3), the desired assertion is proven.

Denote L+
0 := DP+(s) ∩ Πosc(s). It is clear that L+

0 is an asymptote of Γ+:
dist(ŷ(t), L+

0 ) → 0 as t → s+. Similarly, L−
0 := DP−(s) ∩ Πosc(s) is an asymptote of

Γ−: dist(ŷ(t), L−
0 ) → 0 as t → s−.

Fix x ∈ U , which admits a PI line. Let IPI(x) = [sb(x), st(x)] be the PI interval of
x. Let x̂ denote the projection of x onto a detector plane. Frequently it is convenient to
identify detector planes by introducing systems of coordinates that depend smoothly
on s. This allows one to identify all DP+(s) and, separately, all DP−(s). Since
x ∈ U , x does not belong to any plane passing through y(s) and parallel to DP+(s)
or DP−(s), where s ∈ IPI(x). Hence Propositions 4.3 and 3.3 immediately imply the
following statement.

Corollary 4.5. As s moves along IPI(x), the point x̂ traces smooth curves
on DP+(s) and DP−(s). x̂ is between Γ+(s) and L+

0 on DP+(s) if and only if
s ∈ (sb(x), s∗(x)), and x̂ is between L−

0 and Γ−(s) on DP−(s) if and only if s ∈
(s∗(x), st(x)).

Loosely speaking, Corollary 4.5 can be stated as follows: x̂ is between Γ+(s) and
Γ−(s) if and only if s ∈ IPI(x).

Following [9, 12], choose any ψ ∈ C∞(R+) with the properties

ψ(0) = 0; 0 < ψ′(t) < 1, t ≥ 0,

ψ′(0) = 0.5; ψ(2k+1)(0) = 0, k ≥ 1.
(4.7)
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Fig. 6. Detector planes DP+(s) (left panel) and DP−(s) (right panel).

Suppose s, s1, and s2 are related by

(4.8) s1 =

{
ψ(s2 − s) + s, s2 ≥ s,

ψ(s− s2) + s2, s2 < s.

From (4.7), s1 = s1(s, s2) is a C∞ function of s and s2. Conditions (4.7) are easy to
satisfy. One can take, for example, ψ(t) = t/2, and this leads to

(4.9) s1 = (s + s2)/2.

Denote also

u(s, s2) =
(y(s1) − y(s)) × (y(s2) − y(s))

|(y(s1) − y(s)) × (y(s2) − y(s))| sgn(s2 − s),

qmin(s) < s2 < qmax(s), s2 �= s,

u(s, s2) =
ẏ(s) × ÿ(s)

|ẏ(s) × ÿ(s)| , s2 = s.

(4.10)

In the same way as in [12], we prove that u(s, s2) is a C∞ vector function of its
arguments. Let Π(s, s2) be the plane through y(s), y(s2), and y(s1(s, s2)). The
intersection of Π(s, s2) with DP+(s) if s < s2 < qmax(s) or with DP−(s) if qmin(s) <
s2 < s is called a filtering line and denoted L(s, s2).

Fix x ∈ U , which admits a PI line, and s ∈ IPI(x). Find s2 ∈ IPI(x) such that
Π(s, s2) contains x. More precisely, we have to solve for s2 the following equation:

(4.11) (x− y(s)) · u(s, s2) = 0, s2 ∈ IPI(x).

Recall that ẏ(s) is parallel to DP+(s) and DP−(s). For convenience, we choose
the x1- and x2-axes so that

1. ẏ(s) and the x1-axis are parallel and point in the same direction;
2. the equation of Πosc(s) is x2 = 0;
3. on DP+(s), Γ+ is located in the half-plane x2 > 0;
4. on DP−(s), Γ− is located in the half-plane x2 < 0.

Figure 6 illustrates the two detector planes.
The advantage of planes DP+(s) and DP−(s) is that the segments C(s, qmax(s))

and C(qmin(s), s) are projected onto them as continuous curves with positive curva-
ture. If C is a helix, the two segments become the usual 2π-segments C(s, s+2π) and
C(s − 2π, s). This makes it very convenient when describing how to choose filtering
lines in a shift-invariant FBP algorithm. On the other hand, the disadvantage is that
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the two segments are projected onto two different planes. This makes it difficult to
adapt the proofs from [12, 9] to the present more general situation. Fortunately, the
difficulty can be resolved. Given x ∈ U with the PI interval IPI(x) = [sb(x), st(x)],
we can find a family of “detector planes” such that for any s ∈ IPI(x) the entire PI
segment of x, C(sb(x), st(x)), projects onto them in exactly the same way as in the
case of a regular constant-pitch helix. There is no guarantee that the larger segment
C(qmin(s), qmax(s)) (which is equivalent to two adjacent turns of a helix) projects
well onto the planes, but this is not needed.

Let DP (s), s ∈ IPI(x), be a plane not passing through y(s) and parallel to ẏ(s)
and Nmax(sb(x)). Using the convexity of Ĉ(sb(x), st(x)) ⊂ Ĉ(sb(x), qmax(sb(x))) (cf.
Proposition 4.1 and Figure 5) and repeating the proof of Proposition 4.4, we establish
that the stereographic projection of C(sb(x), st(x)) onto DP (s) has all of the usual
properties as in the constant-pitch helix case. More precisely, the projections of
C(sb(x), s) and C(s, st(x)) are concave down and up, respectively, they share the
usual asymptote DP (s)∩Πosc(s), they are located on the opposite sides of the latter,
etc. Thus, using the same argument as in [12, 7], we immediately obtain the following
result.

Proposition 4.6. The solution s2 to (4.11) exists, is unique, and depends
smoothly on s.

The following result shows that filtering lines are shared by sufficiently many
points x ∈ U . The planes DP (s) used for the proof of Proposition 4.6 are selected
separately for each x, so they do necessarily work for all x in a large subset of U .
Thus we have to go back to the planes DP+(s) and DP−(s).

Proposition 4.7. All x ∈ U that project onto any line L(s, s2), s < s2 <
qmax(s), on DP+(s) to the left of s2 or onto L(s, s2), qmin(s) < s2 < s, on DP−(s)
to the right of s2 share L(s, s2) as their filtering line.

Proof. We consider only the case when s2 > s, i.e., x̂ ∈ DP+(s). The other
case can be considered analogously. We have st(x) ∈ Γ+. By Corollary 4.5, x̂ ap-
pears between L+

0 and Γ+. From the proof of Proposition 4.1, Πosc(s) intersects
the PI segment of x, H(sb(x), st(x)). Let zosc(s) denote the point of intersection.
Let Πmax(s) be the plane through y(s) and parallel to ẏ(s) and Nmax(s). Our first
goal is to show that the line segment [zosc(s), y(st(x))] lies on one side of Πmax(s)
and, therefore, projects well onto DP+(s). Let zmax(s) denote the intersection of
the line through LPI(x) and Πmax(s). Clearly, zosc(s) = zmax(s) when s = sb(x).
From the proof of Proposition 4.3, zosc(s) moves toward y(st(x)) along LPI(x) as
s increases from sb(x) to st(x). From the convexity of Ĉ(s, qmax(s)) (cf. Figure 5),
it is easy to obtain that in a neighborhood of s = sb(x) the point zmax(s) moves
away from H(sb(x), st(x)) as s increases. If for some s ∈ (sb(x), st(x)) the points
zosc(s) and y(st(x)) are on opposite sides of Πmax(s), then the point zmax(s) en-
ters the line segment [zosc(s), y(st(x))] for some s = s0 ∈ (sb(x), st(x)). Hence,
either (i) zosc(s0) = zmax(s0) or (ii) y(st(x)) = zmax(s0). From Proposition 2.3,
[y(qmax(s0)) − y(s0), ẏ(s0), ÿ(s0)] �= 0, so (i) implies that zosc(s0) − y(s0) and ẏ(s0)
are collinear, which contradicts Corollary 4.2. In case (ii), y(st(x)) ∈ Πmax(s0), which
contradicts the containment property.

Hence L̂PI(x), the projection of H(sb(x), st(x)) onto DP+(s), intersects L+
0 . More

precisely, the projection of the line segment [zosc(s), y(st(x))] ⊂ LPI(x) is a continuous
line segment that connects Γ+ and L+

0 (see Figure 6). Note that Proposition 4.3 im-

plies x ∈ [zosc(s), y(st(x))] if s < s∗(x). It turns out that L̂PI(x) does not intersect Γ+

at any point other than st(x). Suppose there is an additional intersection point t. Thus
the plane through y(s) and H(sb(x), st(x)) intersects CPI(x) at four points: sb(x), t, s,
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and st(x), and this contradicts Corollary 2.5. Here CPI(x) is the section of the curve
corresponding to the parametric interval IPI(x), i.e., CPI(x) := C(sb(x), st(x)).

If x projects onto L(s, s2) to the left of s2, we make two observations: (i) x̂
is between L+

0 and Γ+ on DP+(s), and (ii) s2 < st(x) (due to the properties of

L̂PI(x) that we just established). From (i) and Corollary 4.5, s ∈ IPI(x). From
(ii), s2 ∈ (s, st(x)), so by (i) s2 ∈ IPI(x). By construction, s2 was chosen to satisfy
(x − y(s)) · u(s, s2) = 0. We have just shown that s, s2 ∈ IPI(x). This proves that
L(s, s2) is the filtering line for x.

By Proposition 4.7, our construction defines s2 := s2(s, x) and, consequently,
u(s, x) := u(s, s2(s, x)). Let Df (s,Θ) =

∫∞
0

f(y(s) + tΘ)dt, |Θ| = 1, denote the cone
beam transform of f . The main result of the paper is the following theorem.

Theorem 4.8. Let C be a curve (2.1), which satisfies conditions C1–C4. Let
I0 ⊂ I be an interval such that the set U defined by (3.11) is nonempty. For any
f ∈ C∞

0 (U) and x ∈ U which admits a PI line such that IPI(x) ⊂ I0, one has

(4.12) f(x) = − 1

2π2

∫
IPI(x)

1

|x− y(s)|

∫ 2π

0

∂

∂q
Df (q,Θ(s, x, γ))

∣∣∣∣
q=s

dγ

sin γ
ds,

where β(s, x) = (x − y(s))/|x − y(s)|, e(s, x) := β(s, x) × u(s, x), and Θ(s, x, γ) :=
cos γβ(s, x) + sin γe(s, x).

Proof. Corollaries 2.5, 2.6, and 4.5 and Propositions 4.1, 4.3, 4.4, and 4.6 imply
that locally, i.e., in a neighborhood of IPI(x), the curve C behaves in essentially
the same way as the usual helix. Hence the same argument as in [12, 7] can be
used to prove that (4.12) holds. For the convenience of the reader we recall the
key steps in the proof. Fix x ∈ U such that IPI(x) ⊂ I0 and s ∈ IPI(x). Suppose
s < s∗(x) (cf. Proposition 4.3). Consider the detector plane DP (s) introduced prior to
Proposition 4.6. Let d0 be the unit vector perpendicular to DP (s) and pointing from
the source position y(s) towards the detector. By the choice of U and the detector
plane, this implies β(s, x) · d0 > 0 and ẏ(s) · d0 = 0. In the same way as in [10]
we show that the stereographic projection of all of the relevant vectors onto DP (s)
preserves the sign of dot products. Let Π be a generic plane containing x and y(s).
By Corollary 2.5, there can be only either one or three IPs in the set Π ∩ CPI(x). If
s is the only IP or the middle of the three IPs, then the slope of the line Π ∩DP (s)
on DP (s) is greater than the slopes of L0 (= Πosc(s) ∩DP (s)) and the filtering line
through x̂. Recall that the filtering line intersects the projection of C(s, st(x)) onto
DP (s) twice, and the projected curve is convex. Hence the IP s gets weight 1. Since
s < s∗(x), the only remaining alternative is that s is the smallest of the three IPs. In
this case s gets weight 1 or −1 depending on the location of Π ∩ DP (s) relative to
the filtering line through x̂. Using exactly the same argument as in section 3 of [12],
we prove that the largest of the three IPs gets weight −1 or 1, respectively. Hence
the inversion formula (4.12) is exact.

Proposition 4.7 implies that (4.12) is of the efficient shift-invariant FBP form.
This means that filtering in (4.12) is convolution-based and is performed along a
one-parametric family of lines.

5. Numerical experiments. Numerical experiments are conducted using flat
detector geometry. The simulation parameters are summarized in Table 1. The
detector is located at the distance of 600 mm from the axis of rotation opposite to
the source position. The algorithm is implemented in the native coordinates following
[18]. The clock phantom (see, e.g., [7]) is chosen for reconstructions. The background
cylinder is at 0 HU, the spheres are at 1000 HU, and the air is at -1000 HU.
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Table 1

Simulation parameters.

Parameter Value Units
Views per rotation 1000
Number of detector columns 1101
Number of detector rows 111
Actual detector pixel size 1 × 1 mm2

Isocenter to detector distance 600 mm

Fig. 7. Projection of the source trajectory in (5.1) onto the xy-plane.

Two source trajectories have been used. The first one is a variable radius helix
given by the formula:

(5.1) y(s) =

(
R(s) cos s,R(s) sin s,

h0

2π
s

)
, R(s) = R(1 + 0.3 sin(s/3)),

where R = 600 mm, and the table feed per turn is h0 = 35 mm. The projection of
this trajectory onto the plane x3 = 0 for s ∈ [−2π, 2π] is shown in Figure 7.

Because of the variable radius, detector usage is different for different source
positions. The detector parameters given in Table 1 were chosen so as to accommodate
all source positions. The horizontal size of the detector varied from 894 to 1098 mm;
the average was 945 mm. The vertical size of the detector varied from 49 to 75 mm;
the average was 59 mm. These values were calculated for the segment of the trajectory
necessary to reconstruct the clock phantom.

The boundary of the set U is calculated according to (3.11). The cross section of
the boundaries of cylinders Cylmin(s) and Cylmax(s) with the plane x3 = 0 is shown
in Figure 8 (left panel). The solid circle of radius r = 240 mm shows the boundary of
the clock phantom, and the dashed circle is of the maximum radius r ≈ 374 mm that
fits inside the cross section of U . The result of reconstruction is shown in Figure 9.
Here and in the experiment below we use voxels of size 1mm in each direction.

The second experiment is carried out using the variable-radius and variable-pitch
helix given by:

(5.2) y(s) =

(
R(s) cos s,R(s) sin s,

h(s)

2π
s

)
, h(s) = h0

(
1 +

sin(s/2)

s

)
.

Here R(s) and h0 are the same as in (5.1). Because of the variable radius/variable
pitch, detector usage is different for different source positions. The horizontal size
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Fig. 8. Cross section of boundaries of cylinders Cyl(s) from (3.11) for trajectory (5.1) (left
panel) and trajectory (5.2) (right panel).

Fig. 9. Reconstruction of the clock phantom from trajectory (5.1): slice x3 = 0, WL = 0 HU,
WW = 100 HU.

of the detector varied from 894 to 1098 mm; the average was 945 mm. The vertical
size of the detector varied from 38 to 88 mm; the average was 71 mm. These values
were calculated for the segment of the trajectory necessary to reconstruct the clock
phantom. The cross section of the boundaries of cylinders Cylmin(s) and Cylmax(s)
with the plane x3 = 0 is shown in Figure 8 (right panel). Again, the solid circle of
radius r = 240 mm shows the boundary of the clock phantom, and the dashed circle
is of the maximum radius r ≈ 348 mm that fits inside the cross section of U . The
results of the reconstruction are shown in Figure 10.
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Fig. 10. Reconstruction of the clock phantom from trajectory (5.2): slice z = 0, WL = 0 HU,
WW = 100 HU.
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EXPLOITING HISTORY-DEPENDENT EFFECTS TO INFER
NETWORK CONNECTIVITY∗
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Abstract. We present an approach to distinguish between causal connections and common
input connections among nodes in a network. By modeling how the activity of a node depends
on its own recent history, we demonstrate how this history dependence predicts different patterns
of activity depending on the nature of the network connectivity. In particular, a causal connection
between a pair of observed nodes can be distinguished from common input connections that originate
from nodes whose activity remains unobserved. This work builds on previous results where this same
distinction was made based on modeling how the activity of a node depends on measured external
variables such as stimuli. The results have a potentially broad range of application as the analysis
can be based on a fairly generic class of models.

Key words. neural networks, correlations, causality, maximum likelihood, point process, auto-
correlation

AMS subject classification. 92C20

DOI. 10.1137/070683350

1. Introduction. The determination of causal connections among nodes within
a network is a difficult challenge. This challenge is magnified in the presence of hidden
nodes, the effects of which can mimic the presence of causal connections among the
set of measured nodes. For example, the connection from a hidden node onto two
measured nodes could introduce correlations in the activity of the measured nodes that
resemble the effect of a causal connection between the measured nodes (see Figure 1).

We have recently introduced [14, 13, 12] an approach for identifying causal con-
nections in the presence of hidden nodes that is based on modeling the relationship
between the activity of nodes and measurable external variables, such as those rep-
resenting a stimulus. In the original formulation of this approach, the activity of
any node could be only weakly dependent on the history of its activity. However, in
general, the activity of a node could depend strongly on the recent activity of that
node. For example, this approach was originally designed for neuronal networks, and
the spiking activity of a neuron is strongly modulated by that neuron’s spike history.
After firing a spike, a neuron cannot immediately fire a second spike due to its refrac-
tory period. Some neurons tend to fire spikes in bursts so that, once the refractory
period is over, the probability of firing a spike is transiently much higher than baseline.
These history-dependent effects were neglected in our original formulation.

We have now discovered that, if one models how the activity of a node depends
on its recent history, one’s ability to distinguish causal connections within a network
is enhanced. The reason that modeling history dependence can help determine causal
connections is caricatured in Figure 2. For the purpose of illustration, imagine that
the nodes are neurons and that the measured activity is the times of the neurons’
output spikes. Moreover, imagine that neuron 1 tends to fire spikes in pairs (note the
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Fig. 1. The effect of hidden nodes (unfilled circle) can be to mimic causal connections among
measured nodes (filled circles). (A) A causal connection from measured node 1 onto measured node 2.
(B) A common connection from a hidden node onto two measured nodes, where the connection onto
measured node 2 has a longer delay. (C) Both the common input configuration (A) and the causal
connection configuration (B) produce similar correlations in the activity of the measured nodes. For
concreteness, let the nodes be neurons whose activity is a sequence of spike times illustrated by the
temporal sequence of rectangles. Both the networks (A and B) will increase the probability that
neuron 2 will fire a spike immediately after neuron 1. (These spike combinations are highlighted by
the unfilled rectangles.) (D) Schematic of the correlation induced by either network (A or B). Neuron
2 is highly likely to fire a spike a certain delay after neuron 1 fires. There is a peak in the correlation
measured at that delay. (We arbitrarily use a negative delay when neuron 2 follows neuron 1.) Since
both the common input (A) and the causal connection (B) configurations induce similar correlations
in the activity of the measured nodes, our goal is to distinguish which configuration underlies the
measured activity of the two nodes.

pairs of closely spaced spikes in the output of neuron 1 in the right panels of Figure
2). We argue that neuron 2 should respond differently to the spike pairs depending
on whether the network contains a causal connection (Figure 2(A)) or common input
connections (Figure 2(B)).

To further simplify the situation, imagine that the spike trains of neither neuron
2 nor the hidden neuron have a significant dependence on their history. Then, as
portrayed in Figure 2(A), if neuron 1 has a causal connection onto neuron 2, neuron
2 will respond equally well to both spikes in the spike pairs emitted by neuron 1.
Neuron 2 will receive both spikes in the pair as inputs, so neuron 2 will be likely to
fire a spike immediately after both of these inputs. On the other hand, in the common
input configuration of Figure 2(B), neuron 2 does not receive neuron 1’s spike pairs
as inputs. When the hidden neuron fires a single spike, it may elicit a spike pair from
neuron 1. However, neuron 2 just receives the single input from the hidden neuron,
so neuron 2 will not be driven to fire twice. When looking at just the spike trains
of neuron 1 and 2, it may appear, for example, that neuron 2 is responding to just
the first spike of each pair from neuron 1 and ignoring the second spike. The key
intuition to gain from this example is that, for the common input configuration, it
looks as though neuron 2 does not respond to spikes that can be predicted by the
history dependence of neuron 1.

Of course, any real situation will be far more complicated than this exagger-
ated example. For instance, all of the nodes could have a strong history dependence
to their activity, which will confound the simple reasoning given above. Moreover,
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Fig. 2. Illustration of the different effects of history dependence based on the underlying cir-
cuitry. Nodes are spiking neurons as in Figure 1. For this illustration, we assume neuron 1’s activity
is strongly dependent on its spiking history; it is highly likely to fire spikes in pairs. We also assume
that the spikes of neuron 2 and the unmeasured neuron are largely independent of their respective
history. (A) In a causal connection configuration, neuron 2 may respond to all of neuron 1’s spikes.
As schematized on the left, when neuron 1 fires a pair of spikes (black rectangles), neuron 2 is
likely to spike after each one and so may spike twice. The right panel illustrates a possible temporal
sequence of spikes from both neurons. Spike combinations where neuron 2 fires immediately after
neuron 1 are highlighted by unfilled rectangles. Neuron 2 is highly likely to spike both after the first
spike and after the second spike in each spike pair from neuron 1. (B). In a common input configu-
ration, neuron 2 does not receive the spike pairs from neuron 1. Since a single spike from the hidden
neuron can evoke the spike pair from neuron 1, neuron 2 receives only one input that is correlated
with the spike pair from neuron 1. If the connection from the hidden neuron onto neuron 2 has a
slightly longer delay than the connection onto neuron 1, neuron 2 will be likely to fire immediately
after the first spike in each pair from neuron 1. It will not be likely to spike after the second spike
of the pair, as illustrated in the right panel.

the influence of the connections between a pair of nodes will typically be weaker
than illustrated here, as input received via any one connection will be just one small
influence on a node bathed with inputs from other nodes in the network. Hence,
exploiting such history-dependent effects to infer connectivity requires some form of
analysis that can synthesize the various ways in which internode connectivity and in-
tranode history-dependent effects interact to influence nodes’ activities. Nonetheless,
the mathematical analysis we present will confirm that intuition gleaned from this
exaggerated example does apply to the more complex situation (see section 3.4.1).

This paper presents a mathematical analysis through which one can employ a
model of history-dependent effects to develop estimates of the network connectiv-
ity among measured nodes. In section 2, we describe the class of models that we
consider. In section 3, we present the analysis to determine the connectivity. We
demonstrate the results applied to simulated networks in section 4 and discuss the
results in section 5.

2. The history-dependent model. We present our model and analysis in
fairly abstract terms. As detailed in [14], we employ a modular approach where
the details of the single-node model are ignored in the network analysis. To employ
the results to analyze a particular dataset, one must select an appropriate model, the
form of which can be “plugged into” the network analysis.
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2.1. The general model formulation. The model is formulated in discrete
time. Let Ri

s be a random variable that represents the activity of node s at time
point i. Since our examples will involve models of neurons, we will assume that
Ri

s is a discrete random variable. However, the analysis proceeds analogously for
a continuous random variable. Ignoring the activity of other nodes for a moment,
the probability distribution of Ri

s will depend both on the history of node s and
on some measurable external variables. Let R<i

s be the vector of the history of the
activity of node s (i.e., the vector with values of Rk

s for k < i). Denote the external
variable vector by X. The vector X could represent any quantity or set of quantities
whose values are known and that modulate the activity of the nodes. For example, in
neuroscience applications, X could correspond to a sequence of stimuli or a sequence
of animal positions. (See [14] for a discussion on external variables. Note that X
could depend on time, although the notation does not make that explicit.)

The activity of a given node on the network also depends on activity of other
nodes. We denote the network connectivity by W̄ ı̃,i

s̃,s, which indicates the magnitude

of the effect of the activity of node s̃ at time ı̃ (i.e., Rı̃
s̃) on the activity of node s

at time i (i.e., Ri
s). We assume that all connections are causal so that W̄ ı̃,i

s̃,s = 0 for

ı̃ ≥ i. We model the effect of Rı̃
s̃ on the probability distribution of Ri

s as a function

of the product W̄ ı̃,i
s̃,sR

ı̃
s̃. Moreover, we simply linearly sum the coupling effects from

all nodes and previous time steps, modeling the total coupling effect of all nodes on
the probability distribution of Ri

s as a function of the sum

∑
s̃ �=s

∑
ı̃<i

W̄ ı̃,i
s̃,sR

ı̃
s̃.

To summarize, we model the probability distribution of Ri
s as a parametric func-

tion of the history R<i
s of node s, the external variables X, and the past activity of

all nodes as

Pr(Ri
s = ris |R<i = r<i,X = x) = Ps

(
ris, r

<i
s ,x,

∑
s̃ �=s

∑
ı̃<i

W̄ ı̃,i
s̃,sr

ı̃
s̃; θ̄

i
s

)
,(2.1)

where Ps is some discrete probability distribution in its first argument and θ̄is is a
vector of parameters. The quantity R<i (without a subscript) is the history of all
nodes, i.e., has components Rk

s̃ for all s̃ and all k < i. If R represents all of the
activity of all nodes (i.e., has components Rk

s̃ for all s̃ and k), then, by Bayes’ law,
the probability distribution of R, given the value of the external variable vector X, is

Pr(R = r |X = x) =
∏
s

∏
i

Pr(Ri
s = ris |R<i = r<i,X = x)

=
∏
s

∏
i

Ps

(
ris, r

<i
s ,x,

∑
s̃ �=s

∑
ı̃<i

W̄ ı̃,i
s̃,sr

ı̃
s̃; θ̄

i
s

)
.(2.2)

To obtain (2.2), we exploited the fact that nodes influence each other only through
causal connections. Hence, conditioned on the history R<i of the network and the
external variables, the activities Ri

s of nodes in a single time step i are independent.
(In other words, we assume the time bins are small enough so that interactions involve
a delay of at least one time bin.)
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2.2. Assumptions required for analysis. With the exception of the linear
coupling among nodes, (2.2) is a fairly generic description of a network in discrete
time. (Recall that the equations could be trivially modified to allow the activity Ri

s

to be a continuous random variable.) However, to proceed with our analysis we make
a few strong assumptions about the network. These assumptions are similar to those
detailed in [14]. (The biggest difference is that here we make no assumptions about
the dependence of a node on its own history.) For this reason, we present only a
brief discussion of these assumptions here and refer the reader to the more detailed
discussion in the former article.

First, we assume that an algorithm exists to fit the activity of a single node to
the same parametric model with the coupling factors W̄ ı̃,i

s̃,s set to zero. Note that this
particular assumption is only about choice of models; it is not an assumption about
the network activity. We assume that, from measurements of the activity of just a
single node s (i.e., of the vector Rs composed of Ri

s for all i), one has an algorithm
to determine effective parameters θis by fitting the averaged model1

Pr(Rs = rs |X = x) =
∏
i

Ps

(
ris, r

<i
s ,x, 0; θis

)
.(2.3)

Although the activity of all other nodes Rı̃
s̃ is ignored in this fitting procedure,

we view the Ri
s as really generated from the full network via model (2.2). Therefore,

the effective parameters θis do include the averaged effects of the coupling from other
nodes. Our analysis will rely heavily on these effective parameters; hence, the results
depend on having chosen a good model Ps and fitting algorithm so that the averaged
model (2.3) captures key elements of the activity of each node. This assumption puts
stringent limits on the model Ps. For example, one cannot use detailed biophysical
models, as all of the parameters of such models cannot be determined by Rs and X
alone. Neither could one allow the θis to be independent for each time i. (See [14] for
more details.)

Second, we assume that the coupling W̄ ı̃,i
s̃,s is weak so that we can expand the full

model (2.2) in a Taylor series in W̄ ı̃,i
s̃,s and retain terms only through second order.

Since we assume that Ps is C2 in its fourth argument, our analysis will have an
error that is O(W̄ 3). As detailed in [14], the assumption has the following important
consequences: The average coupling strength must scale like 1/N , where N is the
network size; the identity of the nodes that appear in (2.2) must be regarded as
“lumped” models that already incorporate effects of nodes projecting to them; and the
network topology is highly simplified, as the second order Taylor series will represent
combinations of at most two edges of the network graph. If the actual connectivity
is too strong to strictly justify this assumption, the resulting connectivity estimates
may need to be reinterpreted as an effective connectivity (see the discussion in section
5).

Third, once we have calculated θis by fitting the averaged model (2.3), we assume
that the model is constructed so that we can calculate Ps(r

i
s, r

<i
s ,x, w; θis) for any

value of w. This is a strong assumption on the allowed form of the model function
Ps, as the averaged model (2.3) is not based on Ps(r

i
s, r

<i
s ,x, w; θis) for any nonzero

w. This assumption also implies that we can calculate ∂
∂wPs(r

i
s, r

<i
s ,x, w; θis) and

1The probability of the left-hand side of model (2.3) is the marginal distribution of the probability
of the left-hand side of model (2.2), averaged over the activity of all other nodes.
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∂2

∂w2Ps(r
i
s, r

<i
s ,x, w; θis). In fact, this assumption implies that these derivatives must

be equivalent to derivatives with respect to some function of r<i
s , x, and θis.

Last, unless one could repeatedly sample the activity of the nodes from the same
time points, one couldn’t hope to be able to determine arbitrary connectivity W̄ ı̃,i

s̃,s

that varies freely with the time point. (This is the same reason θis cannot be allowed
to vary freely with the time point, as mentioned above.) When we actually implement

the approach, we will eventually (see section 3.3.3) allow W̄ ı̃,i
s̃,s to depend on ı̃ and i

only through the delay i− ı̃. (One could also allow the coupling to adapt slowly with

time.) During most of our analysis, we will keep the notation where W̄ ı̃,i
s̃,s varies freely

with the time point, as it adds no complexity to the equations.

3. The analysis. We begin by giving a short overview of the analysis. We
operate under the assumption that model (2.2) gives the true probability distribution
of the activity R of the entire network. However, we assume that one can observe
just a small number of nodes with indices q in some subset Q. We denote by RQ the
activity of all of these measured nodes. (The components of RQ are a subset of those
of R.)

The first step of the analysis will be to derive an expression for the probability
distribution of the activity of just the measured nodes. We will derive an expression
for this probability, which we denote by Pr(RQ|X), by taking the expression for
Pr(R|X) given in (2.2) and averaging it over the activity of all hidden nodes. This
step will rely heavily on the weak coupling assumption described above.

The resulting expression for Pr(RQ|X) will depend on all of the unknown param-

eters θ̄is and W̄ ı̃,i
s̃,s. Given that many nodes remain hidden, we don’t have any hope

of obtaining estimates of the original parameters θ̄is. However, we do, by assumption,
have an algorithm for determining the effective parameters θiq of any measured node
q by fitting the averaged model (2.3) to the activity of that measured node. To take
advantage of this information, our second step will be to derive an expression for the
original parameters θ̄ in terms of the effective parameters θ.

Our third step is to combine the results of steps one and two to arrive at an
expression for the probability distribution Pr(RQ|X) of the measured node activity
in terms of the effective parameters. With one further approximation, we can group
all of the effects of the hidden nodes into a small number of parameters. In the end,
our expression for Pr(RQ|X) will contain just two sets of unknown parameters: the
effective causal connection parameters (which we’ll denote by an unbarred W ) and the
effective common input parameters (which we’ll denote by U). Given a measurement
of the activity of the measured nodes, we use our expression for Pr(RQ|X) to compute
maximum likelihood estimates of the W and U . The effective causal connection W
will be our estimate of the connectivity among the measured nodes.

3.1. Step one: Average for measured node probability distribution.
Our first step is to average the full model (2.2) over all possible values of the activity
of hidden nodes to obtain an expression for the probability distribution of measured
node activity. Before we compute the average, we use the weak coupling assumption
described in section 2.2 to simplify (2.2).

We invoke the weak coupling assumption to expand the full model (2.2) as a
Taylor series in W̄ . To simplify the presentation, we define the following shorthand
notation for the probability distribution of the activity of node s (over all time points
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i) that would result if all coupling was set to zero:

P̄s =
∏
i

Ps

(
ris, r

<i
s ,x, 0; θ̄is,

)
.(3.1)

Similarly, we define shorthand notation for the derivatives of P̄s with respect to the
rı̃s̃ for s̃ �= s:

∂P̄s

∂rı̃s̃
=

∂

∂rı̃s̃

⎛
⎝∏

i

Ps

⎛
⎝ris, r

<i
s ,x,

∑
ś �=s

∑
ı́<i

W̄ ı́,i
ś,sr

ı́
ś; θ̄

i
s

⎞
⎠
⎞
⎠
∣∣∣∣∣
{rı́ś=0|ś �=s}

,

∂2P̄s

∂rı̃1s̃1∂r
ı̃2
s̃2

=
∂2

∂rı̃1s̃1∂r
ı̃2
s̃2

⎛
⎝∏

i

Ps

⎛
⎝ris, r

<i
s ,x,

∑
ś �=s

∑
ı́<i

W̄ ı́,i
ś,sr

ı́
ś; θ̄

i
s

⎞
⎠
⎞
⎠
∣∣∣∣∣
{rı́ś=0|ś �=s}

.(3.2)

Since the W̄ appear only in the combination W̄ ı̃,i
s̃,sr

ı̃
s̃, we can write our Taylor

series in W̄ as though it were a Taylor series in the rı̃s̃. This notation will turn out to
be more convenient for the analysis because the key factors of rı̃s̃ will be written out
explicitly. Note that, for each node s, we make no assumptions about the effect of its
own history r<i

s and do not expand out this history dependence in a Taylor series.
Using the above shorthand notation, the Taylor series of (2.2) is

Pr(R = r|X = x) =
∏
s

P̄s +
∑
s1,s̃1
s̃1 �=s1

∑
ı̃1

∂P̄s1

∂rı̃1s̃1
rı̃1s̃1

∏
s2

s2 �=s1

P̄s2

+
1

2

∑
s1,s̃1,s̃2

s̃1 �=s1,s̃2 �=s1

∑
ı̃1 ,̃ı2

∂2P̄s1

∂rı̃1s̃1∂r
ı̃2
s̃2

rı̃1s̃1r
ı̃2
s̃2

∏
s2

s2 �=s1

P̄s2

+
1

2

∑
s1,s2,s̃1,s̃2

s2 �=s1,s̃1 �=s1
s̃2 �=s2

∑
ı̃1 ,̃ı2

∂P̄s1

∂rı̃1s̃1

∂P̄s2

∂rı̃2s̃2
rı̃1s̃1r

ı̃2
s̃2

∏
s3

s3 �=s1
s3 �=s2

P̄s3 + O(W̄ 3).(3.3)

Note that the derivative ∂P̄s/∂r
ı̃
s̃ corresponds to the effect of a connection from node

s̃ onto node s. If we wrote out the derivative explicitly, it would contain a sum of
terms involving W̄ ı̃,i

s̃,s for all i > ı̃. It represents the change in the distribution of all

Ri
s for i > ı̃ given a change in Rı̃

s̃ (calculated at Rı̃
s̃ = 0).

We can now write down an expression for the activity of all measured nodes by
averaging over all possible values of the activity of the hidden nodes. As mentioned
above, let Q denote the set of node indices corresponding to all measured nodes.
Similarly, let P denote the set of node indices corresponding to all hidden nodes.
Then Q ∪ P corresponds to the entire network. To simplify the notation, we will
make the following notational conventions. We will use the index s and its variants
to index all nodes in the network; i.e., we implicitly assume that s ∈ Q ∪ P. We
will use the indices p and q (and their variants) to index hidden and measured nodes,
respectively; i.e., we implicitly assume that p ∈ P and q ∈ Q. Last, we let RQ and RP
represent all measured node activity Ri

q and all hidden node activity Ri
p, respectively.
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To derive an expression for the probability distribution of all measured activity,
we average (3.3) over all possible values of RP . The probability distribution of RQ
is therefore

Pr(RQ = rQ|X = x) =
∑
rP

Pr(R = r|X = x)

=
∑
rP

∏
s

P̄s +
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rP

∑
s1,s̃1
s̃1 �=s1

∑
ı̃1

∂P̄s1

∂rı̃1s̃1
rı̃1s̃1

∏
s2

s2 �=s1

P̄s2

+
1

2

∑
rP

∑
s1,s̃1,s̃2

s̃1 �=s1,s̃2 �=s1

∑
ı̃1 ,̃ı2

∂2P̄s1

∂rı̃1s̃1∂r
ı̃2
s̃2

rı̃1s̃1r
ı̃2
s̃2

∏
s2

s2 �=s1

P̄s2

+
1

2

∑
rP

∑
s1,s2,s̃1,s̃2

s2 �=s1,s̃1 �=s1
s̃2 �=s2

∑
ı̃1 ,̃ı2

∂P̄s1

∂rı̃1s̃1

∂P̄s2

∂rı̃2s̃2
rı̃1s̃1r

ı̃2
s̃2

∏
s3

s3 �=s1
s3 �=s2

P̄s3 + O(W̄ 3),(3.4)

where the sum over rP indicates a sum over all possible values of the hidden node
activity.

It turns out that we can explicitly compute the sum over rP . Note that the value
ris of a given random variable can appear in (3.4) either explicitly or in the probability
distribution P̄s (or its derivatives). It is not hidden in any other factors. Therefore, to
compute a sum over all possible values of the activity of a node indexed by some s, we
can factor out everything except one factor of P̄s (or a derivative of P̄s) and a polyno-
mial in the ris. Hence, we need to derive expressions for the average of such quantities.

The average of a polynomial in the ris multiplied by the undifferentiated P̄s will
simply be the expected value of that polynomial, under the probability distribution
P̄s with the W argument set to zero. Taking the average of expressions involving the
derivatives of P̄s is more complicated. In Appendix A.1, we outline how to compute
such averages. The important point is that one can compute these averages explicitly
in terms of the model parameters and the probability distributions Ps(·). We end up
with the lengthy expression for Pr(RQ|X) given by (A.5).

3.2. Step two: Original parameters in terms of effective parameters.
One of the assumptions given in section 2.2 is the existence of an algorithm to calculate
the effective parameters θis by fitting the averaged model (2.3) to the activity of node
s (while ignoring the activity of all other nodes). Hence, we can regard the effective
parameters θiq as known for all measured nodes q ∈ Q. In the previous step, we
obtained an expression for the probability distribution of the measured node activity
Pr(RQ|X) in terms of the unknown original model parameters θ̄is. In this second step
of the analysis, we will derive a relationship between the effective parameters θis and
the original paramters θ̄is. This relationship will allow us to rewrite our equation for
Pr(RQ|X) in terms of the effective parameters.

We define equivalent shorthand notation for expressions involving the effective
parameters as we did for expressions involving the original model parameters. We
define Ps to be the probability distribution that we fit from the averaged model (2.3):

Ps =
∏
i

Ps

(
ris, r

<i
s ,x, 0; θis,

)
= Pr(Rs = rs |X = x).(3.5)
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We then define the derivatives Ps just as we did for P̄s:

∂Ps

∂rı̃s̃
=

∂

∂rı̃s̃

⎛
⎝∏

i

Ps

⎛
⎝ris, r

<i
s ,x,

∑
ś �=s

∑
ı́<i

W̄ ı́,i
ś,sr

ı́
ś; θ

i
s

⎞
⎠
⎞
⎠
∣∣∣∣∣
{rı́ś=0|ś �=s}

(3.6)

and analogously for the second derivatives. We also define the expected values:

E0(g(R)) =
∑
r

g(r)
∏
s

Ps,(3.7a)

E0

(
∂Ri

s

∂Rı̃
s̃

)
=

∂

∂rı̃s̃
E(Ri

s|R<i = r<i)

∣∣∣∣
{rś=0|ś �=s}

=
∑
rs

ris
∂Ps

∂rı̃s̃
.(3.7b)

These expected values are analogous to the barred versions given in Appendix A.1
((A.2) and (A.4)) except that they are based on the averaged model (2.3). We assume
that the chosen model and fitting algorithm for θis results in the averaged model (2.3)
being a good approximation. Then (3.7a) does indeed represent the expected value of
any function for the activity. For example, E0(R

i
s) is the expected value of the activity

of node s at time i. We will also use the statistic E0(R
i1
s Ri2

s )−E0(R
i1
s )E0(R

i2
s ), which

represents the covariance of the activity of node s at the times i1 and i2.
The derivative of (3.7b) represents how the average activity of node s at time i

changes with the activity of node s̃ at time ı̃. (Since we assume causal connections,
this is nonzero only if ı̃ < i.) See Appendix A.1 for further discussion on the properties
of such derivatives.

Although we know the effective parameters only for measured nodes, we can still
define the (unknown) effective parameters for hidden nodes using the averaged model
(2.3). Using effective parameters for all nodes will simplify the form of our equation
for Pr(RQ|X).

It turns out that we have already done much of the work toward deriving an
equation for effective parameters in step one, above. In that first step, we derived an
expression for Pr(RQ|X), which is the marginal distribution (of the full distribution
Pr(R|X) given by model (2.2)) for the activity of a set of measured nodes. The
averaged model (2.3) is based on Pr(Rs|X), which we can regard as the marginal
distribution for the activity of a single node. If we replace the set Q of measured nodes
in (A.5) with just the single node s, then (A.5) becomes the marginal distribution
for the activity of a single node. In this way, we obtain an expression for Pr(Rs|X)
in terms of the original model parameters. Given the definition (2.3) of the effective
parameters, we have obtained an expression for the effective parameters θ in terms of
the original model parameters θ̄.

However, we need to go the other direction: to transform expressions involving
the original model parameters θ̄ in terms of the effective parameters θ. Using the pro-
cedure outlined in Appendix A.2, we can solve for the original uncoupled probability
P̄s (which is a function of the θ̄is) in terms of the effective probability Ps (which is a
function of the θis). We obtain the following relationship:

P̄s = Ps −
∑
s̃1

s̃1 �=s

∑
ı̃1

∂Ps

∂rı̃1s̃1
E0(R

ı̃1
s̃1

)

− 1

2

∑
s̃1

s̃1 �=s

∑
ı̃1 ,̃ı2

∂2Ps

∂rı̃1s̃1∂r
ı̃2
s̃1

[E0(R
ı̃1
s̃1
Rı̃2

s̃1
) − E0(R

ı̃1
s̃1

)E0(R
ı̃2
s̃1

)]
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−
∑
s̃1

s̃1 �=s

∑
ı̃1 ,̃ı2
ı̃2<ı̃1

∂Ps

∂rı̃1s̃1
E0

(
∂Rı̃1

s̃1

∂Rı̃2
s

)
[rı̃2s − E0(R

ı̃2
s )]

+
1

2

∑
s̃1,s̃2

s̃1 �=s,s̃2 �=s

∑
ı̃1 ,̃ı2

∂2Ps

∂rı̃1s̃1∂r
ı̃2
s̃2

E0(R
ı̃1
s̃1

)E0(R
ı̃2
s̃2

) + O(W̄ 3).(3.8)

Each term on the right-hand side of (3.8) has a significant meaning and illustrates the
process of approximating a full network (2.2) by an averaged model (2.3). The sum on
the first line is simply the change in the probability distribution of node s caused by
the average effect of connections from other nodes s̃1. Intuitively, this change is the
average activity of node s̃1 times the effect of node s̃1 on the probability distribution
of node s (i.e., the derivative of Ps). Since the effective distribution Ps includes the
average influence of connections from other nodes, this term must be subtracted from
Ps to regain the original uncoupled distribution P̄s.

The term from the second line accounts for second-order effects from a connection
from node s̃1. First consider the case where ı̃1 = ı̃2. Now imagine that the effect of the
connection from node s̃1 onto node s lasts multiple time steps.2 Then the connection
from node s̃1 will introduce correlations in the activity of node s. (Recall how common
input from a node onto two different nodes can introduce correlations between those
two nodes. The effect of the second line of (3.8) is identical except that in this case
we have “common input” onto the same node but at different times, which creates
correlations within that one node’s activity.) This correlation will be proportional to
the variance of Rı̃1

s̃1
.

The case with ı̃1 �= ı̃2 is similar. If Rı̃1
s̃1

is correlated with Rı̃2
s̃1

(due to the history
dependence of the activity of node s̃1), then the combined effect of the activity of
node s̃1 at times ı̃1 and ı̃2 will induce correlations in the activity of node s. This
correlation will be proportional to the covariance of Rı̃1

s̃1
and Rı̃2

s̃1
.

The reason this source of correlation must be subtracted from Ps in the second
line of (3.8) is as follows. When fitting the averaged model (2.3) for node s, one
is averaging over the activity of all other nodes, including node s̃1. The induced
correlations due to the connection from node s̃1 will still be present in the activity
of node s. Hence, the averaged model Ps (and its parameters θs) will take into
account this additional correlation, and the additional correlation will appear in the
averaged model as part of the history dependence of node s. However, the original
uncoupled model represented by P̄s (and its parameters θ̄s) will not include effects
due to coupling from other nodes. This history dependence of P̄s would not include
these additional correlations due to the connection from node s̃1. Hence, the effect of
these correlations must be subtracted from the effective distribution Ps to regain the
original distribution P̄s, as is done in the second line of (3.8).

The term from the third line of (3.8) is similar in that it accounts for additional
correlations in the activity of node s due to connections involving other nodes. In
this case, the correlations are induced by indirect connections from node s onto itself
via one of the other nodes s̃1. This effect has three components as shown by the
three factors. The right factor is the deviation of the activity of node s at time ı̃2

2Since Ps, as defined in (3.5), models the activity of node s for all time steps, the derivative

∂2Ps/(∂r
ı̃1
s̃1

)2 includes the effects of Rı̃1
s̃1

on the activity of node s at all times. In particular, this
derivative captures how the activity of node s̃1 at a single time point ı̃1 can influence the activity of
node s at two different times, thus causing correlations in the activity of node s at those two times.
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from its expected activity as predicted by the averaged model (2.3). The middle
factor is the effect of the activity of node s at time ı̃2 on the activity of node s̃1

at time ı̃1. The left factor is the effect of the activity of node s̃1 at time ı̃1 on the
probability distribution of node s. The resulting correlation in the activity of node
s from this chain of connection would be included in the history dependence of the
effective distribution Ps. But, since these correlations depend on connections, their
effect would not be included in the original uncoupled distribution P̄s. Hence, their
effect must be subtracted from Ps to regain the original distribution P̄s.

The sum from the last line of (3.8) is simply a second-order effect of single con-
nections onto node s. Equation (3.8) is accurate up to second order in W̄ . The sum of
the first line is only a first-order approximation of the change in Ps due to the average
effect of connections from other nodes. The addition of the last line gives the correct
second-order approximation.

3.3. Step three: Measured node distribution in terms of effective pa-
rameters. Our third step is to derive an expression for the probability distribution
Pr(RQ|X) of the measured node activity in terms of the effective parameters θis.
Once we have written down an initial form of this distribution, we can simplify it by
grouping the effects of hidden nodes into two sets of parameters: an effective causal
connection W and an effective common input U . Then, by making one further as-
sumption, we can sufficiently reduce the degrees of freedom within W and U so that
computing their solution becomes tractable.

3.3.1. The initial form of the measured node probability distribution.
In the first step of our analysis, we obtained a lengthy expression for Pr(RQ|X),
the probability distribution of the measured node activity. (It is given by (A.5) in
Appendix A.1.) However, this expression is in terms of the original model parameters
θ̄is which remain unknown. As outlined in Appendix A.3, we rewrite this expression in
terms of the effective parameters. Appendix A.4 describes how we transform the result
into the form of a true probability (which we need since we wish to use it to develop
maximum likelihood estimates of network parameters). We show in Appendix A.4
that this step requires one small deviation from a true second-order approximation,
so we will use the ≈ symbol in our result. We also use the shorthand notation3

P i
s = Ps

(
ris, r

<i
s ,x, 0; θis

)
,

∂P i
s

∂w
=

∂

∂w
Ps

(
ris, r

<i
s ,x, w; θis

)∣∣∣
w=0

.(3.9)

In the end, we obtain the following expression for the probability distribution of
the measured nodes’ activity:

Pr(RQ = rQ|X = x) ≈
∏
q

∏
i

Pq

(
riq, r

<i
q ,x, W̃ i

q ; θ
i
q

)
+ O(W̄ 3),(3.10a)

3Note the subtle difference between the new notation P i
s and ∂P i

s/∂w (defined by (3.9)) on
one hand and the similar notation Ps and ∂Ps/∂rı̃s̃ (defined by (3.5) and (3.6)) on the other hand.
One key difference is that the new notation contains a superscript i, which means it refers to the
distribution of the activity of node s just at time point i.
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where

W̃ i
q =

∑
q̃

q̃ �=q

∑
ı̃1

ı̃1<i

W̄ ı̃1,i
q̃,q [rı̃1q̃ − E0(R

ı̃1
q̃ )]

+
∑
p,q̃
q̃ �=q

∑
ı̃1 ,̃ı2

ı̃2<ı̃1<i

W̄ ı̃1,i
p,q E0

(
∂Rı̃1

p

∂Rı̃2
q̃

)
[rı̃2q̃ − E0(R

ı̃2
q̃ )]

+
∑
p,q̃
q̃ �=q

∑
ı̃1 ,̃ı2 ,̃ı3
ı̃2<ı̃3<i
ı̃1<i

W̄ ı̃1,i
p,q W̄ ı̃2 ,̃ı3

p,q̃

∂P ı̃3
q̃

∂w

1

P ı̃3
q̃

[E0(R
ı̃1
p Rı̃2

p ) − E0(R
ı̃1
p )E0(R

ı̃2
p )]

+
∑
p,q̃
q̃<q

∑
ı̃1 ,̃ı2

ı̃1 ,̃ı2<i

W̄ ı̃1,i
p,q W̄ ı̃2,i

p,q̃

∂P i
q̃

∂w

1

P i
q̃

[E0(R
ı̃1
p Rı̃2

p ) − E0(R
ı̃1
p )E0(R

ı̃2
p )]

−
∑
q̃

q̃ �=q

∑
ı̃1 ,̃ı2 ,̃ı3
ı̃2<ı̃3<i
ı̃1<i

W̄ ı̃1,i
q̃,q W̄ ı̃2 ,̃ı3

q̃,q

∂P ı̃3
q

∂w

1

P ı̃3
q

[E0(R
ı̃1
q̃ Rı̃2

q̃ ) − E0(R
ı̃1
q̃ )E0(R

ı̃2
q̃ )]

−
∑
q̃

q̃ �=q

∑
ı̃1 ,̃ı2

ı̃2<ı̃1<i

W̄ ı̃1,i
q̃,q E0

(
∂Rı̃1

q̃

∂Rı̃2
q

)
[rı̃2q − E0(R

ı̃2
q )].(3.10b)

Though this expression is somewhat lengthy, each line of (3.10b) represents the effect
of a connection or combination of connections on the probability distribution of the
measured nodes’ activity. Just as we did for the single-node results (3.8), we briefly
describe the effects of the connections as embedded in (3.10).

The sum from the first line of (3.10b) represents a direct causal connection from
measured node q̃ onto measured node q. The second line represents an indirect causal
connection from measured node q̃ onto measured node q via a hidden node p. Both
lines describe a change in the distribution of the activity of node q due to a deviation
in the activity of node q̃ from that predicted by the averaged model.

The third and fourth lines are the common input onto measured nodes q and q̃
from a hidden node p. The common input effect is proportional to the (unknown)
(co)variance of the activity of node p (compare to the second line of (3.8)). We
separated out the common input that reaches nodes q and q̃ simultaneously (fourth

line of (3.10b)). We arbitrarily put this common input effect into the W̃q of the node
with the higher index (as we restrict the sum to q̃ < q). The goal of this analysis will
be to distinguish the common input from the third line from the causal connections
of the first two lines. (We will assume any correlations at zero delay are due to the
common input described on the fourth line.)

The fifth and sixth lines of (3.10b) involve only measured nodes. These lines are
similar to the second and third lines of (3.8), and their presence in (3.10) has a similar
origin. When the effective parameters of node q were determined, the activity of node
q̃ was ignored. Nonetheless, connections from node q̃ onto node q still influenced the
activity of node q. As we described in the context of (3.8), the activity of node q̃
could induce correlations in the activity of node q if it had connections onto node q
that lasted multiple time steps. Similarly, node q̃ could induce correlations in node q
via an indirect connection from node q onto itself through node q̃.
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If the network contains such a pattern of connections, the effective distribution Pq

of node q would already contain such correlations as part of the history dependence
of the model. Hence, the probability distribution of RQ in (3.10) would contain
these correlations in the activity of node q even if all W̄ were zero. However, these
correlations in the activity of node q were caused by connections (i.e., nozero W̄ )
between node q and q̃, as described above. When these individual connections are
added to (3.10) via the direct causal connections of the first line of (3.10b), the
resulting correlations in the activity of node q will have been added to (3.10) twice.
To correct for this, we need to explicitly subtract them off via the fifth and sixth lines
of (3.10b).

3.3.2. Grouping the effects of hidden nodes. Once the effective parameters
θiq have been determined for all measured nodes q, the only unknowns in (3.10) are

the connectivity factor W̄ and all expressions involving hidden nodes p. We group
these unknowns into two expressions:

W i2,i1
q2,q1 = W̄ i2,i1

q2,q1 +
∑
p

∑
ı̃

i1>ı̃>i2

W̄ ı̃,i1
p,q1E0

(
∂Rı̃

p

∂Ri2
q2

)
,

U i2,i1
q2,q1 =

∑
p

∑
ı̃1 ,̃ı2

ı̃1<i1 ,̃ı2<i2

W̄ ı̃1,i1
p,q1 W̄ ı̃2,i2

p,q2 [E0(R
ı̃1
p Rı̃2

p ) − E0(R
ı̃1
p )E0(R

ı̃2
p )],(3.11)

defined for q2 �= q1. The causal connection factor W i2,i1
q2,q1 is the effective causal connec-

tion from node q2 onto node q1. It includes an indirect causal connection via a hidden
node p. The direct and indirect causal connections are lumped together as we cannot
distinguish between them. The common input factor U i2,i1

q2,q1 is the effective common
input from hidden nodes that arrives at node q2 at time i2 and at node q1 and time
i1. Both W i2,i1

q2,q1 and U i2,i1
q2,q1 include sums over arbitrary hidden nodes. Although we

cannot resolve the individual contributions of the hidden nodes, we will be able to
solve for these effective parameters.

We also rewrite the expression for the expected value of the derivative to pull
out the hidden factor of W̄ contained in it. From the definition (3.7) as well as the
definitions of the derivatives (3.6) and (3.9), we write4

E0

(
∂Ri

s

∂Rı̃
s̃

)
=
∑
rs

ris
∂Ps

∂rı̃s̃
=
∑
rs

ris
∑
i2

ı̃<i2≤i

W̄ ı̃,i2
s̃,s

∂P i2
s

∂w

1

P i2
s

∏
i3

P i3
s

=
∑
i2

ı̃<i2≤i

W̄ ı̃,i2
s̃,s E0

(
Ri

s

∂P i2
s

∂w

1

P i2
s

)
.(3.12)

With these definitions of W and U , W̃ i
q becomes

W̃ i
q =

∑
q̃

q̃ �=q

∑
ı̃

ı̃<i

W ı̃,i
q̃,q[r

ı̃
q̃ − E0(R

ı̃
q̃)]

+
∑
q̃

q̃ �=q

∑
ı̃

ı̃<i

U ı̃,i
q̃,q

∂P ı̃
q̃

∂w

1

P ı̃
q̃

+
∑
q̃

q̃<q

U i,i
q̃,q

∂P i
q̃

∂w

1

P i
q̃

4One subtlety in (3.12) is the fact that we restrict i2 ≤ i. If i2 > i, then the term disappears due
to a similar argument as underlying the identities in (A.3).
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−
∑
q̃

q̃ �=q

∑
ı̃1 ,̃ı2 ,̃ı3
ı̃2<ı̃3<i
ı̃1<i

W ı̃1,i
q̃,q W ı̃2 ,̃ı3

q̃,q

∂P ı̃3
q

∂w

1

P ı̃3
q

[E0(R
ı̃1
q̃ Rı̃2

q̃ ) − E0(R
ı̃1
q̃ )E0(R

ı̃2
q̃ )]

−
∑
q̃

q̃ �=q

∑
ı̃1 ,̃ı2 ,̃ı3

ı̃2<ı̃3≤ı̃1<i

W ı̃2 ,̃ı3
q,q̃ W ı̃1,i

q̃,q E0

(
Rı̃1

q̃

∂P ı̃3
q̃

∂w

1

P ı̃3
q̃

)
[rı̃2q − E0(R

ı̃2
q )].(3.13)

Note that, according to (3.12), the quantity E0

(
∂Rı̃

s̃/∂R
i
s

)
is O(W̄ ). Hence, the

definition (3.11) of W shows that W is a first-order approximation to W̄ (i.e., W ı̃,i
q̃,q =

W̄ ı̃,i
q̃,q + O(W̄ 2)). This means that, in terms that are quadratic in W̄ , we can replace

W̄ with W and still maintain our second-order approximation (as the error is cubic
in W̄ ). This allowed us to write (3.13) in terms of just the effective W .

Our expression for the probability distribution Pr(RQ|X) of the measured activity
is now (3.10a) combined with (3.13). Given the effective parameters θiq, we can

calculate the P i
q and the ∂P i

q/∂w via (3.9). We can also calculate, in principle, all of
the expressions involving E0(·) using the definitions in (3.7). (We estimate these via
Monte Carlo simulations, as described in Appendix C.) Therefore, the only remaining
unknown factors are the causal connection factors W and the common input factors U .

3.3.3. A further assumption for a tractable solution. Our goal is to es-
timate W and U by finding their values that maximize our approximation of the
probability distribution of measured activity. In other words, we seek maximum like-
lihood estimators of W and U . However, there are still too many unknowns to make
the solution tractable, as we still have more unknowns than we would have data points
(we have only one measurement of activity per measured node per time point).5 To
reduce the number of unknowns, we assume that W and U depend only on the dif-
ference between their temporal indicies, i.e.,

W i−j,i
q1,q2 = W j

q1,q2 and U i−j,i
q1,q2 = U j

q1,q2 .(3.14)

(One could presumably weaken this assumption by allowing W and U to change
slowly over time at the cost of additional computational complexity and increased
data requirements.)

This assumption for W has no hidden surprises, as it is equivalent to assuming that
the underlying connectivity W̄ depends only on the difference in temporal indicies.6

However, this assumption for U is more significant than may appear at first glance.
It turns out that this assumption is really about the hidden nodes and affects how
one can interpret the meaning of W and U .

To demonstrate this, we rewrite the definition of U from (3.11) using the index j
to indicate the difference between temporal indices:

U i1−j1,i1
q2,q1 =∑

p

∑
j2,j3

j2>0,j3>0

W̄ i1−j2,i1
p,q1 W̄ i1−j1−j3,i1−j1

p,q2 [E0(R
i1−j2
p Ri1−j1−j3

p )−E0(R
i1−j2
p )E0(R

i1−j1−j3
p )].

5Perhaps one could solve for W and U in full generality if one could repeatedly sample from
a small number of time bins and one assumed that the W̄ could vary over the time bins but were
identical for each repetition.

6The effect of the connectivity, however, could vary with time, as each Ps(·) could change with
time.
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Our assumption on U i1−j1,i1
q2,q1 is that it is independent of i1. If the W̄ depend only

on the difference in temporal indices, the only place on the right-hand side where i1
doesn’t immediately drop out is in the (co)variance of activity of the hidden node p.
Hence, by insisting that U i1−j1,i1

q2,q1 be independent of i1, we are really approximating
the covariance of each hidden node p as though it were independent of time bin i1.
Equivalently, we could view this approximation as replacing the covariance of node p
with its average over all time bins i1.

As detailed in [14], such an approximation leads to a certain degree of ambiguity in
the identification of causal connections, which we refer to as subpopulation ambiguity.
This ambiguity contains subtleties that are out of the scope of this article and are
discussed extensively in [14]. We illustrate the basic consequences of the ambiguity
with simulation results (see section 4.4). Note also that, as described in [14], this
ambiguity is already present in many experimental contexts (such as those commonly
used in neuroscience); hence, in those contexts, this approximation does not add
additional ambiguity.

Putting this all together, our procedure to construct the causal connections among
measured nodes is as follows. For each measured node indexed by q ∈ Q, determine
the effective parameters θiq by fitting the averaged model (2.3) to the external variables

X and the activity Ri
q of node q. (We assume such an algorithm for determining the

θiq is known.) Then determine the effective causal connections W j
q1,q2 and the effective

common input U j
q1,q2 from the external variables and the activity RQ of all measured

nodes by finding the values of W j
q1,q2 and U j

q1,q2 that maximize the log-likelihood
modeled by the equation

log Pr(RQ = rQ|X = x) =
∑
q

∑
i

logPq

(
riq, r

<i
q ,x, W̃ i

q ; θ
i
q

)
,(3.15a)

where

W̃ i
q =

∑
q̃

q̃ �=q

∑
j

j>0

W j
q̃,q[r

i−j
q̃ − E0(R

i−j
q̃ )]

+
∑
q̃

q̃ �=q

∑
j

j>0

U j
q̃,q

∂P i−j
q̃

∂w

1

P i−j
q̃

+
∑
q̃

q̃<q

U0
q̃,q

∂P i
q̃

∂w

1

P i
q̃

−
∑
q̃

q̃ �=q

∑
j1,j2,j3

j1,j2,j3>0

W j1
q̃,qW

j2
q̃,q

∂P i−j3
q

∂w

1

P i−j3
q

[E0(R
i−j1
q̃ Ri−j3−j2

q̃ )−E0(R
i−j1
q̃ )E0(R

i−j3−j2
q̃ )]

−
∑
q̃

q̃ �=q

∑
j1,j2,j3
j1,j2>0
j3≥0

W j2
q,q̃W

j1
q̃,qE0

(
Ri−j1

q̃

∂P i−j1−j3
q̃

∂w

1

P i−j1−j3
q̃

)
[ri−j1−j3−j2

q −E0(xR
i−j1−j3−j2
q )].

(3.15b)

Unfortunately, especially with the terms that are quadratic in W , one cannot be
certain that the log-likelihood is free of nonglobal local maxima. So, in general, one
needs to be aware that one could get trapped in such a local maximum in the process
of looking for the global maximum. The likelihood surface may be better behaved
if one ignores the quadratic terms (the final two terms in (3.15b)). We next present
an example probability distribution Ps where the likelihood surface has no nonglobal
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local maxima in the absence of the quadratic terms. We use that fact to find a local
maximum of the full log-likelihood that, at least in our tests, gives good results.

3.4. Special case: A Poisson distribution. We present a special case of the
results when the activity of each node at each time step is drawn from a Poisson
distribution. We use such a distribution because, for small time bins, the averaged
model approximates a generic history-dependent point process [4, 5], which one can
use to model the spike times of a neuron. Moreover, the results with the Poisson dis-
tribution illustrate how history dependence can distinguish common input from causal
connections, as discussed below. We use the Poisson model when we demonstrate the
results via simulations.

Since we assume that Ri
s, the activity of node s at time bin i, is a Poisson random

variable, we simply need to specify its mean. We can write the probability distribution
of Ri

s as

Ps(r
i
s, r

<i
s ,x, w; θis) = Γ(ris, λs(r

<i
s ,x, w; θis)),(3.16a)

where

Γ(n, λ) =
1

n!
λne−λ.(3.16b)

The function λs(r
<i
s ,x, w; θis) defines how the expected value of Ri

s depends on the
history r<i

s of node s, the external variables x, and the total input w from other
neurons. We rewrite the log-likelihood (3.15) as

log Pr(RQ = rQ|X = x) =
∑
q,i

riq log λq(r
<i
q ,x, W̃ i

q ; θ
i
q) −

∑
q,i

λq(r
<i
q ,x, W̃ i

q ; θ
i
q) + C,

(3.17a)

where

W̃ i
q =

∑
q̃

q̃ �=q

∑
j

j>0

W j
q̃,q[r

i−j
q̃ − E0(λq̃(R

<i−j
q̃ ,x, 0; θi−j

q̃ ))]

+
∑
q̃

q̃ �=q

∑
j

j>0

U j
q̃,q[r

i−j
q̃ − λq̃(r

<i−j
q̃ ,x, 0; θi−j

q̃ )]
∂wλq̃(r

<i−j
q̃ ,x, 0; θi−j

q̃ )

λq̃(r
<i−j
q̃ ,x, 0; θi−j

q̃ )

+
∑
q̃

q̃<q

U0
q̃,q[r

i
q̃ − λq̃(r

<i
q̃ ,x, 0; θiq̃)]

∂wλq̃(r
<i
q̃ ,x, 0; θiq̃)

λq̃(r
<i
q̃ ,x, 0; θiq̃)

+ quadratic terms.(3.17b)

The constant C = −
∑

q,i log((riq)!) can be ignored since we simply want to maximize

(3.17) over W and U with everything else fixed. We use the notation ∂wλq̃(r
<i−j
q̃ ,x, w;

θi−j
q̃ ) for the partial derivative of λq̃(·) with respect to w.

The quadratic terms are the last two lines of (3.15b); we gain no insight by
rewriting them in terms of the Poisson distribution. As detailed in section 3.3.1, they
are needed to have a correct second-order expression. However, they don’t directly
contribute to the distinction between causal connections and common input.

3.4.1. Different effects of causal connections and common input. From
(3.17), we see two important differences in the way that the causal connections W and
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the common input U affect the probability distribution Pr(RQ|X) of the measured
node activity. Our ability to successfully distinguish causal connections from common
input connections is based on these two differences.

The first difference is that the common input terms have an additional ∂wλq̃/λq̃

factor. In previous work [14], this factor was the only difference that appeared be-
cause the analysis did not exploit history-dependent effects. As detailed in [14], this
difference alone can distinguish causal connections from common input in many cases.
Even if one did not model history-dependent effects, the relationship among external
variables (such as a stimulus) and the activity of measured nodes would distinguish
common input from causal connection, and this difference is captured by the ∂wλq̃/λq̃

factor.
The second difference in the way W and U appear in (3.17) is due to the history-

dependent effects. This second difference is the focus of this paper. It turns out
that this difference is exactly what we observed in the exaggerated example presented
in the introduction and illustrated in Figure 2. For both the causal connection W
term and the common input U term of (3.17b), a certain quantity is subtracted from
the activity ri−j

q̃ . The difference between these quantities can distinguish a causal
connection from common input. In what follows, we will show that the key difference
is that the activity predicted by a node’s history dependence is subtracted only from
the common input term.

Equation (3.17) shows that a causal connection from node q̃ onto node q induces
a change in the probability distribution of node q proportional to the deviation of the
activity of node q̃ from that predicted by the averaged model (2.3). That is, in the

causal connection term (first line of (3.17b)), a contribution is added to W̃ i
q when the

measured activity of node q̃ (i.e., ri−j
q̃ ) differs from its expected value E0(R

i−j
q̃ ) =

E0(λq̃(R
<i−j
q̃ ,x, 0; θi−j

q̃ )) given by the averaged model.

An important point is that, once the effective parameters (θı̃q̃ for all ı̃) have been

determined, this expected value E0(R
i−j
q̃ ) does not depend on the actual history r<i−j

q̃

of node q̃. This expected value is an average over all possible histories of node q̃, given
the effective parameters and the external variables.7 For example, imagine that Ri

q̃

corresponds to the number of spikes of neuron q̃ in time bin i (with a sufficiently small
time bin so that Ri

q̃ > 1 with vanishingly small probability). Imagine, moreover, that
(similar to neuron 1 in Figure 2) neuron q̃ tended to spike in pairs so that if it spiked
in time bin i − 1 but not in time bin i − 2, it was very likely to spike in time bin i:
Pr(Ri

q̃ = 1|Ri−1
q̃ = 1 & Ri−2

q̃ = 0) ≈ 1. If one used an appropriate model, then the
averaged model (2.3) would capture this tendency to fire in pairs once the parameters
θq̃ were fit to the spikes Rq̃ of neuron q̃. Even so, the expected value E0(R

i
q̃) would

not depend on the presence or absence of spikes in the previous two time bins; it is
independent of the specific history of node q̃. Even if ri−1

q̃ = 1 and ri−2
q̃ = 0, the

expected value E0(R
i
q̃) would not be close to one. If indeed riq̃ = 1, then both the

spike at time bin i − 1 and the spike at time bin i would contribute equally to the
causal connection term in the first line of (3.17b).8

7We calculate this value via Monte Carlo. We repeatedly generate a realization of the activity of
node q̃ for all time points according to the averaged model (2.3). The average activity at each time
point i over many such realizations is our estimate of E0(Ri

q̃). See Appendix C.
8One would get a similar result if neuron q̃ had a refractory period where, for example, it could

not spike in time i if it spiked in time bin i − 1: Pr(Ri
q̃ = 1|Ri−1

q̃ = 1) = 0. Even if neuron q̃ did

spike at time bin i− 1, the presence of the refractory period would not affect E0(Ri
q̃).



EXPLOITING HISTORY-DEPENDENT EFFECTS 371

We contrast this observation with the common input term from the second line of
(3.17b). In the common input term, the activity ri−j

q̃ of node q̃ is subtracted by the

mean λq̃ of the Poisson distribution, given the specific history r<i−j
q̃ measured from

node q̃. Unlike the causal connection term, this quantity is the expected value of Ri−j
q̃ ,

conditioned on the measured history r<i−j
q̃ : λq̃(r

<i−j
q̃ ,x, 0; θi−j

q̃ ) = E0(R
i−j
q̃ |R<i−j

q̃ =

r<i−j
q̃ ). This is still an expected value based on the averaged model, but it is not

an average over all possible histories of node q̃. As above, imagine that node q̃
was a neuron that tended to fire pairs of spikes and that one used a model that
accurately captured this firing pattern. Then, if ri−1

q̃ = 1 and ri−2
q̃ = 0, the expected

value λq̃(r
<i
q̃ ,x, 0; θiq̃) would be close to one because the model predicts that neuron q̃

should immediately fire a second spike. If indeed riq̃ = 1, this spike would have little

contribution to the second line of (3.17b) as riq̃ − λq̃(r
<i
q̃ ,x, 0; θiq̃) would be small.

Equation (3.17) therefore demonstrates that the intuition we gain from the exag-
gerated example of Figure 2 is applicable to the more realistic situation we used to
derive (3.17). For example, although it isn’t intuitively obvious what should happen
when all nodes have strong history dependence, (3.17) shows that one may estimate
the connectivity even in that case, provided one has a model through which one can
accurately capture the history dependence of the measured nodes.

3.4.2. Tractable computation of maximum likelihood estimators. In or-
der to efficiently compute maximum likelihood estimators of W and U , we’d like to
make sure that any local maxima of the log-likelihood (3.17) are indeed global max-
ima. As discussed below, if one ignores the quadratic terms in (3.17b), one can develop
a condition on the form of λs to ensure all local maxima are global maxima. One can
then use the solution to the reduced problem (without quadratic terms) to guide the
search for a solution to the full problem.

If we ignore the quadratic terms from (3.17b), then W̃ i
q is linear in W and U , and

the log-likelihood (3.17) has the same form of dependence on W and U as discussed
in [14]. Since concavity is preserved under addition and riq ≥ 0, the log-likelihood will

be concave in W and U if λq(r
<i
q ,x, w; θiq) is convex in w and log λq(r

<i
q ,x, w; θiq) is

concave in w. Reference [17] describes this condition in a more general setting and
outlines the ensuing requirements on λq, such as the fact that λq must be monoton-
ically increasing in w and must grow at least linearly in w. If the log-likelihood is
concave in W and U , there can be no nonglobal local maxima.

We base our search for a maximizer of the full log-likelihood (3.17) on the maxi-
mizer for reduced log-likelihood (ignoring the quadratic terms of (3.17b)). We form a
homotopy from the reduced problem to the full problem by multiplying the quadratic
terms by some number γ ∈ [0, 1]. After maximizing the reduced log-likelihood (γ = 0),
we form a series of log-likelihoods with increasing γ. For each problem, we use the
maximizer of the previous problem as the initial condition. We end up with a maxi-
mizer of the full log-likelihood (γ = 1). Although we cannot guarantee that we have
found a global maximizer, we have achieved good results using this algorithm in our
simulation tests. (To calculate the maximizer for a given γ, we iterate to a critical
point of (3.17) using a modified version of Powell’s hybrid method as implemented in
the GNU Scientific Library [6].)

4. Results.

4.1. Overview of simulations. To test the performance of our analysis, we
simulated small networks of simplified neurons responding to a stimulus X. Our goal
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is to demonstrate that we can distinguish the common input and causal connection
networks schematized in Figure 1, under the condition that the common input neuron
is unmeasured.

4.1.1. The stimulus. The external variables X represented the same one-
dimensional (i.e., constant along vertical lines) visual stimulus as detailed in [14].
This stimulus was a movie of a sequence of sinusoidal gratings Ik with wave number
k. The jth line of Ik was Ikj = cas(2πkj/N0), where casx = cosx + sinx, N0 = 100,
and 0 ≤ j ≤ N0 − 1. Every 10 simulated milliseconds, a new image was selected, with
replacement, from the set composed of the Ik and −Ik, for k = −10,−9, . . . , 9, 10.
The movie was one simulated minute long.

4.1.2. The simulated neurons. In the simulated networks, we let each neuron
be a generalized linear model (also called a linear-nonlinear model). We discretized
time into Δtsim = 0.5 ms time bins. In each time bin i, we let the probability that a
neuron spiked be a linear function of its spiking history, the stimulus X, and previous
spikes of other neurons, composed with a half-squaring nonlinearity,

(4.1)

Pr(Ri
p = 1|R<i = r<i,X = x)

= AΔtsim

⎡
⎣∑
j>0

h̄j
hist,pr

i−j
p + h̄i

ext,p · x +
∑
q �=p

∑
j>0

W̄ j
q,pr

i−j
q + ȳp

⎤
⎦

2

+

,

where [y]2+ = y2 if y > 0 and is zero otherwise. The activity variable Ri
p = 1 if neuron

p spiked in time bin i and Ri
p = 0 otherwise. We set A = 0.01 ms−1. The value of

the threshold parameters ȳp, coupling parameters W̄ j
q,p, and other parameters that

appear below are given in the context of specific simulations. If (4.1) resulted in a
probability greater than one, it was truncated to one.

The linear kernel h̄hist,p specified the spike-history dependence of neuron p. We

included a refractory period of length τ ref
p by setting h̄j

hist,p = −100 for jΔtsim ≤ τ ref
p .

(Since −100 was much larger in magnitude than other parameters in (4.1), Pr(Ri
p = 1)

was zero for an interval of τ ref
p after each spike.) After the refractory period, we let

the history-dependent term transiently increase the probability of a spike by setting

h̄j
hist,p = ahist,pe

−jΔtsim/τhist,p for jΔtsim > τ ref
p .

As our purpose is to demonstrate the effect of history dependence, we included strong
history dependence in each model neuron, setting ahist,p relatively large and positive.
Hence, the history-dependence term created a tendency for spikes to occur in bursts,
leading to significant peaks in autocorrelation, such as shown in Figure 3.

We used the same spatiotemporal kernels h̄ext,p as in [14], retaining the convention
that h̄i

ext,p was the kernel h̄ext,p shifted for time point i. For line j = 0, 1, . . . , N0 and
temporal index t, we used the form

h̄ext,p(j, t) = (t− bp) exp

(
− t− bp

τext,p
− (j − c)2

2σ2
p

)
cos(2πfp(j − c) + φp)

for t > bp and h̄ext,p(j, t) = 0 otherwise [10]. To center the kernels on the image, we set
c = (N0 − 1)/2. The vector h̄ext,p corresponded to h̄ext,p(j, kΔtsim) for integer k with
kΔtsim < 200 ms. We normalized h̄ext,p so that the standard deviation of h̄i

ext,p ·X was
equal to the parameter aext,p; hence, aext,p specified how strongly neuron p responded
to the stimulus.
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Fig. 3. Examples of the large autocorrelations due strong history dependence included in sim-
ulated models. The autocorrelation of neuron p at delay j is 〈Ri

pR
i−j
p 〉 − 〈〈Ri

p|X〉〈Ri−j
p |X〉〉, where

〈·|X〉 indicates averaging over all repeats of the stimulus and 〈·〉 indicates averaging over all time
points. Shown are the autocorrelations from neuron 1 (left) and neuron 2 (left) in the simulation of
Figure 4(A). Autocorrelation at zero delay has been truncated to zero.

We used interneuronal coupling of the form

W̄ j
pq = Bpq

jΔtsim − dpq
τ2
w

exp

(
−jΔtsim − dpq

τW

)

for jΔtsim > dpq and W̄ j
pq = 0 otherwise. Hence, dpq represented the delay and Bpq

the strength of the connection. For all connections, we set the time scale to τW = 0.5
ms.

4.1.3. The model used in the analysis. We also used a generalized linear
model (or linear-nonlinear model) for the analysis. (In [14], we test an earlier version
of the analysis for stronger deviations from the simulated model.) In the analysis, we
uses a temporal discretization of Δt = 1 ms.

We modeled the activity of each neuron in time bin i as a Poisson distribution
(section 3.4) with the expected value given by

λs(r
<i
s ,x, w; θis) = As log

⎛
⎝1 + exp

⎡
⎣∑
j>0

hj
hist,sr

i−j
s + hi

ext,s · x + w + ys

⎤
⎦
⎞
⎠ .(4.2)

The parameters θis correspond to As and ys, as well as the parameters within hhist,s

and hext,s. We used this form of the nonlinearity so that λs would be convex and log λs

would be concave, a requirement for tractable numerical computations discussed in
section 3.4.2 and [17]. We discuss how to determine the parameters θis in Appendix B.

4.2. Distinguishing common input from direct connection. We simulated
two networks analogous to those schematized in Figure 1. In the first network, neuron
2 had a direct connection onto neuron 1. In the second network, a third, unmeasured
neuron had a direct connection onto both neurons 1 and 2, with a longer delay onto
neuron 1. In both cases, the spikes of neuron 1 were correlated with a delayed version
of the spikes of neuron 2.

We simulated the response of each network to ten repetitions of the minute-
long movie described above. Then we set the thresholds ȳp so that each neuron
spiked approximately 1,000 times during each presentation of the movie, obtaining
approximately 10,000 spikes per neuron. The spikes from the third, common input
neuron were discarded, as we treated that neuron as an unmeasured neuron.

Since we analyze just the spikes of two neurons, we will plot both the causal
connection factor W and the common input factor U as a function of the delay j
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defined as spike time of neuron 1 minus spike time of neuron 2. Hence, our plots will
use the convention

W j =

⎧⎪⎨
⎪⎩
W−j

12 for j < 0,

0 for j = 0,

W j
21 for j > 0,

U j =

{
U−j

12 for j ≤ 0,

U j
21 for j > 0.

As shown in Figure 4, we were able to successfully distinguish the common input
network from the direct connection network, despite the fact that the correlations
between neurons 1 and 2 looked the same in both cases. The causal connection
measure W was positive in the direct connection network; the common input measure
U was positive in the common input network.

Section 3.4.1 outlines two differences between causal connections and common
input that our analysis exploits to make this distinction. Only one of those differences
was due exclusively to the history-dependence modeling that is the focus of this paper.
To test the relative importance of the history-dependent factor, we reanalyzed the
simulation of Figure 4 while ignoring any history-dependent effects. We set hhist,p

in (4.2) to zero, essentially reverting our analysis back to an earlier version [14]. In
this case, we model the expected activity of a node as independent of its measured
history (conditioned on the external variables X), so we remove the difference between
the causal connection and common input terms of (3.17b) that is attributed to this
history dependence.

The results after ignoring history-dependent effects (not shown) differed only
slightly from the results when employing the full model. As in Figure 4, W was
positive in the direct connection network, and U was positive in the common input
network. Note that the simulations were generated with strong history dependence
(yielding autocorrelations as in Figure 3). The fact that we achieved good results even
while assuming no history dependence indicates that the analysis is at least somewhat
robust to deviations from model assumptions.

4.3. Improvement from modeling history dependence. Although the
above results do indicate that the analysis that includes history dependence can suc-
ceed in distinguishing causal connections from common input, we wish to demonstrate
that we have gained analytic power from our history-dependent modeling. Adding
history-dependent effects to our modeling introduced significant complexity compared
to an earlier version of the analysis [14]. To justify such complexity, we must demon-
strate an improved ability to distinguish connectivity.

One limitation of earlier versions [13, 14] of this analysis is that they require
that the neural activity be strongly related to measurable external variables (such
as stimuli) in a manner that one can capture with a model. In many experimental
contexts, such as when recording from brain areas that are not closely linked to a
stimulus, such a strong relationship between external variables and neuronal activity
may not be available. In such cases, the earlier versions of the analysis may not
apply. On the other hand, if such neurons have a strong history dependence that
can be captured by a model, the additional handle provided by history-dependent
modeling may allow one to apply the analysis to these systems.

To demonstrate how the history-dependent modeling can improve the results,
we repeated the simulation of Figure 4 but weakened the relationship between the
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Fig. 4. Successfully distinguishing a causal connection from common input. (A) Results from
analyzing a network where neuron 2 has a direct connection onto neuron 1, as schematized at top.
The correlation (shuffle-corrected correlogram or covariogram [19, 1, 16]) at delay j is 〈Ri

1R
i−j
2 〉 −

〈〈Ri
1|X〉〈Ri−j

2 |X〉〉, where the averaging 〈·〉 is defined as in Figure 3. The direct connection leads
to a peak in the correlation at a positive delay. The causal connection measure W (but not the
common input measure U) has a positive peak at the same delay, indicating the presence of a causal
connection from neuron 2 onto neuron 1. (At the peak, W was seven standard errors from zero.)
Thin gray lines indicate a bootstrap estimate of three standard errors, calculated by resampling
from the set of stimulus repetitions 50 times. Simulation parameters: ahist,1 = 1.2, ahist,2 = 1.5,
τhist,1 = 10 ms, τhist,2 = 12 ms, ȳ1 = 0.5, ȳ2 = 0.7, b1 = b2 = 0, aext,1 = aext,2 = 1, τext,1 = 40
ms, τext,2 = 50 ms, σ1 = 10, σ2 = 15, f1 = 0.08, f2 = 0.04, φ1 = 0, φ2 = 2π/3, B21 = 1.2,
d21 = 3, B11 = B12 = B22 = 0. (B) Results from analyzing a network where an unmeasured neuron
(hatched circle in schematic at top) has a connection onto neuron 1 and onto neuron 2. Since
the connection onto neuron 1 has a longer delay, there is a peak in the correlation at a positive
delay that is indistinguishable from a peak in correlation due to a direct connection from neuron
2 onto neuron 1. Only U , and not W , has a positive peak at the same delay, indicating that the
correlation was due to common input rather than any causal connection from neuron 2 onto neuron
1. (At the peak, U was five standard errors from zero.) Most parameters as in panel A. Exceptions
and additional parameters (the unmeasured neuron is indexed by 3): ahist,3 = 1.0, τhist,3 = 6 ms,
ȳ2 = 0.6, ȳ3 = 0.8, b3 = 0, aext,3 = 1, τext,3 = 45 ms, σ3 = 20, f3 = 0.06, φ3 = 4π/3, d31 = 4,
d32 = 0, B31 = B32 = 4.5, Bij = 0 for all other i and j.

neuronal activity and the stimulus. We reduced the magnitude of the external variable
terms hext,p · X by a factor of 5 (reducing their standard deviation aext,p from 1 to
0.2). As this greatly increased the difficulty of the network analysis, we also doubled
the simulation length to 20 simulated minutes (20 repeats of the movie), obtaining
around 20,000 spikes from each neuron.

The results of the analysis based on the full model (4.2) are shown in Figure 5.
Despite the weak dependence on the stimulus, the analysis was still able to determine
which network contained the causal connection and which network contained common
input.

In this case, since the neurons’ activities were only weakly related to the stimulus,
the history-dependent effects played a bigger role in determining the connectivity. To
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Fig. 5. Determining circuitry even when neuronal activity is only weakly related to the stim-
ulus. The same networks as in Figure 4 were simulated, except that the magnitude of the stimulus
input was decreased by a factor of 5 and the simulation length was doubled. The causal connec-
tion network was still distinguished from the common input network, primarily due to exploitation
history-dependent effects (cf. Figure 6, where these effects were ignored). Panels as in Figure 4.
(A) The causal connection measure W has a peak at the same delay as the correlation, indicating
the correlation was due to a causal connection from neuron 2 onto neuron 1. (At the peak, W was
six standard errors from zero.) Parameters as in Figure 4(A), except that aext,1 = aext,2 = 0.2,
ȳ1 = 1.1, and ȳ2 = 1.1. (B) The common input measure U has a peak at the same delay as the
correlation, indicating the correlation was due to common input. (At the peak, U was five stan-
dard errors from zero.) Parameters as in Figure 4(B), except that aext,1 = aext,2 = aext,3 = 0.2,
ȳ1 = 1.0, ȳ2 = 1.0, ȳ3 = 1.2, and B31 = B32 = 4.

demonstrate the role of the history-dependent model, we reanalyzed the simulation
results of Figure 5 while ignoring history-dependent effects (as above, we set hhist,p in
(4.2) to zero). This time, the analysis was unable to make a clear distinction between
the direct connection network and the common input network, as shown in Figure 6.
In the direct connection network of Figure 6(A), both W and U were positive so that
the result was ambiguous. In the common input network of Figure 6(B), only U was
positive at the delay corresponding to the correlation, but U was barely above the
noise, and the result was much weaker than in Figure 5(B). (If we quadrupled the
simulation to 80 simulated minutes, then the network analysis was able to determine
the connectivity even with ignoring history-dependent effects.)

4.4. Subpopulation ambiguity. In section 3.3.3, we described an assumption
we made about the hidden nodes in order to complete our analysis. We briefly men-
tioned that this assumption resulted in a certain degree of ambiguity in the identity
of causal connections. This ambiguity is described in detail in [14], where we refer to
it as subpopulation ambiguity.

The nature of the subpopulation ambiguity is illustrated by Figure 7. Here we
repeated the simulation of the common input network of Figure 4(B), except we
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Fig. 6. Reanalyzing the simulations of Figure 5 while ignoring all history-dependent effects.
The history kernel hhist of (4.2) was set to zero, so the analysis could not exploit the differences
between causal connection and common input networks that are caused by history dependence. In this
case, since the neural activity was only weakly related to the stimulus, the analysis failed to cleanly
distinguish the circuitry. Panels as in Figure 4. (A) The causal connection measure W did have a
(small) positive peak at the delay of the peak in the correlation. However, the common input measure
U also had a positive peak at that delay, so that the identity of the causal connection could not be
clearly determined. (At the peak W was three standard errors and U was over two standard errors
from zero.) (B) Only the causal connection measure U had a peak at the delay of the correlation peak,
so the results do correctly point to the presence of common input. However, the peak in U at that
delay is small (though it was three standard errors from zero), especially compared to Figure 5(B),
indicating that ignoring history dependence hampered the ability to determine circuitry.

changed the kernel h̄ext,3 of the unmeasured neuron first to match the kernel h̄ext,2 of
neuron 2 and then to match the kernel h̄ext,1 of neuron 1. As shown in Figure 7(A),
the analysis misidentifies the common input as a causal connection when the kernel of
the unmeasured common input neuron matched neuron 2. The analysis does not have
any trouble correctly identifying the common input when the kernel of the unmeasured
common input neuron matched neuron 1, as shown in Figure 7(B).

We argue that the misidentification in Figure 7(A) merely introduces a relatively
modest ambiguity into the interpretation of the results. Clearly, one cannot justify
a strict interpretation that the peak in W always indicates a causal connection from
neuron 2 itself onto neuron 1. However, note that in the network of Figure 7(A)
there is a causal connection from the unmeasured neuron onto neuron 1 and that this
unmeasured neuron has similar properties to neuron 2 (one might use the language
that the unmeasured neuron has a receptive field that is similar to that of neuron 2).
Hence, one can make a looser interpretation of the peak in W to indicate the presence
of a causal connection onto neuron 1 from some neuron with properties (or receptive
field) similar to neuron 2.

In experiments where one measures only the spike times of individual neurons,
neurons are identified only by their properties, such as the relationship between their
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Fig. 7. An illustration of the subpopulation ambiguity in the identification of the individual
neurons involved in a connection. Note that, in both networks shown, the delays are set up so that
the correlations mimic a connection from neuron 2 onto neuron 1. Hence neuron 1 and neuron 2
do not play symmetric roles. Panels as in Figure 4. (A) When the unmeasured neuron has similar
properties as neuron 2 (as schematized by the black circles at top), the causal connection factor W
has a peak at the delay of the correlation peak, incorrectly indicating a connection from neuron 2
onto neuron 1. (At the peak, W is four standard errors from zero.) However, there is a connection
onto neuron 1 from a neuron similar to neuron 2 (a black neuron in the schematic). Hence, W
must be interpreted as indicating a causal connection onto neuron 1 from a neuron with properties
similar to those of neuron 2. Parameters as in Figure 4(B), except that ȳ1 = 0.4, ȳ2 = 0.5, ȳ3 = 0.9,
b2 = 1 ms, τext,3 = 50 ms, σ3 = 16, f3 = 0.038, and φ3 = 2π/3. (B). When the unmeasured neuron
has properties similar to neuron 1 (as schematized by the gray circles at top), the results correctly
indicate a common input connection as U has a positive peak at the delay of the correlation peak. (At
the peak, U is five standard errors from zero.) In this case, it is important that the analysis obtained
the correct results, as there is no connection from a neuron similar to neuron 2 (a black neuron in
the schematic) onto a neuron similar to neuron 1 (a gray neuron). Parameters as in Figure 4(B),
except that ȳ1 = 0.4, ȳ2 = 0.5, ȳ3 = 0.7, b1 = 5 ms, τext,3 = 40 ms, σ3 = 11, f3 = 0.078, and
φ3 = 0.

spikes and external variables or stimuli. In this case, if two neurons had similar
properties (such as the unmeasured neuron and neuron 2 in Figure 7(A)), those two
neurons would be indistinguishable. Hence, it would not make a difference if one
concluded that neuron 2 had a connection onto neuron 1 or concluded that an un-
measured neuron with similar properties had a connection onto neuron 1. In either
case, the conclusion would be that a neuron with the properties of neuron 2 had a
connection onto a neuron with the properties of neuron 1.

In Figure 7(B), there is no connection from a neuron with properties similar
to neuron 2 onto a neuron with properties similar to neuron 1. Even with the looser
interpretation of the causal connection W , this network cannot be identified as having
a causal connection. It is critical that the analysis correctly identified the correlation
as arising from common input.

In [14], we refer to a group of neurons with similar properties as a subpopulation of
neurons. Since the identity of the presynaptic neuron involved in a connection is nar-
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rowed down only to an individual member within a supopulation, we use the language
that our analysis can determine connectivity only with subpopulation ambiguity. In
using such a term, one must be careful to recognize that one is not assuming con-
nections between groups of neurons but only ambiguity in the identity of individual
neurons. See [14] for more details, including more intuition behind the subpopulation
ambiguity.

5. Discussion. The present work represents a continuation of our development
of methods to determine the pattern of causal connections among measured neurons
while controlling for the effects of unmeasured neurons [14, 13, 12]. We have success-
fully eliminated the limitation of earlier versions that the activity of a neuron could
depend only weakly on its history. In the process, we have discovered that one can
exploit such history dependence to increase one’s ability to distinguish common input
from causal connections.

Although the analysis involved a fair number of technical manipulations, it turns
out that the intuition developed in the introduction does hold for the class of models
we consider. In the common input configuration (Figure 2(B)), but not in the causal
connection configuration (Figure 2(A)), spikes that can be accounted for by the first
neuron’s history dependence do not influence the second neuron’s spiking probabil-
ity (see (3.17)). This difference is exploited by our analysis in order to distinguish
common input from causal connections.

Successfully exploiting history dependence requires a strong dependence on his-
tory in a manner that one can capture by a model. In our simulations, we included
such history dependence and demonstrated that we could use it to improve our esti-
mates of connectivity. It is well known that the spike times of neurons are not well
approximated by a Poisson process [23, 21] and hence contain history dependence.
However, it remains unclear if this history dependence is sufficiently strong and if it
can be sufficiently well modeled to aid in the determination of connectivity.

The analysis was justified by a weak coupling assumption (section 2.2) where the
original coupling W̄ was assumed to be a small parameter. However, even if the origi-
nal coupling W̄ were large and only the perturbation W̃ due to coupling (see (3.15b))
were small, the analysis might still indicate the effective connectivity of the network.
To interpret the analysis under these conditions, one could reinterpret the likelihood
equation (3.15) as a perturbation off the effective models (2.3) rather than off the
original network (2.2). In this case, one cannot assume that the causal connectivity
obtained with W actually corresponds to the underlying connectivity of the network.
Such a reinterpretation of W as an effective connectivity would allow application of
the results to networks where the weak coupling assumption cannot be justified.

Although the analysis depends on selecting appropriate single-neuron models of
the form (2.3), flexibility is given by the modular approach [14] employed in our
analysis. One can develop additional single-neuron models and include them in the
analysis without modification of the network analysis. In the simulation tests, we used
only generalized linear models. Such a model of the dependence of neural activity
on spiking history is, of course, only roughly approximated by such a model. One
future goal is to implement more sophisticated models of history dependence, such
as a stochastic integrate-and-fire model [18]. Paninski, Pillow, and Simoncelli have
already developed efficient numerical schemes for determining the parameters of the
stochastic integrate-and-fire model [18], and the model does fit into the formalism of
(2.3). Such a model may more closely approximate history dependence observed in
biological neurons.
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Although there is a large literature focused on analyzing interactions among neu-
rons [19, 1, 16, 2, 3, 11, 25, 15, 7, 20, 18, 24, 9], we are aware of only one other attempt
to explicitly control for the effects of common input from unmeasured sources. Kulka-
rni and Paninski [9] have recently developed an expectation-maximization algorithm
for fitting a neuronal model that contains a latent noise source that could correspond
to such unmeasured common input. In their approach, the common input (i.e., la-
tent noise) is assumed to be a Gaussian process (justified by thinking of the common
input as a sum of a large number of small inputs). Hence, in place of a point process
model (2.2) for a network containing unmeasured neurons, their model is a doubly
stochastic process or Cox process [22]. As their approach differs significantly from
ours, one future task will be to compare the results of the two methods to understand
their relative strengths and weaknesses.

Earlier versions of our analysis relied exclusively on models of the relationship
between neuron spikes and external variables such as stimuli. As we have demon-
strated via simulations, modeling history-dependent effects may allow one to apply
the analysis even in cases where the activity of neurons is not strongly related to ex-
ternal variables. Especially with the implementation of more sophisticated models of
history dependence, our analysis may become applicable to a large variety of neuronal
systems (or other networks), regardless of whether or not they are strongly linked to
a stimulus or other external variable.

Appendix A. Calculations underlying analysis.

A.1. Averaging over hidden node activity. We outline how to simplify (3.4)
for the probability distribution Pr(RQ|X) of measured node activity RQ by explicitly
computing the averages over hidden node activity RP . We argued in the context of
(3.4) that the value ris of any random variable appears in (3.4) only as a polynomial
in ris times P̄s (or times a derivative of P̄s).

Expressions involving the undifferentiated P̄s are simple. Let a sum over rs denote
the sum over all possible values of the activity rs (i.e., ris for all i) of a given node s.
Then, since P̄s is shorthand for a probability distribution in the rs, we can conclude
that ∑

rs

P̄s = 1,
∑
rs

risP̄s = Ē0(R
i
s), and

∑
rs

ri1s ri2s P̄s = Ē0(R
i1
s Ri2

s ).(A.1)

Ē0(·) denotes the expected value under the probability distribution defined by the Ps

with W arguments set to zero, i.e., for any function g of the activity of nodes,

Ē0(g(R)) =
∑
r

g(r)
∏
s

∏
i

Ps

(
ris, r

<i
s ,x, 0; θ̄is

)
.(A.2)

(The sum over r indicates the sum over all possible values of the activity of all nodes.)
Note that Ē0(R

i
s) is not the expected value of Ri

s under model (2.2); it is the expected
value of Ri

s only if the coupling happened to be zero.
The expressions involving the derivatives of P̄s are more subtle. First, note that,

for any node s,

∑
rs

∏
i

Ps

⎛
⎝ris, r

<i
s ,x,

∑
ś �=s

∑
ı́<i

W̄ ı́,i
ś,sr

ı́
ś; θ̄

i
s

⎞
⎠ = 1
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independent of any value of the rı̃s̃ for s̃ �= s. (The case when all rı̃s̃ = 0 for s̃ �= s was
the first identity of (A.1).) So, if we differentiate with respect to any rı̃s̃ with s̃ �= s,
we will get zero:

∑
rs

∂

∂rı̃s̃

⎛
⎝∏

i

Ps

⎛
⎝ris, r

<i
s ,x,

∑
ś �=s

∑
ı́<i

W̄ ı́,i
ś,sr

ı́
ś; θ̄

i
s

⎞
⎠
⎞
⎠ = 0.

In particular, this derivative is zero if we set all rı̃s̃ = 0 for s̃ �= s, so that

∑
rs

∂P̄s

∂rı̃s̃
= 0, and

∑
rs

∂2P̄s

∂rı̃1s̃1∂r
ı̃2
s̃1

= 0.(A.3)

On the other hand,

E(Ri
s|{R<i

ś = r<i
ś }ś �=s) =

∑
rs

ris
∏
ı́1

Ps

⎛
⎝rı́1s , r<ı́1

s ,x,
∑
ś �=s

∑
ı́2<ı́1

W̄ ı́2 ,́ı1
ś,s rı́2ś ; θ̄ı́1s

⎞
⎠

does depend on the values of the rı̃s̃ for s̃ �= s and ı̃ < i. Due to network connections,
the expected value of Ri

s could indeed depend on the value of the past activity of
another node. So, if we differentiate with respect to any rı̃s̃, we won’t necessarily get
zero. Denote this derivative, once we set all rı̃s̃ = 0 for s̃ �= s, as

Ē0

(
∂Ri

s

∂Rı̃
s̃

)
=

∂

∂rı̃s̃
E(Ri

s|{R<i
ś = r<i

ś }ś �=s)

∣∣∣∣
{rś=0|ś �=s}

=
∑
rs

ris
∂P̄s

∂rı̃s̃
.(A.4)

The notation captures that this expression represents how a change in the activity of
node s̃ at time ı̃ affects the average activity of node s at time i. This is nonzero, of
course, only if ı̃ < i. Note that this expression doesn’t depend on Rı̃

s̃, as the derivative
is calculated around Rı̃

s̃ = 0. Note also that this expression need not be zero even if

Rı̃
s̃ does not directly influence Ri

s, i.e., if W̄ ı̃,i
s̃,s = 0. Because we have allowed Ri

s to

depend arbitrarily on its history Ri2
s for i2 < i, this derivative could be nonzero just

because W̄ ı̃,i2
s̃,s �= 0.

We use the identities in (A.1), (A.3), and (A.4) to simplify all of the sums over
rP in the marginal distribution of RQ given in (3.4). To use these identities, we need
to distinguish all of the subsets of the various s indicies that could correspond to a
hidden node. We do this by enumerating all of the possible ways in which each s index
could be either a hidden or a measured node, as well as all of the possible ways in
which hidden node indices in a given term could correspond to the same node. Hence
each term in (3.4) will be expanded into many different terms.

However, due to the identities in (A.3), most terms involving derivatives of hidden
nodes disappear. Recall that a derivative of P̄s represents a connection onto node s. A
connection onto a hidden node p should not directly affect the marginal distribution
of the measured nodes RQ; such a connection should have an effect only through
a connection from that hidden node onto a measured node. Indeed, the only place
where derivatives of hidden nodes survive is in the last term:

1

2

∑
rP

∑
s1,s2,s̃1,s̃2

s2 �=s1,s̃1 �=s1
s̃2 �=s2

∑
ı̃1 ,̃ı2

∂P̄s1

∂rı̃1s̃1

∂P̄s2

∂rı̃2s̃2
rı̃1s̃1r

ı̃2
s̃2

∏
s3

s3 �=s1
s3 �=s2

P̄s3 .
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If we set s1 to a hidden node s1 = p1, then by identity (A.4), the term will survive
only if s̃2 also corresponds to the same hidden node s̃2 = p1 and if ı̃2 corresponds to
an earlier time ı̃2 < ı̃1. If we then tried to set s2 to another hidden node s2 = p2,
we would need the contradictory condition of ı̃2 > ı̃1 for the term to survive. In this
case, we must set s2 to a measured node s2 = q2. Hence, with these substitutions, the
term represents the cascade of the effect of a connection from node s̃2 (which could
be hidden or measured) onto hidden node p1 combined with the effect of a connection
from hidden node p1 onto measured node q2. (We must double the effect of this term
because we could swap s1 and s2 and obtain the same result.)

In all other cases, only the effects of connections onto measured nodes survive. The
connections from measured and hidden nodes must still be distinguished. We describe
this process in [14] as identifying all possible subnetworks of two or fewer edges. When
this process is completed, we end up with the following lengthy expression:

Pr(RQ = rQ|X = x) =
∏
q

P̄q +
∑
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A.2. Obtaining an effective parameter equation. We obtained (A.5) for
Pr(RQ|X) by averaging the full model (2.2) over the activity of all hidden nodes.
The averaged model (2.3) is equivalent to the full model (2.2) averaged over the
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activity of all nodes except for a single node s. Hence, the averaged model (2.3) must
be equal to (A.5) for Pr(RQ|X) where the set Q of measured nodes is replaced by the
single node s.

Given definition (3.5) for the effective probability distribution Ps, we obtain

Ps = Pr(Rs = rs|X = x)
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∑
ı̃1

∂P̄s

∂rı̃1s̃1
Ē0(R

ı̃1
s̃1

)

+
1

2

∑
s̃1,s̃2

s̃1 �=s,s̃2 �=s

∑
ı̃1 ,̃ı2

∂2P̄s

∂rı̃1s̃1∂r
ı̃2
s̃2

Ē0(R
ı̃1
s̃1
Rı̃2

s̃2
)

+
∑
s̃1,s̃2

s̃1 �=s,s̃2 �=s
s̃1 �=s̃2

∑
ı̃1 ,̃ı2
ı̃2<ı̃1

∂P̄s

∂rı̃1s̃1
Ē0

(
∂Rı̃1

s̃1

∂Rı̃2
s̃2

)
Ē0(R

ı̃2
s̃2

)

+
∑
s̃1

s̃1 �=s

∑
ı̃1 ,̃ı2
ı̃2<ı̃1

∂P̄s

∂rı̃1s̃1
Ē0

(
∂Rı̃1

s̃1

∂Rı̃2
s

)
rı̃2s + O(W̄ 3),(A.6)

where we simply replaced all variations of q in (A.5) with s and replaced the p̃ in (A.5)
with the corresponding s̃. Equation (A.6) relates the effective parameters θ (hidden in
P ) to the original model parameters θ̄ (hidden in P̄ ). Since, by assumption, we have
an algorithm to determine the effective parameters θ (at least for measured nodes),
we want to be able to rewrite everything in terms of the effective parameters. To
accomplish this, we need an expression for the original model parameters θ̄ in terms
of the effective parameters θ.

Recall that each derivative with respect to r implicitly includes a factor of W̄ .
Hence (A.6) shows that Ps deviates from P̄s by an amount that is O(W̄ ). Since we
are computing only a second-order approximation in W̄ , we can replace P̄s with Ps

in any terms that are second-order in W̄ (i.e., contain two derivatives with respect to
r) without affecting the order of our approximation. Similarly expressions with E0

differ by the equivalent expressions with Ē0 by an amount that is O(W̄ ) (compare
(3.7) with (A.2) and (A.4)), so we can also replace Ē0 with E0 in terms that are
second-order in W̄ . Then (A.6) becomes (after solving for P̄s)

P̄s = Ps −
∑
s̃1

s̃1 �=s

∑
ı̃1

∂P̄s

∂rı̃1s̃1
Ē0(R

ı̃1
s̃1

)

− 1

2

∑
s̃1,s̃2

s̃1 �=s,s̃2 �=s

∑
ı̃1 ,̃ı2

∂2Ps

∂rı̃1s̃1∂r
ı̃2
s̃2

E0(R
ı̃1
s̃1
Rı̃2

s̃2
)

−
∑
s̃1,s̃2

s̃1 �=s,s̃2 �=s
s̃1 �=s̃2

∑
ı̃1 ,̃ı2
ı̃2<ı̃1

∂Ps

∂rı̃1s̃1
E0

(
∂Rı̃1

s̃1

∂Rı̃2
s̃2

)
E0(R

ı̃2
s̃2

)

−
∑
s̃1

s̃1 �=s

∑
ı̃1 ,̃ı2
ı̃2<ı̃1

∂Ps

∂rı̃1s̃1
E0

(
∂Rı̃1

s̃1

∂Rı̃2
s

)
rı̃2s + O(W̄ 3).(A.7)
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To write the right-hand side of (A.7) solely in terms of effective parameters θ, we
need to change only the sum from the first line. Since this sum is O(W̄ ), we need
approximations to ∂P̄s/∂r

ı̃1
s̃1

and Ē0(R
ı̃1
s̃1

) that are accurate to first order in W̄ . We

start with the first-order approximation of P̄s (the first line of (A.7)):

P̄s = Ps −
∑
s̃1

s̃1 �=s

∑
ı̃1

∂Ps

∂rı̃1s̃1
E0(R

ı̃1
s̃1

) + O(W̄ 2).(A.8)

Here we could replace P̄s and Ē0 with Ps and E0 in the terms that are first-order in
W̄ , since we are computing only a first-order approximation.

When we differentiate P̄s with respect to rı̃2s̃2 , we are, by (3.6), essentially differ-

entiating with respect to the W̄ ı̃2,i
s̃2,s

. Hence, if we differentiate the left-hand side of

(A.8) with respect to rı̃2s̃2 , we need to differentiate only those terms on the right-hand

side of (A.8) that are functions of Ps or P̄s. We obtain the following expression for
the derivative ∂P̄s/∂r

ı̃2
s̃2

in terms of effective parameters:

∂P̄s

∂rı̃2s̃2
=

∂Ps

∂rı̃2s̃2
−
∑
s̃1

s̃1 �=s

∑
ı̃1

∂2Ps

∂rı̃1s̃1∂r
ı̃2
s̃2

E0(R
ı̃1
s̃1

) + O(W̄ 2).(A.9)

To find an expression for Ē0(R
ı̃1
s̃1

) in terms of effective parameters, we simplify
its definition based on (A.2) to

Ē0(R
ı̃1
s̃1

) =
∑
rs̃1

rı̃1s̃1 P̄s̃1 .

We similarly simplify the definition of E0(R
ı̃1
s̃1

) (based on (3.7a)) to

E0(R
ı̃1
s̃1

) =
∑
rs̃1

rı̃1s̃1Ps̃1 .

Then, by using (A.8) along with (3.7b), we can write Ē0(R
ı̃1
s̃1

) as

Ē0(R
ı̃1
s̃1

) =
∑
rs̃1

rı̃1s̃1 P̄s̃1

=
∑
rs̃1

rı̃1s̃1Ps̃1 −
∑
rs̃1

∑
s̃2

s̃2 �=s̃1

∑
ı̃2

rı̃1s̃1
∂Ps̃1

∂rı̃2s̃2
E0(R

ı̃2
s̃2

) + O(W̄ 2)

= E0(R
ı̃1
s̃1

) −
∑
s̃2

s̃2 �=s̃1

∑
ı̃2

ı̃2<ı̃1

E0

(
∂Rı̃1

s̃1

∂Rı̃2
s̃2

)
E0(R

ı̃2
s̃2

) + O(W̄ 2).(A.10)



EXPLOITING HISTORY-DEPENDENT EFFECTS 385

We substitute (A.9) and (A.10) into the first line of (A.7) and obtain the following
second-order expression of P̄s in terms of effective parameters:

P̄s =Ps −
∑
s̃1

s̃1 �=s

∑
ı̃1

∂Ps

∂rı̃1s̃1
E0(R

ı̃1
s̃1

)

− 1

2

∑
s̃1,s̃2

s̃1 �=s,s̃2 �=s

∑
ı̃1 ,̃ı2

∂2Ps

∂rı̃1s̃1∂r
ı̃2
s̃2

[E0(R
ı̃1
s̃1
Rı̃2

s̃2
) − 2E0(R

ı̃1
s̃1

)E0(R
ı̃2
s̃2

)]

−
∑
ŝ2

ŝ2 �=s

∑
ı̃1 ,̃ı2
ı̃2<ı̃1

∂Ps

∂rı̃1ŝ2
E0

(
∂Rı̃1

ŝ2

∂Rı̃2
s

)
[rı̃2s − E0(R

ı̃2
s )].

Since for s̃1 �= s̃2, E0(R
ı̃1
s̃1
Rı̃2

s̃2
) = E0(R

ı̃1
s̃1

)E0(R
ı̃2
s̃2

), we can simplify this expression to
obtain (3.8).

A.3. Measured node activity in terms of effective parameters. Equation
(A.5) for Pr(RQ|X), the probability distribution of the measured node activity, is
given in terms of the original model parameters θ̄. Our next step is to use (3.8) to
rewrite (A.5) in terms of effective parameters θ.

First, we rewrite (3.8) to replace the sums over all nodes in the network by two
sums: one over the measured nodes and one over the hidden nodes. Recall that we
use q (and its variants) to denote measured node indices and p (and its variants) to
denote hidden node indices (i.e., implicitly restrict q ∈ Q and p ∈ P).

P̄s = Ps −
∑
q̃1

q̃1 �=s

∑
ı̃1

∂Ps

∂rı̃1q̃1
E0(R

ı̃1
q̃1

) −
∑
p̃1

p̃1 �=s

∑
ı̃1

∂Ps

∂rı̃1p̃1

E0(R
ı̃1
p̃1

)

− 1

2

∑
q̃1

q̃1 �=s

∑
ı̃1 ,̃ı2

∂2Ps

∂rı̃1q̃1∂r
ı̃2
q̃1

[E0(R
ı̃1
q̃1
Rı̃2

q̃1
) − E0(R

ı̃1
q̃1

)E0(R
ı̃2
q̃1

)]

− 1

2

∑
p̃1

p̃1 �=s

∑
ı̃1 ,̃ı2

∂2Ps

∂rı̃1p̃1
∂rı̃2p̃1

[E0(R
ı̃1
p̃1
Rı̃2

p̃1
) − E0(R

ı̃1
p̃1

)E0(R
ı̃2
p̃1

)]

−
∑
q̃1

q̃1 �=s

∑
ı̃1 ,̃ı2
ı̃2<ı̃1

∂Ps

∂rı̃1q̃1
E0

(
∂Rı̃1

q̃1

∂Rı̃2
s

)
[rı̃2s − E0(R

ı̃2
s )]

−
∑
p̃1

p̃1 �=s

∑
ı̃1 ,̃ı2
ı̃2<ı̃1

∂Ps

∂rı̃1p̃1

E0

(
∂Rı̃1

p̃1

∂Rı̃2
s

)
[rı̃2s − E0(R

ı̃2
s )]

+
1

2

∑
q̃1,q̃2

q̃1 �=s,q̃2 �=s

∑
ı̃1 ,̃ı2

∂2Ps

∂rı̃1q̃1∂r
ı̃2
q̃2

E0(R
ı̃1
q̃1

)E0(R
ı̃2
q̃2

)

+
∑
q̃1,p̃2

q̃1 �=s,p̃2 �=s

∑
ı̃1 ,̃ı2

∂2Ps

∂rı̃1q̃1∂r
ı̃2
p̃2

E0(R
ı̃1
q̃1

)E0(R
ı̃2
p̃2

)

+
1

2

∑
p̃1,p̃2

p̃1 �=s,p̃2 �=s

∑
ı̃1 ,̃ı2

∂2Ps

∂rı̃1p̃1
∂rı̃2p̃2

E0(R
ı̃1
p̃1

)E0(R
ı̃2
p̃2

) + O(W̄ 3).(A.11)
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The first term on the right-hand side of (A.5) for Pr(RQ|X) is
∏

q P̄q. This is the

only term that is zeroth-order in W̄ and so is the only term where we need a second-
order conversion from original paremeters θ̄ to effective parameters θ. We derive a
second-order approximation of

∏
q P̄q by taking the product of (A.11) (ignoring terms

that are third- or higher-order in W̄ ) and substitute this expression into (A.5). We
use a first-order approximation of P̄s, Ē0(R

i
s) (A.10), and ∂P̄s/∂r

ı̃
s̃ (A.9) to rewrite

the first-order terms of (A.5) in terms of effective parameters. After simplification,
(A.5) becomes

Pr(RQ = rQ|X = x) =
∏
q

Pq +
∑
q1,q̃1
q1 �=q̃1

∑
ı̃1

∂Pq1

∂rı̃1q̃1
[rı̃1q̃1 − E0(R

ı̃1
q̃1

)]
∏
q2

q2 �=q1

Pq2

+
∑

q1,p̃1,q̃2
q̃2 �=q1

∑
ı̃1 ,̃ı2
ı̃1>ı̃2

∂Pq1

∂rı̃1p̃1

E0

(
∂Rı̃1

p̃1

∂Rı̃2
q̃2

)
[rı̃2q̃2 − E0(R

ı̃2
q̃2

)]
∏
q2

q2 �=q1

Pq2

+
1

2

∑
q1,p̃1,q2
q2 �=q1

∑
ı̃1 ,̃ı2

∂Pq1

∂rı̃1p̃1

∂Pq2

∂rı̃2p̃1

[E0(R
ı̃1
p̃1
Rı̃2

p̃1
) − E0(R

ı̃1
p̃1

)E0(R
ı̃2
p̃1

)]
∏
q3

q3 �=q1,q3 �=q2

Pq3

− 1

2

∑
q1,q̃1
q1 �=q̃1

∑
ı̃1 ,̃ı2

∂2Pq1

∂rı̃1q̃1∂r
ı̃2
q̃1

[E0(R
ı̃1
q̃1
Rı̃2

q̃1
) − E0(R

ı̃1
q̃1

)E0(R
ı̃2
q̃1

)]
∏
q2

q2 �=q1

Pq2

−
∑
q1,q̃1
q̃1 �=q1

∑
ı̃1 ,̃ı2
ı̃1>ı̃2

∂Pq1

∂rı̃1q̃1
E0

(
∂Rı̃1

q̃1

∂Rı̃2
q1

)
[rı̃2q1 − E0(R

ı̃2
q1)]

∏
q2

q2 �=q1

Pq2

+
1

2

∑
q1,q̃1,q2,q̃2

q2 �=q1,q̃1 �=q1
q̃2 �=q2

∑
ı̃1 ,̃ı2

∂Pq1

∂rı̃1q̃1

∂Pq2

∂rı̃2q̃2
[rı̃1q̃1 − E0(R

ı̃1
q̃1

)][rı̃2q̃2 − E0(R
ı̃2
q̃2

)]
∏
q3

q3 �=q1,q3 �=q2

Pq3

+
1

2

∑
q1,q̃1,q̃2

q1 �=q̃1,q1 �=q̃2

∑
ı̃1 ,̃ı2

∂2Pq1

∂rı̃1q̃1∂r
ı̃2
q̃2

[rı̃1q̃1 − E0(R
ı̃1
q̃1

)][rı̃2q̃2 − E0(R
ı̃2
q̃2

)]
∏
q2

q2 �=q1

Pq2 + O(W̄ 3).

(A.12)

A.4. Transforming back to probability distribution. Equation (A.12) is a
second-order approximation to a probability distribution, but it is not exactly a prob-
ability distribution. Since we wish to use Pr(RQ|X) to compute maximum likelihood
estimators of coupling parameters (i.e., find values of certain parameters that maxi-
mize Pr(RQ|X)), we need to use an expression for Pr(RQ|X) that is a true probability
distribution. For most terms of (A.12), one can simply reverse the Taylor expansion
to pull terms back into the product of Pq.

However, one cannot simply reverse the Taylor expansion for the common input
terms, i.e., the third line (common input from a hidden node onto two measured nodes)
and the fourth line (“common input” from a measured node onto a single measured
node). For those two terms, we’ll need to tease apart the effects from different time
points. We use the notation defined in (3.9) for P i

s , the probability distribution at a
single time point i (as well as its second derivative, defined analogously by (3.9)). We
rewrite the derivatives with respect to r in terms of the P i

s and its derivatives. We
also separate out the common input effects at a single time point, rewriting the third
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and fourth lines of (A.12) as9

+
1

2

∑
q1,p̃1,q2
q2 �=q1

∑
ı̃1 ,̃ı2

∂Pq1

∂rı̃1p̃1

∂Pq2

∂rı̃2p̃1

[E0(R
ı̃1
p̃1
Rı̃2

p̃1
) − E0(R

ı̃1
p̃1

)E0(R
ı̃2
p̃1

)]
∏
q3

q3 �=q1,q3 �=q2

Pq3

− 1

2

∑
q1,q̃1
q1 �=q̃1

∑
ı̃1 ,̃ı2

∂2Pq1

∂rı̃1q̃1∂r
ı̃2
q̃1

[E0(R
ı̃1
q̃1
Rı̃2

q̃1
) − E0(R

ı̃1
q̃1

)E0(R
ı̃2
q̃1

)]
∏
q2

q2 �=q1

Pq2

=
∑

q1,p̃1,q2
q2 �=q1

∑
ı̃1 ,̃ı2

∑
ı̂1 ,̂ı2
ı̂2<ı̂1

W̄ ı̃1 ,̂ı1
p̃1,q1

W̄ ı̃2 ,̂ı2
p̃1,q2

∂P ı̂1
q1

∂w

∂P ı̂2
q2

∂w
[E0(R

ı̃1
p̃1
Rı̃2

p̃1
) − E0(R

ı̃1
p̃1

)E0(R
ı̃2
p̃1

)]

∏
q3
Pq3

P ı̂1
q1P

ı̂2
q2

+
1

2

∑
q1,p̃1,q2
q2 �=q1

∑
ı̃1 ,̃ı2

∑
ı̂1

W̄ ı̃1 ,̂ı1
p̃1,q1

W̄ ı̃2 ,̂ı1
p̃1,q2

∂P ı̂1
q1

∂w

∂P ı̂1
q2

∂w
[E0(R

ı̃1
p̃1
Rı̃2

p̃1
) − E0(R

ı̃1
p̃1

)E0(R
ı̃2
p̃1

)]

∏
q3
Pq3

P ı̂1
q1P

ı̂1
q2

−
∑
q1,q̃1
q1 �=q̃1

∑
ı̃1 ,̃ı2

∑
ı̂1 ,̂ı2
ı̂2<ı̂1

W̄ ı̃1 ,̂ı1
q̃1,q1

W̄ ı̃2 ,̂ı2
q̃1,q1

∂P ı̂1
q1

∂w

∂P ı̂2
q1

∂w
[E0(R

ı̃1
q̃1
Rı̃2

q̃1
) − E0(R

ı̃1
q̃1

)E0(R
ı̃2
q̃1

)]

∏
q3
Pq3

P ı̂1
q1P

ı̂2
q1

− 1

2

∑
q1,q̃1
q1 �=q̃1

∑
ı̃1 ,̃ı2

∑
ı̂1

W̄ ı̃1 ,̂ı1
q̃1,q1

W̄ ı̃2 ,̂ı1
q̃1,q1

∂2P ı̂1
q1

∂w2
[E0(R

ı̃1
q̃1
Rı̃2

q̃1
) − E0(R

ı̃1
q̃1

)E0(R
ı̃2
q̃1

)]

∏
q3
Pq3

P ı̂1
q1

.

The last line in the above equation corresponds to the second-order effect of a
single connection between two measured nodes. For this term, we cannot reverse
the Taylor expansion to fold the term back into the product of the Pq and create a
probability distribution. However, this term represents a second-order effect that is
not summed over all nodes of the network (it is simply summed over the measured
nodes, which we view as a small subset). If we modify our weak coupling assumption
to allow us to ignore second-order terms that are not summed over all nodes, we can
neglect this last term. Since we no longer have exactly a second-order approximation
in W̄ , we denote the approximation by ≈.

With this approximation, we can reverse the Taylor expansion of the remaining
terms of (A.12) and obtain (3.10) for Pr(RQ|X), which is written as a probability
distribution in terms of effective parameters.

Appendix B. Estimation of single-node parameters. We sketch our al-
gorithm for determining the single-node parameters θis of model (4.2) that we used
to analyze the results of our simulations. The parameters θis correspond to As, ys,
hhist,s, and hext,s. We calculated maximum likelihood estimators of these parameters
from measurements of Ri

s, the spikes of neuron s, and the stimulus X.
We chose our form (4.2) of λs(·) so that λs(·) is convex and log λs(·) is concave

as a function of ys, hhist,s, and hext,s. In this way, for a fixed As, the log-likelihood
surface (logarithm of (2.3)) is free of nonglobal local maxima [17], and we could use
standard gradient ascent algorithms to find the maximum, conditioned on a value of
As. (We used the Polak–Ribiere conjugate gradient algorithm as implemented in the
GNU Scientific Library [6].)

9Note that all of the probabilities P i
q that appear in a denominator are also a factor in the

corresponding numerator. If a P i
q that appears in a denominator were to be zero, one could still

define the ratio by canceling the factor in the numerator.
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Before calculating these maximum likelihood estimators, we calculated the abso-
lute refractory period τabsref

s as the minimum number of Δt = 1 ms time bins observed
between spikes. Then, so that our model predicts absolutely no firing for τabsref

s time
steps after each spike, we set hi

hist,s = −10100 for i ≤ τabsref
s . To reduce the dimension

of the parameter space, we restricted the remainder of the history kernel hhist,s to be
in the subspace spanned by the vectors

Bk
s,1(i) = sin

(
πk

[
2
i− τabsref

s

τs,1
−
(
i− τabsref

s

τs,1

)2
])

for 0 < i− τabsref
s < τs,1 and Bk

s,1(i) = 0 otherwise. (These vector are not orthogonal,
so we applied Gram–Schmidt orthonormalization to obtain basis vectors.) We set
τs,1 = 60 − τabsref

s time bins. These basis vectors are analagous to those used in [8];
they can represent fine temporal structure for the time immediately after the spike
but are smoother for longer time scales. We used 29 basis vectors 1 ≤ k ≤ 29 (viewing
the 30th basis vector as capturing the absolute refractory period).

We similarly reduced the dimension of hext,s by using basis vectors that are a
product of a Hartley basis function in space (to match the stimulus) and temporal
basis functions similar to the Bk

s,1. The basis function indexed by k and l evaluated
at time bin i and space bin j was based on

Bk,l
s,2(i, j) = cas(2πlj/N0) sin

(
πk

[
2i/τs,2 − (i/τs,2)

2
])

for 0 < i < τs,2 and Bk,l
s,2(i, j) = 0 otherwise (again, we obtained orthogonal basis

functions through Gram–Schmidt orthonormalization). As in the definition of the
stimulus (section 4.1.1), casx = cosx + sinx and N0 = 100. We set τs,1 = 200 time
bins. We used the 210 basis vectors −10 ≤ l ≤ 10 and 1 ≤ k ≤ 10.

As mentioned above, we calculated y0 and the coefficients of the basis functions to
maximize the log-likelihood, given a fixed value of As. This defines all parameters as
a function of As. We then search for a value of As that maximizes the log-likelihood
while keeping the other parameters set at this function of As. We use this procedure
since the log-likelihood surface may not be well-behaved as a function of As.

Recall that the causal connection measure W and the common input measure U
are maximum likelihood estimators based on (3.15), which depends on these values of
θis. To reduce bias at this stage, we calculate the θis using cross-validation. We divided
the data into 4 segments. For each time bin i from one of these segments, we calculated
the parameters θiq using only the data in the other 3 segments. (For computation
efficiency, we don’t recalculate As four times but base As from calculations using all
of the data.)

Appendix C. Monte Carlo estimates of single-node expected values.
The estimation of connectivity parameters is based on (3.15) for Pr(RQ|X), the prob-
ability distribution of measured node activity. Once the effective parameters θq of the
measured nodes have been estimated, the only unknown quantities in (3.15) are the
causal connection W and common input U parameters. However, some of the known
quantities are given as expected values of functions of the measured node activities as
predicted by the averaged model (2.3). Although these expected values are completely
determined by the averaged model and the known effective parameters θq, computing
them explicitly would be impractical, as one would need to enumerate all possible
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sequences of the history of each node and average over them all.10 Instead, for each
measured node, we use the averaged model (2.3) to randomly generate sequences of
activity in order to estimate these expected values using Monte Carlo.

There are three different expected values that appear in (3.15b). They are the
average activity E0(R

i
q) at a given time bin, the second moment E0(R

i
qR

i−j
q ), and the

expected value involving the derivative E0(R
i
q(∂P

i−j
q /∂w)/P i−j

q ). To estimate these
expected values via Monte Carlo, we randomly generate a sequence Rq of the activity
of the node from the averaged model (2.3). Then, at each time point i (ignoring initial
time points for which we don’t have enough preceeding history), we make a sample
estimate of each expected value, as described below. We repeat this process 1000
times, setting our final estimates to be averages of these 1000 samples.

To compute the average activity E0(R
i
q), we could simply record the sampled Ri

q

and average these. However, we improve our estimate by taking advantage of the fact
that we have an analytic expression for the mean of Ri

q conditioned on the history R<i
q

(for the Poisson distribution it is simply λq(R
<i
q ,x, 0; θiq)). Our estimate of E0(R

i
q) is

the average of such conditioned means.
In our examples, we use the Poisson distribution (section 3.4) for the probability

distribution Pq(R
i
q,R

<i
q , ·) of Ri

q conditioned on the history R<i
q . However, one must

remember that Ri
q no longer has a probability distribution of the form Pq(R

i
q,R

<i
q , ·)

once one averages over all possible histories. Since Ri
q does not have a Poisson distri-

bution, one must resist the urge to estimate the variance E0((R
i
q)

2)−E0(R
i
q)E0(R

i
q)

as being equal to the mean E0(R
i
q). Instead, one must calculate E0((R

i
q)

2) in the

same manner as that described above for calculating E0(R
i
q). Since we have an ana-

lytic formula for the second moment of Ri
q conditioned on this history R<i

q (for the

Poisson distribution, it is λ2
q + λq), we can estimate E0((R

i
q)

2) as the average of such

conditioned second moments. To estimate E0(R
i
qR

i−j
q ) (for j > 0), we take our ana-

lytic expression for the average of Ri
q conditioned the history R<i

q , multiply it by the

sampled value of Ri−j
q , and average over all samples.

For the derivative term, E0(R
i
q(∂P

i−j
q /∂w)/P i−j

q ), we first look at the j = 0 case.
We can rewrite it as

E0

(
Ri

q

∂P i
q

∂w

1

P i
q

)
=

∑
r<i+1
q

riq
∂P i

q

∂w

1

P i
q

∏
ı̃≤i

P ı̃
q =

∑
r<i+1
q

riq
∂P i

q

∂w

∏
ı̃<i

P ı̃
q ,(C.1)

where the sum is over all possible values of the rkq for k ≤ i. At least for the Poisson

distribution, we can calculate an analytic expression11 for
∑

riq
riq∂P

i
q/∂w, and we

take the average of that quantity over all samples. For j > 0, the term is

E0

(
Ri

q

∂P i−j
q

∂w

1

P i−j
q

)
=

∑
r<i+1
q

riq
∂P i−j

q

∂w

1

P i−j
q

∏
ı̃≤i

P ı̃
q .(C.2)

10Hence, the computational cost would increase exponentially in length of the history that could
affect the activity.

11For the Poisson distribution,
∑

riq
riq∂P

i
q/∂w = ∂wλq(r<i

q ,x, 0; θiq).



390 DUANE Q. NYKAMP

In this case, we take the average value of Ri
q conditioned on the sampled history and

multiply it by (∂P i−j
q /∂w)/P i−j

q . We average this quantity over all samples.12
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INVERSION OF SPHERICAL MEANS AND THE WAVE EQUATION
IN EVEN DIMENSIONS∗
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Abstract. We establish inversion formulas of the so-called filtered back-projection type to
recover a function supported in the ball in even dimensions from its spherical means over spheres
centered on the boundary of the ball. We also find several formulas to recover initial data of the form
(f, 0) (or (0, g)) for the free space wave equation in even dimensions from the trace of the solution
on the boundary of the ball, provided that the initial data has support in the ball.
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1. Introduction and statement of results. The problem of determining a
function from a subset of its spherical means has a rich history in pure and applied
mathematics. Our interest in the subject was provoked by the new medical imaging
technologies called thermoacoustic and photoacoustic tomography. The idea behind
these [10, 16] is to illuminate an object by a short burst of radiofrequency or optical
energy which causes rapid (though small in magnitude) thermal expansion which
generates an acoustic wave. The acoustic wave can be measured on the periphery or
in the exterior of the object. The inverse problem we consider is to find the distribution
of the absorbed energy throughout the body. This is of interest, since the amount of
energy absorbed at different points may be diagnostic of disease or indicative of uptake
of probes tagged to metabolic processes or gene expression [9]. For a more thorough
discussion of the modeling and biomedical applications, the reader is referred to the
recent survey [17]. If the illuminating energy is impulsive in time, the propagation
may be modeled as an initial value problem for the wave equation. The problem of
recovering the initial data of a solution of the wave equation from the value of the
solution on the boundary of a domain is of mathematical interest in every dimension,
but for the application to thermo-/photoacoustic tomography it would appear that
the three dimensional case is the only one of interest, since sound propagation is
not confined to a lower dimensional submanifold. However, there exist methods of
measuring the generated wave field which do not rely on point measurements of the
sort that would be generated by an (idealized) acoustic transducer. In particular,
integrating line detectors, which have been studied in [3, 14], in effect compute the
integral of the acoustic wave field along a specified line. In this paper, we work under
the assumption that the speed of sound, c, is constant throughout the body, and
since the x-ray transform in a given direction of a solution of the three dimensional
wave equation is a solution of the two dimensional wave equation, the problem is
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e1line detector

p ∈ S
R2

rotation

Fig. 1.1. Principle of thermoacoustic tomography with integrating line detectors. A cylindrical
array of line detectors records the acoustic field and is rotated around the axis e1. For each fixed
rotation angle the array outputs the x-ray transform (projection along straight lines) of the trace of
the solution of the wave equation restricted to the boundary S of the disk. The initial condition is
given by the x-ray transform of the initially induced pressure restricted to lines orthogonal to the
base of the cylinder.

transformed. If a circular array of line detectors is rotated around an axis orthogonal
to the direction of the line detectors [7, 14], then for each fixed rotation angle the
measurement provides the trace of the solution of the two dimensional wave equation
on the circle corresponding to the array. The initial data of this two dimensional
problem is the x-ray transform of the three dimensional initial data. If the initial data
can be recovered in the disk bounded by the detector array and assuming that the
projection of the object to be imaged lies in this disk, then the problem of recovering
the three dimensional initial data is reduced to the inversion of the x-ray transform
in each plane orthogonal to the axis of rotation. One such two dimensional problem
is illustrated in Figure 1.1.

To our knowledge, the first work to tackle the problem of recovering a function
from its circular means with centers on a circle was [13], whose author was interested
in ultrasound reflectivity tomography. He found an inversion method based on har-
monic decomposition and, for each harmonic, the inversion of a Hankel transform.
This method has been the basis for most subsequent work on exact inversion of cir-
cular means. The inversion of the Hankel transform involves a quotient of a Hankel
transform of a harmonic component of the data and a Bessel function. That this
quotient be well defined turns out to be a condition on the range of the circular mean
transform [2]. See also [1] for range results on the spherical mean transform on func-
tions supported in a ball in all dimensions and [6] for range results for the wave trace
map for functions supported in the ball in odd dimensions.
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In Finch, Patch, and Rakesh [5], several formulas were found to recover a smooth
function f with support in the closure B of the open ball B ⊆ Rn from the trace of
the solution of the wave equation on the product ∂B× [0,diam(B)], provided that the
space dimension is odd. Specifically, if u is the solution of the initial value problem

utt − Δu = 0 in Rn × [0,∞),(1.1)

u(., t = 0) = f(.), ut(., t = 0) = 0,(1.2)

where f is smooth and has support in the B, then several formulas were found to
recover f from u(p, t) for p ∈ S := ∂B and t ∈ R+.

Finch and Rakesh tried, at that time, to extend the method to even dimensions
but did not see a way. Recently, Haltmeier tried numerical experiments using a two
dimensional analogue of one of the inversion formulas and found that it gave excellent
reconstructions. This prompted our reexamination of the problem. Among the results
of this paper is a proof of the validity of this formula.

To describe our results, we introduce some notation. The spherical mean trans-
form M is defined by

(1.3) (M f)(x, r) =
1

|Sn−1|

∫
Sn−1

f(x + rθ) dS(θ)

for f ∈ C∞(Rn) and (x, r) ∈ Rn× [0,∞). In this expression, |Sn−1| denotes the area
of the unit sphere Sn−1 in Rn and dS(θ) denotes the area measure on the sphere.
In general, we write the area measure on a sphere of any radius as dS, except when
n = 2 when we write ds. We will denote the (partial) derivative of a function q with
respect to a variable r by ∂rq, except in a few formulas where the subscript notation
qr is used. At several points we use Dr to denote the operator

(Dru)(r) :=
(∂ru)(r)

2r

acting on smooth (even) functions u with compact support. Moreover, r will be used
to denote the operator that multiplies a function u(r) by r.

Our first set of results is a pair of inversion formulas for the spherical mean
transform in even dimensions. We state and prove these first in dimension two, that
is, for the circular mean transform.

Theorem 1.1. Let D ⊂ R2 be the disk of radius R0 centered at the origin, let
S := ∂D denote the boundary circle, and let f ∈ C∞(R2) with supp f ⊂ D. Then,
for x ∈ D,

(1.4) f(x) =
1

2πR0
Δx

∫
S

∫ 2R0

0

r (M f)(p, r) log
∣∣r2 − |x− p|2

∣∣ dr ds(p)
and

(1.5) f(x) =
1

2πR0

∫
S

∫ 2R0

0

(∂rr∂r M f) (p, r) log
∣∣r2 − |x− p|2

∣∣ dr ds(p).
In Theorem 1.1, ∂rr∂r M f denotes the composition of ∂r, r, ∂r, and M applied to

f . The same convention will be used throughout the article to denote the composition
of any operators.
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While M f has a natural extension to the negative reals as an even function,
we instead take the odd extension in the second variable. In view of the support
hypothesis on f , this extension is also smooth. Then formula (1.5) has the following
corollary.

Corollary 1.2. With the same hypotheses as in Theorem 1.1, and M f extended
as an odd function in the second variable r, f can be recovered for x ∈ D by

(1.6) f(x) =
1

2πR0

∫
S

∫ 2R0

−2R0

(r∂r M f)(p, r)

|x− p| − r
dr ds(p)

and

(1.7) f(x) =
1

2πR0

∫
S

|x− p|
∫ 2R0

−2R0

(∂r M f)(p, r)

|x− p| − r
dr ds(p),

where the inner integrals are taken in the principal value sense.
These forms are very close to the standard inversion formula for the Radon trans-

form in the plane [12, eq. (2.5)].
In higher even dimensions we prove a similar pair of results.
Theorem 1.3. Let B ⊂ Rn, n > 2 even, be the ball of radius R0 centered at the

origin, let S := ∂B be the boundary of the ball, set

cn = (−1)(n−2)/22((n− 2)/2)!πn/2 = (−1)(n−2)/2[((n− 2)/2)!]2|Sn−1|,

and let f ∈ C∞(Rn) have support in B. Then, for x ∈ B,

f(x) =
1

cnR0
Δx

∫
S

∫ 2R0

0

log
∣∣r2 − |x− p|2

∣∣ (rDn−2
r rn−2 M f)(p, r) dr dS(p),(1.8)

f(x) =
2

cnR0

∫
S

∫ 2R0

0

log
∣∣r2 − |x− p|2

∣∣ (rDn−1
r rn−1∂r M f)(p, r) dr dS(p).(1.9)

Recently, Kunyansky [11] has also established inversion formulas of the filtered
back-projection type for the spherical mean transform. His method and results appear
to be very different from ours.

For some results, it will be more convenient to use the wave equation (1.1) with
initial condition

(1.10) u(., t = 0) = 0, ut(., t = 0) = f(.).

It is obvious that the solution of (1.1) with initial values (1.2) is the time derivative
of the solution of (1.1) with initial values (1.10). We denote by P the operator
which takes smooth initial data with support in B to the solution of (1.1), (1.10)
restricted to S× [0,∞) and by W the operator taking f to the solution of (1.1), (1.2)
restricted to S× [0,∞). These operators are simply related by W = ∂t P. An explicit
representation for P comes from the well-known formula [4]

(1.11) u(p, t) =
1

(n− 2)!
∂n−2
t

∫ t

0

r(t2 − r2)(n−3)/2(M f)(p, r) dr,

giving the solution of the initial value problem (1.1), (1.10), in dimension n ≥ 2. We
denote by P∗ and W∗ = −P∗ ∂t the formal L2 adjoints of P and W mapping from
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smooth functions u ∈ C∞(S× [0,∞)) with sufficient decay in the second variable. An
explicit expression for P∗ u will be given in section 3.

We have two types of inversion results for the wave equation. The first type is
based on the inversion results for the spherical mean transform, since the spherical
mean transform itself can be recovered from the solution of the wave equation by
solving an Abel-type equation. In dimension two, this approach yields the following
result.

Theorem 1.4. Let D ⊂ R2 be the open disc with radius R0, and let S := ∂D
denote the boundary circle. Then there exists a kernel function K : [0, 2R0]

2 → R
such that for any f ∈ C∞(R2) with support in D and any x ∈ D

(1.12) f(x) =
1

R0π2
Δx

∫
S

∫ 2R0

0

(W f)(p, t)K(t, |x− p|) dt ds(p).

An analytic expression for K will be given in section 3.
Theorem 1.4 provides inversion formulas of the filtered back-projection type for

reconstruction of f from (W f)(p, t) = (∂t P f)(p, t) using only data with t ∈ [0, 2R0],
despite the unbounded support of W f and P f in t.

The second type of inversion results holds in all even dimensions and takes the
following form.

Theorem 1.5. Let f be smooth and supported in closure of the ball B of radius
R0 in R2m, and let P f and W f be as above. Then, for x ∈ B,

f(x) = − 2

R0

(
P∗ t∂2

t P f
)
(x),(1.13)

f(x) =
2

R0
(W∗ tW f) (x) = − 2

R0
(P∗ ∂tt∂t P f) (x).(1.14)

We will prove (1.13) in dimension n = 2m = 2 directly. The higher dimensional
case of (1.13), and (1.14) in all dimensions, are consequences of the following trace
identities, relating the L2 inner product of the initial data to the weighted L2 inner
product of the traces of the solutions of the wave equation.

Theorem 1.6. Let f, g be smooth and supported in the ball B of radius R0, in
R2m with m ≥ 1, let S := ∂B, and let u (resp., v) be the solution of the initial value
problem (1.1), (1.10) with initial value f (resp., g). Then∫

B

f(x)g(x) dx = − 2

R0

∫
S

∫ ∞

0

tutt(p, t)v(p, t) dt dS(p),(1.15) ∫
B

f(x)g(x) dx =
2

R0

∫
S

∫ ∞

0

tut(p, t)vt(p, t) dt dS(p).(1.16)

In the proof of this theorem, (1.15) for n = 2 follows from (1.13) for n = 2,
while (1.15) in higher even dimensions is derived from the n = 2 case; (1.16) is a
consequence of (1.15) in all dimensions. We remark that these identities were already
proved in [5] for odd dimensions, and so they hold for all dimensions.

Section 2 is devoted to the proof of the inversion formulas for the spherical mean
transform, that is, Theorems 1.1 and 1.3 and Corollary 1.2. Section 3 treats the wave
equation and contains the proofs of Theorems 1.4, 1.5, and 1.6. This is followed by
a section reporting on the implementation of the various reconstruction formulas of
the preceding sections and results of numerical tests in dimension two.
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2. Spherical means. In this section we prove the theorems related to the inver-
sion from spherical means and Corollary 1.2. We begin by establishing an elementary
integral identity, which is the key to the results in this paper.

Proposition 2.1. Let D ⊂ R2 be the disk of radius R0, and let S = ∂D be the
boundary circle. Then, for x, y ∈ D with x �= y,

(2.1)

∫
S

log
∣∣|x− p|2 − |y − p|2

∣∣ ds(p) = 2πR0 log |x− y| + 2πR0 logR0.

Proof. Let x �= y both lie in D, and let I denote the integral on the left-hand side
of (2.1). Expanding the argument of the logarithm as

∣∣|x− p|2 − |y − p|2
∣∣ = 2R0|x− y|

∣∣∣∣
(
x + y

2R0
− p

R0

)
· x− y

|x− y|

∣∣∣∣ ,
setting e := x−y

|x−y| , and writing p = R0θ for θ ∈ S1, we have

(2.2) I = 2πR0 log (2R0|x− y|) + R0

∫
S1

log |e · θ − a| dθ,

where

a =
x + y

2R0
· e =

|x|2 − |y|2
2R0|x− y| .

We note that |a| < 1.
Using the parameterization θ = cos(φ)e + sin(φ)e⊥, the integral term on the

right-hand side of (2.2) has the form

R0

∫ 2π

0

log |cosφ− a| dφ.

Writing a = cosα and using the sum to product trigonometric identity cosφ−cosα =
−2 sin ((φ + α)/2) sin ((φ− α)/2), this is equal to

R0

∫ 2π

0

(log 2 + log |sin ((φ + α)/2)| + log |sin ((φ− α)/2)|) dφ.

By periodicity and two linear changes of variable, this reduces to

R0

∫ 2π

0

(log 2 + 2 log |sin(φ/2)|) dφ = 2R0π log 2 + 4R0

∫ π

0

log sinu du,

which is independent of α and hence of x and y. The latter integral can be found
in tables and is equal to −R0π log 2, and so the sum is −2πR0 log 2. Substituting in
(2.2) gives the desired result.

Proposition 2.1 is already enough to establish Theorem 1.1.
Proof of Theorem 1.1. Let f ∈ C∞(R2) be supported in D, and let p be any

point in S = ∂B. Using the definition of M f and Fubini’s theorem, we have that

(2.3)

∫ 2R0

0

(rM f)(p, r)q(r) dr =
1

2π

∫
R2

f(p + z)q(|z|) dz
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for any measurable function q, provided that the product of functions on the right-
hand side is absolutely integrable. Applying this with q(r) = log

∣∣r2 − |x − p|2
∣∣ and

making the change of variables y = p + z gives∫
S

∫ 2R0

0

(rM)(f)(p, r) log
∣∣r2 − |x− p|2

∣∣ dr ds(p)
=

1

2π

∫
S

∫
R2

f(y) log
∣∣|y − p|2 − |x− p|2

∣∣ dy ds(p).
Fubini’s theorem again justifies the change of order of integration in the iterated
integral on the right-hand side, and so

1

2π

∫
R2

f(y)

∫
S

log
∣∣|y − p|2 − |x− p|2

∣∣ ds(p) dy
=

2πR0

2π

∫
R2

f(y)(log |x− y| + logR0) dy

upon application of (2.1). Recalling that for any constant c, 1/(2π) log |x − y| + c is
a fundamental solution of the Laplacian in R2, we have

f(x) =
1

2πR0
Δx

∫
S

∫ 2R0

0

(rM f)(p, r) log |r2 − |x− p|2| dr ds(p),

which proves (1.4).
The second formula, (1.5), has a similar proof. In this case, we use that the

spherical means satisfy the Euler–Poisson–Darboux equation [4]

(∂2
r M f)(x, r) +

1

r
(∂r M f)(x, r) = (ΔM f)(x, r) = (MΔf)(x, r).

The left-hand side of the Darboux equation may be written as (1/r)(∂rr∂r M f)(x, r),
and so the expression on the right-hand side of (1.5) may be rewritten as

(2.4)
1

2πR0

∫
S

∫ 2R0

0

(rMΔf)(p, r) log
∣∣r2 − |x− p|2

∣∣ dr ds(p).
Again applying (2.3), now with the function q(r) = r log

∣∣r2−|x−p|2
∣∣ and Δf instead

of f , interchanging the order of integration and using (2.1) shows that the expression
(2.4) is equal to

1

2π

∫
R2

Δyf(y)(log |x− y| + logR0) dy = f(x),

since no boundary terms arise in view of the support hypothesis on f .
Proof of Corollary 1.2. Let x ∈ D, and let

U(p, x) :=

∫ 2R0

0

(∂rr∂r M f) (p, r) log
∣∣r2 − |x− p|2

∣∣ dr
denote the inner integral in (1.5). Taking the support of f into account, writing the
logarithm as

log
∣∣r2 − |x− p|2

∣∣ = log |r − |x− p|| + log |r + |x− p|| ,
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and integrating (1.5) by parts leads to

U(p, x) = −P.V.

∫ ∞

0

(r∂r M f)(p, r)

r − |x− p| dr −
∫ ∞

0

(r∂r M f)(p, r)

r + |x− p| dr.

Here we have used that the distributional derivative of log |r| is P.V. 1
r as well as an

ordinary integration by parts. Therefore (1.5) implies that

f(x) =
1

2πR0

∫
S

U(p, x) ds(p)

=
−1

2πR0

∫
S

∫ 2R0

0

(r∂r M f)(p, r)

r − |x− p| dr ds(p)

− 1

2πR0

∫
S

∫ 2R0

0

(r∂r M f)(p, r)

r + |x− p| dr ds(p),

(2.5)

where the inner integral of the first term on the right-hand side is taken in the principal
value sense. The odd extension of M f , M f(p,−r) := −M f(p, r), is smooth on R
since M f vanishes to infinite order at r = 0 by the support hypothesis on f and
(r∂r M f)(p, r) is an odd function in r. Substituting r = −r into the last integral in
(2.5) gives

f(x) =
−1

2πR0

∫
S

∫ 2R0

0

(r∂r M f)(p, r)

r − |x− p| dr ds(p)

− 1

2πR0

∫
S

∫ 0

−2R0

(r∂r M f)(p, r)

r − |x− p| dr ds(p)

and hence

f(x) =
1

2πR0

∫
S

∫ 2R0

−2R0

(r∂r M f)(p, r)

|x− p| − r
dr ds(p).

This is (1.6). To prove (1.7), it suffices to write

r

|x− p| − r
= −1 +

|x− p|
|x− p| − r

in (1.6) and to note that
∫ 2R0

−2R0
(∂r M f)(p, r) dr = 0 by the support hypothesis

on f .

2.1. Proof of Theorem 1.3. We have found several proofs of Theorem 1.3, the
extension of Theorem 1.1 to higher even dimensions. The one we present is based
on reduction of the higher dimensional problem to the two dimensional case already
established. Another, which is not presented in this article, is based on an extension
of (2.1) to higher dimensions.

We first observe that by a dilation, we may reduce the problem to the case when
f is supported in the unit ball. Tracing through the formulas (1.8) and (1.9) it is
routine to verify that scaling from the unit ball to the ball of radius R0 introduces a
factor of R0. To simplify notation, we shall now suppose that f is supported in the
unit ball B. Let Q and N denote the operators

(Qf)(x) = Δx

∫
S

∫ 2

0

(rDn−2
r rn−2 M f)(p, r) log

∣∣r2 − |x− p|2
∣∣ dr dS(p),(2.6)

(Nf)(x) =

∫
S

∫ 2

0

(rDn−1
r rn−1∂r M f)(p, r) log

∣∣r2 − |x− p|2
∣∣ dr dS(p),(2.7)
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which map f ∈ C∞(Rn) supported in B to constant multiples of the right-hand sides
of (1.8) and (1.9). Moreover, 〈f, g〉 denotes the L2 product of two functions supported
in B. To establish Qf = cnf and Nf = (cn/2)f we will use the following auxiliary
results.

Proposition 2.2. Let f, g be smooth and supported in B. Then

(2.8)

∫
Rn

(Qf)(x)g(x) dx = 〈Qf, g〉 = 2〈f,Ng〉 = 2

∫
Rn

f(x)(Ng)(x) dx.

Proof. Let F = M f and G = M g. We introduce the temporary notation
F̃ (p, r) = rDn−2

r rn−2F (p, r). Using the self-adjointness of Δ, applying Fubini’s theo-
rem and an n-dimensional analogue of (2.3), we obtain

〈Qf, g〉 =

∫
B

(∫
S

∫ 2

0

(rDn−2
r rn−2F )(p, r) log

∣∣r2 − |x− p|2
∣∣ dr dS(p)

)
(Δxg)(x) dx

= |Sn−1|
∫
S

∫ 2

0

(∫ 2

0

F̃ (p, r) log
∣∣r2 − r̄2

∣∣ (MΔxg)(p, r̄)r̄
n−1 dr̄

)
dr dS(p)

= |Sn−1|
∫
S

∫ 2

0

(∫ 2

0

F̃ (p, r) log
∣∣r2 − r̄2

∣∣ dr) (MΔxg)(p, r̄)r̄
n−1 dr̄ dS(p)

= |Sn−1|
∫
S

∫ 2

0

(∫ 2

0

F̃ (p, r) log
∣∣r2 − r̄2

∣∣ dr) ∂r̄ r̄
n−1∂r̄G(p, r̄) dr̄ dS(p).(2.9)

To justify the last equation it is used that G satisfies the Euler–Poisson–Darboux
equation and the identity r̄n−1(∂2

r̄ + n−1
r̄ ∂r̄) = ∂r̄(r̄

n−1∂r̄). Applying the identities

(Dn−2
r )∗r log |r2− r̄2| = (−1)n−2rDn−2

r log |r2− r̄2| = rDn−2
r̄ log |r2− r̄2| in two stages

to the last expression, this becomes

|Sn−1|
∫
S

∫ 2

0

(∫ 2

0

rn−1F (p, r)Dn−2
r̄ log

∣∣r2 − r̄2
∣∣ dr)(

∂r̄ r̄
n−1∂r̄G(p, r̄)

)
dr̄ dS(p)

=

∫
S

∫ 2

0

(∫
B

f(y)Dn−2
r̄ log

∣∣|y − p|2 − r̄2
∣∣ dy)(

∂r̄ r̄
n−1∂r̄G(p, r̄)

)
dr̄ dS(p)

=

∫
B

(∫
S

∫ 2

0

log
∣∣|y − p|2 − r̄2

∣∣ ((D∗
r̄)

n−2∂r̄ r̄
n−1∂r̄G)(p, r̄) dr̄ dS(p)

)
f(y) dy

after applying Fubini’s theorem. This is finally seen to be equal to 〈f, 2Ng〉 since
(Dn−2

r̄ )∗∂r̄ = 2r̄(−1)n−2Dn−1
r̄ .

We now look at the spherical means of products

(2.10) f(x) = ρkα(ρ)Φ(θ),

where x = ρθ with ρ ≥ 0, θ ∈ Sn−1, Φ is a spherical harmonic of degree k, and
α : R → R is an even smooth function supported in [−1, 1]. Let F := M f be
extended to an even function in the second component, and let ν = n + 2k. Then F
satisfies the initial value problem (IVP) for the Euler–Poisson–Darboux equation(

∂2
rF +

n− 1

r
∂rF

)
(x, r) = ΔxF (x, r), (x, r) ∈ Rn × R,(2.11)

F (x, 0) = α(ρ)ρkΦ(θ), ∂rF (x, 0) = 0, x ∈ Rn,(2.12)
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and, conversely, any solution of (2.11), (2.12) is the spherical mean of the initial
values. The unique solution of (2.11), (2.12) has the form F (x, r) = ρkA(ρ, r)Φ(θ),
where A(ρ, r) is the solution of the IVP

(LnA)(ρ, r) =

(
∂2
ρA +

ν − 1

ρ
∂ρA

)
(ρ, r), (ρ, r) ∈ R2,(2.13)

A(ρ, 0) = α(ρ), ∂ρA(ρ, 0) = 0, ρ ∈ R.(2.14)

Here (LnA)(ρ, r) := (∂2
rA + n−1

r ∂rA)(ρ, r).
We recall that the operator Dr satisfies LnDr = DrLn−2 and for any μ ∈ N(

∂2
r +

1 − μ

r
∂r

)
(rμw) = rμ

(
∂2
r +

1 + μ

r
∂r

)
w,

that is, L2−μr
μ = rμLμ+2. So

(2.15) (L2−μ+2σD
σ
r r

μw)(r) = (Dσ
rL2−μr

μw)(r) = (Dσ
r r

μLμ+2w)(r).

If we set μ = n− 2 and σ = (n− 2)/2 in (2.15), then μ + 2 = n and 2 − μ + 2σ = 2.
Therefore

(2.16) (L2D
(n−2)/2
r rn−2w)(r) = (D(n−2)/2

r rn−2Lnw)(r).

Now we set

(2.17) H(ρ, r) :=
1

((n− 2)/2)!
(D(n−2)/2

r rn−2A)(ρ, r).

Since A(ρ, r) is even in r and Dr corresponds to differentiation with respect to r2,

H(ρ, r) is even in r. Moreover, by (2.14), H(ρ, 0) = 1
((n−2)/2)!A(ρ, 0)(D

(n−2)/2
r rn−2) =

α(ρ), and therefore from (2.13) and (2.16) it follows that H is the solution of the IVP(
∂2
rH +

1

r
∂rH

)
(ρ, r) =

(
∂2
ρH +

ν − 1

ρ
∂ρH

)
(ρ, r), (ρ, r) ∈ R2,(2.18)

H(ρ, 0) = α(ρ), ∂rH(ρ, 0) = 0, ρ ∈ R.(2.19)

Proposition 2.3. Let Ai(ρ, r), i = 1, 2, solve (2.13) with n = 2, subject to initial
conditions Ai(ρ, 0) = αi(ρ), ∂rAi(ρ, 0) = 0, where αi are smooth even functions with
support in [−1, 1] and ν ≥ 2 is even. Then

(2.20)

∫ 1

0

ρν−1α1(ρ)α2(ρ) dρ = −
∫ 2

0

∫ 2

0

rA1(1, r)∂r̄ log |r2 − r̄2| r̄(∂r̄A2)(1, r̄) dr̄ dr.

Proof. Let k = (ν − 2)/2, and let Φ(θ) be a nontrivial real circular harmonic of
degree k. Then Fi(x, r) := Ai(ρ, r)ρ

kΦ(θ) satisfies (2.11), (2.12) for n = 2, and so is
the circular mean of its initial value, fi(x) = αi(ρ)ρ

kΦ(θ). By (1.4), f1 = 1
2πQf1, and

using (2.9) gives

〈f1, f2〉 =
1

2π
〈Qf1, f2〉

=

∫
S

∫ 2

0

∫ 2

0

rF1(p, r) log |r2 − r̄2|(∂r̄ r̄∂r̄F2)(p, r̄) dr dr̄ ds(p).
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Taking into account the form of Fi and that ρ = 1 on S, this may be rewritten as

(2.21) 〈f1, f2〉 =

∫
S

Φ2(p) ds(p)

∫ 2

0

∫ 2

0

rA1(1, r) log |r2 − r̄2|(∂r̄ r̄∂r̄A2)(1, r̄) dr dr̄.

Appealing to the form of fi = F (x, 0),

〈f1, f2〉 =

∫ 1

0

ρ(ρkα1)(ρ
kα2) dρ

∫
S

Φ2(p) ds(p)

=

∫ 1

0

ρν−1α1(ρ)α2(ρ) dρ

∫
S

Φ2(p) ds(p).

(2.22)

Since
∫
S

Φ2(p) ds(p) �= 0, a comparison of (2.21) and (2.22) and an integration by parts
on the right-hand side of (2.21) establishes (2.20), which completes the proof.

Proof of Theorem 1.3. Let {Φj} be an orthonormal basis for the spherical har-
monics on Sn−1, and consider fi, i = 1, 2, of the form (2.10) with α = αi and Φ = Φji

of possibly different degrees. Let Fi be the even extensions of M fi as above. Then
by orthogonality, 〈f1, f2〉 = 0 unless j1 = j2, in which case

(2.23) 〈f1, f2〉 =

∫ 1

0

ρν−1α1(ρ)α2(ρ) dρ,

with ν = n+2k, where k is the degree of Φj1 . Evaluating 〈Qf1, f2〉 by (2.9) and using
that Fi = ρkiAi(ρ, r)Φji , we see that it is also zero unless j1 = j2. In this case we
have

〈Qf1, f2〉 = |Sn−1|
∫ 2

0

∫ 2

0

(rDn−2
r rn−2A1)(1, r) log |r2 − r̄2|Ã2(1, r̄) dr dr̄

= |Sn−1|
∫ 2

0

∫ 2

0

(D
n−2

2
r rn−2A1)(1, r)(D

∗
r)

n−2
2 (r log |r2 − r̄2|)Ã2(1, r̄) dr dr̄

= |Sn−1|
∫ 2

0

∫ 2

0

r(D
n−2

2
r rn−2A1)(1, r)D

n−2
2

r̄ log |r2 − r̄2|Ã2(1, r̄) dr dr̄,(2.24)

where we have abbreviated Ã2 = ∂r̄ r̄
n−1∂r̄A2 and used

(D(n−2)/2
r )∗r log |r2−r̄2| = (−1)(n−2)/2rD(n−2)/2

r log |r2−r̄2| = rD
(n−2)/2
r̄ log |r2−r̄2|.

Applying the adjoint (distributional derivative) again in (2.24) and using Â1(r) to

abbreviate r(D
n−2

2
r rn−2A1)(1, r), which depends only on r,

〈Qf1, f2〉 = |Sn−1|
∫ 2

0

∫ 2

0

Â1(r) log |r2 − r̄2|(D
n−2

2
r̄ )∗(∂r̄ r̄

n−1∂r̄A2)(1, r̄) dr dr̄

= |Sn−1|
∫ 2

0

∫ 2

0

Â1(r) log |r2 − r̄2|(−1)
n−2

2 (∂r̄D
n−2

2
r̄ r̄n−1∂r̄A2)(1, r̄) dr dr̄

= |Sn−1|(−1)n/2
∫ 2

0

∫ 2

0

Â1(r)∂r̄ log |r2 − r̄2|(D
n−2

2
r̄ r̄n−1∂r̄A2)(1, r̄) dr dr̄.

We now use the following identity, which is readily proved by induction:

D
(n−2)/2
r̄ r̄n−1∂r̄q = r̄∂r̄D

(n−2)/2
r̄ r̄n−2q
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taking q = A2, and observe that defining Hi by (2.17) with A = Ai, it then holds that

〈Qf1, f2〉 = γn

∫ 2

0

∫ 2

0

rH1(1, r)∂r̄ log |r2 − r̄2| r̄(∂r̄H2)(1, r̄) dr dr̄

for γn = |Sn−1|(−1)n/2[((n − 2)/2)!]2. By (2.18) and (2.19) the Hi satisfy the hy-
potheses of Proposition 2.3 with initial data αi, and so by (2.20) the expression on
the right-hand side is equal to

−γn

∫ 1

0

ρν−1α1(ρ)α2(ρ) dρ.

Thus we have proved that for fi of the form above

(2.25) 〈Qf1, f2〉 = (−1)(n−2)/2|Sn−1|[((n− 2)/2)!]2〈f1, f2〉.

We note that the constant on the right-hand side is cn of Theorem 1.3. By linearity and
orthogonality of spherical harmonics, this still holds when either f1 or f2 is replaced
by a finite linear combination of such functions. The set of finite linear combinations
of functions of form (2.10) is dense in L2, and so we have Qf = cnf in L2 when f is
a finite linear combination of functions of the form (2.10). Now let g be smooth with
support in the unit ball. Applying Proposition 2.2, it follows that

(2.26) 〈f,Ng〉 = (1/2)〈Qf, g〉 = (cn/2)〈f, g〉

for all f as above. Since (2.26) holds for a dense subset of functions f in L2(B), it
implies that Ng = (cn/2)g almost everywhere in B. However, Ng is easily seen to be
a continuous function, and so Ng = (cn/2)g holds pointwise in B, which is (1.9). But
if N is a multiple of the identity, then so is Q, and the proof is complete.

3. The wave equation. We begin the analysis of recovery of initial data from
the trace of the solution of the wave equation on the lateral boundary of the cylinder.
As mentioned in the introduction, we have two types of inversion results. The first,
Theorem 1.4, is really a corollary of one of the inversion formulas for circular means
from the previous section.

Proof of Theorem 1.4. Let u(x, t) be the solution of the IVP (1.1), (1.2) in
dimension two. Then by (1.11),

u(p, t) = ∂t

∫ t

0

(rM f)(p, r)√
t2 − r2

dr

for p ∈ S. We can recover the circular means from u by the standard method of
inverting an Abel-type equation. The details are not hard and may be found, for
example, in [12]. The result is

(3.1) (M f)(p, r) =
2

π

∫ r

0

u(p, t)√
r2 − t2

dt.

Inserting (3.1) into the inversion formula (1.4) for M and applying Fubini’s theorem
gives, for x ∈ D,
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f(x) =
1

2πR0
Δ

∫
S

∫ 2R0

0

(rM f)(p, r) log
∣∣r2 − |x− p|2

∣∣ dr ds(p)
=

1

R0π2
Δ

∫
S

∫ 2R0

0

r

∫ r

0

u(p, t)√
r2 − t2

log
∣∣r2 − |x− p|2

∣∣ dt dr ds(p)
=

1

R0π2
Δ

∫
S

∫ 2R0

0

u(p, t)

∫ 2R0

t

r√
r2 − t2

log
∣∣r2 − |x− p|2

∣∣ dr dt ds(p)
=

1

R0π2
Δ

∫
S

∫ 2R0

0

u(p, t)K(t, |x− p|) dt ds(p).

Since u(p, t) = (W f)(p, t), this is (1.12), with

(3.2) K(t, r̄) :=

∫ 2R0

t

r√
r2 − t2

log
∣∣r2 − r̄2

∣∣ dr.
The integral in (3.2) can be evaluated exactly. For the sake of completeness, we give

the analytic expression. If we substitute r =
√
t2 + ξ2 into (3.2), then dr = (ξ/r) dξ

and thus

K(t, r̄) =

∫ √
4R2

0−t2

0

log
∣∣ξ2 + (t2 − r̄2)

∣∣ dξ
=

√
4R2

0 − t2
(
−2 + log |4R2

0 − r̄2|
)

+ Γ(t, r̄),

where

Γ(t, r̄) =

⎧⎪⎨
⎪⎩
√
r̄2 − t2 log

√
4R2

0−t2+
√
r̄2−t2√

4R2
0−t2−

√
r̄2−t2

, t < r̄,

2
√
t2 − r̄2 arctan

√
4R2

0−t2

t2−r̄2 , t > r̄.

For the second type of inversion formula, we start by deriving a representation of
the formal adjoint P∗ for n = 2. For any continuous function G(p, t) on S × [0,∞)
that has a small amount of decay as t → ∞, by Fubini’s theorem, we have

〈P f, G〉 =

∫
S

∫ ∞

0

(P f)(p, t)G(p, t) dt ds(p)

=
1

2π

∫
S

∫ ∞

0

G(p, t)

(∫ t

0

r√
t2 − r2

∫
S1

f(p + rω) ds(ω) dr

)
dt ds(p)

=
1

2π

∫
S

∫ ∞

0

(∫ t

0

∫
S1

f(p + rω)√
t2 − r2

r dr dS(ω)

)
G(p, t) dt ds(p)

=
1

2π

∫
S

∫ ∞

0

(∫
R2

f(y)√
t2 − |y − p|2

χ({|y − p| < t}) dy
)
G(p, t) dt ds(p)

=
1

2π

∫
R2

f(y)

(∫
S

∫ ∞

|y−p|

G(p, t)√
t2 − |y − p|2

dt ds(p)

)
dy

= 〈f, P∗ G〉,

where

(3.3)
(
P∗ G

)
(y) :=

1

2π

∫
S

∫ ∞

|y−p|

G(p, t)√
t2 − |y − p|2

dt ds(p).
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The integral in (3.3) will be absolutely convergent for continuous G, provided that G
has a small amount of decay as t → ∞, for example, if G(p, t) = O(1/tα), as t → ∞,
for some α > 0.

Next, we note a differentiation formula for the fractional integral appearing in
(1.11).

Proposition 3.1. Let h be differentiable on [0,∞). Then, for t > 0,

(3.4) ∂t

∫ t

0

r h(r)√
t2 − r2

dr =
1

t

∫ t

0

r (∂rrh)(r)√
t2 − r2

dr.

Proof. Making the change of variable r = tξ in the integral on the left-hand side
we have to evaluate

∂t

∫ 1

0

ξ√
1 − ξ2

th(tξ) dξ.

Here differentiation under the integral yields
∫ 1

0
ξ√

1−ξ2
(tξh′(tξ) + h(tξ)) dξ, which is

equal to the expression on the right-hand side after changing back to integration with
respect to r = tξ.

Proof of (1.13) in Theorem 1.5 for n = 2. We compute (P∗ t∂2
t P f)(x) for smooth

f supported in B and x ∈ B. The function t∂2
t P f has decay of order 1/t2 as t → ∞

and so lies in the domain of P∗. Using the definitions of P and P∗ and relation (3.4),

(P∗ t∂2
t P f)(x)

=
1

2π

∫
S

∫ ∞

|x−p|
∂2
t

(∫ t

0

r (M f)(p, r)√
t2 − r2

dr

)
t dt ds(p)√
t2 − |x− p|2

=
1

2π

∫
S

∫ ∞

|x−p|
∂t

(
1

t

∫ t

0

r (∂rrM f)(p, r)√
t2 − r2

dr

)
t dt ds(p)√
t2 − |x− p|2

.

Carrying out the differentiation in t using the chain rule, again using (3.4), and
combining terms, the last integral can be rewritten as

1

2π

∫
S

∫ ∞

|x−p|

(∫ r

0

r (∂rr∂rrM f)(p, r) − r (∂rrM f)(p, r)

t
√
t2 − |x− p|2

√
t2 − r2

dr

)
dt ds(p).

Using the identity

∂rr∂rrh− ∂rrh = ∂rr(∂rrh− h) = ∂rrr∂rh = ∂rr
2∂rh

and applying Fubini’s theorem (P∗ t∂2
t P f)(x) is in turn equal to

1

2π

∫
S

∫ ∞

0

r (∂rr
2∂r M f)(p, r)

(∫ ∞

max(|x−p|,r)

dt

t
√
t2 − |x− p|2

√
t2 − r2

)
dr ds(p).

The inner integral evaluates to

1

2r|x− p| log
r + |x− p|
|r − |x− p|| ,

giving

(3.5) (P∗ t∂2
t P f)(x) =

1

4π

∫
S

(∫ ∞

0

(∂rr
2∂r M f)(p, r) log

r + |x− p|
|r − |x− p|| dr

)
ds(p)

|x− p| .
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Treating the inner integral in the principal value sense and integrating by parts, it is
equal to the limit as ε → 0 of boundary terms

[
(r2∂r M f)(p, r) log

r + |x− p|
|x− p| − r

]|x−p|−ε

0

+

[
(r2∂r M f)(p, r) log

r + |x− p|
r − |x− p|

]∞
|x−y|+ε

plus the term

Iε := −
∫
R+\[|x−p|−ε,|x−p|+ε]

(r∂r M f)(p, r) r∂r log
r + |x− y|
|r − |x− p|| dr.

Using that M f is smooth, flat at r = 0, and of bounded support in (0,∞), the limit
of the boundary terms is zero. Using the identity

r∂r log
r + |x− p|
|r − |x− p|| = −|x− p|∂r log |r2 − |x− p|2|,

followed by another integration by parts, yields the sum of another pair of boundary
terms and

Iε = −|x− p|
∫
R+\[|x−p|−ε,|x−p|+ε]

(∂rr∂r M f) (p, r) log
∣∣r2 − |x− p|2

∣∣ dr.
The boundary terms again evaluate to zero as ε → 0, while the integral Iε converges
to

−|x− p|
∫ ∞

0

(∂rr∂r M f) (p, r) log
∣∣r2 − |x− p|2

∣∣ dr.
Inserting this into (3.5) and taking into account the support of M f gives

(P∗ t∂2
t P f)(x) = − 1

4π

∫
S

∫ 2R0

0

(∂rr∂r M f) (p, r) log
∣∣r2 − |x− p|2

∣∣ dr ds(p).
In view of (1.5) of Theorem 1.1, (1.13) in Theorem 1.5 is proved for n = 2.

Proof of Theorem 1.6. Formula (1.15), for n = 2, is an easy corollary of the result
just established. Indeed, for f, g smooth with compact support in the closed disk of
radius R0, then

(3.6) 〈f, g〉 = − 2

R0

〈
P∗ t∂2

t P f, g
〉

= − 2

R0

〈
t∂2

t P f, P g
〉
,

which is (1.15) for n = 2, due to the definition of the operator P.
In (1.15), the left-hand side is symmetric in f and g, while the right-hand side

is not. Thus there is a companion identity, reversing the roles of u and v on the
right-hand side. Taking the difference gives the equation

0 =

∫
S

∫ ∞

0

t(uttv − uvtt) dt ds(p).

Integrating by parts (the boundary terms vanish) yields

0 =

∫
S

∫ ∞

0

(utv − uvt) dt ds(p),
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and another integration by parts proves

0 =

∫
S

∫ ∞

0

utv dt ds(p) =

∫
S

∫ ∞

0

uvt dt ds(p).

Using this and one integration by parts in (1.15) establishes (1.16), which completes
the proof of Theorem 1.6 for n = 2. The extension to higher (even) dimensions follows
almost word for word the proof from [5, section 4.2], where the trace identities in odd
dimensions greater than three were proved from the three dimensional case.

Proof of Theorem 1.5 for n > 2. Reversing the chain of reasoning in (3.6) proves
(1.13) in the L2 sense from (1.15). Similarly, (1.14) follows from (1.16). However, as
both sides are continuous functions when f is smooth, the formulas hold pointwise as
well.

4. Numerical results. In the previous sections, we have established several ex-
act inversion formulas to recover a function f supported in a closed disc D from either
its spherical means M f or the trace W f of the solution of the wave equation with
initial data (f, 0). However, those formulas require continuous data, whereas in prac-
tical applications only a discrete data set is available. For example, in thermoacoustic
tomography (see Figure 1.1) only a finite number of positions of the line detectors
and a finite number of samples in time are feasible. In this section we derive discrete
filtered back-projection (FBP) algorithms with linear interpolation in dimension two
and present some numerical results.

The derived FBP algorithms are numerical implementations of discretized versions
of (1.4)–(1.7) and (1.12)–(1.14), and the derivation of any of them follows the same
line. We shall focus on the implementation of (1.5), assuming uniformly sampled
discrete data

(4.1) F k,m := (M f)(pk, rm), (k,m) ∈ {0, . . . , Nϕ} × {0, . . . , Nr} ,

where pk := R0 (cos(khϕ), sin(khϕ)), rm := mhr, hϕ := 2π/(Nϕ + 1), and hr :=
2R0/Nr. In order to motivate the derivation of a discrete FBP algorithm based on
(1.5), we introduce the differential operator D := ∂rr∂r and the integral operator

I : C∞
0 (S × [0, 2R0)) → C∞(S × [0, 2R0)),

(I G)(p, r̄) :=

∫ 2R0

0

G(p, r) log |r2 − r̄2| dr,
(4.2)

which both act in the second component, and the so-called back-projection operator

B : C∞(S × [0, 2R0)) → C∞(D),

(BG)(x) :=
1

2πR0

∫
S

G(p, |x− p|) ds(p)

=
1

2π

∫ 2π

0

G(p(ϕ), |x− p(ϕ)|) dϕ,

(4.3)

where p(ϕ) := R0(cosϕ, sinϕ). Therefore, we can rewrite (1.5) as

(4.4) f = (B I D)(M f).

In the numerical implementation the operators B, I, and D in (4.4) are replaced
by finite dimensional approximations B, I, and D (as described below) and (4.4) is
approximated by

(4.5) f(xi) ≈ f i := (BIDF)i, i ∈ {0, . . . , N}2
.
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Here F := (F k,m)k,m with F k,m defined by (4.1), xi := −(R0, R0) + ihx with
i = (i1, i2) ∈ {0, N}2, and hx := 2R0/N . In the following Sϕ,r and Sx denote
the sampling operators that map G ∈ C∞(S × [0, 2R0]) and f ∈ C∞(D) onto their
samples, Sϕ,r G := (G(pk, rm))k,m and Sx f := f := (f(xi))i, where we set f(xi) := 0
if xi /∈ D. Moreover, | · |∞ denotes the maximum norm on either R(Nϕ+1)×(Nr+1) or
R(N+1)×(N+1).

1. The operator D can be written as ∂r + r∂2
r . We approximate ∂rG with

symmetric finite differences
(
Gk,m+1 − Gk,m−1

)
/(2hr), ∂2

rG by
(
Gk,m+1 +

Gk,m−1 − 2Gk,m
)
/h2

r and the multiplication operator G → rG by pointwise
discrete multiplication (Gk,m)k,m → (rmGk,m)k,m. This leads to the discrete
approximation

D : R(Nϕ+1)×(Nr+1) → R(Nϕ+1)×(Nr+1) : G →
(
(DG)k,m

)
k,m

,

(DG)k,m :=
1

hr

((
m +

1

2

)
Gk,m+1 +

(
m− 1

2

)
Gk,m−1 − 2mGk,m

)
,

(4.6)

where we set Gk,−1 := Gk,Nr+1 := 0. The approximation of ∂r with symmet-
ric finite differences is of second order, and therefore |(Sϕ,r D−DSϕ,r)G|∞ ≤
C1h

2
r for some constant C1, which does not depend on hr.

2. Next, we define a second order approximation to the integral operator I. This
is done by replacing G(pk, ·) in (4.2) by the piecewise linear spline T k[G] :
[0, 2R0] → R interpolating G at the nodes rm. More precisely,

I : R(Nϕ+1)×(Nr+1) → R(Nϕ+1)×(Nr+1) : G →
(
(IG)k,m

)
k,m

is defined by

(4.7) T k[G](r) := Gk,m +
r − rm

hr
(Gk,m+1 −Gk,m), r ∈ [rm, rm+1],

and

(IG)k,m :=

∫ 2R0

0

T k[G](r) log |r2 − (rm)2| dr

=

Nr−1∑
m′=0

Gk,m′

(∫ rm
′+1

rm′
log |r2 − (rm)2| dr

)

+

Nr−1∑
m′=0

Gk,m′+1 −Gk,m′

hr

(∫ rm
′+1

rm′
(r − rm

′
) log |r2 − (rm)2| dr

)
.

(4.8)

For an efficient and accurate numerical implementation it is crucial that the
integrals in (4.8) are evaluated analytically. In fact, by straightforward com-
putation it can be verified that

(IG)k,m =

Nr−1∑
m′=0

amm′Gk,m′
+

1

hr

Nr−1∑
m′=0

bmm′

(
Gk,m′+1 −Gk,m′

)
,

amm′ :=
[
(r − rm) log |r − rm| + (r + rm) log |r + rm| − 2r

]rm′+1

r=rm′ ,

bmm′ := −rm
′
amm′ +

1

2

[
(r2 − (rm)2) log |r2 − (rm)2| − r2

]rm′+1

r=rm′ .

(4.9)
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Moreover, using the fact that piecewise linear interpolation is of second or-
der [15] and that r → log |r2 − (rm)2| is integrable, it can be readily verified
that the approximation error satisfies |(Sϕ,r I−I Sϕ,r)G|∞ ≤ C2h

2
r with some

constant C2 independent of hr.
3. Finally, we define a second order approximation to the back-projection (4.3).

The discrete back-projection operator B : R(Nϕ+1)×(Nr+1) → R(N+1)×(N+1)

is obtained by approximating (4.3) with the trapezoidal rule and piecewise
linear interpolation (4.7) in the second variable,

(4.10) (BG)i :=
1

Nϕ + 1

Nϕ∑
k=0

T k[G](|xi − pk|), xi ∈ D,

and setting (BG)i := 0 for xi /∈ D. It is well known [15] that both linear in-
terpolation in r and the trapezoidal rule in ϕ are second order approximations
and therefore |(Sx B −BSϕ,r)G|∞ ≤ C3 max

{
h2
r, h

2
ϕ

}
for some constant C3.

The discrete FBP algorithm is given by (4.5) with D, I, B defined in (4.6), (4.9),
(4.10) and is summarized in Algorithm 1. Using f(xi) = (Sx B I D F )i = (Sx f)i and
f i = (BIDSϕ,r F )i, the discretization error |f(xi) − f i| can be estimated as

|(Sx B I D − BIDSϕ,r)F |∞ ≤ |(Sx B − BSϕ,r)(I D F )|∞
+ |B(Sϕ,r I − I Sϕ,r)(D F )|∞
+ |BI(Sϕ,r D − DSϕ,r)(F )|∞.

(4.11)

Using the facts that B and I are bounded by some constant independent of hr and
that the approximations of D, I, B with D, I, B are of second order implies that

(4.12) |Sx f − BIDF|∞ ≤ C max
{
h2
r, h

2
ϕ

}
for some constant C independent of hr, hϕ. This shows that the derived FBP algo-
rithm has second order accuracy (for exact data).

In the numerical implementation, the coefficients in (4.9) are precomputed and
stored. Therefore the numerical effort of evaluating (4.9) is O(N2

rNϕ). Moreover, (4.6)
requires O(NrNϕ) operations and the discrete FBP O(N2Nϕ), since for all (N + 1)2

reconstruction points xi we have to sum over Nϕ + 1 center locations on S. Hence,
assuming N ∼ Nr and N ∼ Nϕ, Algorithm 1 requires O(N3) operations and therefore
has the same numerical effort as the classical FBP algorithm used in x-ray CT [12].
Analogous to the procedure described above, discrete FBP algorithms were derived
using (1.4), (1.6) for inverting M and (1.12) for inverting W.

In the following we present numerical results of our FBP algorithms for reconstruc-
tion of the phantom shown in the left picture in Figure 4.1, consisting of a superposi-
tion of characteristic functions and one Gaussian kernel. We calculated the data M f
via numerical integration and the operator W f = ∂t P f using (1.11). Subsequently
we added 5% uniformly distributed noise to M f and 10% uniformly distributed noise
to W f . The results for N = Nϕ = Nr = 300 using the algorithms based on (1.4),
(1.5), (1.6), and (1.12) are depicted in Figures 4.2, 4.3, and 4.4. All implementations
show good results, although no explicit regularization strategy is incorporated in order
to regularize the involved (mildly) ill-posed numerical differentiation. In particular,
(1.6) and (1.12) appear to be most insensitive to noise. However, for noisy data, the
accuracy of FBP algorithms can be further improved by incorporating a regularizing
strategy similar to that used in [8]. The derived identities in this article provide the
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Algorithm 1 Discrete FBP algorithm with linear interpolation for re-

construction of f using data F.

1: hϕ ← 2π/(Nϕ + 1)
2: hr ← 2R0/Nr � initialization
3: for m,m′ = 0, . . . , Nr do � precompute kernel
4: Calculate amm′, bmm′ according to (4.8)

5: end for
6:

7: for k = 0, . . . , Nϕ do � filtering
8: for m = 0, . . . , Nr do
9: F k,m ←

(
m + 1/2

)
F k,m+1 +

(
m− 1/2

)
F k,m−1 − 2mF k,m � (4.6)

10: end for
11: for m = 0, . . . , Nr do

12: F k,m ←
∑Nr−1

m′=0 a
m
m′F k,m′

+
∑Nr−1

m′=0 b
m
m′

(
F k,m′+1 − F k,m′

)
/hr � (4.9)

13: end for
14: end for
15:

16: for i1, i2 = 0, . . . , N do � BP with linear interpolation
17: i ← (i1, i2)
18: f i ← 0
19: for k = 0, . . . , Nϕ do
20: Find m ∈ {0, . . . , Nr − 1} with rm ≤ |pk − xi| < rm+1

21: T ← F k,m + (r − rm)(F k,m+1 − F k,m)/hr � interpolation (4.7)
22: f i ← f i + T/(Nϕ + 1) � discrete back-projection (4.10)
23: end for
24: end for
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Fig. 4.1. Imaging phantom and data. Left: Imaging phantom f consisting of several charac-
teristic functions and one Gaussian kernel. Right: Simulated data F = M f .

mathematical foundation for further development of FBP algorithms for the inversion
from spherical means and the inversion of the wave equation.
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Fig. 4.2. Numerical reconstruction with Algorithm 1. Top: Reconstructions from simulated
data. Bottom: Reconstructions from simulated data after adding 5% uniformly distributed noise.
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Fig. 4.3. Numerical reconstruction from spherical means with 5% noise added. Top: Recon-
struction using (1.4). Bottom: Reconstruction using (1.6).
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Fig. 4.4. Numerical reconstruction using (1.12) from trace W f of the solution of the wave
equation with 10% noise added.
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A HYBRID LAGRANGIAN MODEL BASED ON THE AW–RASCLE
TRAFFIC FLOW MODEL∗

S. MOUTARI† AND M. RASCLE†

Abstract. In this paper, we propose a simple fully discrete hybrid model for vehicular traffic
flow, for which both the macroscopic and the microscopic models are based on a Lagrangian dis-
cretization of the Aw–Rascle (AR) model [A. Aw and M. Rascle, SIAM J. Appl. Math., 60 (2000),
pp. 916–938]. This hybridization makes use of the relation between the AR macroscopic model and
a follow-the-leader-type model [D. C. Gazis, R. Herman, and R. W. Rothery, Oper. Res., 9 (1961),
pp. 545–567; R. Herman and I. Prigogine, Kinetic Theory of Vehicular Traffic, American Elsevier,
New York, 1971], established in [A. Aw, A. Klar, M. Materne, and M. Rascle, SIAM J. Appl. Math.,
63 (2002), pp. 259–278]. Moreover, in the hybrid model, the total variation in space of the velocity
v is nonincreasing, the total variation in space of the specific volume τ is bounded, and the total
variations in time of v and τ are bounded. Finally, we present some numerical simulations which
confirm that the models’ synchronization processes do not affect the waves propagation.

Key words. traffic flow, hybrid model, Lagrangian discretization, macroscopic model, micro-
scopic model, total variation
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1. Introduction. Most of the vehicular traffic models are either macroscopic
[3, 12, 18, 25, 30, 33, 34, 36, 37] or microscopic [15, 22]. When following a macroscopic
approach, one focuses on global parameters such as traffic density or traffic flow. In
general, from a macroscopic perspective vehicular traffic is viewed as a compressible
fluid flow, whereas a microscopic approach describes the behavior of each individual
vehicle. Macroscopic models allow one to simulate traffic on large networks but with
a poor description of the details. On the other hand, microscopic models can cover
such details, but they are intractable on a large network.

However, a typical road transport system or a road network includes obstacles, dif-
ferent road geometries and configurations (intersections, roundabouts, multiple lanes,
etc.), as well as control features, such as traffic lights and crossings, which have a
nonnegligible impact on traffic in the whole network. Therefore, neither of the two
approaches is separately able to capture real traffic dynamics. A natural strategy is
therefore to combine macroscopic and microscopic models, depending on the number
of details that we need. This hybrid approach has recently received a considerable
interest in traffic modeling [1, 6, 8, 19, 21, 27, 31]. Indeed, such models enable one to
take into account the most important details of the traffic but still allow for descrip-
tions of the traffic on a large network. However, they require strong consistency and
compatibility between macroscopic and microscopic models to be coupled [20, 31].

Here, our macroscopic description is based on the Aw–Rascle (AR) model [3],
whereas the microscopic model is a follow-the-leader (FLM)-type model [15, 22].
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In [2], Aw et al. established a connection between the two classes of models. More
precisely, the macroscopic model can be viewed as the limit of the time discretization
of a microscopic FLM-type model when the number of vehicles increases. This can be
done via a (hyperbolic) scaling in space and time (zoom) for which the density and
the velocity are invariant.

Our aim in the current work is to propose a simple and fully discrete hybrid
model for which both the macroscopic and the microscopic parts are based on the
Lagrangian discretization of the AR second order model of traffic flow.

The outline of this paper is as follows: Sections 2 and 3 provide, respectively,
some details on the discretizations of the macroscopic and the microscopic models.
Section 4 describes the relations between the two models. Section 5 is devoted to
the presentation of the hybrid model. In section 6, we establish estimates on the
total variation both in space and time for the velocity v and the specific volume τ
in Lagrangian coordinates. These estimates are of course the main ingredient for
studying the convergence of our hybrid scheme to a suitable initial boundary value
problem, which we will investigate in a forthcoming work. Finally, in section 7, some
numerical simulations of the hybrid model confirm that this micro-macro description
allows for a very nice description in both regimes.

2. The AR macroscopic model. We are concerned with the AR macroscopic
model of traffic flow. It consists of the conservative form (in Eulerian coordinates) of
the two following equations:

(2.1)

{
∂tρ + ∂x(ρv) = 0,

∂t(ρw) + ∂x(ρvw) = 0,

where ρ denotes the fraction of space occupied by cars (a dimensionless local density),
v is the macroscopic velocity of cars, and, for instance, w = v + p(ρ). Many other
choices could be considered as well. In what follows, we will assume for concreteness
that

(2.2) p(ρ) =

⎧⎨
⎩

vref

γ

(
ρ
ρm

)γ

, γ > 0,

−vref ln
(

ρ
ρm

)
, γ = 0,

with vref a given reference velocity and ρm := ρmax = 1 the maximal density.
Let τ = 1/ρ be the specific volume and denote by (X,T ) the Lagrangian “mass”

coordinates. We have

∂xX = ρ, ∂tX = −ρv, T = t.

We recall that ρ is dimensionless; thus X =
∫ x

ρ(y, t)dy describes the total length
occupied by cars up to the point x if they were packed “nose to tail.”

The system (2.1) can be rewritten in Lagrangian “mass” coordinates (X,T ) as

(2.3)

{
∂T τ − ∂Xv = 0,

∂Tw = 0,

now with w = v + P (τ) := v + p
(

1
τ

)
(we set τm := τmin := 1

ρm
:= 1

ρmax
= 1).

Away from the vacuum, the system (2.3) is strictly hyperbolic and is equivalent
to the system (2.1). Its eigenvalues are

λ1 = P ′(τ) < 0 and λ2 = 0.
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ρv

ρρmax

v = v+

w = v + p(ρ)
U−
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1-wave (1-rarefaction) 2-wave

�

�

�

Fig. 2.1. Riemann problem in (ρ, ρv) and (x, t) planes.

Moreover, λ1 is genuinely nonlinear and λ2 is linearly degenerate. The Riemann
invariants associated with the two eigenvalues λ1 and λ2 are v and w, respectively.

2.1. The Riemann solver. Let us consider the following Riemann problem:

(2.4)

{
∂tτ − ∂Xv = 0,

∂tw = 0,

with the initial data

(2.5)

{
U+(X, 0) = (τ+, w+) if X > 0,

U−(X, 0) = (τ−, w−) if X < 0.

The natural solution U(X, t) to the Riemann problem (2.4)–(2.5) involves two waves:
a rarefaction or a shock wave associated with the first characteristic field λ1 followed
by a contact discontinuity associated with the second one λ2.

Proposition 2.1. The solution of the Riemann problem (2.4)–(2.5) is con-
structed as follows. First, we connect U− with an intermediate state U∗ = (τ∗, w∗)
(such that v∗ = w∗ − P (τ∗) = v+ and w∗ = w−) by a 1-shock wave (if v+ < v−)
or a 1-rarefaction (if v+ > v−). Then, U∗ is connected with U+ by a 2-contact
discontinuity (see Figure 2.1).

Through each wave, the specific volume τ and the velocity v are monotonous
functions of X/t. Therefore, away from the vacuum, the solution U(X, t) remains in
the bounded invariant region R defined in (2.6), i.e.,

U(X, t) = (τ, w), where τ = P−1(w − v)

and

(2.6) (v, w) ∈ R = {[vmin, vmax] × [wmin, wmax]} ∩ {w ≥ v},

where vmin, wmin ≥ 0 and vmax, wmax < +∞ (see Figure 2.2).

In the (w, v) coordinates (see Figure 2.2) we have

(2.7) U± = (w±, v±) and U∗ = (w−, v+).
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v = w (ρ = 0)

0

Fig. 2.2. Riemann problem. The above triangle (0, A,wmax) is an invariant region in the
(w, v) plane.

2.2. Lagrangian discretization of the AR macroscopic model. Many ap-
proximate methods for (2.3) are based on solutions to the Riemann problem. Here,
we are particularly interested in the Godunov scheme. In order to define the Godunov
scheme associated with the above Riemann solver, we introduce grid points in space
Xj := jΔX, j ∈ Z, and in time tn = nΔt, n ∈ N. Let h := (ΔX,Δt) tend to (0, 0),
with r := Δt

ΔX = constant, and assume that for all (ΔX,Δt) the CFL condition is
satisfied:

(2.8) r sup
U∈R

(
max
i=1,2

{|λi(U)|}
)

≤ 1,

where R is the invariant region defined in (2.6), containing the initial data U(x) for
all x ∈ R. Moreover, we assume that R does not touch the vacuum, i.e.,

inf{w − v, (v, w) ∈ R} > 0.

Then, the Lagrangian Godunov discretization of the AR macroscopic model (2.3)
(see [2] for more details) is given by

(2.9)

{
τn+1
j = τnj + Δt

ΔX

(
vnj+1 − vnj

)
,

wn+1
j = wn

j ,

with initial data

(2.10)

{
τj(0) = τ0

j ≥ 1
ρm

= τm = 1,

0 ≤ vj(0) = v0
j ≤ wj − P (τm).

Proposition 2.2. Starting with arbitrary initial data for the Godunov scheme

Uh(X, 0) = (τ0
h , w

0
h),

with (v0
h = w0

h − P (τ0
h), w0

h) ∈ R (defined in (2.6)), the solutions

Uh(X, tn) = (τnh , w
n
h)

constructed by the Godunov scheme satisfy

(vnh = wn
h − P (τnh ), wn

h) ∈ R.
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Therefore, the region R is also invariant for the Godunov scheme.
Proof. In each cell Ij = [Xj−1/2, Xj+1/2], the variable w is constant, whereas the

velocity and the specific volume τ are monotonous, by Proposition 2.1. Therefore, in
each cell, U(X, t) = (τ, w)(X, t) remains in the same bounded region R, which is thus
invariant for the Godunov scheme.

We are going to use the following results; see [4, Theorem 3.1] and [2, Theorem 1].
Proposition 2.3 (see [4]). Assume that the sequence v0

h is in BV (R); that is,
the total variation in space is bounded: there exists a constant C0 < +∞ such that

TVX(v0
h; R) =

∑
j∈Z

∣∣v0
j+1 − v0

j

∣∣ ≤ C0.

Let

(2.11) ṽh(X, t) := vnj + (t− tn)(vn+1
j − vnj )/Δt

be the linear interpolation in time of vh on Ij between tn and tn+1 and similarly for τ̃h.
Then, for all n ∈ N, for all h = (ΔX,Δt), we have the following:
(i) The total variation in X of vh(., t) is nonincreasing in time, and the total

variation in t of ṽh(., .) is bounded on R × [0, T ]:

sup
t≥0

TVX(vh(., t) = sup
n∈N

TVX(vnh ; R)

= sup
n∈N

∑
j∈Z

∣∣vnj+1 − vnj
∣∣ ≤ TVX(v0

h,R) ≤ C0,
(2.12)

TVt(ṽh(., .); R × [t, t′]) ≤ C max(|t′ − t| ,Δt)C0.(2.13)

(ii) The total variation in X of τh(., t) on ∪j∈Z Ij and the total variation in t of
τ̃h(., .) on R× [0,∞] are bounded uniformly in h; i.e., there exists a constant
C ′ independent of h such that

sup
h

sup
t≥0

∑
j∈Z

TVX(τh(., t); Ij) ≤ C ′C0,(2.14a)

∀t ∈ [0, t′], sup
h

TVt(τ̃h(., .); R × [t, t′]) ≤ C ′ max(|t′ − t| ,Δt)C0.(2.14b)

We recall that Ij is the open interval
(
Xj−1/2, Xj+1/2

)
. Moreover, if we

assume that wh and τh are initially in BV (R), then (2.14a) can be replaced
by the stronger result

(2.15) sup
h

sup
t≥0

TVX(τh(., t); R) ≤ C ′C0.

3. The microscopic (FLM) model. The microscopic model that we consider
is an FLM-type model [15, 22]. In such a model, the basic idea is that the acceleration
at time t depends on the relative speeds of the vehicle and its leading vehicle at time
t as well as the distance between the vehicles. Therefore, the dynamics of a vehicle j
is given by the two equations

(3.1)

⎧⎨
⎩

dxj

dt = vj ,
dvj
dt = P ′

(
xj+1−xj

ΔX

)(
vj+1−vj

ΔX

)
,
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where xj(t) and vj(t) are, respectively, the position and the velocity of the vehicle j
at time t, and ΔX is its length. Here, ρj := ΔX

(xj+1−xj)
is the normalized local density

(more precisely the fraction of space occupied by a vehicle) of this vehicle. Therefore,

the specific volume is τj = 1
ρj

=
(xj+1−xj)

ΔX and the maximal density ρm = ρmax =
1
τm

= 1 := 1
τmin

. In this section, contrarily to sections 5 and 6, the car (j + 1) is the

leader of car j. A prototype is the case where P (τ) = p
(

1
τ

)
=

vref

γ

(
ρ
ρm

)γ
(with vref

a given reference velocity and γ > 0 a given parameter) and wj = vj + P (τj). Then
system (3.1) writes

(3.2)

{
dτj
dt =

(vj+1−vj)
ΔX ,

dwj

dt = 0.

The explicit first order Euler time discretization (with step Δt of system (3.2) is then

(3.3)

{
τn+1
j = τnj + Δt

ΔX

(
vnj+1 − vnj

)
,

wn+1
j = wn

j ,

with

vn+1
j = wn+1

j − P (τn+1
j )

and initial conditions

(3.4)

{
τj(0) = τ0

j ≥ 1
ρm

= τm = 1,

0 ≤ vj(0) = v0
j ≤ wj − P (τm).

As in the macroscopic scheme, we can define (τ̃h, ṽh) by (2.11). Since system (3.3)
is exactly the same as (2.9), τ̃h and ṽh satisfy the same BV estimates as in Proposi-
tion 2.3.

4. Link between the macroscopic and microscopic model: The scaling.
We now consider a large number of vehicles on a long stretch of road. Let us now
introduce in the AR macroscopic model (2.3) a scaling (zoom) such that the size
of the considered domain and the number of vehicles tend to infinity, whereas the
vehicle length tends to 0. Let ε be the scaling parameter. For some given Eulerian or
Lagrangian coordinates (x, t) or (X, t), we consider the rescaled coordinates

(x′, t′) = (εx, εt); (X ′, t′) = (εX, εt).

Consequently, the length of a vehicle is now ΔX ′ = εΔX. The parameter ε is pro-
portional to the inverse of maximal possible number of vehicles per new unit length.
However, in the new coordinates (X ′, t′), the variable τ (resp., ρ) and the Riemann
invariant (v, w) remain unchanged, that is,

τ ′ = τ (resp., ρ′ = ρ), v′ = v, w′ = w.

Thus the system (2.3) becomes

(4.1)

{
∂τ
∂t = ∂v

∂X′ ,
∂w
∂t′ = 0.
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Using the same scaling for the microscopic model, (3.2) now writes

(4.2)

{
dτj
dt′ = 1

ΔX′ (vj+1 − vj) ,
dwj

dt′ = 0.

Both in the original and in the rescaled coordinates, the standard first order explicit
Euler discretization of the microscopic model (3.3) is equivalent to the Godunov dis-
cretization (2.9) of the macroscopic model; see (7.1), (7.2), (7.3), and (7.4).

5. Hybrid Lagrangian model. In order to construct our hybrid Lagrangian
model, we want to combine a macroscopic description away from the junctions, traffic
lights, etc. and a microscopic view near these obstacles as shown in Figure 5.1.

Thanks to the equivalence established above between the two models, we expect
to get rid of the usual compatibility problems encountered when developing a hybrid
model.

5.1. Description of the two Lagrangian models. Since the macroscopic
model is shown to be the limit of a large number of vehicles on a long stretch of road
(away from the vacuum), we may consider that a Lagrangian macroscopic (moving)
cell (or the corresponding moving Eulerian cell) contains a “long vehicle” made by
juxtaposition of several (say N) ordinary vehicles, whereas in the microscopic model, a
Lagrangian cell contains a single ordinary vehicle, as depicted in Figure 5.1. Obviously
macroscopic Lagrangian cells are much larger than microscopic ones. In Eulerian
hybrid models (see, e.g., [6, 8, 19, 21, 27, 31]), the “microscopic region” is fixed
in Eulerian coordinates. In contrast, here, this “actual microscopic region (AMR)”
(see Figure 5.1) is piecewise constant in Lagrangian coordinates. It is moving in
Eulerian coordinates and is periodically refreshed in order to always contain a fixed
Eulerian region: the “minimal microscopic region (MMR)” (see Figure 5.1) around
the junction, traffic light, etc., in which our description will always be microscopic.

5.2. Model synchronization. In this section we show in detail how to pass
from the macroscopic to the microscopic description and vice versa. Here and in the
next sections, we order the cells and the cars by calling (i − 1) the leader and i the
follower.

5.2.1. From the macroscopic to the microscopic model. When a macro-
scopic Lagrangian cell enters the MMR, we split the “long vehicle” (which is nothing
but a juxtaposition of N cars) into N different microscopic cells and uniformly dis-
tribute these cars over the length L of the macroscopic cell, as shown in Figure 5.2.
Here, all our vehicles are supposed to have the same length. In principle, we could
also cover the case of vehicles with different lengths; see Remark 5.1 below.

This splitting does not modify the specific volume τ . Indeed, in the macroscopic

Macroscopic model Macroscopic model

Actual Microscopic Region (AMR)

Minimal Microscopic Region

(MMR)

. . .. . . . . . . . .

Fig. 5.1. Hybrid Lagrangian model.
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i + 1 i (i − 1), N (i − 1), N − 1

i, 1i, N

NΔX

ΔX

Li

Li/N

Macroscopic cell

Microscopic cells

Minimal
Microscopic
Region (MMR)

. . .

. . .. . .

. . .

i, j i, j − 1

xi,j xi,j−1

Li

Fig. 5.2. From the macroscopic to the microscopic model: before (above) and after (below) the
synchronization.

cell i, we have

(5.1) τi =
Li

NΔX
= τmac.

When this cell i becomes microscopic, the distance between two successive cars (i, j)
(the follower) and (i, j − 1) (the leader) is

(5.2) (xi,j−1 − xi,j) =
Li

N
.

Therefore, the microscopic specific volume in each of these microscopic cells is now

(5.3) τi,j = τmic =
Li/N

ΔX
= τmac.

So the specific volume does not change when passing from the macroscopic to the
microscopic model. Notice that in the Godunov scheme the Lagrangian variable w
does not change in time inside a cell i: wn+1

i,j = wn
i,j . Therefore, in the microscopic

cells wi,j will be the same as in the macroscopic cell, i.e., wi,j = wi. Consequently,
the velocity also does not change:

vi,j = wi,j − P (τi,j) = wi − P (τi) = vi for all microscopic cars j in this cell i.

Remark 5.1. In the case of vehicles with different lengths, we need to keep the
order of vehicles and their respective lengths in each macroscopic cell. Since there is
no possibility of overtaking (our model is in principle a one lane model), this order
remains constant in time. Let us consider a macroscopic cell i of total length Li

and let ΔXi,j be the length of the microscopic vehicle j in this cell. When this cell
becomes microscopic, we need to distribute uniformly the cars over the length Li. In
the synchronization macro-micro, we distribute uniformly the specific volume among
all the vehicles of this cell:

(5.4) τi,j = τmic =
xi,j−1 − xi,j

ΔXi,j
= τi =

Li∑N
j=1 ΔXi,j

= τmac ∀ j = 1, . . . , N.
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i − 1

i

(i + 1), 1(i + 1), 2 i, 1i, N

NΔX

ΔX
xi,N xi,1

li,j

Macroscopic cell

Minimal
Microscopic

Region (MMR)

. . .
. . .. . .

. . .i, j i, j − 1

xi,j xi,j−1

∑
j li,j

Fig. 5.3. From the microscopic to the macroscopic model: before (above) and after (below) the
synchronization.

Therefore, we compute the distance li,j = (xi,j−1−xi,j) for all j = 2, . . . , N by solving
the following system:

(5.5)

⎧⎪⎪⎨
⎪⎪⎩

li,j
ΔXi,j

=
li,j−1

ΔXi,j−1
∀ j = 1, . . . , N,

n∑
j=1

lij = Li.

5.2.2. From the microscopic to the macroscopic model. When the last
(say the (i,N)th) vehicle has completely left the MMR, we do exactly the converse;
i.e., we aggregate the N vehicles to form a new macroscopic “vehicle.” We set li,j =
xij−1 − xi,j , with xi,j the position of vehicle (i, j) as indicated in Figure 5.3.

The macroscopic specific volume will be

(5.6) τ̄i =

∑N
j=1 li,j

NΔX
=

1

N

N∑
j=1

li,j
ΔX

=
1

N

N∑
j=1

τi,j .

The Lagrangian variable wi,j is conserved, since according to subsection 5.2.1 the N
vehicles have the same Lagrangian variable wi,j = wi. Thus, averaging in Lagrangian
coordinates, we have

(5.7)
1

N

N∑
j=1

wi,j =
1

N

N∑
j=1

wi = wi.

Therefore, the corresponding macroscopic velocity is v̄i = wi − P (τ̄i).
In this case, the macroscopic model does not inherit exactly the microscopic

parameters but only the average values for τ and w and the above corresponding
velocity. In spite of this change of parameters, we will prove in the following section
that in the hybrid model the total variation in space of v is nonincreasing, the total
variation in space of τ is bounded, and total variations in time of v and τ are bounded.

6. Estimates on the total variation in the hybrid model. In this section,
with the above synchronizations between the macroscopic and the microscopic models,
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we show that in the hybrid model the total variation in space of the velocity v is
nonincreasing, the total variation in space of the specific volume τ is bounded, and
the total variations in time of v and τ are bounded.

First, the following type of results is classical. Its proof is recalled below for the
convenience of the reader.

Lemma 6.1. Let U = (u1, u2, . . . , un) ∈ R
n and ū ∈ R such that

m = min
i

(ui) ≤ ū ≤ max
i

(ui) = M.

Then,

(6.1) ∀ α, β ∈ R, |α− ū| + |ū− β| ≤ |α− u1| +
n−1∑
i=1

|ui − ui+1| + |un − β| .

Proof.

|α− ū| + |ū− β| = |α− u1 + u1 − ū| + |ū− un + un − β|
≤ |α− u1| + |u1 − ū| + |ū− un| + |un − β| .

(6.2)

Now let us prove that |u1 − ū| + |ū− un| ≤
∑n−1

i=1 |ui − ui+1| = TV (ui)i=1,...,n.

Since the function {ū 	−→ |u1 − ū|+ |ū− un|} is convex, its maximum is attained
at an extremum point uk equal to m or M ; therefore,

|u1 − ū| + |ū− un| ≤ max (|u1 −M | + |M − un| , |u1 −m| + |m− un|)
≤ |u1 − uk| + |uk − un|
≤ |u1 − u2| + · · · + |uk−1 − uk|

+ |uk − uk+1| + · · · + |un−1 − un|

=

n−1∑
i=1

|ui − ui+1| = TV (ui)i=1,...,n.

(6.3)

Let us denote by vni (resp., τni ) and vni,j (resp., τni,j), respectively, the macroscopic
and the microscopic velocities (resp., specific volumes) at time tn. At time t = 0, the
velocities are in BV (R) in both models and therefore in the hybrid one.

According to sections 2 and 3, the results of Proposition 2.3 hold, in both the
macroscopic and the microscopic models, away from the synchronized cells. Therefore,
we focus on the synchronization process, i.e., when passing from one representation
to another.

Passing from a macroscopic cell to several microscopic cells does not change the
velocity and the specific volume and therefore does not change their total variation.

On the other hand, when we convert N microscopic cells into a macroscopic
one, the total variation of the hybrid model can change. We are going to show that
nevertheless the total variation in space of the velocity v is nonincreasing, the total
variation in space of the specific volume τ is bounded, and the total variations in time
of v and τ are bounded.

Let us denote by TVX and TV ′
X the total variation in space, respectively, before

and after this micro-macro synchronization. Since inside the synchronized cell (say

Īsync = Īi), τ̄ = 1
N

∑N
j τj , v̄ = w − P (τ̄), and P is nonincreasing, we have, by
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Lemma 6.1,

TV ′
X(τh(., tn), Īsync) =

∣∣τni−1 − τ̄ni
∣∣ +

∣∣τ̄ni − τni+1,1

∣∣
≤

∣∣τni−1 − τni,1
∣∣ +

N−1∑
j=1

∣∣τni,j − τni,j+1

∣∣ +
∣∣τni,N − τni+1,1

∣∣
= TVX(τh(., tn), Īsync),

(6.4)

and similarly

TV ′
X(vh(., tn), Īsync) =

∣∣vni−1 − v̄ni
∣∣ +

∣∣v̄ni − vni+1,1

∣∣
≤

∣∣vni−1 − vni,1
∣∣ +

N−1∑
j=1

∣∣vni,j − vni,j+1

∣∣ +
∣∣vni,N − vni+1,1

∣∣
= TVX(vh(., tn), Īsync).

(6.5)

Therefore, after any (micro-macro or conversely) synchronization process, the
total variation in space of v is nonincreasing and the total variation in space of τ is
bounded:

(6.6) TV ′
X(vh(., tn), Īsync) ≤ TVX(vh(., tn), Īsync).

We recall that in each macroscopic cell i, vh and τh are monotonous in time in
[tn, tn+1), that is,

(6.7) min(vni , v
n
i+1) ≤ vn+1

i ≤ max(vni , v
n
i+1),

and similarly for τ . Therefore, vh, τh and their linear interpolations in time ṽh, τ̃h
defined in (2.11) satisfy (2.14a) (or (2.15)) and (2.14b); see Proposition 2.3.

Moreover, as we said in sections 3 and 4, the macroscopic and microscopic models
are essentially the same. In particular, the same BV estimates hold in microscopic
cells for (ṽh, τ̃h).

According to the monotonicity property of v (see (6.7)), we have

(6.8)
∣∣vn+1

i − vni+1

∣∣ +
∣∣vni − vn+1

i

∣∣ =
∣∣vni+1 − vni

∣∣ .
Let us denote, respectively, by Mn and μn the sets of indices of macroscopic cells and
discretized macroscopic cells (i.e., split into microscopic cells) at time tn. Therefore,
Mn ∪ μn = Z.

From (6.6) and (6.8) we have

(6.9) TVX(vh(., tn),R) ≤ TVX(vh(., tn−1),R) ≤ · · · ≤ TVX(v0
h,R) = C0.

In each cell Ik, τh(X, t) = P−1(wk − vh(X, t)), with P−1 Lipschitz-continuous.
Therefore,

(6.10) TVX(τh(., tn), {∪ Ik; k ∈ Mn ∪ μn}) =
∑

k∈Mn∪μn

TVX(τh(., tn), Ik) ≤ C1C0,

where C1 :=
∥∥(P−1)′

∥∥
L∞ .

Now let us study how the total variation in time evolves in our hybrid model:

(6.11) TVt(τ̃h(., .); R × [t, t′]) ≤
∑

t−Δt≤nΔt≤t′+Δt

(An + Bn + Cn + Dn) ,
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with

An =
∑

i∈Mn∩Mn−1

∣∣τni − τn−1
i

∣∣NΔX,

Bn =
∑

i∈μn∩μn−1

N∑
j=1

∣∣τnij − τn−1
ij

∣∣ΔX,

Cn =
∑

i∈μn∩Mn−1

N∑
j=1

∣∣τnij − τn−1
i

∣∣ΔX,

Dn =
∑

i∈Mn∩μn−1

N∑
j=1

∣∣τ̄ni − τn−1
ij

∣∣ΔX.

Note that in (6.11) the summation involves all the times t = nΔt between times
t and t′.

We recall that we have, respectively, in the macroscopic model (see (2.9)) and the
microscopic model (see (3.3)) the following:

τni = τn−1
i − Δt

NΔX

(
vn−1
i+1 − vni

)
and(6.12a)

τnij = τn−1
ij − Δt

ΔX

(
vn−1
ij+1 − vnij

)
,(6.12b)

An = Δt
∑

i∈Mn∩Mn−1

∣∣vn−1
i+1 − vni

∣∣ by (6.12a)

≤ Δt
∑

i∈Mn∩Mn−1

∣∣vn−1
i+1 − vn−1

i

∣∣ due to (6.7)

≤ Δt
∑
i∈Z

∣∣vn−1
i+1 − vn−1

i

∣∣
= Δt TVX(vh(., tn−1),R) ≤ Δt TVX(v0

h,R) = ΔtC0,

Bn = Δt
∑

i∈μn∩μn−1

N∑
j=1

∣∣vn−1
ij+1 − vnij

∣∣ by (6.12b)

≤ Δt
∑

i∈μn∩μn−1

N∑
j=1

∣∣vn−1
ij+1 − vn−1

ij

∣∣ due to (6.7)

≤ Δt
∑
i∈Z

N∑
j=1

∣∣vn−1
ij+1 − vn−1

ij

∣∣
= Δt TVX(vh(., tn−1),R) ≤ Δt TVX(v0

h,R) = ΔtC0,

Cn = ΔX
∑

i∈μn∩Mn−1

N∑
j=1

∣∣τnij − τn−1
i

∣∣

≤ ΔX
∑

i∈μn∩Mn−1

N∑
j=1

(∣∣τnij − τn−1
ij

∣∣ +
∣∣τn−1

ij − τn−1
i

∣∣)
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= ΔX
∑

i∈μn∩Mn−1

N∑
j=1

∣∣τnij − τn−1
ij

∣∣ (since τn−1
ij = τn−1

i ,

according to the macro-micro synchronization process)

= Δt
∑

i∈μn∩Mn−1

N∑
j=1

∣∣vn−1
ij+1 − vnij

∣∣

≤ Δt
∑

i∈μn∩Mn−1

N∑
j=1

∣∣vn−1
ij+1 − vn−1

ij

∣∣ due to (6.7)

≤ Δt
∑
i∈Z

N∑
j=1

∣∣vn−1
ij+1 − vn−1

ij

∣∣
= Δt TVX(vh(., tn−1),R) ≤ Δt TVX(v0

h,R) = ΔtC0,

Dn = ΔX
∑

i∈Mn∩μn−1

N∑
j=1

∣∣τ̄ni − τn−1
ij

∣∣

≤ ΔX
∑

i∈Mn∩μn−1

N∑
j=1

∣∣τ̄ni − τnij
∣∣ + ΔX

∑
i∈Mn∩μn−1

N∑
j=1

∣∣τnij − τn−1
ij

∣∣
=: D1

n + D2
n,

D1
n = ΔX

∑
i∈Mn∩μn−1

N∑
j=1

∣∣τ̄ni − τnij
∣∣

≤ ΔX
∑

i∈Mn∩μn−1

N max
j

∣∣τ̄ni − τnij
∣∣

≤ NΔX
∑

i∈Mn∩μn−1

|τnir − τnis| ,

(since min
j

(τnij) = τnis ≤ τ̄ni ≤ max
j

(τnij) = τnir)

≤ NΔX TVX(τh(., tn),∪i∈Z Ii) by the same argument as in

the proof of Lemma 6.1

≤ NΔX TVX(v0
h,R)

∥∥(P−1)′
∥∥
L∞ = NΔXC1C0 due to (6.10),

D2
n = ΔX

∑
i∈Mn∩μn−1

N∑
j=1

∣∣τnij − τn−1
ij

∣∣

= Δt
∑

i∈Mn∩μn−1

N∑
j=1

∣∣vn−1
ij+1 − vnij

∣∣

≤ Δt
∑

i∈Mn∩μn−1

N∑
j=1

∣∣vn−1
ij+1 − vn−1

ij

∣∣ due to (6.7)
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≤ Δt
∑
i∈Z

N∑
j=1

∣∣vn−1
ij+1 − vn−1

ij

∣∣
= Δt TVX(vh(., tn−1),R) ≤ Δt TVX(v0

h,R) = ΔtC0.

So, Dn ≤ NΔXC1C0 + ΔtC0.
Finally, we get

(6.13) TVt(τ̃h(., .); R × [t, t′]) ≤ (|t′ − t| + 2Δt)(NΔXC1 + 4Δt)C0.

We recall that we study the limit when Δt
ΔX is constant and satisfies the CFL

condition (2.8).
In each cell, the specific volume τh is monotonous, wh is constant, and the velocity

is

vh = wh − P (τh),

where P is a monotonous Lipschitz continuous function. Therefore, there exists a
C2 < +∞ such that

(6.14) TVt(ṽh(., .); R × [t, t′]) ≤ (|t′ − t| + 2Δt)C2C0.

We summarize the above results in the following.
Theorem 6.2. Assume that the sequences (v0

h, τ
0
h), respectively, the initial data

for v and τ (and therefore for w), are in BV (R); i.e., there exist some constants
cv < +∞ and cτ < +∞ such that

TVX(v0
h; R) =

∑
i∈M0

∣∣v0
i − v0

i+1

∣∣ +
∑
i∈μ0

N∑
j=1

∣∣v0
ij − v0

ij+1

∣∣ + bv ≤ cv,(6.15)

TVX(τ0
h ; R) =

∑
i∈M0

∣∣τ0
i − τ0

i+1

∣∣ +
∑
i∈μ0

N∑
j=1

∣∣τ0
ij − τ0

ij+1

∣∣ + bτ ≤ cτ ,(6.16)

where bv and bτ are the boundary terms (for instance bv =
∑∣∣v0

k − v0
lj

∣∣ with k ∈ M0

and l = k ± 1 ∈ μ0).
Moreover, assume that the CFL condition (2.8) is satisfied and let Δt, ΔX, and

NΔX be constant with Δt
ΔX = constant. Then, the following hold:

(i) In the macroscopic region (2.9) (resp., the microscopic region (3.3)), we have
the following (see [2, 4]):
(a) the total variation in X of vh(., t) (resp., in t of ṽh(., .) and therefore of

vh(., .)) is nonincreasing in time (resp., is bounded on R × [t, t′]);
(b) the total variation in X of τh(., t) on ∪j∈Z Ij (resp., in t of τ̃h(., .) and

therefore of τh(., .), on R × [t, t′)) is bounded (resp., is bounded).
(ii) During the synchronization process, at each time tn, the total variations in X

of vh and τh do not increase and their total variations in time are controlled
from above.

(iii) Therefore, in the whole hybrid model we have the following:
(a) the total variation in X of vh(., t) (resp., in t of ṽh(., .) and therefore of

vh(., .)) is nonincreasing in time thanks to (6.9) (resp., is bounded on
R × [t, t′] thanks to (6.14));
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(b) the total variation in X of τh(., t) on ∪j∈Z Ij (resp., in t of τ̃h(., .) and
therefore of τh(., .) on R × [t, t′)) is bounded thanks to (6.10) (resp., is
bounded thanks to (6.13)).

We are now in position to establish the convergence of the discrete solution con-
structed by our hybrid scheme. Let us first recall the following.

Definition 6.3 (see [2, 4]).
(i) An L∞ function

U := (τ, w) : R × R+ −→ R
2

is called a weak entropy solution to the Lagrangian system (2.3) if it is a
weak solution (see (ii)) and if for any entropy-flux pair (η(τ, w), q(τ, w)) with
η(τ, w) convex in τ , and for any φ(X, t) ∈ C∞

0 (R × R+), φ ≥ 0, we have

(6.17)

∫ ∞

0

∫
R

(η(U)∂tφ + q(U)∂Xφ)dXdt +

∫
R

η(U0(X))φ(X, 0)dX ≥ 0.

(ii) U is called a weak solution to (2.3) if the above inequality holds (and therefore
is an equality) for the trivial entropy flux pairs (η, q) := (±τ,∓v).

Adapting the results of [4], it is easy to show that any entropy η(τ, w) is convex in
τ if and only if the associated entropy flux q ≡ q(v) is concave (in v), and that there is
an associated L1 contraction principle “à la Kružkov,” which implies the uniqueness.
Consequently, we obtain the following.

Theorem 6.4.

(i) The sequence (Uh = (τh, wh)) in the hybrid model (given by the Godunov
scheme (2.9) of the AR model and the Euler discretization (3.3) of the FLM
model) is therefore a sequence of approximate weak entropy solutions to (2.3),
associated with the initial data U0

h = (τ0
h , w

0
h).

(ii) Consequently, a subsequence (Uh)—in fact, by uniqueness, the whole sequence
—converges to the unique weak entropy solution to (2.3), with the same initial
data.

Proof. First, since ∂tτh − ∂Xvh = 0, for tn < t < tn+1, for any smooth function
φ(X, t) with compact support, we have∫ ∞

0

∫
R

(τh∂tφ− vh∂Xφ)(X, t)dXdt +

∫
R

τ0
h(X)φ(X, 0)dX

=
∑
n≥1

∑
i∈Z

[∫
Ii

τh(X, t)φ(X, t)dX

]t+n
t−n

+
∑
i

∫
Ii

τ0
h(X)φ(X, 0)dX

=
∑
n≥1

∑
i∈Mn

∫
Ii

(τh(X, t−n ) − τni )φ(X, tn)dX +
∑
n≥1

∑
i∈μn

N∑
j=1

∫
Iij

(τh(X, t−n ) − τnij)φ(X, tn)dX

+
∑

i∈Mn∪μn

∫
Ii

τ0
h(X)φ(X, 0)dX =: Ah.

Now, since the test function φ is C1 and compactly supported, using a Taylor
expansion of φ on each interval, we get

|Ah| ≤ (ΔX)2 ‖∂Xφ‖L∞

∑
n≥0

∑
i∈Mn∪μn

TVX(τh(., t); Ii)
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≤ (ΔX)2
T

Δt
‖∂Xφ‖L∞ sup

n≤ T
Δt

∑
i∈Mn∪μn

TVX(τh(., t); Ii)

≤
(

ΔX

Δt

)
ΔXT ‖∂Xφ‖L∞ sup

n≤ T
Δt

∑
i∈Mn∪μn

TVX(τh(., t); Ii)

=

(
ΔX

Δt

)2

ΔtT ‖∂Xφ‖L∞ sup
n≤ T

Δt

∑
i∈Mn∪μn

TVX(τh(., t); Ii).

Therefore, thanks to the BV estimates in Theorem 6.2, |Ah| −→ 0 as Δt −→ 0
(or ΔX −→ 0), since ΔX

Δt is constant.

We proceed similarly with the entropy production term. On the one hand, the
approximate solutions Uh are weak entropy solutions on any [tn, tn+1), and on the
other hand, by Jensen’s inequality, any convex entropy does not increase at time
tn in the Godunov averaging step as well as in the macro-micro or micro-macro
synchronization. Consequently, for any entropy η(τ, w) convex with respect to τ ,
associated with the flux q, for all φ ∈ C∞

0 (R × R+), φ ≥ 0, we have

∫ ∞

0

∫
R

(η(Uh)∂tφ + q(Uh)∂Xφ)(X, t)dXdt +

∫
R

η(Uh(X, 0))φ(X, 0)dX

≥
∑
n≥1

∑
i∈Mn

∫
Ii

(η(Uh(X, t−n )) − η(Un
i ))φ(X, tn)dX

+
∑
n≥1

∑
i∈μn

N∑
j=1

∫
Iij

(η(uh(X, t−n )) − η(un
ij))φ(X, tn)dX ≥ 0.

Naturally, the above BV estimates are the crucial ingredient for showing the
convergence of such a hybrid scheme to the unique globally defined weak entropy
solution of a class of initial boundary value problems for a road with traffic light(s)
or a road network in the spirit of [24] or [23]; see also [10]. We will investigate this in
a forthcoming work.

7. Numerical simulations. In this section, we are concerned with the numeri-
cal investigation of the hybrid model. We consider the equations given by the explicit
Euler time discretization of the microscopic model or equivalently the Godunov dis-
cretization of the macroscopic model in Lagrangian mass coordinates, which is itself
equivalent to the Godunov discretization in Eulerian coordinates, in Lagrangian (mov-
ing) cells. We set the number of vehicles in the macroscopic cell to N := 10 and the
length of a vehicle to ΔX := 5 m. In order to show how information travels through
the different parts of the hybrid model, we have fixed the MMR to a distance of 200 m
(i.e., 100 m on both sides of the obstacle), which corresponds to the grey rectangle in
Figures 7.1, 7.2, and 7.3. In order to get a better insight into the use of the hybrid
model, we consider two scenarios and in each case we compare the densities given by
the fully macroscopic model, the hybrid model, and the fully microscopic model.

The vertical line at x = 0 in Figures 7.1, 7.2, 7.3, and 7.5 is thickened to emphasize
the state of the traffic light.

7.1. Case 1: The same time step in the whole hybrid scheme. This case
corresponds exactly to the assumptions of the theoretical analysis of sections 5 and 6.
We consider the same time step for the macroscopic and microscopic parts of the
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Fig. 7.1. Case 1. The same time step in the microscopic and macroscopic regime: free flow
traffic.

hybrid model. Therefore, at time tn+1, we have

(7.1)

{
τn+1
ij = τnij + Δt

ΔX

(
vnij−1 − vnij

)
,

wn+1
ij = wn

ij

in the microscopic part and

(7.2)

{
τn+1
i = τni + Δt

NΔX

(
vni−1 − vnij

)
,

wn+1
i = wn

i

in the macroscopic part.
The time step Δt is chosen such that the CFL condition (2.8) is satisfied in both

models. Obviously, the more drastic condition is the microscopic one, and thus we
also expect too much numerical diffusion in the macroscopic part. For the simulations
below the time step Δt is such that the Courant number is equal to 1 in the microscopic
part.

The position of the vehicles is computed as follows:

xn+1
ij = xn

ij + Δtvnij , with vnij = wn
ij − P (τnij),(7.3)

xn+1
i = xn

i + Δtvni , with vni = wn
i − P (τni ).(7.4)
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Fig. 7.2. Case 1. The same time step in the microscopic and macroscopic regime: first a shock
wave and then a rarefaction fan, both produced in the microscopic region, propagating backward in
the macroscopic region.

First, we simulate the hybrid model in a free flow situation. Trajectories of the
“vehicles” in space and time for this case are plotted in Figure 7.1. In Figure 7.2, we
plotted the “vehicles” trajectories when a “shock wave” appears at t = 5 s, followed
by a “rarefaction fan” at t = 40 s in the minimal microscopic region (e.g., at a traffic
light). Finally, Figure 7.3 shows the vehicles trajectories when a shock wave appears at
t = 40 s followed by a rarefaction fan at t = 70 s, both downstream in the macroscopic
regime (typically an incident on a highway). These “shocks” or “rarefaction waves”
are produced numerically by forcing the leading vehicle to brake or accelerate. The
simulations of these three situations show that the model synchronization does not
perturb the wave propagation and allows for a nice description in each regime. In
Figure 7.4, for the same situation (first a shock wave and then a rarefaction fan,
both downstream of the minimal microscopic region), we plot the density for the fully
macroscopic model, the hybrid model, and the fully microscopic model, respectively.
The fully microscopic model gives a more precise description (but would be intractable
for a large road network). In contrast, the description given by the macroscopic model
is rather coarse to describe precisely the details in the minimal microscopic region. We
also note that the shock is completely smoothed out by the numerical diffusion since
the macroscopic CFL condition is 1

10 . Finally, the hybrid scheme gives an intermediate
description, which is precise only in the region in which the details are important, in
particular, here in the MMR [−100 m; +100 m].

7.2. Case 2: Different time steps in the hybrid scheme. This case is not
exactly covered by the assumptions of sections 5 and 6, even though the same ideas
could in principle be extended to this situation. We consider different time steps in
the two parts (microscopic part and macroscopic part) of the hybrid scheme, in order
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Fig. 7.3. Case 1. The same time step in the microscopic and macroscopic regime: first a shock
wave and then a rarefaction fan, both produced in the macroscopic region, propagating backward in
the microscopic region.

to have a Courant number (CFL condition) smaller than 1, but as large as possible in
each region. Let Δtmic and Δtmac be, respectively, the time step in the microscopic
part and the macroscopic part. In the microscopic region the updating takes place at
each microscopic time tn+1 = tn + Δtmic, i.e.,

(7.5)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
τn+1
ij = τnij + Δtmic

ΔX

(
vnij−1 − vnij

)
,

wn+1
ij = wn

ij ,

xn+1
ij = xn

ij + Δtmicv
n
ij ,

vn+1
ij = wn+1

ij − P (τn+1
ij ),

with Δtmic chosen in such a way that the CFL condition (2.8) is satisfied in the
microscopic model.

In contrast, in the macroscopic region, the updating takes place at each macro-
scopic time t̄n+1 = t̄n + Δtmac, i.e.,

(7.6)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
τn+1
i = τni + Δtmac

NΔX

(
vni−1 − vni

)
,

wn+1
i = wn

i ,

xn+1
i = xn

i + Δtmacv
n
i ,

vn+1
i = wn+1

i − P (τn+1
i ),

with Δtmac chosen such that the CFL condition (2.8) is satisfied in the macroscopic
model. Moreover, Δtmac = kΔtmic, with 1 < k ≤ N and in general k = N .

One of the severe test cases is to handle the propagation of a strong shock, pro-
duced, e.g., at a (red) traffic light. In order to better track the propagation of this
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Fig. 7.4. Case 1. The same time step in the microscopic and macroscopic regime: first
a shock wave and then a rarefaction fan, both downstream from the minimal microscopic region
( [−100 m, 100 m]): (a) the density in the macroscopic model, (b) the density in the hybrid model,
(c) the density in the microscopic model.
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Fig. 7.5. Case 2. Different time steps in the microscopic and macroscopic regime: a shock
wave produced in the macroscopic region, propagating backward in the microscopic region.

strong shock, we could use a front tracking method, which is a completely different
numerical strategy. Here, we have used the following numerical procedure: At the
macroscopic-microscopic interface, we include the following procedure to treat the
case of a strong shock, as it happens at a traffic light. As soon as the last microscopic
vehicle of a microscopic cell (i−1) stops, the macroscopic cell i just behind this vehicle
is tracked at each microscopic time step, until the time at which the “macroscopic
vehicle” in cell i gets nose to tail with the microscopic vehicle ahead. Let ts be this
time. If ts does not correspond to a macroscopic time, then we shift the macroscopic
time step, not only for the macroscopic cell i but, exceptionally, for all the macro-
scopic cells behind cell i, which are updated at this time ts using (once) the time step
Δ̃tmac = (ts − t̄n), where t̄n is the last macroscopic time before ts. Thereafter, the
time ts becomes the beginning of the macroscopic time step for the cells behind cell
i. We also recall that t̄n ≤ ts ≤ t̄n + Δtmac = t̄n+1.

For the numerical simulations plotted in Figures 7.5 and 7.6, we consider the CFL
condition (2.8) with equality in both the microscopic and the macroscopic parts, and
we set Δtmac = NΔtmic. As in the previous case, the fully microscopic model gives
a more precise description (still too heavy for a large road network). In contrast, the
description given by the macroscopic scheme is still a bit coarse to describe precisely
the details in the MMR, but on the other hand, the shock is now much sharper even
on this relatively coarse grid, thanks to the much better macroscopic CFL condition.
Finally, the hybrid model gives an intermediate description which is very precise in the
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Fig. 7.6. Case 2. Different time steps in the microscopic and macroscopic regime: a shock
travelling from downstream to upstream coming from downstream of the minimal microscopic region
( [−100 m, 100 m]): (a) the density in the macroscopic model, (b) the density in the hybrid model,
(c) the density in the microscopic model.
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MMR and still tractable elsewhere. Note in particular that the numerical propagation
speed of the shock is quite well preserved in each region.

8. Conclusion. Traffic investigation has simultaneously progressed both on the
macroscopic and microscopic front. However, each description has its own limits. The
recent success of hybrid models is due to their ability to capture traffic dynamics in
a large domain with enough details near the obstacles.

In this paper, we propose a simple hybrid model based solely on a Lagrangian
discretization of both the macroscopic and the microscopic models, coupled through
Lagrangian interfaces periodically refreshed in order to always contain a fixed Euler-
ian region near an obstacle. As shown in the above numerical examples, the waves
produced in either region nicely propagate through the other region. In particular,
by this construction, the mass is automatically conserved through the interfaces.

This approach, which establishes a link between microscopic and macroscopic
models and allows one to carry out simultaneous macro-micro simulations, could be
hopefully a promising way to treat road intersections, in particular, on urban road
networks.
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[28] J. P. Lebacque, Les modèles macroscopiques du traffic, Ann. des Ponts, 67 (1993), pp. 24–45.
[29] J. P. Lebacque, The Godunov scheme and what it means for first order traffic flow models, in

Transportation and Traffic Theory, J. B. Lessort, ed., Pergamon Press, Oxford, UK, 1996,
pp. 647–678.

[30] M. Lighthill and J. Whitham, On kinematic waves, Proc. Roy. Soc. London Ser. A, 229
(1955), pp. 281–345.

[31] L. Magne, S. Rabut, and J. F. Gabard, Towards an hybrid macro-micro traffic flow simu-
lation model, in Proceedings of the INFORMS Spring Meeting, Salt Lake City, UT, 2000.

[32] R. Natalini, Convergence to equilibrium for the relaxation approximations of conservation
laws, Comm. Pure Appl. Math., 49 (1996), pp. 795–823.

[33] H. Payne, FREFLO: A macroscopic simulation model for freeway traffic, Transportation Re-
search Record, 722 (1979), pp. 68–75.

[34] L. Tong, Well-posedness theory of an inhomogeneous traffic flow model, Discrete Contin. Dyn.
Syst. Ser. B, 2 (2002), pp. 401–414.

[35] D. H. Wagner, Equivalence of the Euler and Lagrangian equations of gas dynamics for weak
solutions, J. Differential Equations, 68 (1987), pp. 118–136.

[36] G. C. K. Wong and S. C. Wong, A multi-class traffic flow model—an extension of LWR
model with heterogeneous drivers, Trans. Res. A, 36 (2002), pp. 827–841.

[37] H. M. Zhang, A non-equilibrium traffic model devoid of gas-like behaviour, Trans. Res. B, 36
(2002), pp. 275–298.



SIAM J. APPL. MATH. c© 2007 Society for Industrial and Applied Mathematics
Vol. 68, No. 2, pp. 437–460

RESTORATION OF COLOR IMAGES BY VECTOR VALUED BV
FUNCTIONS AND VARIATIONAL CALCULUS∗

MASSIMO FORNASIER† AND RICCARDO MARCH‡

Abstract. We analyze a variational problem for the recovery of vector valued functions and
compute its numerical solution. The data of the problem are a small set of complete samples of the
vector valued function and some significant incomplete information where the former are missing.
The incomplete information is assumed as the result of a distortion, with values in a lower dimen-
sional manifold. For the recovery of the function we minimize a functional which is formed by the
discrepancy with respect to the data and total variation regularization constraints. We show the
existence of minimizers in the space of vector valued bounded variation functions. For the computa-
tion of minimizers we provide a stable and efficient method. First, we approximate the functional by
coercive functionals on W 1,2 in terms of Γ-convergence. Then we realize approximations of minimiz-
ers of the latter functionals by an iterative procedure to solve the PDE system of the corresponding
Euler–Lagrange equations. The numerical implementation comes naturally by finite element dis-
cretization. We apply the algorithm to the restoration of color images from limited color information
and gray levels where the colors are missing. The numerical experiments show that this scheme is
very fast and robust. The reconstruction capabilities of the model are shown, also from very limited
(randomly distributed) color data. Several examples are included from the real restoration problem
of A. Mantegna’s art frescoes in Italy.

Key words. color image processing, systems of partial differential equations, calculus of varia-
tions, finite element method
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1. Introduction and examples. This paper concerns the analysis and the
numerical implementation of a variational model for the restoration of vector valued
functions. The restoration is obtained from few and sparse complete samples of the
function and from significant incomplete information. The latter is assumed as the
result of a nonlinear distortion and with values in a lower dimensional manifold.
The applications we consider are in the field of digital signal and image restoration.
Therefore, we deal with functional analysis in the space of bounded variation (BV)
functions, which are actually considered a reasonable functional model for natural
images and signals, usually characterized by discontinuities and piecewise smooth
behavior. While in the literature on mathematical image processing mainly real valued
BV functions and associated variational problems are discussed (see, for example,
[7, 31]), in this contribution we consider vector valued functions.

Since the work of Mumford and Shah [29] and Rudin, Osher, and Fatemi [30],
variational calculus techniques have been applied in several image processing prob-
lems. We refer the reader to the introductory book [6] for a presentation of this field,
more details, and an extended literature.
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Fig. 1.1. Fragments of A. Mantegna’s frescoes (1452), destroyed by a bombing in the Second
World War. Computer based reconstruction by using efficient pattern matching techniques [24] is
shown.

Inspired by the fresco problem shown in Figure 1.1, a variational model has been
proposed by one of the authors in [21]. The problem consists in recovering color in
A. Mantegna’s frescoes, which were partially destroyed by a bombing in the Second
World War. Pieces of the frescoes with the original colors remain, while black and
white photos, taken before the war, of the full frescoes are available. Unfortunately,
the surface covered by the original fragments is only 77 m2, while the original area
was of several hundreds. This means that what we can currently reconstruct is just
a fraction (estimated up to 8%) of what this inestimable artwork was. In particular,
for most of the frescoes, the original color of the blanks is not known. So, natural
questions arise: Is it possible to estimate mathematically the original colors of the
frescoes by using the known fragments’ information and the gray level of the pictures
taken before the damage? And, how faithful is this estimation?

We now introduce some notations. Let Ω be an open, bounded, and connected
subset of R

N , and D ⊂ Ω. The fresco problem is modeled as the reconstruction/
restoration of a vector valued function u : Ω → R

M from a given observed couple of
functions (ū, v̄). The observed function ū is assumed to represent correct information
on Ω\D, and v̄ is the result of a nonlinear distortion L : R

M → R on D.
In particular, a digital image can be modeled as a function u : Ω ⊂ R

2 →
R

3
+, so that, with each “point” x of the image, one associates the vector u(x) =

(r(x), g(x), b(x)) ∈ R
3
+ of the color represented by the different channels: red, green,

and blue. In particular, a digitalization of the image u corresponds to its sampling on
a regular lattice τZ

2, τ > 0. Let us again write u : N → R
3
+, u(x) = (r(x), g(x), b(x))

for x ∈ N := Ω ∩ τZ
2.

Usually the gray level of an image can be described as a submanifold M ⊂ R
3 by

M := Mσ = {σ(x) : x = L(r, g, b) := L(αr + βg + γb), (r, g, b) ∈ R
3
+},

where α, β, γ > 0, α + β + γ = 1, L : R → R is a nonnegative increasing function,
and σ : R+ → R

3
+ is a suitable section such that L ◦ σ = idR+ . The function L is

assumed smooth, nonlinear, and normally nonconvex and nonconcave. For example,
Figure 1.2 describes the typical shape of an L function, which is estimated by fitting
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Fig. 1.2. Estimate of the nonlinear curve L from a distribution of points with coordinates given
by the linear combination αr + βg + γb of the (red, green, blue) color fragments (abscissa) and by
the corresponding underlying gray level of the original photographs dated to 1920 (ordinate). The
sensitivity parameters α, β, γ to the different frequencies of red, green, and blue are chosen in order
to minimize the total variance of the ordinates.

a distribution of data from the real color fragments in Figure 1.1.
The variational problem proposed in [21] is the following:

arg inf
u:Ω→RM

{
F (u) = μ

∫
Ω\D

|u(x) − ū(x)|pdx + λ

∫
D

|L(u(x)) − v̄(x)|pdx

+

∫
Ω

M∑
i=1

φ(|∇ui(x)|)dx
}
,(1.1)

where p ≥ 1. For example, Figure 1.1 illustrates a typical situation where this model
applies. In fact, in this case, there is an area Ω\D of the domain Ω ⊂ R

2 of the image,
where some fragments with colors are placed and complete information is available,
and another area D (which we call the inpainting region), where only the gray-level
information is known, modeled as the image of L. The solution of the variational
problem (1.1) produces in this case a new color image that extends the colors of
the fragments in the gray region. Once the extended color image is transformed
by means of L, it is constrained to match the known gray level. We can consider
this problem as a generalization of the well-known image inpainting/disocclusion; see,
e.g., [3, 8, 9, 13, 14, 15, 16]. Several heuristic algorithms have been introduced for
colorization of gray images; we refer the reader to the recently appeared paper [33]
for related literature and to [26] for numerical examples. Nevertheless, our approach
is theoretically founded, more general, and fits with many possible applications, for
example, the recovery of a transmitted multichannel signal affected by a stationary
(nonlinear) distortion.

For N = p = 2, we can compute the Euler–Lagrange equations associated with
the functional F and obtain

0 = −∇ ·
(
φ′(|∇ui|)
|∇ui|

∇ui

)

+ 2μ(ui − ūi)1Ω\D + 2λ(L(u) − v̄)
∂L
∂ui

(u)1D := Ei(L, u),(1.2)

i = 1, . . . ,M , where u = (u1, . . . , uM ) are the components of the function u. This is
a system of coupled second order equations, and the analysis of the solutions itself
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constitutes a problem of independent interest. By using (1.2) and a finite difference
approximation, a steepest-descent algorithm can be formulated as in [21].

Encouraged by the numerical evidence in [21], we discuss the existence of minimiz-
ers of the functional F in the context of vector valued BV functions. Our second goal
is the formulation of efficient and stable algorithms for the computation of minimiz-
ers. Although the steepest-descent scheme recalled above gives appreciable results, it
lacks a rigorous analysis and its convergence is usually very slow. For these reasons,
we introduce new coercive functionals Fh on W 1,2 which approximate F̄ (the relaxed
functional of F with respect to the BV weak-∗-topology) in terms of Γ-convergence.
The computation of minimizers of Fh is performed by an iterative double-minimization
algorithm; see also [12]. The reconstruction performances are very good, also from
very limited (randomly distributed) color data. The virtues of our scheme can be
summarized as follows.

1. It is derived as the minimization of a functional and its mathematical analysis
and foundations are well described.

2. It implements a total variation (TV) minimization. It is well known [14, 15]
that total variation inpainting is affected by two major drawbacks. The first
one is that the TV model is only a linear interpolant; i.e., the broken isophotes
are interpolated by straight lines. Thus it can generate corners along the
inpainting boundary. The second one is that TV often fails to connect widely
separated parts of a whole object, due to the high cost in TV measure of
making long-distance connections. Due to the constraint on the gray level in
the inpainting region, our scheme does not extend isophotes as straight lines
and does not violate the connectivity principle.

3. As pointed out in [11, 23], while it is relatively easy to recover at higher res-
olution image portions with relatively uniform color, it might be difficult to
recover jumps correctly. Not only should we preserve the morphology and en-
hance the detail of the discontinuities, but these properties must fit through
the different color channels. An incorrect or uncoupled recovery in fact pro-
duces “rainbow effects” around jumps. In our functional, the constraint on
the gray level in the inpainting region is formulated as a coupled combina-
tion of the color channels. In practice, this is sufficient to enforce the correct
coupling of the channels at edges.

4. The numerical implementation of our double-minimization scheme is very
simple. Its approximation by finite elements comes in a natural way. The
scheme is fast and stable.

The paper is organized as follows. In section 2 we introduce the mathematical
setting. We recall the main properties of BV functions and a definition of the space of
BV functions with vector values. Section 3 is dedicated to results on convex functions
and relaxed functionals of measures. In section 4 we collect the assumptions on the
nonlinear function L we will need in our analysis. In section 5 the representation of the
relaxed functional F̄ of F with respect to the BV topology is given, and the existence
and uniqueness of minimizers of F̄ are discussed. In section 6 we introduce coercive
functionals Fh on W 1,2 which are shown to Γ-converge to the relaxed functional
described above. The double-minimization algorithm to compute minimizers of Fh is
illustrated in section 7. Its numerical implementation is presented in section 8. We
include several numerical experiments and discuss their results.

2. Vector valued BV functions. In this section we want to introduce nota-
tions and preliminary results concerning vector valued BV functions.
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We denote by LN (and in the integrals dx) the Lebesgue N -dimensional measure
in R

N and by Hα the α-dimensional Hausdorff measure. Let Ω be an open, bounded,
and connected subset of R

N . With B(Ω) we denote the family of Borel subsets of
Ω ⊂ R

N . For a given vector valued measure μ : B(Ω) → R
M , we denote by |μ| its

total variation, i.e., the finite positive measure

|μ|(A) := sup

{
M∑
j=1

∫
Ω

vjdμj : v = (v1, . . . , vM ) ∈ C0(A; RM ), ‖v‖∞ ≤ 1

}
,

for every open set A ⊂ Ω, where C0(A; RM ) := Cc(A; RM )
‖·‖∞

, i.e., the sup-norm
closure of the space of continuous function with compact support in A and vector
values in R

M . The set of the signed measures on Ω with bounded total variation is
denoted by M(Ω), coinciding in fact with the topological dual of (C0(A; RM ), ‖ · ‖∞).
Thus, the usual weak-∗-topology on M(Ω) is the weakest topology that makes the
maps μ →

∫
Ω
fdμ continuous for every continuous function f ∈ C0(A; RM ). In the

following we will make use of the notations x ∧ y := inf{x, y} and x ∨ y := sup{x, y}
for all x, y ∈ R.

We say that u ∈ L1(Ω) is a real function of bounded variation if its distributional
derivative Du = (Dx1

u, . . . ,DxN
u) is in M(Ω). Then the space of bounded variation

functions is denoted by

BV (Ω) := {u ∈ L1(Ω) : Du ∈ M(Ω)}

and, endowed with the norm ‖u‖BV (Ω) := ‖u‖1 + |Du|(Ω), is a Banach space [20].
More generally, we are interested in vector valued functions with bounded variation
components, whose space is defined by

BV (Ω; RM ) := {u = (u1, . . . , uM ) ∈ L1(Ω; RM ) : ui ∈ BV (Ω)}.

To this space it will turn out to be convenient to attach the norm ‖u‖BV (Ω;RM ) :=

‖u‖L1(Ω;RM ) +
∑M

i=1 |Dui|(Ω). With a slight abuse of notation, for u ∈ BV (Ω; RM )
we denote

(2.1) |Du| :=

M∑
i=1

|Dui|,

which again is a finite positive measure for Ω. The space (BV (Ω; RM ), ‖ · ‖BV (Ω;RM ))

is a Banach space. Of course BV (Ω; RM ) = BV (Ω) for M = 1, and our notations are
consistent with this case.

The product topology of the strong topology of L1(Ω; RM ) for u and of the weak-∗-
topology of measures for Dui (for all i = 1, . . . ,M) will be called the weak-∗-topology
of BV (Ω; RM ) or the componentwise BV weak-∗-topology. In the following, whenever
the domain Ω and the dimension M will be clearly understood, we will write L1 instead
of L1(Ω; RM ) and BV instead of BV (Ω; RM ).

We further recall the main structure properties of BV functions [1, 2, 20]. If
v ∈ BV (Ω), then the Lebesgue decomposition of Dv with respect to the Lebesgue
measure LN is given by

Dv = ∇v · LN + Dsv,
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where ∇u = d(Dv)
dx ∈ L1(Ω; RN ) is the Radon–Nikodym derivative of Dv and Dsv is

singular with respect to LN .
For a function v ∈ L1(Ω) one denotes by Sv the complement of the Lebesgue set

of v, i.e.,

Sv := {x ∈ Ω : v−(x) < v+(x)},

where

v+(x) := inf

{
t ∈ R̄ : lim

ε→0

LN ({v > t} ∩B(x, ε))

εN
= 0

}

and

v−(x) := sup

{
t ∈ R̄ : lim

ε→0

LN ({v < t} ∩B(x, ε))

εN
= 0

}
.

Then Sv is countably rectifiable, and for HN−1-a.e. x ∈ Ω we can define the outer
normal ν(x). We denote by ṽ : Ω \ Sv → R the approximate limit of v defined as
ṽ(x) = v+(x) = v−(x).

Following [1, 20] Dsv can be expressed by Dsv = Cv+Jv, where Jv = (v+−v−)ν ·
HN−1|Sv

is the jump part and Cv is the Cantor part of Dv. Therefore, we can express
the measure Dv by

(2.2) Dv = ∇v · LN + Cv + (v+ − v−)ν · HN−1|Sv ,

and its total variation by

(2.3) |Dv|(E) =

∫
E

|∇v|dx +

∫
E\Sv

|Cv| +
∫
E∩Sv

(v+ − v−)dHN−1,

for every Borel set E in the Borel σ-algebra B(Ω) of Ω. For major details we refer
the reader to [1]. By these properties of real BV functions, one obtains the following
result for vector valued BV functions.

Lemma 2.1 (Lebesgue decomposition for vector valued BV functions). For u ∈
BV (Ω; RN ), the positive measure |Du| as defined in (2.1) has the following Lebesgue
decomposition:

(2.4) |Du| = |Dau| + |Dsu|,

where |Dau| =
∑M

i=1 |∇ui|LN is the absolutely continuous part and |Dsu| =
∑M

i=1

|Cui | +
∑M

i=1 (u+
i − u−

i )HN−1|Sui
is the singular part of |Du| with respect to the

Lebesgue measure LN .
Proof. By definition it is |Du| =

∑M
i=1 |Dui| and by the Lebesgue decomposition

(2.3) for each |Dui| it is |Du| =
∑M

i=1

(
|∇ui|LN + |Cui |+(u+

i −u−
i )HN−1|Sui

)
. Since∑M

i=1 |∇ui|LN is absolutely continuous and
∑M

i=1 |Cui | +
∑M

i=1 (u+ − u−)HN−1|Sui

is singular with respect to LN , one concludes the proof by the uniqueness of the
Lebesgue decomposition.

3. Convex functions and functionals of measures. In the following and
throughout the paper we assume that

(A) φ : R → R+ is an even and convex function, nondecreasing in R+, such that
the following hold:
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(i) φ(0) = 0;
(ii) there exist c > 0 and b ≥ 0 such that cz−b ≤ φ(z) ≤ cz+b for all z ∈ R.

Under such conditions the asymptotic recession function φ∞ defined by

φ∞(z) := lim
y→∞

φ(yz)

y

is well defined and bounded. It is c = limy→∞
φ(y)
y = φ∞(1) and φ∞(z) = cz · sign(z).

Following [17, 25] we can define convex functions of measures. In particular, if
μ ∈ M(Ω), then we can define

φ(|μ|) = φ(|μa|)LN + φ∞(1)|μs|,

where μa and μs are the absolutely continuous and singular parts of μ, respectively,
with respect to LN . Therefore, according to Lemma 2.1, if u ∈ BV (Ω; RM ), then

M∑
i=1

φ(|Dui|)

=

M∑
i=1

φ(|∇ui|)LN + φ∞(1)

(
M∑
i=1

|Cui
| +

M∑
i=1

(u+ − u−)HN−1|Sui

)
.(3.1)

Definition 3.1. Let (X, τ) be a topological space satisfying the first axiom of
countability and F : X → R̄. The relaxed functional of F with respect to the topology
τ is defined for every x ∈ X as F̄ (x) := sup{G(x) : G is τ -lower semicontinuous and
G ≤ F}. In other words F̄ is the maximal τ -lower semicontinuous functional that is
smaller than F . We may also write

F̄ (u) = inf
u(n)∈X,u(n) τ→u

{
lim inf

n
F (u(n))

}
.

We have the following result.
Lemma 3.2. If u ∈ BV (Ω; RM ) and φ is as in assumption (A), then

E(u) :=

∫
Ω

M∑
i=1

φ(|Dui|) :=

M∑
i=1

φ(|Dui|)(Ω)

=

∫
Ω

M∑
i=1

φ(|∇ui|)dx + c

(
M∑
i=1

∫
Ω\Sui

|Cui | +
∫
Sui

(u+
i − u−

i )dHN−1

)

is lower semicontinuous with respect to the componentwise BV weak-∗-topology.
Proof. It is known that ui → Ei(ui) :=

∫
Ω
φ(|∇ui|)dx+c(

∫
Ω\Sui

|Cui |+
∫
Sui

(u+
i −

u−
i )dHN−1) is lower semicontinuous for the BV weak-∗-topology on BV (Ω) [25]. One

concludes simply by observing that E(u) =
∑M

i=1 Ei(ui).

4. Assumptions on the evaluation map L. In the following we assume that
(L1) L : R

M → R+ is a nondecreasing continuous function in the sense that
L(x) ≤ L(y) for any x, y ∈ R

M such that |xi| ≤ |yi| for any i ∈ {1, . . . ,M};
(L2) L(x) ≤ a + b|x|s for all x ∈ R

M and for fixed s ≥ p−1, b > 0, and a ≥ 0.
Moreover, one of the two following conditions holds:
(L3-a) limx→∞ L(x) = +∞;
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(L3-b) L(x) = L(x1, . . . , xM ) = L((�1∧x1∨−�1), . . . , (�M∧xM∨−�M )) for a suitable
fixed vector � = (�1, . . . , �M ) ∈ R

M
+ .

Observe that condition (L3-a) is equivalent to saying that for every C > 0 the
set {L ≤ C} is bounded. Therefore, there exists A ∈ R

M , with Ai ≥ 0 for any

i ∈ {1, . . . ,M}, such that {L ≤ C} ⊆
∏M

i=1 [−Ai, Ai].
In the following and throughout the paper D denotes a measurable subset of Ω,

and we are given the couple (ū, v̄) of bounded functions such that ū : Ω \ D → R
M

and v̄ : D → R.
If condition (L3-a) holds, for any measurable function u : Ω → R

M , we define the
truncation or clipping operator as follows:

(4.1) tr(u, ū,Ω, D)(x) := ((‖ūi|Ω \D‖∞ ∨Ai) ∧ ui(x) ∨ (−‖ūi|Ω \D‖∞ ∧−Ai))
M
i=1,

where A ∈ R
M is determined so that {L ≤ ‖v̄|D‖∞} ⊆

∏M
i=1 [−Ai, Ai]. Analogously

we define the truncation operator in the case of condition (L3-b):

(4.2) tr(u, ū, v̄,Ω, D)(x) := ((‖ūi|Ω \D‖∞ ∨ �i)∧ ui(x)∨ (−‖ūi|Ω \D‖∞ ∧−�i))
M
i=1.

In the case when it is clear which of the conditions (L3-a,b) holds and the set D and
the functions ū, v̄ are given, then it will be convenient to use the shorter notation
û := tr(u, ū, v̄,Ω, D).

For any measurable function u : Ω → R
M we define

G1(u) =

∫
Ω\D

|u(x) − ū(x)|pdx,(4.3)

G2(u) =

∫
D

|L(u(x)) − v̄(x)|pdx.(4.4)

Lemma 4.1. For any u ∈ BV (Ω; RM ) the truncation operator has the property
that û ∈ BV (Ω; RM ), and

(4.5) Gi(û) ≤ Gi(u), i = 1, 2, and E(û) ≤ E(u).

Proof. Let us assume that condition (L3-a) holds. If x ∈ Ω \ D, the definition
of the truncation operator implies that |û(x) − ū(x)| ≤ |u(x) − ū(x)|, from which it

follows that G1(û) ≤ G1(u). If x ∈ D is such that u(x) ∈
∏M

i=1 [−‖ūi|Ω \D‖∞ ∧−Ai,

‖ūi|Ω \ D‖∞ ∨ Ai], then û(x) = u(x). Otherwise, x /∈
∏M

i=1 [−Ai, Ai] and |ui(x)| ≥
|ûi(x)| ≥ |ξi| for any ξ such that L(ξ) ≤ ‖v̄|D‖∞ and any i ∈ {1, . . . ,M}. Therefore,
by the monotonicity assumption (L1) L(u(x)) ≥ L(û(x)) ≥ ‖v̄|D‖∞, which implies
that |L(û(x)) − v̄(x)| ≤ |L(u(x)) − v̄(x)| for any x ∈ D, and G2(û) ≤ G2(u). The
proof is analogous if condition (L3-b) holds.

We now prove the corresponding statement for the functional E. Fix i ∈ {1, . . . ,M}.
By definition of the truncation operator, we have ûi = gi ◦ ui, where gi : R → R is a
Lipschitz function such that

gi(t) =

⎧⎨
⎩

t, −ci ≤ t ≤ di,
di, t > di,
−ci, t < −ci,

where ci, di > 0 are determined by (4.1), (4.2). Using the chain rule for real valued
BV functions (Theorem 3.99 of [2]), we have that û ∈ BV (Ω; RM ) and

Dûi = g′i(ui)∇ui · LN + g′i(ũi)Cui
+
(
gi(u

+
i ) − gi(u

−
i )
)
νi · HN−1|Sui

,
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where ũi is the approximate limit of ui. Then ∇ûi(x) = ∇ui(x) if −ci < ui(x) < di,
and ∇ûi(x) = 0 if either ui(x) > di or ui(x) < −ci. Moreover, by Proposition 3.73(c)
of [2] it follows that ∇ui(x) = 0 for a.e. x ∈ {ui(x) = di} and a.e. x ∈ {ui(x) = −ci}.
Hence |∇ûi(x)| ≤ |∇ui(x)| a.e., so that from assumption (A) of the function φ we get

(4.6)

∫
Ω

φ(|∇ûi|)dx ≤
∫

Ω

φ(|∇ui|)dx.

Since u+
i (x) ≥ u−

i (x) for any x ∈ Sui
, by the definition of the function gi we have

Sûi ⊆ Sui , gi(u
+
i (x)) − gi(u

−
i (x)) ≤ u+

i (x) − u−
i (x) for any x ∈ Sui

.

Then it follows that

(4.7)

∫
Sûi

(û+
i − û−

i )dHN−1 ≤
∫
Sui

(u+
i − u−

i )dHN−1.

By the definition of gi we then have 0 ≤ g′i(ũi(x)) ≤ 1 for any x ∈ {x : ũi(x) �= di} ∩
{x : ũi(x) �= −ci}. Moreover, by Proposition 3.92(c) of [2], the Cantor part Cui

vanishes on sets of the form ũ−1
i (Q) with Q ⊂ R, H1(Q) = 0. It follows that Cui

vanishes on the set {x : ũi(x) = di} ∪ {x : ũi(x) = −ci}, so that we get |Cûi
|(Ω) ≤

|Cui
|(Ω), i.e.,

(4.8)

∫
Ω\Sûi

|Cûi | ≤
∫

Ω\Sui

|Cui
|.

Collecting the inequalities (4.6)–(4.8) and summing over i = 1, . . . ,M , we obtain
E(û) ≤ E(u), which concludes the proof.

Remark 4.2. The truncation operator maps C1
0 functions into W 1,q; i.e., for

any u ∈ C1
0 (Ω; RM ) we have tr(u, ū, v̄,Ω, D) ∈ W 1,q(Ω; RM ) for any 1 ≤ q ≤ ∞.

5. Relaxation and existence of minimizers. The functional F is well defined
in L∞(Ω; RM ) ∩ W 1,1(Ω; RM ). Since this space is not reflexive, and sequences that
are bounded in W 1,1 are also bounded in BV , we extend F to the space BV (Ω; RM )
in such a way that the extended functional is lower semicontinuous. By using the
relaxation method of the calculus of variations, the natural candidate for the extended
functional is the relaxed functional F̄ of F with respect to the componentwise BV
weak-∗-topology [6].

In the following, without loss of generality, we set μ = λ = 1.

5.1. Relaxation. We set X = {u ∈ BV (Ω; RM ) : ‖ui‖∞ ≤ Ki, i = 1, . . . ,M},
where, for any i ∈ {1, . . . ,M}, the constant Ki > 0 is defined by Ki = max{Ai,
‖ūi|Ω\D‖∞} if condition (L3-a) holds, and by Ki = max{�i, ‖ūi|Ω\D‖∞} if condition
(L3-b) holds.

The following theorem extends to our case the relaxation result proved in [6,
Theorem 3.2.1].

Theorem 5.1. The relaxed functional of F in X with respect to the component-
wise BV weak-∗-topology is given by

F̄ (u) =

∫
Ω\D

|u(x) − ū(x)|pdx +

∫
D

|L(u(x)) − v̄(x)|pdx

+

∫
Ω

M∑
i=1

φ(|∇ui|)dx + c

(
M∑
i=1

∫
Ω\Sui

|Cui
| +
∫
Sui

(u+
i − u−

i )dHN−1

)
.
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Proof. Let us define

f(u) :=

{
F (u), u ∈ X ∩W 1,1(Ω; RM ),
+∞, u ∈ X \W 1,1(Ω; RM ).

Observe that f(u) = F̄ (u) for u ∈ W 1,1(Ω; RM ).
By property (L2) we have that G1(u), G2(u) < +∞ for all u ∈ X. By using

Fatou’s lemma the functionals G1 and G2 are lower semicontinuous with respect to
the strong L1 topology and hence with respect to the componentwise BV weak-∗-
topology. Therefore, by Lemma 3.2, F̄ is lower semicontinuous in X with respect to
such topology.

Let f̄ denote the relaxed functional of f in X with respect to the same topology.
Since F̄ (u) ≤ f(u) for any u ∈ X, and f̄ is the greatest lower semicontinuous func-
tional less than or equal to f , we have f̄(u) ≥ F̄ (u) for any u ∈ X. Then we have to
show that f̄(u) ≤ F̄ (u).

By [17, Theorems 2.2 and 2.3] for any u ∈ X there exists a sequence {u(n)}n ⊂
C∞

0 (Ω; RM ) ∩W 1,1(Ω; RM ) such that u(n) converges to u in the componentwise BV
weak-∗-topology and E(u) = limn E(u(n)).

Let us now consider the sequence {û(n)}n of the truncated functions. By Lemma
4.1 we have

(5.1) E(u) = lim
n

E(u(n)) ≥ lim sup
n

E(û(n)).

With similar computations as those in the proof of Lemma 4.1∫
Ω

|û(n)(x) − u(x)|dx ≤
∫

Ω

|u(n)(x) − u(x)|dx → 0, n → ∞.

Moreover, since the truncated functions û(n) are uniformly bounded in L∞(Ω; RM ),
then û(n) converges to u in Lq(Ω; RM ) for any 1 ≤ q < ∞.

Now the functional G1 is continuous with respect to the strong Lp(Ω \ D; RM )
topology. Moreover, since L is continuous, the functional G2 is continuous with respect
to the strong Lq(D; RM ) topology, with q = sp ≥ 1 (see [19, Chapter 9, Lemma 3.2]).

Then, using (5.1), the continuity properties of G1 and G2, and Remark 4.2, we
have û(n) ∈ W 1,1(Ω; RM ), F̄ (û(n)) = f(û(n)), and

F̄ (u) = G1(u) + G2(u) + E(u) ≥ lim
n

(G1(û
(n)) + G2(û

(n))) + lim sup
n

E(û(n))

≥ lim sup
n

f(û(n)) ≥ lim inf
n

f(û(n)) ≥ inf
u(n)∈BV, u(n)BV −w∗

→ u

{
lim inf

n
f(u(n))

}
= f̄(u).

Then we have F̄ (u) = f̄(u) and the statement is proved.

5.2. Existence and uniqueness of minimizers. In this section we shall prove
the existence of minimizers of F̄ in X and state the conditions for the uniqueness.

Theorem 5.2. There exists a solution of the following variational problem:

min
u∈X

{
F̄ (u) =

∫
Ω\D

|u(x) − ū(x)|pdx +

∫
D

|L(u(x)) − v̄(x)|pdx

+

∫
Ω

M∑
i=1

φ(|∇ui|)dx + c

(
M∑
i=1

∫
Ω\Sui

|Cui
| +
∫
Sui

(u+
i − u−

i )dHN−1

)}
.
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In particular, we have

min
u∈X

F̄ (u) = inf
u∈X

F (u).

Moreover, if D � Ω and G2 is a strictly convex functional, then the solution is unique.
Proof. Let {u(n)}n be a minimizing sequence in BV . By assumption (A)(ii) in

section 3, there exists a constant C > 0 such that |Du(n)|(Ω) ≤ C uniformly with
respect to n. By Lemma 4.1 we can modify the minimizing sequence by truncation,
obtaining a new minimizing sequence {û(n)}n ⊂ X. By Lemma 4.1 this sequence is
uniformly bounded in BV (Ω; RM ), i.e.,

‖û(n)‖∞ ≤ max
i=1,...,M

Ki, |Dû(n)|(Ω) ≤ C

for any n. Therefore, there exists a subsequence {û(nk)}k converging with respect
to the componentwise BV weak-∗-topology to a function u ∈ X. Since the relaxed
functional F̄ is lower semicontinuous in X with respect to such a topology, we have

F̄ (u) ≤ lim inf
k

F̄ (u(nk)).

From the compactness and lower semicontinuity properties of F̄ it follows that u ∈ X
is a minimizer of F̄ . Moreover, if D � Ω and G2 is a strictly convex functional, then F̄
is strictly convex and the solution u is unique. Since F is coercive in X, one concludes
by an application of [27, Theorem 3.8].

6. Approximation by Γ-convergence. In this section we endow the space X
with the L1 strong topology, and we show that minimizers of F̄ can be approximated
in X by minimum points of functionals that are defined in W 1,2(Ω; RM ).

For a positive decreasing sequence {εh}h∈N such that limh→∞ εh = 0, and for
φ ∈ C1(R), we define

(6.1) Fh(u) =

⎧⎪⎨
⎪⎩

G1(u) + G2(u) +

∫
Ω

M∑
i=1

φh(|∇ui(x)|)dx, u ∈ W 1,2(Ω; RM ),

+∞, u ∈ X \W 1,2(Ω; RM ),

where

φh(z) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

φ′(εh)

2εh
z2 + φ(εh) − εhφ

′(εh)

2
, 0 ≤ z ≤ εh,

φ(z), εh ≤ z ≤ 1

εh
,

εhφ
′(1/εh)

2
z2 + φ

(
1

εh

)
− φ′(1/εh)

2εh
, z ≥ 1

εh
.

If z �→ φ′(z)
z is continuously decreasing, then φh(z) ≥ φ(z) ≥ 0 for any h and any z,

and limh φh(z) = φ(z) for any z.
By means of standard arguments we have that for any h the functional Fh has a

minimizer in X ∩ W 1,2(Ω; RM ); see, e.g., [31, Proposition 6.1]. Moreover, if D � Ω
and G2 is a strictly convex functional, then the minimizer is unique. The following
theorem extends to our case the Γ-convergence result proved in [31, Proposition 6.1];
see also Theorem 3.2.3 of [6]. We do not introduce the concept of Γ-convergence which
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is used here only as an auxiliary tool. We refer the reader to [27] and the relevant
results therein for more details, in particular, [27, Proposition 5.7, Theorem 7.8,
Corollary 7.20, Corollary 7.24].

Theorem 6.1. Let {u(h)}h be a sequence of minimizers of Fh. Then {u(h)}h is
relatively compact in L1(Ω; RM ), each of its limit points minimizes the functional F̄ ,
and

min
u∈X

F̄ (u) = lim
h→∞

min
u∈X∩W 1,2

Fh(u).

Moreover, if D � Ω and G2 is a strictly convex functional, we have

(6.2) lim
h→∞

u(h) = u(∞) in X, lim
h→∞

Fh(u(h)) = F̄ (u(∞)),

where u(∞) is the unique minimizer of F̄ in X.
Proof. We define

g(u) =

{
F (u), u ∈ X ∩W 1,2(Ω; RM ),
+∞, u ∈ X \W 1,2(Ω; RM ).

Observe that g is the restriction of F to functions u ∈ W 1,2(Ω; RM ).
By construction we have that {Fh}h is a decreasing sequence of functionals that

converges pointwise to g in X ∩ W 1,2(Ω; RM ). Therefore, by [27, Proposition 5.7],
Fh Γ-converges to the relaxed functional ḡ of g in X with respect to the L1(Ω; RM )
topology. Then we have to show that F̄ = ḡ.

Let {u(n)}n ⊂ X be a sequence such that u(n) → u in L1(Ω; RM ) and lim infn
F̄ (u(n)) < +∞. Up to the extraction of a subsequence we may assume that lim infn
F̄ (u(n)) = limn F̄ (u(n)). Then F̄ (u(n)) is uniformly bounded with respect to n, so
that {u(n)}n is uniformly bounded in BV . Then, up to a subsequence, u(n) con-
verges to u in the componentwise BV weak-∗-topology and, by Theorem 5.1, we have
lim infn F̄ (u(n)) ≥ F̄ (u). Hence F̄ is lower semicontinuous in X with respect to the
L1(Ω; RM ) topology.

Then, arguing as in the proof of Theorem 5.1, for any function u ∈ X there exists
a sequence of truncated functions û(n) ∈ W 1,2(Ω; RM ) ∩X such that

(6.3) û(n) → u in L1(Ω; RM ) and F̄ (u) ≥ lim inf
n→∞

g(û(n)).

Since g ≥ F̄ , property (6.3) implies that F̄ ≥ ḡ. Then, by the lower semicontinuity of
F̄ with respect to the L1(Ω; RM ) topology, we have F̄ = ḡ. Therefore, Fh Γ-converges
to F̄ .

By construction φh(z) ≥ φ(z) for any z ≥ 0, so that Fh(u) ≥ F̄ (u) for any
h and any u ∈ X. Since F̄ is coercive and lower semicontinuous in L1(Ω; RM ), it
follows that the sequence {Fh}h is equicoercive in L1(Ω; RM ). In particular, any
family {u(h)}h of minimizers of Fh is relatively compact in L1(Ω; RM ). Then, using
[27, Theorem 7.8], the limit points of sequences of minimizers of Fh minimize F̄ and
minu∈X F̄ (u) = limh minu∈W 1,2 Fh(u).

Finally, if D � Ω and G2 is a strictly convex functional, by Theorem 5.2 there
exists a unique minimizer of F̄ in X. Therefore the limits (6.2) follow from Corol-
lary 7.24 of [27].

Remark 6.2. So far we have considered evaluation maps L : R
M → R. How-

ever, the whole analysis can be generalized to the case L : R
M → M, L(x) =
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(L1(x), . . . ,LD(x)), where M ⊂ R
M is a (D ≤ M)-dimensional submanifold. How-

ever, for D = 1 and L usually being an invertible map, it is possible to “reequalize”
the gray level so that L(x) = 1

M (x1 + · · · + xM ). Later in this paper, for simplicity
purposes in numerical implementation, we will use such linearization for L.

7. Euler–Lagrange equations and a relaxation algorithm. In this section
we want to provide an algorithm to compute efficiently minimizers of the approximat-
ing functionals Fh. First, we want to derive the Euler–Lagrange equations associated
with Fh. In the following we assume that both φh and L are continuously differen-
tiable and that Ω is an open, bounded, and connected subset of R

N with Lipschitz
boundary ∂Ω. Moreover, p = 2 if N = 1 and p = N

N−1 for N > 1, 1/p+ 1/p′ = 1. By
standard arguments we have the following result.

Proposition 7.1. If u is a minimizer in W 1,2(Ω; RM ) of Fh, then u solves the
following system of Euler–Lagrange equations:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
0 = −div

(
φ′
h(|∇ui|)
|∇ui| ∇ui

)
+ p|u− ū|p−2(ui − ūi)1Ω\D + p|L(u)

− v̄|p−2(L(u) − v̄) ∂L
∂ui

(u)1D,

φ′
h(|∇ui|)
|∇ui|

∂ui

∂ν = 0 on ∂Ω, i = 1, . . . ,M.

The former equalities hold in the sense of distributions and in Lp′
(Ω; RM ).

The previous equations yield a necessary condition for the computation of min-
imizers of Fh. Again we are not ensured of the uniqueness in general, unless G2 is
strictly convex. The system is composed of M second order nonlinear equations which

are coupled on terms of order 0. Both the nonlinear term div
(φ′

h(|∇ui|)
|∇ui| ∇ui

)
and the

coupled terms of order 0 constitute a complication for the numerical solution of these
equations.

Based on the work [12, 18, 32], we propose in the following a method to compute
efficiently solutions of the Euler–Lagrange equations, which simplifies the problem of
the nonlinearity. Since we want to illustrate concrete applications for color image
recovery, for simplicity, we limit our analysis to the case N = p = 2 and φ(t) = |t| for
all t ∈ R. Let us introduce a new functional given by

(7.1) Eh(u,w) := 2 (G1(u) + G2(u)) +

∫
Ω

M∑
i=1

(
wi|∇ui(x)|2 +

1

wi

)
dx,

where u ∈ W 1,2(Ω; RM ), and w ∈ L2(Ω; RM ) is such that εh ≤ wi ≤ 1
εh

, i = 1, . . . ,M .
While the variable u again is the function to be reconstructed, we call the variable w
the gradient weight. In the following, since we assume h fixed, we drop the index h
from the functional Eh.

For any given u(0) ∈ X ∩ W 1,2(Ω; RM ) and w(0) ∈ L2(Ω; RM ) (for example,
w(0) := 1), we define the following iterative double-minimization algorithm:

(7.2)

⎧⎪⎨
⎪⎩

u(n+1) = arg min
u∈W 1,2(Ω;RM )

E(u,w(n)),

w(n+1) = arg min
εh≤w≤ 1

εh

E(u(n+1), w).

We have the following convergence result.
Theorem 7.2. The sequence {u(n)}n∈N has subsequences that converge strongly

in L2(Ω; RM ) and weakly in W 1,2(Ω; RM ) to a stationary point u(∞) of Fh; i.e., u(∞)
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solves the Euler–Lagrange equations in Proposition 7.1. Moreover, if Fh has a unique
minimizer u∗, then u(∞) = u∗ and the full sequence {u(n)}n∈N converges to u∗.

Proof. Observe that

E(u(n), w(n)) − E(u(n+1), w(n+1)) =
(
E(u(n), w(n)) − E(u(n+1), w(n))

)
︸ ︷︷ ︸

An

+
(
E(u(n+1), w(n)) − E(u(n+1), w(n+1))

)
︸ ︷︷ ︸

Bn

≥ 0.

Therefore, E(u(n), w(n)) is a nonincreasing sequence and, moreover, it is bounded from
below, since

inf
εh≤w≤1/εh

∫
Ω

M∑
i=1

(
wi|∇ui(x)|2 +

1

wi

)
dx ≥ 0.

This implies that E(u(n), w(n)) converges. Moreover, we can write

Bn =

∫
Ω

M∑
i=1

c(w
(n)
i (x), |∇u

(n+1)
i (x)|) − c(w

(n+1)
i (x), |∇u

(n+1)
i (x)|)dx,

where c(t, z) := tz2 + 1
t . By Taylor’s formula, we have

c(w
(n)
i , z) = c(w

(n+1)
i , z) +

∂c

∂t
(w

(n+1)
i , z)(w

(n)
i −w

(n+1)
i ) +

1

2

∂2c

∂t2
(ξ, z)|w(n)

i −w
(n+1)
i |2

for ξ ∈ conv(w
(n)
i , w

(n+1)
i ). By definition of w

(n+1)
i and taking into account that

εh ≤ w
(n+1)
i ≤ 1

εh
, we have

∂c

∂t
(w

(n+1)
i , |∇u

(n+1)
i (x)|)(w(n)

i − w
(n+1)
i ) ≥ 0,

and ∂2c
∂t2

(t, z) = 2
t3 ≥ 2ε3

h, for any t ≤ 1/εh. This implies that

E(u(n), w(n)) − E(u(n+1), w(n+1)) ≥ Bn ≥ ε3
h

∫
Ω

M∑
i=1

|w(n)
i (x) − w

(n+1)
i (x)|2dx,

and since E(u(n), w(n)) is convergent, we have
∑M

i=1

∫
Ω
|w(n)

i (x) − w
(n+1)
i (x)|2dx → 0

for n → ∞. In fact it holds that

(7.3) ‖w(n)
i − w

(n+1)
i ‖Lq → 0, i = 1, . . . ,M,

for n → ∞ and for any 1 ≤ q < ∞. Since u(n+1) is a minimizer of E(u,w(n)), it solves
the following system of variational equations:∫

Ω

(
w

(n)
i ∇u

(n+1)
i (x) · ∇ϕi(x) + 2(u

(n+1)
i (x) − ūi(x))1Ω\D(x)

+ 2(L(u(n+1)(x)) − v̄(x))
∂L
∂ui

(u(n+1)(x))1D(x)

)
ϕi(x)dx = 0(7.4)
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for i = 1, . . . ,M and for all ϕ ∈ W 1,2(Ω; RM ). Therefore, we can write∫
Ω

(
w

(n+1)
i ∇u

(n+1)
i (x) · ∇ϕi(x) + 2(u

(n+1)
i (x) − ūi(x))1Ω\D(x)

+ 2(L(u(n+1)(x)) − v̄(x))
∂L
∂ui

(u(n+1)(x))1D(x)

)
ϕi(x)dx

=

∫
Ω

(w
(n+1)
i − w

(n)
i )∇u

(n+1)
i (x) · ∇ϕi(x)dx.

For 1
q + 1

q′ + 1
2 = 1, we have

∣∣∣∣
∫

Ω

(
w

(n+1)
i ∇u

(n+1)
i (x) · ∇ϕi(x) + 2(u

(n+1)
i (x) − ūi(x))1Ω\D(x)

+ 2(L(u(n+1)(x)) − v̄(x))
∂L
∂ui

(u(n+1)(x))1D(x)

)
ϕi(x)dx

∣∣∣∣
≤ ‖w(n+1)

i − w
(n)
i ‖Lq‖∇u

(n+1)
i ‖Lq′‖∇ϕi‖L2 .

Since u(n+1) is a minimizer of E(u,w(n)), we may assume without loss of gener-

ality that û
(n+1)
i = u

(n+1)
i for all i = 1, . . . ,M , where ·̂ is the truncation operator.

Consequently ‖u(n+1)
i ‖∞ ≤ C < +∞ uniformly with respect to n. We can use the

results in [28] to show that there exists q′ > 2 such that

‖∇u
(n+1)
i ‖Lq′ ≤ C < +∞

uniformly with respect to n (see also [4, 5, 12] for similar arguments). Therefore,
using (7.3), we can conclude that

−div(w
(n+1)
i ∇u

(n+1)
i )+2

(
(u

(n+1)
i − ūi)1Ω\D +(L(u(n+1))− v̄)

∂L
∂ui

(u(n+1))1D

)
→ 0,

for n → ∞, in (W 1,2(Ω; RM ))′. This also shows that {u(n)}n is uniformly bounded in
W 1,2(Ω; RM ). Therefore, there exists a subsequence {u(nk)}k that converges strongly

in L2 and weakly in W 1,2(Ω; RM ) to a function u(∞) ∈ W 1,2(Ω; RM ). Since w
(n+1)
i =

φ′
h(|∇u

(n+1)
i |)

|∇u
(n+1)
i |

, with standard arguments for monotone operators (see the proof of [12,

Proposition 3.1] and [10]), we show that in fact
(7.5)

−div

(
φ′
h(|∇u

(∞)
i |)

|∇u
(∞)
i |

∇u
(∞)
i

)
+2

(
(u

(∞)
i −ūi)1Ω\D+(L(u(∞))− v̄)

∂L
∂ui

(u(∞))1D

)
= 0,

for i = 1, . . . ,M , in (W 1,2(Ω; RM ))′. The latter are the Euler–Lagrange equations
associated with the functional Fh, and therefore u(∞) is a stationary point for Fh.

Assume now that Fh has a unique minimizer u∗. Then necessarily u(∞) = u∗.
Since every subsequence of {u(n)}n has a subsequence converging to u∗, the full se-
quence {u(n)}n converges to u∗.

Since both Fh and Eh(·, w) admit minimizers, their uniqueness is equivalent to
the uniqueness of the solutions of the corresponding Euler–Lagrange equations. If
uniqueness of the solution is satisfied, then the algorithm (7.2) can be reformulated
equivalently as the following two-step iterative procedure:
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Fig. 7.1. The datum (ū, v̄) is illustrated in the top-left position. The image has dimensions
64 × 78 pixels. The first four iterations of the algorithms are listed from left to right, starting from
the first row. The original color image (A. Mantegna’s frescoes, photo by Alinari dated to 1940) to
be reconstructed is illustrated in the bottom-right position. This image serves as a ground truth for
the numerical experiments. The parameters we have used are εh = 10−4, λ = μ = 150.

• Find u(n+1), which solves∫
Ω

(
w

(n)
i (x)∇u

(n+1)
i (x) · ∇ϕi(x) + 2(u

(n+1)
i (x) − ūi(x))1Ω\D(x)

+ 2(L(u(n+1)(x)) − v̄(x))
∂L
∂ui

(u(n+1)(x))1D(x)

)
ϕi(x)dx = 0

for i = 1, . . . ,M and for all ϕ ∈ W 1,2(Ω; RM ).
• Compute directly w(n+1) by

w
(n+1)
i = εh ∨ 1

|∇u
(n+1)
i |

∧ 1

εh
, i = 1, . . . ,M.

There are cases for which one can ensure uniqueness of solutions:
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1. If G2 is strictly convex, then the minimizers are unique as well as the solutions
of the equations.

2. Modify the equations by again inserting the parameters λ, μ > 0:∫
Ω

(
w

(n)
i ∇u

(n+1)
i (x) · ∇ϕi(x) + 2μ(u

(n+1)
i (x) − ūi(x))1Ω\D(x)

+ 2λ(L(u(n+1)(x)) − v̄(x))
∂L
∂ui

(u(n+1)(x))1D(x)

)
ϕi(x)dx = 0

for i = 1, . . . ,M and for all ϕ ∈ W 1,2(Ω; RM ). By a standard fixed point argument,
it is not difficult to show that for μ ∼ λ ∼ εh the solution of the previous equations
is unique. Unfortunately the condition μ ∼ λ ∼ εh is acceptable only for those
applications where the constraints on the data are weak, for example, when the data
are affected by a strong noise.

3. In the following section we illustrate the finite element approximation of the
Euler–Lagrange equations. Since we are interested in color image applications, we
restrict the numerical experiments to the case L(u1, u2, u3) = 1

3 (u1 + u2 + u3). By
this choice, the numerical results confirm that the linear systems arising from the
finite element discretization are uniquely solvable for a rather large set of possible
parameters λ, μ.

8. Numerical implementation and results. In this section we want to present
the numerical implementation of the iterative double-minimization algorithm (7.2) for
color image restoration. As the second step of the scheme (which amounts to the up-
date of the gradient weight) can be explicitly done once u(n+1) is computed, we are left
essentially to provide a numerical implementation of the first step, i.e., the solution
of the Euler–Lagrange equations.

8.1. Finite element approximation of the Euler–Lagrange equations.
For the solution of the Euler–Lagrange equations we use a finite element approxima-
tion. We illustrate the implementation with the concrete aim of the reconstruction
of a digital color image supported in Ω = [0, 1]2 from few color fragments supported
in Ω \ D and the gray-level information where colors are missing. By the nature of
this problem, we can choose a regular triangulation T of the domain Ω with nodes
distributed on a regular grid N := τZ

2 ∩Ω, corresponding to the pixels of the image.
Associated with T we fix the following finite element spaces:

U = {u ∈ C0(Ω) : u|T ∈ P
1, T ∈ T },

V = {w ∈ L2(Ω) : w|T ∈ P
0, T ∈ T }.

The space U induces the finite element space of color images given by

U := {u ∈ W 1,2(Ω,R3) : ui ∈ U , i = 1, 2, 3}.

The space V induces the finite element space of gradient weights given by

V := {w ∈ L2(Ω,R3) : wi ∈ V, i = 1, 2, 3}.

In order to avoid the nonlinearity in the coupled terms of order 0, we restrict our
functional to the case L(u1, u2, u3) = 1

3 (u1 + u2 + u3). For further simplicity we have
not considered truncations which in fact are not necessary in practice.
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For a given w(n) ∈ V , the first step of our approximation of the double-minimization
scheme amounts to the computation of u(n+1) ∈ U , which solves, using (7.4),∫

Ω

(
w

(n)
i (x)∇u

(n+1)
i (x) · ∇ϕi(x) + 2μ(u

(n+1)
i (x) − ūi(x))1Ω\D(x)

+
2

3
λ

(
1

3
(u

(n+1)
1 (x) + u

(n+1)
2 (x) + u

(n+1)
3 (x)) − v̄(x)

)
1D(x)

)
ϕi(x)dx = 0(8.1)

for i = 1, 2, 3 and for all ϕ ∈ U . To the spaces U and V are attached the corresponding
nodal bases {ϕk}k∈N and {χk}k∈N , respectively. Therefore, we also have that

U =

⎧⎨
⎩u : u =

(∑
k∈N

ui,kϕk

)
i=1,2,3

⎫⎬
⎭ , V =

⎧⎨
⎩w : w =

(∑
k∈N

wi,kχk

)
i=1,2,3

⎫⎬
⎭ .

With these bases we can construct the following matrices:

K
(n+1)
i :=

(∫
Ω

w
(n)
i (x)∇ϕk(x) · ∇ϕh(x)dx

)
k,h∈N

,(8.2)

MΩ\D :=

(
2μ

∫
Ω

1Ω\D(x)ϕk(x)ϕh(x)dx

)
k,h∈N

,(8.3)

MD :=

(
2λ

9

∫
Ω

1D(x)ϕk(x)ϕh(x)dx

)
k,h∈N

.(8.4)

By these building blocks, we can assemble

K(n+1) :=

⎛
⎜⎝ K

(n+1)
1 + MΩ\D + MD MD MD

MD K
(n+1)
2 + MΩ\D + MD MD

MD MD K
(n+1)
3 + MΩ\D + MD

⎞
⎟⎠

and

(8.5) M :=

⎛
⎝ MΩ\D + MD MD MD

MD MΩ\D + MD MD

MD MD MΩ\D + MD

⎞
⎠ .

Furthermore, let us denote the vector of the nodal values of the solution by

(8.6) u(n+1) = (u
(n+1)
1,k1

, . . . , u
(n+1)
1,k#N

, u
(n+1)
2,k1

, . . . , u
(n+1)
2,k#N

, u
(n+1)
3,k1

, . . . , u
(n+1)
3,k#N

)T

assembled as a column vector containing the nodal values of each channel in order,
where ki ∈ N are nodes which are suitably ordered. In a similar way the nodal values
of the data ū, v̄ are assembled in the vector

ū = (ū1,k1
, . . . , ū1,kj

, v̄1,kj+1
, . . . , v̄1,k#N , ū2,k1

, . . . , ū2,kj
, v̄2,kj+1

, . . . , v̄2,k#N ,(8.7)

ū3,k1
, . . . , ū3,kj

, v̄3,kj+1
, . . . , v̄3,k#N )T .

For the right-hand side we have the additional requirement that v̄i,k = v̄	,k for
i �= �, representing the gray-level values. Moreover, the order of the nodes {kl :
l = 1, . . . ,#N} is such that

(MΩ\D + MD)(ūi,k1 , . . . , ūi,kj , v̄i,kj+1 , . . . , v̄i,k#N )T = MΩ\D

(
ūi

0

)
+ MD

(
0
v̄i

)
.
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With these notations and conventions, the solution of the system of equations (8.1)
is equivalent to the solution of the following algebraic linear system:

(8.8) K(n+1)u(n+1) = Mū.

8.2. Numerical implementation of the double-minimization algorithm.
We have now all the ingredients to assemble our numerical scheme into the following
algorithm.

Algorithm 1. DOUBLE MINIMIZATION
Input: Data vector ū, εh > 0, initial gradient weight w(0) with εh ≤ w

(0)
i,k ≤

1/εh, number nmax of outer iterations.
Parameters: Positive weights λ, μ ≥ 0.
Output: Approximation u∗ of the minimizer of Fh

u(0) := 0;
f := Mū;
for n := 0 to nmax do

Assemble the matrix K(n+1) as in (8.2);
Compute u(n+1) such that K(n+1)u(n+1) := f ;

Assemble the solution u(n+1) = (
∑

k∈N u
(n+1)
i,k ϕk)i=1,2,3;

Compute the gradient ∇u(n+1) = (
∑

k∈N u
(n+1)
i,k ∇ϕk)i=1,2,3;

w
(n+1)
i := εh ∨ 1

|∇u
(n+1)
i |

∧ 1
εh
, i = 1, . . . ,M ;

endfor

u∗ := u(n+1).

8.3. Numerical experiments in color image restoration and results. In
this section we show numerical results dealing with applications of the algorithm
to color image restoration. We assume as in Figure 1.1 to have available few color
fragments of the image and the gray levels of the missing parts. In all the experiments
we report, we also furnish a corresponding ground truth image for comparison. The
support of the image is Ω = [0, 1]2, where we construct a grid of dimensions h×w, and
w and h are the width and height of the image in pixels, respectively. On this grid a
regular triangulation is defined. The values of the images are in [0, 255] channelwise.

The algorithm converges to a stationary situation in a limited number of itera-
tions. In our numerical tests 3–4 iterations are sufficient; see Figures 7.1 and 8.4.
The quality of the reconstruction increases for increasing the amount of correct color
information of the datum. Nevertheless we observe that the geometrical distribution
of the color datum is more crucial for a better reconstruction. A remarkable result is
illustrated in Figures 8.1 and 8.2. In the bottom-left positions we illustrate data with
only 3% of the original color information, randomly distributed. From this very lim-
ited complete information the algorithm still produces a rather good reconstruction
of the original color images. Let us emphasize this once more:

It is sufficient to have a very limited guess of possible colors which are nicely
distributed in the image to recolor all of the image.

This result has a significant impact for several possible applications. Besides the
problem of the restoration of the fresco colors (where we have available 8% of the
total color surface), we can use this algorithm in old black and white video and image
restoration and for extreme compression of color images. For the sake of further refer-
ence, in Figure 8.3 we illustrate a comparison between the algorithm proposed in [26]
and our reconstruction. In our experiments the results appear visually equivalent, al-
though our method tends to reproduce more accurately the luminosity of the image,
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Fig. 8.1. The first column illustrates a sequence of different data. The second column illustrates
the corresponding 10th iteration of the algorithm. The original color image to be reconstructed is
illustrated in Figure 7.1 in the bottom-right position. The parameters we have used are εh = 10−4,
λ = μ = 150. In the bottom-left position we illustrate a datum with only 3% of the original color
information, randomly distributed.

because of the enforced constraint of the gray-level reproduction in the inpainting
region. The method proposed in [26] can perform slightly better pick signal-to-noise
ratios (PSNRs), though in most of the cases they do not differ significantly. For a
more specific discussion on fidelity in recolorization, we refer the reader to [22]. We
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Fig. 8.2. The first column illustrates a sequence of different data. The second column illustrates
the corresponding 10th iteration of the algorithm. The parameters we have used are εh = 10−4,
λ = μ = 150. In the bottom-left position we illustrate a datum with only 3% of the original color
information, randomly distributed. The original color image to be reconstructed is illustrated in the
top-right position of Figure 8.3. This image serves as a ground truth for the numerical experiments.

conclude with a brief discussion on the parameters λ, μ, εh. In Figure 8.4 we show
the history of the residual error with respect to the original color image for increasing
choices of the parameters λ, μ. These numerical results confirm the regularization ef-
fect due to the total variation constraint. The choice of εh has a twofold function. It
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Fig. 8.3. The figure on the top-left reports the initial data, and on the top-right we have
the original image. The figure on the bottom-left is the recolorization by means of the algorithm
presented in [26] generated by the MATLAB code provided at http://www.cs.huji.ac.il/∼yweiss/
Colorization/colorization.zip. On the bottom-right we again report the reconstruction due to our
algorithm. The PSNR of a color image u with respect to a ground truth image ū is defined by

PSNR = 10 log10

(
2552

1
3hw

∑3
i=1 ‖ui−ūi‖2

2

)
, where h, w are the height and width of the image, respec-

tively. Although the PSNRs are 31.61 dB and 29.48 dB, respectively, particularly visible is a more
accurate luminosity restoration, e.g., in the yellow region, due to our algorithm.

serves as a regularization parameter; i.e., the visual smoothness of the reconstruction
depends on εh. The larger values of εh give smoother reconstructed images. This
effect is due to the fact that if εh gets large, then the corresponding differential oper-

ator ∇·
(φ′

h(|∇ui|)
|∇ui| ∇ui

)
becomes more and more isotropic. Moreover, since in discrete

images the gradients are always bounded, if εh is smaller than a threshold T > 0
depending on the mesh size τ—in our experiments T = (255 max{h,w})−1—then the
lower bound on the gradient weight becomes irrelevant in the algorithm. However, the
second purpose of this parameter is also for the sake of numerical stability. Depending
on the size of the image, this parameter cannot be too small (i.e., minimal); otherwise
the corresponding stiffness matrices K(n) might be significantly ill-conditioned, and
suitable preconditioners (multigrid and subspace correction/domain decomposition
methods) should be invoked in this case.
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Fig. 8.4. The plots illustrate the PSNR for different iterations of the algorithm applied to the
image in Figure 7.1 and for different values of the parameters λ, μ.
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ASYMMETRIC CREEPING MOTION OF A RIGID
SPINDLE-SHAPED BODY IN A VISCOUS FLUID∗

M. ZABARANKIN†

Abstract. Exact solutions to the three-dimensional problems of asymmetric creeping translation
and rotation of a rigid spindle-shaped body in a viscous incompressible fluid have been obtained. In
both problems, the velocity field has been represented in the form of Dean and O’Neill, and under
certain conditions, the equation of continuity has been reduced to a three-contour equation for an
analytic function related to the density in a Fourier integral, representing the pressure in bispherical
coordinates. Then, the three-contour equation has been reduced to a Fredholm integral equation of
the second kind with a quasi-difference kernel by the complex Fourier transform. As an illustration
for the obtained solutions, the pressure at the surface of the body has been calculated and analyzed.
The resisting force and torque have been obtained for an arbitrary body of revolution via limits of
certain harmonic functions at infinity and, as an example, have been computed for various values
of a geometrical parameter of the spindle-shaped body for asymmetric translation and rotation,
respectively.

Key words. spindle-shaped body, asymmetric Stokes flow, exact solution, three-contour equa-
tion, complex Fourier transform, Fredholm integral equation, Riemann boundary-value problem,
drag force, resisting torque
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1. Introduction. This paper presents exact solutions to the three-dimensional
(3D) problems of asymmetric creeping translation and rotation of a rigid spindle-
shaped body in a quiescent viscous incompressible fluid. The problems are formulated
in the framework of the linearized Navier–Stokes equations that govern slow flows of
viscous incompressible fluids and neglect inertial effects:

(1) grad℘ = μΔu, div u = 0,

where u is the fluid velocity field, ℘ is the pressure in the fluid, μ is the shear viscos-
ity, and Δu ≡ grad (div u) − curl (curlu). The model (1) describes so-called Stokes
(creeping) flows and is known as the Stokes equations [7, 10]. We also consider that
the velocity field u and pressure ℘ vanish at infinity:

(2) u|∞ = 0, ℘|∞ = 0.

Constructing exact solutions to the model (1) has been and continues to be one
of the central themes in analytical hydrodynamics. Much of the work in this research
area has been dedicated to studying Stokes flows due to axially symmetric and asym-
metric motions of a rigid body of revolution. By asymmetric motion of the body, we
will understand translation along and rotation around axes orthogonal to the body’s
axis of revolution.

The problem of 3D Stokes flows arising from axially symmetric rotation of bodies
of revolution reduces to finding merely one harmonic function [8] and is the simplest
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from this class. On the other hand, the 3D Stokes flow problem corresponding to
axially symmetric translation of bodies of revolution can be reduced to determining
a biharmonic stream function [7, 19] and has been solved for sphere [17], prolate and
oblate spheroids [12, 7], circular disk [12, 7], spherical cap [13, 2, 19], two spheres [16],
torus [14, 21], spindle-shaped body [15, 23], and lens-shaped body [13, 22]. However,
it is well known that the stream function approach cannot be extended to solving
asymmetric 3D Stokes flow problems.

For arbitrary boundary conditions, Dean and O’Neill [3] suggested the solution
form

(3) u = 1
2μ r℘ + F,

where r is the radius vector and F is an arbitrary harmonic vector (ΔF = 0). In this
case, the continuity equation divu = 0 reduces to

(4) 3℘ + (r · grad℘) + 2μdiv F = 0.

The representation (3) was used to construct exact solutions to the Stokes flow
problems for the asymmetric translation and rotation of a rigid torus [6, 21] and
bispheres (two spheres of equal size) [20].

Let (x, y, z) and (r, ϕ, z) be systems of Cartesian and cylindrical coordinates with
bases (i, j,k) and (er, eϕ,k), respectively, which have the same z-axis and are related
in an ordinary way, and let S be the surface of the rigid body of revolution, whose axis
of revolution (symmetry) coincides with the z-axis. We also introduce the so-called
k-harmonic operator, Δk, by

Δk =
∂2

∂r2
+

1

r

∂

∂r
+

∂2

∂z2
− k2

r2
.

Without loss of generality, we consider the following asymmetric Stokes flow prob-
lems (which, to the best of our knowledge, have not been addressed for the spindle-
shaped body).

Problem I (asymmetric translation). Let the body of revolution translate along
the x-axis with the constant velocity vx. Then the vector u solves (1) and (2) and
satisfies the no-slip boundary condition on the body’s surface S:

u|S = vxi,

which in component form in the cylindrical coordinates is reformulated as

(5) ur|S = vx cosϕ, uϕ|S = −vx sinϕ, uz|S = 0.

Problem II (asymmetric rotation). Let the body of revolution rotate around the
y-axis with the constant angular velocity �y. Then the vector u solves (1) and (2)
and satisfies the no-slip boundary condition on the body’s surface S:

u|S = [�y j × (x i + z k)] ,

which in component form in the cylindrical coordinates reduces to

(6) ur|S = �y z cosϕ, uϕ|S = −�y z sinϕ, uz|S = −�y r cosϕ.
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It is seen from the boundary conditions (5) and (6) that in both cases, the pressure
℘ and solution form (3) can be represented by

(7) ℘(r, ϕ, z) = μΘ(r, z) cosϕ,

(8)

ur(r, ϕ, z) = u(1)
r (r, z) cosϕ = 1

2 (rΘ(r, z) + Υ(r, z) + Φ(r, z)) cosϕ,

uϕ(r, ϕ, z) = u(1)
ϕ (r, z) sinϕ = 1

2 (Φ(r, z) − Υ(r, z)) sinϕ,

uz(r, ϕ, z) = u(1)
z (r, z) cosϕ =

(
1
2 zΘ(r, z) + Ψ(r, z)

)
cosϕ,

where the functions Θ and Υ , Φ, and Ψ are associated with the first harmonics of
the pressure ℘ and vector-function F, respectively, and satisfy

(9) Δ1 Θ = 0, Δ0Υ = 0, Δ2Φ = 0, Δ1Ψ = 0.

For (8), (4) reduces to

(10)

(
r
∂

∂r
+ z

∂

∂z
+ 3

)
Θ +

∂

∂r
Υ +

(
∂

∂r
+

2

r

)
Φ + 2

∂

∂z
Ψ = 0.

A known approach for solving the problem (2), (8), (9), and (10) for both bound-
ary conditions (5) and (6) is to represent the harmonic functions Θ , Υ , Φ, and Ψ in
the form of integrals or series in curvilinear coordinates, associated with the geometry
of the body of revolution, then to express Υ , Φ, and Ψ via Θ from the correspond-
ing boundary conditions, and finally to substitute the series or integrals representing
these functions into (10).

For bispheres and a torus, the function Θ can be represented in bispherical and
toroidal coordinates, respectively, in the form of a series, and by this approach, (10)
reduces to a second-order difference equation with respect to series coefficients Xk

[20, 21, 6]:

(11) ak Xk+1 + bk Xk + ck Xk−1 = Fk, k ≥ 1,

where ak, bk, ck, and Fk are known functions such that ak → 0, bk → 0, ck → 0, and
Fk → 0 as k → ∞. In [20, 21, 6], (11), also known as an infinite tridiagonal algebraic
system (arising in 3D problems of elastic media [9]), was reduced to finite systems for
some large k and solved numerically.

In this paper, we show that for the spindle-shaped body, the described approach
reduces (10) to a three-contour equation for an analytic function X(s) related to the
density in a Fourier integral representing the function Θ in bispherical coordinates:

(12) a(s)X(s + 1) + b(s)X(s) + c(s)X(s− 1) = F (s), Re s = 0,

where s is a complex variable and a(s), b(s), c(s), and F (s) are known functions.
We obtain (12) under the condition that X(s) is an analytic function in the strip
|Re s| ≤ 1 and show that this condition holds true for the body with η0 < 2.103 (the
surface of the spindle-shaped body is determined by fixing the coordinate η in the
bispherical coordinates (ξ, η, ϕ); i.e., η = η0). Then, we reduce (12) to a three-contour
equation with a(s) = c(s) = 1, and show that in this special case, the latter reduces
to a Fredholm integral equation of the second kind by the complex Fourier transform.
As an illustration for the suggested method, we calculate the pressure at the surface
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of the body in the xz–half-plane (ϕ = 0) for various values of η0 for the asymmetric
translation and rotation of the body.

We also derive formulas for the resisting force and torque experienced by an
arbitrary rigid body of revolution in asymmetric creeping motion in a viscous incom-
pressible fluid. For the asymmetric translation with the boundary conditions (5), the
resisting force is expressed via the limit of the function Θ at z = 0 and r → ∞, and
for the asymmetric rotation with the boundary conditions (6), the resisting torque is
found via the limit of the function Ψ at z = 0 and r → ∞. These formulas resemble
Payne and Pell’s formula for the resisting force for a body of revolution in axially
symmetric translation, which is given by the limit of a stream function at infinity;
see [7]. Using the derived formulas, we compute the resisting force and torque for
the spindle-shaped body for various values of η0 (η0 < 2.103) for the asymmetric
translation and rotation, respectively.

The paper is organized into six sections. Section 2 derives formulas for the resist-
ing force and torque for an arbitrary body of revolution slowly moving in the viscous
fluid. Section 3 reduces the 3D Stokes flow problems for asymmetric creeping motions
of the rigid spindle-shaped body to the Fredholm integral equation of the second kind.
Sections 4 and 5 obtain exact solutions to the problems in the cases of asymmetric
translation and rotation, respectively, and compute the resisting force and torque for
various values of the geometrical parameter η0. Section 6 concludes the paper. Ap-
pendices A and B present proofs for the propositions dealing with computation of the
resisting force and torque, respectively.

2. Resisting force and torque. This section derives the formulas for the resist-
ing force and torque experienced by an arbitrary rigid body of revolution in asymmet-
ric creeping motion in a quiescent viscous incompressible fluid. The formulas resemble
the one of Payne and Pell for the resisting force for the body in axially symmetric
translation, which is given by the limit of a stream function at infinity; see [13].

2.1. Resisting force.
Proposition 1 (resisting force). The resisting force for a rigid body of revolution,

slowly moving in the fluid, is given by

(13) F = −
∫∫

S̃

(μ [n × ω] + ℘ n) dS,

where ω = curlu is the vorticity, S̃ is an arbitrary smooth surface encompassing the
body, and n is the outer normal of S̃.

Proof. The proof is presented in Appendix A.
Let the body whose axis of revolution is determined by the z-axis1 translate in

the fluid along the x-axis. In this case, the velocity field of the fluid satisfies the
boundary conditions (5) and can be represented in the form (8).

Theorem 2 (resisting force for asymmetric translation). In terms of the solution
form (8), the resisting force for the body having the z-axis of revolution and translating
along the x-axis is given by

(14) Fx = −4πμ lim
r→∞

(
r2Θ(r, z)

∣∣
z=0

)
.

Proof. We calculate the resisting force by formula (13) assuming that the surface

S̃ is a sphere with large radius R0. Let (R, ϑ, ϕ) be a system of spherical coordinates

1The Cartesian and cylindrical coordinates have the same z-axis.
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with the basis (eR, eϑ, eϕ) and relating to the cylindrical coordinates (r, ϕ, z) in the

ordinary way. For the sphere S̃, we have dS = R2
0 sinϑ dϑ dϕ, r = R0eR, and n = eR,

and thus, (13) reduces to

(15) F = −
∫ 2π

0

∫ π

0

(μ [eR × ω] + ℘ eR)R2
0 sinϑ dϑ dϕ.

In the case of the asymmetric translation of the body along the x-axis, the velocity
field is given by (8), and consequently, in the spherical coordinates, the vector u takes
the form

(16)

u = eR
{

1
2 RΘ(R, ϑ) + 1

2 [Υ(R, ϑ) + Φ(R, ϑ)] sinϑ + Ψ(R, ϑ) cosϑ
}

cosϕ

+ eϑ
{

1
2 [Υ(R, ϑ) + Φ(R, ϑ)] cosϑ− Ψ(R, ϑ) cosϑ

}
cosϕ

+ eϕ
1
2 (Φ(R, ϑ) − Υ(R, ϑ)) sinϕ,

where the functions Θ , Υ , Φ, and Ψ satisfy (9) and can be represented by
(17)

Θ(R, ϑ) =

∞∑
n=1

AnR
−n−1 P(1)

n (cosϑ) = −A1R
−2 sinϑ− 3

2 A2R
−3 sin[2ϑ] + O

(
R−4

)
,

Υ(R, ϑ) =

∞∑
n=0

BnR
−n−1 Pn(cosϑ) = B0R

−1 + B1R
−2 cosϑ + O

(
R−3

)
,

Φ(R, ϑ) =

∞∑
n=2

CnR
−n−1 P(2)

n (cosϑ) = O
(
R−3

)
,

Ψ(R, ϑ) =

∞∑
n=1

DnR
−n−1 P(1)

n (cosϑ) = −D1R
−2 sinϑ + O

(
R−3

)
.

Here, P
(k)
n (cosϑ) is the associated Legendre polynomial of the first kind of order n

and rank k. For k = 0, the superscript is omitted.
Then, substituting (17) into (10), we obtain

(18) (A1 + B0)R
−2 P

(1)
1 (cosϑ) + (B1 − 2D1)R

−3 P
(1)
2 (cosϑ) + O

(
R−4

)
= 0,

whence

(19) A1 + B0 = 0, B1 − 2D1 = 0, . . . .

For (16) with (17) and (19), the vorticity ω = curlu reduces to

(20)
ω = A1R

−2 {eϑ sinϕ + eϕ cosϑ cosϕ} + 1
2 R

−3 {eR (4D1 sinϑ sinϕ)

+ eϑ (3A2 − 2D1) cosϑ sinϕ− eϕ (2D1 − 3A2 cos[2ϑ]) cosϕ} + O
(
R−4

)
.

In the case of the asymmetric translation along the x-axis, the resisting force has the
component in the direction i only. We substitute (20) and the function Θ in the form
(17) into (15) and obtain

(21) Fx = (F · i) = 4πμA1 + O
(
R−1

0

)
,

where A1 can be determined from (17) by

A1 = − lim
R→∞

{
R2 Θ(R, ϑ)|ϑ=π

2

}
.
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Consequently, passing R0 to infinity in (21), we obtain (14).
Obviously, for the translation along any axis orthogonal to the z-axis with the

same velocity vx, the formula for the resisting force will be the same, in particular,
Fy = Fx.

2.2. Resisting torque.
Proposition 3 (resisting torque). The resisting torque for a rigid body of revo-

lution, slowly rotating in the fluid, is given by

(22) T = −μ

∫∫
S̃

(
[n × [r × ω]] + [n × u] − 1

μ [n × r]℘ + (r · ω) n
)
dS,

where ω = curlu is the vorticity, r is the radius vector, S̃ is an arbitrary smooth
surface encompassing the body, and n is the outer normal of S̃.

Proof. The proof is presented in Appendix B.
Let the body with the z-axis of revolution rotate in the fluid around the y-axis.

In this case, the velocity field of the fluid satisfies the boundary conditions (6) and,
as in the case of the asymmetric translation along the x-axis, can be represented in
the form (8).

Theorem 4 (resisting torque for asymmetric rotation). In terms of the solution
form (8), the resisting torque for the body having the z-axis of revolution and rotating
around the y-axis is given by

(23) Ty = 8πμ lim
r→∞

(
r2Ψ(r, z)

∣∣
z=0

)
.

Proof. As in the proof of Theorem 2, let S̃ be the sphere of large radius R0,
and let (R, ϑ, ϕ) be the system of the spherical coordinates. For S̃, we have dS =
R2

0 sinϑ dϑ dϕ, r = R0eR, and n = eR, and thus, (22) reduces to

(24) T = −μ

∫ 2π

0

∫ π

0

(2R0 (eR · ω) eR −R0 ω + [eR × u])R2
0 sinϑ dϑ dϕ.

In the case of the asymmetric rotation around the y-axis, the resisting torque has
the component in the direction j only. Then, substituting (16), (17), and (20) into
(24) and using (19), we obtain

(25) Ty = (T · j) = −8πμD1 + O
(
R−1

0

)
,

where D1 can be determined from (17) by

D1 = − lim
R→∞

{
R2Ψ(R, ϑ)

∣∣
ϑ=π

2

}
.

Consequently, passing R0 to infinity in (25), we obtain (23).
Obviously, for the rotation around any axis orthogonal to the z-axis with the

same angular velocity �y, the formula for the resisting torque will be the same, in
particular, Tx = Ty.

3. Fredholm integral equation for asymmetric motion of a rigid spindle-
shaped body. Let (ξ, η, ϕ) be a system of bispherical coordinates, in which the
angular coordinate ϕ coincides with the one in the cylindrical coordinates (r, ϕ, z)
and coordinates ξ and η are related to r and z by

(26) r = c
sin η

cosh ξ − cos η
, z = c

sinh ξ

cosh ξ − cos η
,

−∞ < ξ < ∞,
0 ≤ η ≤ π,
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Fig. 1. The bispherical coordinates and spindle-shaped body.

where c is a metric parameter of the bispherical coordinates.
The spindle-shaped body is the body of revolution whose surface S is formed

by rotating a circle arc around the z-axis2 and can be described in the bispherical
coordinates by fixing the coordinate η, i.e., η = η0 (see Figure 1). For η0 = π

2 , the
surface of the body forms a sphere, and for η0 < π

2 and η0 > π
2 , the body’s shape

resembles an “apple” and “lemon,” respectively.
For the boundary conditions (5) and (6), the velocity field u can be represented

by (8), where the functions Θ , Υ , Φ, and Ψ satisfy (9) and (10). For convenience,
we denote

(27) f1 =
(
u(1)
r − u(1)

ϕ

)∣∣∣
η=η0

, f2 =
(
u(1)
r + u(1)

ϕ

)∣∣∣
η=η0

, f3 = u(1)
z

∣∣∣
η=η0

,

and reformulate (5) and (6) for Θ , Υ , Φ, and Ψ in a general form:

(28)
(

1
2 rΘ + Υ

)∣∣
η=η0

= f1,
(

1
2 rΘ + Φ

)∣∣
η=η0

= f2,
(

1
2 zΘ + Ψ

)∣∣
η=η0

= f3.

For the domain exterior to the spindle-shaped body, i.e., for η ∈ [0, η0], the
functions Θ , Υ , Φ, and Ψ can be represented in the bispherical coordinates by Fourier
integrals with respect to ξ:

(29) Θ(ξ, η) =
1

2πi

√
cosh ξ − cos η

∫ +i∞

−i∞
A(s) P

(1)

− 1
2+s

(cos η) e−ξsds, η ≤ η0,

(30) Υ(ξ, η) =
1

2πi

√
cosh ξ − cos η

∫ +i∞

−i∞
B(s) P− 1

2+s(cos η) e−ξsds, η ≤ η0,

(31) Φ(ξ, η) =
1

2πi

√
cosh ξ − cos η

∫ +i∞

−i∞
C(s) P

(2)

− 1
2+s

(cos η) e−ξsds, η ≤ η0,

2The z-axis is the axis of revolution of the spindle-shaped body.
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(32) Ψ(ξ, η) =
1

2πi

√
cosh ξ − cos η

∫ +i∞

−i∞
D(s) P

(1)

− 1
2+s

(cos η) e−ξsds, η ≤ η0,

where P
(k)

− 1
2+s

(cos η) is the associated Legendre function of the first kind of complex

index s and rank k, behaving as | Im s|k√
2π sin η

eη| Im s| at Re s = 0 and | Im s| → ∞; see [1].

For k = 0, the superscript is omitted.
We assume A(s), B(s), C(s), and D(s) in the corresponding Fourier integrals

(29)–(32) to be meromorphic functions in the strip |Re s| ≤ 1, vanishing as O(e−γ| Im s|)
at Re s = 0 and | Im s| → ∞, where γ > η0.

Substituting (29)–(32) into (10), where the derivatives of the functions Θ , Υ , Φ,
and Ψ in (10) are derived similarly to formulas (2.1) and (2.2) in [22], we obtain
(33)

c
((
s + 3

2

)
A(s + 1) + 5A(s) −

(
s− 3

2

)
A(s− 1)

)
+ B(s + 1) − 2B(s) + B(s− 1)

−
((
s + 5

2

) (
s + 3

2

)
C(s + 1) − 2

(
s2 − 9

4

)
C(s) +

(
s− 5

2

) (
s− 3

2

)
C(s− 1)

)
+ 2

((
s + 3

2

)
D(s + 1) − 2sD(s) +

(
s− 3

2

)
D(s− 1)

)
= 0,

under the condition that
(34)

Res
0≤Re s≤1

{((
s + 1

2

) (
cA(s) −

(
s + 3

2

)
C(s) + 2D(s)

)
+ B(s)

)
P

(1)

− 3
2+s

(cos η)
}

= 0,

Res
−1≤Re s≤0

{((
s− 1

2

) (
cA(s) +

(
s− 3

2

)
C(s) − 2D(s)

)
−B(s)

)
P

(1)
1
2+s

(cos η)
}

= 0,

which follow from the assumption that A(s), B(s), C(s), and D(s) may admit poles
in |Re s| ≤ 1.

Let A[−1,1] define the class of functions analytic in the strip |Re s| ≤ 1, i.e., with
no poles in |Re s| ≤ 1, and vanishing within the strip at |s| → ∞. Also, to simplify
further notation, let

(35) αk(s) = P
(k)

− 1
2+s

(cos η0), βk(s) = P
(k)

− 3
2+s

(cos η0), γk(s) = P
(k)
1
2+s

(cos η0).

We introduce a new function X(s) related to Θ(ξ, η0) by the complex Fourier
transform:

(36) X(s) =
1

2

∫ ∞

−∞

Θ(ξ, η0) eξs

(cosh ξ − cos η0)
3
2

dξ, s ∈ C,

(37) Θ(ξ, η0) =
1

πi
(cosh ξ − cos η0)

3
2

∫ +i∞

−i∞
X(s) e−ξsds.

The critical condition for the rest of the analysis is to consider that X(s) ∈ A[−1,1].
As will be shown in the end of this section, this condition holds true for the spindle-
shaped body with η0 < 2.103.

Since Θ(ξ, η0) is the boundary value for the function Θ(ξ, η), we obtain from (29)
that
(38)

A(s) =
1

α1(s)

∫ ∞

−∞

Θ(ξ, η0) eξs dξ√
cosh ξ − cos η0

=
1

α1(s)
(X(s + 1) − 2X(s) cos η0 + X(s− 1)) .
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Similarly, from the boundary conditions (28) and representations (30), (31), and (32),
we can express the functions B(s), C(s), and D(s) via X(s):

(39)

B(s) =
1

α0(s)
(F1(s) − cX(s) sin η0) ,

C(s) =
1

α2(s)
(F2(s) − cX(s) sin η0) ,

D(s) =
1

α1(s)

(
F3(s) − c

2 (X(s + 1) −X(s− 1))
)
,

where

(40) Fj(s) =

∫ ∞

−∞

fj(ξ) eξs√
cosh ξ − cos η0

dξ, j = 1, 2, 3.

With (38) and (39), equation (33) reduces to a so-called three-contour equation
for the function X(s):
(41)(

sin η0

((
s + 5

2

) (
s + 3

2

)
γ2(s)

− 1

γ0(s)

)
−

2
(
s + 3

2

)
cos η0

γ1(s)
+

2
(
s + 5

2

)
α1(s)

)
X(s + 1)

+ 2

(
sin η0

(
1

α0(s)
−

(
s2 − 9

4

)
α2(s)

)
− 5 cos η0

α1(s)
+

(
s + 3

2

)
γ1(s)

−
(
s− 3

2

)
β1(s)

)
X(s)

+

(
sin η0

((
s− 5

2

) (
s− 3

2

)
β2(s)

− 1

β0(s)

)
+

2
(
s− 3

2

)
cos η0

β1(s)
−

2
(
s− 5

2

)
α1(s)

)
X(s− 1)

+ R1(s + 1) + R2(s) + R(s− 1) = 0,

where

(42)

R1(s) =
1

c

(
F1(s)

α0(s)
−

(
s + 1

2

) (
s + 3

2

)
F2(s)

α2(s)
+

2
(
s + 1

2

)
F3(s)

α1(s)

)
,

R2(s) = −2

c

(
F1(s)

α0(s)
−

(
s2 − 9

4

)
F2(s)

α2(s)
+

2sF3(s)

α1(s)

)
,

R3(s) =
1

c

(
F1(s)

α0(s)
−

(
s− 1

2

) (
s− 3

2

)
F2(s)

α2(s)
+

2
(
s− 1

2

)
F3(s)

α1(s)

)
.

The crucial point in the analysis of (41) is to notice that the coefficients at X(s+1)

and X(s−1) can be represented as D̃(s+1)
/
α1(s) and D̃(s−1)

/
α1(s), respectively,3

where the function D̃(s) is defined by

(43) D̃(s) =
D(s)

α0(s)α1(s)α2(s)

with
(44)

D(s) = 2α3
1(s) cos2 η0 +

(
s2 − 1

4

)2
α3

0(s) sin[2η0] + 2
(
s2 − 1

4

)
α2

0(s)α1(s) cos[2η0]

+ 2
((
s2 − 5

4

)
sin2 η0 − 2

)
α0(s)α

2
1(s) cot η0.

3Noticing this, in fact, requires a great deal of manipulation.
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In terms of D̃(s), the condition (34) is reformulated as

(45)

Res
0≤Re s≤1

⎧⎨
⎩

⎛
⎝2

(
s + 1

2

)
X(s− 1)

α1(s)
+

(
D̃(s) − 2

(
s + 3

2

))
X(s)

β1(s)
+ R1(s)

⎞
⎠

× P
(1)

− 3
2+s

(cos η)

⎫⎬
⎭ = 0,

Res
−1≤Re s≤0

⎧⎨
⎩

⎛
⎝−

2
(
s− 1

2

)
X(s + 1)

α1(s)
+

(
D̃(s) + 2

(
s− 3

2

))
X(s)

γ1(s)
+ R3(s)

⎞
⎠

× P
(1)
1
2+s

(cos η)

⎫⎬
⎭ = 0,

and the three-contour equation (41) takes the form

(46)

D̃(s + 1)X(s + 1) +
2K(s)X(s)

α0(s)α2(s)β1(s)γ1(s)
+ D̃(s− 1)X(s− 1) = F(s), Re s = 0,

where

K(s) = (β1(s) + γ1(s))
(
3α0(s)α1(s)α2(s) − 1

2 D(s)
)

+ 3α0(s)β1(s)γ1(s) (α1(s) sin η0 − 2α2(s) cos η0)

and

(47) F(s) = −α1(s) (R1(s + 1) + R2(s) + R3(s− 1)) .

Now we analyze the condition (45) provided that X(s) is analytic in the strip
|Re s| ≤ 1. Note that (45) holds true if each term in the left-hand sides of equations
(45) is analytic in the corresponding strip (0 ≤ Re s ≤ 1 or −1 ≤ Re s ≤ 0). However,
the converse statement is not correct.

1. We begin with the first terms in the left-hand sides of (45).
(i) The analyticity of X(s) in |Re s| ≤ 1 implies that the functions X(s− 1)
and X(s + 1) are analytic in 0 ≤ Re s ≤ 1 and −1 ≤ Re s ≤ 0, respectively.

(ii) The function α1(s) = P
(1)

− 1
2+s

(cos η0) (as well as α2(s) = P
(2)

− 1
2+s

(cos η0))

has only “generic”4 zeros s = ± 1
2 in |Re s| ≤ 1 for all η0 ∈ (0, π), which are,

however, compensated by zeros s = ± 1
2 of the multipliers P

(1)

− 3
2+s

(cos η) and

P
(1)
1
2+s

(cos η) in the strips 0 ≤ Re s ≤ 1 and −1 ≤ Re s ≤ 0, respectively.

2. We proceed to the second terms in the left-hand sides of (45).
(i) By the same reasoning as in item 1(ii), we conclude that

P
(1)

− 3
2+s

(cos η)
/
β1(s) and P

(1)
1
2+s

(cos η)
/
γ1(s)

4Zeros s = ± 1
2
, which α1(s), α2(s), and D(s) have for all η0 ∈ (0, π), are referred to as “generic,”

in contrast to “individual” zeros, which depend on η0.
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have no poles for all η0 ∈ (0, π) in 0 ≤ Re s ≤ 1 and −1 ≤ Re s ≤ 0,
respectively.
(ii) According to (43) and (44), poles of D̃(s) are determined by zeros of the
product α0(s)α1(s)α2(s). However, the only zeros s = ± 1

2 of α1(s) and α2(s)
in |Re s| ≤ 1 (see item 1(ii)) are compensated by zeros s = ± 1

2 of multiplicity
2 of D(s). Consequently, since the function α0(s) = P− 1

2+s(cos η0) has zeros

in |Re s| ≤ 1 for η0 ≥ 2.281 only, D̃(s) has no poles in |Re s| ≤ 1 for η0 <
2.281.

3. At last, the functions R1(s) and R3(s) in (45) may admit only simple poles
s = ± 1

2 in 0 ≤ Re s ≤ 1 and −1 ≤ Re s ≤ 0, respectively (because of the

corresponding multipliers P
(1)

− 3
2+s

(cos η) and P
(1)
1
2+s

(cos η)). This condition will

be verified in sections 4 and 5 for the problems of asymmetric translation and
rotation, respectively.

Concluding the analysis of (45), we assume that η0 < 2.281 and require the func-
tions R1(s) and R3(s) to admit simple poles s = ± 1

2 in |Re s| ≤ 1 only. Consequently,
these conditions along with the analyticity of X(s) in |Re s| ≤ 1 are sufficient for (45)
to hold true (however, they may not be necessary).

Finally, introducing a new function

(48) X̃(s) = D̃(s)X(s)

and denoting

(49) K̃(s) =
α1(s)

β1(s)γ1(s)

K(s)

D(s)
,

we obtain

(50) X̃(s + 1) + 2K̃(s)X̃(s) + X̃(s− 1) = F(s), Re s = 0.

To solve (50), we first need to determine a class of functions for X̃(s). The

condition η0 < 2.281 guarantees that D̃(s) is analytic in |Re s| ≤ 1 (see item 2(ii) in

the analysis of (45)), and consequently, the analyticity of D̃(s) and X(s) in |Re s| ≤ 1

implies that X̃(s), defined by (48), is analytic in |Re s| ≤ 1. Moreover, from (43) and

the asymptotic behavior of αk(s) for k = 0, 1 and 2, it follows that D̃(s) → 2 sin2 η0 at
Re s = 0 and | Im s| → ∞, which, along with X(s) → 0 at Re s = 0 and | Im s| → ∞,

results in having X̃(s) → 0 at Re s = 0 and | Im s| → ∞. Thus, we conclude that

X(s) ∈ A[−1,1] and η0 < 2.281 =⇒ X̃(s) ∈ A[−1,1].

We will seek to find a solution to the three-contour equation (50) in the class
A[−1,1]. Although obtaining a closed-form solution to (50) is still an open issue, (50)
can be reduced to a Fredholm integral equation of the second kind for the function

(51) H(s) = X̃(s + 1) + X̃(s− 1).

Provided that X̃(s) ∈ A[−1,1], we apply the complex Fourier transform to (51) and
obtain ∫ +i∞

−i∞
H(τ) eτ t dτ = 2 cosh t

∫ +i∞

−i∞
X̃(τ) eτ t dτ,
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whence X̃(s) is expressed via H(s) by the inverse Fourier transform:

(52) X̃(s) =
1

4πi

∫ +i∞

−i∞

(∫ ∞

−∞

e(τ−s) t

cosh t
dt

)
H(τ) dτ =

1

4i

∫ +i∞

−i∞

H(τ) dτ

cos
[
π
2 (τ − s)

] .
To show that X̃, determined by (52), is unique, we need to prove that (51), as

an equation with respect to X̃, has only zero homogeneous solution in the class of
functions analytic in the strip |Re s| ≤ 1 and vanishing within the strip at |s| → ∞.

Proposition 5. The equation X̃(s+ 1) + X̃(s− 1) = 0 has only zero solution in
the class A[−1,1].

Proof. This equation reduces to a Riemann boundary-value problem for an ana-
lytic function by the conformal mapping w = −i cot[πs/2] of the strip |Re s| ≤ 1 into
the complex plane w with the branch cut along the segment [−1, 1]; see Figure 2. The
lines s = −1 + iτ and s = 1 + iτ , τ ∈ R, correspond to the upper and lower banks
of the branch cut with the counterclockwise orientation as shown in Figure 2, and
infinite points of the strip |Re s| ≤ 1, i.e., |s| → ∞, correspond to the points w = ±1.

Fig. 2. The function w = −i cot[πs/2] maps the strip −1 ≤ Re s ≤ 1 of the complex plane s
into the complex plane w with the branch cut along the segment [−1, 1].

Let Y (w) = X̃(s); then Y +(t) = X̃(−1+iτ) and Y −(t) = X̃(1+iτ), τ ∈ R, are the
boundary values of Y (w) at the upper and lower banks of the branch cut, respectively.
Thus, the original equation reduces to Y +(t) = −Y −(t), t ∈ [−1, 1], which is the
Riemann boundary-value problem for determining the analytic function Y (w) in the
complex plane w with the branch cut along the segment [−1, 1]. An analytic function
that solves this problem and vanishes at w = ±1 is given by Y (w) =

√
1 − w2 Pn(w),

where Pn(w) is a polynomial of degree n to be determined from the behavior of Y (w)

at |w| → ∞; see [5]. But since X̃(s) is analytic at s = 0, the function Y (w) is bounded
at |w| → ∞, and, consequently, Pn(w) ≡ 0, and Y (w) is the zero function.

Thus, with (51) and (52), the three-contour equation (50) reduces to a Fredholm
integral equation of the second kind for H(s):

(53) H(s) +
K̃(s)

2i

∫ +i∞

−i∞

H(τ) dτ

cos
[
π
2 (τ − s)

] = F(s), Re s = 0.

The analytic function X̃(s) is determined in |Re s| ≤ 1 by (52), and its value at
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Table 1

First “individual” zero of D(s) for various η0.

η0 s0 η0 s0

π/12 20.33 7π/12 1.197
2π/12 10.19 8π/12 1.005
3π/12 6.817 2.103† 1.000
4π/12 5.142 9π/12 0.873
5π/12 2.153 10π/12 0.777
6π/12 1.5 11π/12 0.696

†For η0 ≥ 2.103, the first “individual” zero lies within the strip |Re s| ≤ 1.

the contour Re s = 0 is expressed from (53) by

(54) X̃(s) =
F(s) −H(s)

2K̃(s)
, Re s = 0.

Finally, it follows from (48), along with (54) and (49), that

(55) X(s) =
β1(s)γ1(s)

α1(s)

(F(s) −H(s))

2K(s)
, Re s = 0.

Substituting (55) into the inverse Fourier transform (37), we obtain Θ(ξ, η0).

Now, based on the obtained solution X̃(s), we can establish when X(s) is analytic

in |Re s| ≤ 1. The analyticity of the ratio X(s) = X̃(s)/D̃(s) is guaranteed by the

analyticity of X̃(s) and 1/D̃(s). Since both D(s) and the multiplier α1(s)α2(s) in the

denominator of D̃(s) have “generic” zeros s = ± 1
2 of multiplicity 2 that compensate

each other, poles of 1/D̃(s) are determined only by “individual” zeros of D(s). Table
1 presents the first “individual” zero of D(s) for various η0 (D(s) is an even function)
and shows that D(s) has no “individual” zero in the strip |Re s| ≤ 1 for η0 < 2.103.
Consequently, we conclude that

X̃(s) ∈ A[−1,1] and η0 < 2.103 =⇒ X(s) ∈ A[−1,1].

This means that the formula (55) is valid only for η0 < 2.103.
In the next sections, we will solve (53) for the asymmetric translation of the

spindle-shaped body along the x-axis and for the asymmetric rotation of the body
around the y-axis.

4. Asymmetric translation. In the case of the asymmetric translation of the
rigid spindle-shaped body in the fluid along the x-axis, the velocity field satisfies the
boundary conditions (2) and (5) and is represented in the form (8).

From (5) and (27), we have

f1 = 2vx, f2 = 0, f3 = 0.

To calculate Fourier integrals (40), we use the representation for the associated Leg-
endre function

(56) P
(k)

− 1
2+s

(cos η) =
(2k − 1)!!

2k
√

2π
cos[πs]

∫ ∞

−∞

(
sink η

)
eτs dτ

(cosh τ + cos η)
k+ 1

2

,
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where k ≥ 0 and (2k − 1)!! =
∏k

j=1(2j − 1); see [1]. For k = 0, we define (−1)!! = 1.
To simplify further notation, we denote

α−
0 (s) = P− 1

2+s(− cos η0), α−
1 (s) = P

(1)

− 1
2+s

(− cos η0).

Using (56), we have

F1(s) = vx
2
√

2π

cos[πs]
α−

1 (s), F2(s) = 0, F3(s) = 0,

and, consequently, it follows from (42) that

R1(s) = R3(s) =
vx
c

2
√

2π

cos[πs]

α−
1 (s)

α0(s)
.

For η0 < 2.103, the functions R1(s) and R3(s) are analytic in |Re s| ≤ 1 (zeros s = ± 1
2

of cos[πs] are compensated by those of α−
1 (s)), and, thus, condition (45) holds true.

Then, with the convolution relationship (see [1])

(57) α−
0 (s) α1(s) + α0(s) α

−
1 (s) =

2

π

cos[πs]

sin η0
,

we obtain from (42) and (47) that

(58) F(s) = −vx
c

4
√

2
α1(s) (2α1(s) sin η0 + α0(s) cos η0)(

s2 − 1
4

)
α0(s)β0(s)γ0(s)

.

Thus, the Fredholm integral equation (53) is solved for (58), and the function
Θ(ξ, η0) is determined by (37) with (55).

In the case of a sphere, i.e., η0 = π
2 , equation (53) has the closed-form solution

Hsphere(s) =
vx
c

6
√

2

P− 1
2+s(0)

,

and, consequently, we obtain

Xsphere(s) = −vx
c

√
2
(
s2 − 1

4

)
P

(1)

− 1
2+s

(0)
, Θsphere(ξ, η0)|η0=

π
2

=
vx
c

3

2 cosh ξ
,

and

Θsphere(r, z) =
3

2
vx c

r

(r2 + z2)
3
2

,

Υsphere(r, z) =
3

2
vx c

1√
r2 + z2

+
1

4
vx c

3 2z2 − r2

(r2 + z2)
5
2

,

Φsphere(r, z) = −3

4
vx c

3 r2

(r2 + z2)
5
2

,

Ψsphere(r, z) = −3

4
vx c

3 r z

(r2 + z2)
5
2

.
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Fig. 3. Asymmetric translation: the function c
vx

Θ(ξ, η0) for η0 = π
6
, π

3
, and π

2
(“apples”).

1 2 3 4 5
Ξ

0.5

1

1.5

2

2.5

3

3.5

Θ

Η0�
Π
����
2

Η0�
7 Π
���������
12

Η0�
2 Π
���������
3

Fig. 4. Asymmetric translation: the function c
vx

Θ(ξ, η0) for η0 = π
2
, 7π

12
, and 2π

3
(“lemons”).

The pressure ℘ and function Θ are related by (7). Figures 3 and 4 illustrate
c
vx

Θ(ξ, η0) as a function of ξ for η0 = π
6 , π

3 , π
2 , 7π

12 , and 2π
3 . Figures 5 and 6 show

epures of the normalized pressures, c
vxμ

℘ and c
2vxμ

℘, at the surface of the rigid

spindle-shaped body in the xz–half-plane (ϕ = 0) for η0 = π
3 (“apple”) and η0 = 7π

12
(“lemon”), respectively.

In the case of the asymmetric translation along the x-axis, the resisting force is
given by (14), which for the function Θ(ξ, η) in the form (29) with (38) reduces to

Fx = −2
√

2 iμc2
∫ +i∞

−i∞

(
s2 − 1

4

)
A(s) ds

= −2
√

2 iμc2
∫ +i∞

−i∞
X(s)

((
s− 3

2

) (
s− 1

2

)
β1(s)

− 2

(
s2 − 1

4

)
cos η0

α1(s)
+

(
s + 1

2

) (
s + 3

2

)
γ1(s)

)
ds,

where in obtaining the last integral, we used the condition that X(s) has no poles
within the strip |Re s| ≤ 1. This means that the above formula for Fx is valid only
for η0 < 2.103.

In the case of the axially symmetric translation of the spindle-shaped body along
the z-axis with the constant velocity vz (see [15, 23]), the resisting force has the
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z

Fig. 5. Asymmetric translation: epure of the normalized pressure c
vxμ

℘ at the surface of the

rigid spindle-shaped body in the xz–half-plane (ϕ = 0) for η0 = π
3

(“apple”). At a particular point
on the contour, the value of the function is depicted by the length of the outward normal line if the
value is positive and by the length of the inward normal line if the value is negative.
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Fig. 6. Asymmetric translation: epure of the normalized pressure c
2vxμ

℘ at the surface of the

rigid spindle-shaped body in the xz–half-plane (ϕ = 0) for η0 = 7π
12

(“lemon”).

component in the direction k only, i.e., Fz, which is determined by (see [23])

Fz = −4vz μ c i

∫ +i∞

−i∞

(
α2(s) sin η0

D0(s)
+

π α−
0 (s)

cos[πs]

)
ds

α0(s)
,

where D0(s) is the determinant of the axially symmetric translation problem:

D0(s) =
(
1 + cos2 η0

)
α0(s)α1(s) + 1

2 sin[2η0]
(
α2

1(s) +
(
s2 − 1

4

)
α2

0(s)
)
.
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Table 2

Normalized resisting forces, dz and dx, as functions of η0.

η0 dz dx = dy η0 dz dx = dy

0† 0.9346‡ 0.8434§ 6π/12 1 1
π/12 0.9365 0.8466 7π/12 1.038 1.084
2π/12 0.9405 0.8568 8π/12 1.100 1.213
3π/12 0.9475 0.8747 9π/12 1.209 −
4π/12 0.9585 0.9022 10π/12 1.430 −
5π/12 0.9751 0.9423 11π/12 2.067 −

†The case η0 = 0 corresponds to a closed torus (torus with no opening).
‡The value is reported in [19], while 0.9353 and 0.953 are reported in [4] and [18], respectively.
§The value is reported in [11].

Table 2 compares the normalized resisting forces dz = tan[η0/2]
6πμvzc

Fz and dx =
tan[η0/2]
6πμvxc

Fx for the spindle-shaped body for the axially symmetric and asymmetric

translations, respectively, where c cot[η0/2] determines the radius of the sphere in-
scribed into “lemon” (the body with η0 > π

2 ) or circumscribed about “apple” (the
body with η0 < π

2 ).

5. Asymmetric rotation. In the case of the asymmetric rotation of the rigid
spindle-shaped body in the fluid around the y-axis, the velocity field satisfies the
boundary conditions (2) and (6) and is represented in the form (8).

From (6) and (27), we have

f1 = �yc
2 sinh ξ

cosh ξ − cos η0
, f2 = 0, f3 = −�yc

sin η0

cosh ξ − cos η0
,

and using (56), we calculate Fourier integrals (40):

F1(s) = �y c
4
√

2π s

cos[πs]
α−

0 (s), F2(s) = 0, F3(s) = −�y c
2
√

2π

cos[πs]
α−

1 (s).

It follows from (42) that

R1(s) = �y
4
√

2π

cos[πs]

(
s α−

0 (s)

α0(s)
−

(
s + 1

2

)
α−

1 (s)

α1(s)

)
,

R3(s) = �y
4
√

2π

cos[πs]

(
s α−

0 (s)

α0(s)
−

(
s− 1

2

)
α−

1 (s)

α1(s)

)
.

For η0 < 2.103, the above functions R1(s) and R3(s) admit only simple poles s = ± 1
2

in the strip |Re s| ≤ 1, and consequently, the condition (45) holds true.
Then, with the convolution relationship (57), we obtain from (42) and (47) that

(59) F(s) = �y 8
√

2 s

(
α1(s) (α0(s) cos η0 − 2α1(s) sin η0)(

s2 − 1
4

)
α0(s)β0(s)γ0(s)

− 2α2(s) sin η0

β1(s)γ1(s)

)
.

Thus, the Fredholm integral equation (53) is solved for (59), and the function
Θ(ξ, η0) is determined by (37) with (55).

In the case of a sphere, i.e., η0 = π
2 , expression (59) reduces to zero. Thus,

Hsphere ≡ 0, Xsphere ≡ 0, and Θsphere ≡ 0, and the functions Υsphere, Φsphere, and
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Fig. 8. Asymmetric rotation: epures of the normalized pressure 1
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℘ at the surface of the

rigid spindle-shaped body in the xz–half-plane (ϕ = 0) for η0 = π
3

(“apple”) and η0 = 7π
12

(“lemon”).

Ψsphere take the form

Υsphere = �yc
3 2z

(r2 + z2)
3
2

, Φsphere ≡ 0, Ψsphere = −�yc
3 r

(r2 + z2)
3
2

.

As in the case of the asymmetric translation, the pressure ℘ and function Θ are
related by (7). Figure 7 illustrates Θ(ξ, η0) as a function of ξ for η0 = π

6 , π
3 , 5π

12 , 7π
12 ,

and 2π
3 . Figure 8 shows epures of the normalized pressure 1

2	yμ
℘ at the surface of
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the rigid spindle-shaped body in the xz–half-plane (ϕ = 0) for η0 = π
3 (“apple”) and

η0 = 7π
12 (“lemon”).

For the asymmetric rotation around the y-axis, the torque is represented by (23),
which for the function Ψ in the form (32) with (39) reduces to

Ty = 4
√

2 i μ c2
∫ +i∞

−i∞

(
s2 − 1

4

)
D(s) ds

= −16π�yμ c3 i

∫ +i∞

−i∞

(
s2 − 1

4

)
cos[πs]

α−
1 (s)

α1(s)
ds

− 4
√

2 i μ c3 sin η0

∫ +i∞

−i∞

s α2(s)

β1(s)γ1(s)
X(s) ds,

where in obtaining the last integral, as in the case of deriving the expression for Fx,
we used the condition that X(s) has no poles within the strip |Re s| ≤ 1. This means
that the above formula for Ty is valid only for η0 < 2.103.

In the case of the axially symmetric rotation of a body of revolution around
the z-axis with the constant angular velocity �z, the no-slip boundary condition for
the velocity field u is determined by u|S = [�z k × r er], which in component form
reduces to

ur|S = 0, uϕ|S = �z r, uz|S = 0.

The vector u that solves (1), (2), and the above boundary condition can be represented
by

u = Ω(r, z) eϕ,

where Ω satisfies Δ1Ω = 0 (see [8]). In this case, the resisting torque has the com-
ponent in the direction k only, i.e., Tz, and similarly to the derivation of the formula
(23) for Ty, it can be shown that

Tz = −8πμ lim
r→∞

(
r2Ω(r, z)

∣∣
z=0

)
,

which for the spindle-shaped body reduces to

Tz = −16π�zμ c3 i

∫ +i∞

−i∞

(
s2 − 1

4

)
cos[πs]

α−
1 (s)

α1(s)
ds.

Table 3 shows the normalized torques tz = − tan3[η0/2]
8πμ	zc3

Tz and ty = − tan3[η0/2]
8πμ	yc3

Ty

for the rigid spindle-shaped body for the axially symmetric and asymmetric rota-
tions, respectively, where c cot[η0/2] determines the radius of the sphere inscribed
into “lemon” (the body with η0 > π

2 ) or circumscribed about “apple” (the body with
η0 < π

2 ).

6. Conclusions. We have obtained exact solutions to the 3D Stokes flow prob-
lems for asymmetric translation and rotation of a rigid spindle-shaped body. Rep-
resenting the velocity field in the form (3), we have reduced both problems to the
three-contour equation (46) for the analytic function X(s), related to the density
in the Fourier integral representing the pressure. The equation has been obtained
under the condition η0 < 2.103 that guarantees the analyticity of X(s) in the strip
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Table 3

Normalized resisting torques, tz and ty, as functions of η0.

η0 tz ty = tx η0 tz ty = tx

0† 0.7969‡ 0.6498§ 6π/12 1 1
π/12 0.8010 0.6551 7π/12 1.113 1.293
2π/12 0.8140 0.6716 8π/12 1.292 1.912
3π/12 0.8370 0.7026 9π/12 1.601 −
4π/12 0.8724 0.7553 10π/12 2.241 −
5π/12 0.9242 0.8443 11π/12 4.219 −

†The case η0 = 0 corresponds to a closed torus (torus with no opening).
‡The value is reported in [4].
§The value is reported in [11].

|Re s| ≤ 1. This condition follows from the fact that the function D̃(s) has zeros in
|Re s| ≤ 1 for η0 ≥ 2.103. Then, we have reduced (46) to the three-contour equation

(50) with the unit coefficients at X̃(s+ 1) and X̃(s− 1) and finally have reduced the
latter to the Fredholm integral equation (53) by the complex Fourier transform. In
the case of a sphere, i.e., η0 = π

2 , the integral equation has a closed-form solution for
the asymmetric translation and has a zero solution for the asymmetric rotation.

We have derived formulas for the resisting force, F, and torque, T, experienced by
a rigid body of revolution in arbitrary slow motion in a viscous incompressible fluid,
and have shown that for the asymmetric translation along the x-axis and asymmetric
rotation around the y-axis, Fx and Ty can be expressed via the limits of the functions
Θ(r, z) and Ψ(r, z) at infinity. We have computed Fx and Ty for the corresponding
asymmetric motions of the spindle-shaped body for various values of η0 (η0 < 2.103)
and compared them with Fz and Tz for the axially symmetric translation and rotation
of the body, respectively. In the case of “apple” (η0 < π

2 ), Fx < Fz and Ty < Tz, and
in the case of “lemon” (η0 > π

2 ), Fx > Fz and Ty > Tz; see Tables 2 and 3. Also,
Fx and Ty for the spindle-shaped body are in accordance with Fx and Ty for a closed
torus.

For both problems of asymmetric motion, we have calculated the pressure at the
surface of the spindle-shaped body in the xz–half-plane (ϕ = 0) for various values of
η0 (η0 < 2.103). It follows from (37) that the function Θ(ξ, η0), associated with the
pressure, is infinite at ξ → ±∞ when X(s) has a pole (except 1

2 ) with the real part
less than 3

2 . Since the poles of X(s) are determined by zeros of D(s), we conclude
based on Table 1 that in both problems, Θ(ξ, η0) → 0 for “apples” (η0 < π

2 ), and
|Θ(ξ, η0)| → ∞ for “lemons” (η0 > π

2 ) when ξ → ±∞. This conclusion is supported
by numerical calculations; see Figures 3–8. Notably, in the case of axially symmetric
translation, the pressure at the surface at ξ → ±∞ is finite for η0 ≤ 2π

3 and is infinite
for η0 > 2π

3 ; see [23].
Obtaining exact solutions for the asymmetric Stokes flow problems for the rigid

spindle-shaped body in the case η0 ≥ 2.103 as well as calculating the corresponding
resisting force and torque is still an open issue.

Appendix A. Proof of Proposition 1.
This section proves Proposition 1.
Let (r, ϕ, z) be a system of cylindrical coordinates with the basis (er, eϕ,k), in

which the z-axis determines the body’s axis of revolution, and let n = nr er + nz k
define the outer normal to the body’s surface S, where nr = ∂r

∂n and nz = ∂z
∂n .

By definition, the force, exerted by the fluid on the elementary surface dS with



ASYMMETRIC CREEPING MOTION OF A RIGID SPINDLE 481

the normal n, is given by

(60) Pn = 2μ (n · grad)u + μ [n × curlu] − ℘ n

(see [19]), and the total force is defined as the integral over the body’s surface S:

(61) F =

∫∫
S

(2μ (n · grad)u + μ [n × curlu] − ℘ n) dS.

Let (s, ϕ, n) be a characteristic coordinate system with the right-handed orthog-
onal basis (s, eϕ, n). Then, in (s, ϕ, n), the operators grad℘, div u, and curlu take
the form

(62)

grad℘ = s
∂℘

∂s
+ eϕ

1

r

∂℘

∂ϕ
+ n

∂℘

∂n
,

div u =
1

r

∂

∂s
(r us) +

1

r

∂

∂ϕ
uϕ +

1

r

∂

∂n
(r un) ,

curlu = s

(
1

r

∂

∂ϕ
un − 1

r

∂

∂n
(r uϕ)

)
+ eϕ

(
∂

∂n
us −

∂

∂s
un

)

+ n

(
1

r

∂

∂s
(r uϕ) − 1

r

∂

∂ϕ
us

)
,

where (us, uϕ, un) are the components of u in (s, eϕ, n); see [7]. The derivatives ∂
∂s ,

∂
∂ϕ , and ∂

∂n of the unit vectors s, eϕ, and n are given by

(63)

∂
∂s s = 0, ∂

∂ϕ s = ∂r
∂s eϕ,

∂
∂n s = 0,

∂
∂s eϕ = 0, ∂

∂ϕ eϕ = −∂r
∂s s − ∂r

∂n n, ∂
∂n eϕ = 0,

∂
∂s n = 0, ∂

∂ϕ n = ∂r
∂n eϕ,

∂
∂n n = 0.

It can be shown that

(64) (n · grad)u = − [n × curlu] +
1

r

(
∂

∂ϕ
[u × s] − ∂

∂s
(r [u × eϕ])

)
.

Indeed, using the formula

grad(a · b) = (a · grad) b + (b · grad) a + [a × curl b] + [b × curl a]

for a = n and b = u, along with the identity curl n = 0, we obtain

(65) (n · grad)u = − [n × curlu] + grad(n · u) − (u · grad) n.

Then, using (62) and (63) and the fact that divu = 0, we have
(66)

∂

∂ϕ
[u × s] − ∂

∂s
(r [u × eϕ]) =

∂

∂ϕ
(un eϕ − uϕ n) +

∂

∂s
(r (un s − us n))

=
∂un

∂ϕ
eϕ − ∂uϕ

∂ϕ
n − un

(
∂r

∂s
s +

∂r

∂n
n

)
− uϕ

∂r

∂n
eϕ

+
∂

∂s
(run) s − ∂

∂s
(rus) n

= r
∂un

∂s
s +

∂un

∂ϕ
eϕ + r

∂un

∂n
n − uϕ

∂r

∂n
eϕ

≡ r (grad(n · u) − (u · grad) n) .
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The relationship (64) follows from (66) and (65).
Let � denote the contour of the surface S in the rz–half-plane. If � is a closed curve

with no intersections, e.g., the body is a torus, then obviously
∫∫

S
1
r

∂
∂s (r [u × eϕ]) dS =

0, where dS = r ds dϕ. Otherwise, since the body is bounded, � intersects the z-axis
at least twice. Assuming that s varies from the first intersection of the contour � with
the z-axis to the last one, and having that at all the intersections r = 0, we again
obtain

∫∫
S

1
r

∂
∂s (r [u × eϕ]) dS = 0. Consequently, integrating (64) over the surface S

with dS = r ds dϕ, we have

(67)

∫∫
S

(n · grad)u dS = −
∫∫

S

[n × curlu] dS.

With (67) and the notation ω = curlu, the resisting force (61) reduces to

(68) F = −
∫∫

S

(μ [n × ω] + ℘ n) dS.

Finally, let S̃ be an arbitrary smooth surface encompassing the body, and let V
be the volume between the surfaces S and S̃ (n will denote the outer normal for the
corresponding surface). The Stokes equations (1) can be rewritten as

(69) grad℘ = −μ curl (curlu) , div u = 0.

Integrating the first equation in (69) over the volume V and using Gauss’s theorem,
we obtain∫∫∫

V

(μ curlω + grad℘) dV =

∫∫
S̃

(μ [n × ω] + ℘ n) dS−
∫∫

S

(μ [n × ω] + ℘ n) dS = 0,

which implies the equivalence of (68) and (13), and, thus, the proposition is proved.

Appendix B. Proof of Proposition 3.
This section proves Proposition 3.
As in Appendix A, let (r, ϕ, z) and (s, ϕ, n) be the systems of the cylindrical and

characteristic coordinates, respectively, and let the z-axis coincide with the body’s
axis of revolution.

By definition, the resultant torque, exerted on the body, is given by the integral
over the body’s surface S:

(70) T =

∫∫
S

[r × Pn] dS =

∫∫
S

[r × (2μ (n · grad)u + μ [n × curlu] − ℘ n)] dS,

where r = r er + z k is the radius vector and Pn is determined by (60).
Producing the vectorial product of (64) with r, we obtain

(71)

[r × (n · grad)u] = − [r × [n × curlu]] +
1

r

[
r ×

(
∂

∂ϕ
[u × s] − ∂

∂s
(r [u × eϕ])

)]
.

With the relationships ∂r

∂ϕ = r eϑ and ∂r

∂s = ∂r
∂s er + ∂z

∂s k ≡ s, the second term in the

right-hand side in (71) can be represented by

1

r

(
∂

∂ϕ
([r × [u × s]]) − ∂

∂s
(r [r × [u × eϕ]])

)
− ([eϕ × [u × s]] − [s × [u × eϕ]]) ,
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where

[eϕ × [u × s]] − [s × [u × eϕ]] = −s (u · eϕ) + eϕ (u · s)
= [n × eϕ] (u · eϕ) + [n × s] (u · s) = [n × u] .

With the last two formulas, the relationship (71) takes the from

(72)

[r × (n · grad)u] = − [r × [n × curlu]] − [n × u]

+
1

r

(
∂

∂ϕ
([r × [u × s]]) − ∂

∂s
(r [r × [u × eϕ]])

)
.

By the same reasoning as for integrating (64) over the body’s surface S (see Appendix
A), we obtain

(73)

∫∫
S

[r × (n · grad)u] dS = −
∫∫

S

([r × [n × curlu]] + [n × u]) dS.

With (73), the torque (70) reduces to

(74) T = −μ

∫∫
S

(
[r × [n × curlu]] + 2 [n × u] + 1

μ [r × n]℘
)
dS.

Then, for the first equation in (69) and for an arbitrary volume V , we can write

(75)

∫∫∫
V

[
r ×

(
curl (curlu) + 1

μ grad℘
)]

dV = 0.

Summing up two formulas

curl[a × b] = (b · grad) a − (a · grad) b + a div b − b div a,

grad (a · b) = (a · grad) b + (b · grad) a + [a × curl b] + [b × curl a] ,

which hold true for arbitrary a and b, and rearranging terms, we obtain

[a × curl b] = curl[a × b] + grad (a · b) − 2 (b · grad) a(76)

− [b × curl a] − a div b + b div a.

Substituting a = r and b = curlu into (76) and using the identities

curl r = 0, div r = 3, (b · grad) r = b,

we have

(77) [r × curl (curlu)] = curl ([r × curlu] + u) + grad (r · curlu) .

Let V be the volume between the body’s surface S and an arbitrary smooth
surface S̃ encompassing the body, and let n be the outer normal to these surfaces.
Then, with (77) and the relationship

[r × grad℘] ≡ ℘ curl r − curl (r℘) = − curl (r℘) ,

(75) takes the form∫∫∫
V

[
r ×

(
curl (curlu) + 1

μ grad℘
)]

dV

=

∫∫∫
V

(
curl

(
[r × curlu] + u − 1

μ r℘
)

+ grad (r · curlu)
)
dV

=

∫∫
S, S̃

([
n ×

(
[r × curlu] + u − 1

μ r℘
)]

+ (r · curlu) n
)
dS = 0,(78)
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where the surface integral, being the difference between the integrals over the surfaces
S̃ and S, respectively, follows from Gauss’s theorem.

Then, for the integrand in (78), we have

(79) [n × [r × curlu]] + (r · curlu) n = [r × [n × curlu]] + (n · curlu) r,

and with the relationships

∂r

∂s
=

∂z

∂n
,

∂r

∂n
= −∂z

∂s
,

and

∂r

∂s
=

∂r

∂s
er +

∂z

∂s
eϕ ≡ s,

∂r

∂ϕ
= r eϕ, s = −[n × eϕ],

we obtain

(80)

(n · curlu) r =
1

r

(
∂

∂s
(r uϕ) +

∂

∂ϕ

(
uz

∂r

∂n
− ur

∂z

∂n

))
r

=
1

r

(
∂

∂s
{(r uϕ) r} +

∂

∂ϕ

{(
uz

∂r

∂n
− ur

∂z

∂n

)
r

})

−
(
uϕ s +

(
uz

∂r

∂n
− ur

∂z

∂n

)
eϕ

)

=
1

r

(
∂

∂s
{(r uϕ) r} +

∂

∂ϕ

{(
uz

∂r

∂n
− ur

∂z

∂n

)
r

})
+ [n × u] .

With (79) and (80), the surface integral over S in (78) takes the form

(81)

∫∫
S

([
n ×

(
[r × curlu] + u − 1

μ r℘
)]

+ (r · curlu) n
)
dS

=

∫∫
S

(
[r × [n × curlu]] + 2 [n × u] + 1

μ [r × n]℘
)
dS

=

∫∫
S̃

([
n ×

(
[r × curlu] + u − 1

μ r℘
)]

+ (r · curlu) n
)
dS.

Consequently, (22) follows from (74) and (81), and the proposition is proved.
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ON THE EXISTENCE OF SMALL PERIODIC SOLUTIONS FOR THE
2-DIMENSIONAL INVERTED PENDULUM ON A CART∗

LUCA CONSOLINI† AND MARIO TOSQUES‡

Abstract. This paper studies the problem of controlling an inverted pendulum on a cart which
has to track a given curve lying on a vertical plane in such a way that the pendulum rod does not
overturn. The problem is reduced to finding sufficiently small T -periodic solutions for a special type
of mathematical forced pendulum equation.

Key words. inverted pendulum, periodic solutions, tracking control
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Introduction. This article studies the existence of T -periodic solutions for the
equation

(0.1) dθ̈ = g sin θ +

〈(
cos(θ)
sin(θ)

)
, γ̈(t)

〉
,

which comes out from studying the problem of controlling an inverted pendulum on a
cart which has to track a given curve lying on a vertical plane in such a way that the
pendulum rod does not overturn (see Figure 1.1); in control theory, (0.1) is usually
referred to as the system internal dynamics.

It is shown that there is a constant k0 � 0.2672, independent of the length of the
pendulum rod, such that if ‖γ̈‖ ≤ k0g, where g is the gravity acceleration, then there
exist suitable initial conditions such that the functions θ(t), θ̇(t) are T -periodic and
sufficiently small; in fact, they are uniformly bounded by the maximum norm of the
acceleration of the reference trajectory.

The inverted pendulum on a cart is an important benchmark for nonlinear control
techniques since it is a nonminimum phase problem and has been widely analyzed in
various problems, under different points of view (see, for instance, [2], [3], [10], [6],
[1], [8], [5].)

Equation (0.1) is related to the mathematical forced pendulum equation

θ̈ = sin θ + h(t),

which has been intensively studied in literature (see, for instance, [7] for a detailed
survey). Many papers are focused on the existence and the multiplicity of periodic
solutions (see, for example, [4], [9], [11]). Differently from these articles, this paper
shows the existence of a specific sufficiently small periodic solution (in such a way that
the pendulum does not overturn), gives precise bounds on its norm, and proposes a
method for computing it. It is shown that the bounding term is directly proportional
to the maximum norm of the acceleration of the reference trajectory.
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m

M

(fx, fy)
T

γ

P = (x, y)T

θ

Fig. 1.1. Inverted pendulum on a cart constrained on a curve.

In the development of the proof, the problem of finding the right initial state
is reformulated as a fixed point problem of a suitable Poincaré map associated to
the internal dynamic given by (0.1). The main idea is the following: The inverted
pendulum has an unstable equilibrium when the position of the cart is fixed at the
origin and the pendulum rod is vertical. This unstable equilibrium corresponds to
the null solution of (0.1) which is, trivially, a periodic bounded solution of the zero
dynamics. Since any bounded desired reference trajectory may be prolongated to a
periodic trajectory, γ may be seen as the value that the family of periodic curves {sγ}
assumes at s = 1. By prolongating the trivial null solution with a technique based
on the implicit function theorem, we obtain a family of bounded periodic solutions,
parameterized by s ∈ [0, 1]. The desired bounded solution is obtained by taking s = 1.

The paper is divided as follows. Section 1 presents the problem and section 2 the
main results, section 3 contains the proof of the main theorem, and section 4 presents
a computational method to drive an inverted pendulum along a given curve which is
applied to a periodic spline.

The following notations will be used: For all a, b ∈ R, a ∧ b = min{a, b},
a ∨ b = max{a, b}; for all θ ∈ [0, 2π[, τ(θ) = (cos θ, sin θ)T ; for all x ∈ R

2,
arg x = θ, where θ ∈ [0, 2π[ is such that x = ‖x‖τ(θ); for all x = (x1, . . . , xn)T ,
y = (y1, . . . , yn)T ∈ R

n, 〈x , y〉 =
∑n

i=1 xiyi, ‖x‖ =
√

〈x , x〉; for all f : [0, T ] → R
2,

‖f‖∞ = supx∈[0,T ]{‖f(x)‖}.
1. Problem formulation. Consider an inverted pendulum of mass m linked

to a moving cart of mass M through a massless rod of length d; in Figure 1.1 the
pendulum is represented as the smaller sphere and the cart as the bigger one. It
is supposed that during the motion the control force f(t) =

(
fx(t)
fy(t)

)
is applied on it.

Let q = (x, y, θ) ∈ R
3 be the vector of generalized coordinates, where (x, y) are the

coordinates of the center of mass of the moving cart and θ is the angle between the
rod and the vertical axis. Given a curve γ, we want to find a control force such that,
starting from γ(0), the point P can track all of the curve γ and the rod remains close
to the vertical. To find the system dynamics, let L = T −U be the Lagrangian, where

T =
1

2
q̇THq̇

is the kinetic energy, the inertia matrix H is given by

H(q) =

⎛
⎝ M + m 0 −md cos θ

0 M + m −md sin θ
−md cos θ −md sin θ md2

⎞
⎠ ,
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and the potential energy U is given by

U(q) = (M + m)gy + mgd cos θ.

The dynamic equations are derived through the Euler–Lagrange equation

d

dt

∂L

∂q̇
− ∂L

∂q
= τ,

where τ = (fx, fy, 0)T is the vector of generalized forces. The resulting dynamical

system has 6 states (x, ẋ, y, ẏ, θ, θ̇) and is given by

(1.1)

⎧⎪⎪⎨
⎪⎪⎩

(M + m)ẍ = md(θ̈ cos θ + θ̇2 sin θ) + fx,

(M + m)ÿ = md(θ̈ sin θ + θ̇2 cos θ) − (M + m)g + fy,

dθ̈ = g sin θ +

〈(
ẍ
ÿ

)
,

(
cos θ
sin θ

)〉
.

Then let γ = (γ1, γ2) ∈ C2([0, T ],R2) be a curve, and if θ is a solution of system

(1.2)

⎧⎪⎪⎨
⎪⎪⎩

θ̈ = d−1g sin θ + d−1

〈
γ̈ ,

(
cos θ
sin θ

)〉
,

θ(0) = θ0,

θ̇(0) = θ̇0,

the control force f given by

(1.3)

{
fx = (M + m)γ̈1 −md(θ̈ cos θ + θ̇2 sin θ),

fy = (M + m)γ̈2 −md(θ̈ sin θ + θ̇2 cos θ) + (M + m)g

drives point P along all of the curve γ; that is, the solution of system (1.1), with the
initial conditions (x(0), ẋ(0))T = γ(0), (y(0), ẏ(0))T = γ̇(0), (θ(0), θ̇(0)) = (θ0, θ̇0),
has the property that (x(t), y(t))T = γ(t), for all t ∈ [0, T ]. From these remarks, it
follows that our problem is solvable if it is possible to find a suitable initial condition
(θ0, θ̇0) such that the solution (θ, θ̇) of (1.2) (which is usually referred to as the
internal dynamic of the problem) remains uniformly small. Theorem 2.3 exhibits a
geometric property on γ for the existence of an initial condition (θ0, θ̇0) for which
there exists a periodic solution of system (1.2), which remains uniformly bounded in
terms of ‖γ̈‖∞.

2. The main results. The following theorem gives an answer to our problem.
Theorem 2.1 (exact tracking). There exist positive constants k0 ≥ 0.2672 and

ω0 ≤ 1.4302 rad, independent of d and g, such that for any curve γ ∈ C2([0, T ],R2)
with

(2.1) ‖γ̈‖∞ ≤ k0g

there exist an initial condition (θ0, θ̇0)
T and a control force f ∈ C0([0, T ],R2) such

that the solution of (1.1) with initial conditions (x(0), y(0))T = γ(0), (ẋ(0), ẏ(0))T =
γ̇(0), (θ(0), θ̇(0)) = (θ0, θ̇0) satisfies the following properties, for all t ∈ [0, T ]:

(2.2)

(x(t), y(t))T = γ(t),

|θ(t)| ≤ ω0

k0g
‖γ̈‖∞,

|θ̇(t)| ≤ (1 + k0)
2

g(cosω0 − k)3
‖γ̈‖∞.
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Fig. 2.1. Function ω(k).

In other words the curve is exactly tracked and the internal dynamics of the inverted
pendulum remain bounded.

Proof. It follows directly from Theorem 2.3, by the previous considerations, since
γ can be always considered the restriction on [0, T ] of a C2-periodic curve.

The following corollary states that it is always possible to find a reparameter-
ization of a regular path γ that allows it to be followed with ‖(θ, θ̇)‖∞ arbitrarily
small.

Corollary 2.2 (exact path-following). Let γ̃ ∈ C2([0, Λ],R2) be an arc-length
parameterized curve (that is, ‖ ˙̃γ(λ)‖ = 1). For any σ > 0 there exist a bijection λ(t) ∈
C2([0, T ], [0,Λ]), an initial condition (θ0, θ̇0)

T , and a control force f ∈ C0([0, T ],R2)
such that the solution of problem (1.1) with initial conditions (x(0), y(0))T = γ(0),

(ẋ(0), ẏ(0))T = d(γ̃◦λ)
dt (0), (θ(0), θ̇(0)) = (θ0, θ̇0) satisfies the following properties for

all t ∈ [0, T ]:

(x(t), y(t))T = γ̃(λ(t)), ‖(θ(t), θ̇(t))T ‖ ≤ σ.

In other words, for any arbitrary small constant σ, the exact path-following problem
can always be solved by keeping the internal dynamics bounded by σ.

Proof. Set γ = γ̃ ◦ λ, where λ(t) is a C2([0, T ], [0, Λ]) bijection; then

‖γ̈(t)‖ =

√
λ̈2 + (κ(λ(t))λ̇2(t))2,

where κ(λ) = d
dλ arg( ˙̃γ(λ)) is the curvature of γ̃(λ). Note that λ̈(t) is the linear ac-

celeration, and κ(λ)λ̇2 is the centripetal acceleration. Then the results follow directly
from Theorem 2.1, choosing the reparameterization λ(t) in a suitable way.

Theorem 2.3 (main theorem). There exist k̄ > 0 and a continuous strictly
increasing function ω : [0, k̄[→ [0, π

2 ], with ω(0) = 0 (see Figure 2.1), such that, for
any k ∈ [0, k̄[, any d > 0, and any periodic curve γ ∈ C2(R, R

2) of period T with

(2.3) ‖γ̈||∞ ≤ kg,
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there exists an initial condition (θ0, θ̇0)
T such that the solution of system

(2.4)

⎧⎪⎪⎨
⎪⎪⎩

θ̈ = d−1g sin θ + d−1

〈
γ̈ ,

(
cos θ
sin θ

)〉
,

θ(0) = θ0,

θ̇(0) = θ̇0,

is periodic of period T , and for all t ∈ R

(2.5)

|θ(t)| ≤ ω(k)

kg
‖γ̈‖∞,

|θ̇(t)| ≤ (1 + k)2

g(cosω(k) − k)3
‖γ̈‖∞.

Furthermore

(2.6) k̄ > 0.2672 and ω(0.2672) = 1.4302.

3. Proof of the main theorem. First of all, we define the function ω(k). For
any k ≥ 0, set Rk = {(s, ω)| cosω − sk > 0} and

ψk(s, ω) =
k(1 + sk)2

(cosω − sk)3
∀(s, ω) ∈ Rk.

Let ξk be the solution of the differential problem

(3.1)

{
ξ̇k(s) = ψk(s, ξk(s)),
ξk(0) = 0,

defined on the maximal interval of existence [0, s̄(k)[. By the definition of ψk we
get that ξk : [0, s̄(k)[→ [0, π

2 ] is strictly increasing, and s̄(k) is a strictly decreasing
continuous function such that s̄(0) = +∞, s̄(k) ≤ 1

k , if k > 0. Therefore there exists
k̄ : 0 < k̄ ≤ 1 such that s̄(k̄) = 1, and let ω : [0, k̄[→ [0, π

2 ] be the function defined by
ω(k) = ξk(1). By numerical computation it is k̄ > 0.2672 with ω(0.2672) = 1.4302.
Remark that 0 ≤ 1 ≤ s̄(k) for all k ∈ [0, k̄[, since s̄(k) is strictly decreasing and
s̄(k̄) = 1. Set k ∈ [0, k̄[, and suppose that ‖γ̈‖∞ = kg. For every τ, s ∈ R, for all
y ∈ R

2, let x(t, τ, s, y) be the solution of the problem

(3.2)

{
ẋ = F (t, s, x), ∀t ∈ R,
x(τ) = y,

where F : R × R × R
2 → R

2 is the C2 map defined by
(3.3)

F (t, s, x) =

(
x2, d

−1g sinx1 + sd−1

〈
γ̈(t) ,

(
cosx1

sinx1

)〉)T

, ∀(t, s, x) ∈ R × R × R
2,

and remark that, for every (s, x) ∈ R×R
2, the map t � F (t, s, x) is periodic of period

T and that (θ, θ̇)T is a solution of (2.4) if and only if x = (θ, θ̇)T is a solution of (3.2)
with s = 1, τ = 0, and y = (θ0, θ̇0). Let P : R × R × R

2 → R
2 be the Poincaré map

associated to problem (3.2); that is,

(3.4) P (τ, s, y) = x(T + τ, τ, s, y),



SMALL PERIODIC SOLUTIONS FOR THE INVERTED PENDULUM 491

and set P : R × R × R
2 → R

2 the map defined by

P(τ, s, y) = P (τ, s, y) − y.

Set l = d−1g, and remark that F (t, 0, x) = (x2, l sinx1)
T . Therefore for all τ ∈ R,

x(t, τ, 0, 0) = 0, for all t ∈ R, which is clearly a periodic solution of period T , and
therefore

P(τ, 0, 0) = 0 ∀τ ∈ R.

The following property holds:

(3.5) ∂yP(τ, 0, 0) = ∂yP (τ, 0, 0) − I is invertible ∀τ ∈ R;

that is, ∂yP (τ, 0, 0) has two eigenvalues different from 1. In fact for all i = 1, 2

∂yiP (τ, s, y) = ∂yix(T + τ, τ, s, y),

where ∂yix(t, τ, s, y) is the solution φi of the problem

(3.6)

{
φ̇i = ∂xF (t, s, x(t, τ, s, y))φi ∀t ∈ R,
φi(τ) = ei

(where e1 = (1, 0), e2 = (0, 1)); therefore ∂yP (τ, s, y) = Φy
s(T + τ, τ), where Φy

s(t, τ)
is the matrix solution of system

(3.7)

{
Φ̇ = ∂xF (t, s, x(t, τ, s, y))Φ ∀t ∈ R,
Φ(τ) = I,

where I is the identity matrix. Since x(t, τ, 0, 0) = 0 for all t ∈ R, it is

∂xF (t, 0, x(t, τ, 0, 0)) =
(0 1
l 0

)
which has the eigenvalues

√
l and −

√
l and normal-

ized eigenvectors:

W =
1√
l + 1

((
1√
l

)
,

(
−1√
l

))
.

Then Φ0
0(t, τ) = W

(
e
√

lt 0
0 e−

√
lt

)
W−1 for all t, τ ∈ R, which implies that for all

t, τ ∈ R, Φ0
0(t, τ) has the eigenvalues e

√
lt and e−

√
lt and constant eigenvectors given

by the columns of W ; therefore

∂yP(τ, 0, 0) = Φ0
0(T + τ, τ) − I ∀t ∈ R,

and property (3.5) holds. Since {(τ, 0, 0)|0 ≤ τ ≤ T} is a compact subset of R
3, by

the implicit function theorem, we can find ρ > 0 and a C1 map y : [0, T ]× [−ρ, ρ] →
B((0, 0), ρ) (where B((0, 0), ρ) denotes the closed ball in R

2 of center (0, 0) and radius
ρ), represented in Figure 3.1, such that

(3.8)

y(τ, 0) = 0 ∀τ ∈ [0, T ], P(τ, s, y(τ, s)) = 0 ∀(τ, s) ∈ [0, T ] × [−ρ, ρ],
{(τ, s, y(τ, s))|(τ, s) ∈ [0, T ] × [−ρ, ρ]}
= {(τ, s, y) ∈ [0, T ] × [−ρ, ρ] ×B((0, 0), ρ) such that P(τ, s, y) = 0};

that is (as stated in the implicit function theorem), y(τ, s) is the only solution of
P(τ, s, y) = 0, inside [0, T ] × [−ρ, ρ] ×B((0, 0), ρ),

(3.9) ∂yP(τ, s, y(τ, s)) is invertible ∀(τ, s) ∈ [0, T ] × [−ρ, ρ].
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y(τ, s) = x(τ, 0, s, y(τ, s))

y(T, s)

Fig. 3.1. The implicit function method.

x2 = θ̇

x1 = θy(0, 0)

y(0, s)

y(0, 1)

x(τ, 0, s, y(0, s)) = y(τ, s)

Fig. 3.2. The family of periodic orbits x(t, 0, s, y(0, s)), 0 ≤ s ≤ 1.

The aim of the following is to prove that map y(τ, s) can be prolongated at least
to s = 1 for all τ ∈ [0, T ], see Figure 3.2. It is used as a maximality procedure
that requires the definition of suitable sets and functions, whose use is related to
Lemmas 3.1 and 3.2.

Set S(k) = {x = (x1, x2)
∣∣|x1| ≤ ω(k)}. Let ρ̄ be the supremum of the ρ’s such that

there exists a unique y ∈ C1([0, T ] × [−ρ, ρ], S(k)), with the properties (3.8), (3.9).
Since it can be supposed that B((0, 0), ρ) ⊂ S(k) unless of decreasing ρ if necessary,
we have that ρ̄ > 0 by the previous step. Then by the definition of ρ̄ we have that
there exists a unique y ∈ C1([0, T ]×]− ρ̄, ρ̄[,S(k)) such that the properties (3.8), (3.9)
are verified on [0, T ]×] − ρ̄, ρ̄[. But by the group property and the periodicity in t of
x(t, 0, s, y(0, s))

x(T + τ, τ, s, x(τ, 0, s, y(0, s))) = x(T + τ, 0, s, y(0, s)) = x(τ, 0, s, y(0, s)),

then it is

y(τ, s) = x(τ, 0, s, y(0, s)) ∀(τ, s) ∈ [0, T ]×] − ρ̄, ρ̄[,

since y(τ, s) is the only solution y in S(k) of the equation y = x(τ + T, τ, s, y).
Therefore, by the group property, for all s ∈] − ρ̄, ρ̄[, for all τ1, τ2 ∈ [0, T ]

x(t, τ1, s, y(τ1, s)) = x(t, τ1, s, x(τ1, 0, s, y(0, s)))

= x(t, τ2, s, x(τ2, 0, s, y(0, s))) = x(t, τ2, s, y(τ2, s));
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in other words, for all t ∈ R for all s ∈] − ρ̄, ρ̄[, x(t, τ, s, y(τ, s)) is independent of
τ ∈ [0, T ], and in particular:

(3.10) x(t, τ, s, y(τ, s)) = x(t, 0, s, y(0, s)) = y(t, s) ∀(t, τ, s) ∈ [0, T ]2×] − ρ̄, ρ̄[.

Furthermore (3.8) imply that

∂yP(τ, s, y(τ, s))∂sy(τ, s) + ∂sP(τ, s, y(τ, s)) = 0,

which can be rewritten in the form

(3.11)
∂sy(τ, s) = ∂yP (τ, s, y(τ, s))∂sy(τ, s) + ∂sP (τ, s, y(τ, s)) ∀(τ, s) ∈ [0, T ]×] − ρ̄, ρ̄[,

since for all (τ, s, y) ∈ R × R × R
2, ∂sP (τ, s, y) = Zy

s (T + τ, τ), where Zy
s (t, τ) is the

solution of the following system:{
Ż = ∂xF (t, s, x(t, τ, s, y))Z + ∂sF (t, s, x(t, τ, s, y)),
Z(τ) = 0.

Therefore (3.11) says that ∂sy(τ, s) verifies the following property:
(3.12)

∂sy(τ, s) = Φy(τ,s)
s (T + τ, τ)∂sy(τ, s) + Zy(τ,s)

s (T + τ, τ) ∀(τ, s) ∈ [0, T ]×] − ρ̄, ρ̄[.

Since x(t, τ, s, y(τ, s)) = y(t, s) by property (3.10), we can set for all t ∈ R, for all
s ∈] − ρ̄, ρ̄[, for all τ ∈ [0, T ], for all t ∈ R,

(3.13)

⎧⎪⎪⎨
⎪⎪⎩

∂xF (t, s, x(t, τ, s, y(τ, s))) =

(
0 1

f(t, s, y1(t, s)) 0

)
= As(t),

∂sF (t, s, x(t, τ, s, y(τ, s))) =

(
0

b(t, y1(t, s))

)
= Bs(t),

where

(3.14)

⎧⎪⎪⎨
⎪⎪⎩

f(t, s, x1) = d−1

[
g cosx1 + s

〈
γ̈(t) ,

(
− sinx1

cosx1

)〉]
,

b(t, x1) = d−1

〈
γ̈(t) ,

(
cosx1

sinx1

)〉
.

As(t), Bs(t) are periodic of period T , for all s ∈] − ρ̄, ρ̄[, γ̈(t) and y(t, s) being
periodic functions of t of period T .

Since the solution of this family of periodic time-varying systems{
ξ̇ = As(t)ξ + Bs(t),
ξ(τ) = z

is given by ξ(t) = Φs(t, τ)z +
∫ t

τ
Φs(t, p)Bs(p)dp, where Φs(t, τ) � Φ

y(τ,s)
s (t, τ), prop-

erty (3.12) can be rewritten in the form: For all τ ∈ [0, T ], for all s ∈] − ρ̄, ρ̄[

(3.15) ∂sy(τ, s) = Φs(T + τ, τ)∂sy(τ, s) +
∫ T+τ

τ
Φs(T + τ, p)Bs(p)dp.

Our aim is to show that ρ̄ ≥ 1. Suppose, by contradiction, that ρ̄ < 1, and set,
for brevity, fs(t) = f(t, s, y1(t, s)). Since ‖γ̈‖∞ = kg and l = d−1g it is by (3.14) that,
for all s ∈]− ρ̄, ρ̄[, fs(t) is periodic of period T , and, for all t ∈ R, for all s ∈]− ρ̄, ρ̄[,

(3.16) f1(s, k, l) = l(cos(‖y1(·, s)‖∞) − sk) ≤ fs(t) ≤ l(1 + sk) = f2(s, k, l),
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where ‖y1(·, s)‖∞ = sup0≤t≤T |y1(t, s)|. Then for every s ∈] − ρ̄, ρ̄[, we can apply the
corollary to Lemma 3.2, with A(t) = As(t) and B(t) = Bs(t), (3.38) being verified
by (3.15).

Then it is ‖Bs(t)‖ ≤ d−1‖γ̈‖∞ = lk, for all t ∈ R, for all s ∈]−ρ̄, ρ̄[, and, by (3.39),
for all (τ, s) ∈ [0, T ]×] − ρ̄, ρ̄[:

(3.17) |∂sy1(τ, s)| ≤ lk

√
f2(1 + f2)

f1(1 + f1)

(√
f1 ∧

(√
f2

1 + f1

1 + f2

))−1

,

(3.18) |∂sy2(τ, s)| ≤ lk

√
1 + f2√
1 + f1

f2

f1

(√
f1 ∧

(√
f2

1 + f1

1 + f2

))−1

.

Because 1+f2

1+f1
≤ f2

f1
, 1+f1

1+f2
≥ f1

f2
since f1 ≤ f2,

√
f2(1 + f2)

f1(1 + f1)

(√
f1 ∧

(√
f2

1 + f1

1 + f2

))−1

≤ f2
2

f3
1

,

which implies, by (3.17), (3.18), (3.16) that, for all (τ, s) ∈ [0, T ]×] − ρ̄, ρ̄[,

(3.19) |∂sy1(τ, s)| ≤ lk
f2
2

f3
1

≤ k(1 + sk)2

(cos ‖y1(·, s)‖∞ − sk)3
= ψk(s, ‖y1(·, s)‖∞).

Therefore by the definition of ξk (see (3.1)) and the comparison lemma, we obtain
that

(3.20) ‖y1(·, s)‖∞ ≤ ξk(s) ∀s ∈] − ρ̄, ρ̄[.

Since ‖y1(·, s)‖∞ ≤ ω(k) = ξk(1) for all s ∈ [−ρ̄, ρ̄],

(3.21) |∂sy1(τ, s)| ≤
k(1 + sk)2

(cosω(k) − sk)3
≤ k(1 + k)2

(cosω(k) − k)3
= ψk(ξk(1), 1),

and

(3.22) |∂sy2(τ, s)| ≤ lk

√
1 + f1

1 + f2

f2
2

f3
1

≤ lk
f2
2

f3
1

≤ ψk(ξk(1), 1).

Remark that ξk(s) and ψk(ξk(s), s) are well defined on 1 since 0 ≤ k < k̄ (see the
definition of k̄ at the beginning of the proof). Then by (3.21) and (3.22), for all
τ ∈ [0, T ] the map s � y(τ, s) may be prolongated to a Lipschitz map defined on
[−ρ̄, ρ̄] and y(τ, s) ∈ S(k), (τ, s) ∈ [0, T ] × [−ρ̄, ρ̄]. Furthermore ∃ε > 0 :

‖y1(·, s)‖∞ ≤ ω(k) − ε ∀s ∈ [−ρ̄, ρ̄]

(by (3.20), since ξk(ρ̄) < ξ(1) = ω(k), ξ being strictly increasing and ρ̄ < 1 by
the absurd hypothesis). Moreover, by continuity, P(τ,±ρ̄, y(τ,±ρ̄)) = 0 for all τ ∈
[0, T ], and by (3.27) of Lemma 3.1, ∂yP(τ,±ρ̄, y(τ,±ρ̄)) is invertible for all τ ∈ [0, T ].
Therefore, by applying the implicit function theorem to the curves τ � y(τ,±ρ̄), the
definition of ρ̄ is contradicted.

Then ρ̄ ≥ 1, and, taking s = 1, P(0, 1, y(0, 1)) = 0; that is, there exists an initial
condition y(0, 1) such that the solution x(t, 0, 1, y(0, 1)) is periodic of period T , with
the properties for all t ∈ [0, T ]:

|x1(t, 0, 1, y(0, 1))| = |y1(t, 1)| ≤ ω(k),

|x2(t, 0, 1, y(0, 1))| = |y2(t, 1)| ≤ k(1 + k)2

(cosω(k) − k)3
.
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This completes the proof if ‖γ̈‖∞ = kg. Suppose now that ‖γ̈‖∞ < kg. Remark that

for all α : 0 ≤ α ≤ 1, ω(αk) ≤ αω(k), and αk(1+αk)2

(cosω(αk)−αk)3 ≤ α k(1+k)2

(cosω(k)−k)3 , which

implies (2.5) if α = ‖γ̈‖∞
kg , and the theorem has been proved.

The following lemma studies the properties of the eigenvalue and eigenvectors of
the fundamental matrix Φ associated to an hyperbolic matrix having the form (3.23)
with the suitable control (3.24).

Lemma 3.1. Let A(t) be the following (2 × 2) continuous matrix:

(3.23) A(t) =

(
0 1

f(t) 0

)
,

where f : R → R is a continuous function such that

(3.24) 0 < f1 ≤ f(t) ≤ f2 < +∞,

where f1 and f2 are given constants.
Set τ ≥ 0, and let Φ(t) be the solution to

(3.25)

{
Φ̇ = A(t)Φ ∀t ∈ [0,+∞[,
Φ(τ) = I,

and let, for all i = 1, 2, μi(t) and wi(t) be, respectively, the eigenvalues and the
corresponding normalized eigenvectors of Φ(t) (i.e., for all i = 1, 2, Φ(t)wi(t) =
μi(t)wi(t) and ‖wi(t)‖ = 1). Then

(3.26) wi(t) ∈ Σi ∀t ≥ τ,

(3.27) μ2(t) ≤ e−λ0(t−τ) < eλ0(t−τ) ≤ μ1(t) ∀t ≥ τ,

where Σ1 and Σ2 are the cones defined as follows:

Σ1 =

{
x ∈ R

2|
〈
x ,

(
1√
f1

)⊥
〉

≥ 0,

〈
x ,

(
1√
f2

)⊥
〉

≤ 0

}
,

Σ2 =

{
x ∈ R

2|
〈
x ,

(
1

−
√
f1

)⊥
〉

≤ 0,

〈
x ,

(
1

−
√
f2

)⊥
〉

≥ 0

}
,

and λ0(f1, f2) =
√
f1 ∧ (

√
f2

1+f1

1+f2
).

Proof. Clearly it can be assumed that τ = 0. First of all, it is shown that Σ1 is
positively invariant with respect to the vector field A(t)x. To this end it is sufficient
to show that 〈

A(t)x ,

(
1√
f1

)⊥
〉

≥ 0 ∀x ∈ P1,∀t ≥ 0,

〈
A(t)x ,

(
1√
f2

)⊥
〉

≤ 0 ∀x ∈ P2,∀t ≤ 0,

where P1 = {x ∈ R
2|x1 ≥ 0, x2 ≤ x1

√
f1}, P2 = {x ∈ R

2|x1 ≥ 0, x2 ≥ x1

√
f2}.
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In fact if x ∈ P1, then〈
A(t)x ,

(
1√
f1

)⊥
〉

=

〈
x , AT (t)

(
−
√
f1

1

)〉

=

〈(
x1

x2

)
,

(
f(t)
−
√
f1

)〉
= x1f(t) − x2

√
f1 ≥ x1(f(t) − f1) ≥ 0.

If x ∈ P2, then〈
A(t)x ,

(
1√
f2

)⊥
〉

= x1f(t) − x2

√
f2 ≤ x1(f(t) − f2(t)) ≤ 0.

Therefore Σ1 is positively invariant with respect to A(t)x, and analogously it is
proved that Σ2 is positively invariant with respect to the vector field −A(−t)x.

Moreover, for all i = 1, 2, the eigenvectors wi(t) of Φ(t) satisfy wi(t) ∈ Σi for

all t ≥ 0. In fact set αi = arcsin
√
fi√

1+fi
, i = 1, 2, and define the continuous map

Gt : [α1, α2] → R by

Gt(α) = arg(Φ(t)τ(α)) − α

(recall that τ(α) = (cos(α), sin(α))T ). Because of the positive invariance of Σ1,
Gt(α1) ≥ 0 and Gt(α2) ≤ 0; therefore, by Bolzano’s theorem there exists ᾱ ∈ [α1, α2]
such that Gt(ᾱ) = 0; that is, there exists μ(t) such that

Φ(t)τ(ᾱ(t)) = μ(t)τ(ᾱ(t)),

and therefore w1(t) = τ(ᾱ(t)) is a normalized eigenvector. Analogously, by using
the positive invariance of Σ2 with respect to −A(−t), it is verified that the other
eigenvector w2(t) of Φ(t) belongs to Σ2.

Given any x̄ ∈ Σ1\{0}, let x(t) = Φ(t)x̄ for all t ≥ 0. Since x(t) ∈ Σ1, by the
positive invariance of Σ1, there exists functions ρ(t) and β(t) such that

x(t) = ρ(t)

(
1

β(t)

)
, ρ(t) ≥ 0,

√
f1 ≤ β(t) ≤

√
f2 ∀t ≥ 0.

Since ‖x(t)‖ = ρ(t)
√

1 + β2(t) for all t, with ‖x(t)‖ > 0,

d‖x(t)‖
dt

=
〈ẋ(t) , x(t)〉

‖x(t)‖ =
〈A(t)x(t) , x(t)〉
ρ(t)
√

1 + β2(t)

=
ρ(t)β(t)√
1 + β2(t)

(1 + f(t)) = ‖x(t)‖ β(t)

1 + β(t)2
(1 + f(t)).

Since
√
f1 ≤ β(t) ≤

√
f2, for all t ≥ 0

β(t)

1 + β2(t)
≥

√
f1

1 + f1
∧

√
f2

1 + f2
,

and

d‖x(t)‖
dt

≥
( √

f1

1 + f1
∧
( √

f2

1 + f2
(1 + f1)

))
‖x(t)‖

=

(√
f1 ∧

(√
f2

1 + f1

1 + f2

))
‖x‖ = λ0(f1, f2)‖x‖,
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and therefore ‖x(t)‖ ≥ eλ0t‖x(0)‖. Finally let x(t) = Φ(t)w1(τ), where w1(τ) is the
eigenvector of Φ(t) belonging to Σ1. Since w1(t) ∈ Σ1 for all t ≥ 0, by the previous
reasoning,

‖x(t)‖ ≥ eλ0t‖w(τ)‖,
which implies, since x(τ) = μ1(τ)w(τ) for all τ ≥ 0 that:

μ1(t) ≥ eλ0t ∀t ≥ 0.

Therefore (3.27) holds since μ2(t) = μ1(t)
−1 is the trace of A(t) = 0.

The following lemma gives an estimate on the fixed points of the solution for a
nonhomogeneous time-dependent linear system associated to an hyperbolic matrix
A(t) having the form (3.23) with controls (3.24) on the coefficients.

Lemma 3.2. Let A(t) be a continuous 2× 2 matrix defined on [0,+∞[, satisfying
the hypotheses of Lemma 3.1, and let B(t) ∈ R

2 be a continuous vector on [0,+∞[.
Let ξ ∈ R

2 be such that there exists τ ≥ 0 and T > 0 for which

ξ = Φ(T + τ, τ)ξ +

∫ T+τ

τ

Φ(T + τ, p)B(p)dp,

where Φ(t, τ) is a solution of (3.25). Then

(3.28)

|ξ1| ≤ c1
1 + e−λ0T

λ0
‖B‖[τ, T+τ ],

|ξ2| ≤ c2
1 + e−λ0T

λ0
‖B‖[τ, T+τ ],

where

(3.29)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

λ0(f1, f2) =
√

f1 ∧
(√

f2
1 + f1

1 + f2

)
,

c1(f1, f2) =

√
f2

f1

1 + f2

1 + f1
,

c2(f1, f2) =
f2

f1

√
1 + f2√
1 + f1

,

and ‖B‖[τ,T+τ ] = max{‖B(t)‖
∣∣τ ≤ t ≤ T + τ}.

Proof. Without loss of generality, assume τ = 0, and therefore suppose that ξ
satisfies

(3.30) ξ = Φ(T, 0)ξ +

∫ T

0

Φ(T, τ)B(τ)dτ.

Set W (t, τ) = (w1(t, τ), w2(t, τ)), where wi(t, τ) are the normalized eigenvectors and
μi(t) the eigenvalues of Φ(t, τ). Remark that, for any invertible 2 × 2 matrix W =
(w1, w2),

(3.31) ∀z ∈ R
2, z = (W−1z)1w1 + (W−1z)2w2,

where (W−1z)i are the components of vector W−1z. Therefore

(I − Φ(T, 0))ξ = (I − Φ(T, 0))
2∑

i=1

(W−1(T, 0)ξ)iwi(T, 0)

=

2∑
i=1

(1 − μi(T, 0))(W−1(T, 0)ξ)iwi(T, 0),
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and moreover∫ T

0

Φ(T, τ)B(τ)dτ =

∫ T

0

Φ(T, τ)

2∑
j=1

(W−1(T, τ)B(τ))jwj(T, τ)dτ

=

2∑
j=1

∫ T

0

(W−1(T, τ)B(τ))jμj(T, τ)wj(T, τ)dτ

=
2∑

i=1

⎛
⎝ 2∑

j=1

∫ T

0

μj(T, τ)(W−1(T, τ)B(τ))j

· (W−1(T, 0)wj(T, τ))idτ

⎞
⎠wi(T, 0).

Therefore, by (3.30) it follows that

(3.32)

(W−1(T, 0)ξ)1 =

2∑
j=1

1

1 − μ1(T, 0)

∫ T

0

μj(T, τ)(W−1(T, τ)B(τ))j(W
−1(T, 0)wj(T, τ))1dτ.

Moreover (3.30) can also be written in the form

(3.33) (Φ(T, 0)−1 − I)ξ =

∫ T

0

Φ(τ, 0)−1B(τ)dτ,

and then we obtain

(Φ(T, 0)−1 − I)ξ =

2∑
i=1

(μi(T, 0)−1 − 1)(W−1(T, 0)ξ)iwi(T, 0),∫ T

0

Φ(τ, 0)−1B(τ)dτ

=

2∑
i=1

⎛
⎝ 2∑

j=1

∫ T

0

μj(τ, 0)−1(W−1(τ, 0)B(τ))j(W
−1(T, 0)wj(τ, 0))idτ

⎞
⎠wi(T, 0).

Moreover, by (3.33)

(3.34)

(W−1(T, 0)ξ)2 =

2∑
j=1

μ2(T, 0)

1 − μ2(T, 0)

∫ T

0

μj(τ, 0)−1(W−1(τ, 0)B(τ))j(W
−1(T, 0)wj(τ, 0))2dτ.

Note that if w1 ∈ Σ1 and w2 ∈ Σ2,

(3.35) |(W−1x)1| ∨ |(W−1x)2| ≤

√
f2(1 + f2)

f1(1 + f1)
‖x‖.

In fact, first of all, we can suppose that ‖x‖ = 1, and then W and x can be written
in the following way:

W =

⎛
⎝ 1√

1+a
− 1√

1+b

√
a√

1+a

√
b√

1+b

⎞
⎠ , x =

⎛
⎝ 1√

1+c

√
c√

1+c

⎞
⎠ ,
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where f1 ≤ a, b, c ≤ f2. Then

W−1x =

⎛
⎜⎝

√
1+a√
1+b

√
b+

√
c√

a+
√
b

√
1+b√
1+c

√
c−

√
a√

a+
√
b

⎞
⎟⎠ ,

which implies (3.35), since

√
1 + a√
1 + c

∨
√

1 + b√
1 + c

≤
√

1 + f2√
1 + f1

,

√
b +

√
c

√
a +

√
b
∨

√
c−

√
a

√
a +

√
b
≤

√
f2√
f1

.

Moreover

(3.36) |(W−1B(t))i| ≤
√

1 + f2

2
√
f1

‖B(t)‖, i = 1, 2,

and for all z ∈ R
2, for all i = 1, 2

(3.37)

|z1| ≤
1√

1 + f1

(|(W−1z)1| + |(W−1z)2|),

|z2| ≤
√
f2√

1 + f2

(|(W−1z)1| + |(W−1z)2|).

Therefore from (3.32), (3.34), (3.35), (3.36), and Lemma 3.1, setting c =
1
2

1+f2

f1

√
f2

1+f1
,

|(W−1(T, 0)ξ)1| ∨ (W−1(T, 0)ξ)2|

≤ c‖B‖[0,T ]

{
1

μ1(T, 0) − 1

[
μ1(T, 0)

∫ T

0

μ1(τ, 0)−1dτ

+

∫ T

0

μ2(T, τ)dτ

]
∨ 1

1 − μ2(T, 0)

[
μ2(T, 0)

∫ T

0

μ1(τ, 0)−1dτ +

∫ T

0

μ2(T, τ)dτ

]}

≤ c‖B‖[0,T ]

{
1

μ1(T, 0) − 1

[
μ1(T, 0)

∫ T

0

e−λ0τdτ

+

∫ T

0

e−λ0(T−τ)dτ

]
∨ 1

1 − μ2(T, 0)

[
μ2(T, 0)

∫ T

0

e−λ0τdτ +

∫ T

0

e−λ0(T−τ)dτ

]}

= c‖B‖[0,T ]

(
μ1(T, 0) + 1

μ1(T, 0) − 1
∨ μ2(T, 0) + 1

1 − μ2(T, 0)

)
(1 − e−λ0T )

≤ c‖B‖[0,T ]
1 + e−λ0T

1 − e−λ0T

1 − e−λ0T

λ0
,

which implies the thesis by (3.37).
Corollary 3.3. Assume that A(t) and B(t) satisfy the hypotheses of Lemma 3.2

and that A(t) and B(t) are periodic of period T . If ξ ∈ R
2 is such that there exists

τ ≥ 0 and T ≥ 0 for which

(3.38) ξ = Φ(T + τ, τ)ξ +

∫ T+τ

τ

Φ(T + τ, p)B(p)dp,
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where Φ(t, τ) is a solution of (3.25), then

(3.39) |ξi| ≤
ci
λ0

‖B‖[τ,T+τ ], i = 1, 2,

where λ0 and ci are given by (3.29).
Proof. If A(t) is periodic, there exists a periodic and continuous matrix P (t) and

a constant matrix E such that Φ(t) = P (t)eEt, which implies that, for all n ∈ N,
Φ(T + τ, τ)n = Φ(nT + τ, τ) and Φ(T + τ, τ) = Φ((n + 1)T + τ, nT + τ). Therefore
from (3.38) it follows by induction that:

ξ = Φ(nT + τ, τ)ξ +

∫ nT+τ

τ

Φ(T + τ, p)B(p)dp ∀n ∈ N,

which implies (3.39), by (3.28).

4. A computational method. As can be deduced from section 1 and the proof
of Theorem 2.3, the following computational method for finding the control forces to
drive the inverted pendulum on a cart along an assigned curve can be stated.

Given a curve γ ∈ C2(R, R
2), the control force f is given by (1.3), where θ is the

solution of system (2.4) with initial condition (θ0, θ̇0) = y(1), y(s) being the solution
of the following differential equation:

ẏ(s) = (I − Φ(T, s, y(s)))−1Z(T, s, y(s)), y(0) = 0,

where Φ(t, s, y) and Z(t, s, y) are, respectively, the solutions of the systems

{
Φ̇ = ∂xF (t, s, x(t, s, y))Φ,
Φ(0) = I

and

{
Ż = ∂xF (t, s, x(t, s, y))Z + ∂sF (t, s, x(t, s, y)),
Z(0) = 0,

x(t, s, y) being the solution of the system ẋ = F (t, s, x), with x(0) = y and where
F (t, s, x) = (x2, d

−1(g sinx1 + s
〈
(cosx1, sinx1)

T , γ̈(t)
〉
))T .

As an example we apply this method to a periodic curve γ given by a fifth-order
spline of period T = 5s. This function has a continuous third-order derivative.

The spline γ satisfies the properties

(4.1)
γ(0) = (0, 0), γ̇(0) = (0,−1), γ̈(0) = (−1, 0),

...
γ (0) = (0, 0),

γ(1) = (−2 − 2), γ(2) = (1,−1), γ(3) = (2, 0), γ(4) = (−2, 2),

and diγ(5)
dti = diγ(0)

dti , for i = 0, . . . , 3, and is represented in Figure 4.1; it is ‖γ̈‖∞ =

2.2m/s2. For numerical computation of γ use, for instance, Matlab Spline Toolbox.
Assume d = 1, g = 9.8m

s2 . By applying the method outlined above, we can
find a control force that drives the pendulum along the spline without overturning. In
particular the initial condition for system (2.4) is given by (θ0, θ̇0) = (0.0283, 0.0030),
and the couple (θ, θ̇) associated to the solution is shown in Figure 4.2; it is |θ(t)| ≤
0.085, |θ̇(t)| ≤ 0.24; in fact, the pendulum rod remains almost vertical (see Figure 4.3).
Remark that the bounds given by Theorem 2.3 are |θ(t)| ≤ 0.4861, |θ̇(t)| ≤ 1.1727.
In this example, these bounds may appear very large, but this is justified by the fact
that they must apply to any trajectory whose acceleration is bounded by 2.2m/s2.



SMALL PERIODIC SOLUTIONS FOR THE INVERTED PENDULUM 501

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3
−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Fig. 4.1. The fifth-order spline γ.
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Fig. 4.2. Solution of (2.4) for spline γ.

Fig. 4.3. Control simulation for spline γ.
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DYNAMICS OF STOICHIOMETRIC BACTERIA-ALGAE
INTERACTIONS IN THE EPILIMNION∗
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Abstract. Bacteria-algae interaction in the epilimnion is modeled with the explicit consideration
of carbon (energy) and phosphorus (nutrient). Global qualitative analysis and bifurcation diagrams
of this model are presented. We hypothesize that there are three dynamical scenarios determined by
the basic reproductive numbers of bacteria and algae. Effects of key environmental conditions are
examined through these scenarios and from systematic and extensive simulations. It is also shown
that excessive sunlight will destroy bacterial communities. Bifurcation diagrams for the depth of
epilimnion mimic the profile of Lake Biwa, Japan. Competition of bacterial strains are modeled
to examine Nishimura’s hypothesis that in severely P-limited environments such as Lake Biwa, P-
limitation exerts more severe constraints on the growth of bacterial groups with higher nucleic acid
contents, which allows low nucleic acid bacteria to be competitive.
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AMS subject classifications. Primary, 92B05, 92D40, 92D25; Secondary, 34A34, 34D05,
34D23, 34D40

DOI. 10.1137/060665919

1. Introduction. Stoichiometry is the accounting behind chemistry. It deals
with the balance of multiple chemical elements in chemical reactions. Many chemical
processes are effectively studied and modeled with the applications of some simple yet
powerful stoichiometric constraints. Since biomass growth is a biochemical process,
ubiquitous and natural stoichiometric constraints may also be useful for modeling
species growth and interactions [15, 23, 27, 28]. This concept forms the framework of
the newly emerging research area of ecological stoichiometry, the study of the balance
of energy and multiple chemical elements in ecological interactions [37].

It is observed that plant quality can dramatically affect the growth rate of her-
bivorous grazers and may even lead to their extinction. Specifically, if the quantity
of an essential element in plant biomass is lower than the minimum threshold for
its consumer, then the consumer’s growth rate may suffer. This has been shown for
both aquatic [30, 37] and terrestrial systems [31]. Stoichiometry-based population
models explicitly model the highly varying nutritional quality of plant resources for
consumer-resource dynamics.

Solar energy (for producing organic carbon) and nutrients (phosphorus, nitrogen,
etc.) are important factors regulating ecosystem characteristics and species density.
Phosphorus is often a limiting nutrient for algal production in lakes [11]. For example,
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in Lake Biwa, Japan, phosphorus is an extremely limiting element for both algal and
bacterial growth. Lake Biwa is a large (surface area, 674km2) and deep (maximum
depth, 104m) lake located in the central part of Honshu Island, Japan. Nishimura,
Kim, and Nagata [32] used flow cytometry to examine seasonal variations in vertical
distributions of bacterioplankton in Lake Biwa. They hypothesized that in severely
phosphorus (P)-limited environments such as Lake Biwa, P-limitation exerts more
severe constraints on the growth of bacterial groups with higher nucleic acid (HNA)
contents, which allows low nucleic acid (LNA) bacteria to be competitive and become
an important component of the microbial community. A main purpose of this paper
is to examine this hypothesis theoretically.

The interaction between bacteria and algae in pelagic ecosystems is complex [6].
Bacteria are nutrient-rich organisms whose growth is easily limited by nutrient supply
and organic matter produced by plants and algae, which have very flexible stoichiom-
etry compared to bacteria [29]. Suspended algae, also called phytoplankton, live in
almost all types of aquatic environments. Algae grow in open water by taking up
nutrients such as phosphorus and nitrogen from the water and capturing energy from
sunlight. Extra energy in the form of organic carbon can be exuded from algae during
photosynthesis. Bacteria require dissolved organic carbon (DOC) as a source of en-
ergy and carbon. Hence, algae are an important source of DOC to bacteria. However,
bacteria and algae compete with each other for phosphorus if bacteria are limited by
phosphorus [18].

In temperate lakes, the water column is seasonally separated by a thermocline
into two parts, epilimnion and hypolimnion (Figure 1.1). The epilimnion is the upper
warmer layer overlying the thermocline. It is usually well mixed. The hypolimnion
is the bottom colder layer. The absorption and attenuation of sunlight by the water
itself, by dissolved substances, and by algae are major factors controlling the potential
photosynthesis and temperature. Solar energy, essential for algae, decreases rapidly
with depth. Nutrients are redistributed from epilimnion to hypolimnion as the plank-
ton detritus gradually sinks to lower depths and decomposes; the redistribution is
partially offset by the active vertical migration of the plankton and by eddy diffusion
across the thermocline [19]. In many lakes, algal DOC exudation is a prime energy
source for bacterial growth. To simplify the study of algal stimulation of bacterial
growth, we assume below that algal DOC exudation is the only source for bacterial
subsistence.

Algae dynamics in a lake system have been modeled by many researchers [2,
8, 9, 20, 21, 22]. Chemostat theory and experiments have been applied frequently to
nutrient competition of bacteria [4, 14, 34, 35]. For example, bacteria-algae interaction
was modeled by Bratbak and Thingstad [3]. Their work provides a useful framework
to develop a more realistic model. In recent years, modeling stoichiometric food web
systems has gained much attention [1, 9, 15, 17, 24, 25, 26, 27]. However, these models
are not directly applicable to the phytoplankton-bacteria interaction. Our models,
motivated by the experiments and hypotheses of Nishimura, Kim, and Nagata [32],
can be viewed as an extension as well as a variation of the work of Diehl, Berger, and
Wöhrl [9] where they modeled algal growth experiments subject to varying light and
nutrient availability, but without bacteria.

In the following, we will model the ecological stoichiometry of bacteria-algae in-
teractions in the epilimnion under the “well mixed” assumption [2, 20, 21]. We per-
form a global qualitative analysis and present bifurcation diagrams illustrating model
behavior. We discuss the implications of these bifurcation diagrams and the basic re-
productive numbers of bacteria and algae. Proofs of mathematical results are placed
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Fig. 1.1. The cartoon lake system for our mathematical modeling.

in the appendix. Competing bacterial strains are modeled to test some hypotheses of
Nishimura, Kim, and Nagata [32]. A brief discussion section concludes the paper.

2. Modeling bacteria-algae interactions. Our model consists of five highly
interconnected nonlinear differential equations, tracking the rates of change for algae,
algal cell quota, dissolved mineral phosphorus, heterotrophic bacteria, and dissolved
organic carbon (see Table 2.1). The algal growth is assumed to depend on the light
intensity and phosphorus availability. This will be modeled according to the Lambert-
Beer law and the Droop equation. The rates of change for Q,P,B are modeled
according to standard approaches. In addition, algal sinking and water exchange
between epilimnion and hypolimnion are included in the model. The challenge is to
model the algal exudation of DOC, which is needed in the DOC equation.

According to the Lambert–Beer law, the light intensity at the depth s of a water
column with algal abundance A is [20]

I(s,A) = Iin exp[−(kA + Kbg)s].

The algal carbon uptake function takes the Monod form I(s,A)
I(s,A)+H [9].

The epilimnion is well mixed overnight [9, 20]. The depth-averaged algal growth
function contains the factor (for carbon) [2, 20]

(2.1) h(A) ≡ 1

zm

∫ zm

0

I(s,A)

I(s,A) + H
ds =

1

zm(kA + Kbg)
ln

(
H + Iin

H + I(zm, A)

)

and the Droop term (for phosphorus) 1− Qm

Q , where Qm is the minimum algal phos-
phorus cell quota and Q is the actual algal phosphorus cell quota.

Algal sinking takes place at the interface between epilimnion and hypolimnion,
and its rate is negatively related to the volume of epilimnion, because with a larger
volume there is relatively less proportion of total species abundances or element con-
centrations for sinking. For convenience, we assume that the algal sinking rate is
inversely proportional to the mixing layer depth zm [2, 9]. D is the water exchange
rate across the interface between epilimnion and hypolimnion and between the epil-
imnion and the inflow and outflow (Figure 1.1). We assume that there is a constant
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Table 2.1

Variables in the bacteria-algae system (2.2).

Var. Meaning Unit

A algal carbon density mgC/m3

Q algal cell quota (P:C) gP/gC (= mgP/mgC)
P dissolved mineral phosphorus concentration mgP/m3

B heterotrophic bacterial abundance mgC/m3

C DOC concentration mgC/m3

phosphorus concentration, Pin, in the hypolimnion and in the inflow. Using the same
reasoning as for algal sinking, we assume the water exchange is inversely proportional
to zm. We assume that bacteria have a fixed stoichiometry, since compared to al-
gae, their elemental composition is relatively constant [29]. We assume that bacterial
growth functions for carbon and phosphorus take the Monod form: f(P ) = P

KP +P

and g(C) = C
KC+C , where KP , KC are half-saturation constants, respectively.

The exudation rate of DOC by algae is the difference between the potential

growth rate attained when growth is not P-limited, μAA
1
zm

∫ zm
0

I(s,A)
I(s,A)+H ds, and

the actual growth rate, μAA(1 − Qm

Q ) 1
zm

∫ zm
0

I(s,A)
I(s,A)+H ds, which gives us the form

μAA
Qm

Q
1
zm

∫ zm
0

I(s,A)
I(s,A)+H ds. This actually assumes that algae always fix carbon at

rate μAA
1
zm

∫ zm
0

I(s,A)
I(s,A)+H ds and then have to dispose of excessive carbon. As in [9],

we assume that the algal phosphorus uptake rate is ρ(Q,P ) = ρm( QM−Q
QM−Qm

) P
M+P .

At the minimum cell quota, the specific phosphorus uptake rate is just a saturating
function of P . At the maximum cell quota, there is no uptake. The algal cell quota
dilution rate is proportional to the algal growth rate [2].

The above assumptions yield the following bacteria-algae interaction system:

dA

dt
= μAA

(
1 − Qm

Q

)
1

zm

∫ zm

0

I(s,A)

I(s,A) + H
ds︸ ︷︷ ︸

algal growth limited by nutrient and energy

− lmA︸︷︷︸
respiration

− ν + D

zm
A︸ ︷︷ ︸

sinking and exchange

,

dQ

dt
= ρ(Q,P )︸ ︷︷ ︸

replenishment

−μAQ

(
1 − Qm

Q

)
1

zm

∫ zm

0

I(s,A)

I(s,A) + H
ds︸ ︷︷ ︸

dilution due to growth

,

dP

dt
=

D

zm
(Pin − P )︸ ︷︷ ︸

P input and exchange

− ρ(Q,P )A︸ ︷︷ ︸
P consumption by algae

− θμBBf(P )g(C)︸ ︷︷ ︸
P consumption by bacteria

,(2.2)

dB

dt
= μBBf(P )g(C)︸ ︷︷ ︸

bacterial growth

− (μr + μg)B︸ ︷︷ ︸
respiration and grazing

− D

zm
B︸ ︷︷ ︸

exchange

,

dC

dt
= μAA

Qm

Q

1

zm

∫ zm

0

I(s,A)

I(s,A) + H
ds︸ ︷︷ ︸

DOC exudation from algae

− 1

r
μBBf(P )g(C)︸ ︷︷ ︸

DOC consumption by bacteria

− D

zm
C︸ ︷︷ ︸

exchange

.

In the rest of this paper, we assume the following parameter values (with units
and sources given in Table 2.2) for numerical simulations: Iin = 300, k = 0.0004,
Kbg = 0.3, H = 120, zm = 30, Qm = 0.004, QM = 0.04, ρm = 0.2, M = 1.5, μA = 1,
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Table 2.2

Parameters in bacteria-algae system (2.2).

Par. Meaning Value Ref.

Iin light intensity at surface 300μmol(photons)/(m2 · s) [9]
k specific light attenuation coeff. of algal

biomass
0.0003–0.0004m2/mgC [2, 9]

Kbg background light attenuation coefficient 0.3–0.9/m [2, 9]
H h.s.c.1 for light-dependent algal produc-

tion
120μmol(photons)/(m2 · s) [9]

zm depth of epilimnion > 0m, 30m in Lake Biwa [32]
Qm algal cell quota at which growth ceases 0.004gP/gC [9]
QM algal cell quota at which nutrient uptake

ceases
0.04gP/gC [9]

ρm maximum specific algal nutrient uptake
rate

0.2–1gP/gC/day [2, 9]

M h.s.c. for algal nutrient uptake 1.5mgP/m3 [9]
μA maximum algal specific production rate 1.0/day [9]
lm algal specific maintenance respiration

loss
0.05–0.13/day [2, 9]

ν algal sinking velocity 0.05–0.25m/day [2, 9]
D water exchange rate 0.02m/day [2]
Pin phosphorus input 0–150mgP/m3 [2]
KP P-dependent h.s.c. for bacterial growth 0.06–0.4mgP/m3 [4]
KC C-dependent h.s.c. for bacterial growth 100–400mgC/m3 [5]
μB maximum bacterial growth rate 1.5–4.0/day [4, 5]
θ bacterial fixed cell quota 0.0063–0.1585mgP/mgC [7, 16]
μr bacterial respiration loss 0.1–2.5/day [5, 13]
μg grazing mortality rate of bacteria 0.06–0.36/day [32]
r C-dependent yield constant for bacterial

growth
0.31–0.75 [10, 13]

1“h.s.c.” stands for half-saturation constant.

lm = 0.1, ν = 0.25, D = 0.02, Pin = 120, KP = 0.06, KC = 100, μB = 3, θ = 0.1,
μr = 0.2, μg = 0.1, r = 0.5. These specific values are taken from [2, 9] or selected
from within the reasonable ranges (see Table 2.2).

Our first theorem states that there is a bounded set which all solutions of the
system (2.2) eventually enter.

Theorem 1. The system (2.2) is dissipative.

3. Algae dynamics. In order to have a comprehensive understanding of the
model (2.2), we study first the algae dynamics without bacteria (B = 0):

dA

dt
= μAA

(
1 − Qm

Q

)
1

zm

∫ zm

0

I(s,A)

I(s,A) + H
ds− lmA− ν + D

zm
A ≡ AΨ(A,Q),

dQ

dt
= ρ(Q,P ) − μAQ

(
1 − Qm

Q

)
1

zm

∫ zm

0

I(s,A)

I(s,A) + H
ds,(3.1)

dP

dt
=

D

zm
(Pin − P ) − ρ(Q,P )A.

From (2.1), we recall that

(3.2) h(A) =
1

zm

∫ zm

0

I(s,A)

I(s,A) + H
ds.

h(A) is decreasing in A, and 0 < h(A) < 1. Furthermore, Ah(A) is increasing in A.
Biologically meaningful initial conditions are given by A(0) > 0, Qm ≤ Q(0) ≤ QM ,
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P (0) ≥ 0. We analyze this system on the positively invariant set

Ω = {(A,Q, P ) ∈ R
3
+ | A ≥ 0, Qm ≤ Q ≤ QM , P ≥ 0}.

Obviously the set where A = 0 is invariant for the system. It is easy to see that
Qm < Q < QM whenever Qm < Q(0) < QM ; that is, the cell quota stays within the
biologically confined interval.

There can be two types of steady state solutions for system (3.1): the algae
extinction steady state E0 = (0, Q̂, Pin), where

Q̂ =
β(Pin)QM + μAQmh(0)

β(Pin) + μAh(0)
> 0 with β(P ) =

ρm
QM −Qm

P

M + P
,

and positive steady state(s) E∗ = (Ā, Q̄, P̄ ) with Ψ(Ā, Q̄) = 0.
The standard computation shows that the basic reproductive number for algae is

R0 =
μAβ(Pin)(QM −Qm)h(0)

(β(Pin)QM + μAQmh(0))(lm + ν+D
zm

)
=

μAh(0)(1 −Qm/Q̂)

lm + ν+D
zm

.

Here h(0) = 1
zmKbg

ln( H+Iin
H+Iin exp(−zmKbg) ) is the potential average sunlight intensity in

the epilimnion without algal shading. Indeed, R0 is calculated from Ψ(0, Q̂) so that
R0 > 1 ⇔ Ψ(0, Q̂) > 0. R0 is the average amount of new algae produced by one unit
of algae (measured in carbon content) during the algal life span in the epilimnion. It
is an indicator of algal viability. Part of Theorem 2 states that R0 is an indicator for
the local stability of E0.

We observe that increasing sunlight input or phosphorus input enhances algal

viability, since ∂R0

∂Iin
= ∂R0

∂h(0)
∂h(0)
∂Iin

> 0 and ∂R0

∂Pin
= ∂R0

∂β(Pin)
∂β(Pin)
∂Pin

> 0. Weakening

water exchange enhances algal viability, since ∂R0

∂D < 0.
Theorem 2 is our main mathematical result. When R0 < 1, we establish the local

and global stability of E0, which is equivalent to saying that algae will die out. It
can be shown that there is no positive equilibrium E∗ when R0 < 1, in which case
the existing results of general competitive systems can be applied to prove the global
stability of E0. When R0 > 1, we prove that E0 is unstable, algae are uniformly
persistent, and there is a unique positive steady state E∗.

Theorem 2. If R0 < 1, E0 is locally asymptotically and globally asymptotically
stable. R0 > 1 implies that E0 is unstable, there exists a unique positive equilibrium
E∗, and algae uniformly persist: there exists ε > 0 such that

lim inf
t→∞

A(t) > ε

for all solutions with A(0) > 0.
In the following, we show that the global stability of E∗ is true in two special

cases. It is known that the algal cell quota changes on a much faster timescale than
the algal (carbon) biomass and the nutrient [23]. Additionally, since dQ/dt is linear
in Q, there is a unique solution to dQ/dt = 0. Hence, the fast-slow approximation is
achieved by setting dQ/dt = 0 and substituting the solution of dQ/dt = 0 into the
other equations. Then the following theorem holds.

Theorem 3. E∗ is globally asymptotically stable for the planar system obtained
from the system (3.1) by setting dQ/dt = 0, when R0 > 1.

The next theorem gives a partial result of global stability of E∗.
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Fig. 3.1. Algae dynamics phase space when R0 > 1. The algae extinction equilibrium E0 =
(0, Q̂, Pin) is globally attracting on the subspace Ω2 = {x ∈ Ω | A = 0}, but is a uniform weak
repeller for Ω1 = {x ∈ Ω | A �= 0}, and A is persistent in this case.
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Fig. 3.2. Algae dynamics without bacteria with respect to different depths of the mixing layer:
All the variables approach the positive equilibrium in about two months. The simulation benefited
from the explicit expression of h(A) given in (2.1).

Theorem 4. E∗ is globally asymptotically stable when R0 > 1 and lm = ν = 0.

The property that a locally asymptotically stable (in linear approximation) steady
state is globally attracting is an open condition in parameters [36]. Hence, E∗ is still
globally asymptotically stable for small positive lm and ν.

Our main mathematical results for the system (3.1) are briefly expressed by the
phase space diagram (Figure 3.1) for the case R0 > 1. Typical solutions are simulated
in Figure 3.2 for different depths of epilimnion. Algal abundance is negatively related
to the depth because the average sunlight intensity in the epilimnion is lower when
the epilimnion is deeper. The eventual P concentration is relatively large when the
epilimnion is deep, whereas the eventual concentration is small when it is shallow.
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Fig. 3.3. Bifurcation diagram for algae dynamics without bacteria. The shallower the better
for algae in the algae system (3.1). This bifurcation diagram confirms our mathematical findings.
When R0 > 1, the algae extinction equilibrium is unstable, and the only positive equilibrium appears
to be globally attractive. The branching point occurs at R0 = 1. When R0 < 1, there is no positive
equilibrium, and the algae extinction equilibrium is globally attracting. This numerical result is
generated by the continuation software “MatCont” in MATLAB.

Eventual concentrations at the depths 5m, 10m, 20m are similar and low, which indi-
cates that P becomes limiting in a shallow epilimnion. In contrast, the algal cell quota
is positively related to epilimnion depth. This is due to the fact that the algal cell
quota is positively related to the P concentration. Hence, epilimnion depth has two
influences on algae in our simulation: It is positively related to P (at least in Figure
3.2) and negatively related to the average sunlight intensity through the average light
uptake integral term. In the case of Figure 3.2, if C has a larger effect than P, then
algal abundance is negatively related to the depth. It is not clear whether or not
algal abundance can be positively related to depth when P is more limited than C in
some lakes. The algae-quota phase plane shows that algae and their cell quotas are
positively related in the very beginning, but they are negatively related eventually,
demonstrating a general phenomenon of “larger quantity leads to lower quality.” The
bifurcation diagram with respect to the mixing layer depth (Figure 3.3) illustrates
that algae love shallower epilimnions and also illustrates our mathematical findings.

4. Bacteria-algae interaction dynamics. We return to the original bacteria-
algae system (2.2). We analyze this system on the positively invariant set

Ω = {(A,Q, P,B,C) ∈ R
5
+ | A ≥ 0, Qm ≤ Q ≤ QM , P ≥ 0, B ≥ 0, C ≥ 0}.

The system (2.2) may have three types of equilibria: the extinction steady state
e0 = (0, Q̂, Pin, 0, 0), the bacteria extinction only steady state e1 = (Ā, Q̄, P̄ , 0, C̄),
and the coexistence steady state(s) e∗ with all components positive (see Figure 4.1).
We can calculate the basic reproductive number for bacteria, R1, by linearizing about
e1. We obtain

R1 =
μBf(P̄ )g(C̄)

μr + μg + D
zm

,
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Fig. 4.1. An abstract phase space diagram for system (2.2) when R0 > 1 and R1 > 1. Q,P
are placed on one axis (say x-axis), A,C are placed on another axis (say y-axis), and B is on

the vertical axis (z-axis). Extinction equilibrium e0 = (0, Q̂, Pin, 0, 0) is globally attracting on the
subspace {x ∈ Ω | A = B = C = 0}, but is a repeller for Ω2 = {x ∈ Ω | B = 0}. Bacteria extinction
only equilibrium e1 = (Ā, Q̄, P̄ , 0, C̄) is globally attracting on the subspace Ω2, but is a repeller for
Ω1 = {x ∈ Ω | B �= 0}. Bacteria persist, and at least one coexistence equilibrium exists.

where C̄ = μĀzm
D

Qm

Q̄
h(Ā) and P̄ , Ā, Q̄ are components of E∗ in the system (3.1). This

number is defined under the assumption R0 > 1. When R0 < 1, we have proved that
there is no positive equilibrium in system (3.1), which means at least one of P̄ , Ā, Q̄
is undefined or out of the region of interest. Biologically, R1 is the average biomass of
new bacteria produced by one unit of bacterial biomass during the bacterial life span
in epilimnion. R1 should be an indicator for the local stability of e1; hence, R1 is an
indicator for the bacterial viability when R0 > 1.

A simple sufficient condition for the extinction of both algae and bacteria is given
in the next theorem.

Theorem 5. When μAh(0) < D
zm

( ⇔ μA

Kbg
ln( H+Iin

H+Iin exp(−zmKbg) ) < D ), both al-

gae and bacteria will die out; i.e., limt→∞ A(t) = limt→∞ B(t) = 0 for all nonnegative
initial conditions.

It is easy to observe that R0 < μAh(0)
D/zm

. Hence μAh(0) < D
zm

implies R0 < 1.

Figure 4.2 confirms that both species go extinct when R0 < 1, a weaker condition
than the condition μAh(0) < D

zm
in Theorem 5. The line-filled region expands rapidly

when the sunlight increases past 800μmol(photons)/(m2 · s). This suggests that high
light intensity can negatively affect bacteria, even driving them to extinction due to
competition with algae. Hence, the balance of light and nutrient is significant for the
lake system, which is in agreement with the “light:nutrient” hypothesis [38].

Branching points in Figures 3.3 and 6.1 are identical, since all of them are deter-
mined by the same condition R0 = 1. R1 does not affect this branching point, since
R1 is defined only if R0 > 1. R0 > 1 implies R1 > 1 in the white region of Figure
4.2. Upon existent mathematical results, we hypothesize that there are three types
of dynamics: (1) R0 > 1, R1 > 1 ensure the persistence of species (white region in
Figure 4.2); (2) R0 > 1, R1 < 1 enable the persistence of algae but the extinction
of bacteria (line-filled region in Figure 4.2); (3) R0 < 1 leads to the extinction of all
species (grey region in Figure 4.2).
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Fig. 4.2. Regions of Pin versus Iin for survival and extinction of bacteria and algae. Both algae
and bacteria go extinct (R0 < 1) in the grey region. Both algae and bacteria survive (R0 > 1, R1 > 1)
in the white region. Algae survive, but bacteria go extinct (R0 > 1, R1 < 1) in the line-filled region.
We run simulations of the system (2.2) for each pair of (Iin, Pin) and then put the point in the grey
region if both A and B go to zero, in the white region if both persist, and in the line-filled region if
A persists, but B goes to zero.

5. Competing bacterial strains. In lake ecosystems, bacteria comprise the
most important trophic level for processing dissolved organic matter (DOM) and
consume almost half of the primary production [32]. Most existing studies have treated
bulk bacterial communities as a homogeneous pool, even though they consist of diverse
subgroups that differ in metabolic state, DOM use, growth rate, susceptibility to
grazing, and phylogenetic affiliations. One of the challenges for aquatic microbial
ecology is to clarify variations and regulation of different bacterial subgroups in order
to better understand the internal dynamics of the bacterioplankton “black box.”

Growth characteristics and ecological roles of LNA bacteria are controversial.
Some previous studies have claimed that LNA bacteria represent less active, dor-
mant, or even dead cells. However, Nishimura, Kim, and Nagata [32] found that the
growth rates of LNA bacteria were comparable to or even exceeded HNA bacteria
in Lake Biwa. This is probably because LNA bacteria have higher nutrient uptake
efficiencies (this means bacteria take up nutrients efficiently even at very low external
concentrations, i.e., have a low half-saturation constant for P) and lower requirements
for P (this means less P per unit carbon is needed, or a smaller cell quota). An im-
portant implication of this scenario is that LNA bacteria, under severe P-limitation
conditions, represent an “active” subgroup that outcompetes HNA bacteria and hence
may play an important role in the functioning of the microbial loop [32]. In fact, both
of these seemingly contradictory statements can be correct under different situations.
One of our main motivations for this work is to examine these statements theoretically.

To examine the statement that “LNA bacteria have lower requirements for P,”
we plot the bifurcation diagram of the bacterial variable with respect to the cell quota
parameter θ for the system (2.2). This is done in Figure 5.1(a). Clearly, this figure
supports the “P requirement” hypothesis, since a lower bacterial cell quota gives
higher bacterial abundance at equilibrium. The second statement, “LNA bacteria
have higher nutrient uptake efficiencies,” is supported by Figure 5.1(b), which has
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Fig. 5.1. We examine Nishimura’s hypotheses by system (2.2).

higher sensitivity than Figure 5.1(a). This seems to suggest that “nutrient uptake
efficiency” is probably the key factor for LNA bacteria to dominate HNA bacteria
near the surface since this is where P is most limiting.

To examine Nishimura’s hypothesis, we model the competition of two bacterial
strains, HNA bacteria (B1) and LNA bacteria (B2), and assume these two strains
are heterogeneous in P usage and the maximum growth rate, but homogeneous in C
usage. Elser et al. [12], and Sterner and Elser [37] have proposed the “growth rate
hypothesis” to explain variation among organisms in biomass C:P and N:P ratios. The
growth rate hypothesis states that differences in organismal C:N:P ratios are caused
by differential allocations to RNA necessary to meet the protein synthesis demands of
rapid rates of biomass growth and development [37, p. 144]. Due to the growth rate
hypothesis, the bacterial cell quota is strongly correlated to the maximum growth
rate; that is, θ1/θ2 = ιμ1/μ2, where ι is a positive constant. For convenience, we
assume θ1/θ2 = μ1/μ2. With these assumptions, the competition system takes the
form

dA

dt
= μAA

(
1 − Qm

Q

)
h(A) − lmA− ν + D

zm
A,

dQ

dt
= ρ(Q,P ) − μAQ

(
1 − Qm

Q

)
h(A),

dP

dt
=

D

zm
(Pin − P ) − ρ(Q,P )A− [θ1μ1B1f1(P ) + θ2μ2B2f2(P )]g(C),(5.1)

dB1

dt
= μ1B1f1(P )g(C) − (μr + μg)B1 −

D

zm
B1,

dB2

dt
= μ2B2f2(P )g(C) − (μr + μg)B2 −

D

zm
B2,

dC

dt
= μAA

Qm

Q
h(A) − 1

r
[μ1B1f1(P ) + μ2B2f2(P )]g(C) − D

zm
C,
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Fig. 5.2. Under different lake environments, a different bacterial strain dominates. μ1 =
4, μ2 = 2,K1 = 0.15,K2 = 0.06, θ1 = 0.1, θ2 = 0.05 with the same units as in Table 2.2.

where fi(P ) = P
Ki+P , i = 1, 2. Since the maximum LNA bacteria growth rate is lower

and LNA bacteria have higher nutrient uptake efficiencies, it is biologically reasonable
to assume that μ1 > μ2, K1 > K2.

The positivity and dissipativity of the system (5.1) obviously hold, and the proof
can be formulated in a fashion similar to that of Theorem 1.

As we can see from Figure 5.2, HNA bacteria grow faster than LNA bacteria
whenever P is sufficient, simply because in such situations the maximum HNA bacteria
growth rate is greater than that of the LNA bacteria. But LNA bacteria grow faster
than HNA bacteria whenever P is severely limited (Figure 5.2), because LNA bacteria
have higher nutrient uptake efficiencies and lower requirements for P. Therefore, these
seemingly conflicting phenomena can happen under distinct nutrient conditions.

We can seek the expression of the potential positive steady state of the system
(5.1). From the bacterial equations, we have

μifi(P )g(C) = (μr + μg) +
D

zm

for the potential positive steady state. Solving it for P , we obtain

P =
aKi

μig(C) − a
,

where a = (μr + μg) + D
zm

is a constant. Assume the system (5.1) has a positive

steady state; then μig(C) > a holds for i = 1, 2. For a fixed C level, the P level
for the potential positive steady state of that bacterial strain is increasing in Ki, but
decreasing in μi. Since K2 is smaller, LNA bacteria have more chance to survive
because of the lower level of P required to reach its potential positive steady state
level. However, μ2 is also smaller, which can reduce the LNA bacteria’s chance to
survive because of the higher level of P required to obtain its potential positive steady
state level. In other words, Ki and μi work together in a nonlinear fashion. These
arguments are only true for the case when a single steady state is globally attractive,
in which case only one bacterial strain persists (see Figure 5.2). These bacterial
strains may coexist in the form of limit cycles, as periodic solutions are possible even
for system (2.2) (for example, Figure 5.3).
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Fig. 5.3. With shallow mixing layer zm = 1 and default values for other parameters, system
(2.2) exhibits complex dynamics.

6. Discussion. Mechanistically formulated mathematical models of population
dynamics are sought after since they often have advantages over phenomenologically
derived ad hoc models in generating plausible and verifiable dynamics. However, the
challenge of developing a mechanistic and predictive theory for biological systems
is daunting. Exciting progress in understanding and modeling ecological systems in
the last decade has been achieved through the application of the theory of ecological
stoichiometry [37] and the consideration of interactions between nutrient and light
availability [8, 9, 20, 21, 22]. Our models (2.2) and (5.1), hybrids of mechanistic and
phenomenological derivations and motivated by the experiments and hypotheses of
Nishimura, Kim, and Nagata [32], continue this newly established tradition. They
can be viewed as an extension as well as a variation of the work of Diehl, Berger,
and Wöhrl [9] who modeled algal growth experiments subject to varying light and
nutrient availability.

Our preliminary analytical results on system (2.2) demonstrate that it is math-
ematically interesting, and our extensive bifurcation and numerical simulation work
suggests that it is biologically sound.

We leave many mathematical questions open, including the global qualitative
result below.

Conjecture. E∗ is globally asymptotically stable when R0 > 1.
Theorems 3 and 4, together with the bifurcation diagram (Figure 3.3) and the

uniqueness of E∗, support the conjecture. This limiting case global stability result
(Theorem 3) for the positive equilibrium suggests that the conjecture is true when the
cell quota evolves on a much faster timescale than other variables. Theorem 4 and its
extension are pure mathematical results that give more credence to the conjecture.

Obviously, algae are favored by shallow epilimnia, sufficient sunlight, and P in-
puts, while bacteria are favored by medium depths of epilimnion and sunlight and suf-
ficient P input. With a larger P input, the ecosystem can thrive with more intensive
sunlight input. Alternatively, with more intensive sunlight input, the algae-bacteria
ecosystem may need more P input to be viable. When the epilimnion is very shallow
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Fig. 6.1. Bifurcation diagrams of system (2.2) with respect to depth of epilimnion.

(zm = 1), the system (2.2) may generate complicated attractors such as that shown
in Figure 5.3. It can be said that a shallower epilimnion tends to be more transient
and fragile than a deep one.

Bifurcation diagrams of bacteria and algae versus depth are shown in Figure 6.1.
From Figures 6.1(a) and (b), we observe that neither algae nor bacteria may survive in
a very deep mixing layer (> 35m). In Lake Biwa, the northern lake with mean depth
43m is much deeper than the southern lake with mean depth 4m. Our bifurcation
diagrams (Figure 6.1) try to mimic bacterial and algal abundances in Lake Biwa from
the southern site to the northern site. According to these diagrams, bacteria-to-algae
ratios in the south should be smaller than in the north. This numerical observation
may be tested in the field.

The mathematical study of the more involved system (5.1) is even more complex,
and we thus opted to perform only numerical simulations to examine the hypotheses
of Nishimura, Kim, and Nagata [32]. Our bifurcation diagrams (Figure 5.1) suggest
that higher nutrient uptake efficiencies of LNA bacteria are the key factor for LNA
bacteria to dominate HNA bacteria in severely P-limited lakes.

Appendix.
Proof of Theorem 1. Positivity obviously holds for the system. Let R = AQ +

P + θB, which is the total phosphorus in system (2.2). Then

dR

dt
=

D

zm
(Pin −R) −

(
lm +

ν

zm

)
AQ− θ(μr + μg)B ≤ D

zm
(Pin −R),

which implies

R∞ = lim sup
t→∞

R(t) ≤ Pin and R(t) ≤ max{Pin, R(0)}.

Since all the variables are positive and Qm ≤ Q ≤ QM , we have

A∞ = lim sup
t→∞

A(t) ≤ Pin

Qm
and A(t) ≤ 1

Qm
max{Pin, R(0)}.

Noting that

dC

dt
≤ μAA− D

zm
C ≤ μA

Qm
max{Pin, R(0)} − D

zm
C,
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we have

C(t) ≤ max

{
zmμA

DQm
max{Pin, R(0)}, C(0)

}
= max

{
zmμAPin

DQm
,
zmμAR(0)

DQm
, C(0)

}
.

Hence, for given initial conditions, C(t) is bounded. Therefore, all the variables are
bounded. It is easy to show that

lim sup
t→∞

C(t) = C∞ ≤ zmμA

D
A∞ ≤ zmμA

D

Pin

Qm
=

zmμAPin

DQm
.

Consequently, the bacteria-algae system (2.2) is dissipative, and

℘ =

{
(A,Q, P,B,C) ∈ Ω | AQ + P + θB ≤ Pin, C ≤ zmμAPin

DQm

}

is a global attracting region for the system.
Proof of Theorem 2. At E0, the Jacobian matrix is

J(E0) =

⎛
⎝ Ψ(0, Q̂) 0 0

+ λ1 +
− 0 λ2

⎞
⎠ ,

where λ1 and λ2 are negative numbers. It is easy to see that the eigenvalues of
J(E0) are Ψ(0, Q̂), λ1, and λ2. R0 < 1 implies Ψ(0, Q̂) < 0. Hence E0 is locally
asymptotically stable. R0 > 1 implies Ψ(0, Q̂) > 0, which implies that E0 is unstable.

For the case R0 > 1, let x = (A,Q, P ) and x′ = F (x); then F : R
3
+ −→ R

3 is
locally Lipschitzian. Let Ω1 = {(A,Q, P ) ∈ Ω | A �= 0}; Ω2 = {(A,Q, P ) ∈ Ω | A =
0}; then Ω = Ω1 ∪ Ω2, Ω1 ∩ Ω2 = ∅, with Ω2 being a closed invariant subset of R

3
+

and Ω1 positively invariant. E0 is the only equilibrium in Ω2. It is easy to show that
the solution that starts in Ω2 converges to {E0}.

The singleton set {E0} is a uniform weak repeller for Ω1 when R0 > 1 and an
isolated invariant set in Ω [39]. It is acyclic in Ω2. Hence Ω2 is a uniform strong
repeller for Ω1, and there exists an equilibrium x∗ ∈ Ω1, F (x∗) = 0 [40]. The first
conclusion implies that A is uniformly persistent.

We are now ready to establish the uniqueness of E∗. E∗ satisfies

μA

(
1 − Qm

Q

)
h(A) − lm − ν + D

zm
= 0,(A.1)

ρ(Q,P ) − μAQ

(
1 − Qm

Q

)
h(A) = 0,(A.2)

D

zm
(Pin − P ) − ρ(Q,P )A = 0.(A.3)

By simple eliminations, we see that

P = Pin − zm
D

(
lm +

ν + D

zm

)
AQ = Pin −

(
zm
D

lm +
ν + D

D

)
AQ.

By substituting this into (A.1), we have

A =
M + Pin − ρm

(lm+ ν+D
zm

)Q

QM−Q
QM−Qm

Pin

( zmD (lm + ν+D
zm

)Q− ρm
zm
D

QM−Q
QM−Qm

≡ F (Q).(A.4)
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Therefore

Φ(Q) ≡ Ψ(F (Q), Q) = μA

(
1 − Qm

Q

)
h(F (Q)) − lm − ν + D

zm
= 0.

We will show that Φ(Q) = 0 has a unique positive solution. To this end, we show
that F (Q) is decreasing in Q. Notice that

F (x) =
a− ( b

x − c)

dx− (e− fx)
=

(a + c)x− b

(d + f)x2 − ex
,

where

a = M + Pin, b =
ρm

lm + ν+D
zm

QM

QM −Qm
Pin, c =

ρm

lm + ν+D
zm

1

QM −Qm
Pin,

d =
zm
D

(
lm +

ν + D

zm

)
, e = ρm

zm
D

QM

QM −Qm
, f = ρm

zm
D

1

QM −Qm
.

We have

F ′(x) =
−(a + c)(d + f)x2 + 2b(d + f)x− be

((d + f)x2 − ex)2
≡ G(x)

((d + f)x2 − ex)2
.

Observe that

Δ = [2b(d + f)]2 − 4(a + c)(d + f)be = 4b(d + f)[b(d + f) − e(a + c)] < 0

since b(d + f) − e(a + c) = −ρm
zm
D

QM

QM−Qm
M < 0. Therefore G(x) = −(a + c)(d +

f)x2 + 2b(d + f)x − be < 0. Therefore F (x) is strictly decreasing in x. As a result,
the uniqueness of E∗ holds.

Assume now that R0 < 1. If we have a positive equilibrium, then Q̄ > Q̂ since
Φ(Q̂) = Ψ(0, Q̂) < 0. Observe that since P̄ < M + P̄ , we need only(

lm +
ν + D

zm

)
Q̄ < ρm

QM − Q̄

QM −Qm

to guarantee that P̄ > 0. To ensure Ā > 0, due to (A.4), we need the more restrictive
condition(

zm
D

lm +
ν + D

D

)
Q̄− ρm

zm
D

QM − Q̄

QM −Qm
< −M

(
zm
D

lm +
ν + D

D

)
Q̄/Pin.

Hence Ā > 0 will ensure P̄ > 0. The previous inequality implies that

Q̄ <
β(Pin)QM

β(Pin) + (lm + ν+D
zm

)
.

Recall that R0 < 1 implies that μA(1 −Qm/Q̂)h(0) < lm + ν+D
zm

and

Q̂ =
β(Pin)QM + μAQmh(0)

β(Pin) + μAh(0)
.
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Fig. A.1. Graph of algae system (3.1) to check that the system is competitive. This is observed
from the Jacobian matrix of system (3.1) in the proof of Theorem 2.

Hence

Q̄− Q̂ <
β(Pin)QM

β(Pin) + (lm + ν+D
zm

)
− β(Pin)QM + μAQmh(0)

β(Pin) + μAh(0)
.

Simple computation shows that

Q̄− Q̂ < − μAh(0)Qm(β(Pin) + μAh(0))

(β(Pin) + (lm + ν+D
zm

))(β(Pin) + μAh(0))
< 0,

a contradiction to Q̄ > Q̂.
We now proceed to show that E0 is globally asymptotically stable when R0 < 1.

The Jacobian matrix of system (3.1) has the structure

J =

⎛
⎝ ∗ + 0

+ ∗ +
− + ∗

⎞
⎠

which is sign-stable for the off-diagonal elements. According to the graph in Figure
A.1, every closed loop has an even number of edges with + signs; thus the system
(3.1) is monotone ([33, p. 50–51]) in Ω with respect to the order defined by

Km = {(A,Q, P ) ∈ R
3 | A ≥ 0, Q ≤ 0, P ≥ 0}.

An application of monotone dynamical system theory ([33, Prop. 4.3, p. 44]) yields the
statement that if system (3.1) has a positive periodic solution in Ω, then it contains
an equilibrium in Ω. However, we have shown that there is no positive equilibrium
E∗ when R0 < 1. Hence system (3.1) has no positive periodic solution in Ω. By the
Poincaré–Bendixson theory for the monotone algae system and the local stability of
E0, we see that E0 is globally asymptotically stable.

Proof of Theorem 3. An application of the quasi–steady state approximation for
the cell quota equation yields

Q̃ =
QMβ(P ) + QmμAh(A)

β(P ) + μAh(A)
≡ γ(A,P )

which is increasing in both A and P , with γ(A,P ) ∈ (Qm, QM ). The system (3.1) is
then reduced to a two-dimensional system:

(A.5)

⎧⎪⎨
⎪⎩

dA

dt
= μAA

(
1 − Qm

γ(A,P )

)
h(A) − lmA− ν + D

zm
A ≡ F1(A,P ),

dP

dt
=

D

zm
(Pin − P ) − μA(γ(A,P ) −Qm)h(A)A ≡ F2(A,P ).
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There are still two equilibria: Ẽ0 = (0, Pin) and Ẽ∗ = (Ā, P̄ ). All the theorems above
for system (3.1) hold for system (A.5). Choose the Dulac function δ(A,P ) = 1/A.
Then

∂(δF1)

∂A
= ∂

[
μA

(
1 − Qm

γ(A,P )

)
h(A) − lm − ν + D

zm

]
/∂A

= ∂

[
μA

(QM −Qm)β(P )h(A)

QMβ(P ) + QmμAh(A)

]
/∂A < 0,

∂(δF2)

∂P
= ∂

[
D

zm
(Pin − P )/A− μA(γ(A,P ) −Qm)h(A)

]
/∂P < 0.

Therefore ∂(δF1)
∂A + ∂(δF2)

∂P < 0. By the Poincaré–Bendixson theory, the positive equi-

librium Ẽ∗ is globally asymptotically stable for the system (A.5) when R0 > 1.
Proof of Theorem 4. The system (3.1) satisfies the conservation principle as

follows:

d(P + AQ)

dt
=

D

zm
(Pin − P ) −

(
lm +

ν + D

zm

)
AQ

=
D

zm
(Pin − P ) − D

zm
AQ =

D

zm
[Pin − (P + AQ)];

then, all solutions of system (3.1) asymptotically approach the surface P +AQ = Pin

as t → ∞. We need only show that E∗ is globally asymptotically stable on the
surface P + AQ = Pin, which is the limiting case of system (3.1). The whole system
is reduced to be a planar system on the surface; then, we can prove global stability
on the surface as Theorem 3 when R0 > 1. According to Smith and Waltman [35],
E∗ is also globally asymptotically stable for the system (3.1) when R0 > 1.

For convenience, in the following proofs we use the same notations Ω, Ω1, Ω2, ℘,
F , M , etc. for system (2.2) as we did for system (3.1). Although they are different
from those used for system (3.1), they play similar roles for system (2.2).

Proof of Theorem 5. For system (2.2), consider the total carbon T = A+B/r+C.
Then dT

dt = μAAh(A)− D
zm

T−(lm+ ν
zm

)A− μr+μg

r B ≤ μAAh(A)− D
zm

T , which gives us
dT
dt ≤ μATh(T )− D

zm
T , since Ah(A) is increasing in A. By the condition μAh(0) < D

zm

and because h(A) is decreasing in A, we have μAh(T )− D
zm

≤ μAh(0)− D
zm

< 0, which

implies T → 0 as t → ∞. Together with positivity of all the variables, we have
limt→∞ A(t) = limt→∞ B(t) = 0 for all nonnegative initial conditions; that is, both
algae and bacteria go extinct.
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Abstract. The aim of this work is to model the evolution of the modal distribution of the
electromagnetic field as it propagates along a randomly deformed multimode optical waveguide.
When the number of guided modes becomes large we can regard the discrete set of modes as a
quasi continuum. In some cases, nearest neighbor coupling predominates over other power transfer
mechanisms and the coupling process can be ideally described in terms of a diffusion equation. The
theory is applied to the propagation of guided transverse electric (TE) field waves in a slab waveguide
with parabolic refractive index profile. Numerical simulations are in good agreement with theoretical
results, and the error is shown to behave as the inverse of the number of guided modes. The technique
allows the prediction of the long-distance modal distribution for a very large number of guided modes
within fixed computational resources.
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1. Introduction. While more and more sophisticated methods for the manufac-
ture and control of graded index multimode fibers are being implemented, the random
variations of the optical and geometrical properties of fibers from the ideal model are
impossible to avoid. These small imperfections influence the signal propagation as a
result of mode coupling, and their cumulative effects may become important after a
long propagation length. Thus, they need to be taken into account when calculating
the power attenuation, the signal distortion, and the bandwidth of the fiber [1, 2, 3].
The statistical treatment of wave propagation in random waveguides has been the
topic of numerous papers, and a complete survey would merit a separate article; some
interesting references can be found in [4].

The most common approach consists in deriving and solving the coupled power
equations describing the evolution of the average power carried by the propagat-
ing modes. The earliest investigations of mode coupling in optical waveguides were
concerned with the excess losses which result from the coupling of guided modes to
radiation modes [5, 6]. Rowe and Young [7] showed that when random perturbations
are present in a two-mode waveguide, one can derive coupled power equations for
the power in each mode. Marcuse [8] generalized this result to any number of guided
modes, and an excellent summary of this work can be found in his textbook [9]. When
the number of guided modes becomes too large, a direct algebraic treatment of the
coupled system is ruled out because of the computational overhead. In some cases,
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however, nearest neighbor coupling predominates over other power transfer mecha-
nisms and, within appropriate limits, the coupling process can be ideally described
in terms of a diffusion equation in which the mode number is treated as a continu-
ous variable. This idea originated in the mid-seventies for dealing with the specific
problem of random bends [10, 11, 12].

The diffusion analysis approach to mode propagation in optical fibers relies on
many simplifications and assumptions which render the theory’s validity difficult to
estimate. Curiously enough, no progress has been made since the mid-seventies and,
until recently, Gloge’s diffusion theory [10] has been the starting point for evaluating
mode conversion in step-index multimode fibers [13, 14]. In this paper (and in a forth-
coming article discussing the three-dimensional waveguide [15]), we aim at offering a
new contribution to the diffusion approach [16] by treating the problem in a much
more rigorous manner. It is found that, for the specific case of a slab waveguide with
a parabolic index profile, the coupled power equations system can be approximated
as a diffusion equation with an approximation error of order O(N−1), where N is the
number of modes. In practice, the theory leads to a numerically tractable problem for
predicting the long-distance modal distribution of the transverse electric (TE) field
for any waveguide supporting a sufficiently large number of modes. Furthermore, it
allows one to identify nondiffusive regimes in which the modal power distribution is
not the solution of a diffusion equation and which exhibits irregular behavior.

The structure of the paper is as follows. The statement of the problem is presented
in section 2. In section 3, the standard coupled power equations for the slab waveguide
are stated, and a continuous model is derived in section 4. We finally compare the
theoretical results with numerical solutions of the diffusion equation for various cases
in section 5.

2. Problem statement. We aim to study the propagation of a monochromatic
TE field EY = E(X,Z)e−iωt in a weakly guiding two-dimensional dielectric waveguide
whose parabolic graded-index profile n is affected by a small random perturbation,
say, δn. The field is governed by the time-harmonic wave equation

(2.1)
∂2E

∂X2
+

∂2E

∂Z2
+ κ2n2(X)E = κ2δn2(X,Z)E,

where κ is the vacuum wavenumber, Z is the guide axis, and X is the transverse
coordinate. The refractive index of the unperturbed waveguide has the parabolic
profile

(2.2) n2(X) = n2
0(1 − 2Δ(X/a)2)

in the waveguide region, |X| ≤ a, and n2(X) = n2
c in the infinite cladding, |X| > a.

The profile height parameter Δ = (n2
0−n2

c)/2n
2
0 is assumed to be small, and backscat-

tering is ignored so that, under appropriate scaling, the problem can be conve-
niently formulated [4] as the following Schrödinger-type equation for the amplitude
Ψ = Ee−iκn0Z :

(2.3) 2i
∂Ψ

∂z
= −∂2Ψ

∂x2
+ v(x)Ψ + δv(x, z)Ψ,

where z =
√

2ΔZ/a, x =
√
V X/a, and δv = V (n2

0 − n2
c)

−1δn2. Here V denotes the
usual waveguide parameter V = κn0a

√
2Δ and v stands for the quadratic potential

with finite depth: v(x) = V f(x̄), where x̄ = x/
√
V = X/a and f is the normalized
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Fig. 2.1. Profile of the normalized index of refraction; solid line indicates the unperturbed
waveguide; dashed line indicates the waveguide under small deformation.

quadratic profile (see Figure 2.1)

(2.4) f(x̄) =

{
x̄2, |x̄| ≤ 1
1, |x̄| > 1

}
.

Let us now introduce ε, the relative amplitude of the perturbation of the slab profile.
We can simulate small deviations from the ideal profile (2.4) as follows:

f̃(x̄, z) = f(x̄)+ δf(x̄, z) = (1+ εg2(z))(x̄+ εg1(z)/2)2 + εg3(z), a−(z) ≤ x̄ ≤ a+(z).

The functions gq(z)’s are random processes with amplitudes that do not exceed unity.
In practice, g1 simulates random oscillations of the center of the waveguide around the
optical axis (microbending), g2 is a random change of waveguide width, and g3 is a
random variation of the average refractive index. Note that the core-cladding interface
is perturbed slightly from x̄ = ±1 to x̄ = a±(z). However, we will be interested in the
behavior of the wave field away from the interface and so, as is usual, we will ignore
the effects of the core-cladding interface on the mode intercoupling in this article. To
first order, we find that the nondimensionalized perturbation to the refractive index
is

(2.5) f̃(x̄, z) − f(x̄) = δf(x̄, z) = ε(g1(z)x̄ + g2(z)x̄
2 + g3(z)) + O(ε2).

We can be more general, and henceforth take δf = εg, where the normalized random
perturbation g is assumed to have the separable form

(2.6) g(x̄, z) =

Q∑
q=1

gq(z)φq(x̄),

in which the gq’s are real-valued zero-mean, independent, stationary, and ergodic
processes with respect to the waveguide axis coordinate z, and φq(x̄) are deterministic
functions that can be referred to as the “perturbation modes.” These functions are
assumed to be sufficiently regular that they can be conveniently formulated as the
truncated Taylor series

(2.7) φq(x̄) =

ηq∑
n=0

bq,nx̄
n, where bq,n =

1

n!

(
dnφq

dx̄n

)
x̄=0

.
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3. Coupled mode theory. We wish to solve the parabolic equation (2.3), given
the initial conditions Ψ(x, 0) at the input of the waveguide. For sufficiently small
perturbations, it is possible to express the field distribution in the waveguide by using
standard perturbation theory [17, 18, 19], i.e., Ψ is expanded in the eigenfunction
basis of the unperturbed waveguide as

(3.1) Ψ(x, z) =
∑
ν

aν(z)ψν(x)e−iβνz +
∑∫

a(β, z)ψ(β, x)e−iβzdβ.

The first summation extends over all the discrete spectrum of guided modes satisfying
the eigenmode problem

(3.2) −d2ψν

dx2
+ v(x)ψν = 2βνψν ,

with the boundary condition ψν(x) → 0 as |x| → ∞. Eigenvalues of (3.2) are real pos-
itive quantities lying in the range 0 < βν < βc (βc = V/2 is the cut-off wavenumber).
They characterize the number of oscillations of the eigenfunctions along the trans-
verse section of the waveguide. For a very large number of modes (V � 1), the highly
oscillating wavefunction ψν are conveniently described by the WKB approximation,
and the largest permitted eigenvalue below cut-off can be shown to be approximately
given by the upper bound, maxν βν ≈ βc. The integral in (3.1) extends over modes
of the continuum (radiation modes), and the summation sign in front of the integral
indicates summation over even and odd modes. These modes are oscillatory solutions
of (3.2) and do not have the evanescent behavior (in x) of the guided mode fields.
To be consistent with the forward scattering approximation introduced earlier, we
restrict the integration domain to small propagation constants: βc ≤ β � βc/Δ. The
expansion coefficients aν(z) and a(β, z) are unknown functions of z. Using orthogo-
nality properties of both guided and radiation modes, (2.3) is transformed into the
system of ordinary differential equations

daν
dz

= −iεβc

∑
μ

Cν,μ(z)ei(βν−βμ)zaμ(z)

− iεβc

∑∫
a(β, z)Cν(β, z)e

i(βν−β)zdβ,(3.3)

where coupling coefficients are given by the overlap integrals

(3.4) Cν,μ(z) =

∫ ∞

−∞
ψν(x)g(x̄, z)ψμ(x)dx

and

(3.5) Cν(β, z) =

∫ ∞

−∞
ψν(x)g(x̄, z)ψ(β, x)dx.

Though feasible, a numerical solution of the coupled mode system (3.3) can be ob-
tained at a heavy price, which could be well above standard computational resources.
In fact, the solution of (3.3) contains more information (i.e., regarding the phase) than
is required. It is now well established [9] that, under some additional assumptions,
system (3.3) can be averaged over an ensemble of Nw similar waveguide realizations.
More precisely, if the guided modes are weakly coupled over a distance which is large



MODAL DIFFUSION IN RANDOM OPTICAL WAVEGUIDES 527

compared to the correlation length of the random process g, then the average power
Aν(z) = 〈|aν(z)|2〉 = limNw→∞

1
Nw

∑
Nw

|aν(z)|2 carried by mode ν can be shown to
satisfy the system of master equations

(3.6)
1

ε2
dAν

dz
=

∑
μ

Wν→μ(Aμ −Aν) − ανAν ,

where the transition probability matrix coefficients Wν→μ are given from the spectral
density of Cν,μ(z) evaluated at the wavenumber spacing |βν − βμ|, i.e.,

(3.7) Wν→μ = 2β2
c

∫ ∞

0

〈Cν,μ(0)Cν,μ(z)〉 cos[(βν − βμ)z]dz.

These are, by definition, positive quantities, and thus Wν→μ ≥ 0. Note that a similar
derivation can be found in the context of quantum mechanics [20] and in acoustics [21].
The power loss coefficients αν are positive quantities taking into account the coupling
between mode ν to the continuum of radiation modes. A rigorous analysis of the
radiation loss is a very difficult task as it requires both an accurate description of the
perturbation in the vicinity of the core-cladding interface as well as precise knowl-
edge of the mathematical form for the guided and radiation modes close to cut-off.
Nevertheless, for waveguides supporting a sufficiently large number of modes, only
highest order modes near cut-off carry nonnegligible energy near the interface and
therefore suffer from very high losses. To simplify the analysis we will assume that
αν = ∞ when ν ≥ βc, which means that high order modes carry no power: Aν≥βc

= 0.
These assumptions were introduced by Marcuse [11] for the parabolic index fiber and
were recently found to be in agreement with measurements carried out by Golowich
et al. [3]. Due to the symmetry of the matrix coefficients Wν→μ, the solution of (3.6)
is given explicitly by

(3.8) A(z) = U exp
(
ε2Λ z

)
UT A(0),

where vector A(z) = (A1(z), A2(z), . . .)
T , and A(0) contains the initial conditions at

z = 0, i.e.,

(3.9) Aν(0) = |aν(0)|2 =

∣∣∣∣
∫ ∞

−∞
Ψ(x, 0)ψν(x)dx

∣∣∣∣
2

.

The diagonal matrix (Λ)i,i = λi, i = 1, 2, . . . , contains the real eigenvalues in de-

scending order, and the column vectors U(i) = (U
(i)
1 , U

(i)
2 , . . .)T are the eigenmodes

of the real symmetric system with eigenvalues λi:

(3.10) WU(i) = λiU
(i),

with the cut-off condition that U
(i)
ν = 0 when ν ≥ βc. Note that the transition

probability operator W is defined, from (3.6), as

(3.11) (WU(i))ν =
∑
μ

Wν→μ

(
U (i)
μ − U (i)

ν

)
− ανU

(i)
ν .

Due to the special structure of (3.11) and the positivity of the off-diagonal terms,
Dozier and Tappert [21] showed that Gerschgorin discs with radius Rν =

∑
μ�=ν Wν→μ
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lie in the left part of the complex plane, and hence all eigenvalues, λi, are negative.
The special case, λ1 = 0, can be referred to as the adiabatic case and corresponds
to the long-distance solutions limz→∞ Aν(z) = (

∑
μ 1)−1

∑
μ Aμ(0), i.e., an equipar-

tition of energy is achieved whatever the initial conditions. This is a consequence of
neglecting the radiation loss. This ideal scenario was considered in [21] but is obviously
unrealistic in our context as losses from the highest order modes are unavoidable.

4. The continuous model.

4.1. Simplification when V � 1. Numerical diagonalization of the transition
probability operator W (3.11) becomes impractical for very large V . Nevertheless,
progress can be made if we are interested only in the lower |λi| corresponding to long-
distance solutions. To achieve this, we need to find a continuum analogue of (3.10).
Let us first observe that in the limit of large V , the set of orthonormal functions ψν

satisfying (3.2) are the classical harmonic oscillator bases [18, 20]:

(4.1) ψν(x) =
1√

π1/22νν!
Hν(x)e−x2/2, ν = 0, 1, 2, . . . , with βν = ν + 1/2,

where Hν denotes the usual Hermite polynomials. These are good approximations
to the exact solutions, except for modes near cut-off, βν ≈ βc. We assume that
(4.1) is valid for all modes below cut-off; these modes are unaffected by the interface
core-cladding as the power carried in this region is negligible and the evaluation of
the coupling coefficients can be greatly simplified by extending the perturbation (2.6)
over the whole real line as

(4.2) Cν,μ(z) =

Q∑
q=1

ηq∑
n=0

gq(z)bq,n

∫ ∞

−∞
ψν(x)x̄nψμ(x) dx.

To make some progress, we can observe that Hermite polynomials fall into the class
of orthogonal polynomials satisfying a three-term recurrence relation which, in terms
of the normalized function ψν , reads

(4.3) xψν(x) =
1√
2

(√
νψν−1(x) +

√
ν + 1ψν+1(x)

)
.

Using purely algebraic arguments, the nth power of the two-term recurrence operator
(4.3) is established in [22]. This leads to following result.

Lemma 4.1. Given positive integers (ζ, n) ∈ N
2, the following integration formula

holds:

(4.4)

∫ ∞

−∞
ψν(x)xnψν+ζ(x)dx = 2−

n
2 Fζ(ν)Gζ,n(ν),

where

(4.5) Fζ(ν) =

ζ∏
l=1

√
ν + l and Gζ,n(ν) =

∑
σ∈n−ζ

2 ∩N

∑
iσ∈In

σ

σ∏
l=1

(ν + 1 + il − l)

and In
σ is the set of indices iσ = (i1, . . . , iσ) ∈ N

σ associated with the nested sum

(4.6)
∑

iσ∈In
σ

=

n−σ∑
iσ=0

iσ∑
iσ−1=0

· · ·
i3∑

i2=0

i2∑
i1=0

.
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By common convention, the products above take the value unity when the lower
limit exceeds the upper, and the notation

∑
σ∈ξ∩N

indicates that σ takes the value
of ξ when ξ is an integer, or else the sum is zero. Note that the parameter ν has
been written as an argument of F and G because we will soon generalize it to take
noninteger values. Several other quantities will soon be defined which will also use
this convention.

The result (4.4) shows that, for the ideal modes just described, the coupling
coefficients between modes ν and ν + ζ (ζ positive) take the form

(4.7) Cν,ν+ζ(z) =

Q∑
q=1

gq(z)Φq,ζ(ν),

where

(4.8) Φq,ζ(ν) = Fζ(ν)
∑
n≥0

bq,n(2V )−
n
2 Gζ,n(ν),

and bq,n is written in (2.7). The factorization of the quantity Fζ(ν) in (4.8) is a key
result since it allows us to define the polynomial series wζ defined over the real line
ν̃ ∈ R as

(4.9) wζ(ν̃) =

Q∑
q=1

Φ2
q,|ζ|(ν̃ − |ζ|/2) Γq(ζ),

where ζ now belongs to the whole integer set, ζ ∈ Z, and Γq stands for the spectral
density function

(4.10) Γq(ζ) = 2

∫ ∞

0

〈gq(0)gq(z)〉 cos(ζz)dz.

Finally the transition probability matrix coefficients Wν→ν+ζ are given from the reg-
ular function wζ evaluated at the midpoint ν + ζ/2, i.e.,

(4.11) Wν→ν+ζ = β2
c wζ(ν + ζ/2).

This is a key result of this article; it relates the transition probability matrix to a
regular function over continuous arguments. This fact will be used shortly in obtaining
a Taylor series expansion.

Let us now introduce η as the maximum exponent in the truncated Taylor ex-
pansion (2.7), i.e., η = max1≤q≤Q{ηq}. By virtue of (4.5), the transition matrix has
a band-diagonal structure: Wν→ν+ζ = 0 when |ζ| > η, and furthermore the roots of
wζ are such that

(4.12) Wν→−1 = · · · = Wν→ν−η = 0.

Thus, there is no coupling with negative indices and (4.11) is exact for all guided
modes. Let us now introduce a real analytic function Ũi which interpolates the discrete
values of the elements of the column vector U(i),

(4.13) Ũi(ν) = U (i)
ν in the interval 0 ≤ ν < βc,

with the cut-off condition Ũi(ν) = 0 in the interval βc ≤ ν ≤ βc+η. This last condition
does not need to be satisfied for ν > βc + η due to the band-diagonal structure of
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the transition probability matrix. Similarly, we introduce a regular function γ̃ such
that γ̃(ν) = αν (the attenuation factor) for all modes below cut-off 0 ≤ ν < βc.
Note that such interpolating functions exist, and it suffices to consider the Lagrange
interpolation polynomial, for instance. We can now exploit the equality (4.11) to
give the continuum analogue of (3.11). Direct application of Taylor’s theorem for real
analytic functions yields the following result.

Lemma 4.2. Let Ũi(ν̃) be the real analytic function introduced earlier. Then we
have

(WU(i))ν =

η∑
ζ=−η

Wν→ν+ζ

(
Ũi(ν + ζ) − Ũi(ν)

)
− γ̃(ν)Ũi(ν)

= β2
c

d

dν̃

(
D(ν̃)

dŨi

dν̃

)∣∣∣∣∣
ν̃=ν

− γ̃(ν)Ũi(ν) + R(Ũi)(ν),(4.14)

where D(ν̃) =
∑η

ζ=1 ζ
2wζ(ν̃) and the residual term R(Ũi) is given by the Taylor series

R(Ũi) = 4β2
c

∑
(n,m)∈N2

∗

η∑
ζ=1

(ζ/2)2(n+m+1)

(2n + 1)!(2m + 1)!

d2m+1

dν̃2m+1

(
wζ

d2n+1Ũi

dν̃2n+1

)
,

where N
2
∗ = N

2\{(0, 0)}.
Proof. First, we have the following equality, taking an expansion about the mid-

point ν + ζ/2:

(4.15) Ũi(ν + ζ) − Ũi(ν) = ζ
dŨi

dν̃
(ν + ζ/2) + 2

∞∑
n=1

(ζ/2)2n+1

(2n + 1)!

d2n+1Ũi

dν̃2n+1
(ν + ζ/2).

Now, functions wζ are polynomial series and so, given (4.11), we find(
wζ

dŨi

dν̃

)
(ν + ζ/2) −

(
wζ

dŨi

dν̃

)
(ν − ζ/2) = ζ

d

dν̃

(
wζ

dŨi

dν̃

)
(ν)

+ 2
∞∑

n=1

(ζ/2)2n+1

(2n + 1)!

d2n+1

dν̃2n+1

(
wζ

dŨi

dν̃

)
(ν).

Repeating this operation for the residual term on the right-hand side of (4.15) yields
the expected result.

The reader’s attention is drawn to the fact that the leading term on the right-
hand side of (4.14) is just the diffusion operator acting on Ũi. We comment on this
further below.

4.2. Asymptotic series expansion. We are interested in the eigenmode solu-
tions of (3.10) when the number of guided modes is sufficiently large. To do this, we
introduce the small parameter ε = 1/V . The asymptotic approach starts by writing
every quantity as a power series of ε, and equating coefficients of like powers to yield
a hierarchy of equations. Let us first observe that by introducing the normalized vari-
ables u = β−1

c ν̃, where β−1
c = 2/V = 2ε � 1, function wζ admits the regular series

expansion

(4.16) wζ(ν̃) = W 0
ζ (u) + εW 1

ζ (u) + ε2W 2
ζ (u) + · · · + εηW η

ζ (u),
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where

(4.17) Wα
ζ (u) = lim

ε→0

1

α!

∂αwζ(u (2ε)−1)

∂εα
, α = 0, 1, 2, . . . , η,

are all polynomial series with respect to the continuous variable u. The first two terms
are given explicitly by

(4.18) W 0
ζ (u) = uζ

Q∑
q=1

Γq(ζ)[P
I
q,ζ(u)]2

and

(4.19) W 1
ζ (u) = uζ−1

Q∑
q=1

Γq(ζ)P
I
q,ζ(u)[ζP I

q,ζ(u) + 4P II
q,ζ(u)],

where

(4.20) P I
q,ζ(u) =

�(ηq−ζ)/2�∑
σ=0

2−nbq,nC
n
σu

σ|n=ζ+2σ

and

(4.21) P II
q,ζ(u) =

�(ηq−ζ)/2�∑
σ=1

2−nbq,nA
n
σu

σ|n=ζ+2σ

with

Cn
σ = card(In

σ ) =
n!

σ!(n− σ)!
and An

σ =
∑

iσ∈In
σ

σ∑
l=1

(1 + il − l − n/2 + σ).

Note that the quantity x� in these equations indicates the floor of x, i.e., the largest
integer less than or equal to the real number x, and ηq (from (2.7)) is the maximum

value of n with nonzero bq,n. The expansion (4.16) suggests writing a solution Ũi(ν̃)
in the form of an asymptotic series expansion

(4.22) Ũi(ν̃) = Ui,0(u) + εUi,1(u) + ε2Ui,2(u) + · · ·

and

(4.23) λi = λi,0 + ελi,1 + ε2λi,2 + · · · .

Similarly, we may assume that

(4.24) γ̃(ν̃) = γ0(u) + εγ1(u) + ε2γ2(u) + · · · .

Substituting these expansions into (3.10) yields a series of diffusion equations (for
brevity we restrict ourselves to writing just the leading order and the first order
corrections):

d

du

(
D0(u)

dUi,0

du

)
− γ0 Ui,0 = λi,0Ui,0,(4.25)

d

du

(
D0(u)

dUi,1

du

)
− γ0 Ui,1 = λi,0Ui,1 + λi,1Ui,0(4.26)

+ γ1 Ui,0 −
d

du

(
D1(u)

dUi,0

du

)
,
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where functions

(4.27) D0(u) =

η∑
ζ=1

ζ2W 0
ζ (u) and D1(u) =

η∑
ζ=1

ζ2W 1
ζ (u)

can be interpreted as diffusion coefficients controlling the average transfer of modal
power at the mode “number” ν̃ = βcu. At subsequent orders, formulae are more
complicated due to the presence of the residual term R(Ũi). Each diffusion equation
in the family must be solved over the unit interval [0, 1] and all have boundary data
Ui,α(1) = 0, α ∈ N. The boundary condition at the origin emerges naturally after
realizing that there is no transfer of modal energy from negative indices; this implies
that

(4.28)

(
D0

dUi,α

du

)
u=0

= 0.

This boundary condition is in fact the continuous analogue of the no-coupling condi-
tion (4.12) and is automatically satisfied for any regular solution since, by construction
(see (4.18)), we have D0(0) = 0.

4.3. Nature of the leading order solution. In this section, we are interested
in regular solutions of the leading order eigenmode satisfying

(4.29)
d

du

(
D0

dϕ

du

)
− γ0 ϕ = λϕ, ϕ(1) = 0.

From the remark below (3.11) we also require that λ < 0. Since D0(u) is a strictly
positive polynomial in (0, 1] with D0(0) = 0, (4.29) is a singular Sturm–Liouville eigen-
value problem and u = 0 is a singular endpoint. The regularity of the eigensolution
therefore depends upon the behavior of D0(u) as u tends to zero. Fortunately, (4.29)
admits exact analytical solutions for monomial perturbations g(x̄, z) = gn(z)x̄n (re-
call that x̄ is the scaled transverse coordinate given in section 2 by x̄ = X/a) because
in these cases

(4.30) D0(u) = dnu
n with dn = 2−2n

[n−1
2 ]∑

σ=0

(n− 2σ)2Γn(n− 2σ)(Cn
σ )2 > 0;

by neglecting the loss term γ0, it can be shown that the general family of solutions
(up to the normalization constant) is

(4.31) ϕ(u) = u(1−n)/2J±ϑ(ω±
n,iu

(2−n)/2), ϑ =
n− 1

n− 2
(n ≥ 3),

where ω±
n,i satisfies J±ϑ(ω±

n,i) = 0 and J±ϑ is the Bessel function of the first kind
of order ±ϑ. The particular case n = 3 yields ϑ = 2 so an additional independent
solution is given by ϕ(u) = u−1Y2(y2,iu

−1/2), where Y2 denotes the usual Bessel
function of the second kind of order 2 and y2,i are the zeros of Y2. When n = 2,
(4.29) is the classical Euler–Cauchy equation with general solution ϕ(u) = ur, where
r satisfies the associated characteristic equation r2 +r−λ/d2 = 0. A quick inspection
reveals that, as λ is negative, Re(r) < 0. To summarize, for the specific case where
the diffusion coefficient has the simple form D0(u) = dnu

n and losses are neglected
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(γ0 = 0), solutions of (4.29) are all singular at the origin except when n = 1, for which
there exists a unique regular solution of the form

(4.32) ϕ(u) = J0(j0,i
√
u),

where j0,i are the zeros of J0 in ascending order. The other independent solution is
ϕ(u) = Y0(y0,i

√
u), where Y0 denotes the usual Bessel function of the second kind

of order 0 and y0,i are the zeros of Y0. This result suggests that regular solutions
are expected, provided the diffusion coefficient has linear behavior as u → 0. This is
confirmed by the following proposition.

Lemma 4.3. There exists a unique power series solution to the Sturm–Liouville
problem (4.29), provided D0(u) ∼ u as u → 0, which is equivalent to

(4.33) Γq(1) b2q,1 �= 0, q = 1, . . . , Q.

Proof. The diffusion coefficient D0(u) has the general polynomial form

(4.34) D0(u) =

η∑
n=1

dnu
n,

where the first coefficient is explicitly given by d1 = 1
4

∑Q
q=1 Γq(1)b2q,1. Without loss

of generality, we may assume that γ0(u) has a power series expansion. Substituting
the Frobenius–Fuchs series

(4.35) ϕ(u) = uc
∞∑
j=0

aju
j , a0 �= 0,

in (4.29) leads to the indicial equation: d1a0c
2 = 0 and the existence of a power

series solution is guaranteed if d1 �= 0, which is equivalent to (4.33) since the Γq’s are
positive functions. Furthermore, the series is unique due to Fuchs’ theorem. Note
the associated eigenvalues can be checked to be real negative since the regularity of
ϕ implies that

(4.36) λ

∫ 1

0

ϕ2 du = −
∫ 1

0

D0

(
dϕ

du

)2

du−
∫ 1

0

γ0ϕ
2 du,

where all the integrals are positive; the result is apparent by inspection. This is
consistent with that found for the discrete eigenvalue problem (3.10).

If d1 = 0 and d2 �= 0, then the indicial equation becomes

(4.37) c2 + c− λ + γ0(0)

d2
= 0.

In the limit of large V , the energy carried by the fundamental mode ν = 0 is vanish-
ingly small at the core-cladding interface, so limV→∞ γ̃(0) = 0 and therefore γ0(0) = 0.
Now, given the fact that λ < 0 and d2 > 0, roots of the quadratic form have strictly
negative real part, and this leads to singular solutions. When d1 = d2 = 0, u = 0 is
an irregular singular point and there is no series solution.

In order to give a physical explanation of the condition (4.33), for simplicity
let us assume that the waveguide is affected by a single perturbation mode, i.e.,
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g(x̄, z) = g1(z)φ1(x̄). As the number of guided modes tends to infinity, the modal
distribution tends to the solution of a diffusion equation provided that (see (4.10))

(4.38) Γ1(1) = 2

∫ ∞

0

〈g1(0)g1(z)〉 cos(z)dz �= 0 and b1,1 =

(
dφ1

dx̄

)
x̄=0

�= 0.

The first inequality is nothing other than the well-known “resonance” condition [9]
to ensure the coupling between two adjacent modes with equal spacing in β space; in
other words, the perturbation g1 must have spatial frequency support at βν+1−βν = 1.
The second condition means that the perturbation cannot be locally flat in the vicinity
of the waveguide axis. If it is, then as V → ∞ the lowest order modes, localized very
near the axis, will not “see” any perturbation at all and there will be no coupling
and therefore no modal diffusion. This behavior is illustrated numerically in the last
section of this paper.

4.4. Regular solution and first order correction. Given a random pertur-
bation satisfying (4.33), we call {Ui,0}∞i=1 the set of regular solutions of the self-adjoint
eigenvalue problem (4.25). Assuming that the associated eigenvalues are all distinct,
the following orthogonality property holds:

(4.39)

∫ 1

0

Ui,0Uk,0 du = ‖Ui,0‖2δi,k,

where ‖ · ‖ stands for the usual energy norm of L2([0, 1]). The orthogonality of the
eigenfunctions is in line with the orthogonality of the eigenvectors

(4.40) U(i) · U(k) = δi,k.

Let us define vectors V
(i)
α , α = 0, 1, 2, . . . , as the discrete versions of their continuous

counterpart: (V
(i)
α )ν = Ui,α(ν/βc) for all guided modes. Rewriting the perturbation

expansion (4.22) in its vectorial form gives

(4.41) U(i) = V
(i)
0 + εV

(i)
1 + ε2V

(i)
2 + · · · .

According to (4.40), the norm of the leading order solution ‖Ui,0‖ must be chosen

such that ‖V(i)
0 ‖2

2 = 1 + O(ε). This can easily be shown to be satisfied by simply
taking

(4.42) ‖Ui,0‖ = β
− 1

2
c =

√
2ε

1
2 .

The first order correction is explicitly obtained by expanding Ui,1 in the leading order
orthogonal basis Ui,0, i.e.,

(4.43) Ui,1(u) =

∞∑
k=1

vi,k Uk,0(u).

Substituting (4.43) into (4.26) and using orthogonality properties yields

(4.44) vi,k =
(2ε)−1

λi,0 − λk,0

∫ 1

0

[
d

du

(
D1

dUi,0

du

)
Uk,0 − γ1Ui,0Uk,0

]
du, k �= i,
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and

(4.45) λi,1 = (2ε)−1

∫ 1

0

[
d

du

(
D1

dUi,0

du

)
Ui,0 − γ1Ui,0Ui,0

]
du.

The diagonal correction terms vi,i stem from the discrete normalization (4.40). To
first order, this is equivalent to the condition

(4.46) ‖V(i)
0 + εV

(i)
1 ‖2

2 = 1 + O(ε2).

The correspondence between the discrete and continuous norms is given by the com-
posite trapezoidal rule:∫ βc

0

(Ui,0(ν̃/βc) + εUi,1(ν̃/βc))
2 dν̃ = ‖V(i)

0 + εV
(i)
1 ‖2

2 −
1

2
(Ui,0(0) + εUi,1(0))2 + T (i),

where the quadrature error T (i) is bounded by

|T (i)| ≤ ε

6
max
u∈[0,1]

∣∣∣∣d2(Ui,0 + εUi,1)
2

du2
(u)

∣∣∣∣ .
Thus, due to the normalization (4.42), T (i) ∼ O(ε2). Moreover, by construction

∫ βc

0

(Ui,0 (ν̃/βc) + εUi,1(ν̃/βc))
2 dν̃ = 1 + ε2vi,i + O(ε2),

and so the normalization condition (4.46) is satisfied if

(4.47) vi,i = −ε−1

4
U2
i,0(0).

Note that the orthogonality of the first order eigenvectors is checked in Appendix A,
confirming the above analysis.

5. Numerical experiments.

5.1. Linear perturbation. In this section we shall focus on the linear pertur-
bation g(x̄, z) = g1(z)x̄. This arises from random changes in the direction of the
waveguide axis. From (4.20)–(4.21), P I

1,1(u) = 2−1 and P II
1,1(u) = 0, which, taking

Q = η = 1 in (4.18), (4.19), and (4.27), leads to the simple form for the diffusion
coefficients: D0(u) = uΓ1(1)/4 and D1(u) = Γ1(1)/4. To simplify the analysis, the
spectral density of g1 is chosen so that (see (4.10)) Γ1(1) = 4. This choice gives

(5.1) D0(u) = u and D1(u) = 1.

By neglecting the radiation losses, we get the leading order solution Ui,0 ≡ ϕi (see
Appendix B). The leading order eigenvalue is λi,0 = −j2

0,i/4, and we show in the
appendix that the integral (4.45) can be evaluated analytically to yield λi,1 = −λi,0.
However, an analytical form for (4.44) could not be found and so numerical integration
has to be performed. To summarize, the eigenvector solution of the original eigenvalue
problem (3.10) is, to first order,

(5.2) U(i) = V
(i)
0 + ε

∞∑
k=1

vi,kV
(k)
0 + O(ε2),
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Table 5.1

Evolution of the first eigenvalue.

V Discrete system Continuous model
10 −1.317801 −1.301216
100 −1.431525 −1.431338
500 −1.442912 −1.442904
2500 −1.445218 −1.445218

Table 5.2

Evolution of the second eigenvalue.

V Discrete system Continuous model
10 −7.067015 −6.856034
100 −7.544146 −7.541637
500 −7.602682 −7.602579
2500 −7.614772 −7.614768

where (V
(i)
0 )ν = (ϕi(ν/βc)). The off-diagonal terms are given explicitly by

(5.3) vi,k =
1 − j0,k

j0,i

∫ 1

0
u−1J1(

√
uj0,i)J1(

√
uj0,k) du(

j20,k
j20,i

− 1
)
|J1(j0,i)J1(j0,k)|

and vi,i = −1/(2J2
1 (j0,i)). The eigenvalues are, from (4.23), found to be

(5.4) λi = −
j2
0,i

4
(1 − ε) + O(ε2).

In this example, the associated original discrete system (3.10) may be written explic-
itly as

(5.5) (ν + 1)(U
(i)
ν+1 − U (i)

ν ) + ν(U
(i)
ν−1 − U (i)

ν ) = λiU
(i)
ν .

So, mode coupling occurs only between adjacent modes, and the description of the
power coupling process in terms of a diffusion equation is clearly validated since (5.5)
is nothing but the finite difference discretization of (B.1).

Tables 5.1 and 5.2 display the values of the first two eigenvalues calculated from
the original discrete system (5.5) and using the first order approximation (5.4). The
number of digits of accuracy given by the continuous model is in agreement with the
expected V −2 law; recall that the above expressions are correct to O(ε2), ε → 0, which
is equivalent to O(V −2), V → ∞. This is clearly confirmed in Figure 5.1, where the
evolution of the quadratic errors (in percentages) for the leading order solutions

E
(i)
0 = 100 × ‖U(i) − V

(i)
0 ‖2

and for the first order solutions

E
(i)
1 = 100 × ‖U(i) − V

(i)
0 − εV

(i)
1 ‖2

are plotted against the waveguide parameter V . Note that the first order correction

vector V
(i)
1 is computed with only the first 30 terms in the infinite sum in (5.2).
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Fig. 5.1. Error behavior with respect to V for the first three eigenmodes; dashed lines denote
leading order solution, and straight lines denote first order solution.

5.2. General case: The Rayleigh–Ritz method. We consider a random
perturbation satisfying (4.33). Regular solutions of the Sturm–Liouville eigenvalue
problem (4.25) can be numerically recovered using the Rayleigh–Ritz method [23].
For the sake of notational simplicity, we define the symmetric positive bilinear form

(5.6) A(ϕ,ϕ′) =

∫ 1

0

(
D0(u)

dϕ

du

dϕ′

du
+ γ0(u)ϕϕ′

)
du.

Solutions of (4.25) are stationary points of the energy functional E [Ui,0] = A(Ui,0, Ui,0)

subject to the normalization constraint ‖Ui,0‖ = β
− 1

2
c . The set of functions {ϕk}∞k=1

forms a complete orthogonal system on L2([0, 1]) satisfying the Dirichlet boundary
condition at the endpoint u = 1 (see Appendix B) and can therefore serve as a natural
basis for an approximate solution UK

i,0; i.e., we consider the truncated generalized
Fourier expansion

(5.7) UK
i,0(u) =

K∑
k=1

cKi,k ϕk(u).

Following standard variational techniques, the stationary points are reached at the
approximate eigenvalue |λK

i,0| = βc E [UK
i,0], where the expansion coefficients cKi,k satisfy

the matrix eigenvalue problem,

(5.8)

K∑
k=1

cKi,k A(ϕk, ϕl) = −λK
i,0 c

K
i,l, l = 1, 2, . . . ,K.

The symmetry of the bilinear form implies that the basis set (UK
i,0)i=1,...,K is orthog-

onal in L2([0, 1]). Furthermore, the true solution is recovered by taking the limit
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Fig. 5.2. Leading order diffusion coefficient D0(u). Dashed line: τ = 1; continuous line:
τ = 0.01; dash-dot-dot line: τ = 0.0001.

Ui,0 = limK→∞ UK
i,0. Similarly, λi,0 = limK→∞ λK

i,0 and from the Rayleigh–Ritz prin-

ciple, approximate eigenvalues |λK
i,0| are upper bounds for the true eigenvalues |λi,0|

of the infinite-dimensional problem. The convergence of the method depends upon
the properties of the perturbation such as its shape and its power spectrum. In most
cases of practical interest, lowest order eigenvalues are expected to be obtained at a
modest computational price (say K ≤ 100). For the sake of illustration, we consider
perturbations given by the general form

(5.9) g(x̄, z) = τg1(z)x̄ +

5∑
q=2

gq(z)x̄
q.

In the current analysis, the random functions gq are assumed to be statistically iden-

tical and satisfy the Gaussian distribution: 〈gq(0)gq(z)〉 = e−z2

, q = 1, . . . , 5, which

gives Γq(ζ) =
√
πe−ζ2/4. The corresponding diffusion coefficient is the polynomial of

degree 5,

(5.10) D0(u) = τ

√
πe−1/4

4
u +

5∑
n=2

dnu
n.

The other coefficients are given explicitly in (4.30). In Figure 5.2 are plotted two
graphs of D0 against u for three values of τ . The tiny difference between the two
curves τ = 0.01 and τ = 0.0001 can be identified on the magnified figure on the right.
When τ = 0, criterion (4.33) is not satisfied and there is no continuous counterpart
to the discrete eigenmode. Thus, the coefficient τ can be interpreted as a diffusion
parameter and the modal distribution in the waveguide is expected to “lose its regu-
larity” when τ → 0. This behavior is revealed in Figures 5.3–5.4, where the first and
fifth eigenmodes obtained from the discrete system (3.10) and from the continuous
model (4.25) are shown. In all cases illustrated we considered βc = V/2 = 500 guided
modes, and the eigenfunctions UK

i,0 are computed with K = 50 basis functions. From
(4.44), it can be shown that the amplitude of the first order correction terms vi,k will
grow as τ → 0. Thus the leading order solution Ui,0 will be a good approximation
only if the number of guided modes is sufficiently large so that ε‖Ui,1‖ � ‖Ui,0‖. This
explains the discrepancy observed when τ = 0.0001.
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Fig. 5.3. Influence of the diffusion parameter τ on the “regularity” of the first eigenmode;
unbroken line denotes the continuous model U1,0, and triangles denote the discrete eigenmode U(1).
Number of guided modes: 500.
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Fig. 5.4. Influence of the diffusion parameter τ on the “regularity” of the fifth eigenmode;
unbroken line denotes the continuous model U5,0, and triangles denote the discrete eigenmode U(5).
Number of guided modes: 500.

Table 5.3

Long distance power distribution. Fraction of energy carried by the lowest modes (βc = 500).

τ ν = 0, 1, . . . , 10 ν = 0, 1, . . . , 100
1 33% 82%
0.01 70% 98%
0.0001 95% 99.8%

The diffusion parameter has noticeable consequences on the modal distribution
of U(1) and therefore the long-distance power distribution

(5.11) A(z) ≈ U(1) exp
(
ε2λ1 z

) [
U(1)

]T
A(0) as z → ∞.

This is clearly illustrated in Figure 5.3, where τ has a significant effect on the modal
distribution. Since the fundamental mode U1,0 is a positive function in [0, 1] and
λ1,0U1,0(0) = τ(dU1,0/du)u=0 (see Appendix A), the optical power is likely to be
concentrated among the lowest order modes as τ → 0. This is confirmed in Table 5.3,
where the fraction of energy carried by the lowest modes is shown for various values
of τ .

6. Conclusion. In this paper we have analyzed the evolution of the modal power
distribution of the transverse electric field as it propagates along a multimode slab
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waveguide with quadratic refractive index profile and with small random deforma-
tions. We showed that for waveguides supporting a sufficiently large number of guided
modes, the mode coupling mechanism can be ideally described as a diffusion equa-
tion. Even for a moderate number of modes, the regular expansion method allows
us to obtain very accurate solutions when first order correction terms are taken into
account. In practice, the technique described herein provides excellent qualitative
predictions for the long-distance modal distribution within fixed computational re-
sources regardless of the number of modes. Furthermore, we were able to identify
nearly nondiffusive regimes in which the modal power distribution is not the solu-
tion of a diffusion equation and exhibits irregular behavior. In these latter scenarios,
we observed strong focusing effects of the wave field in the vicinity of the waveguide
axis. Work is almost complete on applying the present technique to three-dimensional
fibers of circular cross-section with parabolic index profile [15]. We have good reason
to believe that the results demonstrated in this paper could be generalized to other
graded-index fibers, and this will be the subject of future work.

Appendix A. Orthogonality of the first order eigenvectors. The purpose
of this appendix is to prove that the eigenmodes of the discrete system, taken to first
order in ε, are orthogonal to O(ε2). We commence by integrating by parts (4.44).
This yields

(A.1) vi,j + vj,i = − βcD1(0)

λi,0 − λj,0

(
dUi,0

du
Uj,0 −

dUj,0

du
Ui,0

)
u=0

, i �= j.

Moreover, the eigenvalue equation (4.25), together with γ0(0) = 0 and D0(0) = 0,
implies

(A.2) λi,0Ui,0(0) =

(
dD0

du

dUi,0

du

)∣∣∣∣
u=0

,

and by virtue of (4.20) and (4.21), it can be shown that W 1
ζ (0) = (dW 0

ζ /du)u=0.
Thus, from (4.27),

(A.3) D1(0) =
dD0

du
(0),

and so we can construct the identity

(A.4) (λi,0 − λj,0)(Ui,0Uj,0)u=0 = D1(0)

(
dUi,0

du
Uj,0 −

dUj,0

du
Ui,0

)
u=0

.

Therefore, from (A.1) and (A.4) we arrive at the result

(A.5) vi,j + vj,i = −βc(Ui,0Uj,0)u=0.

Finally, using β−1
c = 2ε and applying the composite trapezoidal rule yields a relation-

ship between the discrete and continuous eigenmode products, namely,

(V
(i)
0 + εV

(i)
1 ) · (V(j)

0 + εV
(j)
1 ) =

1

2
(Ui,0Uj,0)u=0 + O(ε2)

+

∫ βc

0

(Ui,0(ν̃/βc) + εUi,1(ν̃/βc))(Uj,0(ν̃/βc) + εUj,1(ν̃/βc)) dν̃.(A.6)
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This reduces to

(V
(i)
0 + εV

(i)
1 ) · (V(j)

0 + εV
(j)
1 ) = ε(vi,j + vj,i)

+
1

2
(Ui,0Uj,0)u=0 + O(ε2) = O(ε2)(A.7)

by virtue of (A.5) and completes the exercise.

Appendix B. Microbending solution. This appendix proves completeness of
the regular orthogonal eigenfunctions satisfying

(B.1)
d

du

(
u
dϕ

du

)
= λϕ, ϕ(1) = 0,

together with the normalization condition (4.42), ‖ϕi‖ = β
− 1

2
c . We find that (see

section 4.3) these functions are

(B.2) ϕi(u) = β
− 1

2
c

J0(j0,i
√
u)

|J1(j0,i)|
,

where Jn is the Bessel function of the first kind of order n, j0,i is the location of the
ith zero of J0, and each ϕi(u) has the associated eigenvalue λi,0 = −j2

0,i/4.

B.1. Completeness. By construction, the set of eigenfunctions {ϕi}∞i=1 defines
an orthogonal system on L2([0, 1]). The system is complete if the Dalzell-type crite-
rion [24] is satisfied, i.e.,

(B.3) S = 2βc

∞∑
i=1

∫ 1

0

∣∣∣∣
∫ t

0

ϕi(u)du

∣∣∣∣
2

dt = 1.

A straightforward calculation yields

(B.4) S =
∞∑
i=1

8

3j2
0,i

(
1 +

4

j2
0,i

)
.

Now, let α ≥ 2 be an integer; then the Cauchy residue theorem gives the identity

(B.5) IN,α =

∮
CN

d lnJ0(z)

dz

dz

zα
= 4πi

N∑
i=1

1

jα0,i
+ 2πiRes

{
d lnJ0(z)

zαdz
; z = 0

}
,

where the closed contour CN is the circle centered at the origin with radius RN chosen
such that j0,N < RN < j0,N+1. Since limN→∞ IN,α = 0, we get, setting respectively
α = 2 and α = 4,

(B.6)

∞∑
i=1

1

j2
0,i

=
1

4
and

∞∑
i=1

1

j4
0,i

=
1

32
.

Substitution of these sums into (B.4) completes the result.

B.2. First order eigenvalues. The first order eigenvalues are specified by
(4.45); we can evaluate them as follows. First, multiply (B.1) by dϕ/du and inte-
grate over 0 to 1 to give
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(B.7)

∫ 1

0

dϕ

du

d

du

(
u
dϕ

du

)
du =

λ

2

∫ 1

0

dϕ2

du
du.

Integrating by parts twice then yields

(B.8)
1

2

(
dϕ

du

)2

u=1

+
1

2

∫ 1

0

(
dϕ

du

)2

du = −λ

2
ϕ2(0).

Integrating by parts again and using the equality (dϕ/du)u=0 = λϕ(0) gives finally

(B.9)

∫ 1

0

ϕ
d2ϕ

du2
du =

(
dϕ

du

)2

u=1

= − λ

βc
.

Substituting this into (4.45), using (A.3) and setting γ1 = 0 (lossless case), yields

(B.10) λi,1 = −λi,0.

Acknowledgments. The authors are most grateful to Professor John Love
(ANU, Australia), Dr. David Allwright and Dr. John Ockendon (OCIAM, Univer-
sity of Oxford, UK), and Dr. Dominic Gallagher and Dr. Tom Felici (Photon Design)
for their substantial input to the project.

REFERENCES

[1] R. Olshansky, Propagation in glass optical waveguides, Rev. Modern Phys., 51 (1979), pp.
341–367.

[2] A. F. Garito, J. Wang, and R. Gao, Effects of random perturbations in plastic optical fibers,
Science, 281 (1998), pp. 962–967.

[3] S. E. Golowich, W. White, W. A. Reed, and E. Knudsen, Quantitative estimates of mode
coupling and differential modal attenuation in perfluorinated graded-index plastic optical
fiber, J. Lightwave Tech., 21 (2003), pp. 111–121.

[4] J. Garnier, Light propagation in square law media with random imperfections, Wave Motion,
31 (2000), pp. 1–19.

[5] D. Marcuse, Mode conversion caused by surface imperfections of a dielectric slab waveguide,
in Integrated Optics, IEEE Press, New York, 1972.

[6] D. Marcuse, Radiation losses of dielectric waveguides in terms of the power spectrum of the
wall distortion function, in Integrated Optics, IEEE Press, New York, 1972.

[7] H. E. Rowe and D. T. Young, Transmission distortion in random multimode waveguides,
IEEE Trans. Microwave Theory, MTT-20 (1972), pp. 349–365.

[8] D. Marcuse, Derivation of coupled power equations, Bell System Tech. J., 51 (1972), pp.
229–237.

[9] D. Marcuse, Theory of Dielectric Optical Waveguides, Academic Press, New York, 1991.
[10] D. Gloge, Optical power flow in multimode fibers, Bell System Tech. J., 51 (1972), pp. 1767–

1783.
[11] D. Marcuse, Losses and impulse response of a parabolic index fiber with random bends, Bell

System Tech. J., 52 (1973), pp. 1423–1427.
[12] R. Olshansky, Mode coupling effects in graded-index optical fibers, Appl. Optics, 14 (1975),

pp. 935–945.
[13] J. Zubia, G. Durana, G. Adabaldetreku, J. Arrue, M. A. Losada, and M. Lopez-

Higuera, A new method to calculate mode conversion coefficients in SI multimode optical
fibers, J. Lightwave Tech., 16 (1998), pp. 1195–1202.
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THE GENERALIZED RIEMANN PROBLEM FOR A SCALAR
NONCONVEX CHAPMAN–JOUGUET COMBUSTION MODEL∗

WANCHENG SHENG† , MEINA SUN† , AND TONG ZHANG‡

Abstract. The generalized Riemann problem for a scalar nonconvex Chapman–Jouget com-
bustion model in a neighborhood of the origin (t > 0) on the (x, t) plane is considered. Under the
entropy conditions, we exhibit the construction of the solutions. It can be observed that, for some
cases, there are essential differences between the structures of the perturbed Riemann solutions and
the corresponding Riemann solutions. Especially, a strong detonation in the corresponding Riemann
solution may turn into a weak deflagration followed by a shock wave after perturbation, which ap-
pears in the numerical simulations of Bao and Jin [J. Comput. Phys., 163 (2000), pp. 216–248] and
Zhang and Ying [J. Comput. Math., 23 (2005), pp. 337–350].

Key words. scalar nonconvex CJ combustion model, generalized Riemann problem, detonation,
deflagration
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1. Introduction. The Chapman–Jouguet (CJ) combustion theory plays an im-
portant role in gas dynamics [5], [16], [2]. In Lagrangian coordinates, one-dimensional
adiabatic, inviscid flow of combustible ideal gases with an infinite rate of reaction is
described by the hyperbolic system of conservation laws

(1.1)

⎧⎪⎨
⎪⎩

ut + px = 0,

τt − ux = 0,

Et + (pu)x = 0,

with reaction equation

(1.2) q(x, t) =

⎧⎨
⎩

q(x, 0), sup
0<y≤t

T (x, y) ≤ Ti,

0 otherwise,

where u, p > 0, τ > 0, T , and E > 0 are the velocity, pressure, specific volume,
temperature, and specific energy, respectively, and Ti is the ignition temperature. In
addition to the kinetic energy 1

2u
2 and internal energy e, the total energy E also

contains the chemical binding energy q:

(1.3) E =
1

2
u2 + e + q.

The internal energy e = e(T ) is a known function of T , which satisfies the law of
Boyle and Gay-Lussac for ideal gas [5],

(1.4) pτ = RT,
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or the van der Waals equation of state for van der Waals gas [11],

(1.5)
(
p +

a

τ2

)
(τ − b) = RT,

where R, a, and b are constants. For ideal gas, the equation of state (1.4) is a convex
curve in the (p, τ) plane, while for van der Waals gas, the equation of state (1.4) is a
nonconvex curve in the (p, τ) plane in some cases.

Because of the difficulty of the combustion problems in gas dynamics, there are few
results except for the Riemann problems in [4] (solution involving only detonation),
[15] (solution involving only deflagration), and [21]. In [21], all Riemann solutions are
obtained for the Riemann problem (1.1), (1.2) and

(1.6) (u, τ, p, q)
∣∣
t=0

= (u±, τ±, p±, q±), ±x > 0.

Fickett in 1979 [6] and Majda in 1981 [10] proposed the simplest CJ combustion model
in Lagrangian coordinates,

(1.7)

⎧⎪⎪⎨
⎪⎪⎩

(u + q)t + f(u)x = 0,

q(x, t) =

⎧⎨
⎩

q(x, 0), sup
0≤τ≤t

u(x, τ) ≤ ui,

0 otherwise,

where u is a lumped quantity with some features of density, velocity, pressure or
temperature, q denotes the binding energy of the reactive gas, and f(u) represents
the flux function. The model (1.7) describes the combustible gas with an infinite rate
of reaction, which implies that a gas particle releases all of its binding energy once its
temperature exceeds ui (ignition temperature).

In this paper, the initial value we are interested in is of the form

(1.8) (u, q)(x, 0) = (u±
0 (x), q±0 (x)), ±x > 0,

where q±0 (x) equal a constant q0 for unburnt gas and zero for burnt gas, and u±
0 (x)

are arbitrary smooth functions with the properties

(1.9) lim
x→0−

u−
0 (x) = u−, lim

x→0+
u+

0 (x) = u+.

The corresponding Riemann problem is an initial problem (1.7) with

(1.10) (u, q)
∣∣
t=0

=

{
(u−, q0), x < 0,

(u+, 0), x > 0.

The initial value problem (1.8) is a perturbation of (1.10) at the neighborhood of the
origin. So, we call (1.8) a generalized Riemann problem. Naturally, we would like
to know whether or not, in some neighborhood of the origin, the solution for (1.7)
and (1.8) is similar to the corresponding Riemann solution. When f(u) is convex, this
problem was studied in [14], the results of which show that they are essentially different
for some cases. In the present paper, our attention is focused on the nonconvex case.
For simplicity, we assume that f(u) is the simplest nonconvex function; i.e.,

(A) f(u) has only one inflection point ũ, and f ′(±∞) = +∞.
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The case for f(u) with one inflection point and f ′(±∞) = −∞ can be treated similarly
without substantial difficulties.

To guarantee the uniqueness of the solution, entropy conditions are needed. Here
we mention some works on the entropy conditions for the model (1.7). In 1984, Ying
and Teng [17] proved the existence and uniqueness of the Riemann solution for the
Zeldovich–von Neumann–Döring (ZND) model

(1.11)

{
(u + q)t + f(u)x = 0,

qt = −kϕ(u)q,

where k is the rate of reaction for combustible gas and ϕ(u) is the Heaviside function:
ϕ(u) = 0 as u ≤ ui, ϕ(u) = 1 as u > ui. Furthermore, they obtained limits of the
solution as k tends to infinity and defined the limits as an admissible solution of the
Riemann problem for (1.7). Based on Ying and Teng’s results, Liu and Zhang [9] sum-
marized a set of entropy conditions, including pointwise and global entropy conditions,
with which they obtained the uniqueness of the Riemann problem for CJ model (1.7).
These results were all obtained under the assumption that f(u) is strictly convex.

Since a genuine two-dimensional conservation law must be nonconvex in certain
directions [3], [20] and the van der Waals equation of state is nonconvex in some cases,
it is interesting to investigate a scalar combustion model with a nonconvex flux f(u),
which is the indispensable preparation for the study of multidimensional combustion
problems. There is another motivation to study the nonconvex model (1.7) [12].
A well-known phenomenon in combustion theory is the transition from deflagration
to detonation. However, this phenomenon cannot occur in the convex case because
detonation and deflagration waves cannot propagate in the same direction (forward or
backward). In the nonconvex case, however, this phenomenon can be observed [12].

For the nonconvex system (1.7), Zhang and Zhang [19] gave the entropy restriction
that mimics those in [9] and generalizes the classical Oleinik entropy condition for
scalar conservation laws when solving the Riemann problem. In 2003, Li and Zhang [8]
proved that the Riemann solutions in [19] are the limit of the Riemann solutions for
the nonconvex self-similar ZND combustion model

(1.12)

⎧⎨
⎩

(u + q)t + f(u)x = 0,

qt = −k

t
ϕ(u)q

as the rate of reaction goes to infinity. However, through the study of the structure
stability of combustion solutions, Sheng and Zhang [12] found that their entropy
conditions do not guarantee the uniqueness in some cases, which was not discussed in
the two papers [19] and [8]. Sheng and Zhang contributed a set of complete entropy
conditions by a different method and uniquely constructed the entropy solutions for
the Riemann problem (1.7), (1.8), and (1.9). The ignition problem for (1.7) without
convexity was investigated in [13].

With the method of characteristic analysis, we constructively obtain the solutions
of (1.7) and (1.8), which include all the possibilities in [14] and have more interesting
structures. We find that for most of the cases, the combustion waves in the corre-
sponding Riemann solutions are able to retain their forms after perturbation, in the
neighborhood of the origin, while for some other cases, the perturbation brings essen-
tial changes to the combustion waves. For instance, the perturbation may transform a
strong detonation into a weak deflagration followed by a shock wave; see Case 4 in the
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present paper. This interesting phenomenon also appears in the numerical solutions
in [1] and [18]. The phenomenon is unreadable and has puzzled numerical analysts.
Our theoretical results give a reasonable explanation for this phenomenon. In fact,
error is unavoidable in computation. The error forms a perturbation of the initial
data.

This paper is organized as follows. In section 2, we present some preliminaries
containing the pointwise and global entropy conditions and elementary waves. Then
the construction of the perturbed Riemann solutions and our main results are exhib-
ited in section 3.

2. Preliminaries. Suppose the piecewise smooth vector function (u, q) satisfies
(1.7). Then it is easy to show that q(x, t) is piecewise constant, 0 or q0, and that the
smooth solution u(x, t) is a constant or rarefaction wave (R).

A jump of solution (u, q)(x, t) at x = x(t) should satisfy the Rankine–Hugoniot
condition

(2.1)
dx(t)

dt
=

[f ]

[u + q]
=: σ,

where [f ] = f(ur) − f(ul), ul = u(x(t) − 0, t), ur = u(x(t) + 0, t), etc.
The following three kinds of noncombustion discontinuities are admissible.

1. [q] = 0, [u] �= 0 ⇒ σ = [f ]
[u] is a generalized shock, which may be classified into

(a) shock wave (S): f ′(ur) < σ < f ′(ul);
(b) left–contact discontinuity (LC): f ′(ur) < σ = f ′(ul);
(c) right–contact discontinuity (RC): f ′(ur) = σ < f ′(ul);
(d) double–contact discontinuity (DC): f ′(ur) = σ = f ′(ul);

2. [q] �= 0, [u] = 0 ⇒ σ = 0 is a contact jump (J);
3. [q] �= 0, [u] �= 0, σ = 0 is a combination of S and J (SJ),

where the generalized shock and SJ satisfy the Oleinik entropy condition

(2.2)
f(u) − f(ul)

u− ul
≥ f(ur) − f(ul)

ur − ul
for (u− ul)(u− ur) ≤ 0.

We next investigate the combustion wave, which has nonzero speed σ �= 0, and
across which q jumps from q0 to zero. Let ul and ur be the limit values of u in the
combustion wave front and wave back, respectively, i.e., ql > 0 = qr and ul ≤ ui < ur,

which implies σ = f(ur)−f(ul)
ur−(ul+q0)

< 0. Then the following six kinds of combustion waves

satisfying the pointwise entropy conditions [12] are admissible.
Pointwise entropy conditions.
a. If there exists a uR ∈ [ul, ur) such that for all u ∈ (ul, ur),

(2.3) σ =
f(ur) − f(ul)

ur − (ul + q0)
=

f(uR) − f(ul)

uR − ul
≤ f(u) − f(ul)

u− ul
,

the discontinuity σ is called deflagration. Furthermore, it can be divided into three
subcases:

1. f ′(ul) = σ < f ′(ur): CJ deflagration (CJDF);
2. f ′(ul) > σ < f ′(ur): weak deflagration (WDF);
3. f ′(ul) = σ = f ′(ur): double–contact combustion (DCC).

b. If there exists a uR ∈ [ur,+∞) satisfying (2.3) for u ∈ (ul, uR), σ is called
detonation. Also, it can be divided into three subcases:

4. f ′(ul) > σ = f ′(ur): CJ detonation (CJDT);
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5. f ′(ul) > σ > f ′(ur): strong detonation (SDT);
6. f ′(ul) = σ > f ′(ur): contact detonation (CDT).

For the case that ql = 0 < qr, ul > ui ≥ ur, the pointwise entropy conditions for
combustion waves can be easily defined by means of transformation x̄ = −x, f̄ = −f .

We call R, S, J, SJ, CJDF, WDF, DCC, CJDT, SDT, and CDT elementary waves
for (1.7) without convexity.

The aforementioned entropy conditions cannot guarantee the uniqueness and
structure stability of the Riemann solutions for (1.7). Hence, global entropy con-
ditions [12] are needed.

Global entropy condition.
If the Riemann problem for (1.7) has several solutions, we choose one which

satisfies the following rule:
If U =

{
u
∣∣ ∃u < ui, such that f(u) = f(u + q0) and f ′(u + q0)f

′(ui) > 0
}
�= ∅,

take

ul = max
{
u
∣∣ u ∈ U

}
;

otherwise, take the combustion wave which propagation speed is as low as possible.
Then in the next section, we show that the generalized Riemann problem subject

to the above entropy conditions can be solved uniquely.

3. Solutions of the generalized Riemann problem. We will investigate the
solutions for the discontinuous initial value problem (1.7), (1.8) in a neighborhood
of the origin (t > 0) on the (x, t) plane. In fact, in the region where the solution is
smooth (q ≡ const.), (1.7) reduces to the scalar conservation law ut + f(u)x = 0, for
which the generalized Riemann problem was studied in [3] and the references therein.
Hence by [7], the classical solution (ul, ql)(x, t) ((ur, qr)(x, t)) can be defined in a
strip domain Dl (Dr) for local time. The right boundary of Dl has characteristic OA:
x = λ(u−)t, and the left boundary of Dr has characteristic OB: x = λ(u+)t, where
λ(u) = f ′(u) (see Figure 1).

We will distinguish the different cases according to the different solutions for the
corresponding Riemann problem [12]. It is redundant to dwell on all the cases since
some of them can be discussed similarly. So we will pick some typical cases and focus
our attention on them in the following.

By assumption (A), there are two possibilities: f ′(ũ) < 0 or f ′(ũ) ≥ 0. The latter
can be treated as the special case of the former. Therefore, we suppose f ′(ũ) < 0 in
the following without loss of generality. From f ′(ũ) < 0 and f ′(±∞) = +∞, we know
that there exist u1 and u2 such that f ′(u1) = f ′(u2) = 0, where u1 > ũ > u2. Let u3,
u4 satisfy f(u1) = f(u3), f(u2) = f(u4), respectively (Figure 2). For convenience, in
the following figures, we denote (f(u±), u±) as (±), (f(u±), u±+q0) as (±′), (f(ui), ui)
as (i) in the (f, u) plane, etc.
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3.1. Solutions for u−
0 (x) ≤ ui < u+, q−

0 (x) = q0 > 0 = q+
0 (x). We

begin by fixing u− ∈ (u3, ũ). Let u5 (ũ < u5 < u1) satisfy f ′(u5) = w(u−, u5), where

w(u, v) = f(u)−f(v)
u−v . Then our discussion can be divided into the following cases

according to the elementary waves in the corresponding Riemann solutions.
Case 1. The corresponding Riemann problem has noncombustion solution con-

taining no SJ.
We just consider the case ui > u5 and f ′(ui) ≥ 0, for which the Riemann solution

consists of a contact jump J for q and RC + R for u. Here “+” means “follows.”
When u̇−

0 (0) > 0, it is possible to construct a discontinuity without combustion
x = x(t) in the domain λ(u5)t < x < λ(u+)t as follows:

(3.1)

⎧⎨
⎩

dx

dt
= w(ul(x, t), ur(x, t)),

x(0) = 0,

where ur(x, t) is a centered simple wave defined by

(3.2)
x

t
= λ(ur(x, t)) (u5 ≤ ur ≤ u+).

Since x = x(t) satisfies the stability condition at the origin, λ(u5) = ẋ(0) < λ(u−), it
can be proved by the method used in [3, p. 16] that there exists a solution of (3.1) in
the interior of domain λ(u5)t < x < λ(u+)t, near the origin.

Conversely, under the condition that there is a discontinuity x = x(t) with ẋ(0) =
λ(u5) and ẍ(0) ≥ 0 in the domain λ(u5)t < x < λ(u+)t, we now prove that u̇−

0 (0) ≥ 0.
In fact, ẍ(0) can be calculated as follows. Differentiating the first equation in (3.1)
with respect to t and letting t = 0, one obtains

(u− − u5)ẍ(0) = (λ(u−) − ẋ(0))
dul

dt

∣∣∣∣
t=0

− (λ(u5) − ẋ(0))
dur

dt

∣∣∣∣
t=0

,

where it can be easily checked that

dul

dt

∣∣∣∣
t=0

=
∂ul

∂t
+

∂ul

∂x
ẋ(0) = (λ(u5) − λ(u−))u̇−

0 (0).

As for dur

dt

∣∣
t=0

, note that along x = x(t),

lim
t→0

λ(ur(x, t)) = lim
t→0

x

t
= ẋ(0) = λ(u5);

namely,

lim
t→0

ur(x(t), t) = u5.

Then from (3.2), we have

λ′(u5)
dur

dt

∣∣∣∣
t=0

= lim
t→0

tẋ(t) − x(t)

t2
=

ẍ(0)

2
.

Thus

(u− − u5)ẍ(0) = −(λ(u−) − λ(u5))
2u̇−

0 (0),
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which shows that ẍ(0) has the same sign as u̇−
0 (0). It is easily seen that x = x(t)

satisfies λ(ur) < w(ul, ur) < λ(ul) near the origin, which means that the right–contact
discontinuity turns into a shock wave (see Figure 2).

For u̇−
0 (0) < 0, it is impossible to construct a solution containing a shock wave,

but it is possible to construct an RC x = x(t) such as

(3.3)

⎧⎨
⎩

dx

dt
= λ(ū) = w(ul, ū)

(
−∞ <

x

t
≤ λ(u5)

)
,

x(0) = 0.

A solution of (1.7) and (1.8) can then be defined, which takes ur(x, t) on the right-hand
side of x = λ(u5)t and ul(x, t) on the left-hand side of x = x(t) for u, respectively.
The characteristic of the solution in the domain x(t) < x ≤ λ(u5)t is the tangent
of x = x(t) (see Figure 3). Similarly to the case u̇−

0 (0) > 0, it can be proved that
u̇−

0 (0) < 0 is a necessary condition for a solution constructed as above.
Case 2. A combustion wave CJDF appears in the corresponding Riemann solu-

tion: ui > u5 and f ′(ui) < 0.
Since the same discussion as above can be carried out for this case, we omit the

details. The solution for u+ ≥ u∗ is illustrated in Figure 4, where u∗ > ui satisfies

f ′(ui) = f(u∗)−f(ui)
f(u∗)−(ui+q0)

. The case for u+ < u∗ is the same as for u+ ≥ u∗ except that

(u∗, 0) and (ur, 0) are connected by a shock wave instead of a centered simple wave,
in which the shock wave satisfies

(3.4)

⎧⎨
⎩

dx

dt
= w(u∗, ur(x, t))

(
λ(u+) ≤ x

t
≤ λ(u∗)

)
,

x(0) = 0.

As we can see, the perturbation has no influence on the CJDF, which goes on to
propagate with the speed f ′(ui) in the neighborhood of the origin.
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Case 3. A combustion wave WDF appears in the corresponding Riemann solution.
We are concerned with the typical case ui = u5.
In the case of u̇−

0 (0) < 0, it can be proved that the combustion wave WDF turns
to CJDF x = f ′(ui)t, ahead of which is RC+R lying in the domain −∞ < x

t ≤ λ(ui).

The structure of the solution is similar to that of the case u̇−
0 (0) < 0 in Figure 4.

In the case of u̇−
0 (0) > 0, the combustion wave WDF remains. Let u∗ have

the same representation as in Case 2. Then we need to do some analysis for the
case u+ ≥ u∗, for which the corresponding Riemann solution can be denoted by
WDF + (u∗, 0) + R. For any ul, we may define ū(ul) ∈ (ũ, u5), û(ul) > ū(ul) such
that

(3.5)

⎧⎨
⎩ w(ul, ū) = λ(ū) =

f(û) − f(ul)

û− (ul + q0)
,

ū(u− − 0) = u5, û(u− − 0) = u∗.

Differentiating the above equations and eliminating dū, we finally get, by setting
ul = u− − 0,

(3.6)
dû

dul

∣∣∣∣
ul=u−−0

=
(λ(u−) − λ(u5))(u5 + q0 − u∗)

(λ(u∗) − λ(u5))(u5 − u−)
.

Along the WDF x = x(t) with ẋ(0) = λ(u5), defined as

(3.7)

⎧⎨
⎩

dx

dt
= λ(ū) =

f(û) − f(ul)

û− (ul + q0)
,

x(0) = 0,

it holds that

(3.8)
dul

dt

∣∣∣∣
t=0

= (λ(u5) − λ(u−))u̇−
0 (0).

Therefore,

(3.9)
dû

dt

∣∣∣∣
t=0

=
dû

dul

∣∣∣∣
ul=u−−0

dul

dt

∣∣∣∣
t=0

=
(λ(u5) − λ(u−))2(u5 + q0 − u∗)

(λ(u5) − λ(u∗))(u5 − u−)
u̇−

0 (0).

Then for ẍ(0) of the WDF, an easy calculation provides

(u− + q0 − u∗)ẍ(0) = (λ(u−) − λ(u5))
dul

dt

∣∣∣∣
t=0

− (λ(u∗) − λ(u5))
dû

dt

∣∣∣∣
t=0

,
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which, combined with (3.8) and (3.9), implies

ẍ(0) =
(λ(u−) − λ(u5))

2

u5 − u− u̇−
0 (0) > 0.

It is obvious that dû
dt

∣∣
t=0

> 0 when u∗ > u5 + q0, which means that the rarefaction
wave behind the WDF turns to a shock wave x = x(t) (see Figure 5) determined by

(3.10)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dx

dt
= w(û, ur), λ(u∗) ≤ x

t
≤ λ(u+),

x

t
= λ(ur), u∗ ≤ ur ≤ u+,

x(0) = 0.

For u∗ < u5+q0, i.e., dû
dt

∣∣
t=0

< 0, however, the rarefaction wave remains (see Figure 6).
For the case u+ < u∗, we can show by similar discussion that the solution is similar
to the corresponding Riemann solution consisting of WDF + (u∗, 0) + S. We omit the
details. In the following, we take ui ∈ (u−, u5) and u+ ∈ (ui, u5).

Case 4. A combustion wave SDT appears in the corresponding Riemann solution.
We discuss the case f(u+) < f(u−), f ′(u+) < f ′(u5), and q0 ∈ (0, q1], where

q1 > 0 satisfies f ′(u5) = f(u+)−f(u−)
u+−(u−+q1)

(see Figure 7).

It is easy to find that the SDT retains its form when q0 ∈ (0, q1). Namely, a
strong detonation x = x(t) can be constructed in the interior of the domain AOB
satisfying

(3.11)

⎧⎨
⎩

dx

dt
=

f(ur) − f(ul)

ur − (ul + q0)

(
λ(u+) ≤ x

t
≤ λ(u−)

)
,

x(0) = 0.
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Then we consider the complicated case q0 = q1. According to the Riemann
solution, it is possible to define a combustion jump x = x(t) by solving the problem
(3.11). Whether an x = x(t) so defined is an SDT depends on whether the stability
condition λ(ur) <

dx
dt < λ(ul) holds for it.

Let ū(ul), û(ul) have the same meanings as in Case 3, while u∗ > u5 satisfies

f ′(u5) = f(u∗)−f(u−)
f(u∗)−(u−+q1)

, which is different from that in (3.5). In addition, we define

ˆ̂u(ul) < ū(ul) as

(3.12)

⎧⎪⎨
⎪⎩

λ(ū) =
f(ˆ̂u) − f(ul)

ˆ̂u− (ul + q1)
,

ˆ̂u(u− − 0) = u+.

By a calculation similar to that in Case 3, it can be obtained that along x = x(t),

dˆ̂u

dt

∣∣∣∣∣
t=0

= − (λ(u−) − λ(u5))
2(u5 + q1 − u+)

(λ(u+) − λ(u5))(u5 − u−)
u̇−

0 (0).

It is easy to see that x = x(t) is an SDT if and only if

dˆ̂u

dt

∣∣∣∣∣
t=0

≥ dur

dt

∣∣∣∣
t=0

,

which, combined with

dur

dt

∣∣∣∣
t=0

= (λ(u5) − λ(u+))u̇+
0 (0),

implies that

(3.13)
(λ(u−) − λ(u5))

2

u5 − u− u̇−
0 (0) ≥ (λ(u+) − λ(u5))

2

u5 + q1 − u+
u̇+

0 (0).

Obviously, (3.13) is satisfied when u̇−
0 (0) > 0 and u̇+

0 (0) < 0. Moreover, we can
derive ẍ(0) > 0 for the SDT by the following:

(u− + q1 − u+)ẍ(0) = (λ(u+) − λ(u5))
2u̇+

0 (0) − (λ(u−) − λ(u5))
2u̇−

0 (0) > 0.

The solution is depicted in Figure 7.
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û(x,t)

�

� �

�

Fig. 8.

Next, let us assume u̇−
0 (0) > 0 and u̇+

0 (0) > 0. It is certain that the SDT remains
when (3.13) is satisfied. Once (3.13) fails to hold, it turns out that the combustion
wave SDT turns into a WDF followed by a shock wave (see Figure 8). Now we give
the proof for this case.

Due to the entropy conditions, a WDF x = x+(t) should be constructed in the
domain λ(u5)t ≤ x ≤ λ(u−)t, which is determined by (3.7). Then we construct the
jump without combustion on the right-hand side of x = x+(t) as follows:

(3.14)

⎧⎨
⎩ ẋ−(t) = w(û(x, t), ur(x, t))

(
x+(t) ≤ x

t
≤ λ(u−)

)
,

x−(0) = 0.

In order to show the existence of the shock x = x−(t), we need a certain a priori
estimate.

In fact, by (3.7) and (3.14), it can be shown that for any t, t0 we have

(3.15)
x−(t) − x+(t0)

t− t0
= λ(û(x−(t), t)) = λ(û(x+(t0), t0)), t > t0,

where

û(x−(t), t) = û(x+(t0), t0).

Differentiating the above equation yields

dû(x−(t), t)

dt

∣∣∣∣
t=0

=
dû(x+(t0), t0)

dt0

∣∣∣∣
t0=0

dt0
dt

∣∣∣∣
t=0

.

Noting

dû(x+(t0), t0)

dt0

∣∣∣∣
t0=0

=
(λ(u5) − λ(u−))2(u5 + q1 − u∗)

(u5 − u−)(λ(u5) − λ(u∗))
u̇−

0 (0),

it follows from (3.15) that dt0
dt

∣∣
t=0

= 1. Thus we have

(u∗ − u+)ẍ−(0) = (λ(u+) − λ(u5))
2u̇+

0 (0) − (λ(u−) − λ(u5))
2(u5 + q1 − u∗)

u5 − u− u̇−
0 (0).

On the other hand, we get ẍ+(0) = (λ(u−)−λ(u5))
2

u5−u− u̇−
0 (0). Therefore,

ẍ−(0)−ẍ+(0) =
(λ(u+) − λ(u5))

2

u∗ − u+
u̇+

0 (0)− (u5 + q1 − u+)(λ(u−) − λ(u5))
2

(u5 − u−)(u∗ − u+)
u̇−

0 (0) > 0.
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Then by virtue of x−(0) = x+(0) = 0, ẋ−(0) = ẋ+(0) = λ(u5), ẍ
−(0) > ẍ+(0) > 0, it

can be proved that there exists a solution x = x−(t) of (3.14) which takes the value
û(x, t) on the left-hand side and the value ur(x, t) on the right-hand side, respectively.
Thus we have completed the construction of the solution for this case.

For the remaining cases, u̇−
0 (0) < 0 and u̇+

0 (0) > 0 or u̇−
0 (0) < 0 and u̇+

0 (0) < 0,
the same discussion as above can be carried out. In brief, the solution of (1.7) and
(1.8) may contain an SDT if (3.13) holds; otherwise a WDF followed by a shock may
appear.

Remark. In the numerical simulations [18], transition from SDT to WDF followed
by a shock is reasonable from the above discussion.

Case 5. A combustion wave CJDT appears in the corresponding Riemann solu-
tion.

The case f(u+) < f(u−), f ′(u+) > f ′(u5), and q0 ∈ [q1, q2] is considered. Here

q1, q2 > 0 satisfy f ′(u+) = f(u+)−f(u−)
u+−(u−+q1)

, f ′(u5) = f ′(u∗∗) = f(u∗∗)−f(u−)
u∗∗−(u−+q2)

, respectively,

in which u∗∗ ∈ (u+, ũ). It is obvious that q2 > q1 (see Figure 9).
For q0 ∈ [q1, q2), a discussion similar to that for the convex case shows that

the CJDT in the corresponding Riemann solution may either turn into an SDT (if
u̇−

0 (0) > 0) or retain its form (if u̇−
0 (0) < 0).

We now investigate the complex case q0 = q2. First, we assume u̇−
0 (0) < 0.

Motivated by the Riemann solution, a CJDT x = x(t) is considered to be constructed
in the domain −∞ < x

t ≤ λ(u5), which is determined by

(3.16)

⎧⎨
⎩

dx

dt
= λ(¯̄u) =

f(¯̄u) − f(ul)
¯̄u− (ul + q2)

,

x(0) = 0,

where ¯̄u ∈ (u∗∗, ũ) and ¯̄u(u− − 0) = u∗∗. Obviously, such a CJDT occurs if and only
if along x = x(t),

(3.17) λ′(u∗∗)
d¯̄u

dt

∣∣∣∣
t=0

≥ λ′(u5)
dū

dt

∣∣∣∣
t=0

,

in which ū(ul) satisfies the same definition as in Case 3. From (3.5) and (3.16), we
derive

λ′(u5)
dū

dul

∣∣∣∣
ul=u−−0

=
λ(u−) − λ(u5)

u− − u5
,

λ′(u∗∗)
d¯̄u

dul

∣∣∣∣
ul=u−−0

=
λ(u−) − λ(u5)

u− + q2 − u∗∗ .
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Then by noting dul

dt

∣∣
t=0

= (λ(u5) − λ(u−))u̇−
0 (0), (3.17) gives

u∗∗ − u5 ≥ q1 > 0,

from which we find that the construction of the combustion wave CJDT is impossible.
Therefore, under the entropy conditions, a WDF x = x+(t) satisfying (3.7) is to be
constructed in the domain −∞ < x

t ≤ λ(u5). Now we do some analysis to determine
the noncombustion jump behind the WDF. According to (3.9), it holds that along
x = x+(t), dû

dt

∣∣
t=0

> 0 if u5 + q2 > u∗, whereas dû
dt

∣∣
t=0

< 0 if u5 + q2 < u∗. Here

u∗ > u5 satisfies f ′(u5) = f(u∗)−f(u−)
u∗−(u−+q2)

= f(u∗)−f(u∗∗)
u∗−u∗∗ . For the case u5 + q2 > u∗, a

shock wave x = x−(t) should be constructed (see Figure 10) as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ−(t) = w(û, ur)
(
λ(u5) ≤

x

t
≤ λ(u+)

)
,

x

t
= λ(ur) (u∗∗ ≤ ur ≤ u+),

x−(0) = 0.

Furthermore, a computation similar to that in Case 4 results in

ẍ−(0) =
(λ(u5) − λ(u−))2(u5 + q2 − u∗)

(u5 − u−)(u∗∗ − u∗)
u̇−

0 (0) > 0.

Instead, a right–contact discontinuity x = x−(t) such as

(3.18)

{
ẋ−(t) = λ(um) = w(û, um) (x+(t) ≤ x ≤ λ(u5)t),

x−(0) = 0

is constructed for the case u5 + q2 < u∗, where um ∈ (u∗∗, ũ). In the same way, we
can get

ẍ−(0) =
(λ(u5) − λ(u−))2(u5 + q2 − u∗)

(u5 − u−)(u∗∗ − u∗)
u̇−

0 (0) < 0.

Then by using the fact that ẍ+(0) = (λ(u5)−λ(u−))2

u5−u− u̇−
0 (0) < 0, we have

ẍ−(0) − ẍ+(0) = − (λ(u5) − λ(u+))2(u5 + q2 − u∗∗)

(u5 − u−)(u∗ − u∗∗)
u̇−

0 (0) > 0,

which, together with x−(0) = x+(0) = 0 and ẋ−(0) = ẋ+(0) = λ(u5), guarantees the
existence of the solution x = x−(t) to (3.18) (see Figure 10).
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Next, we consider the case u̇−
0 (0) > 0. It is possible, by the entropy conditions,

to define an SDT x = x(t) by solving the following problem:⎧⎨
⎩

dx

dt
=

f(ur) − f(ul)

ur − (ul + q2)

(
λ(u5) ≤

x

t
≤ λ(u+)

)
,

x(0) = 0,

where ur(x, t) is a centered simple wave x = λ(ur)t (u∗∗ ≤ ur ≤ u+). It can be
verified that the sufficient and necessary condition for the appearance of such an SDT
is that along x = x(t),

d

dt

(
f(ul) − f(ur)

ul + q2 − ur

)∣∣∣∣
t=0

≥ λ′(u5)
dū

dt

∣∣∣∣
t=0

;

namely,

[(u∗∗ − u− − q2)λ(u5) − (f(u∗∗) − f(u−))]
dur

dt

∣∣∣∣
t=0

− [(u∗∗ − u− − q2)λ(u−) − (f(u∗∗) − f(u−))]
dul

dt

∣∣∣∣
t=0

≥ (λ(u5) − λ(u−))2(u− + q2 − u∗∗)2

u5 − u− u̇−
0 (0).

(3.19)

Note that f(u∗∗) − f(u−) = λ(u5)(u
∗∗ − u− − q2) and dur

dt

∣∣
t=0

�= ∞; then we find
(3.19) is obviously true so that the solution of (1.7) and (1.8) involves an SDT indeed
(see Figure 11).

Case 6. The corresponding Riemann solution is SJ: x = 0.
The case f(u+) = f(u−) and f ′(u+) < f ′(u5) is taken into account.
Due to the entropy condition λ(u+) < w(u+, u−) < λ(u−), it is possible to

construct a shock wave x = x(t) with ẋ(0) = 0 in the burnt region, which is determined
by

(3.20)

⎧⎨
⎩

dx

dt
= w(ul, ur)

(
λ(u+) ≤ x

t
≤ λ(u−)

)
,

x(0) = 0.

It is obvious that a solution corresponding to no reaction exists or, equivalently, that
a shock wave such as (3.20) forms if and only if along x = x(t),

λ(u+)
dur

dt

∣∣∣∣
t=0

≥ λ(u−)
dul

dt

∣∣∣∣
t=0

;
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namely,

(3.21) (λ(u+))2u̇+
0 (0) ≤ (λ(u−))2u̇−

0 (0).

For the case u̇+
0 (0) < 0 and u̇−

0 (0) > 0, (3.21) obviously holds. So the solution
can be denoted by S + J (see Figure 12).

For the case u̇+
0 (0) > 0 and u̇−

0 (0) > 0, we give the discussion in detail. Certainly,
burning does not happen, and the solution shown in Figure 12 can be constructed if
(3.21) is satisfied. Now we deal with the cases when (3.21) fails, that is, the cases
that involve combustion waves.

Suppose the SJ at t = 0 becomes an SDT x = x(t) for t > 0, in which x(t) with
ẋ(0) = 0, ẍ(0) < 0 can be expressed as (3.11). Then we have

(u− + q0 − u+)ẍ(0) = (λ(u+))2u̇+
0 (0) − (λ(u−))2u̇−

0 (0) > 0,

which implies q0 < u+ − u− =: q1. On the other hand, assuming q0 ∈ (0, q1), it can
easily be proved that there exists such an SDT as above.

When q0 = q1, it can be claimed that the SJ turns into either an SDT or a WDF
behind which there is a shock wave. In fact, it is easy to show that the combustion
wave is an SDT x = x(t) if and only if along x = x(t),

(3.22)
dˆ̂u

dt

∣∣∣∣∣
t=0

≥ dur

dt

∣∣∣∣
t=0

,

where ˆ̂u(ul) satisfies (3.12). With the condition ẋ(0) = 0, (3.22) is equivalent to

(3.23) λ(u−)(λ(u−) − λ(u5))u̇
−
0 (0) ≥ λ(u+)(λ(u+) − λ(u5))u̇

+
0 (0).

Thus the SDT with ẋ(0) = 0 occurs once (3.23) is satisfied. If the SDT has the
property ẋ(0 + 0) = λ(u5), (3.22) becomes

(3.24) (λ(u−) − λ(u5))
2u̇−

0 (0) ≥ (λ(u+) − λ(u5))
2u̇+

0 (0).

Therefore we have two possibilities: an SDT with ẋ(0) = 0 (if (3.23) holds) or an
SDT with ẋ(0 + 0) = λ(u5) (if (3.23) fails and (3.24) holds) (see Figure 13). When
(3.24) fails to hold, the WDF x = x+(t) with ẋ+(0 + 0) = λ(u5) is sure to appear by
the entropy conditions. The structure of the solution is similar to that of Figure 8,
in which the WDF x = x+(t) and the shock wave x = x−(t) also satisfy (3.7) and
(3.14), respectively. The discussion on the existence of the shock wave is the same as
that in Case 4.
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When q0 ∈ (q1,+∞), we can easily find that the perturbation gives rise to
WDF + S.

Similarly we deal with the other cases, i.e., u̇+
0 (0) > 0 (< 0) and u̇−

0 (0) < 0, to
obtain that the SJ becomes an SDT (0 < q0 < q1) or a WDF followed by a shock
wave (q0 ≥ q1) if a combustion wave emerges.

Notice that the case f(u+) = f(u−), f ′(u+) > f ′(u5) can be treated similarly to
the convex case when q0 ∈ (0, q2), where q2 has the same meaning as in Case 5, while
for q0 ∈ [q2,+∞), the same discussion as above can be carried out. Thus we do not
elaborate on it here.

So far we have completed the discussion of all typical cases when the gas is unburnt
at the left-hand side of the origin and burnt at the right-hand side at the initial time.
Now we turn to the converse case to see what the perturbation will bring.

3.2. Solutions for u− > ui ≥ u+
0 (x), q−

0 (x) = 0 < q0 = q+
0 (x). In this

subsection, we just mention briefly the cases which differ from those in section 3.1
and the convex ones. In the following, we fix u+ ∈ (−∞, u2).

Case 7. A combustion wave CDT appears in the corresponding Riemann solution.
First, we consider the case ui ∈ [u2, u

+), f(u−) > f(u2), and f ′(u−) > f ′(u+).

Let q1 > 0 satisfy f ′(u+) = f(u+)−f(u−)
u++q1−u− (see Figure 14). Then to ensure the appear-

ance of the CDT, we take q0 ∈ (0, q1]. A proof similar to that in Case 1 shows that
for u̇−

0 (0) > 0, the CDT preserves its form as x = x(t) satisfying

(3.25)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dx

dt
= λ(ū) =

f(ul) − f(ū)

ul − (ū + q0)
,

x(0) = 0,

ẋ(0) = λ(u∗),

where ū(ul) ∈ (u+, u2) with ū(u− − 0) = u∗ (see Figure 14). And for u̇−
0 (0) < 0, the
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CDT changes into an SDT lying in the domain λ(u∗)t ≤ x ≤ λ(u−)t.
Let us consider another case ui < u2, f(ũi) ≥ f(ui), u

− > ũi, and q0 = q2, in

which q2 > 0, ũi > u1 satisfy f ′(ui) = f ′(ũi) = f(u−)−f(ui)
u−−(ui+q2)

(see Figure 15). We

also have two possible situations: as above, the CDT becomes an SDT in the domain
λ(ui)t ≤ x ≤ λ(u+)t provided that u̇−

0 (0) < 0, while for u̇−
0 (0) > 0, the combustion

wave CJDF x = λ(ui)t appears. The state behind the CJDF is (u�, 0), which is
connected with (ur(x, t), 0) by a shock wave. Here u� < ũi, satisfying f ′(ui) =
f(u−)−f(u�)

u−−u� = f(ui)−f(u�)
ui+q2−u� (see Figure 15).

Case 8. A combustion wave DCC appears in the corresponding Riemann solution.
From the property of DCC: λ(ur) = σ = λ(ul), we easily find that the pertur-

bation cannot affect a combustion wave of this kind, which is able to propagate with
the speed at initial time.

We summarize our results in the following.
Theorem 3.1. There exists a unique solution to the generalized Riemann problem

(1.7) and (1.8). For most of the cases, the corresponding Riemann solutions are stable,
while for some typical cases, a small perturbation of initial data may lead to essential
changes to the corresponding Riemann solutions. Especially, a strong detonation in
the corresponding Riemann solution may turn into a weak deflagration followed by a
shock wave after perturbation, which appears in the numerical simulations.
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theories for a nonconvex scalar combustion model, SIAM J. Math. Anal., 34 (2003), pp.
675–699.

[9] T. P. Liu and T. Zhang, A scalar combustion model, Arch. Rational Mech. Anal., 114 (1991),
pp. 297–312.



SCALAR NONCONVEX CHAPMAN–JOUGUET COMBUSTION MODEL 561

[10] A. Majda, A qualitative model for dynamic combustion, SIAM J. Appl. Math., 41 (1981), pp.
70–93.

[11] F. W. Sears and G. L. Salinger, Thermodynamics, Kinetic Theory, and Statistical Ther-
modynamics, Addison–Wesley, Reading, MA, 1975.

[12] W. C. Sheng and T. Zhang, Structural stability of solutions to the Riemann problem for a
scalar nonconvex combustion model, Discrete Contin. Dyn. Syst., submitted.

[13] M. N. Sun and W. C. Sheng, The ignition problem for a scalar nonconvex combustion model,
J. Differential Equations, 231 (2006), pp. 673–692.

[14] M. N. Sun and W. C. Sheng, The generalized Riemann problem for a scalar Chapman-Jouguet
combustion model, Z. Angew. Math. Phys., to appear.

[15] Z.-H. Teng, A. J. Chorin, and T.-P. Liu, Riemann problems for reacting gas, with applica-
tions to transition, SIAM J. Appl. Math., 42 (1982), pp. 964–981.

[16] C. D. William, The detonation of explosives, Sci. Amer., 256 (1987), pp. 98–104.
[17] L. Ying and Z. Teng, Riemann problem for a reaction and convection hyperbolic system,

Approx. Theory Appl., 1 (1984), pp. 95–122.
[18] X. T. Zhang and L. Ying, Dependence of qualitative behavior of the numerical solutions on the

ignition temperature for a combustion model, J. Comput. Math., 23 (2005), pp. 337–350.
[19] P. Zhang and T. Zhang, The Riemann problem for scalar CJ-combustion model without

convexity, Discrete Contin. Dynam. Systems, 1 (1995), pp. 195–206.
[20] T. Zhang and Y. X. Zheng, Two-dimensional Riemann problem for a single conservation

law, Trans. Amer. Math. Soc., 132 (1989), pp. 589–619.
[21] T. Zhang and Y. X. Zheng, Riemann problem for gas dynamic combustion, J. Differential

Equations, 77 (1989), pp. 203–230.



SIAM J. APPL. MATH. c© 2007 Society for Industrial and Applied Mathematics
Vol. 68, No. 2, pp. 562–573

ADMISSIBILITY OF A WIDE CLUSTER SOLUTION IN
“ANISOTROPIC” HIGHER-ORDER TRAFFIC FLOW MODELS∗
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Abstract. We analytically investigate a wide cluster solution and show that it is not admitted
in some of the traffic flow models in the literature. For those traffic flow models that admit the wide
cluster solution, the relationship between two important control parameters and the critical densities
that divide an equilibrium solution into stable and unstable regions is thoroughly discussed in detail.
We find that such wide clusters exist with a free traffic density in an unstable region, and with one
or three critical densities. These results are different from the cases in the well-known higher-order
traffic flow models of Payne and Whitham [H. J. Payne, “Models of freeway traffic and control,” in
Mathematical Models of Public Systems, A. G. Bekey, ed., Simulation Council Proc. Ser. 1, La Jolla,
CA, 1971, pp. 51–61], [G. B. Whitham, Linear and Nonlinear Waves, John Wiley and Sons, New
York, 1974], Kühne [R. D. Kühne, “Macroscopic freeway model for dense traffic-stop-start waves
and incident detection,” in Proceedings of the 9th International Symposium on Transportation and
Traffic Theory, J. Volmuller and R. Hamerslag, eds., VNU Science Press, Utrecht, 1984, pp. 21–42],
and Kerner and Konhäuser [B. S. Kerner and P. Konhäuser, Phys. Rev. E (3), 50 (1994), pp. 54–83].

Key words. Aw and Rascle model, hyperbolic conservation law, wide cluster, shock wave,
Rankine–Hugoniot condition
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1. Introduction. Lighthill and Whitham [14] and Richards [17] independently
proposed a hydrodynamic approach to study the traffic flow problems on a homoge-
neous highway, which is known in the literature as the first-order LWR model. The
model has recently been extended to multilane [4] and multiclass models [3, 9, 10,
25, 31, 30, 32]. To embody the important nonlinear phenomena in traffic flow prob-
lems, some classical higher-order traffic flow models were developed [13, 12, 15, 23]
and are characterized by their capability to reproduce the stop-and-go waves that
are frequently observed on the highways. The formation of clusters is related to the
instability of congested traffic, of which the development into free traffic and jams is
typical of phase transitions and hystereses [12, 29, 28]. However, Daganzo [5] crit-
icized the “isotropic” nature of these models, following which a stream of so-called
anisotropic higher-order models [1, 8, 11, 19, 26, 27] was developed.

Recently, an analytical tool that is based on the weak solution theory was pro-
posed to give a full and concise description of a wide cluster solution in higher-order
models. Zhang, Wong, and Dai [33] used the model proposed by Jiang, Wu, and
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Zhu [11] to demonstrate the solution procedure. Zhang and Wong [28] further showed
that two conservation forms of the Payne–Whitham (PW) models [15, 23] have dif-
ferent cluster solutions that are asymptotic to the solutions of the Kühne [13] and
Kerner and Konhäuser (KK) [12] models.

In this paper, we thoroughly investigate the admissibility of a wide cluster solu-
tion for several aforementioned “anisotropic” models, using the technique that was
developed in [33, 28]. The model equations are introduced in section 2. In section 3,
the procedure for solving a wide cluster is briefly discussed. While a criterion is
prescribed as an essential condition, the formulations in [26, 27] are excluded from
further consideration because they do not admit a wide cluster solution (see sec-
tion 3.1). Here, we note that cluster solutions were also derived in Greenberg [6],
Siebel and Mauser [20], and Wilson and Berg [24]. With two control parameters in
the “pressure” p(ρ) = α(ρ/ρm)γ of Aw and Rascle [1], the admissible regions of (γ, α)
for the wide cluster solution are displayed. The regions of (γ, α) that are related to
the stability of an equilibrium solution are also discussed (see section 3.2). It is novel
to find that the free traffic flow (the constant flow with the minimal density) of a wide
cluster solution is not stable in numerous regions, whereas the jam (the flow with the
maximal density in the cluster) together with the whole solution is always stable. In
some of these regions, it is evident that a wide cluster solution is admitted with one
or three critical densities, which are used to divide equilibrium flows into stable and
unstable regions. The results from numerical simulations (see section 4) are in good
agreement with all analytical findings.

2. Model equations. In macroscopic descriptions, vehicles on a highway are
analogous to flows in compressible hydrodynamics [14, 17]. We have, by the mass
conservation,

(1) ρt + qx = 0,

where ρ(x, t) is the density, q(x, t) is the flow, and no off- or on-ramp flows are
considered along the highway. By defining an average speed v = q/ρ, the acceleration
is considered in higher-order models. We write the acceleration of the discussed
“anisotropic” models in the following mutual form:

(2) vt + vvx =
ve(ρ) − v

τ
+ ρp′(ρ)vx,

where p(ρ) is the “pressure” with p′(ρ) > 0, and ve(ρ) is the equilibrium speed-density
relationship with v′e(ρ) < 0. For the derivation of a stable wide cluster, we assume a
nonconvex fundamental diagram qe(ρ) = ρve(ρ). Precisely, q′′e (ρ) < 0 for 0 ≤ ρ < ρI ,
and q′′e (ρ) > 0 for ρI < ρ ≤ ρm, where q′′e (ρI) = 0, and ρm is the jam (maximum)
density. Furthermore, we assume that τ > τ0 for some fixed τ0 > 0, and thus the
relaxation term is bounded. Nevertheless, this model is asymptotic to the LWR model
[14, 17] if we allow τ → 0, which leads to v → ve(ρ); see [16].

It is easy to derive the two characteristic speeds of system (1)–(2): λ1 = v−ρp′(ρ)
and λ2 = v, which are no greater than the motion speed. Therefore, a perturbation
propagates only upstream with respect to the perturbed moving vehicle. This is why
the formulation is classified as “anisotropic.” In contrast, the two characteristic speeds
in the classical models are, respectively, smaller and greater than the traffic speed v,
meaning that the perturbation propagates both upstream and downstream.

Several choices of the function p(ρ) are listed in Table 1, corresponding to different
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Table 1

“Anisotropic” formulations of higher-order traffic flow models, which are distinguished by the
“pressure” p(ρ) or the sound speed c(ρ) = ρp′(ρ), where T (ρ) = tr[1 + E/(1 + ρ)] and constants
c0, E, tr > 0.

Models c(ρ) p(ρ)
Aw and Rascle [1] ρ p′(ρ) p(ρ)
Jiang, Wu, and Zhu [11] c0 c0 ln ρ
Zhang [27] −ρ v′e(ρ) −ve(ρ)

Xue and Dai [26] −ρ tr
T (ρ)

v′e(ρ) − tr
T (ρ)

ve(ρ)

X 

ρ 
ρ = ρ  

ρ = ρ  

B 

A 

upstream front 

downstream front 

^ 

^ 

ρ = ρ  A 

(a) 
ρ 

q 

fundamental diagram 
ρ 

ρ 

ρ 

Α 

C 

B 

^ 

^ 

q 0

(b) 

Fig. 1. Illustration of a wide cluster solution: (a) profile of the density distribution; (b) phase
plot q = q(ρ) in comparison to the fundamental diagram q = qe(ρ).

formulations in [1, 11, 26, 27]. We note that Aw and Rascle [1] contained a more
general model by assuming an increasing function p(ρ), and that the relaxation term
was considered in [16] as an improvement; see also [2, 7] for further development of the
Aw and Rascle model. Similarly, we add such a term to the formulation of Zhang [27];
without the term, it is unlikely to derive a wide cluster solution.

3. Admissibility of a wide cluster solution. The profile of a wide cluster
solution is shown in Figure 1(a). The cluster is expected to move backward with a
constant velocity a < 0, without change in the shape. In other words, we assume a
traveling wave solution ρ(x, t) = ρ(X) and v(x, t) = v(X) with X = x − at. Follow-
ing the procedures in [33, 28], we can show that the downstream front is a smooth
transition layer and the upstream front is a shock wave.

3.1. The downstream and upstream fronts. For the downstream front that
smoothly links a higher density region ρ = ρB to a lower density region ρ = ρA,
ρA < ρB , equations (1) and (2) are applicable. Hence, we replace ρ(x, t) and v(x, t)
with ρ(X) and v(X) in the equations, which yields

(3) q = aρ + q0

and

(4)
dρ

dX
= g(ρ)

qe(ρ) − (aρ + q0)

p′(ρ)ρ2 − q0
,

where the integration constant q0 > 0, and thus the function g(ρ) = ρ2(τq0)
−1 > 0.

Equation (3) suggests a linear relation between the flow q and the density ρ, which
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is represented by a segment AB in Figure 1(b). As we assume that dρ/dX|ρ=ρA
=

dρ/dX|ρ=ρB
= 0 (Figure 1(a)), (4) gives

(5) qe(ρA) = aρA + q0, qe(ρB) = aρB + q0.

This implies that the two constant states ρA and ρB are in equilibrium (see Fig-
ure 1(b)). See [23] for a similar derivation. Let (ρC , qe(ρC)) be the intersection of the
segment AB and the fundamental diagram q = qe(ρ), i.e.,

(6) qe(ρC) = aρC + q0.

It is obvious that the numerator of (4) is positive for ρ ∈ (ρA, ρC) and negative for
ρ ∈ (ρC , ρB) (see Figure 1(b)). Accordingly, a decreasing transition layer (dρ/dX < 0)
is guaranteed if and only if

(7) p′(ρC)ρ2
C − q0 = 0, (p′(ρ)ρ2 − q0)(ρ− ρC) > 0 for ρ �= ρC .

Intuitively, we have q′e(ρC) < a < q′e(ρB); see Figure 1(b). This along with (5)–(7)
gives v′e(ρC)+ p′(ρC) < 0, and v′e(ρB)+ p′(ρB) > 0. By the linear stability conditions
(see section 3.2), the two inequalities imply the following property.

Property 1. For the solvability of a transition layer, (i) ρC must be located in
an unstable region, whereas (ii) ρB must be located in a stable region.

The two formulations attained by choosing p(ρ) = −ve(ρ) in [27] and p(ρ) =
−trve(ρ)/T in [26] (see Table 1) are not able to generate a transition layer, because
equilibria of [27] and [26] can be easily shown to be uniformly stable and unstable,
respectively. This also implies that they are not able to reproduce a wide cluster.
For the choice of p(ρ) = c0 ln ρ in [11] (see Table 1), the detailed discussion on the
solution of a wide cluster was given in [33]. These three models are excluded from the
forthcoming discussion.

We also note that Siebel and Mauser [19, 20, 21] adopted a strictly concave flow-
density relationship qe(ρ) = ρve(ρ) with the “pressure” p(ρ) = −ve(ρ). Although
the convective term of their models resembled the model in Zhang [27], Siebel and
Mauser introduced a coefficient β(ρ, v) in the relaxation term which may change sign
to reflect the interaction or difference between the relaxation time and reaction time
of drivers. This allowed two critical densities (and thus an unstable regime) which
correspond to the roots of the function β(ρ, v). Then a traveling wave solution was
obtained for this novel formulation [20].

In another development, Greenberg [6] derived the traveling wave solutions (clus-
ters) using Lagrangian coordinates, in which the headway s = 1/ρ and the car index
m were taken as solution variables. Conservation across the discontinuous upstream
front was also considered in [6], which in essence was similar to our discussion in what
follows. Here, we remark that some intrinsic relations were implied in the formulations
of Greenberg, Klar, and Rascle [8], Greenberg [6], and Siebel and Mauser [19].

In the forthcoming discussion, we assume that the denominator of (4) is an in-
creasing function of ρ, that is,

(8) (p′(ρ)ρ2)′ ≡ ρ(ρp(ρ))′′ > 0,

which is sufficient to ensure the inequality in (7). Essentially, (8) or the convexity of
the function ρp(ρ) was also assumed in [1, 8, 6, 19, 20, 21].
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A monotonically increasing and smooth connection from ρA to ρB is impossible
at the upstream front according to (3) and (4) and the detailed discussion in [33, 28].
We consider a shock wave with the following conservation form of (2),

(9)
∂ρ(v + p(ρ))

∂t
+

∂ρv(v + p(ρ))

∂x
=

qe(ρ) − q

τ
,

in [1, 16]. It is difficult, if not impossible, to define other conservation forms, except
for that defined in [33] in which c(ρ) = ρp′(ρ) was taken as a constant. We note that
different conservation forms result in different values of the characteristic parameters
for solving a wide cluster [28].

To deal with the assumed shock that is also a traveling wave with the moving
speed a < 0, we apply the Rankine–Hugoniot conditions to the conservation system
of (1) and (9). This gives two equalities: one is implied in (5) and the other reads

(10) a =
qe(ρB)(ve(ρB) + p(ρB)) − qe(ρA)(ve(ρA) + p(ρA))

(qe(ρB) + ρBp(ρB)) − (qe(ρA) + ρAp(ρA))
,

where the constant state ρ = ρA (together with ρ = ρB) can easily be verified to be
in equilibrium by (1) and (9). By (5)–(7) and (10) we have five independent algebraic
equations to solve for five unknowns: a, ρA, ρB , ρC , and q0. The solution of this
algebraic equation system determines the assumed wide cluster solution.

3.2. Control parameters and solvability of the wide cluster. The speed-
density relationship is taken as

(11) ve(ρ) = vf ((1 + e12.5(ρ/ρm−0.25))−1 − (1 + e12.5×0.75)−1),

where vf is the free-flow speed, ρm is the jam density, and the point of inflexion of
the fundamental diagram qe(ρ) = ρve(ρ) is located at ρI ≈ 0.333598. Equation (11)
is similar to that in [12] and was also applied in [33]. We take the “pressure” as

(12) p(ρ) = α(ρ/ρm)γ , α, γ > 0.

Let (ρ0, qe(ρ0)) be an equilibrium point in the fundamental diagram. The lin-
ear stability conditions for a constant solution ρ = ρ0 can then be easily determined
as λ1(ρ0) ≤ q′e(ρ0) ≤ λ2(ρ0), which implies that the kinematic wave speed lies be-
tween the first and second characteristic speeds. See Whitham [23] for the relevant
discussion. The inequalities are equivalent to

(13) H(ρ0) ≡ −1 − v′e(ρ0)

p′(ρ0)
≤ 0,

because it is assumed that p′(ρ0) > 0, and the condition of a single point at the
boundary with ρ0 = 0 is excluded. Taking the equality of (13) and with two control
parameters α and γ, we indicate the solvability of the critical densities and the re-
sultant stable and unstable regions. Hereafter, we denote dimensionless variables by
placing a bar over them, such that a density is scaled by ρm and a speed (including
the parameter α) is scaled by vf . Using the dimensionless variables, we note that
these critical densities and all characteristic parameters of the cluster solution depend
on γ and ᾱ only.

For the case γ > 1, say γ = 2 as is applied in the construction of Figure 2(a),
monotone changes of the function H(ρ0) are divided into three intervals. This suggests
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librium constant solution ρ = ρ0 for (a) γ > 1 and (b) γ ≤ 1.
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Fig. 3. Division of the γ-ᾱ plane for the study of a wide cluster solution. The solution exists
below the curve a = q′e(ρI), and the traveling wave velocity a and the height ρB − ρA decrease when
(γ, ᾱ) approaches the curve. The equilibrium density ρ = ρA of the cluster solution is located in a
stable region only for approximately γ < 0.4 and (γ, ᾱ) in or below the curve ρA = ρc1 .

at most three critical densities, ρc0 , ρc1 , and ρc2 . In this case, say with ᾱ = 7.2 as
in the figure, the three critical densities divide the interval (0, 1] into two stable
intervals, [ρ̄c0 , ρ̄c1 ] and [ρ̄c2 , 1], and two unstable intervals, (0, ρ̄c0) and (ρ̄c1 , ρ̄c2). As
ᾱ decreases (with reference to another curve H(ρ̄0) for ᾱ = 7.1 < 7.2), ρ̄c1 and ρ̄c0
become identical for some ᾱ ∈ (7.1, 7.2). This is to simultaneously have H(ρc0) = 0
and H ′(ρc0) = 0, which determine a curve that is denoted by ρc1 = ρc0 in the
γ-ᾱ coordinate plane (Figure 3). In the region that is below the curve ρc1 = ρc0
(Figure 3), the critical densities ρ̄c0 and ρ̄c1 together with the interval [ρ̄c0 , ρ̄c1 ] must
vanish because ᾱ becomes smaller; see also the reference curve H(ρ̄0) for ᾱ = 7.1 < 7.2
in Figure 2(a). In this case, we have an unstable interval (0, ρ̄c2) and a stable interval
[ρ̄c2 , 1]. Similarly, we can draw a curve ρc1 = ρc2 in Figure 3, which is determined by
setting H(ρc2) = 0 and H ′(ρc2) = 0. The critical densities ρ̄c1 and ρ̄c2 along with the
interval (ρ̄c1 , ρ̄c2) vanish for (γ, ᾱ) in the region that is above this curve (Figure 3).
See also the reference curve H(ρ̄0) for ᾱ = 7.3 > 7.2 in Figure 2(a). In this case, we
have an unstable interval (0, ρ̄c0) and a stable interval [ρ̄c0 , 1].
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For the case γ̄ ≤ 1, monotone changes of the function H(ρ0) are divided into two
intervals. This suggests at most two critical densities ρ̄c1 and ρ̄c2 . We define the same
curve ρc1 = ρc2 as previously discussed, and the curve goes smoothly in the whole
region for γ > 1 and γ ≤ 1 (Figure 3). However, in the region that is above the curve
ρc1 = ρc2 and for γ ≤ 1, we have an overall stable interval (0, 1].

We now turn our attention to the solvability and the characteristic parameters of
the discussed wide cluster, which is related to the critical densities and the division
of the stable and unstable intervals through Property 1 and the following discussion.
With two control parameters ᾱ and γ, we note that one equation in addition to (5)–(7)
and (10) determines a curve in the γ-ᾱ coordinate plane implicitly, which is also shown
in Figure 3.

Defining the curve ρB = ρm, we can verify that the region below the curve
ρB = ρm suggests that ρB > ρm, by which the wide cluster solution is not collision-
free. Therefore, this region is not considered in the forthcoming discussion. Further-
more, we define the curve a = q′e(ρI) (≈ −0.542579vf ). By Figure 1(b), it is evident
that the traveling wave speed a reaches its minimum with ρA = ρC = ρB = ρI for
(γ, ᾱ) in this curve. Here, the inequalities

(14) ρA < min(ρC , ρI) < ρB

are assumed for the wide cluster solution because of the nonconvexity of the function
qe(ρ) (cf. Figure 1(b)). According to Property 1, it is implied that ρI is a critical
density in the above limiting solution. Actually, we derive the same curve when
defining ρc2 = ρI . For (γ, ᾱ) that is above this curve (a = q′e(ρI) or ρc2 = ρI), (5)–(7)
and (10) are insolvable. This means that the iteration that is applied to solve these
equations is never convergent under the restriction of (14). On the other hand, (5)–(7)
and (10) are solvable for (γ, ᾱ) that is between the curves ρB = ρm and a = q′e(ρI).
Here, the curve a = q′e(ρI) serves as the other boundary to separate the two regions
in which the wide cluster is, respectively, solvable and insolvable.

Let α increase. Then we find that the traveling wave speed a of the wide cluster
decreases until a reaches its limiting value in the curve a = q′e(ρI). Two reference
curves ā = −0.1 and ā = −0.2 are depicted in Figure 3 to show such a monotonic
decreasing property. By the mass conservation at the discontinuous upstream front, a
decreasing traveling wave speed usually suggests a drastic drop in the height ρB − ρA
of the wide cluster. The critical density ρc2 also decreases in this trend, which implies
that ρc2 > ρI for (γ, ᾱ) below the curve a = q′e(ρI), and ρc2 < ρI for (γ, ᾱ) between
the curves a = q′e(ρI) and ρc1 = ρc2 . This seems to suggest that it is essential that
there exist a critical density that is greater than the inflexion ρI for the solvability
of the wide cluster. On the other hand, it is novel that the wide cluster is insolvable
even though we do have a critical density ρc2 < ρI that is close to ρI .

The foregoing discussion together with Property 1 also suggests the locational
relations between the critical densities and the two characteristic densities ρC and ρB .
That is, ρ = ρC and ρ = ρB (as a constant portion of the wide cluster), respectively,
are located in two adjacent unstable and stable intervals that is separated by ρc2 > ρI .
This fact is also related to the following analytical property.

Property 2. There is at most one critical density in [ρI , ρm].
This property holds simply because a critical density is also the root of the func-

tion ρ2p′(ρ)H(ρ), and (ρ2p′(ρ)H(ρ))′ = −ρ(ρp(ρ))′′ − ρ(ρve(ρ))
′′ < 0 in [ρI , ρm]. For

the solvability of the wide cluster, we do have such a critical density ρc2 . Here, it is
implied that ρc0 ≤ ρc1 < ρI if the critical density ρc0 or ρc1 does exist.
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To learn the locational relation between ρA and the critical densities, we draw the
curve ρA = ρc1 in Figure 3, which exists for γ ≤ 0.4 approximately, where it meets
with the curve ρB = ρm. Between the two curves we have ρA ≤ ρc1 , which suggests
that the equilibrium ρ = ρA (as a constant portion of the wide cluster) is stable.
In other regions where ρc1 does not vanish, we obviously have ρc1 < ρA < ρI < ρc2 ,
which suggests that ρ = ρA is unstable. In the region that is below the curve ρc0 = ρc1
for γ > 1, where ρc0 and ρc1 vanish, ρ = ρA < ρI < ρc2 still belongs to the unstable
region (0, ρc2).

4. Wide clusters derived from numerical simulation. We write the system
of (1) and (9) as the following standard conservation or balance laws:

(15) ut + f(u)x = s(u),

where u = (ρ, h)T , h = ρ(v + p(ρ)), f(u) = (h− ρp(ρ), ρ−1h2 − hp(ρ))T , and s(u) =
(0, τ−1(qe(ρ) − h + ρp(ρ)))T . For a numerical simulation, a conservative scheme of
system (15) can be written as

un+1
i = un

i − Δtn

Δx
(f̂n

i+1/2 − f̂n
i−1/2) + Δtns(un

i ),

where Δx = L/N , and N is the grid number of the computational interval (0, L). We
apply the Lax–Friedrichs numerical flux:

f̂n
i+1/2 =

1

2
(f(un

i ) + f(un
i+1) − μn(un

i+1 − un
i )), μn = max

u
max(|λ1|, |λ2|),

where λ1,2 are the two characteristic speeds, and the maximum is taken over un
i for

all i at time level n. The CFL condition that is necessary for numerical stability turns
out to be Δtn ≤ μnΔx; we always take Δtn = 0.7μnΔx in numerical simulations. As
the grids should be sufficiently refined to obtain the discussed wide cluster solution,
we take a large grid number N = 10000 in all examples. For illustration purposes,
only one state in every 20 grid points is shown in the figures. See [18, 22] for detailed
accounts of the Lax–Friedrichs scheme. The reason for the application of this scheme
rather than the Godunov or a higher-order scheme was explained in [28].

For an initial constant distribution ρ(x, 0) = ρ0, which is in equilibrium with
v(x, 0) = ve(ρ(x, 0)), the small perturbation

(16) ρ(x, 0) = ρ0 + 0.005ρ0(sgn(0.05 − |x/L− 0.5|) + 1) sin(20π(x/L− 0.5))

induces amplifying oscillations if density ρ0 is located in an unstable region. Here, we
define sgn(s) = 1 for s ≥ 0, and sgn(s) = −1 for s < 0; the integral average density
of ρ(x, 0) over the computational interval [0, L] is not changed by the perturbation.
Applying the periodic boundary conditions

(17) ρ(0, t) = ρ(L, 0), v(0, t) = v(L, 0),

which ensure the conservation of the total vehicles in numerical simulation, the os-
cillations may evolve into stop-and-go waves or wide clusters in the long run if ρ0

is sufficiently large. The dynamics of the evolution was well described in the PW
[15, 23], Kühne [13], and KK [12] models; see also [28] for more relevant discussion.

As discussed in previous sections, the evolution of the perturbed constant flow
ρ = ρ0 is dependent on the control parameters γ and ᾱ, as shown in Figure 3. Our
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Fig. 4. Evolution of unstable equilibrium flow ρ = ρ0 with small perturbation for (γ, ᾱ) in
different domains in Figure 3. (a) (γ, ᾱ) = (0.3, 4.2), ρ̄0 = 0.22, and τ = 10s; (b) (γ, ᾱ) = (0.7, 2.8),
ρ̄0 = 0.25, and τ = 10s; (c) (γ, ᾱ) = (0.25, 2.1), ρ̄0 = 0.25, and τ = 18s; (d) (γ, ᾱ) = (0.5, 1.5),
ρ̄0 = 0.32, and τ = 10s.

Table 2

Characteristic parameters of a wide cluster and critical densities for comparison to the nu-
merical results in Figures 4 and 5, where “IS” means insolvable and the values in the bracket are
obtained from numerical simulation.

γ ᾱ ρ̄A ρ̄B ρ̄C ā ρ̄c0 ρ̄c1 ρ̄c2
0.3 4.2 IS IS IS IS IS IS IS
0.7 2.8 IS IS IS IS IS 0.226662 0.303168
0.25 2.1 0.142860 0.968573 0.332912 −0.137028 IS 0.150555 0.440170

(0.14304) (0.96542)
0.5 1.5 0.153584 0.817781 0.334882 −0.176989 IS 0.139590 0.423337

(0.15439) (0.81369)
1.5 1.5 0.162911 0.680572 0.346706 −0.229506 IS IS 0.401206

(0.16368) (0.67614)

numerical tests agree well with all these descriptions. In the domain that is on or
above the curve ρc1 = ρc2 in Figure 3, the perturbation decays with time because
the solution ρ = ρ0 is stable if γ̄ ≤ 1 or, otherwise, if ρ0 is greater than ρc0 , which
is usually very small (see Figure 4(a)). In the domain between the curves ρc1 = ρc2
and a = q′e(ρI), the perturbation increases with time but a wide cluster solution can
never be developed regardless of the length of simulation (see Figure 4(b)). Here and
hereafter, for all figures, the related parameters are shown in Table 2 and the variable
x is scaled by x̄ = x/L. Through numerical simulation, we can always derive one or
more wide clusters in other domains where the solution is predicted analytically. Two
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Fig. 5. Stability test of a wide cluster solution with (γ, ᾱ) = (1.5, 1.5), ρ̄0 = 0.33, and τ = 10s:
(a) two fully developed clusters; (b) density change due to a perturbation to the cluster solution;
(c) recovery of the cluster solution from the perturbation; (d) the fundamental diagram (ρ̄, q̄e(ρ̄))
and the phase plot (ρ̄, q̄).

such examples are shown in Figures 4(c) and (d).
It is novel that all predicted wide clusters are stable through numerical testing,

even though the density ρ = ρA of the free traffic is located in an unstable region. It
is evident that a stable wide cluster solution exists with one or three critical densities
for γ̄ > 1, as predicted analytically in Figure 3. We show a stability test in Figure 5
with (γ̄, α) in this region, in which there is only one critical density (see also Table 2).
Figure 5(a) shows two wide clusters that are derived at t = 4000s. By a perturbation
that changes the speed v̄ to v̄ ∓ 0.1 for x̄ between 0.5 and 0.5 ∓ 0.01, one cluster is
found to be slightly distorted at t = 4150s. However, it soon recovers, as shown in
Figure 5(c). In comparison to the fundamental diagram, we show the phase plot of
the solution in Figure 5(d), where the segment AB represents the acceleration path
of the downstream front. Nevertheless, the deceleration path of the two upstream
fronts is now replaced by two curves from A to B. This takes place because a shock
profile has to be smoothed by numerical viscosities, which can hardly be avoided in
any scheme. The clusters that are shown in all of these figures follow the pattern that
is anticipated in Figures 1(a) and (b).

A stable wide cluster solution with a length of unstable equilibrium ρ = ρA
might be well explained by the stable structure of the upstream front. Actually,
the relaxation term of (9) vanishes for solution states on the both sides near the
upstream front. Moreover, it is easy to verify that the Lax entropy conditions are
satisfied with respect to this discontinuity (see also [6]). When the periodic boundary
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conditions are applied, a perturbation to ρ = ρA (or other solution states) of the wide
cluster is expected to be overtaken and thus “absorbed” by the upstream-moving
shock. However, an affirmative conclusion could be made only through a rigorous
mathematical proof, which is an interesting question for future study.

The parameter values of ρA and ρB acquired from numerical simulations are also
shown in the figures, which are in good agreement with those that are derived from
(5)–(7) and (10), and are listed in Table 2. This demonstrates that our numerical
solutions converge to the analytical solutions of the described wide cluster.

5. Conclusions and discussions. We have thoroughly investigated the admis-
sibility of a wide cluster solution in “anisotropic” higher-order models, in which the
acceleration equation takes the functional form in (2). By this functional form (and
also those in [6] and [19]), it appears essential that for the existence of the wide clus-
ter solution the speed-density relationship ve(ρ) and the “pressure” p(ρ) should be in
“conflict” such that there exists an unstable regime in the vicinity of the congestion.
Accordingly, it is evident that some formulations that are mentioned in this paper
(and probably others) do not admit any wide cluster solution. Even with the func-
tional forms that allow an unstable regime, the “pressure” p(ρ) and the speed-density
relationship ve(ρ) that represents the “force” for relaxation or fluctuation should act
“harmoniously” to admit the solution. With reference to Figure 3, this means that a
wide cluster is not always ensured or physically sound for all combinations of control
parameters (γ, ᾱ). The intrinsic relationships between the aforementioned functions
or “forces” can be left for future study.
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FAST TOMOGRAPHIC RECONSTRUCTION VIA
ROTATION-BASED HIERARCHICAL BACKPROJECTION∗
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Abstract. We introduce a family of fast algorithms for tomographic backprojection in the
parallel-beam geometry. The algorithms reduce the computational cost of backprojecting P projec-
tions onto an N×N pixel image from the conventional O(N2P ) to O(N2 logP ). The new algorithms
aggregate the projections in a hierarchical structure, with images in the hierarchy formed by the ro-
tation and addition of other images made up of fewer projections. While these algorithms are related
to existing fast algorithms, this work places them within the signal processing framework, providing
a systematic means to optimize and adjust the trade-off between computational cost and accuracy.
Rotations are performed separably in order that higher-order interpolators may be used with low
computational cost. The same ideas are applied to create a tomographic projection algorithm, which
computes projections of an N ×N pixel image onto P view-angles at a cost of O(N2 logP ).

Key words. radon transform, fast algorithms, backprojection, projection, tomography, separa-
ble rotation, spline interpolation
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1. Introduction. The problem of computed tomography in two dimensions is
to reconstruct an image from a set of its line-integral projections. In addition to the
ubiquitous computed tomography (CT) scanner, other medical applications of tomog-
raphy are positron emission tomography (PET), single-photon computed tomography
(SPECT), and, to a lesser extent, magnetic resonance imaging (MRI). Outside of
medical imaging, tomographic imaging is used in security scanning, nondestructive
evaluation, transmission electron microscopy (TEM), synthetic aperture radar (SAR),
radio astronomy, geophysics, and other areas [14, 5]. The computational cost of the
classic method used to estimate the image from its projections—the filtered backpro-
jection (FBP) or convolution backprojection algorithm—is dominated by the step of
backprojection. Traditionally, the backprojection of an N × N pixel image from P
projections has a computational complexity of O(N2P ). Fast algorithms exist that
achieve O(N2 logP ) complexity. In practice, the traditional algorithm has been pre-
ferred because of the inadequate image quality of the fast algorithms. Our family
of algorithms have O(N2 logP ) complexity and provide image quality comparable to
the conventional method.

In medical and security applications, fast backprojection is necessitated by the
increasing demand to rapidly process large amounts of data due to (a) the use of larger
multirow detectors in CT machines and (b) the use of tomography to image moving
objects (such as the beating heart or baggage on a conveyer belt). Another area where
fast algorithms are useful is when the data is noisy, sparse, or otherwise degraded and
an iterative reconstruction algorithm, involving multiple successive backprojections
and reprojections, is used.
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1.1. Basics of tomography. A parallel-beam projection Pθf of a two-dimen-
sional (2D) image f(x1, x2) is the set of all parallel straight-line integrals through
the image, oriented at the view-angle θ, i.e., Pθf(t) �

∫∞
−∞ f(t cos θ− s sin θ, t sin θ +

s cos θ)ds. The Radon transform is the set of all such projections at view-angles
θ ∈ [0, π). Reconstructing a 2D image from a set of parallel-beam line-integral projec-
tions is equivalent to inverting the Radon transform.

In practice the set of view-angles is a discrete set. The discrete-angle Radon
transform R is defined by Rf(t, p) � Pθpf(t), where p = 1, . . . , P .

The FBP algorithm [23], based on the continuous inversion formula discovered by
Radon as early as 1917 (see [14]), involves first filtering the projections with a linear
ramp filter (with frequency response H(ω) = |ω|), and then backprojecting those
filtered projections q(t, p). The discrete-angle backprojection operator B�θ (where the

set of view-angles �θ ∈ [0, π]P ) is defined by

(1.1) (B�θq)(x1, x2) � π

P

P∑
p=1

q(x1 cos θp + x2 sin θp, p).

While backprojection can be defined for arbitrarily spaced view-angles �θ = (θ1, θ2, . . . ,
θP ), in this definition and the rest of the paper the simplifying assumption is made
that the P view-angles are uniformly spaced in some π-length interval, i.e., θp =
θ1 + (π/P )(p− 1).

A straightforward implementation of the backprojection equation (1.1) in the dis-
crete domain—reconstructing an N ×N pixel image from P (sampled) projections—
has a computational complexity of O(N2P ) because for each of the O(N2) points in
the output image, O(P ) multiplications and additions must be performed to interpo-
late the sampled projections and evaluate the summation. This is the essence of the
traditional, slow algorithm.

1.2. Other fast algorithms. Existing fast algorithms are either FFT-based
[28, 17, 24, 1]—exploiting the low complexity of the FFT (fast Fourier transform)—or
hierarchical [10, 9, 13, 26, 22, 11, 4]—taking a divide-and-conquer approach directly
in the data or image domains..

Most FFT-based algorithms rely on the projection-slice theorem and fast methods
to recover the image samples from nonuniformly spaced Fourier samples [16, 21]. Re-
cent versions of these reconstruction algorithms [24] are reported to achieve significant
speedup compared to conventional FBP. Andersson’s algorithm [1] is conceptually
different and interesting (it is based on expressing backprojection, in the log-polar co-
ordinate system, as a convolution that can be implemented in the Fourier domain via
an FFT) but appears to be not as computationally competitive in practice. Averbuch
et al. [3, 2] define a rapidly computable, invertible Radon transform for discrete im-
ages, which also makes use of FFTs. Because the projections we consider are approx-
imations to the projections of an underlying continuous image, they can be inverted
only approximately. While the Averbuch groups’ definition of the Radon transform is
invertible, their inversion requires an iterative procedure whose complexity, although
O(N2 logN), has high proportionality constants and is therefore expensive.

Our algorithms fall into the second category. Hierarchical algorithms achieve their
low complexity by recursively decomposing the problem of reconstructing an N -by-N
image from P projections into smaller problems. This produces an algorithmic tree
whose root is the original problem and whose leaves are the smallest problems into
which it is decomposed. This hierarchy, when designed correctly, results in a reduction
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of the complexity of the algorithm from O(N2P ) to O(N2 logP ), or O(NP logN),
depending on the specific hierarchy chosen.

Basu and Bresler’s algorithm [4] performs the dividing-and-conquering in the
space domain. It may be classified, therefore, as a decimation-in-space algorithm. It
uses the fact, known as the bow-tie result, which allows smaller-sized images to be
backprojected from fewer projections. Dividing the image plane into a hierarchy of
square subimages leads to a backprojection algorithm of O(NP logN) complexity.

There are several fast projection and backprojection algorithms [10, 9, 13, 26, 22,
11] that perform the dividing-and-conquering in the projection domain, partitioning
and aggregating projections by their view angles. They may, therefore, be classified as
decimation-in-angle algorithms. Brady’s projection algorithm (see [10, 9]) calculates
the discrete Radon transform of an N ×N image (summations along sets of parallel
lines through the image) in O(N2 logN) time by hierarchically sharing partial sums of
projections in similar directions. This hierarchical sharing of partial sums is reversed
in Brandt et al.’s [11] and Nilsson’s [26] backprojection algorithms. They recognize
that images that are backprojected from a limited number of projections at angles
close to a common direction may be sampled sparsely along the common direction.
Thus the whole backprojected image is recursively constructed, with O(N2 logP )
complexity, by combining smaller (sparsely sampled) images. Danielsson [13] and
Ingerhed [22] apply the hierarchical sharing of similar partial sums to the sinogram
domain (similar to the way Brady [9] applies it to the image domain), recognizing that
backprojection at a particular pixel in the image is the summation along a sinusoidal
trace through the sinogram.

Our algorithm too applies the divide-and-conquer approach in the projection do-
main. It is most closely related to Brandt’s algorithm, but places the idea of projection
domain hierarchical backprojection within the framework of signal processing. The
signal processing framework allows us to make rigorous the notion of sparsely sam-
pling an image made up of few projections. It also allows for the use of optimizations
such as separable image transformations (and consequently recursive infinite impulse
response (IIR) filtering), fractional shifting, and integer-factor up-sampling. This im-
proved understanding allows us to make significant improvements in accuracy and
computational cost.

Each of the existing fast algorithms processes the data differently and may be
therefore more appropriate for particular applications or computer architectures.
Memory access, rather than arithmetic cost, can dominate computation on current
computing architectures. For practical image sizes our algorithm offers an order of
magnitude gain in both arithmetic and memory access over the conventional method
for comparable image quality. Our algorithm has some other characteristics that make
it particularly attractive compared to existing fast algorithms such as the decimation-
in-space [4] and Fourier methods [24, 17]. It allows for the easy sequential processing
of projections as they are acquired. The reduction in latency, resulting from the abil-
ity to begin computation without waiting for all the projections to be acquired, may
be important in real-time imaging. This sequential processing is not as obviously or
naturally implementable in the decimation-in-space algorithm, and is particularly dif-
ficult in Fourier-based algorithms. The cost of our algorithm also scales with the size
of the region on which the reconstruction is performed—even in the case when the re-
gion of reconstruction has a nonconvex shape. This is not the case with Fourier-based
methods. A comparison of different fast algorithms will require careful and optimized
implementation of the algorithms to be compared on the computing architectures of
interest. It is left for future work.
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1.3. Reprojection. Reprojection, the operation of computing projections at a
set of view-angles from a given image, has several applications in imaging including
in algorithms for beam-hardening correction, streak suppression, removal of artifacts
due to the presence of high-density objects, correction for missing data or partial
volume effects, and compensation for attenuation errors (in PET and SPECT). As
mentioned before, iterative reconstruction algorithms also involve reprojection (see [8]
and the references therein) and make use of the fact that reprojection is the adjoint
operation to backprojection [25]. By flow graph transposition [12], fast reprojection
algorithms are derived from the fast backprojection algorithms that we introduce.

1.4. Other imaging geometries. The parallel beam tomographic geometry,
discussed in this paper, arises in reconstruction problems in MRI and in electron
microscopy, and so the algorithm described here can be applied directly to those
problems. The algorithm can also be easily extended to the 3D Radon-transform
problem (in which integrals are performed on parallel planes rather than lines).

In CT, projection data is usually available not in the parallel-beam, but in the
divergent-beam (fan-beam or cone-beam) geometry. Reconstruction algorithms are
performed directly on the divergent-beam data, or after it has been rebinned to the
parallel-beam configuration [20]. The algorithms presented here can be applied to
rebinned data but not (directly) to divergent-beam data.

Fast algorithms for other imaging geometries (most importantly fan-beam and
cone-beam) are derived by extending our approach, and the Fourier-domain under-
standing which leads to the efficient sampling of images made up of few projections, to
those geometries. This paper has been restricted to the 2D parallel geometry because
this algorithm illustrates most of the important ideas and is a stepping stone for the
more general algorithms.

1.5. Brief summary. Following preliminary explanations in section 2, the ac-
tual algorithm is presented in section 3. The algorithm involves producing sparsely
sampled images from single projections, and then combining them in a hierarchical
manner using digital image transformation operations and additions of images. At
every stage in the hierarchy (of logP levels), the number of images decreases by a fac-
tor of 3, while the density of samples increases by roughly the same factor. This keeps
the cost of each level in the hierarchy O(N2) and, therefore, the cost of the whole
algorithm O(N2 logP ). This scheme is motivated by Fourier-domain analysis (section
2.2.3), which explains the key idea of the algorithm: how an image backprojected from
projections with a small angular range varies slowly in a direction transverse to those
angles, and therefore can be sampled sparsely. Additional implementational details
of the algorithm are included in section 3.

2. Fast hierarchical backprojection.

2.1. Backprojection as the sum of rotated images. The O(N2 logP ) hier-
archical backprojection algorithms that we introduce are based on the decomposition
of backprojection in terms of image rotations.

For convenience denote the P individual filtered projections as qp(t) � q(t, p),
p = 1, 2, . . . , P . Restricting the backprojection operator B�θ (1.1) to a scalar θ ∈ [0, π),

we define the backprojection of a function q(t) at a single-angle θ as (Bθq)(�x) �
(π/P )q(x1 cos θ + x2 sin θ). In particular,

(2.1) (B0q)(�x) = (π/P )q(x1) = (π/P )q([ 1 0 ]�x).
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Fig. 2.1. Rotation-based backprojection. (a) Backprojection as the sum of rotated zero-
backprojected images, as in (2.4). (b) The hierarchical equivalent of (a).

It is easy to see that the full backprojection can be written in terms of the single-
angle backprojection as

(2.2) (B�θ{qp}
P
p=1)(�x) =

P∑
p=1

(Bθpqp)(�x).

Denoting the matrix of rotation by angle θ in the plane by Kθ =
[

cos θ − sin θ
sin θ cos θ

]
and defining the rotation-by-θ operator K(θ) by (K(θ)f)(�x) � f(Kθ�x), we obtain
immediately from (2.1) that

(2.3) Bθ = K(−θ)B0.

Combining (2.2) with (2.3) leads to the starting point of the rotation-based hi-
erarchical algorithm: the backprojection operator is equivalent to the summation of
rotated zero-backprojected images, i.e.,

(2.4) f̂ = B�θ{qp}
P
p=1 =

P∑
p=1

K(−θp)B0qp.

This is illustrated in Figure 2.1(a).

2.2. Hierarchical backprojection.

2.2.1. From parallel to a tree structure. The rotation of an M×N discrete-
index image can be performed in O(NM) operations [30]. Therefore, the complexity
of backprojecting P projections onto an N ×N image, according to Figure 2.1(a), is
P×O(N2) = O(N2P ), which is no improvement over the conventional algorithm. The
first key to improving the complexity to O(N2 logP ) is conversion to a hierarchical
structure. Because the composition of successive rotations is still a rotation,

(2.5) K(θ1)K(θ2) . . .K(θN ) = K(θ1 + θ2 + · · · + θN ),
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we can rearrange the block diagram in Figure 2.1(a) into a hierarchical tree structure
as shown in Figure 2.1(b). The intermediate image in the mth branch of the lth level
is denoted as Il,m. In the initial level

(2.6) I1,m � B0qm, m = 1, 2, . . . , 2 · 3L.

In levels l = 2, . . . , L + 1,

Il,m = K(δl−1,3m−2)Il−1,3m−2 + K(δl−1,3m−1)Il−1,3m−1

+ K(δl−1,3m)Il−1,3m, m = 1, 2, . . . , 2 · 3L−l+1,
(2.7)

and in the final level

(2.8) f̂ = IL+2,1 = K(δL+1,1)IL+1,1 + K(δL+1,2)IL+1,2.

Even though the above explanation (2.6)–(2.8) describes the hierarchical algo-
rithm for a set of exactly P = 2 · 3L view-angles (or equivalently L = log3(P/2)), the
algorithm can be generalized to arbitrary numbers and configurations of view-angles.
The ternary branch (i.e., involving the combination of three images) is particularly
efficient since, as is explained later, it eliminates the need for one third of the rota-
tions. The efficient grouping of projections relies on the fact that a set of projections
(or images) of any number can always be divided into groups such that all but one of
the groups has exactly three members. Consequently a set of an arbitrary number of
projections can always be hierarchically combined such that in every level all but one
of the branches is ternary. The remaining branch involves the rotation and addition
of two images (in the case of a binary branch) or no addition (in the case of a unary
branch).

We will say that the hierarchical algorithm of (2.6)–(2.8) displayed in Figure

2.1(b) is correct if it is equivalent to that in Figure 2.1(a), i.e., if f̂ in (2.4) and (2.8)
coincide for every set of filtered projections {qp}Pp=1.

Now, for any set of projection angles θi, i = 1, . . . , P , the intermediate rotation
angles δl,m can be chosen so that the hierarchical algorithm is correct. Such a col-
lection {δl,m} will be called admissible (for this set of projection angles). A trivial
admissible set is δ1,i = −θi, i = 1, . . . , P , with the remaining δl,m = 0. However, as
we will show, certain other choices are preferable.

This hierarchical structure alone does not guarantee the O(N2 logP ) computa-
tional complexity. In fact, it involves up to 1.5 × P − 1 rotation operations—about
50% more than the single-level algorithm of (2.4) and Figure 2.1(a).

The second and essential key to reducing the complexity is to use the extra de-
grees of freedom provided by the additional rotations to enable sparse sampling of the
underlying continuous images. This is possible by selecting the intermediate rotation
angles {δl,m} such that the intermediate images have low bandwidth. Understanding
and optimizing this procedure involves the interplay between three aspects: (i) the
composition of the intermediate images, and the relationships between the angles of
their constituent projections and the intermediate rotation angles; (ii) the spectral
supports of intermediate images; and (iii) the sampling requirements of the interme-
diate images, and their effect on the computational requirements. We explore these
aspects in the following subsections.

2.2.2. Intermediate images and rotation angles. To help identify the com-
position of intermediate images, we introduce a notational tool to pick out the angle
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of the pth projection in an image generated by a weighted backprojection of the form

(2.9) I =
∑
s∈N ′

νsK(φs)B0qs,

where N ′ ⊂ {1, 2, . . . , P} is an index set and νs ∈ R are real weights.
Definition 2.1. For an image I as in (2.9) and p ∈ N ′, the pth-angle extraction

operator Φp is defined as Φp(I) � −φp.
The following two properties follow in a straightforward way from Definition 2.1.
Lemma 2.2. For the pth-angle extraction operator Φp:
(a) Φp(K(θ)I) = Φp(I) − θ.
(b) Suppose that I1 and I2 are given by (2.9) with N ′ = N1 and N ′ = N2

respectively. If N1 ∩N2 = ∅, then

(2.10) Φp(I1 + I2) =

⎧⎪⎨
⎪⎩

Φp(I1) if p ∈ N1,

Φp(I2) if p ∈ N2,

undefined if p /∈ (N1 ∪N2).

By iterating (2.7) it is easy to see that any intermediate image Il,m is given by

(2.11) Il,m =
∑

p∈Nl,m

K(φp)B0qp

for some set Nl,m of integer indices and angles {φp : p ∈ Nl,m}, which depend on the
intermediate rotation angles δl,m. Furthermore, it follows from (2.7) and (2.8) that
for l = 1, 2, . . . , L + 1

(2.12)
Nl,m = {b, b + 1, b + 2, . . . , e},

where b = 3l−1(m− 1) + 1 and e = 3(l−1)(m− 1) + 3l−1.

Combining Lemma 2.2 with (2.11) and (2.12), and denoting by �x� the smallest
integer larger than or equal to x, yields the following characterization of the backpro-
jection angles of projections composing intermediate images in Figure 2.1(b).

Lemma 2.3. Let Il,m be an intermediate image defined recursively by (2.6)–(2.8).
Then for l = 1, 2, . . . , L + 1, m = 1, 2, . . . , 2 · 3L−l+1, and any p ∈ Nl,m, Φp(Il,m) =

−
∑l−1

i=1 δi,μ(p,i), where μ(p, l) �
⌈
p/3l−1

⌉
.

Proof. For the proof, see Appendix A.
In particular, for l = L+2, Lemma 2.3 yields a characterization of the admissible

set of intermediate rotation angles: θp = Φp(IL+2,1) = −
∑L+1

i=1 δi,μ(p,i), p = 1, . . . , P .
As expected, these conditions impose only P constraints on the up to 1.5P − 1 free
intermediate rotation angles {δl,m}.

The following additional characterization of the intermediate images is useful in
optimizing the intermediate rotation angles.

Consider the virtual image (i.e., one that is not actually formed) made up of
projections indexed by the set Nl,m, with each projection backprojected at its nominal

view angle θp. Denoted Ĩl,m, this virtual image is given by

(2.13) Ĩl,m =
∑

p∈Nl,m

Bθpqp.
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In general Ĩl,m 	= Il,m. Now, by (2.3), we know that

(2.14) Ĩl,m =
∑

p∈Nl,m

K(−θp)B0qp.

By Definition 2.1,

(2.15) Φp(Ĩl,m) = θp if p ∈ Nl,m.

Inspection of the block diagram in Figure 2.1(b) suggests that the relative angles
between projections in an intermediate image are preserved in the final reconstructed
image f̂ . This fact is captured by the following result.

Proposition 2.4. If the algorithm of Figure 2.1(b) is correct, then for all l,m
in the algorithm,

(2.16) Il,m = K(αl,m)Ĩl,m for some αl,m ∈ (−π, π].

Proof. For the proof, see Appendix B.
Because Ĩl,m are virtual images, we call the {αl,m} virtual rotation angles. They

are related to the (actual) intermediate rotation angles of the hierarchical algorithm
as follows.

The definition of Nl,m and the definition of the hierarchical algorithm together
imply that (for l = 2, 3, . . . , L + 1) Nl,m = Nl−1,3m−2 ∪ Nl−1,3m−1 ∪ Nl−1,3m, and
consequently by (2.13),

(2.17) Ĩl,m = Ĩl−1,3m−2 + Ĩl−1,3m−1 + Ĩl−1,3m.

By Proposition 2.4,

K(−αl,m)Il,m = K(−αl−1,3m−2)Il−1,3m−2 + K(−αl−1,3m−1)Il−1,3m−1

+ K(−αl−1,3m)Il−1,3m,

and therefore

Il,m = K(αl,m − αl−1,3m−2)Il−1,3m−2 + K(αl,m − αl−1,3m−1)Il−1,3m−1

+ K(αl,m − αl−1,3m)Il−1,3m.

Comparing this to (2.7), it follows that δl−1,3m−i = αl,m − αl−1,3m−i, i.e.,

(2.18) δl,3m−i = αl+1,m − αl,3m−i.

2.2.3. Optimal rotation angles. The optimal angles α∗
l,m are chosen so that

the intermediate images can be sparsely sampled. We use a rectangular sampling
lattice with sampling intervals Δf and Δs; i.e., the discrete image Id(n1, n2) =
I(Δfn1,Δsn2) is a sampled version of the continuous image. We maintain Δf ≤ Δs

and, in keeping with the terminology of Brandt et al. [11], we call the first (horizontal)
coordinate the fast direction and the second (vertical) coordinate the slow direction.
These sampling intervals are chosen to satisfy the sampling theorem [15, p. 37] which,
as explained in sections 2.2.4 and 3.3.1, dictates how small the sampling intervals need
to be to represent an image with a given spectral support.

Equation (2.14) leads us to the spectral support of Ĩl,m. It is easy to see that
the spectral support of B0q is restricted to the ω1-axis (because (B0q)(x1, x2) = q(x1)
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Fig. 2.2. If the spectral support is the shaded wedge-shaped region within dark lines at angles
γ ± β, then the bandwidth in the fast and slow directions, Ωf and Ωs, is as indicated.

and
∫

(B0q)(x1, x2)e
jω2x2dx2 = 2πq(x1)δ(ω2)). Furthermore, if q has a bandwidth

of π (i.e., its Fourier transform Q(ω) = 0 for ω > π), then the 2D spectral support
of B0q is exactly {(ω1, 0) : ω1 ≤ π}. It follows from the behavior of the Fourier
transform under a spatial linear coordinate transformation (g(�x) = f(Kθ�x) =⇒
G(�ω) = 1

|Kθ|F (K−T
θ �ω) = F (Kθ�ω)) and (2.14) that the spectral support of Ĩl,m

is a wedge-shaped region W̃l,m, as shown in Figure 2.2. In particular, if Nl,m =
{b, b + 1, . . . , e}, the wedge lies between θb and θe (i.e., θb = γ − β and θe = γ + β in
Figure 2.2).

By (2.16), Wl,m, the spectral support of Il,m, is also a wedge: in fact, it is just

W̃l,m rotated by αl,m. The optimal angle α∗
l,m is one that minimizes the bandwidth

ΩsΩf of Il,m, where Ωs and Ωf are the bandwidths in slow and fast directions as
shown in Figure 2.2. It is easily shown that the optimum virtual rotation angles and
corresponding highest frequencies are

(2.19) α∗
l,m =

θb + θe
2

, Ωs(Il,m) = π sin
θe − θb

2
, Ωf (Il,m) = π.

In view of (2.18), the optimum intermediate rotation angles δ∗l,m of the hierarchical
algorithm are completely determined by α∗

l,m as δ∗l,3m−i = α∗
l+1,m − α∗

l,3m−i.
Though the algorithm can be tailored to arbitrary sets and numbers of projections,

we will simplify the description and analysis of the algorithm by assuming exactly
P = 2 · 3L projections uniformly distributed in angle as follows:

(2.20) θi = −π

4
(1 − 3−L) + Δθ(i− 1), i = 1, 2, . . . , 2 · 3L, Δθ =

π

2 · 3L .

This choice yields explicit expressions for the optimum rotation angles of the
intermediate images. For l = 2, 3, . . . , L,

(2.21) δ∗l,m =

⎧⎪⎨
⎪⎩

Δθ3
l−1 if m = 1, 4, 7, . . . ,

0 if m = 2, 5, 8, . . . ,

−Δθ3
l−1 if m = 3, 6, 9, . . . .

Note that the center image of each triplet in the hierarchy is rotated by 0 radians—
a free operation. This is the motivation for the choice of the ternary hierarchy in the
common case of uniformly spaced projection angles as in (2.20). Turning now to the
last, l = L+ 1, level in the hierarchy, we again use the 0 radian rotation and another
free rotation by π/2, which merely involves rearrangement (transposition) of pixels.
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The algorithm of (2.6)–(2.8) accordingly simplifies to

Il,m = K(Δθ3
l−2)Il−1,3m−2 + Il−1,3m−1 + K(−Δθ3

l−2)Il−1,3m

for l = 2, 3, . . . , L + 1 and m = 1, 2, . . . , 2 · 3L−l+1,

IL+2,1 = IL+1,1 + K(−π/2)IL+1,2 and f̂ = IL+2,1.

(2.22)

For this algorithm, with the rotation angles chosen per (2.21), substitution of
(2.12) into (2.19) yields that the optimum bandwidths of Il,m are

(2.23) Ωs(Il,m) = π sin(π(3l−1 − 1)/(2P )), Ωf (Il,m) = π.

These bandwidths will determine the computational requirements and the dis-
cretization scheme of the algorithm.

2.2.4. Computational cost. The sampling theorem [15, p. 37] dictates how
small the sampling intervals need to be in order for the intermediate image Il,m to be

recovered from its sampled version Idl,m (where Idl,m(n1, n2) = Il,m(n1Δ
l,m
f , n2Δ

l,m
s )).

We combine the criterion of the sampling theorem (Δs < π/Ωs and Δf < π/Ωf ) with
(2.23) to find the size of the discrete image Idl,m in the lth level:

size(Idl,m) ≈ (N/Δs)(N/Δf ) = (NΩs(Il,m)/π)(NΩf (Il,m)/π)

= N2 sin(π(3l−1 − 1)/(2P ))

< N2(π3l−1/(2P )) = O(N23l/P ).

In the next section we will show that the cost of rotating a discrete-domain image
containing S samples, to a given accuracy, is O(S) arithmetic operations (adds and
multiplies). Hence, because size(Idl,m) = O(N23l/P ), and because there are P/3l−1

images in level l, the arithmetic complexity of the algorithm is

(2.24)
L+1∑
l=1

P

3l−1
O

(
N23l

P

)
= O(N2 logP ).

Rather than the number of arithmetic operations, the number of memory accesses
or memory bandwidth is often the bottleneck in current computer architectures. For-
tunately, the hierarchical algorithm provides a significant improvement in this re-
spect too. In fact, counting the number of arithmetic operations provides a count of
the number of memory accesses also, as memory accesses are performed only when
arithmetic operations are performed. The number of memory accesses is therefore
O(N2 logP ), which represents an improvement over the O(N2P ) memory accesses
required in the conventional BP algorithm. Finally, a simple analysis shows that, if
executed in place, the hierarchical algorithm requires O(NP ) memory—the same as
the conventional algorithm.

3. Hierarchical backprojection in the discrete domain. We have estab-
lished that the hierarchical algorithm discussed thus far has the favorable O(N2 logP ),
scaling of the computational cost. However, for fixed N and P , the constants in the
cost expression become important and will determine the actual speedup offered by
the algorithm. Furthermore, various structural and parametric choices in the discrete
index design of the algorithm will determine the trade-off between computation and



584 ASHVIN GEORGE AND YORAM BRESLER

f

f

f

s f

Id
3,2

.

.

.

.

.
.

.

.

.

.

. . .

f̂ d

qd
1

qd
2

qd
3

B0

B0

B0 Uf
1,3

Uf
1,1

Uf
1,2

K(δ1,1)

K(δ1,3)

U2,1 K(δ2,1) Uf
3,1

Id
2,1

Id
3,1

K(−π
2

)

Fig. 3.1. Hierarchical backprojection in the discrete-domain with oversampling. This is a
modification of Figure 2.1(b). The modifications include very sparse sampling of the initial zero-
backprojected (B0) images, upsampling in the slow direction (↑s) at every stage in the hierarchy to
increase the density of sampling, and initial up-sampling ↑f and final down-sampling ↓f in the fast
direction to tune the quality of the reconstruction.

accuracy. We address these issues in this section, describing what we believe is a
particularly favorable design.

The block diagram of this digital algorithm is shown in Figure 3.1 for an example
with L = 2, i.e., for a set of P = 2 · 32 = 18 projections. The projection view-angles
are equally spaced with Δθ = π/18. The digital projections qdp [m] = qp(mΔq) are
sampled versions of the continuous projections, with uniform sampling interval Δq.
The digital images Idl,m are the sampled versions of the underlying continuous images
Il,m. The operation of sampling a continuous-domain image Il,m(�x) on a rectangular

lattice, with sampling periods Δ1 and Δ2, is denoted by D�Δ, where �Δ = [Δ1,Δ2],

and produces the 2D sequence or discrete-domain image Idl,m[�m] = (D�ΔIl,m)[�m] �
I(Δ1m1,Δ2m2).

Blocks marked B0 represent the digital zero-angle backprojection operator (see
(2.1)) (B0q

d)[�m] = (π/P )qd[m1]. Blocks marked Kδ represent the discrete-domain
rotation operator. The application of affine coordinate transformations ((Af)(�x) =
f(A�x), where A is a 2× 2 matrix) to digital images is addressed in section 3.1, and a
particularly efficient, separable implementation of the digital rotation operator using
two shears is described in section 3.2.

The blocks labeled ↑sUl,m represent up-sampling in the slow coordinate by factor

Ul,m (a digital affine transformation with A =
[ 1 0

0 1/Ul,m

]
). Their role is to adjust the

sampling periods �Δl,m of the intermediate images to the increasing slow bandwidth
(viz. (2.23)). Section 3.3 explains how {Ul,m} are determined. Finally, the blocks

labeled ↑fUf
l,m and ↓fUf

l,m represent similar up- and down-resampling, respectively,
in the fast direction, whose roles are discussed in sections 3.3.1 and 3.4.2.

3.1. Digital affine transformations. Each digital image fd[�m] in the algo-
rithm will be considered to be a representation of an underlying continuous image
fψ
�Δ
(�x) with respect to a particular basis function ψ(�x) : R

2 → R and sampling period

�Δ ∈ R
2, the two images being related by

(3.1) fψ
�Δ
(�x) � (Eψ

�Δ
fd)(�x) �

∑
�n∈Z2

fd[�n]ψ

(
x1

Δ1
− n1,

x2

Δ2
− n2

)
.
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We will say that fψ
�Δ

is the Δ − ψ continuous domain extension of fd, and Eψ
�Δ

is

the corresponding extension operator. We assume that Ψ(�x) has a bounded Fourier
transform and fd ∈ l2(Z

2) so that the sum in (3.1) converges in L2(R
2). The function

ψ is chosen as an interpolant (vanishing on Z
2, except at the origin), so that the

digital image coincides with the samples of its Δ − ψ extension on the rectangular
sampling lattice with period �Δ, i.e.,

(3.2) D�ΔEψ
�Δ
fd = fd ∀fd ∈ l2.

With the relationship between digital and continuous-domain images established,
we can define an affine transformation of a digital image.

The digital Δ−ψ affine transformation Aψ,�Δ : 2(Z
2) → 2(Z

2) corresponding to
the continuous affine transformation A : L2(R

2) → L2(R
2) is defined by

(3.3) Aψ,�Δfd � D�ΔAEψ
�Δ
fd = D�ΔAf

�ψ
�Δ
.

In other words, the transformation Aψ,�Δ is defined by applying the continuous
affine transformation A to the Δ − ψ extension of the digital image, and then re-

sampling. (Recall that (Af)(�x) � f(A�x).) However, because Aψ,�Δ is a mapping
between digital images, it is performed purely in the discrete-index domain. Under
some additional conditions, we can show that this definition is consistent ; that is,

affine transformation Aψ,�Δ yields the same result whether applied in the continuous
or digital domain.

Let

(3.4) F d(�λ) �
∑
�n∈Z2

fd[�n]e−j�λ′·�n, �λ ∈ R
2,

be the discrete-time Fourier transform (DTFT) of fd. The square [−π, π]2 is the
principal period of F d(λ). If, on [−π, π]2, F d(λ) vanishes outside a region W , fd will
be called band-limited to W , or fd ∈ B(W ).

Lemma 3.1. Suppose fd ∈ B(A−T [−π, π]2) and Ψ(�x) = Sinc(πx1) Sinc(πx2);
then

(3.5) Eψ
�Δ
Aψ,�Δfd = AEψ

�Δ
fd.

Proof. For the proof, see Appendix C.
Recall now that the composition property K(θ1 + θ2) = K(θ1)K(θ2) of rotation is

key to the hierarchical decomposition. The corresponding property for digital affine
transformations is established by the following result.

Proposition 3.2. Let A1 and A2 be affine coordination transformations, A21 =

A2A1, and Aψ,�Δ
1 , Aψ,�Δ

2 , and Aψ,�Δ
2,1 their corresponding digital versions. Suppose

fd ∈ B(A1[−π, π]2) and Ψ(�x) = Sinc(πx1) Sinc(πx2). Then

(3.6) Aψ,�Δ
2 Aψ,�Δ

1 fd = Aψ,�Δ
21 fd.

Proof. We have

Aψ,�Δ
2 Aψ,�Δ

1 fd = D�ΔA2E
ψ
�Δ
Aψ,�Δ

1 fd = D�ΔA2A1E
ψ
�Δ
fd

= D�ΔA21E
ψ
�Δ
fd = Aψ,�Δ

21 fd,
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where the second equality follows from Lemma 3.1.
Proposition 3.2 is the basis for converting the continuous-domain hierarchical

algorithm of Figure 2.1(b) to the digital algorithm illustrated in Figure 3.1.
In practice, in order to limit computational cost, certain approximations must be

made. Instead of the ideal band-limited interpolant Ψ(�x) we use, in (3.1), a Ψ(�x) of
finite (usually small) support. This yields, via (3.3), a digital affine transformation
with a kernel of small support on Z

2, which is cheap to apply. Because Ψ(�x) is only
approximately band-limited, the results in Lemma 3.1 and Proposition 3.2 hold only
approximately. However, by using a certain degree of oversampling, the error can be
made to fall off exponentially fast with the size of the support of the interpolant. More
specifically, assume oversampling by factor γ > 1, i.e., Δi = 1

γ
π
Ωi

, and let M ×M be
the size of the support of the interpolant Ψ. Then the interpolation error introduced
by (3.1) behaves as ce−πM(γ−1)/γ for some constant c (see [8]).

3.2. Two-shear rotations. The computation is further reduced by implement-
ing each rotation in the algorithm as a cascade of one-dimensional (1D) transforma-
tions. We use the well-known decomposition of the rotation matrix

Kθ = Stan θ
2 S− sin θ cos θ

1 Scos θ
c

into shears along the fast and slow coordinates, Sα
1 =

[
1 α
0 1

]
, Sα

2 =
[

1 0
α 1

]
, and Sα

c =[
α 0
0 1/α

]
. The validity of a corresponding decomposition of digital rotation into a

cascade of one-dimensional digital shears follows from Proposition 3.2.
Corollary 3.3. Let A1 =

[
1 0

tan δ 1

]
, A2 =

[
1 − sin δ cos δ
0 1

]
, and Ψ(�x) =

Sinc(πx1) Sinc(πx2), and suppose that fd ∈ l2(Z
2)∩B(W ), where W = {�ω ∈ [−π, π]2 :

|ω1 + ω2 tan δΔ1/Δ2| ≤ π}. Then

(3.7) Aψ,�Δ
2 Aψ,�Δ

1 fd = D �Δ′K(δ)Eψ
�Δ
fd,

where �Δ′ =
[

cos δ 0
0 1/ cos δ

]
�Δ.

Proof. Use Proposition 3.2 to obtain the result.

The digital shear operations Aψ,�Δ
i are one-dimensional, involving digital filtering

of the rows or columns of the digital image individually. This reduces the compu-
tational cost (per pixel) of a 2D image rotation using an M × M kernel Ψ(�x) from
O(M2) to O(M) for the two-shear version.

To further save in computation, we omit the coordinate scaling transformation
Scos θ
c in the intermediate digital rotations, producing what we call a two-shear ro-

tation. By Corollary 3.3 this implements combined digital rotation and resampling,
rather than pure rotation. The δ-rotated image is effectively down-sampled in the
fast coordinate and up-sampled in the slow coordinate by a common factor 1/ cos θ.

A fractional (noninteger) resampling of the initially backprojected images B0qθp
is, therefore, required. Because these initial images are constant in the slow-direction,
changing Δl,m

s will leave the image unchanged, and, consequently, the resampling in
the slow-coordinate is a free operation. But, as displayed in Figure 3.1, in the initial
level a fractional up-sampling in the fast direction is required (as Δl,m

f ≤ 1.0).

3.3. Optimum intermediate up-sampling factors.

3.3.1. Necessary sampling intervals. By (2.23), for the optimum rotation-
angles the intermediate image bandwidths are Ωs(Il,m) = π sin(Δθ(3

l−1 − 1)/2) and
Ωf (Il,m) = π. Therefore, in successive levels of the continuous-domain algorithm,
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as l increases, the slow bandwidth increases. Consequently the slow-sampling period
required by the sampling theorem [15, p. 37], Δl,m

s < π/Ωs(Il,m), decreases. The
required slow sampling rate adjustment from level to level is provided by the slow up-
sampling operations ↑sUl,m in Figure 3.1. Recall now from section 3.2 that the digital
two-shear rotation introduces down-sampling in the slow direction and up-sampling
in the fast direction by a factor 1/ cos(δl,m) at each level.

Consequently the sampling periods �Δl,m in adjacent levels of the algorithm, if the
algorithm is correct, are related as follows:

(3.8) Δl+1,�m/3�
s = Δl,m

s /(κl,mUl,m) and Δ
l+1,�m/3�
f = κl,mΔl,m

f ,

where

κl,m =

{
1 if m = 2, 5, 8, . . . , 2 · 3L−l+1 − 1 (no rotation),

1/ cos(Δθ3
l−1) if m = 1, 3, 4, 6, . . . , 2 · 3L−l+1 (rotation by ±Δθ3

l−1).

(3.9)

Working backwards from ΔL+1,m
s = 1, we find that the slow-sampling period

Δl,m
s is related to the up-sampling factors Ul′,m (for l′ > l) as follows:

(3.10) Δl,m
s =

L∏
l′=l

(Ul′,μ(l′−l,m)κl′,μ(l′−l,m)),

where μ(l,m) =
⌈
m/3l

⌉
.

Next, combining equation (3.10) with the sampling condition Δl,m
s ≤ π/Ω(Il,m) =

1/ sin(Δθ(3
l−1−1)/2) provides necessary conditions on the slow direction up-sampling

factors Ul,m.
Consider now the fast sampling interval Δf ; because Ωf (Il,m) = π does not

change between levels, no change in Δf is required to satisfy sampling requirements.

However, the change in Δl,m
f produced by the two-shear digital rotation has to be

accounted for. To avoid the cost of resampling operations in the fast direction of each
level, it suffices to up-sample in level L = 1 by a factor Uf

1,l. Working backwards from

ΔL+1,m
f = 1 and using (3.8) and (3.9) yields

(3.11) Uf
1,l =

L∏
l′=l

1

κl′,μ(l′−l,m)
.

3.3.2. Optimum slow up-sampling. Next, we formulate the choice of up-
sampling factors as an optimization problem. The total computational cost is the sum
of the costs of the image transformations and image additions in all branches of the
algorithm which are, in turn, proportional to the sizes of the intermediate image. By
(3.10), the dimensions of Idl,m are N/Δl,m

s ×N/Δl,m
f = (N/

∏L
l′=l(Ul′,μ(l′−l,m)κl′,μ(l′−l,m)))

× N/
∏L

l′=l κl′,μ(l′−l,m). So, using 1D digital filters of fixed length M to implement
the 1D digital coordinate transformations, the total cost can be shown to be equal to

(3.12)
L∑

l=2

6·3L−l∑
m=1

(
cl,m∏L

l′=l Ul′,μ(l′−l,m)

)
+ constant,

where the constants cl,m depend on the computational costs of the filters used. This
expression makes a mildly simplifying assumption. As written, it implies that the
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number of samples used to represent the (l,m)th image (i.e., the size of the sampled
(l,m)th image) is inversely proportional to the slow-sampling interval. The size of the
sampled image is equal to the above expression except for small additive constants
that are due to the rounding effects that stem from the representation of an image
by a whole number of samples and the retaining of a few samples beyond the strict
edge of the image. The above expressions are therefore deemed acceptable for the
calculation of optimal upsampling factors.

This cost (3.12) is to be minimized by choice of the factors Ul,m, subject to the
sampling constraint derived from (2.23) in section 3.3.1 (i.e., Δl,m

s ≤ π/Ωs(Il,m)).

Practical considerations suggest yet another constraint on the Ul,m. The co-
efficients of digital filters implementing digital resampling operations can be either
precomputed and stored (at the cost of memory and access time), or computed “on
the fly.” In the latter case, resampling by integer factors can be implemented more
efficiently than that by fractional factors. Consequently, taking advantage of the free-
dom in selecting the slow up-sampling factors, we restrict them to integers. (No such
freedom exists in the choice of fast direction resampling factors, which are fixed by
(3.11)—but these fast direction resampling operations contribute a very small fraction
of the total cost of the algorithm.)

The problem of minimizing the computational cost is thus equivalent to the fol-
lowing constrained integer optimization problem:

U∗ = arg min
U

J (U), U = {Ul,m ∈ N : l = 2, 3, . . . , L; m = 1, 2, . . . , 6 · 3L−l},

J (U) =
L∑

l=2

6·3L−l∑
m=1

cl,m∏L
l′=l Ul′,μ(l′−l,m)

, where cl,m ∈ R, μ(l′ − l,m) =
⌈
m/3l

′−l
⌉
,

subject to the constraint that

(3.13) Δl,m
s =

L∏
l′=l

(Ul′,μ(l′−l,m)κl′,μ(l′−l,m)) ≤ π/Ωs(Il,m) = 1/ sin(Δθ(3
l−1 − 1)/2).

This optimization problem can be solved cheaply using dynamic programming [19].

3.4. Oversampling. As explained in section 3.1, oversampling the intermediate
images will increase accuracy. Applying the oversampling condition uniformly, we re-
quire that each image undergoing a digital coordinate transformation be oversampled
by at least some specified constant γ > 1.

3.4.1. Oversampling in the slow direction. The sampling frequency in the
slow direction is controlled by the upsampling factors Ul,m. Upsampling by a factor
γ is achieved by simply replacing the constraint (3.13) in the integer optimization
problem by Δl,m

s ≤ 1
γπ/Ωs(Il,m) for l = 2, 3, . . . , L.

3.4.2. Oversampling in the fast direction. In the fast direction, we simply
increase the upsampling factors Uf

1,m to incorporate oversampling, and then down-
sample the image in the fast direction at level L after the last transformation has been
performed, to return to the desired sampling scheme (where Δf = Δs = 1.0). This
modification to the algorithm therefore involves only one additional level of (frac-
tional) x-resampling in level L, as shown in Figure 3.1. Note that though the block
diagram shows these last down-sampling operations as separate, they are combined
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with rotations in four out of the six images in the Lth level for improved computa-
tional efficiency. This is achieved by combining the fast-direction shear operation in
the decomposed rotation and the fast-direction down-sampling operation.

The exact values of these fast direction resampling fractions is determined both
by the parameter γ and the spectral structure of the intermediate images. The γ
oversampling condition is that Δl,m

f ≤ 1
γπ/Ωf (Il,m) for l = 2, 3, . . . , L. We know that

Ωf (Il,m) = π, and {Δl,m
f } are related to each other strictly according to (3.8), so

the largest of these values is ΔL+1,m
f (as κl,m ≥ 1). Consequently, the up-sampling

factors Uf
l,m are modified to Ũf

1,m = γUf
1,m, and new down-sampling is introduced in

level L, with down-sampling factors ŨL+1,m = γ.
Note that the oversampling condition in the fast direction will not be satisfied for

the first-level images, B0qθp |p=1,...,P if the input projections are sampled too sparsely
(i.e., if Δq > 1

γ ).

4. Fast hierarchical reprojection. The reprojection operator is known to be
the adjoint of backprojection. Therefore, the fast hierarchical algorithm for repro-
jection can be derived from the backprojection algorithm by determining the adjoint
of the sequence of operations that defines it. Accordingly, as shown in Figure 4.1,
the reprojection algorithm may be formally derived from the block-diagrams of the
backprojection algorithm (Figure 3.1) by a flow-graph transposition operation, revers-
ing the flow of data [12]. Summation junctions in the backprojection block-diagram
are replaced by simple branchings in the reprojection case, affine transforms (ro-
tations by θ) are replaced by their adjoints (rotations by −θ), up-sampling is re-
placed by down-sampling, and down-sampling by up-sampling, by the same factor.
Finally, the zero-angle backprojection is replaced by zero-angle reprojection P0, where
(P0f)(t) =

∫∞
−∞ f(t, s)ds. In the discrete implementation, it reduces to summation

of pixel values along the columns of the image. As in the discrete backprojection
algorithm, the rotations are implemented by two-shear rotations. The choice of pa-
rameters in the hierarchical reprojection algorithm is guided by the same principles
as for the backprojection algorithm.
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Fig. 4.1. Ternary hierarchical reprojection. It is formed by a flow-graph transposition (i.e.,
reversal of the flow of data) of the block-diagram in Figure 3.1.

5. Numerical experiments. The backprojection algorithms were tested in re-
constructing the well-known Shepp–Logan phantom of size 512×512 pixels (N = 512).
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The sampling-theoretic analysis of tomography [25] dictates that at least Nπ/2 ≈ 805
projections are needed for reconstruction.

While the description of the algorithm is for P = 2 ·3L view angles, the hierarchy
is easily modified to accommodate P = 2 · 3L−1 ·T (for some small integers T and L).
This is done by modifying the initial level so that it combines projections in groups
of T instead of groups of 3.

We analytically generate P = 1134 = 2 ·34 ·7 projections at equally spaced angles
in (−π/4, 3π/4). (Because of the particular way we implement the digital image
transformations, wherein we retain some samples beyond the strict edge of the image,
it is cheaper to use a single 7-ary initial level than a ternary level preceded by an initial
level with branches of varying branching-factors.) The use of 1134 projections means
that there is some oversampling in the angular direction (which is not uncommon
in practical systems). With fewer views, the relative acceleration provided by the
hierarchical algorithm will be somewhat reduced (and the exact values will be specified
later in this section). The projections are sampled with a sample-spacing of one
pixel unit (and to simulate real tomographic systems which have detector elements of
nonzero width, each projection is analytically convolved with the indicator function
of the interval (−0.5, 0.5)). The projections are filtered with the well-known Shepp–
Logan ramp filter.

The key trade-off in this algorithm is between accuracy, or the quality of the re-
constructed image, and computational efficiency. Though visual quality is not easily
quantifiable, we choose to measure the quality of the image reconstructed by the fast
hierarchical algorithm in a few different ways. As reference images we use both the
actual phantom and a reconstruction of the phantom using the conventional method.
The conventional method that we use as a reference is pixel-driven backprojection, us-
ing linear interpolation between adjacent samples of a projection; cf. [23]. To quantify

the difference between our N ×N pixel reconstruction (f̂ [�m]) and the reference image

(fref [�m]), we compute both the peak error (max�m |f̂ [�m] − fref [�m]|—the maximum
difference between the pixel values of the reconstruction and the reference image) and

the RMS (root mean square) error =
√

1
N2

∑
�m |f̂ [�m] − fref [�m]|2.

The computational cost of the algorithm is measured by counting the number of
arithmetic operations—additions and multiplications—involved. By using this mea-
sure we can avoid the need to account for differences in processors and programming
optimizations that affect the run-time of the particular code implementation. The
acceleration factor relative to conventional backprojection is defined as the ratio of
total operation count (adds + multiplies) for the conventional and the fast algorithm.

The trade-off between accuracy and cost in the fast algorithm is adjusted in two
main ways—changing the oversampling parameter and changing the kind of interpo-
lator used. The list of interpolators used is as follows: two FIR (finite impulse re-
sponse) interpolators—the two-point linear interpolator and the three-point quadratic
Schaum [29] interpolator, and three IIR (infinite impulse response) interpolators—
Blu’s shifted-linear interpolator [6], and Unsers’s MOMS (spline) interpolators of
quadratic and cubic degree [7].

Figure 5.1 displays the reconstruction of the phantom using the conventional and
fast backprojection algorithms. In Figure 5.1(a) is shown the conventional reconstruc-
tion, and in Figure 5.1(b) is shown the reconstruction produced by the fast algorithm
using the quadratic Schaum interpolator and an oversampling factor of γ = 1.22 (at an
acceleration factor over the conventional algorithm of 9.7). While the pixel values of
the phantom lie in the range [0, 2.0], the displayed images in Figure 5.1(a) and (b) use
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(a) (b)

(c)

(d) (e)

Fig. 5.1. Sample reconstructions: (a) conventional backprojection, (b) fast backprojection
(using the quadratic Schaum interpolator and oversampling γ = 1.22). The grayscale window in
(a) and (b) is [0.99, 1.05], which is 3% of the total range of pixel values. (c) Detail of (a), and
(d) detail of (b). The grayscale window in (c) and (d) is [1.019, 1.031], which is 0.6% of the total
range of pixel values. (e) Fast backprojection (using the quadratic Schaum interpolator and over-
sampling γ = 1.22) with additional Kaiser windowing of projections with Kaiser parameter β = 2.0
(and grayscale window [0.99, 1.05]).

a grayscale window of [0.99, 1.05] (3% of the total range of pixel values) to emphasize
small differences and assist the comparison of the reconstructions.

As mentioned previously, the relative acceleration is reduced when fewer view
angles are used. In comparison to the acceleration of 9.7 achieved when using P =
1134 (= 2 · 34 · 7) projections, under the same conditions of quadratic Schaum inter-
polator and oversampling of γ = 1.22, the relative acceleration is 8.7 in the case of
P = 972 (= 2 · 34 · 6), and 7.7 in the case of P = 810 (= 2 · 34 · 5).

The close-ups of Figure 5.1(a) and (b) are shown in Figure 5.1(c) and (d) (respec-
tively). The closeups are visually comparable, even with a narrow grayscale window
of [1.019, 1.031] (0.6% of the total range of pixel values). The difference between the
fast and slow reconstructions is most visible along the inner edge of the skull. The
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fast reconstruction displays an overshoot along this inner edge that is visible as a dark
curve. A profile through the field of view is shown in Figure 5.2. A zoomed-in closeup
of the inner edge of the skull is shown in Figure 5.2(b). Here, in addition to the fast
algorithm (solid line), conventional algorithm (dashed line), and phantom (circles), is
shown a fast reconstruction that uses a Kaiser window [27] (dotted line). The initial
ramp filter is modified by a Kaiser window (with Kaiser parameter β = 2.0) to reduce
the overshooting of the fast algorithm. The whole image (from the Kaiser-windowed
fast reconstruction) is displayed in Figure 5.1(e). The reconstructions in the rest of
this section do not use this Kaiser windowing.

100 200 300 400
0

1

2

88 89 90 91

1

1.02

1.04

(a) (b)

Fig. 5.2. Profiles through reconstructions. (a) A profile of a row (number 281) through the
conventional reconstruction and the fast reconstruction without Kaiser windowing. At this level
of detail the differences are hard to see. (b) A zoomed in detail of the profile in (a). The circles
represent the actual values of the phantom, the dashed line is the conventional reconstruction, the
solid line is the fast reconstruction, and the dotted line is the fast reconstruction with Kaiser filtering.
Notice that that Kaiser filtering reduces overshooting near edges.

The RMS error of the reconstructions using the fast backprojection versus the
acceleration factor over the conventional algorithm is plotted in Figure 5.3(a). The
reference image is the original phantom. All five versions of the fast algorithm, each
with a different interpolator, are run at different values of the oversampling parameter
γ, ranging from 1.0 to 1.82. Data points corresponding to a particular choice of
interpolator are connected by a line, and as the oversampling is increased, the cost of
the algorithm increases (i.e., the acceleration factor decreases).

As expected, for a given interpolator, as the oversampling (and γ) is increased, the
error decreases. For a given oversampling parameter γ, the error of the reconstruction
decreases as expected as the complexity of the interpolator is increased—from linear,
through shifted-linear, quadratic Schaum, quadratic MOMS, to cubic MOMS. In
comparison the RMS error of the conventional algorithm is 0.059 (which is 3% of the
maximum pixel value of the image) and is indicated by the horizontal dashed line in
Figure 5.3(a).

The peak error of the reconstruction versus the acceleration over the conventional
algorithm is plotted in Figure 5.3(b) and (c). Figure 5.3(b) shows the peak error (cal-
culated with respect to the phantom) near the skull, and Figure 5.3(c) shows the peak
error (calculated with respect to the conventional reconstruction) far from the skull.
The reason for the observed reductions in peak error when oversampling is decreased
or when a less complex interpolator is used is the suppression of high-frequency con-
tent associated with these choices, which reduces ringing and thereby peak error. The
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Fig. 5.3. Comparing reconstructions—Error versus acceleration ( (a), (b), and (c)) and slice
profiles (d). Error is measured between the reconstruction and a reference image (conventional re-
construction or actual phantom). Acceleration is the cost of the conventional reconstruction divided
by the cost of the particular fast reconstruction. (a) The RMS error (referenced against phantom),
(b) the peak error away from the skull (referenced against phantom), and (c) the peak error near the
skull (referenced against conventional). Interpolation types in (a), (b), and (c): cubic MOMS ( ◦),
quadratic MOMS ( ·), quadratic Schaum (+), shifted linear (×), and linear ( ∗). The oversampling
parameter γ increases from 1.0 to 1.82—specifically γ = 1.00, 1.10, 1.22, 1.37, 1.56, and 1.82. In
(a) and (b) the horizontal dashed line indicates the error of the conventional reconstruction. (d) Pro-
file of row 256 of the reconstruction: original phantom (dashed line), conventional reconstruction
(dot-dashed line), and fast reconstructions using linear (∗) and cubic-MOMS ( •) interpolation.

most desirable image quality might therefore not be the set of parameters with the
lowest RMS error, but instead one that also has an acceptably low peak error. These
curves can be used to select an interpolator and operating point of acceptable quality.

Apart from the error measures described above, the accuracy of the algorithms
was adjudged by examining 1D profiles of the reconstructions near the edges of re-
gions in the image. The width of the edge—the number of pixel units taken for the
reconstruction to cross from 5% to 95% of the edge-transition (assuming underly-
ing bilinear interpolation)—is calculated by choosing a set of points near the edge of
each ellipse making up the phantom, calculating the edge width at each such edge
pixel, and averaging the edge width over all the pixels. The edge widths are also
calculated using different transition bounds—namely, 10% to 90%, and 20% to 80%.
As displayed in Table 5.1, in all cases the edge widths decrease as the complexity of
the interpolators is increased from linear (with γ = 1.22) to shifted-linear, quadratic
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Table 5.1

The average edge widths of the reconstructions for different types of interpolators, using three
different transition bounds to calculate edges.

Hierarchical (varying interpolators)
Transition
Bounds

Conv-
enti-
onal

Linear
(γ=1.22)

Shifted-
linear
(γ=1.0)

Quad
Schaum
(γ=1.22
with
Kaiser)

Quad
Schaum
(γ=1.22
without
Kaiser)

Quad
MOMS
(γ=1.0)

Cubic
MOMS
(γ=1.0)

5 to 95 % 2.48 3.36 2.83 2.59 2.27 2.21 2.06
10 to 90 % 1.96 2.62 2.25 2.08 1.85 1.82 1.70
20 to 80 % 1.31 1.73 1.51 1.41 1.26 1.25 1.17

Accel. 1 15.1 14.8 9.7 9.7 8.7 6.9

Schaum (with γ = 1.22), quadratic MOMS, and cubic MOMS. The Kaiser window
increases the edge width (as seen in the case of the quadratic Schaum interpolator).
The bottom row displays the acceleration factors of the hierarchical methods. Notice
that the fast algorithm, when implemented with interpolators more complex than the
quadratic Schaum, achieves a smaller edge width than the conventional algorithm.

The profile of a particular edge for a few representative reconstructions is dis-
played in Figure 5.3(d). In order of decreasing edge width they are the cubic MOMS,
the conventional algorithm, and the linear interpolator. Visually, the edge-transitions
are clearly comparable.

6. Conclusions. Though the rotation-based hierarchical backprojection algo-
rithms presented here are similar to Brandt’s multilevel inversion (MI) algorithm [11],
there are key differences and improvements.

These algorithms, like MI, involve sampling the intermediate images on rectan-
gular grids, rotated with respect to each other. The sampling criterion in the slow
direction explained heuristically in [11, equation 4.1] is equivalent to the sampling
criterion derived here (the constraint in (3.13)). While in MI this slow-sampling in-
terval is exactly achieved, we restrict ourselves to computationally efficient integer
up-sampling factors in the slow direction and, consequently, satisfy or exceed the
sampling criterion in [11]. Brandt et al. also mention “doubling”: they interpolate
the projection data at double the original sampling rate to get better accuracy. In
our algorithms we introduce variable oversampling in a more structured manner which
results in greater flexibility to improve accuracy.

Our choice to perform digital image rotations leads to more performance gains.
The decomposition of the rotation operator into shears allows for the intermediate
rotations in the algorithm to be implemented as a sequence of 1D digital fractional
delays. The separable implementation of the rotation operator allows for the use of
digital image transformations and filtering of a higher quality than the bilinear inter-
polation used by Brandt in the MI algorithm. These higher-quality transformations
are possible first because longer FIR filters can be used at low cost when used sep-
arably. Furthermore, operations involving IIR filters, such as the shifted-linear and
higher-order spline-based filters, can be used (while they could not be used in the non-
separable case). Fractional shifts can be efficiently implemented using shift-invariant
filters. This also allows for the use of FFT-based shifting.

By analyzing the algorithm within the signal processing framework, we are able
to elucidate conditions on the sampling and interpolation of the intermediate images,
and optimize various parameters in the algorithm. We are also able to derive a re-
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projection algorithm which may be designed with the existing machinery of signal
processing—optimal low-pass filtering and image transformations. Furthermore, this
understanding may be used to derive fast hierarchical algorithms for other tomo-
graphic methods whose Fourier-domain behavior is well understood.

Both the backprojection and reprojection algorithms can be adapted to arbitrary
numbers of view-angles, not just sets of size 2 · 3L. While the ternary branching
factor (or radix) is a particularly computationally efficient choice, arbitrary, possibly
mixed, radixes may be used. Any number of projections may be processed through
a hierarchy consisting of mostly ternary nodes. The algorithm is easily adapted to
process projections at nonuniform view-angles. The Fourier-domain analysis dictates
the optimal intermediate rotation-angles and the up-sampling factors.

The new family of fast backprojection and reprojection algorithms developed in
this paper complements and extends the existing fast algorithms. These algorithms
have different tradeoffs between computation and accuracy, and different architec-
tures. A decision as to which of these algorithms is the most effective in any given
practical application will require careful comparison of optimized implementations on
the computing architectures of interest.

This algorithm can be extended to other projection geometries—the fan-beam [18]
and cone-beam, for example—in order to find wider practical application.

Appendix. Proofs of propositions and lemmas.

A. Proof of Lemma 2.3.
Proof (by induction on l). The result is trivially true for l = 1 : Φp(I1,m) = 0 for

all p ∈ N1,m = {m}. Assume that the result is true for l − 1.
Now consider p ∈ Nl−1,3m−i. By (2.7) and Lemma 2.2, we know that Φp(Il,m) =

Φp(Il−1,3m−i)−δl−1,3m−i. By the inductive hypothesis, we know that Φp(Il−1,3m−i) =

−
∑l−2

i=1 δi,μ(p,i). Equation (2.12) implies that Nl−1,3m−i = {3l−2(3m − i − 1) + k :

k = 1, 2, . . . , 3l−2}. So p/3l−2 ∈ {(3m − i − 1) + k/3l−2 : k = 1, 2, . . . , 3l−2}, and

consequently μ(p, l − 1) �
⌈
p/3l−2

⌉
= 3m − i. Thus Φp(Il,m) = −

∑l−2
i=1 δi,μ(p,i) −

δl−1,μ(p,l−1) = −
∑l−1

i=1 δi,μ(p,i).

B. Proof of Proposition 2.4. We will need the following property of the
ceiling operator �.�.

Lemma B.1. Let x1, x2 ∈ (3−km, 3−k(m + 1)) ⊂ R for some fixed k,m ∈ N.
Then �x1� = �x2�.

Proof. Clearly, if k ≥ 0, the set Z = {3−k3kp : p ∈ Z} ⊆ {3−kn : n ∈ Z}. If
there exists m ∈ Z such that xi ∈ (3−km, 3−k(m + 1)) for i = 1, 2, then �xi� �
arg minn∈Z

(n ≥ xi) ≥ arg miny∈{3−kn:n∈Z} (y ≥ xi) = 3−k(m + 1) =⇒ �xi� =⌈
(3−k(m + 1))

⌉
; i.e., �x1� = �x2�.

Proof of Proposition 2.4. Consider a particular l,m in the algorithm described
by the block diagram in Figure 2.1(b). By (2.11), Il,m =

∑
p∈Nl,m

K(−Φp(Il,m))B0qp.

Since Ĩl,m =
∑

p∈Nl,m
K(−θp)B0qp, the statement “there exists a αl,m such that Il,m =

K(αl,m)Ĩl,m” is equivalent to

∑
p∈Nl,m

K(−Φp(Il,m))B0qp =
∑

p∈Nl,m

K(αl,m)K(−θp)B0qp =
∑

p∈Nl,m

K(αl,m − θp)B0qp.

However, because this equality is assumed to hold for any {qp}Pp=1, it must hold term
by term, and is equivalent to the statement that for all p ∈ Nl,m, there exists a αl,m
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such that −Φp(Il,m) = αl,m − θp, which is equivalent to

(B.1) Φp1(Il,m) − Φp2(Il,m) = θp1 − θp2 ∀p1, p2 ∈ Nl,m.

Hence, we need to prove that the assumption of the proposition implies (B.1). Now,

from (2.6)–(2.8) and the definition of Φp (Definition 2.1), f̂ =
∑P

p=1 K(−Φp(IL+2,1))B0qp.
But, by an assumption of this proposition—that the final image is correct and equal
to that of the nonhierarchical algorithm—f̂ =

∑P
p=1 K(−θp)B0qp. Hence

(B.2) Φp(IL+2,1) = θp.

The angle (Φp(Il,m)) of a projection in any intermediate image is related to the angle
(Φp(IL+2,1)) of the same projection in the final image as follows. Using Lemma 2.3,
we get

Φp(IL+2,1) = −
L+1∑
i=1

δi,μ(p,i) = −
l−1∑
i=1

δi,μ(p,i) −
L+1∑
i=l

δi,μ(p,i)

= Φp(Il,m) −
L+1∑
i=l

δi,μ(p,i) ∀p ∈ Nl,m, ∀l ≤ (L + 2),(B.3)

where μ(p, i) =
⌈
p/3i−1

⌉
. We also know that if p ∈ Nl,m � {3l−1(m − 1) + k :

k = 1, 2, . . . , 3l−1}, as defined in (2.12), then p
3i−1 ⊂ (3l−i(m − 1), 3l−im]. So by

Lemma B.1, we conclude that for any p1, p2 ∈ Nl,m and i ≥ l we have μ(p1, i) =⌈
p1/3i−1

⌉
=

⌈
p2/3i−1

⌉
= μ(p2, i). Consequently, using (B.3) and then (B.2),

Φp1(Il,m) − Φp2(Il,m) = Φp1(IL+2,1) +

L+1∑
i=l

δi,μ(p1,i) −
(

Φp2(IL+2,1) +

L+1∑
i=l

δi,μ(p2,i)

)

= Φp1(IL+2,1) − Φp2(IL+2,1) = θp1 − θp2.

But this is (B.1), which we have already shown to imply the lemma.

C. Proof of Lemma 3.1.
Proof. Let B2(W ) denote the space of L2(R

2) functions bandlimited to W ⊂ R2,

and let H = {�ω ∈ R
2 : |ωi| ≤ π

Δi
}. Then, Eψ

�Δ
fd ∈ B2(AH) ∩ B2(H). To see this

note that the Sinc-interpolator Ψ zeroes out the DTFT of fd outside the principal
period [−π, π]2. Hence, upon coordinate transformation by A, the spectral support is

transformed by AT so that AEψ
�Δ
fd ∈ B2(A

TA−TH) = B2(H). Finally, Eψ
�Δ
Aψ,�Δfd =

Eψ
�Δ
D�ΔAEψ

�Δ
fd = AEψ

�Δ
fd, where the first equality follows from (3.3) and the second

from the sampling theorem: Eψ
�Δ
D�Δ is an identity on B2(H).
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[25] F. Natterer and F. Wübbeling, Mathematical Methods in Image Reconstruction, SIAM
Monogr. Math. Model. Comput. 5, SIAM, Philadelphia, 2001.

[26] S. Nilsson, Application of Fast Backprojection Techniques for Some Inverse Problems of Inte-
gral Geometry, Ph.D. thesis, Department of Mathematics, Linkoping University, Linkoping,
Sweden, 1997.

[27] A. V. Oppenheim, R. W. Schafer, and J. R. Buck, Discrete-Time Signal Processing, 2nd
ed., Prentice–Hall, Englewood Cliffs, NJ, 1998.

[28] D. I. Potts and G. I. Steidl, Fourier reconstruction of functions from their nonstandard
sampled Radon transform, J. Fourier Anal. Appl., 8 (2002), pp. 513–534.

[29] P. Thevanaz, T. Blu, and M. Unser, Interpolation revisited, IEEE Trans. Medical Imaging,
19 (2000), pp. 739–758.

[30] M. Unser, P. Thevenaz, and L. Yaroslavsky, Convolution-based interpolation for fast, high-
quality rotation of images, IEEE Trans. Image Processing, 4 (1995), pp. 1371–1381.



SIAM J. APPL. MATH. c© 2007 Society for Industrial and Applied Mathematics
Vol. 68, No. 3, pp. 599–618

A PHASE FIELD METHOD FOR JOINT DENOISING, EDGE
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Abstract. The estimation of optical flow fields from image sequences is incorporated in a
Mumford–Shah approach for image denoising and edge detection. Possibly noisy image sequences
are considered as input and a piecewise smooth image intensity, a piecewise smooth motion field, and
a joint discontinuity set are obtained as minimizers of the functional. The method simultaneously
detects image edges and motion field discontinuities in a rigorous and robust way. It is able to handle
information on motion that is concentrated on edges. Inherent to it is a natural multiscale approxi-
mation that is closely related to the phase field approximation for edge detection by Ambrosio and
Tortorelli. We present an implementation for two-dimensional image sequences with finite elements
in space and time. This leads to three linear systems of equations, which have to be solved in a
suitable iterative minimization procedure. Numerical results and different applications underline the
robustness of the approach presented.
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1. Introduction. The task of motion estimation from image sequences, or com-
puting the visual representation as optical flow, is a fundamental problem in computer
vision. For a number of applications, a dense motion or optical flow field is desirable,
yielding a representation of the motion of observed objects for each pixel of the image
sequence. In low-level image processing, the accurate computation of object motion
in scenes is a long-standing problem which has been addressed extensively. In partic-
ular, global variational approaches initiated by the work of Horn and Schunck [19] are
increasingly popular. Initial problems such as the smoothing of discontinuities or high
computational cost have been solved successfully [25, 7, 8]. Motion estimation also
yields important indicators for the detection and recognition of the observed objects.
While a number of techniques first estimate the optical flow field and segment objects
later in a second phase [37], an approach of computing motion as well as segmenting
objects at the same time is much more appealing. First advances in this direction
were investigated in [33, 27, 28, 9, 23, 30]. In particular, Kornprobst et al. [22, 3, 4]
have considered piecewise smooth motion patterns on image sequences characterized
by piecewise smooth objects. Their results are phrased rigorously on the space of
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functions of bounded variation (BV), and they propose suitable approximations for
the numerical implementation. Already, in [22] a joint approach for the segmentation
of moving objects in front of a still background and the computation of motion veloc-
ities has been proposed. For a given intensity function on an image sequence, a total
variation (TV) type functional for the motion field—which allows for jumps in the
optical flow velocity—is analyzed in [4, 3]. Recently, Papenberg et al. [29] considered
another TV regularization of the motion field and optical flow constraints involving
higher order gradients.

The idea of combining different image processing tasks into a single model in
order to cope with interdependencies has drawn attention in several different fields.
In image registration, for instance, a joint discontinuity approach for simultaneous
registration, segmentation, and image restoration has been proposed by Droske and
Ring [15] and extended in [16] to incorporate phase field approximations. In these
approaches, the phase field is used to describe object boundaries, and sharp interfaces
of zero width are replaced by diffuse interfaces of finite width ε in which the phase
field variable continuously changes its value from 0 to 1. This description of object
boundaries draws its name from physics, where it is used for modeling solidification
of fluids and associated phase boundaries [31, 38]. Kapur, Yezzi, and Zöllei [20] and
Unal et al. [35] have combined segmentation and registration by applying geodesic
active contours described by level sets in both images. Vemuri et al. have also used
a level set technique to exploit a reference segmentation in an atlas [36]. We refer
to [14] for further references.

Recently, Keeling and Ring [21] investigated the relation between optimization
and optical flow extraction. A first approach which relates optical flow estimation
to Mumford–Shah image segmentation was presented by Nesi [26]. Recently, Rathi
et al. investigated active contours for joint segmentation and optical flow extrac-
tion [32]. Cremers and Soatto [13, 12] presented an approach for joint motion es-
timation and motion segmentation with one functional. Incorporating results from
Bayesian inference, they derived an energy functional, which can be seen as an exten-
sion of the well-known Mumford–Shah [24] approach. Their functional involves the
length of boundaries separating regions of different motion as well as a “fidelity term”
for the optical flow assumption. Brox, Bruhn, and Weickert [7] present a Chan–Vese-
type model for piecewise smooth motion extraction. For given fixed image data the
decomposition of image sequences into regions of homogeneous motion is encoded in
a set of level set functions, and the regularity of the motion fields in these distinct
regions is controlled by a TV functional. Our approach is in particular inspired by
these investigations.

We combine denoising and edge detection with the estimation of motion. This
results in an energy functional, which incorporates fidelity and smoothness terms for
both the image sequence and the flow field. Our focus lies in particular on motion
information that is concentrated on edges such as in the case of a moving object
with sharp edge contours but without shading and texture. To cope with this, we
formulate the optical flow equations appropriately in regions away from edges and on
the edge set. Moreover, we incorporate an anisotropic enhancement of the flow along
the edges of the image in the sense of Nagel and Enkelmann [25]. This effectively
allows us to spread motion information from the edge set onto the whole domain
of a moving object. The model is implemented using the phase field approximation
in the spirit of Ambrosio and Tortorelli’s approach [2] for the original Mumford–
Shah functional. The identification of edges is phrased in terms of a phase field
function; no a priori knowledge of objects is required, as opposed to formulations of
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explicit contours. Particular focus is on optical flow constraints which are not only
continuously distributed over shaded or textured regions, but also might be concentrated
on edges, e.g., in case of moving objects without texture and shading. In contrast to a
level set approach, the built-in multiscale of the phase field model enables a natural
cascadic energy relaxation approach and thus an efficient computation. Indeed, no
initial guess for the edge set and the motion field will be required. We present here a
truly (d + 1)-dimensional algorithm, considering time as an additional dimension to
the d-dimensional image data. This fully demonstrates the conceptual advantages of
the joint approach. Nevertheless, a transfer of the method for only two consecutive
time frames is possible but not investigated here. The characteristics of our approach
are as follows:

• The distinction of smooth motion fields and optical flow discontinuities is
directly linked to edge detection, improving the reliability of the motion es-
timation.

• The denoising and segmentation task will profit from the explicit coupling of
the sequence via the assumption of brightness constancy.

• The phase field approximation is expected to converge to a limit problem
for vanishing scale parameter, with a strict notion of edges and motion field
discontinuities not involving any additional filtering parameter.

• The algorithm is based on an iteration. In each step a set of three relatively
simple linear systems have to be solved for the image intensity, the edge
description via the phase field, and the motion field, respectively. Only a
small number of iterations is required.

This paper is organized as follows: In section 2 Mumford–Shah-type image denoising
and edge detection are reviewed, in section 3 we discuss a generalized optical flow
equation, and in section 4 the minimization problem is presented. Section 5 shows
how to approximate the segmentation in terms of a variational phase field model.
Furthermore, we prove existence of solutions of this model and discuss the limit be-
havior. Section 6 propounds the corresponding Euler–Lagrange equations, which are
discretized applying the usual finite element method in section 7. We conclude with
the results in section 8. Finally, in the appendix we provide explicit formulas of all
matrices and vectors appearing in the implementation to enable readers to reproduce
the algorithm.

2. Recalling the Mumford–Shah functional. In their pioneering paper,
Mumford and Shah [24] proposed the minimization of the following energy functional:

(2.1) EMS [u, S] = λ

∫
Ω

(u− u0)
2 dL +

μ

2

∫
Ω\S

|∇u|2 dL + νHd−1(S),

where u0 is the initial image defined on an image domain Ω ⊂ R
d and λ, μ, ν are

positive weights. Here, one asks for a piecewise smooth representation u of u0 and
an edge set S, such that u approximates u0 in the least squares sense, u ought to be
smooth apart from the free discontinuity set S, and in addition S should be smooth
and thus small with respect to the (d − 1)-dimensional Hausdorff measure Hd−1.
Mathematically, this problem has been treated in the space of functions of bounded
variation BV , more precisely in the specific subset SBV [1]. In this paper, we will
pick up a phase field approximation for the Mumford–Shah functional (2.1) proposed
by Ambrosio and Tortorelli [2]. They describe the edge set S by a phase field ζ
which is supposed to be small on S and close to 1 apart from edges, i.e., one asks for
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minimizers of the energy functional

(2.2) Eε[u, ζ] =

∫
Ω

λ(u− u0)
2 +

μ

2
(ζ2 + kε) |∇u|2 + νε |∇ζ|2 +

ν

4ε
(1 − ζ)2 dL,

where ε is a scale parameter and kε = o(ε) � 1 a small positive regularizing param-
eter, which mathematically ensures strict coercivity with respect to u. On edges the
weight ζ2 is expected to vanish. Hence, the second term measures smoothness of u
but only away from edges. The last two terms in the integral encode the approxima-
tion of the (d − 1)-dimensional area of the edge set and the strong preference for a
phase field value ζ ≈ 1 far from edges, respectively. For larger ε one obtains coarse,
blurred representations of the edge sets and corresponding smoother images u. With
decreasing ε we successively refine the representation of the edges and include more
image details.

3. Generalized optical flow equation. In image sequences we observe dif-
ferent types of motion fields: locally smooth motion visible via variations of object
shading and texture in time, or jumps in the motion velocity apparent at edges of ob-
jects moving in front of a background. We aim for an identification of corresponding
piecewise smooth optical flow fields in piecewise smooth image sequences

u : [0, T ] × Ω �→ R; (t, x) → u(t, x)

for a finite time interval [0, T ] and a spatial domain Ω ⊂ R
d with d = 1, 2, 3. In what

follows, we assume ∂Ω to be Lipschitz. The flow fields are allowed to jump on edges in
the image sequence. On edges, the derivative Du splits into a singular and a regular
part. The regular part is a classical gradient ∇(t,x)u in space and time, whereas the
singular part lives on the singularity set S—the set of edge surfaces in space-time.
Time slices of S are the actual image edges at the specific time. We denote by
nS ∈ R

d+1 the normal on S with respect to space-time. The singular part represents
the jump of the image intensity on S, i.e., one observes that Dsu = (u+−u−)nS . Here,
u+ and u− are the upper and lower intensity values on both sides of S, respectively.
Now, we suppose that the image sequence u reflects an underlying motion with a
piecewise smooth motion velocity v, which is allowed to jump only on S. Thus, S
represents object boundaries moving in front of a background, which might as well
be in motion. In strict mathematical terms, we suppose that u, v ∈ SBV (the set
of functions of bounded variation and vanishing Cantor part in the gradient) [17, 1].
In this general setting without any smoothness assumption on u and v, we have
to ask for a generalized optical flow equation. In fact, away from moving object
edges we derive, as usual, from the brightness constancy constraint equation (BCCE)
u(t + s, x + s v) = const on motion trajectories {(t + s, x + s v) | s ∈ [0, T ]}, that

(3.1) ∇(t,x)u · w = 0,

where w = (1, v) is the space-time motion velocity. On edges, the situation is more
complex and in general requires prior knowledge. For instance, a white circular disk
moving in front of a black background is visually identical to a black mask with
a circular hole moving with the same speed on a white background (the aperture
problem). Hence, it is ambiguous on which side of the edge w± vanishes and on
which side a nontrivial optical flow equation nS · w± = 0 holds. We will not resolve
this ambiguity via semantic assumptions. In what follows, we assume instead that
locally only one object—in our example either the circle or the mask—is moving on
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a stationary background. Hence, we rule out that foreground and background are in
motion. In other words, our background is that part of the image which is not moving.
Then one of the two values of w on both sides of the edge vanishes by assumption, and
we can rewrite the optical flow constraint on the edge without identifying foreground
or background by

(3.2) nS · (w+ + w−) = 0.

This in particular includes the case of a sliding motion without any modification of
the object overlap, where nS · w+ = nS · w− = 0.

4. Mumford–Shah approach to optical flow. Now, we ask for a simultane-
ous denoising, segmentation, and flow extraction on image sequences. Hence, we will
incorporate the motion field generating an image sequence into a variational method.
Let us formulate a corresponding minimization problem in the spirit of the Mumford–
Shah model.

Definition 4.1 (Mumford–Shah-type optical flow approach). Given a noisy
initial image sequence u0 : D → R on the space-time domain D = [0, T ] × Ω, we
define the energy

EMSopt[u,w, S] =

∫
D

λu

2
(u− u0)

2 dL +

∫
D\S

λw

2

(
w · ∇(t,x)u

)2
dL

+

∫
D\S

μu

2

∣∣∇(t,x)u
∣∣2 dL +

∫
D\S

μw

q

∣∣∇(t,x)w
∣∣q dL + νHd(S)

(4.1)

for a piecewise smooth image sequence u, and a piecewise smooth motion field w =
(1, v) with a joint jump set S. Furthermore, we require the optical flow constraint
nS · (w+ + w−) = 0 on S from (3.2). Now, one asks for a minimizer (u,w, S) of the
corresponding constraint minimization problem.

The first and second terms of the energy are fidelity terms with respect to the
image intensity and the regular part of the optical flow constraint, respectively. The
third and fourth terms encode the smoothness requirement of u and w. Finally, the
last term represents the area of the edge surfaces S. The fidelity weights λu, λw, the
regularity weights μu, μw, and the weight ν controlling the phase field are supposed
to be positive and q ≥ 2. Let us emphasize that, without any guidance from the
local time modulation of shading or texture on both sides of an edge, there is still an
undecidable ambiguity with respect to foreground and background.

5. Phase field approximation. Similar to the original model for denoising
and edge detection (2.1), the above Mumford–Shah approach (4.1) with its explicit
dependence on the geometry of the edge set is difficult to implement without any
additional strong assumptions either on the image sequence or on the motion field.
For a corresponding parametric approach we refer to the recent results by Cremers
and Soatto [13, 12]. The level set approach recently presented by Brox, Bruhn, and
Weickert [7] does not explicitly encode motion concentrated on edges. We do not aim
to impose any additional assumption on the image sequence u and the motion field
v and ask for a suitable approximation of the above model. To gain more flexibility
and, in addition, to incorporate a simple multiscale into the model, we propose here a
phase field formulation (2.2) in the spirit of Ambrosio and Tortorelli [2]. Let us note
that in [3] Aubert, Deriche, and Kornprobst already proposed considering this type
of phase field approximation for the regularization of the motion field. We introduce
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an auxiliary variable ζ—the phase field—describing the edge set S. Away from S we
aim for ζ ≈ 1, and on S the phase field ζ should vanish. As in the original Ambrosio–
Tortorelli model, a scale parameter ε controls the thickness of the region with small
phase field values. We consider the following energy functionals in the Mumford–Shah
optical flow model (4.1):

Eε
fid,u[u] =

∫
D

λu

2
(u− u0)

2 dL,(5.1)

Eε
fid,w[u,w] =

∫
D

λw

2

(
w · ∇(t,x)u

)2
dL,(5.2)

Eε
reg,u[u, ζ] =

∫
D

μu

2
(ζ2 + kε)

∣∣∇(t,x)u
∣∣2 dL,(5.3)

Eε
phase[ζ] =

∫
D

(
νε

∣∣∇(t,x)ζ
∣∣2 +

ν

4ε
(1 − ζ)2

)
dL.(5.4)

These energy contributions control the approximation of the initial image u0 (5.1)
and the optical flow constraints (5.2), the regularity of u (5.3), and the shape of
the phase field ζ (5.4). Here, as in the original model, kε = o(ε) > 0 is a “safety”
coefficient, which is needed later to establish existence of solutions of our approximate
problem. Still missing is a regularity term for the motion field corresponding to the
fourth energy term in the Mumford–Shah model (4.1). If we would consider in a
straightforward way the integral

(5.5) Ẽε
reg,w[w, ζ] =

∫
D

μw

2
(ζ2 + kε)

∣∣∇(t,x)w
∣∣2 dL,

the motion field will form approximate jumps on S but without any coupling of a
concentrated motion constraint on S and the motion field in homogeneous regions
on the image sequence. Figure 8.1 clearly outlines this drawback in the case of a
circle with constant white image intensity inside moving on a textured background.
As an alternative one might want to decouple the scales for image edges and motion
edges introducing a second phase field with a much finer scale parameter ε̃ � ε for
the representation of motion singularities. But this is not very practical, taking into
account a suitable discretization on digital images with limited pixel resolution. Here
the parameter ε is already in the range of the pixel size. Furthermore, in case of finite
energy we would obtain motion fields w bounded in W 1,2, which is not sufficient to
ensure compactness of the optical flow integrand in (5.2). Thus, to allow for piecewise
smooth motion fields and to enable an extension of motion velocities first concentrated
on edges via the variational approach, we consider

(5.6) Eε
reg,w[w, ζ] =

∫
D

μw

q

∣∣Pδ[ζ]∇(t,x)w
∣∣q dL.

Here, the following properties are encoded in the operator Pδ[ζ]:

• Close to the edges, where ζ ≤ θ− for some θ− with 0 < θ− < 1, Pδ[ζ]
should behave like the original edge indicator ζ2 proposed by Ambrosio and
Tortorelli [2].

• Away from the edges, where ζ ≥ θ+ for θ− < θ+ < 1, Pδ[ζ] is expected to be
the identity matrix, which enforces an isotropic smoothness modulus for the
motion field w.
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• In the spirit of the classical approach by Nagel and Enkelmann [25], Pδ[ζ] will
be an (approximate) projection onto level sets of the phase field function in the
intermediate region. These level sets are surfaces approximately parallel to
the edge set in space-time. Thus, information on the optical flow is mediated
along the edge set, without a coupling across edge surfaces.

An explicit definition for Pδ[ζ] fulfilling these properties is

Pδ[ζ] = α(ζ2)

(
1 + kε − β(ζ2)

∇(t,x)ζ∣∣∇(t,x)ζ
∣∣
δ

⊗
∇(t,x)ζ∣∣∇(t,x)ζ

∣∣
δ

)
,

where |z|δ = (|z|2 + δ2)
1
2 represents a regularized normal. Furthermore, α : R → R

+
0

and β : R → R
+
0 are continuous blending functions, with

α(s) = max
(
0,min

(
1,

s

θ−

))
+ kε, β(s) = max

(
0,min

(
1, 1 − s

θ+

))
.

Concerning algebraic notation, ∇(t,x)w(t, x) is a (d+1)2 matrix and thus Pδ[ζ]∇(t,x)w
represents the matrix product. We consider the Frobenius norm of matrices, given by
|A| =

√
tr(ATA). Suitable choices for the parameters are θ+ = 0.8 and θ− = 0.0025.

For vanishing ε and a corresponding steepening of the slope of u, this operator basically
leads to a separated diffusion on both sides of S in the relaxation of the energy.

Let us recall that the energies Eε
reg,u, E

ε
phase and the term Eε

fid,u are identical
to those in the original Ambrosio–Tortorelli approach (see above). In addition, we
ask for an optical flow field w according to the optical flow constraint encoded in
Eε

fid,w (cf. Figure 8.1 for a first test case). At the same time, this term implies a
strong coupling of the image intensities along motion trajectories—which turns into
a flow-aligned diffusion in the corresponding Euler–Lagrange equations—for the ben-
efit of a more robust denoising and edge detection. Figure 8.2 shows an example
where a completely destroyed time step in the image sequence is recovered by this
enhanced diffusion along motion trajectories. Due to the regularity energy Eε

reg,w this
motion field is isotropically smooth away from the approximate jump set of u, and
the smoothness modulus is characterized by a successively stronger anisotropy along
level sets of u while approaching the approximate jump set. The energy term Eε

reg,w

(5.6) which we consider for the regularization of the motion field is very similar to
the corresponding smoothness term in the classical approach by Nagel and Enkel-
mann [25], where tangential diffusion is steered by the local structure tensor. In the
above multiscale approach no additional prefiltering of the image sequence in terms
of a structure tensor is required.

The projection operator Pδ[ζ] couples the smoothness of the motion field w to the
image geometry, which in fact is very beneficial for the purpose of piecewise smooth
motion extraction. The reverse coupling, which would try to align tangent spaces of
level sets of u to the motion field, is not required and might even be misleading for our
actual goal. The optical flow term in the fidelity energy Eε

fid,w already couples image
sequence gradients to the motion field in a direct way. Hence, we don’t ask for global
minimizers of the sum of all energies but formulate the phase field approximation
problem as follows.

Definition 5.1 (solution of the phase field model). Let u0 : D → R be a
noisy space-time image, and let vδ ∈ W 1,q(D,Rd) be boundary data for the velocity
field. A space-time image u ∈ W 1,2(D,R), a motion field w = (1, v + vδ), with
v ∈ W 1,q

0 (D,Rd), and a phase field ζ ∈ W 1,2(D,R) is called a solution of the phase
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field model if u and ζ minimize the restricted energy

(5.7) Ew[u, ζ] := Eε
fid,u[u] + Eε

fid,w[u,w] + Eε
reg,u[u, ζ] + Eε

phase[ζ]

for fixed w in W 1,2(D,Rd+1), and if the motion field w minimizes the global energy
(5.8)
Eε

global[u,w, ζ] = Eε
fid,u[u] + Eε

fid,w[u,w] + Eε
reg,u[u, ζ] + Eε

reg,w[w, ζ] + Eε
phase[ζ]

for fixed u, ζ ∈ W 1,2(D,R).

In the Mumford–Shah optical flow model (4.1) the edge set S describes the discon-
tinuities of u and w simultaneously. With the splitting introduced in the definition,
we obtain a decoupling of the edge sets. Still the flow field w is smoothed along edges
of u. But edges in w will not affect the phase field ζ and thus edges of u. Altogether
the set of edges of w will be a subset of the edge set of u

Remark 5.2. The definition of u and ζ as the minimizer of a restricted functional
is not only sound with respect to the applications. Indeed, a simultaneous relaxation
of the global energy with respect to all unknowns is theoretically questionable. In
fact, Eε

reg,w is not convex in ζ, and we cannot expect this energy contribution to be
lower semicontinuous on a suitable set of admissible functions. With the above notion
of solutions the direct method in the calculus of variations can be applied, and in
particular one observes compactness of the sequence of phase fields associated with a
minimizing sequence of image sequences and motion fields (cf. the proof below).

Theorem 5.3 (existence of solutions). Suppose that d + 1 < q < ∞ and
λu, λw, μu, μw, ν, ε > 0, and let kε > 0. Then there exists a solution (u,w, ζ) of
the phase field problem introduced in Definition 5.1.

Proof. At first, we rewrite the phase field approach as an energy minimization
problem, which later allows us to apply the direct method from the calculus of vari-
ations. For fixed w the energy functional Ew[u, ζ] (5.7) is strictly convex. By the
direct method we obtain a unique minimizer. So let us denote by (u[w], ζ[w]) this
minimizer in W 1,2(D,R)×W 1,2(D,R) of the quadratic energy functional Ew[u, ζ] for
fixed u ∈ W 1,2(D,R). The minimizing phase field is given as the weak solution of the
corresponding Euler–Lagrange equation

(5.9) −εΔζ +
1

4ε
ζ = f [u, ζ] :=

1

4ε
− μu

2ν

∣∣∇(t,x)u
∣∣2 ζ.

Applying the weak maximum principle we observe that ζ ≡ 1 is a supersolution and
ζ ≡ 0 a subsolution. Thus, ζ[w] is uniformly bounded, i.e., 0 ≤ ζ[w] ≤ 1.

Given (u[w], ζ[w]) we consider the global energy Eε
global solely as a functional of

the motion field w = (1, v):

E[w] = Eε
global[u[w], w, ζ[w]]

on the admissible set

A := {w | w = (1, v + vδ), v ∈ W 1,q
0 (D,Rd+1)},

and we define E := infw∈A E[w]. Testing the energy at u ≡ 0, ζ ≡ 0, and w = (1, vδ)
we observe that E ≤ λu

2 |u0|2L2 + μw

q

∣∣∇(t,x)vδ
∣∣q
Lq < ∞. Let us consider a minimizing

sequence
(
wk

)
k=1,...,∞ in A with E[wk] → E for k → ∞. We set uk = u[wk] and
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ζk = ζ[wk] and estimate the energy Eglobal as

Eglobal[u,w, ζ] ≥
λu

4

(
|u|2L2 − 2 |u0|2L2

)
+

μukε
2

∣∣∇(t,x)u
∣∣2
L2 +

μwkε
q

∣∣∇(t,x)w
∣∣q
Lq

+
ν

4ε

(
|ζ|2L2 − 2L(D)

)
+ νε

∣∣∇(t,x)ζ
∣∣2
L2 ,

where L(D) denotes the Lebesgue measure of D. From this, we deduce that (uk)k and
(ζk)k are bounded in W 1,2(D,R) and, taking into account the boundary conditions,
that (wk)k is bounded in W 1,q(D,R). Hence, we can extract a weakly converging
subsequence again denoted by (uk, wk, ζk)k having the weak limit (u,w, ζ). From
the Sobolev embedding theorem and the assumption q > d + 1 we derive that wk

strongly converges in L∞. Furthermore, the corresponding sequence (ζk)k of phase
field functions ζk := ζ[wk] are weak solutions of −εΔζk + 1

4εζ
k = fk (cf. (5.9)).

From the bounds on ζk in L∞ and on uk in W 1,2 we obtain that fk = f [uk, ζk]
is uniformly bounded in L1. This observation allows us to apply a compensated
compactness result to verify that ∇(t,x)ζ

k converges to ∇(t,x)ζ a.e. This is proven

for the equation −Δζ = f on the space W 1,2
0 in [34, Chap. I, Thm. 3.4], but can

easily be generalized for equations of type −Δζ + ζ = f on W 1,2. The matrix-valued
function Pδ[·] is continuous and bounded. Hence, we obtain that Pδ[ζ

k] → Pδ[ζ]
a.e. for k → ∞. For later use, we define the constants Cu = supk=1,...,∞

∣∣∇(t,x)u
k
∣∣
L2

and Cw = supk=1,...,∞ max
{∣∣wk

∣∣
L∞ ,

∣∣∇(t,x)w
k
∣∣
Lq

}
.

Next, we verify that u = u[w] and ζ = ζ[w]. Indeed, taking into account the
lower semicontinuity of Ew and the modulus of continuity with respect to w we can
estimate

Ew[u, ζ] ≤ lim inf
k→∞

Ewk [uk, ζk]

≤ lim inf
k→∞

Ewk [ũ, ζ̃]

≤ Ew[ũ, ζ̃] + lim inf
k→∞

(∣∣wk · ∇(t,x)ũ
∣∣2
L2 −

∣∣w · ∇(t,x)ũ
∣∣2
L2

)
≤ Ew[ũ, ζ̃] + 2Cw

∣∣∇(t,x)ũ
∣∣2
L2 lim inf

k→∞

∣∣w − wk
∣∣
L∞

for any ũ, ζ̃ ∈ W 1,2(D,R). From the L∞ convergence of wk to w, we immediately
obtain that Ew[u, ζ] ≤ Ew[ũ, ζ̃]. Thus, by definition u = u[w] and ζ = ζ[w]. Based
on these preliminaries, we are able to prove weak lower semicontinuity of the energy.
For this we assume without loss of generality that

E[wk] ≤ E + ρ,
∣∣Pδ[ζ

k] − Pδ[ζ]
∣∣
L∞ ≤ ρ,

∣∣wk − w
∣∣
L∞ ≤ ρ

for a fixed and small constant ρ > 0. Applying Mazur’s lemma we obtain a sequence
of convex combinations( ∑

i=1,...,k

λk
i (u

i, wi, ζi)

)
k

, with
∑

i=1,...,k

λk
i = 1, λk

i ≥ 0,

converging strongly to (u,w, ζ) in W 1,2(D,R) × W 1,2(D,Rd+1) × W 1,2(D,R). Fi-
nally, taking into account convexity properties of the integrands, Fatou’s lemma, and
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the modulus of continuity of Efid,u, Efid,w, and Ereg,w with respect to w and Pδ[ζ],
respectively, we estimate (using Einstein’s summation convention)

E[w] = Eglobal[u[w], w, ζ[w]] = Eglobal[u,w, ζ]

=

∫
D

λu

2

(
lim inf
k→∞

λk
i u

i − u0

)2

+
λw

2

∣∣∣∣lim inf
k→∞

w ·
(
λk
i∇(t,x)u

i
)∣∣∣∣

2

dL

+

∫
D

μu

2
(ζ2 + kε)

∣∣∣∣lim inf
k→∞

λk
i∇(t,x)u

i

∣∣∣∣
2

+
μw

q

∣∣∣∣lim inf
k→∞

Pδ[ζ]λ
k
i∇(t,x)w

i

∣∣∣∣
q

dL

+

∫
D

(
νε

∣∣∣∣lim inf
k→∞

λk
i∇ζi

∣∣∣∣
2

+
ν

4ε

(
1 − lim inf

k→∞
λk
i ζ

i

)2
)

dL

≤
∫
D

λu

2
lim inf
k→∞

λk
i

((
ui − u0

)2
+

λw

2

∣∣w ·
(
∇(t,x)u

i
)∣∣2)dL

+

∫
D

lim inf
k→∞

λk
i

(
μu

2
(ζ2 + kε)

∣∣∇(t,x)u
i
∣∣2 +

μw

q

∣∣Pδ[ζ]∇(t,x)w
i
∣∣q)dL

+

∫
D

lim inf
k→∞

λk
i

(
νε

∣∣∇(t,x)ζ
i
∣∣2 +

ν

4ε
(1 − ζi)2

)
dL

≤ lim inf
k→∞

λk
iE[ui, wi] +

λw

2
sup

i=1,...,∞

(∣∣wi · ∇(t,x)u
i
∣∣2
L2 −

∣∣w · ∇(t,x)u
i
∣∣2
L2

)
+

μw

q
sup

i=1,...,∞

(∣∣Pδ[ζ
i]∇(t,x)w

i
∣∣q
Lq −

∣∣Pδ[ζ]∇(t,x)w
i
∣∣q
Lq

)
≤ E + λwCwC

2
u sup
i=1,...,∞

∣∣wi − w
∣∣
L∞ + μwC

q
w sup

i=1,...,∞

(∣∣Pδ[ζ
i] − Pδ[ζ]

∣∣
L∞

)
≤ E + ρ + λwCwC

2
uρ + μwC

q
wρ.

This estimate holds for any ρ ≥ 0. Thus, we obtain E[w] ≤ E, which implies that
w is a minimizer of the energy E, and hence (u,w, ζ) is a solution of our phase field
problem.

Remark 5.4. The above problem formulation is not only sound with respect to
the actual modeling, but it will also allow a simple relaxation approach (see below).
Indeed, on all tested data sets we obtain convergence in few iterations ( 10–15).

Applying formal asymptotics, one observes that the phase field approach proposed
here indeed converges to the above Mumford–Shah model. For small ε we expect a
steepening of the gradient u on a stripe of thickness ε around the edge set. The phase
field ζ will approximate 1 away from a shrinking neighborhood of the edge surface. For
ε → 0 we expect to observe convergence of Ereg,u and Ereg,w to

∫
D\S

μu

2

∣∣∇(t,x)u
∣∣2+

μw

q

∣∣∇(t,x)u
∣∣q dL and of Eε

phase to Hd(S). Under these assumptions on the qualitative

behavior
∫
D

(w · ∇(t,x)u)2 dL converges to the second term of EMSopt, whereas on
the edge surface one observes a concentration of energy on the jump set and which
scales like O(ε−1). Thus, we observe that in the limit we reproduce our optical flow
constraint nS · (w+ + w−) = 0 from the sharp-interface Mumford–Shah approach.
A rigorous validation of this limit behavior in terms of Γ-convergence is still open.
For results on Γ-convergence for the optical flow problem in the context of TV type
models we refer to [4, 22].

6. Variations of the energy and an algorithm. In what follows, we will
consider the Euler–Lagrange equations of the above energies. Thus, we need to com-
pute the variations of the energy contributions with respect to the involved unknowns
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u,w, ζ. The variation of an energy E in direction ζ with respect to a parameter func-
tion z will be denoted by 〈δzE, ζ〉. For the ease of implementation we consider the
case q = 2. Using straightforward differentiation for sufficiently smooth u,w, ζ and
initial data u0 we obtain

(6.1)

〈δuEε
fid,u[u], ϑ〉 =

∫
D

λu(u− u0)ϑ dL,

〈δuEε
fid,w[u,w], ϑ〉 =

∫
D

λw(∇(t,x)u · w)(∇(t,x)ϑ · w) dL,

〈δwEε
fid[u,w], ψ〉 =

∫
D

λw(∇(t,x)u · w)(∇(t,x)u · ψ) dL,

〈δuEε
reg,u[u, ζ], ϑ〉 =

∫
D

μu(ζ2 + kε)∇(t,x)u · ∇(t,x)ϑ dL,

〈δζEε
reg,u[u, ζ], ξ〉 =

∫
D

μuζ
∣∣∇(t,x)u

∣∣2 ξ dL,

〈δwEε
reg,w[w, ζ], ψ〉 =

∫
D

μwPδ[ζ]∇(t,x)w : ∇(t,x)ψ dL,

〈δζEε
phase[ζ], ξ〉 =

∫
D

2νε∇(t,x)ζ · ∇(t,x)ξ dL +

∫
D

ν

2ε
(ζ − 1)ξ dL

for scalar test functions ξ, ϑ and velocity-type test functions ψ with the structure
ψ = (0, π). Here, we use the notation A : B := tr(BTA). Now, summing up the
different terms as in (5.7) and integrating by parts, we end up with the system of
PDEs

−div(t,x)

(
μu

λu
(ζ2 + kε)∇(t,x)u +

λw

λu
w(∇(t,x)u · w)

)
+ u = u0,(6.2)

−εΔ(t,x)ζ +

(
1

4ε
+

μu

2ν

∣∣∇(t,x)u
∣∣2) ζ =

1

4ε
,(6.3)

−μw

λw
div(t,x)

(
Pδ[ζ]∇(t,x)v

)
+ (∇(t,x)u · v)∇xu = 0(6.4)

as the Euler–Lagrange equations characterizing the necessary conditions for a solution
(u,w, ζ) of the above-stated phase field approach. Let us emphasize that with the full
Euler–Lagrange equations, characterizing a global minimizer of the energy would in
addition involve variations of Ereg,w with respect to ζ. However, as described in
section 5, we do not consider this variation, since it would add a coupling of the edges
of the flow field to the edges of the image. Thus, the PDE system (6.2)–(6.4) directly
corresponds to our notion of solution specified in Definition 5.1.

For Neumann boundary conditions (which we actually consider in the application)
the Euler–Lagrange equation in w is not guaranteed to be coercive in W 1,q. Indeed,
the optical flow term w · ∇(t,x)u represents a pointwise rank-1 condition, and it is
not known a priori that “sufficiently many” of these conditions, in the sense of the
Lebesgue measure, are assembled in the image while integrating this term. To remedy
this degeneracy, we consider a gradient descent of (6.4)

(6.5) ∂sv −
μw

λw
div(t,x)

(
Pδ[ζ]∇(t,x)v

)
+ (∇(t,x)u · w)∇xu = 0.
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Consequently, the matrices resulting from a discretization are well conditioned and
the corresponding systems can be solved easily (see section 7).

Inspired by Ambrosio and Tortorelli, we propose the following iterative algorithm
for the solution of the phase field problem with q = 2:

Step 0. Initialize u = u0, ζ ≡ 1, and w ≡ (1, 0).
Step 1. Solve (6.2) for fixed w, ζ.
Step 2. Solve (6.3) for fixed u,w.
Step 3. Compute one step of the gradient descent (6.5) for fixed u, ζ.
Step 4. Return to Step 1.

Steps 1 and 2 of the algorithm consist of a consecutive solution of linear PDEs. Let us
note that we use a time step control for the gradient descent in Step 3. Alternatively
we might iterate first Steps 1 and 2 until convergence, and then in another iteration
we would consider the identification of the motion field w. Even though this second
variation seems to be closer to our definition of solutions of the phase field problem, the
above algorithm converges to the same solution in the applications we have considered.
Our algorithm can be seen as a diagonal scheme, where the iteration of Steps 1 and 2
and the gradient descent iteration in Step 3 are intertwined.

7. Finite element discretization. We proceed similarly to the finite element
method proposed by Bourdin and Chambolle [5, 6] for the phase field approximation
of the Mumford–Shah functional, which is an extension of the approach first presented
by Chambolle and Dal Maso [10].

To solve the above system of PDEs we suppose [0, T ] × Ω to be overlaid by a
regular hexahedral grid. In the following, the spatial and temporal grid width are
denoted by h and τ , respectively. Hence, image frames are at a distance of τ and
pixels of each frame are placed on a regular mesh with grid size h.

On this hexahedral grid we consider the space of piecewise trilinear continuous
functions V and ask for discrete functions U,Z ∈ V and V ∈ V2, such that discrete and
weak counterparts of the Euler–Lagrange equations (6.2), (6.3), and (6.4) are fulfilled.
This leads to the solution of systems of linear equations for the vectors of the nodal
values of the unknowns U,Z, V . We refer to the appendix for a detailed description
of the matrices and the resulting systems of equations. A careful implementation
is required to ensure an efficient method. For a time-space volume of K time steps
and images of N ×M pixels, the finite element matrices for U and Z have N M K C
entries, where C = 27 is the number of nonzero entries per row, equal to the number
of couplings of a node. The finite element matrix for V has four times more elements,
as V is a two-dimensional vector. Data-sets of up to K = 10 frames of N = 500,
M = 320 pixels can be treated by standard hardware with less than 1GB memory. The
linear systems of equations are solved applying a classical conjugate gradient method.
For the pedestrian sequence (Figure 8.5), one such iteration takes 47 seconds on a
Pentium IV PC at 1.8 GHz running Linux. The complete method typically converges
after 10–15 such iterations. To treat large video sequences, we typically consider
a window of K = 6 frames, to avoid boundary effects, and then shift this window
successively in time.

In Figure 7.1 we have depicted the progression of the various components of the
energy Eε

global for the taxi sequence shown in Figure 8.6. The rapid decay of the
global energy in the first steps of the algorithm is clearly visible. While the image
fidelity Eε

fid and its regularity Eε
reg,u decay, the other parts of the energy increase.

Obviously this is the case, because we are starting with constant initial values ζ = 0
and w = (1, 0).
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(a) image fidelity Eε
fid,u (b) flow fidelity Eε

fid,w

(c) image regularity Eε
reg,u (d) flow regularity Eε

reg,w

(e) phase field energy Eε
phase (f) global energy Eε

global

Fig. 7.1. For the example presented in Figure 8.6 (bottom row) we show the progression of the
various energy contributions during the solution iteration. The decay of the global energy can be
seen in the lower right plot (f).

8. Results and discussion. We present here several results of the proposed
method for two-dimensional image sequences. In the considered examples, the pa-
rameter setting ε = h/4, μu = h−2, μw = λu = 1, λw = 105h−2, and kε = ε, δ = ε has
proven to give good results. We first consider a simple example of a white disk moving
with constant speed v = (1, 1) on a vaguely textured, low-contrast, dark background
(Figure 8.1). Let us first consider the top row in Figure 8.1, which corresponds to the
energy formulation without the projection component. A limited amount of smooth-
ing results from the regularization energy Eε

reg,u (Figure 8.1(a)), which is desirable
to ensure robustness in the resulting optical flow term ∇(t,x)u · w and removes noisy
artifacts in real-world videos; see, e.g., Figures 8.4 and 8.5. The phase field clearly
captures the moving object’s contour. The optical flow is depicted in Figure 8.1(c) by
color coding the vector directions as shown by the lower right color wheel. Clearly,
the method is able to extract the uniform motion of the disc’s boundary, which has a
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(a) (b) (c)

Fig. 8.1. One frame of the test sequence (left) and corresponding smoothed images (a), phase
field (b), optical flow (color coded) (c). Top row: Energy formulation without projection. Bottom
row: energy formulation with projection.

high image contrast. The optical flow information, available only on the motion edges
(black in Figure 8.1(b)), is propagated only to a limited extent into the informationless
area inside the moving disk. Indeed, we notice that the model with the standard regu-
larity term for w (5.5) is not able to diffuse the optical flow information, concentrated
on the motion edges, in order to completely and uniformly fill in the moving circle.

In the bottom row of Figure 8.1, the same example is shown, this time run with
the energy formulation including the projection term. We now clearly see a perfect
reconstruction of the optical flow (Figure 8.1(c), bottom row) also inside the nontex-
tured moving disc.

In the next example we revisit this simple image sequence of the moving circle.
This time we have added noise to the sequence. At the same time we have completely
destroyed the information of one frame of the sequence. In Figure 8.2 we show the
results for frames 3 and 9–11, where frame 10 has been completely destroyed. From
the images we see that the phase field detects the missing circle in the destroyed frame
as a temporal edge surface in the sequence. Indeed the ζ drops down to zero in the
temporal vicinity of the destroyed frame. This is still visible in the previous and the
next time steps, shown in the second and third rows. But it does not hamper the
restoration of the correct optical flow field shown in the fourth column. This is due
to the anisotropic smoothing of information from the surrounding frames into the
destroyed frame. For this example we have chosen ε = 0.4h.

Another synthetic example is shown in Figure 8.3. This example is from the
publicly available data-set collection at [11]. Here, a textured sphere spins on a
textured background (Figure 8.3(a)). Again, the method is able to clearly segment
the moving object from the background, even though the object does not change
position. We used a phase field parameter ε = 0.15h. The extracted optical flow
clearly shows the spinning motion (Figure 8.3(d)) and the discontinuous motion field.

A first example on real video data is shown in Figure 8.4. The video shows a
table tennis player whose body moves to the right while the hand goes down as he
strikes the ball. This motion is well captured in the flow field (Figure 8.4(c)).
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(a) (b) (c) (d)

Fig. 8.2. Noisy test sequence: From top to bottom frames 3 and 9–11 are shown. (a) Original
image sequence, (b) smoothed images, (c) phase field, (d) estimated motion (color coded).

(a) (b) (c) (d)

Fig. 8.3. Rotating sphere: smoothed image (a), phase field (b), optical flow (color coded) (c),
optical flow (vector plot, color coded magnitude) (d).

Furthermore, we consider a complex, higher resolution video sequence, taken un-
der outdoor conditions by a monochrome video camera. The sequence shows a group
of walking pedestrians (Figure 8.5 (top)). The human silhouettes are well extracted
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(a) (b) (c)

Fig. 8.4. Table tennis sequence: smoothed image (a), phase field (b), and optical flow (c).

Fig. 8.5. Pedestrian video: frames from original sequence (top), phase field (middle), and
optical flow, color coded (bottom).
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(a) (b) (c)

Fig. 8.6. The taxi sequence. Original image (left). Flow extraction without the projection
operator (top row) and with projection (bottom row). Smoothed image (a), phase field (b), and
optical flow, color coded (c).

and captured by the phase field (Figure 8.5 (middle)). We do not show a vector plot
of the optical flow, as it is hard to interpret visually at the video sequence resolution
of 640× 480 pixels. However, the color-coded optical flow plot (Figure 8.5 (bottom))
shows how the method is able to extract the moving limbs of the pedestrians. The
overall red and blue color corresponds to the walking directions of the pedestrians.
The estimated motion is smooth inside the areas of the individual pedestrians and
not smeared across the motion boundaries. In addition, the algorithm nicely segments
the different moving persons. The cluttered background poses no big problem to the
segmentation, nor do the edges of occluding and overlapping pedestrians, who are
moving at almost the same speed.

Finally, let us note a limitation of the approach we have presented above: Let us
consider the well-known Hamburg taxi video sequence, which is available from [18].
Figure 8.6 shows the taxi sequence processed both with the classical AT energy com-
ponent (top row) and with our projection operator (bottom row). The progression of
the various energy contributions is shown in Figure 7.1. Here we start with u = 0, i.e.,
a black image, and a zero velocity field v = 0. In this sequence, cars of differing image
contrasts are moving. When the projection operator Pδ in our model is used (bottom
row), only the central, high-contrast moving car is captured. When the operator is
not used (top row), motion edges corresponding to low-contrast image edges also de-
termine the phase field; hence the other oppositely moving cars in the bottom part of
the image are captured as well and the corresponding optical flow is extracted. For
all the cars in this example, the motion field is determined largely by the low-contrast
shading and not only by high-contrast image edges, as was the case in the synthetic
example in Figure 8.1.

Appendix. Algorithmic building blocks. In this appendix we would like to
focus on the discrete version of the Euler–Lagrange equations resulting from (5.7). Let
us denote by {Ψi}i=1,...,N the usual nodal basis of V (cf. section 7). The correspond-
ing basis of the vector-valued discrete functions Ψ ∈ V2 is given by {Ψie1}i∪{Ψie2}i,
where e1,2 are the standard basis vectors of R

2: e1 = (1, 0), e2 = (0, 1). For any
discrete function Q ∈ V we denote by Q the corresponding nodal vector. For discrete
vector-valued functions we order the coefficients such that the e1 coefficients are fol-
lowed by the e2 coefficients. Hence, the systems of discrete equations to be solved in
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the above algorithm are given in matrix vector notion as follows. We ask for solution
vectors U,Z ∈ R

N and V ∈ R
2N , such that denoting W = (1, V ) we have

(Lu[W, ζ] + M)U = Ru,(A.1)

(Lζ + Mζ [U ])Z = Rζ ,(A.2)

(Lw[Z] + Mw[U ])V = Rw.(A.3)

These systems contain the matrices Lu[W,Z],Lζ ,M,Mζ [U ] ∈ R
N×N , Lw[Z],Mw[U ]

∈ R
2N×2N , Ru, Rζ ∈ R

n, and finally Rw ∈ R
2N , which can easily be derived from the

variations of the energy (5.8). We have

(Lu[W,Z])ij =

∫
D

μu

λu
(Z2 + kε)∇(t,x)Ψi · ∇(t,x)Ψj

+
λw

λu
(∇(t,x)Ψi ·W )(∇(t,x)Ψj ·W ) dL,

Mij =

∫
D

ΨiΨj dL,

Ru = MIhu0,

as well as

(Lζ)ij = ε

∫
D

∇(t,x)Ψi · ∇(t,x)Ψj dL,

(Mζ [U ])ij =

∫
D

(
μu

2ν

∣∣∇(t,x)U
∣∣2 +

1

4ε

)
ΨiΨj dL,

(Rζ)i =
1

4ε

∫
D

Ψi dL

and

(Lw[Z])ikjl =

∫
D

μwPδ[Z]∇(t,x)Ψi · ∇(t,x)Ψjδkl dL,

(Mw[U ])ikjl =

∫
D

λw∂xk
U∂xl

U ΨiΨj dL,

(Rw)ik = −
∫
D

λw∂tU∂xk
UΨi dL.

Here, δkl is the usual Kronecker symbol, which is 1 if k = l and otherwise 0. Let
us remark that the integrands are piecewise polynomials of degree ≤ 2. We use a
suitable quadrature rule on the hexahedra, which ensures exact integration.
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[33] C. Schnörr, Segmentation of visual motion by minimizing convex non-quadratic functionals,
in Proceedings of the 12th International Conference on Pattern Recognition, Jerusalem,
Israel, 1994.

[34] M. Struwe, Variational Methods: Applications to Nonlinear Partial Differential Equations
and Hamiltonian Systems, Springer, Berlin, 2000.

[35] G. Unal, G. Slabaugh, A. Yezzi, and J. Tyan, Joint Segmentation and Non-Rigid Reg-
istration without Shape Priors, Tech. report scr-04-tr-7495, Siemens Corporate Research,
Princeton, NJ, 2004.

[36] B. Vemuri, J. Ye, Y. Chen, and C. Leonard, Image registration via level-set motion: Ap-
plications to atlas-based segmentation, Medical Image Anal., 7 (2003), pp. 1–20.

[37] J. Y. A. Wang and E. H. Adelson, Representing moving images with layers, IEEE Trans.
Image Process., 3 (1994), pp. 625–638.

[38] S.-L. Wang, R. F. Sekerka, A. A. Wheeler, B. T. Murray, S. R. Coriell, R. J. Braun,

and G. B. McFadden, Thermodynamically-consistent phase-field models for solidification,
Phys. D, 69 (1993), pp. 189–200.



SIAM J. APPL. MATH. c© 2007 Society for Industrial and Applied Mathematics
Vol. 68, No. 3, pp. 619–628

HOMOGENEOUS BRANCHED-CHAIN EXPLOSIONS∗

LUIS L. BONILLA† , MANUEL CARRETERO† , AND J. B. KELLER‡

Abstract. A model of homogeneous explosions with competing branching and recombination
processes due to Kapila is analyzed by singular perturbation methods. In this model, the concentra-
tion of radicals is very low during a long induction period that ends with a rapid radical-growth stage
in which all the reactants are consumed as the radicals reach their peak concentrations. The sudden
jump in radical concentration is then followed by a long period of chain termination. Based on an
exact relation between the fuel concentration and a slowly varying combination of fuel and radicals,
we find a composite of two matched asymptotic expansions providing very good agreement with the
numerical solution. This approximation is compared to another composite obtained by the method
of multiple self-adjusting scales. Both approximations seem to be similarly accurate provided the
induction time is calculated beyond leading order.

Key words. jump phenomena, chain-branched homogeneous explosions, induction time,
matched asymptotic expansions, multiple scale methods
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1. Introduction. Jump phenomena are characterized by large amplitude dy-
namic responses to small amplitude disturbances and typically involve different time
scales: the system may evolve slowly during long time intervals which are separated
by fast transition layers during which the system changes abruptly [6, 13]. Polymer
flow in a capillary [7], jump-to-contact instabilities in ultra-thin film lubrication [10],
vibration in mechanical systems [11], instabilities of the current in semiconductors
[2, 12], saltatory motion of wave fronts in discrete systems [4] and branched-chain
explosions [8, 9], and overdriven detonations [14] in combustion theory are examples
of jump phenomena. Their multilayer structure makes it difficult to find a uniform
description of jump phenomena. In [3], we introduced a method of self-adjusting
time scales to describe homogeneous branched-chain explosions, whose main ingredi-
ent is a fast time scale which is a nonlinear function of one of the system variables.
This method is not standard in that it requires two different solvability conditions
depending on whether time is smaller or larger than the very large induction time.
An approximate solution valid for all times was obtained by patching two different
approximations at the induction time.

In this paper, we introduce an alternative method (based on an exact relation
between the fuel concentration and a slowly varying combination of fuel and radicals)
to approximate the solutions of the explosion problem before and after the induction
time, and match them to find a uniform approximation. We also find an exact expres-
sion for the induction time in terms of an integral whose leading order approximation
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coincides with the induction time provided by the inner expansion. Comparison be-
tween our approximate solution and the numerical solution of the model equations
shows discrepancies of order ε that can be tracked to the fact that the leading order
expression for the induction time is not sufficiently accurate. Much better agreement
between our theory and the numerical solution of the model is obtained using the
numerically calculated integral expression for the induction time. We have also found
a matching procedure to improve the method of self-adjusting scales. The resulting
composite solution yields a similarly accurate approximation to the numerical solu-
tion of the model, provided the induction time is calculated to first order. While the
simplicity of the boundary layer method found in this paper makes it preferable, the
method of self-adjusting scales may be more widely applicable, in particular when
more complex chemical schemes are used.

2. Model problem and solution. A straightforward manipulation of the ki-
netic rate equations for a homogeneous branched-chain explosion at constant pressure,
similar to that presented in [9], leads to the following dimensionless problem [3]:

dx

dt
= exp

[
βθ

1 + θ

]
x f − ε x,(2.1)

df

dt
= − exp

[
βθ

1 + θ

]
x f,(2.2)

dθ

dt
= q ε x,(2.3)

to be solved with the initial conditions

(2.4) x(0) = ν, f(0) = 1, θ(0) = 0.

Equations (2.1)–(2.3) correspond to a two-step reaction scheme without an ini-
tiation stage in which a small amount of intermediate radical X (chain carrier) is
present from the beginning. Production of the radical X is enhanced through the
chain-branching process F + X → 2X that uses up the fuel F. This process is termi-
nated when the radical X is fully consumed through the production of a product P in
the radical recombination reaction X → P. All of the heat is generated through the
termination step. The chain-branching rate is assumed to have Arrhenius form with
a constant prefactor and constant activation temperature. The termination rate de-
pends only weakly on temperature and we assume that it is constant. In (2.1)–(2.3),
f(t) and x(t) are the normalized concentration of fuel and of radical, respectively,
and θ is the temperature at time t. The nondimensional parameters q, β, ν, and ε
represent a heat release, the activation energy of the branching reaction, the initial
radical concentration, and a chemical-time ratio, respectively. In realistic applications
q = O(1), β = O(1), and 0 < ν � ε � 1. See [3] for the specific definitions of the
nondimensional variables and parameters we use in terms of dimensional variables,
rate constants, heat release, and initial concentrations.

Linear combinations of (2.1)–(2.3) lead to

d

dt
[θ + q(x + f)] = 0,

an equation that can be readily integrated using the condition (2.4) to give

(2.5) x = 1 + ν − f − q−1θ.
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This expression, which replaces (2.3) in the following analysis, reveals in particular
that θ reaches a maximum value θ = q(1+ν) as radicals and fuel are depleted. On the
other hand by adding (2.1) and (2.2), it is easy to see that the sum x+f that appears
in (2.5) varies only slowly in time, and would be conserved in the absence of radical
recombination, i.e., if ε = 0. The use of combined variables of this type is always
convenient in combustion problems with multiple chemical scales. For instance, by
introducing in this case the alternative variable

(2.6) y = x + f,

we can isolate the effect of radical branching. The problem reduces then to that of
integrating

df

dt
= −(y − f) f ea(y) ,(2.7)

dy

dt
= −ε (y − f),(2.8)

a(y) =
βq (1 + ν − y)

1 + q (1 + ν − y)
,(2.9)

with initial conditions

(2.10) f(0) = 1, y(0) = 1 + ν.

Thus x and θ are given by

x = y − f,(2.11)

θ = q (1 + ν − y)(2.12)

as follows from (2.5) and (2.6).
Equations (2.7) and (2.8) yield

(2.13)
df

dy
=

f

ε
ea(y) ,

which, together with (2.10), lead to the relation

(2.14) f(y) = exp

(
−1

ε

∫ 1+ν

y

ea(s) ds

)
.

By using (2.14) for f(y) in (2.8), we obtain the following integro-differential equa-
tion for y(t):

(2.15)
dy

dt
= −ε [y − f(y)] = −ε

[
y − exp

(
−1

ε

∫ 1+ν

y

ea(s)ds

)]
.

The solution of (2.15) with y(0) = 1 + ν is given by

(2.16) εt =

∫ 1+ν

y

ds

s− f(s)
=

∫ 1+ν

y

ds

s− exp
(
− 1

ε

∫ 1+ν

s
ea(r) dr

) .
The solution y(t) can be obtained by evaluating the integral in (2.16) numerically.

However, the asymptotic forms of y, both for t large, and for ε small and t finite, can
be determined analytically.
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3. Asymptotic form of y(t) for t large. The integrand in (2.16) becomes
infinite, and the integral diverges, when the denominator of the integrand vanishes.
This occurs at y∞, determined by

(3.1) y∞ = exp

(
−1

ε

∫ 1+ν

y∞

ea(s) ds

)
.

Thus t → ∞ as y → y∞. Note that y∞ is the exponentially small amount of fuel that
remains unused after the termination step causes the radical concentration to become
zero. At this point, x, f , and θ in (2.1)–(2.3) have reached their final stationary
values, x = 0, f = y∞, and θ = q (1+ ν− y∞). To obtain y(t) for t large we note that
the denominator in (2.16) can be written as

(3.2) y − f(y) = [1 − f ′(y∞)] (y − y∞) + O[(y − y∞)2].

We add and subtract from the integrand in (2.16) the reciprocal of the first term on
the right-hand side of (3.2). Thus we obtain

(3.3) εt =

∫ 1+ν

y

[
1

s− f(s)
− (s− y∞)−1

1 − f ′(y∞)

]
ds +

∫ 1+ν

y

(s− y∞)−1

1 − f ′(y∞)
ds.

The second integral in (3.3) can be evaluated explicitly. The first integral has a
finite limit as y → y∞, which we denote as εto. Then for t large, (3.3) yields

(3.4) εt ∼ εto + [1 − f ′(y∞)]−1 ln

(
1 + ν − y∞
y − y∞

)
, t � 1.

Here to is defined by

(3.5) εto =

∫ 1+ν

y∞

[
1

s− f(s)
− (s− y∞)−1

1 − f ′(y∞)

]
ds.

Upon solving (3.4) for y, we get

(3.6) y(t) ∼ y∞ + (1 + ν − y∞) e−ε [1−f ′(y∞)](t−to), t � 1.

Thus for t > to, y decays exponentially to the asymptotic value y∞.
When ε is small, (3.1) shows that y∞ is exponentially small. Then f ′(y∞) is also

exponentially small, and (3.1) becomes simply

(3.7) y(t) ∼ (1 + ν) e−ε (t−to), t � 1, ε � 1.

The integral (3.5) for to can be evaluated for ε small. The result is

(3.8) to ∼ to,0 =
ln ν−1

1 + ν
, ε � 1.

4. Asymptotic form of y(t) for ε small. For ε small and t = O(1), we write

(4.1) y(t) = y0(t) + εy1(t) + O(ε2).

We use (4.1) in (2.8) and in the initial condition y(0) = 1 + ν. Then we equate
coefficients of ε0 to get

(4.2)
dy0

dt
= 0, y0(0) = 1 + ν.
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Solving (4.2) gives

(4.3) y0 = 1 + ν.

Now we use (4.1) and (4.3) in (2.8) and in the initial condition with f(y) given by
(2.15). From the coefficients of ε, we get

(4.4)
dy1

dt
= −(1 + ν) + ey1 , y1(0) = 0.

Separating variables in (4.4) and integrating them yields

(4.5) t = −
∫ y1

0

ds

1 + ν − es
= − y1

1 + ν
+

ln(1 + ν − ey1)

1 + ν
− ln ν

1 + ν
.

Solving (4.5) for y1 and exponentiating both sides of the resulting equation yields

(4.6) ey1 = e−(1+ν)tν−1(1 + ν − ey1).

Now we solve (4.6) for ey1 and take the logarithm of the result to get

(4.7) y1 = ln

[
1 + ν

1 + νe(1+ν)t

]
.

Finally (4.1), (4.3), and (4.7) yield

(4.8) y(t) = 1 + ν + ε ln

[
1 + ν

1 + νe(1+ν)t

]
+ O(ε2).

5. Matching and the composite expansion. For t � 1, the inner expansion
(4.8) becomes, when (3.8) is used,

(5.1) y(t) ∼ 1 + ν − ε [(1 + ν) (t− to)], ε � 1, t � 1.

On the other hand, for ε (t− to) � 1, the outer expansion (3.7) becomes

(5.2) y(t) ∼ (1 + ν) − ε (1 + ν) (t− to), 0 < ε, 0 ≤ (t− to) � 1.

These two expansions match.
A composite expansion can be formed by adding together the inner expansion

(4.8) and the outer expansion (3.7), and subtracting the common part, given by
the right-hand side of (5.1) or (5.2). However, (5.2) holds only for ε(t− to) positive.
Therefore we multiply the outer expansion minus its inner form (5.2) by the Heaviside
function H(t− to). Thus the composite expansion for ε � 1 is

yc(t) ∼ 1 + ν − ε ln

(
1 + e(1+ν) (t−to)

1 + ν

)
(5.3)

+ H(t− to)
[
(1 + ν) e−ε(t−to) − {1 + ν − ε (1 + ν) (t− to)}

]
,

where to is given by (3.8). By inserting this approximate yc in (2.14), (2.11), and
(2.12), we find the approximations for f , x, and θ, respectively:

fc(t) = exp

(
−1

ε

∫ 1+ν

yc(t)

ea(s) ds

)
,(5.4)

xc(t) = yc(t) − fc(t),(5.5)

θc(t) = q [1 + ν − yc(t)].(5.6)



624 L. L. BONILLA, M. CARRETERO, AND J. B. KELLER

0 5 10 15 20 25 30 35 40 45 50
0

0,2

0,4

0,6

0,8

1

0 5 10 15 20 25 30 35 40 45 50
t (time)

-0,3

-0,2

-0,1

0

0,1

0,2

0,3

(a)

(b)

f

x

θ

e[x]

e[f]

e[  ]θ

Fig. 1. (a) Time evolution of x, f , and θ for ε = 0.1, ν = 10−5, β = 5, q = 1 obtained by
numerical integration of (2.1) to (2.4) (solid lines), and by using fc, xc, and θc in (5.4), (5.5), and
(5.6) (dashed lines). (b) Differences e[x], e[f ], and e[θ] between the approximations (5.4), (5.5) and
(5.6), and the numerical solutions of the model for the same parameter values as in (a).

The results (5.3) to (5.6) with the approximate induction time (3.8) are compared
to the numerical solution of the complete problem in Figure 1. Note that the errors
e[x] and e[f ] are approximately equal in magnitude: e[x]+e[f ] ≈ 0. Our approximate
solutions capture rather well the behavior of the solution of the model equations.
However, we observe appreciable differences that are essentially due to the fact that
the induction time (3.8) is not a good approximation to the real value. Better agree-
ment with the numerical solution of the model is obtained if an improved induction
time is calculated by retaining O(ε) terms in to(ε) as defined by (3.5):

to(ε) = to,0 + ε to,1 + O(ε2),(5.7)

to,1 =
ln(ν−1 + 1)

(1 + ν)2
− βq(1 + ν) − 1

(1 + ν)2

∫ ∞

0

σ e−σ

1 + ν − e−σ
dσ,(5.8)

where to,0 is given by (3.8). For the parameters used in Figure 1, to,0 = 11.51,
whereas (5.7) yields to(ε) = 12.01 + O(ε2). We have found that the differences e[x]
and e[f ] from the numerical solution are still larger than ε = 0.1. This means that
the induction time is not well resolved even if we keep terms of order ε. Therefore we
calculate numerically the integral (3.5) and use the resulting value of to ≈ 12.31 in
(5.3)–(5.6). The much more satisfactory result is depicted in Figure 2, and we observe
that the differences e[x] and e[f ] seem now to be of order ε2.
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Fig. 2. (a) Time evolution of x, f , and θ for the same parameter values as in Figure 1. The
solid lines are the numerical solutions of the model whereas the dashed lines are given by (5.3)–
(5.6) with to given by numerical evaluation of (3.5). (b) Differences e[x], e[f ], and e[θ] of the
approximations in (a) from the numerical solution of the model.

6. Comparison with the method of self-adjusting time scales. To leading
order, the method of self-adjusting scales gave approximated x and f that were some-
what better than (5.3)–(5.5), as a comparison of Figure 1(a) to Figure 3(a) of [3] (both
figures have the same parameter values) readily shows. This method used patching
of two different asymptotic expansions at the induction time, and this patching im-
plies that the temperature given by the method of self-adjusting scales is a worse
approximation than (5.6). In the appendix, we indicate how to improve the method
by matching two terms of the expansion valid before the induction time to one term
of the expansion for later times. As with the boundary layer method, the quality of
the composite expansion given by self-adjusting scales depends on the accuracy with
which we calculate the induction time. Inserting the leading order approximation
to the induction time, we observe differences of order ε between the composite and
the numerical solution of the model, similar to those in Figure 1. Calculating the
induction time with the method of self-adjusting scales to order ε yields a composite
expansion whose differences from the numerical solution for x, f , and θ are of order ε2,
as shown in Figure 3. Thus, the difference between the composite (5.3) with induction
time given by the numerical evaluation of (3.5), and the composite (A.4)–(A.6) (with
induction time including terms of order ε) given by the method of self-adjusting scales
is quite small: see Figures 2(b) and 3(b). To order ε, both methods seem to provide
similarly accurate approximations although the greater simplicity of the boundary
layer method makes it preferable.
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Fig. 3. Time evolution of x, f , and θ for the same parameter values as in Figure 1. (a) Compar-
ison of (A.3)–(A.6) (dashed line) to the numerical solution of the model (solid line). (b) Differences
of the approximations in (a) from the numerical solution of the model.

In more complex models of homogeneous chain-branched explosions, there is an
additional induction stage in which radicals are generated by chemical reactions
(whose rate constants may contain different Arrhenius factors than those in the
branching stage), more than one radical may be acting, etc. Examples are the Blythe,
Kapila and Short three-stage branched-chain explosions [1] and the Del Alamo and
Williams calculation of ignition times of branched-chain explosions [5]. To extend the
ideas in this paper to those more complicated schemes remains a challenge for the
future.

Appendix. Matching in the method of self-adjusting scales. We can
correct the effects of patching in the method of self-adjusting scales described in [3]
by using ideas similar to those used in section 5. For τ < τo (τ = εt), the two-term
approximation of y before the induction time is

(A.1) y = 1 + ν − ε ln

(
1 + eη−ηo

1 + ν

)
+ o(ε),

as obtained from (B.24) in [3]. If we let (η − ηo) → +∞ in this expression, then we
obtain

y ∼ 1 + ν + ε ln(1 + ν) − ε (η − ηo) = 1 + ν − (1 + ν)τ + ετ + ε ln(1 + ν−1)

= 1 + ν − (1 + ν − ε)[τ − ε ln(1 + ν−1)/(1 + ν − ε)],
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where (3.32), (3.36), and (3.42) of [3] have been used. Provided τo = ε ln(ν−1+1)/(1+
ν − ε), the previous expression is y ∼ 1 + ν − (1 + ν − ε)(τ − τo). This matches the
one-term expansion y = (1 + ν) e−(τ−τo) for τ > τo [3], except for a higher order term
ε(τ − τo). Thus we obtain the composite expansion:

yc,sas = 1 + ν − ε ln

(
1 + eη−ηo

1 + ν

)
− {[1 + ν + ε ln(1 + ν)] (1 − e−(τ−τo))(A.2)

− ε (η − ηo)}H(τ − τo), τo =
ε ln(1 + ν−1)

1 + ν − ε
.

In the method of self-adjusting time scales, the radical concentration is given to leading
order by

(A.3) x =
y

1 + e−(η−ηo)
, f = y − x, θ = q(1 + ν − y),

according to (3.47), (3.49), and (3.50) of [3].
The composite (A.2)–(A.3) better approximates the temperature and fuel concen-

tration than the leading order approximation of the method of self-adjusting scales
with patching, but the differences from the numerical solution of the model are still
of order ε. Further improvement comes from calculating the induction time better.
Equation (B.21) of [3] gives the induction time including first order corrections ac-
cording to the method of self-adjusting scales:

(A.4) to,c =

∫ 0

ln ν

dh

1 + ν − ε + ε [βq (1 + ν) − 1] ln
(

1+eh

1+ν

) ,

which is somewhat smaller than τo/ε (for the parameter values in Figure 1, τo/ε =
12.79, to,c = 12.44). By replacing εto,c instead of τo in (A.2), we obtain a better
approximation:

yc,sas = 1 + ν − ε ln

(
1 + eη−ηo

1 + ν

)
− {[1 + ν + ε ln(1 + ν)] (1 − e−ε (t−to,c))(A.5)

− ε (η − ηo)}H(t− to,c),

t− to,c =

∫ η−ηo

0

dh

1 + ν − ε + ε[qβ(1 + ν) − 1] ln
(

1+eh

1+ν

) .(A.6)

The relation (A.6) between η − ηo and t − to,c is obtained from (B.20) and (B.21)
in [3]. Figure 3 shows that the corresponding x, f , and θ in (A.3) provide essentially
an approximation of the solution throughout the whole time interval which is accurate
to O(ε2).
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SPECTRAL THEORY FOR AN ELASTIC THIN PLATE FLOATING
ON WATER OF FINITE DEPTH∗

CHRISTOPHE HAZARD† AND MICHAEL H. MEYLAN‡

Abstract. The spectral theory for a two-dimensional elastic plate floating on water of finite
depth is developed (this reduces to a floating rigid body or a fixed body under certain limits). Two
spectral theories are presented based on the first-order and second-order formulations of the problem.
The first-order theory is valid only for a massless plate, while the second-order theory applies for a
plate with mass. The spectral theory is based on an inner product (different for the first- and second-
order formulations) in which the evolution operator is self-adjoint. This allows the time-dependent
solution to be expanded in the eigenfunctions of the self-adjoint operator which are nothing more
than the single frequency solutions. We present results which show that the solution is the same as
those found previously when the water depth is shallow, and show the effect of increasing the water
depth and the plate mass.

Key words. linear water waves, elastic plate, spectral expansion
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1. Introduction. This paper concerns the application of spectral theory to the
offshore engineering problem of the linear wave problem in the presence of a floating
elastic plate. We show how the time-dependent solution can be expressed as an
expansion over the single frequency incoming wave solutions. As well as presenting
the theory, we use the derived expressions to make practical calculations of the time-
dependent motion of an elastic plate.

The time-dependent linear water wave problem has received considerable atten-
tion, and various solution methods have been developed. The simplest method is to
use a time stepping method to advance the solution, combined with a solution for
the Dirichlet-to-Neumann map [10]. The solution method is numerically demanding,
and there will be significant error growth for long time calculations. A more mathe-
matically sophisticated time stepping procedure is based on a kernel function derived
from the single frequency solutions. This method is described in detail in [11] and
has been recently applied to the solution of the time-dependent motion of a floating
elastic plate [7, 19]. This method, while using the single frequency solutions, requires
that the solution be stepped forward in time. The convolution of the kernel function
is used, and for this reason the method is sometimes called the memory effect. This
method requires only integration over the wetted surface of the body. There are other
methods, including a method based on the time-dependent Green function [18, 22],
which also requires time stepping and simultaneous solution of the body equations of
motion. The spectral solution presented here is based on the single frequency solu-
tions, but does not require a time stepping solution; instead the solution is calculated
for all time using the fast Fourier transform (FFT).
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Spectral theory for finite-dimensional or compact operators is well known, for
example, the calculation of the modes and frequencies of vibration of an elastic plate.
For the operators in linear wave theory, which are self-adjoint but not compact, the
spectral theory is much more complicated. This theory has been developed for fixed
bodies [1, 20, 3, 4] in infinitely deep water. The focus of these works was on developing
the theory, and no calculations were made. Only [12], which considered the problem of
a floating massless elastic plate in the case of shallow water (which greatly simplified
the equations of motion), has presented any calculations using a spectral method for a
linear wave problem. The solution in [12] was found by both a spectral expansion and
by Lax–Philips theory. The present work can be seen as an extension of the spectral
solution of [12] to the considerably more complicated situation when the water can
no longer be approximated as shallow.

The floating elastic plate is a very natural problem to consider when attempting
to use spectral theory to make practical calculations of time-dependent motion. The
floating elastic plate is amongst the best-studied problems in hydroelasticity and has
been used to model floating breakwaters [18], ice floes [17], and very large floating
structures [6, 21]. The single frequency (time harmonic) response has been well stud-
ied. While more complicated to study than the rigid body, the elastic body reduces
to a rigid floating body and to a rigid dock in various limits as the stiffness and mass
tend to infinity. Therefore, by providing a solution to the elastic plate problem, we are
also providing a solution to the rigid floating body and dock problem. Furthermore,
[19] has developed a solution to the time-dependent problem for a floating elastic plate
on water of infinite depth.

As mentioned previously, the single frequency response for a floating elastic plate
has been well studied. We will give a brief summary of the research in the case of
the two-dimensional problem. The problem is mentioned in [18] where a solution for
the case of shallow water is presented. The first solutions to the problem, without
the assumptions of shallow water or a small plate effect, were by [13] and [15]. These
solutions are based on using the Green function methods which had been developed
for rigid bodies. The elastic plate problem (because of the assumption of shallow
draft) actually has an eigenfunction expansion in the plate covered and non–plate
covered regions. This property was exploited by [2] but only for the case of a semi-
infinite plate. The matching using inner products was recently considered by [9], and
a solution method was derived using residue calculus, but only for a semi-infinite
plate. A fast method for multiple plates has recently been developed by [8].

In this paper, we present the time-dependent solution to the floating elastic plate
on water of finite depth using spectral theory. The solution is based on finding an
inner product in which the non–time-dependent operator which occurs in the time-
dependent equation is self-adjoint. We show in section 2 that there are two formula-
tions which can be developed; the first is based on a first-order equation in time and is
closely related to the method used in [12]. However, this formulation is valid only for a
massless plate. The second formulation is based on the second-order time-dependent
equation and does allow for the plate to have mass. The spectral approach that we
follow to solve the time-dependent problem has a quite natural physical interpreta-
tion: it consists of expanding the time-dependent solution in a basis of time-harmonic
solutions. The main difficulty mathematically is to normalize the generalized eigen-
functions (time-harmonic solutions), and we use a perturbation technique based on
the generalized eigenfunctions for the pure hydrodynamic problem, that is, in the
absence of the plate (section 3). We then have to determine the associated scattered
waves in the presence of the plate (section 4): we thus obtain a basis of general-
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ized eigenfunctions for the coupled problem. Finally, we present in section 5 some
numerical results: they agree with those found earlier by [12] where the equivalent
theory was developed for shallow water, and show the effect of water depth on the
time-dependent solution.

2. Statement of the problem and mathematical formulations.

2.1. Governing equations. The plate is infinite in the y direction, so that only
the x and z directions are considered. The x direction is horizontal, the positive z
axis points vertically up, and the plate covers the region −b � x � b. The water is of
uniform depth h. The amplitudes are assumed small enough that the linear theory
is appropriate, and the plate is sufficiently thin that the shallow draft approximation
may be made [21].

The mathematical description of the problem follows from [18]. The kinematic
condition is

∂tζ = ∂nΦ, z = 0,

where ζ is the displacement of the water surface or the plate (from the shallow draft
approximation), ∂n is the outward normal derivative, and Φ is the velocity potential
of the water, which satisfies

ΔΦ = 0, −h < z < 0,

∂nΦ = 0, z = −h.

On the other hand, the dynamic condition obtained by matching the pressure at the
free surface is

−ρgζ − ρ∂tΦ =

{
0, x /∈ (−b, b),
D∂4

xζ + ρ′d ∂2
t ζ, x ∈ (−b, b),

z = 0,

where D is the bending rigidity of the plate per unit length, ρ is the density of water,
ρ′ is the density of the plate, d is the plate thickness, and g is the acceleration due to
gravity. At the ends of the plate the free edge boundary conditions

lim
x↓−b

∂2
xζ = lim

x↑b
∂2
xζ = lim

x↓−b
∂3
xζ = lim

x↑b
∂3
xζ = 0

are applied.
Nondimensional variables are now introduced using a length parameter L for

the space variables and
√
L/g for the time variable. We leave the choice of the

length parameter arbitrary, since there are two natural length parameters, the water
depth and the characteristic length (D/ρg)1/4. It also means that we can present
results in our nondimensional variables in which the plate properties are kept constant
and the water depth is varied. Hence the nondimensional surface displacement and
velocity potential satisfy the following coupled equations, where the overbar denotes
nondimensional variables,

∂t̄ζ̄ = ∂n̄Φ̄, z̄ = 0,(2.1)

Δ̄Φ̄ = 0, −h̄ < z̄ < 0,(2.2)

∂n̄Φ̄ = 0, z̄ = −h̄,(2.3)

−ζ̄ − ∂t̄Φ̄ =

{
0, x̄ /∈ (−b̄, b̄),
β∂4

x̄ζ̄ + γ∂2
t̄ ζ̄, x̄ ∈ (−b̄, b̄),

z̄ = 0,(2.4)
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plus the free edge boundary conditions

(2.5) lim
x̄↓−b̄

∂2
x̄ζ̄ = lim

x̄↑b̄
∂2
x̄ζ̄ = lim

x̄↓−b̄
∂3
x̄ζ̄ = lim

x̄↑b̄
∂3
x̄ζ̄ = 0,

where β = D/(ρgh4) and γ = ρ′d/(ρh). Note that if we consider the limit as β → ∞,
we obtain a rigid floating body (with negligible submergence), and if we consider the
limit as β → ∞ and γ → ∞, then we obtain the dock boundary condition (η = 0,
x̄ ∈ (−b̄, b̄)). For clarity the overbar is dropped from now on.

Our aim is to exhibit a spectral expansion of the solution to these equations
together with suitable initial conditions at time t = 0. To do so, we shall rewrite this
system in an abstract form which involves a self-adjoint operator: such a property
is essential for the application of the spectral approach. We propose below two such
mathematical formulations corresponding to two different choices of inner products.

2.2. Two component energy inner product for a massless plate. We
first introduce an inner product based on the usual mechanical energy, to which both
potential and displacement contribute: this energy consists of the kinetic energy of
the water (∝ |∇Φ|2), the potential energy of the water (∝ |ζ|2), and the energy of
the plate. This approach is a generalization to finite depth of the inner product used
in [12]. As was the case in [12], this inner product is based on the assumption that the
plate is massless. This means that we consider only the stiffness of the plate, not its
inertia, in calculating the equations of motion. This is obviously an approximation,
but it is actually valid for many practical situations. This approximation is discussed
in [12] and [14].

The starting point of the abstract formulation lies in the following remark: if we
know the velocity potential only at the surface of the water, say φ(x, t) = Φ(x, 0, t),
then (2.2) and (2.3) determine Φ everywhere. Consider then the operator G which
maps φ onto Φ = Gφ: this is the harmonic lifting which solves the boundary value
problem

ΔΦ = 0, −h < z̄ < 0,

Φ = φ, z = 0,

∂nΦ = 0, z = −h.

(2.6)

This operator allows us to rewrite our system (2.1)–(2.5) with γ = 0 as a problem set
only on z = 0:

∂tζ = ∂nGφ,

−ζ − ∂tφ = χPβ∂
4
xζ,

where χP is the characteristic function for the plate covered region P = (−b,+b) (i.e.,
χP (x) = 1 if x ∈ P ; else χP (x) = 0). The edge conditions (2.5) are omitted for
simplicity.

If we combine ζ and φ in a two component vector U(x, t) given by

(2.7) U(x, t) =

(
φ(x, t)
iζ(x, t)

)
,

the above coupled equations turn into a Schrödinger-type equation

(2.8) i∂tU = PU, with P =

(
0 1 + χPβ∂

4
x

∂nG 0

)
.
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The problem is to find an inner product 〈· , ·〉V , defining a Hilbert space V, for
which P becomes self-adjoint. We shall actually verify only the symmetry property:

(2.9) 〈PV, V ′〉V = 〈V,PV ′〉V .

The questions related to the domain of P are essential in the mathematical definition
of self-adjointness but not in the numerical implementation of the method which is
the focus of the present work. The works of [1, 20, 3] which are focused on the
mathematics do treat the domain rigorously, however only for the case of a rigid
body. A mathematically rigorous treatment in the case of an elastic body remains
undeveloped.

A convenient way to interpret the symmetry property of P is to exhibit the
associated bilinear form (we should say more precisely “sesquilinear”):

(2.10) 〈PV, V ′〉V = p(V, V ′).

It is then clear that (2.9) holds if p(· , ·) is symmetric, that is,

(2.11) p(V ′, V ) = p(V, V ′).

In order to exhibit p(· , ·) in our case, first consider the operator ∂nG involved in
the definition of P. Choose the usual inner product of L2(R), i.e.,

〈ψ,ψ′〉R =

∫
R

ψ(x)ψ′(x) dx.

From (2.6), Green’s formula yields

(2.12) 〈∂nGψ,ψ′〉R =

∫
R

∫ 0

−h

∇(Gψ) · ∇(Gψ′) dx dz,

where the right-hand side clearly defines a positive symmetric form: the operator
∂nG is thus positive and self-adjoint in L2(R). On the other hand, the operator β∂4

x

is positive and self-adjoint in L2(P ). Indeed, if ζ satisfies the edge conditions (2.5),
integrating by parts twice gives

(2.13) 〈β∂4
xζ, ζ

′〉P = β〈∂2
xζ, ∂

2
xζ

′〉P .

Then it may seem natural to consider P in L2(R) × L2(R). But P would not be
self-adjoint. The symmetry property actually occurs in a subspace, defined by the
inner product

(2.14) 〈V, V ′〉V =

∫
R

∫ 0

−h

∇(Gψ) · ∇(Gψ′) dx dz + 〈ξ, ξ′〉
R

+ β〈∂2
xξ, ∂

2
xξ

′〉P

for all complex vector functions

(2.15) V =

(
ψ
ξ

)
and V ′ =

(
ψ′

ξ′

)
.

To see this, we simply have to use (2.12) and (2.13) in the relation

〈PV, V ′〉V =

∫
R

∫ 0

−h

∇(G(1 + χPβ∂
4
x)ξ) · ∇(Gψ′) dx dz

+ 〈∂nGψ, ξ′〉
R

+ β〈∂2
x(∂nGψ), ∂2

xξ
′〉P ,
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which yields

〈PV, V ′〉V =
〈
(1 + χPβ∂

4
x)ξ, ∂nGψ′〉

R
+
〈
∂nGψ, (1 + χPβ∂

4
x)ξ′

〉
R
,

where ξ is implicitly assumed to satisfy the edge conditions (2.5). The bilinear form on
the right-hand side is clearly symmetric, and thus P is self-adjoint (but not positive).

At least formally, we can express the solution to (2.8) as

(2.16) U(t) = eiPtU0 with U0(x) = U(x, 0) =

(
φ0(x)
iζ0(x)

)
,

where exp(iPt) is a unitary operator that we will make explicit by a spectral expan-
sion.

2.3. Single component inner product which allows nonzero mass. In
this section we will derive an abstract formulation which allows the case of nonzero
mass. The inner product involved in this formulation is not based on the total energy
and is closer to the standard L2 inner product.

We introduce a new variable Ψ = −∂tΦ, i.e., the opposite of the acceleration
potential. Our system (2.1)–(2.4) then becomes

∂2
t ζ + ∂nΨ = 0, z = 0,(2.17)

ΔΨ = 0, −h < z < 0,(2.18)

∂nΨ = 0, z = −h,(2.19)

−ζ + Ψ =

{
0, x /∈ (−b, b),
β∂4

xζ + γ∂2
t ζ, x ∈ (−b, b),

z = 0.(2.20)

Instead of the harmonic lifting G introduced in the first-order formulation, we
consider the operator H which maps ζ onto Ψ, where the latter solves the boundary
value problem

ΔΨ = 0, −h < z < 0,

∂nΨ = 0, z = −h,

−ζ + Ψ =

{
0, x /∈ (−b, b),
β∂4

xζ + γ∂nΨ, x ∈ (−b, b),
z = 0.

Our system (2.17)–(2.20) thus turns into the following second-order equation:

(2.21) ∂2
t ζ + ∂nHζ = 0.

The operator ∂nH is positive and self-adjoint in the Hilbert space H with inner
product

(2.22) 〈ζ, ζ ′〉H = 〈ζ, ζ ′〉R + β〈∂2
xζ, ∂

2
xζ

′〉P .

Indeed, let Ψ = Hζ and Ψ′ = Hζ ′ for arbitrary ζ and ζ ′ satisfying (2.5). Using
Green’s formula and the above definition of H, we have∫

R

∫ 0

−h

∇Ψ · ∇Ψ′ dx dz

= 〈∂nΨ, ζ ′〉R + β〈∂nΨ, ∂4
xζ

′〉P − γ〈∂nΨ, ∂nΨ′〉P
= 〈∂nΨ, ζ ′〉R + β〈∂2

x(∂nΨ), ∂2
xζ

′〉P − γ−1〈ζ + β∂4
xζ − Ψ, ζ ′ + β∂4

xζ
′ − Ψ′〉P .
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Substituting this relation into

〈∂nHζ, ζ ′〉H = 〈∂nHζ, ζ ′〉R + β〈∂2
x(∂nHζ), ∂2

xζ
′〉P

yields

〈∂nHζ, ζ ′〉H =

∫
R

∫ 0

−h

∇(Hζ) ·∇(Hζ ′) dx dz+γ−1〈ζ+β∂4
xζ−Hζ, ζ ′ +β∂4

xζ
′−Hζ ′〉P .

The right-hand side defines a positive symmetric bilinear form, which shows that ∂nH
is a positive self-adjoint operator in H.

Thanks to this property, we shall construct the spectral expansion of the solution
to (2.21) together with the initial conditions

(2.23) ζ(x, 0) = ζ0(x) and ∂tζ(x, 0) = θ0(x),

where θ0 is related to φ0 in (2.16) by the relation θ0 = ∂nGφ0. This solution is

ζ(t) = cos((∂nH)1/2t) ζ0 + (∂nH)−1/2 sin((∂nH)1/2t) θ0,

or equivalently, in the condensed form

(2.24) ζ(t) = Re{exp(i(∂nH)1/2t)η0} with η0 = ζ0 − i(∂nH)−1/2θ0.

3. Spectral decompositions without the floating plate. We consider in
this section the free problem associated with our scattering problem, obtained by
removing the floating plate. The basic ideas of the spectral approach that we propose
for solving the preceding equations are described here. The solution is simply the
solution found using the Fourier transform explained in the context of generalized
eigenfunctions expansion. We will use the normalization results for the simpler free
problem to derive the normalization for the problem with the plate.

3.1. Spectral representation for the first-order equation. If we remove
the plate, the first-order problem (2.8) then simplifies to

(3.1) i∂tU = P̃U, with P̃ =

(
0 1

∂nG 0

)
,

where the tilde symbol refers to the free problem. Similarly to P, the operator P̃ is
self-adjoint in the free energy space Ṽ defined by the inner product (see (2.14))

(3.2) 〈V, V ′〉Ṽ =

∫
R

∫ 0

−h

∇(Gψ) · ∇(Gψ′) dx dz + 〈ξ, ξ′〉
R

for all V and V ′ defined by (2.15). The solution to (3.1) can be formally expressed as
a function of the initial state U(0) = U0:

(3.3) U(t) = eiP̃t U0.

Spectral theory offers a way to express exp(iP̃t) by means of the eigenelements of P̃,
that is, the solutions to the eigenvalue problem

(3.4) (P̃ − λ)V = 0 with V 	= 0 and λ ∈ R.
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For our free problem P̃ possesses a continuous spectrum. (Recall that a point λ ∈ R

belongs to the continuous spectrum if P − λ is injective but not surjective.)
The generalized eigenfunctions of P̃ can be found easily and are given by

(3.5) Ũλ,κ(x) = exp(iκk(λ2)x)

(
λ−1

1

)
,

where κ = ±1 and k(λ2) is the positive root of the dispersion equation

(3.6) k tanh kh = λ2.

We can easily show using the well-known orthogonality relation for the Fourier trans-
form that〈

Ũλ,κ, Ũλ′,κ′

〉
Ṽ

=

∫
R

∫ 0

−h

1

λλ′∇(Geiκkx) · ∇(Geiκ′k′x) dx dz +
〈
eiκkx, eiκ

′k′x
〉

R

=
k tanh kh

λλ′

∫
R

1

λλ′ e
iκkxeiκ′k′x dx +

〈
eiκkx, eiκ

′k′x
〉

R

= 4π

∣∣∣∣dλdk
∣∣∣∣ δκκ′δ (λ− λ′) .

Note that we have used the property of the free linear waves that

∂nGeiκkx = k tanh kheiκkx.

Therefore the solution to the free Schrödinger-type equation (3.1) for an initial state
U0 is given by

(3.7) U(t) =
1

4π

∫
R

eiλt
∑
κ=±1

〈U0, Ũλ,κ〉Ṽ Ũλ,κ

∣∣∣∣dkdλ
∣∣∣∣ dλ.

3.2. Spectral representation for the second-order equation ∂nG. On the
other hand, the second-order wave equation (2.21) becomes

(3.8) ∂2
t ζ + ∂nGζ = 0,

where ∂nG is positive and self-adjoint in L2(R) (see (2.12)). We denote here by
ν instead of λ the spectral variable for ∂nG: from (3.8), it represents a frequency
squared, whereas λ stands for a signed frequency in the previous section.

It can easily be shown that the generalized eigenfunctions of ∂nG are given by
the linear wave solutions for a fixed frequency given by

(3.9) ζ̃ν,κ(x) = eiκ k(ν)x for ν ∈ R
+ and κ = ±1,

where k(ν) is the positive root of the dispersion equation (3.6). From the properties
of the Fourier transform we know that

(3.10) 〈ζ̃ν,κ , ζ̃ν′,κ′〉R = 2π
dν

dk
δκ,κ′ δ(ν − ν′).

This means that the solution to (3.8) together with initial conditions of the form
(2.23) is

ζ(t) = Re{exp(i(∂nG)1/2t)η0}, where η0 = ζ0 − i(∂nH)−1/2θ0,

= Re

{
1

2π

∫
R+

ei
√
νt

∑
κ=±1

〈η0, ζ̃ν,κ〉H ζ̃ν,κ
dk

dν
dν

}
.
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4. Spectral decompositions of the hydroelastic problem. In this section
we will write down the spectral expansions for the plate-water system. These expan-
sions will be based closely on the expansions we have just derived for the case when
the plate is absent. We find the generalized eigenfunctions from the solution for a unit
incident wave together with the associated scattered waves generated by the coupling
with the plate: their superpositions (incident + scattered) yield a generalized spectral
basis for the coupled problem. Here we choose outgoing scattered waves, but the same
result holds for scattered waves that are incoming.

4.1. The first-order formulation. We denote by Uλ,κ the eigenfunctions in the

presence of the plate, which correspond to the incident waves Ũλ,κ coming respectively
from the right (κ = sgn(λ)) and the left (κ = − sgn(λ)). These are single frequency
solutions: they satisfy the equation(

0 1 + χPβ∂
4
x

∂nG 0

)
Uλ,κ = λUλ,κ,

and have the asymptotics

Uλ,+1(x) ∼
(
e+ikx + S11 e

−ikx
)( λ−1

1

)
as x → +∞,(4.1)

Uλ,+1(x) ∼
(
S12 e

+ikx
)( λ−1

1

)
as x → −∞,

and

Uλ,−1(x) ∼
(
S22 e

−ikx
)( λ−1

1

)
as x → +∞,(4.2)

Uλ,−1(x) ∼
(
e−ikx + S21 e

+ikx
)( λ−1

1

)
as x → −∞,

where S11, S12, S21, and S22 are the reflection and transmission coefficients (which
must be determined). We define the components of Uλ,κ as

Uλ,κ(x) =

(
φλ,κ(x)
ξλ,κ(x)

)
.

Setting Φλ,κ = Gφλ,κ, the above eigenvalue problem amounts to the boundary value
problem

ΔΦλ,κ = 0, −h < z < 0,

∂nΦλ,κ = 0, z = −h,

λΦλ,κ =
(
1 + χPβ∂

4
x

)
ξλ,κ, z = 0,

∂nΦλ,κ = λ ξλ,κ, z = 0,

(4.3)

subject to the appropriate radiation conditions given by (4.1) and (4.2) plus the free
edge boundary conditions (2.5). There are a number of methods which can be used
to solve this problem. The equation was solved in [13] using a Green function for the
water and plate. It was solved in [15] using a Green function for the water and an
expansion in modes for the plate. The solution method is described in the appendix.
Note that we are assuming that there is no point spectrum, i.e., that the floating
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elastic plate problem does not admit any trapped modes. While there is no proof
that trapped modes do not exist, all evidence points to this conclusion. The present
theory could be extended to include trapped modes, following [16, 5, 4]; it seems
sensible not to do this since we strongly believe they do not exist.

Having found the generalized eigenfunctions, we need to determine their normal-
ization; that is, we know that

(4.4) 〈Uλ,κ, Uλ′,κ′〉 = q−1
λ δ(λ− λ′) δκκ′ ,

but we have no easy way to determine qλ. We can use a formal argument as was
done in [12]. However, we can find this normalization using a very powerful result
from spectral theory, namely that the normalization of the perturbed eigenfunctions
is identical to the normalization of the free problem (i.e., the problem without the
plate discussed previously). We do not present a proof of this here, but note that this
has been done in many related situations. The first proofs were for the Schrödinger
equation [16, 5] and for the Helmholtz equation [23]. Recently, a proof was given for
water waves for a rigid floating body in infinite depth [3, 4]. The proof for the plate
can be found following an argument similar to that given in [4]. In particular the
eigenfunctions satisfy the following orthogonality conditions:

〈Uλ,κ, Uλ′,κ′〉V = 4π

∣∣∣∣dλdk
∣∣∣∣ δκκ′δ (λ− λ′) .

This normalization agrees in the appropriate limit with the normalizations of [3, 12]
for infinite depth and shallow water, respectively.

We can express the solution to (2.8) as a spectral expansion as we did for the free
problem, except that we use the eigenfunctions Uλ,κ defined by (4.3) and the space
V, i.e.,

(4.5) U(t) =
1

4π

∫
R

eiλt
∑
κ=±1

〈U0, Uλ,κ〉V Uλ,κ

∣∣∣∣dkdλ
∣∣∣∣ dλ, where U0 =

(
φ0

iζ0

)
.

The calculation of the inner products can be simplified by observing that

〈U0, Uλ,κ〉V = 〈∂nGφ0, φλ,κ〉Rx
+
〈(

1 + χPβ∂
4
x

)
iζ0, ξλ,κ

〉
Rx

(4.6)

= 〈φ0, ∂nGφλ,κ〉Rx
+
〈
iζ0,

(
1 + χPβ∂

4
x

)
ξλ,κ

〉
Rx

= 〈φ0, λ ξλ,κ〉Rx
+ 〈iζ0, λ φλ,κ〉Rx

= λ
(
〈φ0, ξλ,κ〉Rx

+ 〈iζ0, φλ,κ〉Rx

)
.

4.2. The second-order formulation. The second-order spectral expansion fol-
lows from (2.21) and (3.10) exactly as with the first-order formulation. The equation
for the eigenfunctions is

∂nHζν,κ = νζν,κ,

where we define the asymptotics so that ζν,κ corresponds to the incident wave free

wave ζ̃ν,κ defined in (3.9), i.e.,

ζλ,+1(x) ∼ e+ikx + S11 e
−ikx as x → +∞,(4.7)

ζλ,+1(x) ∼ S12 e
+ikx as x → −∞,
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and

ζλ,−1(x) ∼ S22 e
−ikx as x → −∞,(4.8)

ζλ,−1(x) ∼ e−ikx + S21 e
+ikx as x → +∞.

Setting Ψν,κ = Hζν,κ, the boundary value problem to solve is

ΔΨν,κ = 0, −h < z < 0,

∂nΨν,κ = 0, z = −h,

−ζν,κ + Ψν,κ = χP

(
β∂4

xζν,κ + γ∂nΨν,κ

)
, z = 0,

∂nΨν,κ = νζν,κ, z = 0,

(4.9)

subject to the radiation conditions (4.7) and (4.8) and the free edge conditions (2.5).
We solve this system by the method described in [8]. Note that (4.9) is equivalent to
the boundary value problem (4.3) when the mass γ is zero, taking ν = λ2 and

(4.10) ξλ,κ = i ζλ2,κ and Φλ,κ = iλ−1 Ψλ2,κ.

The orthogonality relations follow from those for the free problem given by (3.10),
and therefore

〈ζν,κ, ζν′,κ′〉H = 2π
dν

dk
δκκ′δ (ν − ν′) .

The explicit expression of the time-dependent solution (2.24) to (2.21) is

ζ(t) = Re{exp(i(∂nH)1/2t)η0}(4.11)

= Re

{
1

2π

∫
R+

ei
√
νt

∑
κ=±1

〈η0, ζν,κ〉H ζν,κ
dk

dν
dν

}
,

where we recall that η0 = ζ0 − i(∂nH)−1/2θ0 and θ0 = ∂nGφ0. The real part in this
expression takes the form

(4.12) ζ(t) =
1

2π

∫
R+

∑
κ=±1

(
cos(

√
νt) 〈ζ0, ζν,κ〉H +

sin(
√
νt)√
ν

〈θ0, ζν,κ〉H
)
ζν,κ

dk

dν
dν.

4.3. Agreement of the two expansions when γ = 0. The expression (4.12)
coincides with (4.5) in the case where γ = 0. To see this, note that

〈ζ0, ζν,κ〉H = 〈ζ0, (1 + χPβ∂
4
x)ζν,κ〉R

= 〈ζ0, ψν,κ〉R with ψν,κ = Ψν,κ|z=0(4.13)

(where we used (4.9) with γ = 0), and similarly

〈θ0, ζν,κ〉H = 〈∂nGφ0, ψν,κ〉R

= 〈φ0, ∂nGψν,κ〉R

= ν 〈φ0, ζν,κ〉R.(4.14)

Hence from (4.10), the inner product (4.6) becomes

〈U0, Uλ,κ〉V = 〈ζ0, ζν,κ〉H − iλ−1〈θ0, ζν,κ〉H.
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Substituting this expression into (4.5) and considering the displacement only, we get

ζ(t) =
1

4π

∫
R+

eiλt
∑
κ=±1

(
〈ζ0, ζν,κ〉H − iλ−1〈θ0, ζν,κ〉H

)
ζν,κ

∣∣∣∣dkdλ
∣∣∣∣ dλ

+
1

4π

∫
R+

e−iλt
∑
κ=±1

(
〈ζ0, ζν,κ〉H + iλ−1〈θ0, ζν,κ〉H

)
ζν,κ

∣∣∣∣dkdλ
∣∣∣∣ dλ,

which is nothing but (4.12) using the change of variable λ =
√
ν.

5. Numerical results. The numerical implementation of (4.5) and (4.11) is
relatively straightforward once the eigenfunctions have been calculated by solving
(4.3) and (4.9). We represent the solution to (4.3) and (4.9) at discrete points. We
use this discrete representation to calculate the inner products using the expressions
given by (4.6) and (4.13)–(4.14) and numerical quadrature. The final integral in (4.5)
and (4.11) is calculated using the well-known FFT algorithm. The number of points
in the frequency domain which are required to compute the solution depends strongly
on the initial conditions; i.e., if the initial data is smooth (has few high frequency
components), then fewer frequency calculations will be required. Furthermore, we
require more points when the initial condition is under the plate because of the high
frequencies of the free plate vibration (for our value of β) for a given initial smoothness.
The case of an incident disturbance which is nonzero far from the plate also allows
significant simplification, and this case is discussed below. We concentrate on making
calculations similar to those in [12] for the purpose of comparison and checking. Of
course the solution in [12] was valid only for shallow water, so we will extend the
calculations to water of finite depth. The plate length is b = 50 and stiffness is
β = 2 × 104.

In order to compare with the results obtained in [12], we first consider a wave
which is incoming from the left with initial potential given by

φ0 (x) = e−(x+125)2/350

and with the corresponding displacement so that the pulse is traveling to the right in
the absence of the plate. This means that the initial state U0 = (φ0, iζ0)

T must have
zero spectral components for the plane waves which propagate to the left, that is,

(5.1) U(t) =
1

4π

∫
R

eiλt 〈U0, Uλ,−1〉V Uλ,−1

∣∣∣∣dkdλ
∣∣∣∣ dλ, where U0 =

(
φ0

iζ0

)
,

and we can deduce from the asymptotic form of the eigenfunctions that

〈U0, Uλ,−1〉 = 2

∫
R

e−ik(λ)x φ0(x) dx.

This considerably simplifies the calculation of (5.1) and we can calculate it using the
FFT of φ0 (x) and then an inverse FFT of (5.1).

The potential is shown in Figure 1 for water depth h = 1. This is identical to
the equivalent figure in [12]. We now consider the effect of increasing the water depth
so that the shallow plate approximation is no longer valid. Figures 2 and 3 show the
evolution of the potential for the water depths h = 5 and h = 20, respectively.

In all these figures we used 512 values for λ from −π to π to calculate Uλ,κ, and
we used 4096 points (truncated with zeros) to compute the inverse FFT. Note that
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Fig. 1. The evolution of the potential due to a pulse traveling to the right for the times shown.
The plate is shown by the bold line. β = 2 × 104, b = 50, γ = 0, and h = 1.
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Fig. 2. As for Figure 1 except that h = 5.
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Fig. 3. As for Figure 1 except that h = 20.

we need to work with the variable λ to be able to use the FFT algorithm to calculate
the solution in time.

We now consider the evolution of the plate released from an initial displacement.
We use the same values as before; plate length is b = 50 and stiffness is β = 2 × 104.
The initial plate potential and displacement are given by

U0 =

(
0

ie−x2/350

)
and U0 =

(
0

ie−(x−50)2/350

)

in Figures 4 and 5, respectively. The results for h = 100 agree closely with results
calculated using the method of [19] valid for water of infinite depth.

Finally we investigate the effect of the parameter γ. Figure 6 shows the evolution
of the symmetric displacement for h = 5 with γ = 0, 1, and 10. As expected, the
effect of γ is small, even for the value γ = 10, which is highly unphysical.

In these figures we need to use the full expression of (4.5) and (4.11). Owing to
the requirement for higher frequencies, we use 1024 values for λ spaced between −2π
and 2π, and we again use 4096 points truncated with zeros for the inverse FFT.

6. Summary. We have presented the spectral theory for the two-dimensional
linear wave problem of floating elastic plate on water of finite depth. Two theories,
based on the first-order and second-order formulations of the problem, have been
developed. The first-order theory was valid only when the plate was assumed massless,
while the second-order theory allowed for the plate to have arbitrary mass. Both
theories depended on different inner products in which the appropriate evolution
operators were self-adjoint. The spectral theory solution was found by an expansion
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Fig. 4. The evolution of a symmetric displacement for the times shown. β = 2 × 104, b = 50,
and γ = 0. The solid line is for h = 1, the dashed line for h = 5, the chained line for h = 20, and
the dotted line for h = 100.
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Fig. 5. As for Figure 4 except the initial displacement is nonsymmetric.
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Fig. 6. The evolution of a symmetric displacement for the times shown. β = 2 × 104, b = 50,
and h = 5. The solid line is for γ = 0, the dashed line for γ = 1, and the chained line for γ = 10.

in the time-harmonic (single frequency solutions). We presented solutions for some
simple forcings and showed that the solutions agreed with those found earlier by [12]
and showed the effect of increasing the water depth and the mass on the solutions.

Appendix. Solution method to find the eigenfunctions. In this appendix
the solution method used to calculate the single frequency solution is described. For
the high values of the plate stiffness used here we require very high frequency solutions,
and the numerical solution is challenging. We used a mode matching method based
on [9] where the solution was found for a semi-infinite plate. However, unlike [9],
where the equations were solved by the residue calculus method, our equations are
solved by matrix inversion. This method was used recently in [8] to solve for multiple
elastic plates. We will show the method only for the case of a wave which is incident
from the right. We express the solution as

Φ or Ψ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

eikx cosh k0 (z + h) +

∞∑
n=0

ane
iknx cosh kn (z + h) , x > b,

∞∑
n=−2

bne
iκnx coshκn (z + h) + cne

−iκnx coshκn (z + h) , −b < x < b,

∞∑
n=0

dne
−iknx cosh kn (z + h) , x < −b.

(A.1)

In (A.1), k0 is the negative real solution to the dispersion equation
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(A.2) k tanh kh = ν = λ2

(so k0 = −k(ν)), and kn for n > 0 are the positive imaginary solutions to (A.2)
ordered by increasing imaginary part. Under the plate there is a new dispersion
equation given by

(A.3)
(
βκ5 + (1 − γλ2)

)
tanhκh = λ2.

We define κ0 to be the negative real solution to (A.3), κn for n > 0 are the positive
imaginary solutions to (A.3) ordered by increasing imaginary part, and κ−2 and κ−1

are the complex solutions with positive imaginary parts. This dispersion equation is
discussed in detail in [2]. We should note that a0 = S11 and d0 = S12.

We calculate the solution numerically by matching these solutions at x = ±b and
by imposing the edge conditions. First we truncate the sum at N , which gives a
system with 4N + 8 unknowns. We will obtain 4N + 4 equations by matching the
potential at x = ±b and taking the trivial inner product with respect to the N vertical
eigenfunctions outside the plate, matching both the potential and its derivative. The
final four equations will come from the free edge conditions.

If we match the potential at x = b and take inner products with respect to the
vertical eigenfunctions outside the plate, we obtain

d00e
ikb + Da = Mb + Nc,

where D is the diagonal matrix (diagonal because the vertical eigenfunctions are
orthogonal with respect to the trivial inner product) with entries

dii =

∫ 0

−h

eikib cosh2 ki (z + h) dz, 0 ≤ i ≤ N,

and the entries of the matrices M and N (which are not square) are given by

mij =

∫ 0

−h

eiκib coshκj (z + h) cosh ki (z + h) dz, 0 ≤ i ≤ N, −2 ≤ j ≤ N,

and

nij =

∫ 0

−h

e−iκib coshκj (z + h) cosh ki (z + h) dz, 0 ≤ i ≤ N, −2 ≤ j ≤ N,

and a, b, and c are the vectors whose entries are an, bn, and cn, respectively. We use
a nonstandard numbering of the matrix entries which corresponds to the numbering
of the roots of the dispersion equation. Obviously the integrals above can be found
analytically, but the expressions for these are not included here. There are also ways
of improving the stability of the matrix equations by an appropriate normalization,
and these issues are discussed in [9]. We then match the derivative of the potential
at x = b and again take an inner product with respect to the vertical eigenfunctions
outside the plate region, obtaining

ikd̂00e
ikb + D̂a = M̂b + N̂c,

where D̂ is the diagonal matrix with entries

d̂ii =

∫ 0

−h

ikie
ikib cosh2 ki (z + h) dz, 0 ≤ i ≤ N,
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and the entries of the matrices M̂ and N̂ are given by

m̂ij =

∫ 0

−h

iκie
iκib coshκj (z + h) cosh ki (z + h) dz, 0 ≤ i ≤ N, −2 ≤ j ≤ N,

and

n̂ij =

∫ 0

−h

−iκie
−iκib coshκj (z + h) cosh ki (z + h) dz, 0 ≤ i ≤ N, −2 ≤ j ≤ N.

A similar set of equations is derived by matching and taking an inner product at
x = −b. The final four equations are obtained by imposing the free edge conditions,
for example the conditions that

lim
x↑b

∂2
xζ = 0

implies that

N∑
n=−2

κ3
nbne

iκnb sinhκnh + κ3
ncne

−iκnb sinhκnh = 0.

Some further simplifications are possible, symmetry arguments can be used to reduce
the number of unknowns by a factor of two, and we can also use a wide spacing
approximation if the frequency is high enough. These are not described here for the
sake of brevity.
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HYDRODYNAMIC LIMIT OF A FOKKER–PLANCK EQUATION
DESCRIBING FIBER LAY-DOWN PROCESSES∗

L. L. BONILLA† , T. GÖTZ‡ , A. KLAR§ , N. MARHEINEKE‡ , AND R. WEGENER¶

Abstract. In this paper, a stochastic model for the turbulent fiber lay-down in the industrial
production of nonwoven materials is extended by including a moving conveyor belt. In the hydro-
dynamic limit corresponding to large noise values, the transient and stationary joint probability
distributions are determined using the method of multiple scales and the Chapman–Enskog method.
Moreover, exponential convergence towards the stationary solution is proven for the reduced problem.
For special choices of the industrial parameters, the stochastic limit process is an Ornstein–Uhlenbeck
process. It is a good approximation of the fiber motion even for moderate noise values. Moreover, as
shown by Monte-Carlo simulations, the limiting process can be used to assess the quality of nonwoven
materials in the industrial application by determining distributions of functionals of the process.

Key words. stochastic differential equations, Fokker–Planck equation, asymptotic expansion,
Ornstein–Uhlenbeck process

AMS subject classifications. 37H10, 34E13, 60H30, 65C05
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1. Introduction. Nonwoven materials/fleece are webs of long flexible fibers that
are used for composite materials (filters) as well as in the hygiene and textile indus-
tries. They are produced in melt-spinning operations: hundreds of individual endless
fibers are obtained by the continuous extrusion of a molten polymer through narrow
nozzles that are densely and equidistantly placed in a row at a spinning beam. The
viscous/viscoelastic fibers are stretched and spun until they solidify due to cooling
air streams. Before the elastic fibers lay down on a moving conveyor belt to form
a web, they become entangled and form loops due to the highly turbulent air flows.
The homogeneity and load capacity of the fiber web are the most important textile
properties for quality assessment of industrial nonwoven fabrics. The optimization
and control of the fleece quality require modeling and simulation of fiber dynamics
and lay-down; in addition, it is necessary to determine the distribution of fiber mass
and directional arrangement in the web.

The software FIDYST, developed on the basis of the mathematical model of [9]
at the Fraunhofer ITWM, Kaiserslautern, enables numerical simulation of the spin-
ning and deposition regime in the nonwoven production processes; cf. Figure 1. The
interaction of the fiber with the turbulent air flows is described by a stochastic force
in the momentum equation, which is derived, analyzed, and experimentally validated
in [11, 12]. The resulting force model depends on the flow velocity which is split
into mean and random parts following Reynolds’ idea for the averaged Navier–Stokes

∗Received by the editors May 22, 2007; accepted for publication (in revised form) September 19,
2007; published electronically December 12, 2007. The authors acknowledge support from the
Rheinland–Pfalz Excellence Cluster “Dependable Adaptive Systems and Mathematical Modelling.”

http://www.siam.org/journals/siap/68-3/69272.html
†G. Millán Institute for Modeling, Simulation and Industrial Mathematics, Universidad Carlos

III Madrid, Leganes 28911, Spain (bonilla@ing.uc3m.es).
‡Fachbereich Mathematik, Technische Universität Kaiserslautern, 67653 Kaiserslautern, Germany

(goetz@mathematik.uni-kl.de, marheineke@mathematik.uni-kl.de).
§Fachbereich Mathematik, Technische Universität Kaiserslautern, 67653 Kaiserslautern, Germany,

and Fraunhofer ITWM, 67663 Kaiserslautern, Germany (klar@itwm.fhg.de).
¶Fraunhofer ITWM, 67663 Kaiserslautern, Germany (wegener@itwm.fhg.de).

648



HYDRODYNAMIC LIMIT FOR FOKKER–PLANCK 649

Fig. 1. Production of nonwoven materials. Left to right: plant and fleece (Neumag, www.
neumag.saurer.com), simulated process (computation by Fraunhofer ITWM (FIDYST), and visual-
ization by Fraunhofer IGD).

equations. The random force is modeled as white noise with a fluctuation-dependent
amplitude that carries information of the kinetic turbulent energy, dissipation rate,
and correlation lengths. Due to the huge amount of physical details incorporated in
FIDYST, the simulations of the fiber spinning and lay-down usually require an ex-
tremely large computational effort and high memory storage. Hence, the optimization
and control of the full process, and particularly of fleece quality, are difficult. Thus,
a simplified stochastic model for the fiber lay-down process is presented in [5]. Under
the assumption of a nonmoving conveyor belt, this model describes the position of the
fiber on the transport belt by a stochastic differential system containing parameters
that characterize the process. For example, the effect of air turbulence has to be
identified from the full model and adapted to be used in the reduced one. Parameter
identification can be obtained from a FIDYST-simulation of a single, relatively short
fiber whose computation time is short even using the more complex model. Then, the
reduced model can be used to calculate fast and efficiently the performance of hun-
dreds of long fibers for fleece production. In [5] the associated Fokker–Planck equation
and stationary solution are investigated for the case of a nonmoving conveyor belt.
In this case, the model without noise is conservative and its equations, Hamiltonian.
For small turbulence noise, stochastic averaging can be used to derive a stochastic
equation for the energy and related functionals of the stochastic process. Moreover,
their distributions can be analyzed. An analytic investigation of the corresponding
Fokker–Planck equation has been performed in [7], ergodicity of the process has been
proven, and explicit rates for the convergence to the stationary solution have been
obtained.

In this paper, we extend the stochastic model of [5] to a more realistic fiber lay-
down model with a moving transport belt; cf. section 2. In this case, the model
equations are no longer Hamiltonian for zero noise. For both moving and nonmoving
conveyor belts, we consider the case of large turbulence noise, A → ∞, in which the
probability density of the fiber becomes rapidly independent of the angle between the
fiber and the direction of the conveyor’s motion and the angle between the fiber and
the position vector of its tip, respectively. In the case of a nonmoving belt, section 3
describes how to use the method of multiple scales in order to determine explicitly
a reduced Smoluchowski equation for the fiber probability density, the stationary
distribution, and the transient joint probability distributions, all from the associated
Fokker–Planck equation. For a moving belt, the same magnitudes are determined
using the Chapman–Enskog method [4, 1] in section 4. To leading order, the stationary
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distributions are of Gaussian type; in particular, for special choices of the process
parameters, Ornstein–Uhlenbeck processes turn out to be the limit solutions. In
section 5, exponential convergence towards the stationary solution of the reduced
Fokker–Planck equation is proved by classical arguments. The numerical results in
section 6 show that direct Monte-Carlo simulations of the fiber process agree quite
well with the theoretical results even for moderate values of the noise strength A. In
addition, certain functionals of the fiber (i.e., mass distributions) are essential for the
quality assessment of nonwoven materials. We compare their distributions with the
corresponding functionals for the limiting Ornstein–Uhlenbeck process.

2. The model. Consider a slender, elastic, nonextensible, and endless fiber in
a lay-down regime. Let the fiber be produced with the spinning speed vspin, excited
into motion by a surrounding highly turbulent air flow and laid down on a conveyor
belt moving with the velocity vbelt. Due to its slenderness, the fiber laid on the two-
dimensional transport belt is described as a curve η : R

+
0 → R

2. Choosing arc-length
parameterization, the nonextensibility condition ‖dη/dt‖ = 1 holds by setting

dη = (cosα, sinα) dt,

where α denotes the angle of the fiber relative to the direction of motion e1 of the
transport belt. The reference point of the spinning process determined by the position
of the nozzle moves in the coordinate system of the transport belt in the direction
−e1. Thus,

ξ(t) = η(t) − (−κte1)

describes the deviation of the fiber from the reference point as a function of the
arc-length parameter t, where κ = vbelt/vspin ∈ [0, 1] is the ratio between the belt
and spinning speeds. Generalizing [5], we model (ξ, α) by the following stochastic
differential system:

dξ1 = (cosα + κ) dt,(2.1a)

dξ2 = sinαdt,(2.1b)

dα = c(ξ) (ξ1 sinα− ξ2 cosα) dt + AdWt.(2.1c)

Here, the change of the angle α is characterized by the deterministic buckling/coiling
c of the fiber (which tends to turn it back to its reference point) and by the random
fluctuations AdWt due to the interaction of the fiber with the external turbulent air
flow; W denotes a one-dimensional Wiener process.

Remark 2.1. The general deterministic coiling behavior of flexible fibers has
been studied, for example, in [10, 8]. The function c in our model prescribes its am-
plitude that depends on the lay-down process. c is a scalar-valued function for isotropic
processes and a matrix-valued one for anisotropic processes [5]. For reasons that will
become clear later on (cf. (4.9)), physically reasonable solutions can be expected only if
exp (−B(ξ)− kξ1) is integrable for k ∈ R, where ∂ξiB(ξ) = c(ξ)ξi. A typical example
satisfying this condition is c(ξ) = 1 since then B(ξ) = (ξ2

1 + ξ2
2)/2.

Remark 2.2. The isotropic model considered here can be treated as dimensionless
with c(e1) = 1, for anisotropic lay-down processes with 1/2 tr(c(e1)) = 1. This cor-
responds to a scaled throwing (lay-down) range of order one. Consequently, the noise
amplitude A characterizes the relation between stochastic and deterministic rates in
the behavior of the system.
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Fig. 2. Left: η-path. Right: Associated fleece (20 fibers). Top to bottom: (A, κ) = {(0.79, 0.1),
(2.23, 0.1), (2.23, 0.8)}.

To illustrate our previous considerations, realizations of the processes η and ξ
are exemplified in Figures 2 (left) and 3, respectively, where the parameters (A, κ)
are selected in the set (A, κ) = {(0.79, 0.1), (2.23, 0.1), (2.23, 0.8)}, and c(ξ) = 1 is
fixed. Superposing many fibers, i.e., η-paths, generates a nonwoven material whose
properties depend on the industrial control parameters A, κ, and c; see Figure 2 (right)
for 20 fibers. In this figure, the distance between two neighboring spinning nozzles
is dspin = 2.5 · 10−3, fleece length is Lfleece = 10, and fiber length is T = Lfleece/κ.
For κ → 1 the belt velocity coincides with the spinning speed such that the fibers
lay down almost straight independent of turbulence noise. The smaller κ is, the
more fiber material (length) can become entangled and form loops. The size of the
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Fig. 3. ξ-path, corresponding to Figure 2. Top to bottom: (A, κ) = {(0.79, 0.1), (2.23, 0.1),
(2.23, 0.8)}.

loops is thereby determined by the amplitude of the turbulence noise A. For small
A the deterministic coiling/buckling radius dominates the fiber behavior, whereas a
finer entanglement on various scales arises for large A. For the industrial application,
nonwoven materials with a homogeneous distribution of mass and fiber orientation
are desirable, and they typically have these characteristics for small κ and larger A.
To get a deeper insight into the probability density of the underlying ξ-process (2.1),
p = p(ξ1, ξ2, α, t), we consider its associated Fokker–Planck equation

(2.2) ∂tp + (cosα + κ) ∂ξ1p + sinα∂ξ2p− ∂α [c(ξ)(−ξ1 sinα + ξ2 cosα)p] =
A2

2
∂2
αp.

Remark 2.3. In the case of a nonmoving conveyor belt (κ = 0), the processes η
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and ξ coincide. Then, it is advantageous to introduce polar coordinates ξ1 = r cosϕ,
ξ2 = r sinϕ, and β = α − ϕ, and to define b(r) = ‖ξ‖ c(‖ξ‖) as done in [5]. The
resulting system then reduces to two dimensions and the associated Fokker–Planck
equation for (r, β) reads

(2.3) ∂tp + cosβ∂rp +

(
b(r) − 1

r

)
∂β (p sinβ) =

A2

2
∂2
βp.

In the following we determine the evolution and the stationary solution of the
Fokker–Planck equations (2.2), (2.3) in the limit as A → ∞. Note, since we embed
our model in the context of dynamical systems and stochastic processes, we refer
occasionally to the notation and interpretation of time for the fiber arc-length t.

3. The nonmoving conveyor belt. We start our investigation with the case of
a nonmoving belt. This case is quite instructive and allows us to introduce the main
ideas to also tackle the case of a moving belt. Let ε = 1/A2 � 1. As already mentioned
above, we introduce polar coordinates and obtain the Fokker–Planck equation

∂tp + cosβ∂rp +

(
b(r) − 1

r

)
∂β (p sinβ) =

1

2ε
∂2
βp(3.1a)

for the density distribution p(r, β, t) subject to the normalization condition

∫
R+×[−π,π]

p(r, β, t) dr dβ = 1(3.1b)

and the initial condition

p(r, β, 0) = p0(r, β).(3.1c)

Note that the stochastic term appears only in the angular coordinate. Hence,
for dominating stochastic forcing, i.e., ε � 1, we expect a fast averaging over the β-
coordinate. Dominant balance between diffusion and the time derivative of p implies
a fast time scale τ = t/ε. The relaxation to the stationary distribution will take much
longer.

To capture the fast averaging over β and the slower convergence to the stationary
solution, we use the method of multiple scales. Let us introduce two time scales: the
fast scale τ = t/ε and a slow scale T = εt. For the distribution function p = p(r, β, t; ε)
(which is 2π-periodic in β), we propose the following ansatz:

(3.2) p = p(0)(r, β, τ, T ) + εp(1)(r, β, τ, T ) + ε2p(2)(r, β, τ, T ) + · · · .

Inserting (3.2) into (3.1) and equating equal powers of ε in the resulting equations,
we obtain a hierarchy of problems for the p(m). As we shall see, secular terms appear
only in the equation for p(2), and their elimination requires the introduction of the
slow scale T = εt. To leading order, we have to solve

Lp(0) = 0,(3.3a) ∫
R+×[−π,π]

p(0) dr dβ = 1,(3.3b)

p(0)(r, β, 0, 0) = p0(r, β),(3.3c)
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where L = ∂τ − ∂2
β/2 denotes the diffusion operator in the angular direction. Solving

the parabolic equation (3.3a) yields

p(0)(r, β, τ, T ) =
1

2π
P(r, T ) +

∑
j∈Z\{0}

eijβ−j2τ/2Cj(r),(3.4a)

where

Cj(r) =
1

2π

∫ π

−π

e−ijβp0(r, β) dβ(3.4b)

and

P(r, 0) =
1

2π

∫ π

−π

p0(r, β) dβ(3.4c)

are the Fourier coefficients of the initial condition.
In the case of a rotationally symmetric initial distribution p0 = p0(r), all the

coefficients Cj vanish identically. If the initial distribution is not symmetric, then the

angular components Cje
ijβ−j2τ/2 are exponentially decaying with τ , i.e., the angular

dependence of p is averaged out on the fast time scale τ . The relaxation to the
stationary solution is determined by the behavior of P(r, T ) on the long time scale T .

Therefore, we will neglect the exponentially small terms Cje
ijβ−j2τ/2 in the following.

To determine the stationary solution P, we proceed with the next terms of the
expansion (3.2). The O(ε)-problem reads as

Lp(1) = −cosβ

2π

[
∂rP +

(
b(r) − 1

r

)
P
]
,∫

R+×[−π,π]

p(1) dr dβ = 0,

p(1)(r, β, 0, 0) = 0.

Again, solving the above parabolic problem yields

p(1) =
A(r, T )

2π
− cosβ

π

[
∂rP(r, T ) +

(
b− 1

r

)
P(r, T )

]
,

where A(r, T ) is a solution of the homogeneous problem, LA = 0, such that
∫∞
0

A(r, T ) dr
= 0 (normalization condition). At this order, we have two functions, P and A, not
yet determined. Hence, we proceed to the second order

Lp(2) =
cos2 β

π
∂r

[
∂rP +

(
b− 1

r

)
P
]

+

(
b− 1

r

)[
∂rP +

(
b− 1

r

)
P
]
∂β

sinβ cosβ

π
− 1

2π
∂TP

− cosβ

2π

[
∂rA +

(
b(r) − 1

r

)
A
]

=
1 + cos 2β

2π
∂r

[
∂rP +

(
b− 1

r

)
P
]
− 1

2π
∂TP
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+

(
b− 1

r

)[
∂rP +

(
b− 1

r

)
P
]

cos 2β

π

− cosβ

2π

[
∂rA +

(
b(r) − 1

r

)
A
]
.

To ensure the boundedness of p(2), the average of the right-hand side of the preceding
equation over β should vanish. Otherwise a secular term proportional to T would be
part of the solution p(2). This solvability condition yields

∂TP = ∂r

[
∂rP +

(
b(r) − 1

r

)
P
]
,(3.5a)

where P also satisfies the normalization condition∫
R+

P(r, T ) dr = 1,(3.5b)

the initial condition (3.4c), and

P(0, T ) = P(∞, T ) = 0.(3.5c)

Equation (3.5) is the reduced Fokker–Planck (Smoluchowski) equation, which deter-
mines the leading order approximation to the solution of the system (3.1), in the limit
as ε → 0, i.e., for dominating stochastic forcing.

The stationary solution Ps(r) satisfying (3.5) is given by

(3.6) Ps(r) = k re−B(r),

where B′(r) = b(r) and k is the normalization constant. Note that Ps(r) is indepen-
dent of the noise strength A, and is also the stationary solution of the full Fokker–
Planck equation (3.1). The limiting stochastic differential equation (SDE) associated
to (3.5) reads

dr = −
(
b(r) − 1

r

)
dT +

√
2 dWT .

Remark 3.1. In the generic case b(r) = r, we obtain B(r) = r2/2 and the
stationary solution

Ps(r) = re−r2/2,

which is a rotational symmetric Gaussian distribution centered at the origin with
variance 1. The solution of its associated SDE

dr = −
(
r − 1

r

)
dT +

√
2 dWT

is a radially symmetric Ornstein–Uhlenbeck process. This can be concluded from the
Fokker–Planck equation of the reduced process (3.5). Defining the function P̃(ξ) =
P(r)/r for ξ = (ξ1, ξ2) and r =

√
ξ2
1 + ξ2

2 , we obtain

(3.7) ∂T P̃ = ∇ξ · (∇ξ + c(ξ)ξ) P̃
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with the associated SDE

dξ = −c(ξ)ξ dT +
√

2 dWT .

For our special case c(ξ) = 1, the solution is the Ornstein–Uhlenbeck process. The
probability density for this case can be calculated explicitly, as we will do in the next
section.

Remark 3.2. A direct solution of (3.5) for b(r) = r can be performed in terms
of a series expansion in Laguerre polynomials. For a normalized initial distribution
we obtain

P = re−r2/2 + a1e
−2T r

(
1 − r2

2

)
e−r2/2 +

∞∑
ν=2

aνe
−2νT re−r2/2Lν

(
r2

2

)
,

where the expansion coefficients are determined by the initial distribution

aν =

∫
R+×[−π,π]

p0(r, β)Lν(
r2

2 ) dr dβ

2π
∫∞
0

e−x[Lν(x)]2 dx
.

Remark 3.3. We consider the full Fokker–Planck equation (3.1). Even with
a rotationally symmetric initial condition and the rotationally symmetric stationary
solution (3.6), terms depending on the angle β appear at intermediate times. This
can be seen by computing the next term in the expansion (3.2)

p(1) = p(1)(r, β, T ) = −cosβ

π

[
∂rP +

(
b(r) − 1

r

)
P
]
,

which depends on β even though the initial condition and the stationary solution do
not. This could have been already anticipated from the full Fokker–Planck equation,
which does not admit time-dependent rotationally symmetric solutions.

4. The case of a moving conveyor belt. In the case of a moving belt, the
Fokker–Planck equation (2.2) reads as

(4.1) ∂tp + ((s + κe1) · ∇ξ) p− ∂α [c(ξ) (n · ξ) p] =
1

2ε
∂2
αp,

where s = (cosα, sinα) and n = ∂αs = (− sinα, cosα) as well as ε = 1/A2 are intro-
duced to simplify the notations. The density distribution p satisfies the normalization
condition ∫

R2×[−π,π]

p(ξ, α, t) dξ dα = 1.

Additionally we have the initial condition

p(ξ, α, 0) = p0(ξ, α).

In the case of strong stochastic influence, i.e., ε � 1, we would like to follow the main
ideas of the previous case for κ = 0, i.e., the nonmoving belt. However, the term
proportional to κ generates secular terms in the equation for p(1). This indicates that
the slow scale needed to get rid of the secular terms should be t. To leading order, the
method of multiple scales would then give a hyperbolic reduced equation that does
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not describe the even slower relaxation towards a stationary solution on the scale
T = εt. We need a perturbation method that yields a reduced equation with terms of
different order in ε: the Chapman–Enskog method. As explained in [4] and [1], the
Chapman–Enskog ansatz for the probability density is

(4.2) p(ξ, α, t; ε) =
1

2π
P(ξ, t; ε) + ε p(1)(ξ, α;P) + ε2p(2)(ξ, α;P) + o(ε2).

The first term in this equation solves the leading order problem ∂2
αp = 0. We have

anticipated that after a transient in the fast scale τ = εt, the slowly-varying density
P becomes independent on α, as shown by the method of multiple scales. Of course,
this ignores an initial layer that can be inferred from (3.4a): An additional term

corresponding to
∑

j∈Z\{0} e
ijβ−j2t/(2ε)Cj(r) in (3.4a) should be added to (4.2) to

account for the effect of initial conditions, so that the probability density becomes

p(ξ, α, t; ε) =
1

2π
P(ξ, t; ε) +

∑
j∈Z\{0}

eijα−j2t/(2ε)

2π

∫ π

−π

e−ijap0(ξ, a) da(4.3)

+ ε p(1)(ξ, α;P) + ε2p(2)(ξ, α;P) + o(ε2).

The higher order terms p(m) depend on time only through their dependence on P.
Moreover, up to terms of order ε2, we have

(4.4) ∂tP = F (0) + εF (1).

F (m) are functionals of P to be determined so that the p(m) are bounded and 2π-
periodic in α. Inserting (4.2) and (4.4) into (4.1), we find a hierarchy of problems. To
ensure that P contains all the contributions from the homogeneous equations in the
hierarchy, we have to impose the additional constraints

(4.5)

∫ π

−π

p(m) dα = 0, m = 1, 2, . . . .

The following problem corresponds to the terms of order O(ε):

−1

2
∂2
αp

(1) = − (s · ∇ξ)P − κ∂ξ1P − ∂α(c(ξ) (s · ξ)P) − F (0),

together with (4.5). This problem has a normalized solution which is 2π-periodic in α
provided that the average over one period of the right-hand side of the linear equation
vanishes. This solvability condition yields F (0):

(4.6) 0 = κ∂ξ1P + F (0).

This condition means that the transport of P with the belt velocity κ in the ξ1-
direction occurs on the original time scale t. Furthermore, we get

p(1) = −2 [s · (∇ξ + c(ξ)ξ)P] ,

which satisfies (4.5) for m = 1. Note that we have not added a term A(ξ, t)/(2π) to
the right-hand side of this equation because of the condition (4.5) ensuring that all
solutions of the homogeneous equation ∂2

αA = 0 are included in P(ξ, t; ε).
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To determine the reduced Fokker–Planck equation in analogy to (3.5), we have
to consider again the problem provided by terms of order O(ε2)

−1

2
∂2
αp

(2) = − (s · ∇ξ) p
(1) − κ∂ξ1p

(1) − ∂α

[
c(ξ) (n · ξ) p(1)

]
− F (1) + 2

[
s · (∇ξ + c(ξ)ξ)F (0)

]
,

together with (4.5). The solvability condition that the average of the right-hand side
over one period in α should vanish yields F (1):

(4.7) 0 = ∇ξ · (∇ξ + c(ξ)ξ)P − F (1).

Inserting the conditions (4.6) and (4.7) into (4.4) yields the reduced equation

(4.8) ∂tP = ∇ξ · (ε∇ξ + εc(ξ)ξ − κe1)P.

This is the equation corresponding to (3.7); the difference lies in the transport term
κ∂ξ1P. The stationary solution Ps(ξ) is characterized by

∇ · (ε∇ + εc(ξ)ξ − κe1)Ps = 0

together with the normalization condition ∫
R2

Ps dξ = 1.

The solution of this linear PDE is given by

(4.9) Ps(ξ) = ke−B(ξ)−κξ1/ε,

where ∇B(ξ) = c(ξ)ξ and k is the normalization constant. The associated SDE is

dξ = −εc(ξ)ξ dt + κe1 dt +
√

2ε dWt.

Remark 4.1. In the case of a moving conveyor belt, the stationary distribution
(4.9) depends on the noise, as A = 1/

√
ε. This contrasts with the case of the non-

moving belt, κ = 0, in which the stationary distribution is the same for deterministic
(A = 0) or stochastic (A > 0) dynamics. Obviously, we obtain a stationary distribu-
tion independent of ε in the limit as ε → 0 only if κ is proportional to ε = 1/A2. This
means we deal with the case of large A and small κ, and the turbulence noise happens
to be of order 1/

√
κ.

Remark 4.2. As in the case of the nonmoving belt, we consider the special case
c(ξ) = 1, i.e., b(r) = r. Then, B(ξ) = ξ2

1/2 + ξ2
2/2 and we obtain the Ornstein–

Uhlenbeck type process prescribed by

(4.10) dξ = −εξ dt + κe1 dt +
√

2ε dWt

or, respectively,

∂tP = ∇ · (ε∇ + εξ − κe1)P.

Its stationary density distribution is Gaussian, centered at μ = (κ/ε, 0) with variance
σ2 = 1:

(4.11) Ps(ξ) =
1

2π
e−(ξ1−κ/ε)2/2−ξ2

2/2.
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To investigate the relaxation to the stationary solution in more detail, we focus
on the case c(ξ) = 1. To compute the density of the process explicitly, we assume
that the initial distribution is a Dirac delta at some point μ0 ∈ R

2. We make the
following ansatz for the transient distribution

P(ξ, t) =
f(t)

2π
e−(ξ−μ(t)/ε)2/(2σ(t)),

i.e., a Gaussian with moving center μ(t), variance σ2(t), and normalization constant
f(t). Plugging this ansatz into the reduced Fokker–Planck equation (4.8) and equating
for all ξ1, ξ2 yields after some calculations

dμ

dt
= ε (κe1 − μ) ,

dσ

dt
= 2ε (1 − σ) ,

df

dt
σ + f

dσ

dt
= 0.

Together with the initial conditions μ(0) = μ0, σ(0) = 0, and f(0) = 1, we obtain
f = 1/σ and the following motions of the mean and the standard deviation:

μ(t) = κe1(1 − e−εt) + μ0e
−εt,

σ(t) = 1 − e−2εt.

Compare this result with the explicit solution formulas for linear stochastic differential
equations in [3].

Remark 4.3. Note that the relaxation to the stationary solution, i.e., μ = κe1

and σ = 1, happens on the slow time scale T = εt. Furthermore, the decay rate for
the standard deviation is twice the decay rate of the mean value.

5. Convergence of the reduced Fokker–Planck equation. In the previous
section we have derived the reduced Fokker–Planck equation (4.8)

∂tP = ∇ · (ε∇P + (εcξ − κe1)P)

in the case of dominating stochastic forcing A2 = 1/ε 	 1. The “relative velocity” κ
of the lay-down process as well as the function c = c(ξ) governing the deterministic
fiber bending are still arbitrary. The stationary distribution Ps of (4.9) is of Gaussian
type

Ps(ξ) = ke−B(ξ)−κξ1/ε

with ∇B(ξ) = c(ξ)ξ.
The convergence against this stationary solution can be proven by classical ar-

guments; see, e.g., [2] for a recent discussion. Let us introduce the Kullback–Leibler
relative entropy

(5.1) S =

∫
P ln

P
Ps

.

Clearly, S ≥ 0. The rate of dissipation of the entropy is given by

∂tS =

∫
∂tP ln

P
Ps

=

∫
ln

P
Ps

∇ · [ε∇P + (εcξ − κe1)P]
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and after integration by parts

∂tS = −
∫ [

∇ ln
P
Ps

]
· [ε∇P + (εcξ − κe1)P] .

Using the fact that ε∇Ps = −(εcξ − κe1)Ps, we get

∂tS = −ε

∫
P
(
∇ ln

P
Ps

)2

≤ 0.

Hence, the entropy is monotonically decaying in time and S = 0 if and only if P = Ps.
Applying the logarithmic Sobolev inequality [6], we obtain

(5.2) ∂tS ≥ −2εS

and hence a decay rate of e−2εt for the entropy S. Using the Csiszar–Kullback in-
equality yields a decay rate of e−εt for the L1-distance of P and Ps.

6. Approximation quality of the Ornstein–Uhlenbeck process. In this
section we investigate the process (2.1) with c(ξ) = 1 numerically and compare it
with the limiting process for A → ∞, i.e., (4.10):

dξ = −εξ dt + κe1 dt +
√

2ε dWt.

Its stationary probability density,

Ps(ξ) =
1

2π
e−(ξ1−κ/ε)2/2−ξ2

2/2,

is independent of ε for κA2 = k, k ∈ R. To test how well Ps approximates the numer-
ically obtained stationary probability distribution of the process (2.1), we compare
both distributions for different values of A. Figure 4 shows the stationary marginal
probability distributions for the components ξ1 and ξ2 when k = 0.5. The distri-
butions are computed from 15000 Monte-Carlo simulations of the ξ-process (2.1);
whereas the distribution functions for A < 1 are quite different from the marginals of
Ps as they are qualitatively similar for A = 1 and show good agreement for A > 2.
The L∞- and L2-errors are less than 2% for A > 2 as illustrated in Figure 5. For
A > 2 and N = 15000 Monte-Carlo simulations, the deviations of the stationary
marginal probability distributions from the limiting marginals are within the range
of the approximation error, i.e., of order 1/

√
N ∼ 10−2. Consequently, the limit

distribution is a good approximation of the true distributions—already for moderate
values of A. However, we should note that the resulting “limit process” of our fiber
model for A → ∞, the Ornstein–Uhlenbeck process, is only continuous, not differ-
entiable. Hence, its associated η-process η(t) = ξ(t) − κte1, is not parameterized by
arc-length and the lack of differentiability obviously affects the nonextensibility con-
dition. In Figure 6 realizations of the Ornstein–Uhlenbeck (ξ-process of (4.10)) and
its associated η-process are depicted and compared to our differentiable fiber process
of section 2, assuming an initial value ξ(0) = (0, 0), final time T = 100, and parameter
values κ = 0.1, A = 2.23. Note that the same amount of fiber mass is laid down.

For the industrial application, it is important to know and control the mass
distribution or other distributions of functionals of ξ. These distributions shed light
into the structure of the fleece material and therefore may serve to assess its quality.



HYDRODYNAMIC LIMIT FOR FOKKER–PLANCK 661

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ξ
1

κ A2=0.5

 

 

A=0.70711

A=1

A=2.2361

exact

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ξ
2

κ A2=0.5

 

 

A=0.70711
A=1
A=2.2361
exact

Fig. 4. Stationary marginal distributions of ξ-components for c = 1, κA2 = 0.5, and several
values of A.

0 2 4 6 8 10
10

−2

10
−1

10
0

A

error in ξ
1
 for κ A2=0.5

 

 

L∞

L2

0 2 4 6 8 10
10

−2

10
−1

10
0

A

error in ξ
2
 for κ A2=0.5

 

 

L∞

L2

Fig. 5. L∞-error and L2-error between the stationary marginal distributions and the limiting
(A → ∞) stationary marginal distribution for different A.

The fiber mass that lies in a prescribed spatial domain D can also be interpreted as
the time the process stays in that domain. It is described by the distribution of the
random variable

(6.1) M =

∫ T

t0

χD(η(t)) dt

for fixed T , T > t0, with χD denoting the characteristic function of D. In the
following we compare the distribution of (6.1) for the original fiber process given by
(2.1) and the limit process (4.10). We evaluate the distribution of M numerically for
the two processes and compare them using Monte-Carlo simulations for fixed κ = 0.1,
A = 2.23. Figure 7 shows the probability distribution function (pdf) for the relative
time that the respective ξ-processes, (2.1) and (4.10), spend in a square domain D.
The square is centered at a point in the set K = {(0, 0), (0, 1), (1, 0)}, its length may
vary in the set L = {1, 0.5, 0.25}, initially at time t0 = 0, ξ(0) = (0, 0), and the
final time is T = 100. The respective means differ only by 1% which is within the
order of the approximation error of the Monte-Carlo simulations. In contrast to this,
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Fig. 6. Differentiable fiber process (top) versus continuous Ornstein–Uhlenbeck limit process
(bottom).

the relative error of the standard deviations depends on the chosen size of the test
domain: the smaller the domain, the higher the error—up to 14% for L = 0.25, but
only 2% for L = 1.

Figure 8 compares the distributions of the mass of a single fiber laid down in a
nonwoven web. This means we consider the distribution of (6.1) for the η-processes.
We observe the same trend as for the ξ-processes for the relative time spent in a
square D: a very good agreement for larger test domains and poor agreement for
smaller domains. The symmetry axis for the η-processes is η2 = 0. Hence, we consider
domains with a certain distance dsym from the center point to the symmetry axis: the
larger dsym, the lower the probability that mass lies in D. This tendency is amplified
by the size of D: the smaller the test domain, the lower the probability. In contrast
to this trend, the probability that mass is accumulated in small domains D is much
higher for the Ornstein–Uhlenbeck process than for our fiber process. The reason
is that a realization of the continuous Ornstein–Uhlenbeck can move more easily,
whereas the differentiable fiber process stays longer in certain regions and therefore
other regions are not covered.

Summarizing, the Ornstein–Uhlenbeck limit process approximates our fiber pro-
cess well—not only as regards the joint probability distribution but also the mass
distributions for test domains of size 1 which corresponds to the size of the throwing
(lay-down) range of the fiber, but not for smaller domains.
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Fig. 7. Pdf for the relative time that the fiber ξ-process (–) and the Ornstein–Uhlenbeck
process (- -) spend in a square of size L2 = {12, 0.52, 0.252} (top to bottom), centered at K =
{(0, 0), (0, 1), (1, 0)} (marked by ◦, �, �).

7. Conclusion. In this work we have presented an extended stochastic model for
the fiber lay-down regime in a nonwoven production process that contains a moving
conveyor belt. From the associated Fokker–Planck equation and using the method
of multiple scales or the Chapman–Enskog technique, we have explicitly determined
the limit processes and the stationary and transient joint probability distributions in
the hydrodynamic limit, as A → ∞. Quite generally and to leading order of these
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Fig. 8. Pdf for the mass M of the fiber η-process (–) and the associated Ornstein–Uhlenbeck η-
process (- -) laid in a square D, |D| = L2 = {12, 0.52, 0.252} (top to bottom), with different distances
dsym to the symmetry axis.

perturbation methods, we have found that the limiting stationary distribution (as
A → ∞) approaches a Gaussian-type function. For the special choice c = 1 of the
fiber coiling function, the limiting process is an Ornstein–Uhlenbeck process, and
the mean of its stationary Gaussian distribution depends on the relation of “relative
process velocity” and turbulence noise, κA2. Already for moderate values of A, i.e.,
A > 2, this limiting distribution turns out to be a very good approximation according
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to our numerical simulations. Moreover, important distributions of functionals of
the process, such as the mass distribution, are well approximated by the Ornstein–
Uhlenbeck process for test squares D of the size of the typical throwing (lay-down)
range of the fibers.

For the control and optimization of the production and quality of nonwoven ma-
terials, the parameters characterizing our model, c, A, κ, and samples sizes D, should
be identified from FIDYST-simulations of the complete physical production process
as well as from experimental data. If the ranges of these parameters are such that the
limiting process studied in this work describes well the physical production, the fiber
mass distribution in a fleece material could be determined from the superposition of
many Ornstein–Uhlenbeck η-processes.
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INVERSE BOUNDS OF TWO-COMPONENT COMPOSITES∗

CHRISTIAN ENGSTRÖM†

Abstract. A method is presented for estimating microstructural parameters from permittivity
measurements of two-component composites. This structural information is described by a particular
positive measure in the Stieltjes integral representation of the effective permittivity. The dependence
on the geometrical structure can be reduced to the problem of calculating the moments of the
measure. We present a method that uses measurement data at a set of distinct frequencies or
temperatures to calculate bounds on several moments. These inverse bounds are improved when the
volume fraction is known or the material is isotropic. Composites with known geometrical structure
illustrate the method.
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1. Introduction. The bulk permittivity of composites is determined by the bulk
properties of the components and the geometrical structure of the composite. In
Bergman’s representation of the effective permittivity the dependence on the geometry
in a two-component composite is described by a particular positive measure [2, 15].
Various inverse algorithms for recovering this measure from experimental data have
been developed [8, 9, 6, 25]. When the measure is recovered the volume fraction and
the anisotropy of the material are given by the first two moments of the measure.

Based on Bergman’s [2] representation, Milton [21] developed a general method
for obtaining a hierarchy of bounds on the effective permittivity, given the first n
moments. One disadvantage of the inverse algorithms above is that we lose the concept
of bounds. The numerical methods cannot recover the measure when we have few or
inaccurate measurements. Using the numerical approximations of the measure can
then result in inaccurate values on the moments and, as a consequence, invalid bounds
on effective properties.

Instead of seeking the measure, the measured bulk properties can be used directly
to estimate the structural parameters. In other words, limits on the moments of the
measure are derived directly. McPhedran, McKenzie, and Milton [18] and McPhedran
and Milton [19] developed methods to estimate the volume fraction (the lowest-order
moment) from measurement data. Cherkaeva and Golden [7] derived, in the case of
measurements of lossy materials, explicit formulas for bounds on the volume fraction.

In two previous papers we proposed general methods for bounding the moments
of the measure from measurements of real-valued [10] and complex-valued [11] bulk
properties. Based on these inverse bounds, we develop a new algorithm that gives
significantly tighter bounds on the lowest n moments.

Cross-property bounds incorporate information from measurements of one param-
eter to bound a related parameter. A general method for deriving these bounds is to
apply Prager’s method [23] on Bergman’s and Milton’s bounds [22]. Cross-property

∗Received by the editors February 19, 2007; accepted for publication (in revised form) Septem-
ber 4, 2007; published electronically December 13, 2007. The author acknowledges the support of
the German Research Foundation (RTG 1294).

http://www.siam.org/journals/siap/68-3/68303.html
†Department of Mathematics, Karlsruhe University, Karlsruhe 76131, Germany (christian.

engstroem@math.uni-karlsruhe.de).

666



INVERSE BOUNDS OF TWO-COMPONENT COMPOSITES 667

bounds can also be expressed in terms of bounds on the moments [10]. Thus, the in-
verse algorithm in this paper can be used to bound several other physical phenomena,
such as electrical and thermal conductivity, magnetism, diffusion, and flow in porous
media.

Before proceeding to this problem, we give a description of the Bergman–Milton
theory [2, 4, 5, 20, 21, 22] and how the hierarchy of bounds can be used to derive a
hierarchy of inverse bounds on the moments. The presented algorithm is illustrated
by composites with known structure.

2. Representation of the effective permittivity. Consider a two-component
material modeled by the permittivity ε, where the components are homogeneous and
isotropic with permittivity ε1 and ε2. Assume that the electric field E and the electric
flux density D satisfy the linear constitutive relation D(x) = ε(x)E(x). In many
instances, the characteristic length of inhomogeneities in the d-dimensional composite
material is small compared with the wavelength but much larger than the atomic scale.
In this case an effective (bulk) permittivity εe is defined via

(2.1) 〈D〉 = 〈εE〉 = εe〈E〉,

which relates the average, 〈·〉, of the electric flux density 〈D〉 to the average of the
electric field 〈E〉. The notation 〈·〉 means spatial average over all of R

d or ensemble
average. The averaged fields have no oscillations on the length scale of the microstruc-
ture, since they are smoothed out, but they retain slow macroscopic variations. A
mathematical justification of the homogenization rule (2.1) can, for example, be found
in [16, p. 15]. Let εe be one of the eigenvalues in the matrix εe. In a two-component
mixture the effective permittivity εe has the Stieltjes integral representation [2, 15]

(2.2) εe(ε1, ε2) = ε2 − ε2G(s),

where

(2.3) G(s) =

∫ 1

0

dm(y)

s− y
, s =

ε2
ε2 − ε1

/∈ [0, 1].

The positive (Borel) measure m is a purely geometric quantity, which depends on the
structure but not on the values of the components. If the geometrical structure is
identical, the single integral (2.3) gives the effective permittivity, independent of the
values of the components.

Let s = −1/z in the representation (2.3). The integral representation of G is then
transformed to

(2.4) Ĝ(z) = −1

z
G

(
−1

z

)
=

∫ 1

0

dm(y)

1 + zy
,

which is the standard form of a Stieltjes integral representation [1, p. 229].

3. Real-valued bounds on the permittivity. Partial information concerning
the microstructure, such as the volume fraction, can be used to derive exact bounds
on the effective permittivity [2, 22]. We use the Stieltjes series expansion

(3.1) εe = ε2 + ε2zĜ(z) = ε2F (z), F (z) =

∞∑
n=0

cnz
n,
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where z = −1/s = (ε1 − ε2)/ε2 is the contrast and the coefficients cn are given by the
moments of the measure

(3.2) cn+1 = (−1)n
∫ 1

0

yn dm(y).

The constants cn depend on the microstructure but not on the values of the two
components. If the structure is the same, the single series (3.1) gives the effective
permittivity, independent of the value of the components. The zero-order moment c1
is the volume fraction of the component ε1, and c2 depends on the anisotropy in the
material. In the case of a d-dimensional statistically isotropic composite, the second
moment is −c1(1 − c1)/d (see [2]).

Assume real-valued materials with ε2 > ε1. When −1 < z < 0, the denominator
1 + zy is bounded between zero and one. We find that the integral (2.4) can be
estimated by

(3.3)

∫ 1

0

dm(y)

1 + zy
≥

∫ 1

0

dm(y) = c1.

This implies that the following inequality is satisfied:

(3.4)
εe
ε2

= 1 + zG̃(z) ≤ 1 + c1z.

That is, the effective permittivity is bounded from above by the arithmetic mean
c1ε1 + (1− c1)ε2. This estimate is satisfied as an equality if the measure m is a point
mass concentrated at y = 0.

To derive lower bounds on the effective permittivity we use a representation of
the inverse of the effective permittivity. Define the auxiliary function zH̃(z) by

(3.5) (1 + zH̃(z))(1 + zĜ(z)) = 1 + z,

which is equivalent to

(3.6) 1 + zH̃(z) =
ε1
εe
.

The new function zH̃(z) has the same analytic properties as the original function
zĜ(z) [1, 5]. That is, the scaled inverse permittivity has the representation

(3.7)
( εe
ε1

)−1

= 1 + zH̃(z) = F̃ (z), F̃ (z) =

∞∑
n=0

c̃nz
n,

where H̃ is the Stieltjes integral

(3.8) H̃(z) =

∫ 1

0

dm̃(y)

1 + zy

and the coefficients c̃n are given by the moments of the measure

(3.9) c̃n+1 = (−1)n
∫ 1

0

yn dm̃(y).
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Expanding the product of the series for 1 + zĜ(z) and for 1 + zH̃(z) in (3.5) and
collecting terms with the same powers of z shows that the coefficients cn and c̃n in
the two series are related according to

(3.10) c̃0 = 1, c̃1 = 1 − c1, c̃n = −
n−1∑
k=0

c̃kcn−k.

The coefficient c1 is the volume fraction of component one and c̃1 is the volume
fraction of component two. For all ε2 > ε1, the integral (3.8) can be estimated by

(3.11)

∫ 1

0

dm̃(y)

1 + zy
≥

∫ 1

0

dm̃(y) = c̃1.

This implies that the effective permittivity is bounded from below by the harmonic
mean,

(3.12) εe ≥
ε

1 + c̃1z
=

ε1
1 + c̃1z

=

(
c1
ε1

+
c̃1
ε2

)−1

.

The estimate is satisfied as an equality if the measure m̃ is a point mass concentrated
at y = 0.

The convexity of the function (1 + zy)−1 can be used to derive the Hashin–
Shtrikman bounds, which are finer estimations of the integrals [16, p. 219]. Finer
estimations become more and more tricky, and a systematic method for obtaining
bounds is preferable.

A general method for obtaining a hierarchy of bounds using the analytic properties
of the effective permittivity was developed by Bergman [3, 4] and Milton [20, 21].
Alternatively, known lower and upper bounds of the Stieltjes functions in the form of
continued fractions or Padé approximants can be used. These approximation methods
lead to identical bounds [13, 1].

The εp,q Padé approximant to εe is defined by the equation

(3.13) εeff(z)Q(z) − P (z) = O(zp+q+1),

where P and Q are polynomials of degree at most p and q, respectively [1]. This equa-
tion gives us an approximation of the effective permittivity by the rational function

(3.14) εp,q =
P (z)

Q(z)
=

a0 + · · · + apz
p

1 + b1z + · · · + bqzq
.

When ε2 > ε1 and N ≥ 1, the N -point upper bounds εUN are obtained by forming
the approximations

(3.15) εU2M+1 = ε2εM+1,M (F ), εU2M = ε2εM,M (F ),

of the Stieltjes series (3.1). For example, the arithmetic mean (3.4) is obtained from
the ε1,0 Padé approximant of (3.1),

(3.16) εU1 = (ε2 + c1ε2z) = (c1ε1 + c̃2ε2).

Lower bounds on εe are given from Padé approximations of the series (3.7). The
N -point lower bounds εLN , when ε2 > ε1 and N ≥ 1, are obtained from

(3.17) εL2M+1 = ε1[εM+1,M (F̃ )]−1, εL2M = ε1[εM,M (F̃ )]−1.
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For example, the harmonic mean (3.12) corresponds to the ε1,0 Padé approximant of
the expansion (3.7)

(3.18) εL1 =
ε1

1 + c̃1z
=

(
c1
ε1

+
c̃1
ε2

)−1

.

The ε1,1 Padé approximant of the expansion (3.7) gives the lower bound

(3.19) εL2 = ε1[c̃1 − c̃2z][c̃1 − c̃2z + c̃21z]
−1,

where c̃2 = −c2 − c1c̃1. In the isotropic case c2 = −c1c̃1/d, the bound (3.19) is
equivalent to the lower Hashin–Shtrikman bound. For this reason, we call c2 the
anisotropy parameter.

3.1. Complex-valued bounds on the permittivity. Bergman [3, 4] and Mil-
ton [20, 21] extended the real-valued bounds above to the complex case. We write
these bounds in terms of bounds on the moments cn. The minimum cmin

n and the
maximum cmax

n of cn are functions of the lower-order parameters c1, c2, . . . , cn−1.
The extreme values can be determined by varying the cn parameter in the n-point
bounds and using that the n-point bounds are forbidden to violate the (n− 1)-point
bounds [10]. The volume fraction is of course bounded between zero and one. The
bounds εL2 and εU1 are equal when c2 = 0, and εL2 and εL1 are equal when c2 = −c1c̃1.
This implies the inequality

(3.20) −c1c̃1 ≤ c2 ≤ 0.

In the same way, we get the inequality

(3.21)
c22
c1

≤ c3 ≤ −c2

(
1 +

c2
c̃1

)
.

In the general case, when the values of the components are complex, the real
segment l = {cn; cmin

n ≤ cn ≤ cmax
n } is for fixed values on c1, c2, . . . , cn−1 mapped by

εLn(cn) and εUn (cn) on a circle or a line segment. The bounds on the moments cn give
a parameterization of the lens-shaped boundary. For example, we get complex-valued
bounds from the lens-shaped region bounded by

(3.22) εL2 (c̃2; ε1, ε2, c̃1), εU2 (c2; ε1, ε2, c1)

with the structural parameter c2 varying between the endpoints in (3.20), and c̃2
according to (3.10) related to c2 by c̃2 = −c2 − c1c̃1.

Alternatively, we can describe the bounds εLn(cn) and εUn (cn) in terms of the points
through which the circles pass [3, 20, 21].

4. Inverse bounds from permittivity measurements. In some cases, the
volume fraction c1 is known and the d-dimensional material is usually assumed to be
isotropic c2 = −c1(1 − c1)/d. Higher-order moments depend on the detailed geomet-
rical structure and are in most cases unknown. This gives us at most two coefficients
in the series expansion (3.1), but in many cases even the volume fraction is uncertain.

The moments cn can be expressed in terms of integrals over correlation func-
tions [24, p. 520]. The calculations of higher-order correlation functions are in general
very demanding [24]. The complex bounds on the effective permittivity in section
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3.1 were parameterized in terms of bounds on the moments (3.20)–(3.22). We use in-
verse bounds from permittivity measurements to improve these geometry-independent
bounds on the moments cn that characterize the structure. This method avoids the
cumbersome calculations of the correlation functions.

Bounds on the lowest-order moment c1 (the volume fraction) have been derived
using various methods [18, 19, 7, 10, 11]. In [10, 11] the author proposed general
methods for deriving bounds on the higher-order moment cn.

The inverse algorithm presented in section 4.1 applies to both the real-valued
bounds in [10] and to the complex-valued bounds in [11]. In the examples in sections 5
and 6 we use complex-valued permittivities and bound the volume fraction c1, the
anisotropy parameter c2, and c3.

The ε1,1 Padé approximant to the series (3.1) gives an upper bound εU2 that in
the isotropic case corresponds to the upper Hashin–Shtrikman bound [22, p. 574].
When εe /∈ {ε1, ε2}, the upper bound εU2 can be inverted giving a bound on c1 [11, 7].
Explicitly, the volume fraction is in the complex case bounded from below by [11, 7]

(4.1) cL1 = �(z)
(�(εeff) −�(ε2))

2 + (�(εeff) −�(ε2))
2

|z|2(�(εeff)�(ε2) −�(εeff)�(ε2))
.

In the same way, the generalization of the lower Hashin–Shtrikman bound εL2 [22,
p. 574] can be inverted. Explicitly, the volume fraction is bounded from above by
[11, 7]

(4.2) cU1 = 1 −�(z)
(�(εeff) −�(ε1))

2 + (�(εeff) −�(ε1))
2

|z|2(�(εeff)�(ε1) −�(εeff)�(ε1))
.

If the volume fraction c1 is known, we derive in the same way bounds on the anisotropy
parameter c2. The ε2,1 Padé approximant to the series (3.1) gives an upper bound
εU3 that in the isotropic case corresponds to the upper Beran bound [22, p. 574].
When εe /∈ {εL1 , εU1 }, the upper bound εU3 can be inverted, giving a bound on c2, and
when εe /∈ {εL2 , εU2 }, the ε2,2 Padé approximant can be inverted, giving a bound on c3.
Explicit bounds on the second moment c2 can be found in [12].

A disadvantage with the inverse bounds above, and the corresponding bounds in
the real case, is that the parameters c1, c2, . . . , cn−1 need to be known to bound cn.
Below we develop an algorithm that bounds c1, c2, . . . , cn without any knowledge of
the geometrical structure. Moreover, the bounds on the lower-order parameters are
significantly tighter than in [10, 11].

The bounds on the moments depend on the geometrical structure. In order to
study the dependence on the measure, we consider real-valued materials with ε2 ≥ ε1.
From the relation ε1 ≤ εe ≤ ε2 we have

(4.3) 0 ≤ G(s) ≤ 1

s
≤ 1.

Let s = 1 + δ, δ > 0. From the inequality above we have

(4.4) 1 ≥ G(1 + δ) =

∫ 1

0

1

1 − y + δ
dm(y) ≥ m({1})

δ
,

which implies that the measure m of the set {1} is zero, since δ > 0 is arbitrary. The
moments of the measure

(4.5) cn+1 = (−1)n
∫ 1

0

yn dm(y)
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then vanish in the limit n → ∞, and the absolute value of the moments c1, c2, . . .
form a nonincreasing sequence |c1| ≥ |c2| . . . . The convergence rate of the moments
cn to zero depend strongly on the support of the measure. If m has no support
close to y = 1, the convergence is exponential. The bounds cL1 and cU1 come close
together when the volume fraction c1 is low or high, and the bounds on c2 come close
together for anisotropic materials. The most challenging structures are therefore
when the moments are the arithmetic mean of their maximum and minimum values,
for example, when the first two moments are c1 = 1/2 and c2 = −c1c̃1/2, which in
two dimensions corresponds to an isotropic material.

4.1. The inverse algorithm. Assume that we are given M sets of measurement
data {ε1, ε1, εe} and calculate the lower bound on the volume fraction cL1 and the upper
bound on the volume fraction cU1 for all the sets. The tightest bounds on the volume
fraction c1 that can be obtained directly from the inverse bounds (4.1) and (4.2) are

(4.6) (cL1 )1 = max cL1 , (cU1 )1 = min cU1 ,

where the maximum and minimum are taken over all data sets.
In the second step, fix c1 ∈ [(cL1 )1, (c

U
1 )1] and calculate the inverse bounds cL2 and

cU2 for all M sets of measurement data. It is required that the anisotropy parameter
c2 for a fixed value on the volume fraction c1 satisfy

(4.7) max cL2 ≤ min cU2 ,

where the maximum and minimum are taken over all M data sets. This condition
gives improved restrictions on the possible volume fraction c1 and bounds on the
anisotropy parameter c2. The attainable values of (c1, c2) consist of a bounded region
in the (c1, c2)-plane, denoted by Ω2. We define

(cL1 )2 = min{c1; c1 ∈ Ω2},(4.8)

(cU1 )2 = max{c1; c1 ∈ Ω2}(4.9)

and

(cL2 )2 = min{c2; c2 ∈ Ω2},(4.10)

(cU2 )2 = max{c2; c2 ∈ Ω2}.(4.11)

The c1-independent bounds (cL2 )2 and (cU2 )2 in Figure 4.1 do not take into account
that the bounds on c2 depend on c1, but they can be used to simplify the algorithm.

In a third step, fix (c1, c2) ∈ Ω2 and calculate the inverse bounds cL3 and cU3 for
all M sets of measurement data. As above, we require that the parameter c3 for a
fixed value on c1 and c2 satisfy

(4.12) max cL3 ≤ min cU3 ,

where the maximum and minimum are taken over all M data sets. This requirement
gives further restrictions on the structural parameters c1 and c2. Moreover, we get
restrictions on the possible values on the c3. The attainable values of (c1, c2, c3) consist
of a bounded region in the (c1, c2, c3)-space, denoted by Ω3.

The same procedure can be used to an arbitrary order. In general, c1, . . . , cn−1-
independent bounds are obtained from

(cLn)m = min{cn; cn ∈ Ωm ⊂ R
m},(4.13)

(cUn )m = max{cn; cn ∈ Ωm ⊂ R
m},(4.14)
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Fig. 4.1. Region Ω2 represents the attainable values of (c1, c2) after two steps in the algorithm.

where m is the number of steps in the algorithm and n = 1, 2, . . . ,m. The tighter
bounds Ωm consist of a bounded region in R

m that for m > 2 is difficult to illustrate.
Instead we use the bounds (4.13) and (4.14) in the presentation of bounds on higher-
order structural parameters.

For the complex case, inverse bounds on higher-order moments cn were derived
in [11]. One disadvantage of the previous method [11] is that more steps in the
algorithm do not improve the bounds on the lower-order moments. For example,
the tightest possible bounds on the volume fraction with the previous method are
equivalent to step one in the new method presented here. Every further step in
the new algorithm improves the bounds on the volume fraction. In practice, the
accuracy in the measurements limits the tightness of the bounds on the structural
parameters cn.

In many cases, partial information of the geometrical structure is available; for
example, in the random case the composite is usually assumed to be isotropic, c2 =
−c1(1− c1)/d. This knowledge can be used in the algorithm to derive tighter bounds
on the volume fraction c1 and on the higher-order parameters. The bounds on the
structural parameters that were derived above can in principle be calculated analyt-
ically; however, the complexity in the formulas makes this difficult after a few steps
of the algorithm. Below we present numerical calculations of the bounds when three
steps of the algorithm are used.

5. Examples. The inverse algorithm in section 4.1 is illustrated by composites
with known geometry. That is, we calculate bounds on the moments cn and compare
with the exact values. We give three examples of the method when no structural infor-
mation is supposed to be known but information from measurements of the effective
permittivity is available. We show that the size of the attainable values of (c1, c2),
denoted by Ω2, decreases for each step and present values on the bounds (cLn)m and
(cUn )m when n = 1, 2, 3 and m = 1, 2, 3.

Three sets of measurements are used in all calculations in this section, but the
number of sets is arbitrary. In all cases, we assume that component one is a frequency-
independent material ε1(ω) = 3 in the chosen range of frequencies. The second
component is dispersive and is at the frequencies ω0, ω1, and ω2 measured to be

(5.1) ε2(ω0) = 4.1 + 4.5i, ε2(ω1) = 4.6 + 0.06i, ε2(ω2) = 3.7 + 0.04i.

The values on the components were previously used in [11]. We use the same values in
this paper to simplify the comparison between the methods. The algorithm presented
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Fig. 5.1. Left: The checkerboard structure, a two-dimensional and periodic geometry. Right:
Bounds on the structural parameters c1 and c2 in the checkerboard case. The exact values on the
parameters are c1 = 0.5 and c2 = −0.125. Region A, which is bounded by the two solid lines and the
two dotted lines, represents the attainable values of (c1, c2) after two steps in the algorithm. Region
B represents the possible values of (c1, c2) after three steps in the algorithm.

Table 5.1

The table shows the bounds (4.13) and (4.14) using the checkerboard structure, εe =
√
ε1ε2.

The bounds are on the parameters c1, c2, and c3 when one, two, and three steps in the algorithm
are used.

cL1 cU1 cL2 cU2 cL3 cU3
0.4986 0.5014 - - - -
0.4996 0.5004 -0.1281 -0.1219 - -
0.4999 0.5001 -0.1263 -0.1237 0.0595 0.0655

in this paper gives very tight bounds from the measurement data (5.1). In section 6,
we use measurements from a gold-magnesium oxide nanocomposite, which is a more
challenging example.

5.1. The checkerboard. The two-dimensional checkerboard structure εe =√
ε1ε2 corresponds exactly to Bruggeman’s formula at the percolation threshold c1 =

0.5 [24]. From the Stieltjes inversion formula [1, 22] it follows that εe =
√
ε1ε2 is

obtained from the measure dmC(y) = 1
π

√
(1 − y)/y dy. The moments (3.2) of mC

are

(5.2) cn+1 =

(
1/2
n + 1

)
,

where the first three moments of the measure are c1 = 0.5, c2 = −0.125, and
c3 = 0.0625. In this case, the moments converge very slowly to zero. The effec-
tive permittivities of the three sets (5.1) are in this case

(5.3) εe(ω0) = 3.91 + 1.727i, εe(ω1) = 3.72 + 0.024i, εe(ω2) = 3.33 + 0.018i.

Figure 5.1 shows the possible values of (c1, c2) when the inverse algorithm above is
used in two and three steps. The dashed lines cL2 (c1) and the solid lines cU2 (c1) are
calculated from the sets (5.1) and (5.3) when ε1 = 3. The figure shows the tightest
bounds on cL2 (c1) and cU2 (c1), which correspond to the frequencies ω1 and ω2. The
bounds on (c1, c2) get tighter for every step in the algorithm, and additional sets of
measurement data improve the bounds on the moments. Table 5.1 shows (cLn)m and
(cUn )m when n = 1, 2, 3 and m = 1, 2, 3. The algorithm gives only bounds on c1 in the
first step, but the inequalities (3.20) and (3.21) always hold. In this case, we have the
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ε1ε2 ε2

Fig. 5.2. The geometry used to generate the result shown in Figure 5.3 and in Table 5.2. Two
rods with length 0.8 and width 0.25 are located, at distance 0.3 apart, in a unit square. The volume
fraction is then c1 = 0.6. The applied field is oriented perpendicular to the rods.

bounds −0.25 ≤ c2 ≤ 0 and 0 ≤ c3 ≤ 0.126 after the first step. The bounds on the
lower-order moments come closer together for each step in the algorithm.

5.2. Rational functions. A rational effective permittivity εe corresponds in
the Stieltjes integral representation (2.2) to a sum of Dirac measures. The rational
function εU3 (3.15) is obtained from a sum of two Dirac measures, that we formally
write

(5.4) dm3U(y) =
c22
c3

δ

(
y +

c3
c2

)
dy +

c1c3 − c22
c3

δ(y) dy.

At the extreme point c3 = cmin
3 = c22/c1 the measure (5.4) corresponds to εU2 , which

is the Maxwell–Garnett formula [22]. The arithmetic mean εU1 is obtained from the
measure m3U when c2 → cmax

2 = 0. The moments of the measure (5.4) are

(5.5) cn+1 =
c22
c3

(
c3
c2

)n

, n = 1, 2, . . . .

Hence, the moments converge exponentially to zero. We use the values c1 = 0.5,
c2 = −0.125, and c3 = 0.0625 on the lowest three moments, which equals the three
lowest moments in the checkerboard case (5.2). The values on the components (5.1)
imply that the effective permittivity εe = εU3 in the three cases is

(5.6) εe(ω0) = 3.87 + 1.70i, εe(ω1) = 3.72 + 0.024i, εe(ω2) = 3.33 + 0.018i.

The inverse algorithm gives 0.498 ≤ c1 ≤ 0.5001 in the first step and, to numerical
accuracy, the exact values on c1, c2, and c3 after three steps in the algorithm.

5.3. An anisotropic example. Using the same material parameters as above,
we also give an example in the anisotropic and periodic case, Figure 5.2. The effective
permittivity and the moments c1 = 0.6, c2 = −0.125, and c3 = −0.1841 were for
this periodic structure numerically calculated in [10]. The numerical values on the
permittivity at the frequencies ω0, ω1, and ω2 are
(5.7)
εe(ω0) = 3.9426 + 0.9852i, εe(ω1) = 3.5147 + 0.01554i, εe(ω2) = 3.253 + 0.01306i.

Figure 5.3 shows the attainable values of (c1, c2) after two and three steps in the
inverse algorithm.

The dashed lines cL2 (c1) and the solid lines cU2 (c1) are calculated from the sets
(5.1) and (5.7) when ε1 = 3. The figure shows the tightest bounds on cL2 (c1) and
cU2 (c1), which correspond to the frequencies ω1 and ω2. Table 5.2 presents the bounds
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Fig. 5.3. Bounds on the moments c1 and c2 using the anisotropic geometry in Figure 5.2. The
numerical values on the parameters are c1 = 0.6 and c2 = −0.1841 [10]. Region A, which is bounded
by the two solid lines and the two dotted lines, represents the attainable values of (c1, c2) after two
steps in the algorithm. Region B (shaded) represents the possible values of (c1, c2) after three steps
in the algorithm.

Table 5.2

The table shows the bounds (4.13) and (4.14) using the geometry depicted in Figure 5.2. The
bounds are on the parameters c1, c2, and c3 when one, two, and three steps in the inverse algorithm
are used.

cL1 cU1 cL2 cU2 cL3 cU3
0.5984 0.6001 - - - -
0.5999 0.6000 -0.1853 -0.1838 - -
0.5999 0.6000 -0.1847 -0.1841 0.0950 0.0964

(4.13) and (4.14) on the three lowest moments after one, two, and three steps in the
algorithm. The inequalities (3.20) and (3.21) give the bounds −0.25 ≤ c2 ≤ 0 and
0 ≤ c3 ≤ 0.149 after the first step.

The geometry and the values on the components were previously used in [10,
11]. Here we obtain tight bounds on the lowest three moments without any previous
knowledge about the structure.

6. Nanocomposites. The effective permittivity belongs to the wedge bounded
by the rays εL0 = tε1 and εU0 = tε2, 0 ≤ t ≤ ∞ (see [22]). In a metal/dielectric
nanocomposite the angle between the rays is large compared to the dielectric case,
which results in less tight bounds on the moments cn. We give an example where
the composite is composed of gold and magnesium oxide and measured at the optical
wavelengths λ0 = 300 nm, λ1 = 500 nm, λ2 = 700 nm, and λ3 = 900 nm. The
permittivity of gold is [17]

(6.1) ε1(λ0) = −1.23 + 5.78i, ε1(λ1) = −2.27 + 3.81i

and

(6.2) ε1(λ2) = −16.79 + 1.07i, ε1(λ3) = −32.00 + 2.04i.

The magnesium oxide is lossless at optical wavelengths: ε2(λ0) = 3.26, ε2(λ1) = 3.05,
ε2(λ2) = 3.00, and ε2(λ3) = 2.98 [14]. We use the effective permittivity εe = εU3 and
the moments c1 = 0.5, c2 = −0.125, and c3 = 0.0625. The gold-magnesium oxide
composite has the effective permittivities

(6.3) εe(λ0) = 3.24 + 3.18i, εe(λ1) = 2.73 + 3.48i
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Fig. 6.1. The nanocomposite: Bounds on the structural parameters c1 and c2 using εe = εU3 .
Region A, which is bounded by two solid lines and one dotted line, represents the attainable values of
(c1, c2) after two steps in the algorithm. Region B (shaded) represents the possible values of (c1, c2)
after three steps in the algorithm. Left: The exact values on the parameters are c1 = 0.5, c2 =
−0.125, and c3 = 0.0625. Right: The exact values on the parameters are c1 = 0.5, c2 = −0.0833,
and c3 = 0.06.

Table 6.1

The nanocomposite: The table shows the bounds (4.13) and (4.14) using the effective permit-
tivity εe = εU3 and the moments c1 = 0.5, c2 = −0.125, and c3 = 0.0625. The bounds are on the
parameters c1, c2, and c3 when one, two, and three steps in the algorithm are used.

cL1 cU1 cL2 cU2 cL3 cU3
0.332 0.562 - - - -
0.350 0.554 -0.178 -0.104 - -
0.473 0.551 -0.174 -0.125 0.0625 0.1015

Table 6.2

The nanocomposite: The table shows the bounds (4.13) and (4.14) using the effective permit-
tivity εe = εU3 and the moments c1 = 0.5, c2 = −0.0833, and c3 = 0.06. The bounds are on the
parameters c1, c2, and c3 when one, two, and three steps in the algorithm are used.

cL1 cU1 cL2 cU2 cL3 cU3
0.352 0.514 - - - -
0.398 0.513 -0.101 -0.037 - -
0.490 0.513 -0.101 -0.081 0.0593 0.0788

and

(6.4) εe(λ2) = 0.625 + 0.314i, εe(λ3) = −0.344 + 0.513i.

Figure 6.1 shows the possible values of the lowest two moments c1 and c2 after two
and three steps in the inverse algorithm. Table 6.1 presents the bounds (4.13) and
(4.14) on the moments c1, c2, and c3 after one, two, and three steps in the algorithm.
The identical measure is used in section 5.2, where the inverse algorithm determines
c1, c2, and c3 from the three sets (5.1) and (5.6) when ε1 = 3 for the frequencies ω0,
ω1, and ω2.

The convergence rate of the moments depends strongly on the measure m. Assume
that the first three moments are c1 = 0.5, c2 = −c1c̃1/3 = −0.0833, and c3 = 0.06.
The effective permittivity from the measure (5.4) is for the gold-magnesium oxide
composite. Then

(6.5) εe(λ0) = 2.05 + 2.63i, εe(λ1) = 1.64 + 1.97i
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and

(6.6) εe(λ2) = −4.00 + 0.42i, εe(λ3) = −9.92 + 0.79i.

Figure 6.1 shows the possible values of the lowest two moments c1 and c2 after two
and three steps in the inverse algorithm, and Table 6.2 presents the bounds (4.13)
and (4.14) on the moments c1, c2, and c3 after one, two, and three steps in the
algorithm. If we assume that the material is known to be a three-dimensional isotropic
composite, c2 = −c1c̃1/3, the algorithm gives the tighter bounds 0.490 ≤ c1 ≤ 0.500
and 0.060 ≤ c3 ≤ 0.063.

7. Conclusions. We have presented a method to calculate structural parameters
(moments) from measured bulk properties of two-component composites, based on the
inverse bounds in [10, 11]. The method gives tight bounds on the volume fraction
c1 and also bounds on the higher-order structural parameters c2 and c3 after three
steps in the algorithm. The tightness of the bounds is sensitive to the geometry and
the contrast. The bounds are tighter for low-contrast materials and for anisotropic
materials. The results can be improved, e.g., tighter bounds on low-order moments
can be calculated, if at least one of the structural parameters is known or additional
measurement data is available.

The presented method can be extended to handle inaccurate measurement data.
Importantly, the method in this paper can be used together with arbitrary large error
bars on the measurement data and will still produce correct bounds on the structural
parameters. If the error bars are too large, however, the method can only reproduce
the fundamental bounds on cn. A first step in this direction was considered in [12]
where an algorithm based on the inverse bounds in [11] was used.

REFERENCES
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TRAVELING WAVES IN A BIOREMEDIATION MODEL∗
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Abstract. We study a bioremediation model that arises in restoring ground water and soil
contaminated with organic pollutants. It describes an in situ bioredimedation scenario in which a
sorbing substrate of contaminated soil is degraded by indigenous microorganisms in the presence
of an injected nonsorbing electron acceptor. The model relates to the coupling of the advection,
dispersion, and biological reaction simultaneously for the substrate, electron acceptor, and the total
biomass by two advection-reaction-diffusion equations and an ODE. We establish the existence of
traveling waves for the model with wider classes of kinetic functions. Our result generalizes previous
results for this model which were established only for multiplicative Monod kinetics. In addition,
the proof of our result, which is based on a dynamical systems approach, is simpler.

Key words. biodegradation model, traveling waves, shooting argument
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1. Introduction. In situ bioremediation makes use of microorganisms to trans-
fer hazardous chemicals into nontoxic products in places where contaminants are a
concern. Because it is less costly, safer, and faster than conventional treatment meth-
ods, this technology has found wide applications in the cleanup of groundwater and
soils polluted with chlorinated solvents, fuel hydrocarbons, and explosives [8, 19, 20].
Through the injection of growth nutrients and electron acceptors into the contami-
nated site, the organic pollutants serving as substrates are broken down through the
metabolism of the microorganisms. This is a complex process which involves physical,
chemical, and biological reactions as well as interactions between microorganisms and
the physical condition of the subsurface, such as fluid flow rates, media heterogeneity,
and contaminant availability. The success of bioremediation is determined by key
factors that control or limit the performance of the microorganisms. Mathematical
modeling has been extensively used for understanding this process and identifying
these key factors therefore to provide guidance in the improvement of in situ biore-
mediation technology [2, 3, 4, 7]. In recent years, analytical study of traveling wave
solutions for various bioremediation models becomes of interest to researchers in this
area [1, 9, 10, 12, 16]. Via analyzing the traveling waves, one can answer questions
such as: how fast does the incoming nutrient front travel? what is the contaminant
removal rate? which parameters are most significant in controlling the degradation
rate? etc.

In this paper, we consider traveling waves for a basic one-dimensional bioreme-
diation model that has been discussed in papers of Odencrantz [13, 14], Odencrantz,
Valocchi, and Rittman [15], Valocchi, Odencrantz, and Rittman [22], and Oya and
Valocchi [16]. The model relates to the coupling of the advection, dispersion, and
biological reaction simultaneously for the substrate, electron acceptor, and the total
biomass. It is assumed (cf. [1]) that (i) microbes are attached to the aquifer particles
in the soil and thus do not move, (ii) the acceptor is nonsorbing and thus travels
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2007; published electronically December 19, 2007.
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through the soil at pore water velocity v, and (iii) the substrate is sorbing and travels
at the retarded velocity 1/R with the retardation factor R > 1. Let S(x, t), A(x, t),
and M(x, t) be the concentrations of the substrate, acceptor, and microorganisms,
respectively. Then the mass balance equations for S, A, and M are

(1.1)

⎧⎨
⎩

St = d
RSxx − v

RSx − 1
Rf(S,A,M),

At = dAxx − vAx − γf(S,A,M),
Mt = −b(M −M0) + βf(S,A,M),

where d is the hydrodynamic dispersion coefficient, γ is the coefficient equal to the
mass of A utilized by the biomass per unit mass of the substrate degraded, b is
the cell decay coefficient for the biomass M , M0 is the neutral background biomass
concentration, β is the cell yield coefficient for the electron donor, and the reaction
function f describes the biodegradation rate, which has been taken to be the so-called
multiplicative Monod kinetics

(1.2) f = f(S,A,M) = qM

(
S

KS + S

)(
A

KA + A

)
,

where q is the maximum specific rate of the substrate utilization, and KS , KA are
the half-maximum rate concentrations of the substrate S and the acceptor A.

In the above model, the condition R > 1 physically means that the advective
velocity of the substrate S is slower than that of the acceptor A so that there is a
region overlap where the two concentrations mix. In this region, known as a biolog-
ically active zone (BAZ), microorganisms actively grow by consuming the nutrient
and degrading the substrates and the three components travel together. It is Oya
and Valocchi [16] who, via numerical simulations, first observed traveling waves with
constant wave speeds that consist of monotonically increasing fronts in S, monoton-
ically decreasing fronts in A, and pulses for M . They then analytically studied the
traveling wave solutions of (1.1) of the form (S(ξ), A(ξ),M(ξ)) with a constant wave
speed c (ξ = x− ct) that satisfy the boundary value problem

(1.3)

⎧⎨
⎩

dSξξ + (Rc− v)Sξ = f,
dAξξ + (c− v)Aξ = γf,
cMξ = b(M −M0) − βf,

and

(1.4) (S,A,M)(−∞) = (0, A0,M0), (S,A,M)(∞) = (S0, 0,M0),

and S(ξ) > 0, A(ξ) > 0, and M(ξ) > 0 for all ξ ∈ R, where A0 and S0 are positive
constants, representing the input of the nutrient concentration and the output of
the pollutant concentration. Note that the background bacteria population M0 is
the unique equilibrium between cell growth and decay. The asymptotic conditions
(1.4) can be explained as follows (cf. [1]): at −∞, behind the BAZ, the substrate
has been completely degraded, the acceptor level is equal to its injection level, and
the microorganism population has returned to its equilibrium level; at ∞, ahead of
the BAZ, the soil remains undisturbed and contaminated, and thus the substrate,
acceptor, and microorganisms are all equal to their initial levels. By formally adding
the appropriate multiples of the first two equations of (1.3) and integrating over R,
Oya and Valocchi obtained the following explicit formula for c:

(1.5) c =
v(A0 + γS0)

A0 + γRS0
.
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Using this formula they could predict the removal rate of the substrate and determine
the important parameters that control this rate.

Subsequently, Murray and Xin [12] established rigorously the existence of solu-
tions of (1.3)–(1.4) under the condition R > 1. They also obtained the following
estimates for the biomass M :

(1.6) M0 < M(ξ) ≤ M0 +
β(R− 1)A0S0

A0 + γS0
.

Note that the upper bound for M is independent of the reaction function f . Recently,
Beck, Doelman, and Kaper [1] reestablished the existence of solutions of (1.3)–(1.4) in
the case that both half saturation constants KS and KA are sufficiently large. Using
a change of coordinates, they reduced the problem into a singular perturbed one, for
which they were able to apply the theory of the geometric singular perturbations.
As they noted, their method provides further insight into the geometric structure of
the traveling wave solutions, which are useful in studying the stability of these wave
fronts.

The above three references [1, 12, 16] all considered the case where the reaction
function f takes the form in (1.2). However, the bioreaction in bioremediation is not
limited to the Monod equation. Instead, depending on the nature of the pollutants,
the kinetic term in the model may take other forms. For example, when microbial
growth is inhibited by the substrate, such as phenol degradation [11, 17, 21], the
biodegradation function f can be described by the Haldane inhibition model

f = qM

(
S

KS + S + S2/KI

)(
A

KA + A

)
,

where KI is the inhibition constant. Biodegradation of certain organic compounds is
also described by the Moser equation [6]

f = qM

(
Sn

KS + Sn

)(
A

KA + A

)
,

where n is the order of the enzyme reaction. The first order kinetic function f =
qMSA was discussed in [14]. There are numerous other kinetic models that are
available. Generally speaking, the selection of a kinetic model appropriate to the
conditions of the site being modeled is difficult because the differences among the
models are not fully understood.

In this paper, we extend the works in [1, 12, 16] to a large class of kinetic models,
including those mentioned above. We prove that there exist traveling waves for all of
these kinetic models. This indicates biologically that the system (1.1) can be applied
to model the bioremediation of broader categories of organic pollutants. Our main
result is as follows.

Theorem 1.1. Assume that R > 1 and that f satisfies

(1.7)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f(S,A,M) = ϕ1(S)ϕ2(A)ϕ3(M),
f is C2 in a neighborhood of (S0, 0,M0),
ϕi is locally Lipschitz on (0,∞) (i = 1, 2, 3),
ϕi > 0 on (0,∞) (i = 1, 2, 3),
ϕ1(0) = ϕ2(0) = 0.

Then (1.3)–(1.4) admits a traveling wave solution (S,A,M, c) with c given in (1.5).
Moreover, M satisfies (1.6) and, for all ξ ∈ R,
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(1.8)

{
0 < S(ξ) < S0, 0 < S′(ξ) < v(R−1)A0S0

d(A0+γRS0)
,

0 < A(ξ) < A0, −γv(R−1)A0S0

d(A0+γRS0)
< A′(ξ) < 0.

We prove Theorem 1.1 in the next section by a different approach from those
in [1, 12]. The approach in [12] is to apply the Leary–Schauder degree theory to a
regularized system with Dirichlet boundary conditions on a large but finite interval
and then to pass to the infinite line and remove the regularization. This method
involves many rather delicate a priori estimates that apparently depend on the specific
form of f given in (1.2). Our approach is a dynamical systems approach; namely, we
directly study flows of (1.3) in the phase space with an aid of the stable manifold
theorem and then apply a simple shooting argument. This approach is commonly
used for planar systems and, generally speaking, is difficult for higher dimensional
systems. For the system (1.3), it turns out that this approach is simpler and yields a
much shorter proof. An outline of the proof is presented after the proof of Lemma 2.2.
We conclude this paper with a short summary.

Before ending this section we give the following remark. The problem (1.3)–(1.4)
does not have any positive solutions if 0 < R ≤ 1. To see this, we assume on the
contrary that (1.3)–(1.4) has a positive solution (S,A,M). Note that c− v ≥ 0 from
(1.5). Using the second equation of (1.3) and A(−∞) = 0, we obtain

A′(ξ) =
γ

d

∫ ξ

−∞
e−

c−v
d (ξ−η)f(S(η), A(η),M(η)) dη > 0 ∀ξ ∈ R,

which yields that A(∞) = 0 is impossible.

2. Proof of Theorem 1.1. Throughout this section, we assume that R > 1.
Let c be defined in (1.5). We have that

b1 := Rc− v =
v(R− 1)A0

A0 + γRS0
> 0, b2 := −(c− v) =

γv(R− 1)S0

A0 + γRS0
=

γS0

A0
b1 > 0.

Employing the rescalings

b̃1 =
b1
d
, α =

1

S0d
, b̃2 =

b2
d
, γ̃ =

γ

A0d
, b3 =

b

c
, β̃ =

β

M0c
,

S̃ =
S

S0
, Ã =

A

A0
, M̃ =

M

M0
, f̃(S̃, Ã, M̃) = f(S,A,M), z = −ξ,

we reduce (1.3) and (1.4) into (after dropping the tildes)

(2.1)

⎧⎨
⎩

S′′ − b1S
′ = αf,

A′′ + b2A
′ = γf,

M ′ = −b3(M − 1) + βf,

and

(2.2) (S,A,M)(−∞) = (1, 0, 1), (S,A,M)(∞) = (0, 1, 1),

where “prime” is d/dz. Therefore, in order to prove Theorem 1.1, it suffices to estab-
lish the following theorem.

Theorem 2.1. Assume that b1, b2, b3, α, β, and γ are positive constants satis-
fying αb2 = γb1 and that f satisfies (1.7) with S0 = A0 = M0 = 1. Then (2.1)–(2.2)
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admits a solution (S,A,M) such that, for z ∈ R,

(2.3)

⎧⎨
⎩

0 < S(z) < 1, −b1 < S′(z) < 0,
0 < A(z) < 1, 0 < A′(z) < b2,
1 < M(z) < 1 + βb1/α.

We remark that if the diffusion coefficients in the first two equations of (1.3) are
distinct, then with slight modifications of the above rescalings we can still reduce (1.3)
into the system (2.1), yielding that Theorem 1.1 also holds in this more general case.
Noting that all bounds in (2.3) are independent of f , this observation plays a key role
in the last part of the proof of Theorem 2.1.

In order to prove Theorem 1.1, we need the following lemma.
Lemma 2.2. (i) If (S,A,M) is a solution of (2.1)–(2.2), then (S, T,A,M) is a

solution of

(2.4)

⎧⎪⎪⎨
⎪⎪⎩

S′ = T,
T ′ = αf + b1T,
A′ = −(γb1/α)(S − 1) + (γ/α)T − b2A,
M ′ = βf − b3(M − 1),

and

(2.5) (S, T,A,M)(−∞) = (1, 0, 0, 1), (S, T,A,M)(∞) = (0, 0, 1, 1).

Conversely, if (S, T,A,M) is a solution of (2.4)–(2.5), then (S,A,M) is a solution
of (2.1)–(2.2).

(ii) The line T = b1(S − 1), A = 0, and M = 1 in the (S, T,A,M)-phase space
lies on the unstable manifold Wu of (2.4) at (1, 0, 0, 1).

(iii) If (S, T,A,M) is a solution of (2.4) that satisfies the boundary condition at
−∞ in (2.5) with its maximal existence interval (−∞, ω), then, for z ∈ (−∞, ω),

(2.6)

⎧⎪⎪⎨
⎪⎪⎩

T (z) − b1[S(z) − 1] = α
∫ z

−∞ f(S(η), A(η),M(η)) dη,

A′(z) = γ
∫ z

−∞ e−b2(z−η)f(S(η), A(η),M(η)) dη,

A(z) = (γ/b2)
∫ z

−∞ [1 − e−b2(z−η)]f(S(η), A(η),M(η)) dη,

M(z) = 1 + β
∫ z

−∞ e−b3(z−η)f(S(η), A(η),M(η)) dη.

If, in addition, S(z) > 0, T (z) < 0 for all z ∈ (−∞, ω) and A(z) > 0 for all sufficiently
negative z, then ω = ∞, (S, T,A,M)(∞) = (0, 0, 1, 1) and, for z ∈ R,

(2.7)

⎧⎨
⎩

0 < S(z) < 1, b1[S(z) − 1] < T (z) < 0,

0 < A(z) < γb1
αb2

[1 − S(z)], 0 < A′(z) < γb1
α [1 − S(z)],

1 < M(z) < 1 + βb1
α [1 − S(z)],

and, in particular, (2.3) holds.
Proof. (i) and (ii) can be verified directly. Equation (2.6) follows directly from

(2.4) and the boundary condition at −∞ in (2.5). We now show (2.7). First, the
assumptions in this part imply f(S(z), A(z),M(z)) > 0 for all sufficiently negative
z which together with the second, third, and fourth equations in (2.6) yields that
A(z) > 0, A′(z) > 0, M(z) > 1, and f(S(z), A(z),M(z)) > 0 for all z ∈ (−∞, ω).
Consequently, the first equation in (2.6) yields the first inequality for T in (2.7)
and

∫ z

−∞ f(S(η), A(η),M(η)) dη < (b1/α)[1 − S(z)] which together with the second,
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third, and fourth equations in (2.6) yields the upper bounds for A, A′, and M in
(2.7). This shows (2.7). Finally, using these estimates and the fact that (0, 0, 1, 1)
is an equilibrium point of (2.4), we conclude that ω = ∞ and (S, T,A,M)(∞) =
(0, 0, 1, 1).

Now we outline the proof of Theorem 2.1 given later. From Lemma 2.2(i) it
suffices to show that the problem (2.4)–(2.5) has a solution. We start with analyzing
the local dynamics of (2.4) at (1, 0, 0, 1). Simple algebra yields, at (1, 0, 1), DSf =
ϕ′

1(1)ϕ2(0)ϕ3(1) = 0, DMf = ϕ1(1)ϕ2(0)ϕ′
3(1) = 0, and

(2.8) σ := DAf = ϕ1(1)ϕ′
2(0)ϕ3(1) ≥ 0,

and so the coefficient matrix for the linearized system of (2.4) at (1, 0, 0, 1) is

E =

⎛
⎜⎜⎝

0 1 0 0
0 b1 ασ 0

−γb1/α γ/α −b2 0
0 0 βσ −b3

⎞
⎟⎟⎠ ,

and the eigenvalues of E are

(2.9)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λ1 := b1,

λ2 := 1
2

(
−b2 +

√
b22 + 4γσ

)
,

λ3 := 1
2

(
−b2 −

√
b22 + 4γσ

)
,

λ4 = −b3.

It follows that λ3 < 0, λ4 < 0, λ1 > 0, and λ2 > 0 if σ > 0 and λ2 = 0 if σ = 0. Hence,
(2.4) has a two-dimensional local unstable manifold Wu

loc at (1, 0, 0, 1) if σ > 0 and
a one-dimensional unstable manifold and one-dimensional center manifold if σ = 0.
Note that, from (2.8), σ = 0 if and only if ϕ′

2(0) = 0. We proceed the proof of
Theorem 2.1 in three cases based on 0 < λ2 < λ1, or λ1 < λ2, or either λ2 = 0 or
λ1 = λ2.

Case 1. We consider 0 < λ2 < λ1. Then there is a unique one-dimensional
strongly unstable manifold on Wu

loc that is tangent to the eigenvector p1 at (1, 0, 0, 1)
and indeed lies on the line T = b1(S − 1), A = 0, and M = 1 from Lemma 2.2(ii);
the rest flows on Wu

loc are all tangent to the eigenvector p2 at (1, 0, 0, 1). We take a
continuous “circular arc” Γ1 on Wu

loc whose projection on the (S, T )-plane is displayed
in the left figure in Figure 1, and then show that (i) the components S(z), T (z), and
A(z) of every solution starting on Γ1 at z = 0 satisfy S(z) < 1, T (z) < 0, and A(z) > 0
for all sufficiently negative z; (ii) for each solution starting near one end of Γ1 with
T (0) > 0, there exists a z0 ∈ R such that T (z0) = 0, T ′(z0) > 0, T (z) < 0 for z < z0

and S(z) > 0 for z ≤ z0 (i.e., T = 0 occurs before S = 0 does); (iii) for any solution
starting near the other end of Γ1 with T (0) < 0, there is a z̄0 such that S(z̄0) = 0,
S(z) > 0 for z < z̄0, and T (z) < 0 for z ≤ z̄0 (i.e., S = 0 occurs before T = 0 does).
Using the fact that S = 0 and T = 0 cannot occur at the same time, we conclude by a
shooting argument that there is a point on Γ1 such that the solution of (2.4) starting
at this point satisfies S > 0 and T < 0 on (−∞, ω), which gives a desired solution by
Lemma 2.2(iii).

Case 2. We consider λ1 < λ2. Then the unique one-dimensional strongly unstable
manifold on Wu

loc is tangent to the eigenvector p2 at (1, 0, 0, 1), and the rest flows on
Wu

loc are all tangent to the eigenvector p1 at (1, 0, 0, 1). We take a continuous “circular
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Fig. 1. In the left and right figures, the curves sketched are the projections of the curves in
the (S, T,A,W )-phase space into the (S, T )-plane corresponding to 0 < λ2 < λ1 and λ1 < λ2,
respectively: curve 1 is the projection of the eigenvector p2, curve 2 is the line T = b1(S−1), which
is parallel to the projection of the eigenvector p1, curve 4 is the projection of Γ1 (resp., Γ2) which
is taken on Wu

loc, curves 3 and 5 are the projections of two solution curves of (2.4) passing through
Γ1 (resp., Γ2) at z = 0, and curve 6 in the right figure is the projection of the strongly unstable
manifold which is tangent to p2.

arc” Γ2 on Wu
loc whose projection on the (S, T )-plane is displayed in the right figure

in Figure 1, and then show that the statements (i), (ii), and (iii) in Case 1 hold after
all Γ1 there are replaced by Γ2. Then using the same shooting argument as used in
Case 1 shows that there is a point on Γ2 such that the solution of (2.4) starting at
this point gives a desired solution in this case.

Case 3. We consider either λ2 = 0 or λ1 = λ2. We first construct approximating
systems to (2.4) with each positive integer n

(2.10)

⎧⎪⎪⎨
⎪⎪⎩

S′ = T,
T ′ = b1T + αfn,
A′ = −(γb1/α)(S − 1) + (γ/α)T − b2A,
M ′ = −b3(M − 1) + βfn,

where fn(S,A,M) = ϕ1(S)[ϕ2(A) + 1
nA]ϕ3(M), which clearly satisfies (1.7) with

S0 = A0 = M0 = 1. Let σn := ϕ1(1)[ϕ′
2(0) + 1

n ]ϕ3(1) = σ + 1
nϕ1(1)ϕ3(1), λ1,n := b1,

and λ2,n := 1
2

(
−b2 +

√
b22 + 4γσn

)
. It follows that λ1,n < λ2,n if λ1 = λ2 and n ≥ 1,

and 0 < λ2,n < λ1,n if λ2 = 0 and n ≥ n0 for some n0 > 0. Note that λ1,n and
λ2,n are two positive eigenvalues of the linearized system of (2.10) at (1, 0, 0, 1). Then
applying the results from Cases 1 and 2 to (2.10) for each n ≥ n0 yields a sequence
of solutions (Sn, Tn, An,Mn) of (2.10) which have the same estimates given in (2.3)
that are independent of n. Then, applying the Arzela–Ascoli theorem (cf. [5]) on the
interval [−k, k] for each positive integer k and then using a diagonal selection process
yields a subsequence (Snk

, Tnk
, Ank

,Mnk
) that converges uniformly on any compact

subset of R, whose limit function gives a desired solution of (2.4) in this case.

Proof of Theorem 2.1. As discussed previously, we first assume that λ1 and λ2

are both positive and λ1 �= λ2. We then find that
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p1 =

⎛
⎜⎜⎝

1
λ1

0
0

⎞
⎟⎟⎠ , p2 =

⎛
⎜⎜⎜⎝

1
λ2

λ2(λ2−λ1)
ασ

βλ2(λ2−λ1)
α(λ2+b3)

⎞
⎟⎟⎟⎠

are the eigenvectors of E associated with λ1 and λ2, respectively. It follows from the
stable manifold theorem that (2.4) has a two-dimensional local unstable manifold Wu

loc

near (1, 0, 0, 1) which is tangent to the plane spanned by p1 and p2. More precisely,
we make change of variables⎛

⎜⎜⎝
S − 1
T
A

M − 1

⎞
⎟⎟⎠ = P

⎛
⎜⎜⎝
x1

x2

x3

x4

⎞
⎟⎟⎠ := [p1, p2, p3, p4]

⎛
⎜⎜⎝
x1

x2

x3

x4

⎞
⎟⎟⎠ ,

where p3 and p4 are (generalized) eigenvectors of E associated with λ3 and λ4, re-
spectively, transform (2.4) into

(2.11) x′ = (P−1EP )x + G(x), P−1EP :=

(
Q1 0
0 Q2

)
,

where Q1 =
(
λ1 0
0 λ2

)
and G(x) = O(|x|2), and correspondingly transform Wu

loc into a

two-dimensional local unstable manifold W̃u
loc of (2.11) at x = 0 which is tangent to

the (x1, x2)-plane. Consequently, W̃u
loc can be written as the graph of

x3 = h1(x1, x2) = O(x2
1 + x2

2), x4 = h2(x1, x2) = O(x2
1 + x2

2),

where x1 and x2 are sufficiently small, and the x1 and x2 components of the flows of
(2.11) on W̃u

loc satisfy a planar system

(2.12) x′
1 = λ1x1 + N1(x1, x2), x′

2 = λ2x2 + Ñ2(x1, x2)x2,

where N1(x1, x2) = O(x2
1 + x2

2) and Ñ2(x1, x2) = O(
√
x2

1 + x2
2). We note that the

factor x2 in the nonlinear term Ñ2(x1, x2)x2 is due to the fact that x1-axis in the x
space corresponds to the line T = λ1(S − 1), A = 0, and M = 1 in the (S, T,A,M)
space (indeed, this fact also implies that h1(x1, 0) = 0 and h2(x1, 0) = 0 so that we
can write h1(x1, x2) = h̃1(x1, x2)x2 and h2(x1, x2) = h̃2(x1, x2)x2, correspondingly).
To proceed further, we need to distinguish two cases based on whether 0 < λ2 < λ1

or λ1 < λ2.
Case 1. Assume that 0 < λ2 < λ1. We first fix a δ > 0 so small that the set

x2
1 + x2

2 ≤ δ2 is negatively invariant for (2.12), the unstable manifold of (2.4)

(2.13) Wu
loc(δ) :=

⎧⎪⎪⎨
⎪⎪⎩

⎛
⎜⎜⎝

S
T
A
M

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1
0
0
1

⎞
⎟⎟⎠+ P

⎛
⎜⎜⎝

x1

x2

h1(x1, x2)
h2(x1, x2)

⎞
⎟⎟⎠ : x2

1 + x2
2 ≤ δ2

⎫⎪⎪⎬
⎪⎪⎭

is negatively invariant and, furthermore, S > 0 and M > 0 if (S, T,A,M) ∈ Wu
loc(δ).

Hence, if (x1(z), x2(z)) is a solution of (2.12) with x2
1(0) + x2

2(0) ≤ δ2, then, for all
z ∈ (−∞, 0], x2

1(z) + x2
2(z) ≤ δ2, and

(2.14)

⎛
⎜⎜⎝

S(z) − 1
T (z)
A(z)

M(z) − 1

⎞
⎟⎟⎠ = x1(z)p1 + x2(z)p2 + O

(
x2

1(z) + x2
2(z)

)



688 SHANGBING AI
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b
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Fig. 2. In the left figure, curve C1 and four arrowed solution curves of system (2.12) are
sketched in the (x1, x2)-plane: C1 corresponds to curve 4 in the left figure of Figure 1, curve a to
curve 3, curve b to curve 5, x1-axis to curve 2, and x2-axis to curve 1. In the right figure, curve C2

and four arrowed solution curves of system (2.17) are sketched in the (x̃1, x2)-plane: C2 corresponds
to curve 4 in the right figure of Figure 1, curve a to curve 3, curve b to curve 5, x̃1-axis to curve 2,
and x2-axis to curve 6.

is a solution of (2.4) lying on Wu
loc(δ) for z ∈ (−∞, 0].

We now consider the solutions of (2.12) with initial values (x10(θ), x20(θ)) =
(δ cos θ, δ sin θ) with θ ∈ [−π, 0] on the lower half of the circle C1: x2

10 + x2
20 = δ2; see

the left figure in Figure 2. One can verify easily that the image of C1 under the linear
mapping P−1 defines the continuous curve Γ1 as described in the outline of the proof
of Theorem 2.1. Note that, in this case, the x1-axis is the strongly one-dimensional
unstable manifold of (2.12) (correspondingly, the line T = b1(S − 1), A = 0, and
M = 1 is the strongly one-dimensional unstable manifold of (2.4)). Therefore, for
θ ∈ (−π, 0), we obtain from (2.12) that, as z → −∞,

(2.15)

(
x1(z, θ)
x2(z, θ)

)
= νθe

λ2z

[(
0
1

)
+ O(eλ2z)

]

for some νθ �= 0. It then follows from (2.14) that, as z → −∞,

(2.16)

⎛
⎜⎜⎝

Sθ(z) − 1
Tθ(z)
Aθ(z)

Mθ(z) − 1

⎞
⎟⎟⎠ = νθe

λ2z
[
p2 + O(eλ2z)

]
.

Note that, for θ ∈ (−π, 0), x20(θ) < 0. It follows from (2.12) that, for z < 0,

x2(z, θ) = x20(θ)e
∫ z
0

[λ2+Ñ2(x1(η,θ),x2(η,θ))] dη < 0,

which yields from (2.15) that νθ < 0. Hence, from the signs of the components of p2

and (2.16) we get Sθ(z)− 1 < 0, Tθ(z) < 0, and Aθ(z) > 0 for all sufficiently negative
z. Since Sθ > 0 and Mθ > 0 on (−∞, 0], (2.6) in Lemma 2.2(iii) gives Aθ > 0, Mθ > 1,
and f(Sθ, Aθ,Mθ) > 0 on (−∞, 0]. Thus, we conclude that (a) Tθ = 0 occurs at most
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once in (−∞, 0] since at such a point T ′
θ = αf(Sθ, Aθ,Mθ) > 0; (b) if Tθ(0) < 0, then

Tθ(z) < 0 for all z ∈ (−∞, 0].
Next, note that, for θ = 0, (x10(0), x20(0)) = (δ, 0) and (2.14) yield that Sθ(0) > 1

and Tθ(0) = λ1(Sθ(0) − 1) > 0. Then, the continuity of Sθ and Tθ in both z and
θ implies Sθ(z) − 1 > 0 and Tθ(z) > 0 for z sufficiently close to 0 and θ ∈ (−π, 0)
sufficiently close to 0. This together with the conclusions (a) and (b) yields that, for
θ ∈ (−π, 0) sufficiently close to 0, Tθ changes sign exactly once in (−∞, 0). Note
that, for any θ ∈ [−π, 0], S2

θ (z) + T 2
θ (z) > 0 for any z in its domain (for if this is

not true, the uniqueness theorem would yield Sθ ≡ 0 and Tθ ≡ 0, contradicting that
S2
θ (0) + T 2

θ (0) > 0). Therefore, letting

Θ1 =

⎧⎨
⎩θ ∈ (−π, 0) : ∃zθ ∈ R such that

⎧⎨
⎩

Tθ(zθ) = 0,
Tθ < 0 on (−∞, zθ),
Sθ > 0 on (−∞, zθ]

⎫⎬
⎭ ,

we see that Θ1 contains all θ ∈ (−π, 0) sufficiently close to 0. Furthermore, for
any θ ∈ Θ1, by virtue of (2.6) and Sθ > 0 on (−∞, zθ] we have Aθ > 0, Mθ > 1,
f(Sθ, Aθ,Mθ) > 0 on (−∞, zθ], and, consequently, T ′

θ = αf(Sθ, Aθ,Mθ) > 0 at z = zθ,
which together with the conclusion (a) above and the continuity of (Sθ, Tθ, Aθ,Mθ)
in z and θ yields that Θ1 is open (relative to the interval (−π, 0)).

Now, we define

Θ2 :=

⎧⎨
⎩θ ∈ (−π, 0) : ∃z̄θ ∈ R such that

⎧⎨
⎩

Sθ(z̄θ) = 0,
Sθ > 0 on (−∞, z̄θ),
Tθ < 0 on (−∞, z̄θ]

⎫⎬
⎭ ,

and claim that, if θ ∈ (−π, 0) sufficiently close to −π, then θ ∈ Θ2. This is because,
for θ = −π, (S−π, T−π) lies on the line T = b1(S − 1) with T−π < 0, and, as θ → −π,
the fact that Tθ(0) → T−π(0) < 0 and the conclusion (b) above yields that Tθ < 0 on
(−∞, 0]; furthermore, since there is a finite z̄−π > 0 such that S−π(z̄−π) = 0, S−π > 0
on [0, z̄−π), and T−π < 0 on [0, z̄−π], the continuity of Sθ and Tθ in z and θ yields
that there is a z̄θ such that Sθ(z̄θ) = 0, Sθ > 0 on [0, z̄θ), and Tθ < 0 on [0, z̄θ]. This
shows the above claim. Since T ′

θ(z̄θ) < 0 for any θ ∈ Θ2, the same reasoning above
yields that Θ2 is open.

Since Θ1 and Θ2 are open and disjointed, the connectedness of the interval (−π, 0)
yields that there is a θ = θ∗ ∈ (−π, 0) \ (Θ1 ∪ Θ2) so that Sθ∗ > 0 and Tθ∗ < 0 on
its domain (−∞, ω) (here we again used the fact that Sθ∗ and Tθ∗ cannot equal zero
at the same z). Then, applying Lemma 2.2(iii) yields that (Sθ∗ , Tθ∗ , Aθ∗ ,Mθ∗) gives
a desired solution of (2.4).

Case 2. Assume that λ1 < λ2. In this case, (2.12) has a unique strongly unstable
manifold x1 = h(x2) that is tangent to the x2-axis (cf. [18]). We straighten this
manifold by introducing x̃1 = x1 − h(x2) and use the identity (due to the local
invariance of this manifold) λ1h(x2)+N1(h(x2), x2) = h′(x2)[λ2x2 + Ñ2(h(x2), x2)x2]
to write (2.12) as, in terms of the new variables (x̃1, x2),

(2.17)

{
x̃′

1 = λ1x̃1 + Ñ1(x̃1, x2)x̃1,

x′
2 = λ2x2 + Ñ2(x̃1 + h(x2), x2)x2,

where

Ñ(x̃1, x2)x̃1 = N1(x̃1 + h(x2), x2) −N1(h(x2), x2)

− h′(x2)[Ñ2(h(x2), x2) − Ñ2(x̃1 + h(x2), x2)]x2.
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As in Case 1, we fix a δ > 0 so small that the set x̃2
1 + x2

2 ≤ δ2 is negatively invariant
for (2.17), the unstable manifold Wu

loc(δ) of (2.4) is negatively invariant, and S > 0
and M > 0 if (S, T,A,M) ∈ Wu

loc(δ), where Wu
loc(δ) is defined in the same way as in

(2.13) except that each x1 in (x1, x2, h1(x1, x2), h2(x1, x2))
� is replaced by x̃1 +h(x2)

and that x2
1 + x2

2 ≤ δ2 is replaced by x̃2
1 + x2

2 ≤ δ. Hence, if (x̃1, x2) is a solution of
(2.17) with x̃2

1(0) + x2
2(0) ≤ δ2, then, for all z ∈ (−∞, 0], x̃2

1(z) + x2
2(z) ≤ δ2, and

(2.18)

⎛
⎜⎜⎝

S(z) − 1
T (z)
A(z)

M(z) − 1

⎞
⎟⎟⎠ = x̃1(z)p1 + x2(z)p2 + O(x̃2

1(z) + x2
2(z))

is a solution of (2.4) lying on Wu
loc(δ) for z ∈ (−∞, 0]. We note that, in the

(x̃1, x2, x3, x4)-coordinate system, x̃1-axis corresponds to the line T = b1(S − 1),
A = 0, and M = 1, and the curve defined by {(x̃1 + h(x2), x2, h1(x̃1 + h(x2), x2),
h2(x̃1 + h(x2), x2)) : x̃1 = 0, |x2| ≤ δ} corresponds to the strongly unstable manifold
of (2.4) which is tangent to p2.

Therefore, we consider the initial values (x̃10(θ), x20(θ)) on the quarter of the
circle C2: x̃2

1 + x2
2 = δ2 lying in the second quadrant with x̃10(θ) = δ cos θ < 0 and

x20(θ) = δ sin θ > 0 for θ ∈ [π/2, π]; see the right figure in Figure 2. The image of C2

under the mapping P̂ defines the curve Γ2 as described in the outline of the proof of
Theorem 2.1, where P̂ is the composition function defined by P̂ = P−1 ◦ P̃−1, and
here P̃ is the nonlinear mapping P̃ (x̃1, x2, x3, x4) = (x̃1 +h(x2), x2, x3, x4). It follows
from (2.17) that, for θ ∈ (π/2, π), there is a μθ �= 0 such that, as z → −∞,

(2.19)

(
x̃1(z, θ)
x2(z, θ)

)
= μθe

λ1z

[(
1
0

)
+ O(eλ1z)

]
,

and, from (2.18),

(2.20)

⎛
⎜⎜⎝

Sθ(z) − 1
Tθ(z)
Aθ(z)

Mθ(z) − 1

⎞
⎟⎟⎠ = μθe

λ1z

⎡
⎢⎢⎣
⎛
⎜⎜⎝

1
λ1

0
0

⎞
⎟⎟⎠+ O(eλ1z)

⎤
⎥⎥⎦ .

Since θ ∈ (π/2, π), x10(θ) = δ cos θ < 0, it follows that, for z ∈ (−∞, 0],

x̃1(z, θ) = x10(θ)e
∫ z
0

[λ1+Ñ1(x̃(η,θ),x2(η,θ))] dη < 0.

This implies from (2.19) that μθ < 0, and then (2.20) yields 0 < Sθ(z) < 1, Tθ(z) < 0,
and Mθ(z) > 0 for all sufficiently negative z. However, since the third component of
p1 is zero, we are unable to determine the sign of Aθ(z) near z = −∞ from (2.20). In
order to see this sign, noting that, as z → −∞,

A′′
θ + b2A

′
θ − γσAθ = −γ

{
[ϕ1(Sθ) − ϕ1(1)]ϕ2(Aθ)ϕ3(1)

+ ϕ1(1)[ϕ2(Aθ) − ϕ′
2(0)Aθ]ϕ3(Mθ)

+ ϕ1(1)ϕ′
2(0)Aθ[ϕ3(Mθ) − ϕ3(1)]

}
= O(eλ1z)Aθ,
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we obtain by the variation of constant formula that there is a μ̃θ �= 0 such that, as
z → −∞,

(2.21)

(
Aθ(z)
A′

θ(z)

)
= μ̃θe

λ2z

[(
1
λ2

)
+ O(eλ1z)

]
.

We claim that μ̃θ > 0. If not, then (2.21) implies that Aθ(z) < 0 for all sufficiently
negative z. This together with (2.6) implies that Aθ < 0, Mθ < 1, and f(Sθ, Aθ,Mθ) <
0 for all z ∈ (−∞, 0]. (Note that, if necessary, we redefine ϕ3(M) for M < 1/2
such that ϕ3(M) = ϕ3(1/2).) Then, using the first equation in (2.6) yields Tθ(0) −
b1[Sθ(0) − 1] < 0, which contradicts our choice of θ. Therefore, we must have μ̃θ > 0
and so Aθ(z) > 0 for all sufficiently negative z, as expected. Consequently, we have
that f(Sθ, Aθ,Mθ) > 0 on (−∞, 0], and we then conclude as in Case 1 that (a) Tθ = 0
occurs at most once in (−∞, 0) since at such a point T ′

θ = αf(Sθ, Aθ,Mθ) > 0; (b) if
Tθ(0) < 0, then Tθ(z) < 0 for all z ∈ (−∞, 0].

Next, we define the sets Θ1 and Θ2 in the same way as those in Case 1 except that
θ ∈ (−π, 0) is replaced by θ ∈ (π/2, π) in each of those definitions. In a similar manner
we show that Θ1 contains all such θ ∈ (π/2, π) that are sufficiently close to π/2, and
Θ2 contains all such θ ∈ (π/2, π) that are sufficiently close to π. Consequently,
the same shooting argument used in Case 1 yields that there exists at least one
θ∗∗ ∈ (π/2, π)\ (Θ1∪Θ2) such that the solution (Sθ, Tθ, Aθ,Mθ) of (2.4) with θ = θ∗∗

gives a desired solution.
It remains to consider Case 3.
Case 3. We assume that either λ1 = λ2 or λ2 = 0. As discussed in the outline of

the proof of Theorem 2.1, we consider the approximating systems (2.10) with n ≥ n0

to which we are able to apply the results obtained in Cases 1 and 2 to obtain a sequence
of solutions (Sn, Tn, An,Mn) of (2.10) that satisfy (2.5) and the estimates in (2.3).
Since these estimates do not depend on n, using the equations in (2.10) we see that T ′

n

and M ′
n are uniformly bounded on R. Then, applying the Arzela–Ascoli theorem on

[−k, k] for each positive integer k and then using a diagonal selection process yield that
there is a subsequence (Snk

, Tnk
, Ank

,Mnk
) that converges uniformly on any compact

subset of R, with its limit denoted by (S, T,A,M). Clearly, (S, T,A,M) is a solution
of (2.4) on R and satisfies (2.3) in which the strict inequality signs “<” (resp., “>”)
are replaced by “≤” (resp., “‘≥”). Consequently, since S′ = T ≤ 0 and A′ ≥ 0 on
R, the limits (S(±∞), A(±∞)) exist. Since M and f(S,A,M) are bounded on R, it
follows from the last equation of (2.4) that M must satisfy the last equation in (2.6)
which together with f(S(z), A(z),M(z)) → 0 as z → ±∞ yields that M(±∞) = 1.
By means of the first two equations in (2.1), we see that S′′, A′′ are bounded on R

which together with S′ ≤ 0 and A′ ≥ 0 yields T (±∞) = A′(±∞) = 0. Therefore,
(S(±∞), T (±∞), A(±∞),M(±∞)) must be equilibria of (2.4). Since all equilibria
of (2.4) are given by (S∗, 0, 0, 1) and (0, 0, A∗, 1) for A∗ ≥ 0 and S∗ ≥ 0, it follows
that A(−∞) = 0, S(∞) = 0, and then sending z → ±∞ in the third equation of
(2.4) yields A(∞) = 1 and S(−∞) = 1. Finally, we need to show (2.3). We first
show that A > 0 on R. For if not, since A′ ≥ 0, there is z0 ∈ R such that A = 0 on
(−∞, z0] and A > 0 on (z0,∞), and then by the local uniqueness theorem it follows
that S′ = b1[S(z) − 1], A ≡ 0, and M ≡ 1 on R, which is impossible. Thus A > 0 on
R. Next, we show that S > 0 on R. For if not, since S′ ≤ 0, there is a z1 ∈ R such
that S = 0 on [z1,∞) and S > 0 on (−∞, z1), and again the local uniqueness theorem
implies that S ≡ 0, A′ + b2A = 0, and M ≡ 1 on R, which is also impossible. This
ensures S > 0 on R. Hence, by virtue of M ≥ 1, we have f = f(S,A,M) > 0 on R.
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Consequently, applying Lemma 2.2(iii) yields (2.7) and thereby (2.3). This completes
the proof of Theorem 2.1.

3. Conclusions. In this paper we have studied a basic bioremediation model
that characterizes the essentials of a biodegradation process. The model describes
the interactions between a dissolved contaminant, an injected nutrient, and single
microbial species. We have established that, in a biologically active zone, the dis-
solved solute concentration and the advancing nutrient concentration move together
as traveling fronts, while the bacteria concentration travels along as a traveling pulse.
This confirms some earlier numerical observations. Compared to the existing results
in the literature, the main improvement of our result lies in the application of a much
broader range of kinetics which are more biologically realistic than the multiplicative
Monod kinetics when modeling different kinds of pollutants. The estimates we ob-
tained for traveling waves and their wave speeds provide qualitative and quantitative
information on the concentrations of contaminant, nutrient, and bacteria as well as
the removal rates of pollutants, and help identify key parameters in the model. We
have employed a new dynamical systems approach in the proof of our main result,
which produces a shorter and simpler proof. A future work will be investigating the
uniqueness of the traveling waves in the sense that, for each wave speed, there is a
unique traveling wave solution of the model.

Acknowledgment. The author thanks the referees for their valuable suggestions
on this manuscript.
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CUCKER–SMALE FLOCKING UNDER HIERARCHICAL
LEADERSHIP∗
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Abstract. A mathematical theory on flocking serves the foundation for several ubiquitous multi-
agent phenomena in biology, ecology, sensor networks, and economics, as well as social behavior like
language emergence and evolution. Directly inspired by the recent fundamental works of Cucker
and Smale on the construction and analysis of a generic flocking model, we study the emergent
behavior of Cucker–Smale flocking under hierarchical leadership. The rates of convergence towards
asymptotically coherent group patterns in different scenarios are established. The consistent con-
vergence towards coherent patterns may well reveal the advantages and necessities of having leaders
and leadership in a complex (biological, technological, economic, or social) system with sufficient
intelligence.

Key words. bio-flocking, leaders, leadership, Cucker–Smale model, dynamic graphs, graph
Laplacian, Fiedler number, convergence, perturbation, free will
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1. Introduction and motivations.

1.1. General background on flocking. Flocking, a universal phenomenon of
multiagent interactions, has gained increasing interest from various research commu-
nities in biology, ecology, robotics and control theory, and sensor networks, as well as
sociology and economics.

(i) (biology and ecology) The emergent behavior of bird flocks, fish schools, wolf
packs, elephant herds, or bacteria aggregations, for example, has long been a
major research topic in population and behavioral biology and ecology [4, 7,
8, 11, 12, 17, 23, 24].

(ii) (robotics and control) The coordination and cooperation among multiple
mobile agents (robots or sensors) have been playing central roles in sensor
networking, with broad applications in military, environmental control, and
various field tasks [14, 25].

(iii) (economy and languages) Emergent economic behavior, such as a common
belief in a price system in a complex market environment, is also intrinsically
connected to flocking. The emergence of a common language in primitive
societies is yet another example of a coherent collective behavior emerging
within a complex system [8, 9].

The present work can largely be categorized into the biology realm, and has been
directly inspired by the recent mathematical works of Cucker and Smale [7, 8], as
the title suggests. Mathematical abstraction and rigorous analysis are more the focus
herein than actual biological or physical realizability or feasibility. As in physics, the
study of idealized models can often shed light on various observed patterns in the real
world, if such models can indeed capture the very essence.
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In biology and physics, the main goal of flocking study is to be able to inter-
pret, model, analyze, predict, and simulate various flocking or multiagent aggregat-
ing behavior. Most works have been focusing on modeling and simulation [15, 27].
See, for example, the several important models investigated by Flierl et al. [12]
(and their stochastic formulation). The more recent paper of Parrish, Viscido, and
Grünbaum [18] also provides a comprehensive comparison among some major existing
models and their governing variables (in the context of fish schooling). Quantitative
analysis (as in [7, 8, 14]) on the asymptotic rates of emergence and convergence, on
the other hand, has been relatively rare.

Mathematical efforts are gradually gaining strength in this multidisciplinary area.
In the continuum limit, for example, there have been several recent efforts made by
Bertozzi’s group [23, 24], in which global swarming (i.e., with densely populated
agents) patterns are modeled and analyzed via suitable spatiotemporal differential
equations. Discrete-to-continuum limits of interacting particle systems have also been
investigated by the same group [2, 11] recently. Consistent and generic mathematical
analysis has been very much in an early stage for many biological aggregation phe-
nomena. In the current paper, following the recent remarkable works of Cucker and
Smale [7, 8] on flocking analysis, we attempt to further extend such research.

1.2. Cucker–Smale flocking model. Given a flock of k agents (birds, fish,
wolves, etc.) labeled i = 1, 2, . . . , k, the Cucker–Smale flocking model is specified by
the nonlinear autonomous dynamic system:

(1.1)

{
ẋi(t) = vi,

v̇i(t) =
∑

j∈L(i) aij(x)(vj − vi), i = 1 : k, t > 0,

where xi(t) and vi(t) are 3D (three-dimensional, which is nonessential) position and
velocity vectors at time t, x = (x1, . . . , xk) ∈ (R3)k, and L(i) ⊆ {1, . . . , k} denotes
the subgroup of agents that directly influence agent i. Furthermore, the connectivity
coefficients aij(x) take the form

aij(x) = w(|xi − xj |2) for some nonnegative weight profile w(y).

In the current paper, by Cucker–Smale flocking model, we require as in [7, 8] that the
interaction weight function w(y) take the form

(1.2) w(y) =
H

(1 + y)β
or w(y) ≥ H

(1 + y)β
,

where H and β are two positive system parameters. One shall see that the two
(= vs. ≥) make no difference in the analysis hereafter as long as w(y) is bounded
and sufficiently smooth (also see [7]). We also must point out that this model has
been put in a more general and abstract setting in the subsequent work of Cucker and
Smale [8].

The look of system (1.1) is not entirely new. For example, the 2D model studied
by Vicsek et al. [27] is very similar in that vi’s share the same magnitude (or speed),
while their heading directions θi’s satisfy a similar set of equations.

It is the particular choice of the connectivity coefficients in (1.2) that has made
the Cucker–Smale model mathematically more attractive. Vicsek et al.’s model (in
discrete time) [27] can be considered as taking the following cut-off weight function:

w(y) = wr(y) = 1y≤r2(y), L(i) ≡ {1, . . . , k} ∀i.
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That is, two distinct agents, xi and xj , interact if and only if they are within a
distance of r > 0, which is assigned a priori and fixed throughout. Moreover, the
nonzero weights are uniformly 1’s. The lack of long-range interactions has made the
model very difficult to analyze. For example, the remarkable efforts of Jadbabaie,
Lin, and Morse [14] on emergence analysis avoided the actual dynamic dependence of
aij on the configuration x. Instead, they focused on an altered setting that involves
switching controls. The convergence results obtained for this approach, however, rely
on the infinite time-sequence of states of the system.

The main results of Cucker and Smale [7] can be summarized as follows: when
β < 1/2, the flock converge to some translating rigid structure (moving at a constant
velocity) unconditionally, i.e., regardless the initial configuration; and when β ≥ 1/2,
the initial velocities and positions have to satisfy certain compatible conditions so
that the entire flock can converge asymptotically.

In summary, in the modeling and analysis of Cucker and Smale [7, 8], not only
are the conditions for pattern emergence easily verifiable (i.e., by checking the ini-
tial conditions), but the role of long-range interaction is also clearly quantified. A
smaller β signifies more intense long-range interactions among agents, while a bigger
β leads to much weaker ones. It has been shown that the critical exponent βc = 1/2
is sharp and necessary. Previously, the connection between global pattern emergence
and individual action rules has often only been observed experimentally or addressed
empirically. (Vicsek et al. [27], for example, experimentally observed phase transition
induced by population density ρ and random fluctuation η. A higher density corre-
sponds to more interaction among agents, or loosely, smaller β in the Cucker–Smale
model.)

1.3. Motivations and main results of current work. In the current work,
we investigate the emergent behavior of Cucker–Smale flocking under hierarchical
leadership (HL), which will be defined in detail in the next section.

Roughly, an HL flock is one whose members can be ordered in such a way that
lower-rank agents are led and only led by some agents of higher ranks. As explained
in more detail in section 2, for HL flocks, it is often either nontrivial or impossible to
define a “fixed” inner product so that the Fiedler number of the associated (graph)
Laplacian can be exploited, which is the key to the original work of Cucker and
Smale [7] and its subsequent generalization [8]. The current work thus takes a some-
what different approach in order to fully benefit from the characteristic structures
of HL.

As far as applications are concerned, there are two types of HL: passive and
active.

(A) (passive/transient leadership)
(A.1) (disturbed bird flocks) In nature, certain types of leadership emerge in

a transient and dynamic fashion and are often prompted by a specific
environment. For a disturbed bird flock at rest, for example, the bird
that first senses the approach of an unexpected pedestrian or preda-
tor often takes flight first, warns others, and first gains full speed, and
consequently flies ahead of the entire flock and serves as a virtual leader.

(A.2) (driving in a traffic) During rush hours, each individual driver mainly
maneuvers according to the moving patterns of several cars right ahead
in the visual field. Thus a chain of leadership naturally arises and ex-
tends linearly along the traffic. The leadership here is also prompted by
the environment rather than being intrinsic among the stranger drivers.
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(B) (active/intrinsic leadership)
(B.1) (governmental/military hierarchies) Such hierarchical leadership is in-

herent in various social groups or structures, and often leads to more ef-
ficient management. Examples include the chain of President–Governor–
Mayor in the governmental system, and the military chain of command
from the Commander-in-Chief all the way down to the soldiers.

(B.2) (social animals) For some social animals such as monkeys, wolves, or
elephants [4], the group or social status of each member is clearly rec-
ognized by others, is stably maintained, and guides the action of each
individual in the hierarchies. (See also the recent work of Couzin et al. [4]
for nonhierarchical but “effective” leadership.)

Our main results are the three theorems summarized below. All HL flocks are
assumed to have Cucker–Smale connectivity introduced in the preceding subsection.

(i) (section 3) For an HL (k + 1)-flock marching at a sufficiently small discrete
time step h, under a similar classification scheme according to whether β < βc,
= βc, or > βc, as in Cucker and Smale [7, 8], the velocities of the flock converge
at a rate of O(ρnhn

k−1), where the factor ρh ∈ (0, 1) depends only on h, system
parameters, and the initial configuration of the flock. The critical exponent
is given by βc = 1/(2k), instead of βc = 1/2 in the original work of Cucker
and Smale [7]. (For a 2-flock (with k = 1) they are the same. For k > 1, the
βc herein could be overrestrictive and due to the deficiency of the particular
methodology adopted.)

(ii) (section 4) For an HL flock under continuous-time dynamics, when β < 1/2,
there exists some B > 0, such that the velocities of the flock converge at an
exponential rate of O(e−Bt). The constant B depends only on the system
parameters and the initial configuration of the flock. (From the simple calcu-
lation on an HL 2-flock, βc = 1/2 is sharp in order to achieve unconditional
convergence.)

(iii) (section 5) For an HL (k + 1)-flock [0, 1, . . . , k] of which the overall leader
agent 0 takes a free-will acceleration v̇0 = f(t) (thus the system is no longer
autonomous), as long as the overall leader behaves moderately so that f(t) =
O((1 + t)−μ) for some μ > k, the velocities of the flock will still converge at
a rate of O((1 + t)−(μ−k)) when β < 1/2. (By (ii) where f ≡ 0, βc = 1/2 is
again sharp for unconditional convergence.)

We also mention that Jadbabaie, Lin, and Morse [14] also studied (under discrete
time and working with Vicsek et al.’s orientation model [27]) the effect of a single
leader moving at a fixed constant velocity. As mentioned above, due to the difficulty in
dealing with configuration-dependent dynamics, the authors switched to the study of
an altered control problem (under the assumption of intermittent joint connectivity).

In addition to the three main sections mentioned above, definitions and further
detailed background will be introduced in section 2. The conclusion is drawn in
section 6.

2. HL flocks and definability of compatible inner products.

2.1. Flocks under hierarchical leadership (HL flocks).

Definition 2.1 (an HL flock). A (k + 1)-flock is said to be under hierarchical
leadership if the agents (birds, fish, wolves, etc.) can be labeled [0, 1, . . . , k], such that

(i) aij = aagent i led by j �= 0 implies that j < i; and
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HL−flock HL−flock not an HL−flock

1

0

0

2

2

3

21

1

0

Fig. 2.1. Two examples of HL flocks and one example of a non-HL flock. The arrow i → j
means that agent i is led by agent j, or, equivalently, aij > 0. Visually, it means that i looks up
to j.

(ii) if we define the leader set of each agent i by

L(i) = {j | aij > 0},

then for any i > 0, L(i) �= ∅ (nonempty).
If so, the flock is called an HL flock.

Notice that the second condition requires that, except for agent 0, all the others
must be subject to some leadership. On the other hand, the first condition implies
that L(0) = ∅. Thus agent 0 is the overall leader (direct or indirect) for the entire
flock. Figure 2.1 depicts the connectivity structure of two HL flocks and one non-HL
flock.

Proposition 2.2 (connectivity matrix of an HL flock). A (k + 1)-flock is an
HL flock if and only if after some ordered labeling [0, 1, . . . , k] the connectivity matrix
K = (aij)0≤i,j≤k is lower triangular and, for any row i > 0, there exists at least one
positive off-diagonal element aij.

Subject to convenience, in what follows a generic HL flock shall be denoted by
either [0, 1, . . . , k] or [1, . . . , k]. Following a setting similar to Cucker and Smale [7] or
Chung [3], define the graph Laplacian matrix by

(2.1) L = D −K, D = diag(d0, . . . , dk), di =
∑
j

aij .

Similarly, define the two (nonorthogonally) complementing subspaces of R
k+1:

Δ = span

⎧⎪⎨
⎪⎩

⎛
⎜⎝

1
...
1

⎞
⎟⎠

k+1

⎫⎪⎬
⎪⎭ and R

k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

0
x1

...
xk

⎞
⎟⎟⎟⎠ | x′

is ∈ R

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

Then it is easy to see that

Δ = Ker(L), R
k = Range(L) is L-invariant.

Notice that the kernel assertion is directly guaranteed by the second condition of
an HL flock, without which the kernel could be larger.

From now on, as in Cucker and Smale [7, 8], we shall consider only the restriction
of the Laplacian on the reduced space R

k. Then it becomes nonsingular and shall
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still be denoted by L for convenience. We also must point out that when applied to
actual flocking, the reduced Laplacian L is applied to R

3k (instead of R
k) via the three

spatial dimensions individually.

2.2. Definability of compatible inner products. The general framework of
Cucker and Smale [7] relies upon the Fiedler number of the Laplacian operator L, i.e.,
the smallest positive eigenvalue in the reduced space. In particular, it assumes the
existence of a fixed inner product 〈·, ·〉 such that

(2.2) 〈Lv, v〉 ≥ ξ〈v, v〉 for any v ∈ R
k.

Then an a priori lower bound on ξ = ξ(x) constitutes the core to the convergence
results established by Cucker and Smale [7, 8]. Below we show, however, that such
inner products could fail to exist for nonsymmetric systems like HL flocks.

Theorem 2.3. Consider the special HL (k+1)-flock [0, 1, . . . , k] such that L(i) =
{i− 1} for i > 0, and an instant when ai,i−1 ≡ a for some fixed a > 0 and any i > 0.
Then the smallest eigenvalue is ξ = a, but there exists no inner product 〈·, ·〉 in the
reduced space R

k such that

〈Lv, v〉 ≥ a〈v, v〉, v ∈ R
k.

Proof. It is easy to see that the (reduced) Laplacian L is given by

L = La =

⎡
⎢⎢⎢⎣

a 0 . . . 0 0
−a a . . . 0 0
...

...
. . .

...
...

0 0 . . . −a a

⎤
⎥⎥⎥⎦
k×k

.

In particular, La = aL1, and it suffices to prove the case when a = 1. If such an inner
product did exist, one would have

〈L1v, v〉 ≥ 〈v, v〉 or 〈Jv, v〉 ≥ 0,

where J = L1 − Id. Notice that Jv = (0,−z1, . . . ,−zk−1)
T for v = (z1, . . . , zk)

T .
Let {e1, . . . , ek} denote the canonical basis of R

k, and define

G = (gij) = (〈ei, ej〉)k×k

to be the associated Grammian matrix of the inner product. Then G must be positive
definite. For any v = (z1, . . . , zk)

T , one has

〈v, Jv〉 = vTG · Jv = (z1, . . . , zk)(gij)(0,−z1, . . . ,−zk−1)
T .

Consider a special vector of the form w = wt = (0, . . . , 0, 1, t)T ∈ R
k. Then

〈wt, Jwt〉 = (0, . . . , 0, 1, t)(gij)(0, . . . , 0, 1)T = gk−1,k + gk,kt.

Notice that gk,k = 〈ek, ek〉 > 0. Then for any

t < −|gk−1,k|
gk,k

,

one must have 〈wt, Jwt〉 < 0, which is contradictory.
Even when such compatible inner products do exist, for a general nonsymmetric

flock, they often depend on the configuration of the flock, and are thus time-dependent.
This causes much inconvenience or a potential impasse for the Cucker–Smale approach
in [7, 8]. The efforts in the current work follow a different approach by exploiting the
specific structures of HL flocks.
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3. Discrete-time emergence. Recall that in continuous time, the Cucker–
Smale flocking model is given by

(3.1)

{
ẋ = v,

v̇ = −Lxv, t > 0,

where the reduced Laplacian L = Lx is defined as in (2.1) and both x and v are
considered in the reduced (quotient) space. For a (k + 1)-flock, both of them belong
to R

3k.
Fix a discrete time step h > 0. Define

x[n] = x(nh), v[n] = v(nh), and Ln = Lx[n].

(Note: the parenthesis-bracket correspondence follows the convention in digital signal
processing [22].) Then the continuous-time system (3.1) is discretized to

(3.2)

{
x[n + 1] = x[n] + hv[n],

v[n + 1] = S[n]v[n], n = 0, 1, . . . ,

where S[n] = Sh[n] = Id− hLn.
For an HL (k + 1)-flock [0, 1, . . . , k], recall that the reduced Laplacian is given by

(3.3) Ln =

⎡
⎢⎢⎢⎣

d1[n] 0 . . . 0 0
−a21[n] d2[n] . . . 0 0

...
...

. . .
...

...
−ak1[n] −ak2[n] . . . −ak,k−1[n] dk[n]

⎤
⎥⎥⎥⎦
k×k

.

For i > 0, since the leader set L(i) �= ∅, we have

(3.4) di[n] =

k∑
j=1

aij [n] =
∑

j∈L[i]

aij [n] > 0.

Under the Cucker–Smale model, one has for any j ∈ L(i)

(3.5) aij [n] =
H(

1 + |x̃j [n] − x̃i[n]|2 /2
)β

,

where x̃i denotes the original 3D position vector of agent i (and the factor 1/2 is for
convenience). In the reduced quotient space, one has xi = x̃i − x̃0 ∈ R

3 since the
original configuration vector x̃ ∈ R

3(k+1) and the reduced representation x ∈ R
3k are

connected via

x̃ =

⎡
⎢⎢⎢⎣
x̃0

x̃1

...
x̃k

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
x̃0

x̃0

...
x̃0

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

0
x̃1 − x̃0

...
x̃k − x̃0

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
x̃0

x̃0

...
x̃0

⎤
⎥⎥⎥⎦ +

[
0
x

]
.

As a result, for any pair i, j > 0,

|x̃i − x̃j |2 = |xi − xj |2 ≤ 2(|xi|2 + |xj |2) ≤ 2|x|2.
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In combination with (3.4) and (3.5), this implies that under the Cucker–Smale con-
nectivity,

(3.6) di[n] ≥ H

(1 + |x[n]|2)β , i > 0.

Assume, as in Cucker and Smale [7], that under suitable initial conditions (ac-
cording to whether β <, =, or > βc = 1/(2k)), one has the uniform bound on the
reduced position vector:

(3.7) |x[n]|2 ≤ Bh for n = 0, 1, . . . ,

where Bh is a constant bound depending only on h, the system parameters H and β,
as well as the initial configuration. (The existence of Bh is a crucial ingredient of the
proof and will be further addressed immediately after this main line.) Then one has,
for any n ≥ 0 and i > 0,

(3.8) di[n] ≥ d∗ =
H

(1 + Bh)β
.

Proposition 3.1 (uniform elementwise bound on S). For 0 < h < 1
2kH , Sij [n] ≥

0 for any i, j, and

(3.9) max
i,j

Sij [n] ≤ 1 − hd∗ := ρh, n = 0, 1, . . . .

Proof. By definition,

S[n] = Id− hLn

⎡
⎢⎢⎢⎣

1 − hd1[n] 0 . . . 0 0
ha21[n] 1 − hd2[n] . . . 0 0

...
...

. . .
...

...
hak1[n] hak2[n] . . . hak,k−1[n] 1 − hdk[n]

⎤
⎥⎥⎥⎦
k×k

.

Under the condition on h, for the off-diagonals i > j, we have

Sij [n] = haij ≤ hH <
1

2k
≤ 1

2
.

For the diagonals, since aij ≤ H, we have di ≤ (k − 1)H, and

Sii[n] = 1 − hdi ≥ 1 − h(k − 1)H > 1 − 1

2
=

1

2
.

Therefore,

max
ij

Sij [n] = max
i

Sii[n] = 1 − hmin
i

di ≤ 1 − hd∗,

which completes the proof.
Next, our goal is to be able to control the growth rate of the matrix iteration:

S[n]S[n− 1] · · ·S[0] as n → ∞.

Normally, such asymptotic behavior is investigated via the so-called joint spectral
radius (e.g., Rota and Strang [19], Daubechies and Lagarias [10], or Shen [20, 21]),

lim
n→∞

‖S[n]S[n− 1] · · ·S[0]‖
1
n ,
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which is often too complex to be feasible since the matrices evolve and generally do
not commute. The approach below resembles the Lebesgue dominant convergence
theorem in analysis [16].

Definition 3.2 (domination). A matrix B = (bij) is said to be dominated by
another matrix C = (cij) of equal dimensions if

|bij | ≤ cij for any i, j.

If so, we write B ≺ C.
Proposition 3.3. There exists some constant α, such that whenever B ≺ C,

‖B‖ ≤ α‖C‖.

Here α depends only on the type of matrix norm adopted.
Proof. All norms in a finite-dimensional Banach space are equivalent. Therefore,

it suffices to establish the inequality under any special matrix norm. Consider the
Fröbenius norm:

‖B‖2 = trace(BBT ) =
∑
i,j

b2ij ≤
∑
i,j

c2ij = trace(CCT ) = ‖C‖2,

with α = 1 (the superscript T here denotes the transpose). The general constant α
resurfaces when another norm is used instead.

Proposition 3.4. Suppose Bi ≺ Ci for i = 0, . . . , n. Then

BnBn−1 · · ·B0 ≺ CnCn−1 · · ·C0.

The proof is trivial. Next we define a “complete” lower triangular matrix T =
(tij)k×k by

tij =

{
1, i ≥ j;

0 otherwise.

Then the elementwise bound established in Proposition 3.1 directly implies the fol-
lowing.

Corollary 3.5. Let ρh = 1 − hd∗ as in Proposition 3.1. Then

S[n] ≺ ρhT, and S[n− 1] · · ·S[0] ≺ ρnhT
n, n = 0, 1, . . . .

Lemma 3.6. Let T = (tij)k×k be defined as above. Then ‖Tn‖ = O(nk−1).
Proof. Denote by J the k×k lower triangular matrix whose nonzero elements are

all 1’s and are only distributed right below the diagonal, e.g., the 3 × 3 case,

J =

⎡
⎣0 0 0

1 0 0
0 1 0

⎤
⎦ .

Then it is easy to see that

T = I + J + · · · + Jk−1.

Since Jk = Jk+1 = · · · = 0k×k, one can also write

T =

∞∑
m=0

Jm.
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More generally, for any t with |t| < 1, one can define

T (t) =

∞∑
m=0

tmJm = (I − tJ)−1.

Then

T (t)n = (I − tJ)−n =

∞∑
m=0

(
−n

m

)
(−t)mJm =

k−1∑
m=0

(
n + m− 1

m

)
tmJm.

Letting t → 1, we have

Tn = lim
t→1

T (t)n =

k−1∑
m=0

(
n + m− 1

m

)
Jm ≺ O(nk−1)T.

The proof is then complete via Proposition 3.3.
Combining all the preceding results in this section, we have arrived at the following

conclusion.
Theorem 3.7. In the discrete-time Cucker–Smale model (3.2) for an HL (k+1)-

flock, for any sufficiently small marching step h (as in (3.7), Proposition 3.1, and
Cucker and Smale [7, 8]), there exists some ρh ∈ (0, 1) under the conditions similar
to [7, 8] based upon whether β <, =, or > βc = 1/(2k), such that

S[n] · · ·S[0] ≺ O(ρnhn
k−1)T.

In particular, one has

|v[n]| ≤ O(ρnhn
k−1)|v[0]|, n → ∞.

The order constant in O(·) depends only on the size k of the flock.
We point out that the polynomial growth rate O(nk−1) (coming from Tn in

Lemma 3.6) is characteristic of triangular HL flocks. A “full” system would make the
approach here infeasible since

⎡
⎢⎣

1 · · · 1
...

. . .
...

1 · · · 1

⎤
⎥⎦
n

k×k

=

⎛
⎜⎝

1
...
1

⎞
⎟⎠ (

1 · · · 1
) ⎛
⎜⎝

1
...
1

⎞
⎟⎠ · · · · · ·

(
1 · · · 1

)
= kn−1

⎡
⎢⎣

1 · · · 1
...

. . .
...

1 · · · 1

⎤
⎥⎦ .

The exponential growth rate kn would thus overpower ρnh and lead to an exponential
blowup.

Finally, we further address the important issue raised earlier in the proof con-
cerning the boundedness condition in (3.7): |x[n]|2 ≤ Bh for all n. The existence of
the convergence factor ρh has crucially depended on such a bound Bh. On the other
hand, the very existence of Bh, as we intend to show now, depends on ρh. This en-
tanglement is characteristic of the nonlinear Cucker–Smale flocking model (as well as
in Vicsek et al. [27] and Jadbabaie, Lin, and Morse [14]) and makes this type of model
difficult to analyze. In the rest of the section, we introduce the brilliant approach of
Cucker and Smale in unraveling such entanglement, which then genuinely completes
the proof.
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Lemma 3.8. For any given integer k ≥ 1 and t ∈ [0, 1), one has

(3.10)

∞∑
m=0

tmmk−1 ≤ (k − 1)!(1 − t)−k.

Proof. Notice that the equality holds when k = 1. Generally, for any t ∈ [0, 1),

(k − 1)!(1 − t)−k = (k − 1)!

∞∑
m=0

(
−k

m

)
(−t)m

= (k − 1)!

∞∑
m=0

(
m + k − 1

k − 1

)
tm

=

∞∑
m=0

(m + k − 1) · · · (m + 1)tm

≥
∞∑

m=0

mk−1tm,

which completes the proof.
We now apply the self-bounding technique developed by Cucker and Smale in

[7, 8] to establish the bound
∣∣x[n]

∣∣2 ≤ Bh that is crucially needed in the proof of
Theorem 3.7. It also explains the origin of the critical exponent βc = 1/(2k) and its
role.

We thus return to the step in (3.7). This time, instead of assuming a priori that∣∣x[n]
∣∣2 ≤ Bh for all n ≥ 0, we proceed as follows. Fix any discrete time mark N , and

define

(3.11) |x|∗ = max
0≤n≤N

|x|[n], N∗ ∈ argmax0≤n≤N |x|[n],

and similarly define

(3.12) d∗ =
H

(1 + |x|2∗)β
.

Thus |x|∗ could be considered as a “localized” version of Bh, restricted in any desig-
nated finite time segment [0, N ].

Then all the earlier analysis and results hold up to the bounding formula on
|v|[n] in Theorem 3.7, as long as one restricts n to be within [0, N ]. In particular for
ρh = 1 − hd∗,

|v|[n] ≤ Aρnhn
k−1, n = 0, . . . , N,

where the constant A depends only on k but on neither n nor N .
Therefore, by the first equation of HL flocking in (3.2), for any n ∈ [0, N ],

|x|[n] ≤ |x|[0] +

n−1∑
m=0

|x[m + 1] − x[m]| = |x|[0] + h

n−1∑
m=0

|v[m]|

≤ |x|[0] + Ah

n−1∑
m=0

ρmh mk−1 ≤ |x|[0] + Ah

∞∑
m=0

ρmh mk−1

≤ |x|[0] + (k − 1)!Ah(1 − ρh)−k.
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In particular, for n = N∗,

|x|∗ = |x|[N∗] ≤ |x|[0] + (k − 1)!Ah(1 − ρh)−k.

Now that

(1 − ρh)−k = h−kd−k
∗ = (hH)−k(1 + |x|2∗)βk,

one has the Cucker–Smale type of self-bounding inequality for the unknown |x|∗:

|x|∗ ≤ |x|[0] + (k − 1)!Ah(hH)−k(1 + |x|2∗)βk.

Define Z = (1 + |x|2∗)1/2. Then

(3.13) Z ≤ 1 + |x|∗ ≤ c + bZ2βk,

with c = 1 + |x|[0] and b = (k − 1)!Ah(hH)−k.
The rest of the analysis then goes exactly as in Cucker and Smale [7, 8]. Define

F (z) = z − bzs − c, with s = 2βk and z > 0.

Then when s < 1, the nonlinear function F (z) has a unique zero z∗ after which F
stays positive. Since F (Z) ≤ 0, one thus must have Z ≤ z∗, or

|x|∗ ≤ Z ≤ z∗.

Now that z∗ depends only on c and b, which are independent of the preassigned time
mark N , we have obtained the uniform bound

|x|[N ] ≤ |x|[N∗] = |x|∗ ≤ z∗ ∀ N = 0, 1, . . . .

Thus Bh = z2
∗ is the uniform bound needed in the proof of Theorem 3.7. This is the

case when β ≤ βc = 1/(2k).
The other two cases, when β = βc and β > βc (corresponding to s = 1 and s > 1

for F (z)), can be analyzed exactly in the same manner as in Cucker and Smale [7, 8],
and will be omitted here. In particular, in both cases, there will be sufficient-type
conditions on the initial configurations in order for the bound Bh to exist. In the third
case, β > βc, there will also be a more stringent upper bound on the time marching
size h. We refer the reader to Cucker and Smale for the detailed analysis on F (z) in
these two cases. This completes the proof of Theorem 3.7.

In the next section, we investigate the emergent behavior of the continuous-time
HL flocking using quite different methods. There, the results hint that the uncon-
ditional convergence range β ∈ [0, 1/(2k)) just established might still be extendable
onto [0, 1/2), as in Cucker and Smale [7]. Thus the critical exponent βc = 1/(2k)
might be further improved if other alternative approaches are to be investigated in
the future.

4. Continuous-time emergence. Let [1, . . . , k] be an HL k-flock in that order,
connected via the Cucker–Smale strength with parameters β and H as in (1.2). In this
section, we establish the emergence behavior for the entire flock when β < 1/2, via the
methods of induction and perturbation. The associated intuition is as follows. If the
subflock [1, . . . , i − 1] almost reaches convergence, it shall look like a rigid one-body
to agent i. Then [1, . . . , i− 1, i] is not far from a simpler two-agent flock. Our goal is
to develop rigorous mathematical analysis to quantify and support this perspective.
(In this section, we shall work with [1, . . . , k] instead of [0, 1, . . . , k] due to the lack of
advantage of introducing index 0.)
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4.1. The property of positivity. The general properties to be established in
this subsection are characteristic of the Cucker–Smale flocking model. They could be
useful for any future works on the model, on top of their roles in the proof of the main
results of this section.

Let xi, vi ∈ R
3 denote the 3D position and velocity vectors of agent i. Recall that

the Cucker–Smale flocking model is given by

(4.1)

{
ẋi = vi,

v̇i = −(Lxv)i =
∑

j∈L(i) aij(x)(vj − vi)

for t > 0, i = 1, . . . , k, and x = (x1, x2, . . . , xk) ∈ R
3k. The Cucker–Smale connectivity

strength is specified by

aij(x) =
H

(1 + |xj − xi|2)β
, j ∈ L(i).

(As mentioned earlier in the introduction, changing “=” to “≥” does not affect the
subsequent analysis as long as the aij(x)’s are bounded and sufficiently smooth.)
Given a solution (x(t), v(t)) to the continuous Cucker–Smale model (4.1), we write
for convenience

aij(t) = aij(x(t)) and Lt = Lx(t).

Let η = (η1, η2, . . . , ηk)
T ∈ R

k be k scalars, and consider the following system of
ordinary differential equations:

(4.2) η̇ = −Ltη, t > 0, given η0 = η
∣∣
t=0

.

Componentwise, we have

(4.3) η̇i =
∑

j∈L(i)

aij(t)(ηj − ηi), i = 1, . . . , k.

Theorem 4.1 (positivity). Suppose η0
i ≥ 0 for i = 1, . . . , k. Then for all t > 0

and i, ηi(t) ≥ 0.
Proof. For any agent i in the flock, define

L0(i) = {i},
Lm(i) = L(Lm−1(i)), all mth level leaders of i, and

[L](i) = L0(i) ∪ L1(i) ∪ L2(i) · · · , all leaders of i, direct or indirect.

(4.4)

Then it is easy to see that system (4.3) applied to [L](i) is always self-contained, i.e.,
(ηj | j ∈ [L](i)) is not influenced by any variables in (ηj | j /∈ [L](i)) (but certainly
not vice versa).

For convenience, we shall call the restriction of system (4.2) or (4.3) on the sub-
flock [L](i) the [L](i)-system. Then it suffices to establish the theorem for each [L](i)
system. In Figure 4.1, we have sketched an example of the hierarchies of leaders of a
given agent i.

Suppose otherwise that the theorem were false on an [L](i)-system for some par-
ticular agent i. There would exist some j̄ ∈ [L](i) and t̄ > 0 such that ηj̄(t̄) < 0.
Define

t∗ = inf{t > 0 | there exists some j ∈ [L](i), such that ηj(t) < 0}.

Then 0 ≤ t∗ ≤ t̄ < ∞, and we claim additionally the following.
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L(i)

L  (i)
2

i

Fig. 4.1. The leaders of an agent i at different levels: L0(i) = {i},L(i),L2(i), . . . .

(i) For any j ∈ [L](i), ηj(t∗) ≥ 0.

(ii) There must exist some ĵ ∈ [L](i) and a sequence of moments (tn) such that
tn > t∗, tn → t∗ as n → ∞, and ηĵ(tn) < 0.

(iii) There must exist some j∗ ∈ [L](ĵ), such that ηj∗(t∗) > 0.
(i) and (ii) result directly from the definition of t∗. Suppose otherwise that (iii) were
false. Then for any j ∈ [L](ĵ), one must have ηj(t∗) = 0 by (i). Consider the [L](ĵ)-
system after t∗:

η̇j =
∑

l∈L(j)

ajl(t)(ηl − ηj), j ∈ [L](ĵ), t > t∗.

Since this is a homogeneous system with zero initial conditions at t = t∗, by the
uniqueness theorem of ODEs (e.g., [13]), the solution to the [L](ĵ)-system must be
identically zero: ηj(t) ≡ 0 for any t > t∗ and j ∈ [L](ĵ). Now that ĵ ∈ [L](ĵ), one
must have ηĵ(t) ≡ 0 for all t > t∗, which contradicts property (ii). Thus (iii) holds.

Define

m̂ = min{m ≥ 0 | there exists some j∗ ∈ Lm(ĵ), such that ηj∗(t∗) > 0}.

Properties (ii) and (iii) imply that 0 < m̂ < ∞. Then by iteratively differentiating
the [L](ĵ)-system, one can easily establish

ηĵ(t∗) = η′
ĵ
(t∗) = · · · = η

(m̂−1)

ĵ
(t∗) = 0, η

(m̂)

ĵ
(t∗) > 0,

which contradicts property (ii). Thus the theorem must hold and the proof is com-
plete.

The most important consequence is the following bounding capability.
Theorem 4.2 (boundedness of velocities under evolution). The Cucker–Smale

model (4.1) has the following closedness properties.
(i) Suppose Ω is a convex compact domain in R

3, and for any agent i, initially
vi(t = 0) ∈ Ω. Then for any t > 0 and i, vi(t) ∈ Ω.

(ii) In particular, let D0 = maxi |vi(t = 0)|. Then |vi(t)| ≤ D0 for all t > 0 and i.
Proof. Since the closed ball BD0(0) in R

3 is convex and compact, (ii) is implied
by (i). It suffices to establish (i).
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Given any unit vector n ∈ S2 and any vector a ∈ R
3, we first claim that if

n · (vi − a)
∣∣
t=0

≥ 0 ∀ i,

then n · (vi(t) − a) ≥ 0 remains valid for all t > 0 and i. To proceed, define ηi =
n · (vi − a).

η̇ = n · v̇i

= n ·

⎛
⎝ ∑

j∈L(i)

aij(t)(vj − vi)

⎞
⎠

= n ·

⎛
⎝ ∑

j∈L(i)

aij(t) [(vj − a) − (vi − a)]

⎞
⎠

=
∑

j∈L(i)

aij(t)(ηj − ηi)

= −(Ltη)i.

Then by the preceding theorem, the claim is indeed valid: ηi(t) ≥ 0 for all t > 0 and i.
For any compact convex domain Ω, let p : S2 → R

3 be its support function, so
that for any unit direction n ∈ S2, a = p(n) has the property that a ∈ ∂Ω and the
closed flat half-space

πa,−n = {x ∈ R
3 | (−n) · (x− a) ≥ 0}

contains Ω. When the domain is convex but not strictly convex, p(n) could be a set
of points, which, however, does not influence the argument herein (since the above
half-spaces anchored at different points of p(n) would be the same). Furthermore, we
have

Ω =
⋂

n∈S2

πp(n),−n.

Since each half-space has just been shown invariant under the Cucker–Smale evolution,
we conclude that Ω must be invariant as well under the evolution, which completes
the proof.

4.2. Perturbation and induction. We now first prepare a lemma. Together
with the boundedness property just established above, it facilitates the later analysis
on the emergent behavior of HL flocks.

Lemma 4.3. Suppose x(t), v(t) ∈ R
3 (which could be considered as x2 − x1 and

v2 − v1 for a 2-flock), and satisfy the perturbed 2-flock system parametrized by some
T > 0:

(4.5)

{
ẋ = v(t),

v̇ = −aT (x, t)v(t) + εT (t), t ≥ 0.

Assume in addition that the following conditions hold.
(i) aT (x, t) ≥ H

(1+|x|2)β , with β < 1/2.

(ii) εT ∈ R
3, and

(4.6) |εT (t)| ≤ ae−b(t+T )η for some η ∈ (0, 1].
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(iii) |v(t)| ≤ D0 for all t ≥ 0, and |x0| ≤ R0 + D0T .
Here H, β, a, b, η, D0, and R0 are given constants independent of T . Let (xT (t), vT (t))
denote the dependency on T . Then

(4.7) |vT (T )| ≤ Ae−BT (1−2β)∧η−

,

where η− = η − δ for any small but positive δ when η < 1, and η− = 1 when η = 1,
and A and B are two constants depending only upon H, β, a, b, η−, D0, and R0 (but
not T ). The notation a ∧ b represents min(a, b).

Before proceeding to the proof of the lemma, we first make two comments on the
conditions.

(1) The all-time bound |v(t)| ≤ D0 seems very stringent but is now natural by
Theorem 4.2 in the preceding subsection.

(2) As outlined in the beginning of the current section, the lemma will be applied
during the induction process going from the subflock [1, . . . , i−1] to [1, . . . , i].
To agent i, the perturbation factor εT (t) comes from the exponentially small
deviation of the leading subflock [1, . . . , i− 1] from reaching exact consensus.

Proof. From the equation for v, we have

〈v, v̇〉 = −aT (x, t)〈v, v〉 + 〈v, εT (t)〉, or

|v| · |v|t =
1

2

(
|v|2

)
t
= −aT |v|2 + 〈v, εT (t)〉.

Assuming that v is never identically zero on any nonempty open time interval (note
that the opposite scenario trivializes the lemma on any such interval, and the following
argument would need only a minor modification), one has

|v|t ≤ −aT |v| + |εT |

≤ − H

(1 + |x|2)β |v| + ae−b(t+T )η

by conditions (i) and (ii). By ẋ = v and (iii),

|x| ≤ |x0| +
∫ t

0

|v|(τ)dτ

≤ R0 + D0T + D0t = R0 + D0(t + T ).

As a result,

|v|t ≤ − H

(1 + (R0 + D0(t + T ))2)
β
|v| + ae−b(t+T )η .

Then by Gronwall-type integration,

|v(t)| ≤ |v0|e
−

∫ t
0

H

(1+(R0+D0(τ+T ))2)β
dτ

+ a

∫ t

0

e−b(τ+T )η · e
−

∫ t
τ

H

(1+(R0+D0(s+T ))2)β
ds
dτ

≤ D0 · e
− Ht

(1+(R0+D0(t+T ))2)β +
a

bη
T 1−ηe−bTη

.

We denote v(t) by vT (t) to indicate its dependency on T . Then

|vT (T )| ≤ D0 · e
− H·T

(1+(R0+2D0T )2)β +
ã(a, b, η−)

bη−
e−bTη−

≤ D0e
−H̃(H,R0,D0,β)T 1−2β

+ C(a, b, η−)e−bTη−

(when T ≥ 1)

≤ Ae−BT (1−2β)∧η−

,
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where the two constants A and B are independent of T . Also notice that when η = 1,
the monomial factor T 1−η = 1 and the lowering from η to η− is unnecessary in the
first line. Finally, since |vT (t)| ≤ D0 by the given conditions, by suitably increasing A,
the condition T ≥ 1 in the last second line can actually be removed. This completes
the proof.

We are now ready to state and prove the main theorem.
Theorem 4.4 (convergence of an HL flock). Let [1, 2, . . . , k] be a Cucker–Smale

flock under hierarchical leadership with β < 1/2. Then for some B > 0, which depends
only on the initial configuration and all the system parameters, one has

(4.8) max
1≤i,j≤k

|vi(t) − vj(t)| = O(e−Bt), t > 0.

Proof. We prove the theorem by induction on the subflocks, from [1, . . . , l− 1] to
[1, . . . , l] (see Figure 4.2).

First we show that the theorem holds for a 2-flock [1, 2]. By definition, the leader
set L(2) is nonempty and has to be L(2) = {1}, i.e., a21 > 0. Let x = x2 − x1 and
v = v2 − v1. Then {

ẋ = v,

v̇ = v̇2 − v̇1 = v̇2 = a21(v1 − v2) = −a21v.

Here a21 = a21(x) = H
(1+|x|2)β , with β < 1/2. Then Cucker and Smale’s analysis in [7]

still applies directly, and |v(t)| = O(e−Bt) for some B > 0.

l

2

l−1v

x

x

l

l

l

3

1

x = x   −   x  l l

Fig. 4.2. The induction process from [1, . . . , l − 1] to [1, . . . , l − 1, l] reduces the l-flock system
to a perturbed 2-flock system.

Assuming that the theorem holds for the subflock [1, . . . , l− 1], we now intend to
show that it must be true for [1, . . . , l − 1, l] as well for l > 2. As a result, the main
focus shall be the agent l.

By induction, there exists some b > 0, such that

(4.9) max
i,j∈{1,...,l−1}

|vi(t) − vj(t)| = O(e−bt), t → ∞.

Define the average velocity (of the direct leaders of agent l) by

v̂l(t) =
1

d l

∑
i∈L(l)

vi(t), with dl = #L(l).
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Then for any j ∈ L(l),

(4.10) |vj(t) − v̂l(t)| ≤
1

dl

∑
i∈L(l)

|vj − vi| = O(e−bt)

by the induction assumption. Similarly, define

x̂l(t) =
1

dl

∑
i∈L(l)

xi(t) and x(t) = xl(t) − x̂l(t), v(t) = vl(t) − v̂l(t).

Then ẋ = v, and

v̇ = v̇l −
dv̂l
dt

=
∑

j∈L(l)

alj · (vj − vl) −
dv̂l
dt

=
∑

j∈L(l)

alj · (v̂l − vl) +
∑

j∈L(l)

alj · (vj − v̂l) −
dv̂l
dt︸ ︷︷ ︸

ε(t)

.(4.11)

Since each v̇i (i ∈ L(l)) is the linear combination of some (vj − vi)’s with j ∈ L(i) ⊆
{1, . . . , l − 1}, by (4.9), one must have

dv̂l
dt

= O(e−bt).

Similarly, due to (4.10) and the boundedness of the alj ’s, one has∣∣∣∣∣∣
∑

j∈L(l)

alj · (vj − v̂l)

∣∣∣∣∣∣ = O(e−bt).

In combination, we conclude that

(4.12) |ε(t)| ≤ ce−bt, t > 0, for some c > 0.

On the other hand, define

(4.13) a =
∑

j∈L(l)

alj =
∑

j∈L(l)

H

(1 + |xj − xl|2)β
.

Then (4.11) simply becomes

(4.14) v̇ = −av + ε.

Define g(s) = H
(1+s)β

with s ≥ 0. Then g(s) is convex, and

1

dl

∑
j∈L(l)

g(sj) ≥ g

⎛
⎝ 1

dl

∑
j∈L(l)

sj

⎞
⎠ .

As a result, when sj = |xj − xl|,

(4.15)
∑

j∈L(l)

H

(1 + |xj − xl|2)β
≥ dl

H(
1 + 1

dl

∑
j∈L(l) |xj − xl|2

)β
.
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By the least-squares principle,

(4.16)
1

dl

∑
j∈L(l)

|xl − xj |2 = |
x︷ ︸︸ ︷

xl − x̂l |2 +
1

dl

∑
j∈L(l)

|xj − x̂l|2,

since x̂l is the center or mean of {xj | j ∈ L(l)}. By the induction assumption on the
consensus of [1, . . . , l− 1] ⊇ L(l), it is easy to establish that there exists some M > 0,
such that

(4.17)
1

dl

∑
j∈L(l)

|xj − x̂l|2 ≤ M − 1.

(Simply notice that the induction assumption guarantees the exponentially small de-
viations of the vj ’s from v̂l.) Combining (4.13)–(4.17), we have

(4.18) a = a(x, t) ≥ dlH

(M + |x|2)β ≥ H̃

(1 + |x|2)β ,

where the updated constant H̃ = H̃(H, dl,M, β). (Notice that the notation a(x, t)
summarizes all the influence from {xj | j ∈ L(l)} into the t-variable.)

The combination of (4.12), (4.14), and (4.18) leads to the reduced system

(4.19)

{
ẋ = v,

v̇ = −a(x, t)v + ε(t),

with a(x, t) ≥ H̃
(1+|x|)β and |ε(t)| ≤ ce−bt. In order to apply Lemma 4.3, further define

(4.20) D0 = 2 max
1≤i≤k

|vi(t = 0)| and R0 = 2 max
1≤i≤k

|xi(t = 0)|.

Then by Theorem 4.2, we have

|vi(t)| ≤
D0

2
∀ i and t > 0.

Consequently,

(4.21) |v(t)| ≤ 1

dl

∑
j∈L(l)

|vj − vl| ≤
1

dl

∑
j∈L(l)

D0 = D0.

Similarly, for any T > 0,

|x(T ) − x(0)| ≤ |xl(T ) − xl(0)| + 1

dl

∑
j∈L(l)

|xj(T ) − xj(0)|

≤ D0

2
T +

1

d l

∑
j∈L(l)

D0

2
T = D0T.

As a result,

|x(T )| ≤ |x(0)| + D0T

≤ |xl(0)| + 1

dl

∑
j∈L(l)

|xj(0)| + D0T

≤ R0

2
+

1

dl

∑
j∈L(l)

R0

2
+ D0T = R0 + D0T.

(4.22)
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To conclude, for any T > 0, if we define

xT (t) = x(t+T ), vT (t) = v(t+T ), aT (xT , t) = a(xT , t+T ), and εT (t) = ε(t+T ),

then {
ẋT = vT ,

v̇T = −aT (xT , t)vT + εT (t), t > 0,

and all three conditions of Lemma 4.3 are satisfied (with η = 1). Therefore, there
must exist two positive constants Ã and B̃, such that for any T > 0,

|v(2T )| = |vT (T )| ≤ Ãe−B̃T (1−2β)∧1

= Ãe−B̃T 1−2β

.

Since T is arbitrary, we therefore must have, after adjusting the constants,

|v(t)| ≤ Âe−B̂t1−2β

, t > 0, for some constants Â and B̂.

Moreover, since β < 1/2 by assumption, one then must have∫ ∞

0

|v(t)|dt < ∞,

which in return implies that there exists some constant M > 0, such that

|x(t)| ≤ M, t > 0.

Then by repeating the similar calculation in the proof of Lemma 4.3, assisted by this
new constant bound |x| ≤ M instead of |x| ≤ R0 + D0(t + T ) there, one arrives at

|v(t)| ≤ A′e−B′t (since η = 1)

for two positive constants A′ and B′ independent of t. Combined with the induc-
tion base (4.9), we thus conclude that the theorem must hold true for the subflock
[1, . . . , l−1, l] with the exponent coefficient B = B′∧b. This completes the proof.

5. HL flocking under a free-will leader. In this section, partially inspired
by the preceding perturbation methods, we investigate a more realistic scenario in
which the ultimate leader agent 0 (in an HL flock [0, 1, . . . , k]) can have a free-will
acceleration, instead of merely flying with a constant velocity.

The following phenomenon is not uncommon near lakes, grasslands, or any open
spaces where a flock of birds often visits. When the flock is initially approached by an
unexpected pedestrian or a predator from a corner on the outer rim, the bird which
takes off first (and alerts others subsequently) generally takes a curvy flying path
before it reaches a stable flying pattern with an almost constant velocity. Such a bird
gains the full speed fast, flies ahead of the entire flock, and serves as a virtual overall
leader.

For an HL flock [0, 1, . . . , k], in addition to the Cucker–Smale system

(5.1)

{
ẋi = vi(t),

v̇i =
∑

j∈L(i) aij(x)(vj(t) − vi(t)), i > 0,
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we now also impose for the ultimate leader agent 0

(5.2)

{
ẋ0 = v0,

v̇0 = f(t), t > 0,

coupled with a given set of initial conditions. For convenience, we shall call f(t)
the free-will acceleration of the leader. In combination, the new system is no longer
autonomous.

The main goal of this section is to establish the following theorem.
Theorem 5.1. Suppose an HL (k + 1)-flock [0, . . . , k] with a free-will leader

satisfies both (5.1) and (5.2), with the Cucker–Smale connectivity strength of β < 1/2.
In addition, assume that the leader’s free-will acceleration satisfies

|f(t)| = O((1 + t)−μ), with some exponent μ > k.

Then the flock still has the following emergent behavior:

max
0≤i,j≤k

|vi − vj |(t) = O
(
(1 + t)−(μ−k)

)
.

We first make two comments regarding why one should expect to put some reg-
ularity conditions on the leader’s behavior in order for a coherent pattern to emerge
asymptotically.

(1) Intuitively, if the leader keeps changing its velocity substantially, it will be
more difficult for the entire flock to follow and behave coherently. An extreme
example is a flock with a drunken leader which flies in a Brownian random
path. Then the entire flock cannot be expected to synchronize with the
unpredictable motion of the leader instantaneously.

(2) In the theorem, the decaying constraint μ > k depends on the size k of the
flock. Thus qualitatively speaking, it requires the leader to exert less free
will when the flock is larger, in order to lead a coherent flock asymptotically.
Consider the special hierarchical leadership under a linear chain of command :

k → k − 1 → · · · → 1 → 0.

The tail agent k has to go through all the k intermediate stages to sense
any move that the leader is making. Thus intuitively, there will be a long
time delay in between, and the leader has to be tempered enough to allow its
distantly connected followers to respond coherently.

We now prepare a lemma that is similar to Lemma 4.3. Since the new nonau-
tonomous system does not necessarily have the positivity property, we take a slightly
different approach.

Lemma 5.2. Let x, v, g ∈ R
3 satisfy{

ẋ = v(t),

v̇ = −a(x, t)v(t) + g(t).

Suppose that

a(x, t) ≥ H

(1 + |x|2)β for some β < 1/2, and

|g(t)| = O
(
(1 + t)−η

)
, with some constant η > 1.
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Then |v(t)| = O((1 + t)−(η−1)) with the order constant depending only on the initial
conditions x(t = 0), v(t = 0), and H, β, and η.

Proof. From the second equation, one has

|v| · |v|t =

(
v2

2

)
t

= 〈v, vt〉 = −a〈v, v〉 + 〈v, g〉 ≤ −a|v|2 + |v| · |g|.

Assume that v does not vanish identically on any nonempty open intervals for the
same reason as in the proof of Lemma 4.3. Then one has

|v|t ≤ −a|v| + |g|, t > 0.

Fix any time T > 0, and define

(5.3) |x|∗ = sup
t≤T

|x|(t) and a∗ = inf
t≤T

H

(1 + |x|2)β =
H

(1 + |x|2∗)β .

Then one has

(5.4) |v|t ≤ −a∗|v| + |g|, t ∈ [0, T ].

Since a∗ is constant, integration yields

|v|(t) ≤ |v|(0)e−a∗t +

∫ t

0

|g|(τ)e−a∗(t−τ)dτ.

In particular, for any t < T ,

|v|(t) ≤ |v|(0) +

∫ t

0

|g|(τ)dτ ≤ |v|(0) +

∫ ∞

0

|g(τ)|dτ := A0.

(Since η > 1 by assumption, the integral of |g| is finite.) Now that A0 is independent
of the time mark T , we conclude that the last upper bound must hold for any t > 0:
|v|(t) ≤ A0, t > 0. Therefore, from the first equation ẋ = v(t), one has

|x|(t) ≤ |x|(0) +

∫ t

0

|v|(τ)dτ ≤ B0 + A0t, t > 0,

where B0 = |x|(0). In particular, for any time mark T > 0, the quantities in (5.3) are
subject to

|x|∗ ≤ B0 + A0T and a∗ ≥ H

[1 + (B0 + A0T )2]β
.

We then go back and integrate inequality (5.4) again, but from T/2 to T this time:

|v|(T ) ≤ |v|(T/2)e−
a∗T

2 +

∫ T

T/2

|g|(τ)e−a∗(T−t)dt

≤ A0e
− HT/2

[1+(B0+A0T )2]β +

∫ ∞

T/2

|g|(t)dt

≤ A0e
−H̃(A0,B0,β)(1+T )1−2β

+

∫ ∞

T/2

O
(
(1 + t)−μ

)
dt

= A0e
−H̃(1+T )1−2β

+ O
(
(1 + T )−(μ−1)

)
.
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Since β < 1/2, we conclude that

|v|(T ) = O
(
(1 + T )−(μ−1)

)
,

where the constant in O(·) is independent of T . Since T is arbitrary, the lemma is
established.

We are now ready to prove Theorem 5.1. Details on some similar calculations
will be directed to the proof of Theorem 4.4.

Proof. It suffices to prove the following more general result:

(5.5) max
0≤i,j≤l

|vi − vj |(t) = O
(
(1 + t)−(μ−l)

)
, t > 0,

for any subflock [0, 1, . . . , l] and l ≥ 1.
When l = 1, define x = x1 − x0 and v = v1 − v0. Then ẋ = v, and

v̇ = v̇1 − v̇0 = a10(v0 − v1) − f = −a10v − f.

By the definition of an HL flock, L(1) �= ∅, and it has to be agent 0, implying that a10

is subject to the Cucker–Smale formula. Then by the preceding lemma (with η = μ),
one has

|v|(t) = O
(
(1 + t)−(μ−1)

)
,

and (5.5) holds.
Suppose now that (5.5) is true for the subflock [0, 1, . . . , l − 1] with 2 ≤ l ≤ k, so

that

(5.6) max
0≤i,j≤l−1

|vi − vj |(t) = O
(
(1 + t)−(μ−l+1)

)
.

As in the proof of Theorem 4.4, define the average features of the direct leaders of
agent l by

x̂l =
1

dl

∑
j∈L(l)

xj and v̂l =
1

dl

∑
j∈L(l)

vj , dl = #L(l),

and x = xl − x̂l and v = vl − v̂l.
Then as in the proof of Theorem 4.4, one has ẋ = v and

v̇ = −a(x, t) · v + gl(t), with

gl(t) =
∑

j∈L(l)

alj · (vj − v̂l) −
dv̂l
dt

,

a(x, t) =
∑

j∈L(l)

alj(xl − xj).

We first estimate gl. Since |alj | ≤ H and L(l) ⊆ [0, 1, . . . , l − 1], by the induction
assumption (5.6), the first term in gl must be of the order O((1+t)−η) with η = μ−l+1.
For the remaining second term in gl, let 10∈L(l) denote the logical variable, which is
1 when agent 0 belongs to L(l), and 0 otherwise. Then

dv̂l
dt

=
1

dl

∑
j∈L(l)

v̇j = 10∈L(l) ·
1

dl
v̇0 +

1

dl

∑
j∈L(l)\{0}

v̇j .
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Notice that v̇0 = f(t) = O((1 + t)−μ), and each v̇j with j ∈ L(l) \ {0} is some linear
combination of (vs− vj) with the s’s in L(j) ⊆ [0, 1, . . . , l− 1]. Thus by the induction
assumption (5.6), one must have dv̂l

dt = O((1 + t)−η) with η = μ− l + 1.
We now estimate a(x, t). Since μ > k by the given condition, we have μ− l+ 1 >

k− l+1 = 1. As a result, by the induction assumption on the subflock [0, 1, . . . , l−1],
for any i, j ≤ l − 1,

|xi − xj |(t) ≤ |xi − xj |(0) +

∫ t

0

|vi − vj |(τ)dτ

≤ |xi − xj |(0) +

∫ ∞

0

O
(
(1 + τ)−(μ−l+1)

)
dτ < ∞ ∀ t > 0.

Therefore the boundedness property in (4.17) still holds, and the same calculation in
the proof of Theorem 4.4 leads to

a(x, t) ≥ H̃

(1 + |x|2)β

for some constant H̃ = H̃(H, dl, β, f, initial conditions of [0, . . . , l − 1]).
Combining the estimations on gl and a, one sees that x(t) and v(t) satisfy a

perturbed system as in Lemma 5.2 with η = μ− l + 1. Therefore, by Lemma 5.2,

|vl − v̂l|(t) = |v|(t) = O
(
(1 + t)−(η−1)

)
= O

(
(1 + t)−(μ−l)

)
.

Now that by the induction assumption, for any j ≤ l − 1, one must have

|vj− v̂l|(t) = O
(
(1+ t)−(μ−l+1)

)
, since |vj−vi| = O

(
(1+ t)−(μ−l+1)

)
∀ i ∈ L(l).

Therefore, for any j ≤ l − 1,

|vl − vj | ≤ |vl − v̂l| + |vj − v̂l| = O
(
(1 + t)−(μ−l)

)
.

This completes the proof of (5.6), and thus the entire theorem.
Corollary 5.3. Under the same statements as in the preceding theorem, suppose

μ > k+1. Then there exists a constant configuration (dij)0≤i,j≤k with dij ∈ R
3, such

that

lim
t→∞

(xi(t) − xj(t)) = di,j , 0 ≤ i, j ≤ k,

and the convergence rate is O
(
(1 + t)−(μ−k−1)

)
.

6. Conclusion. In this paper, we have investigated the emergent behavior of
Cucker–Smale flocking under the structure of hierarchical leadership (HL). The con-
vergence rates are established for both discrete-time and continuous-time HL flocks,
as well as for HL flocks under an overall leader with free-will accelerations. In all these
scenarios, the consistent convergence towards some asymptotically coherent patterns
may reveal the advantages and necessities of having leaders and leadership in a com-
plex (biological, technological, economic, or social) system with sufficient intelligence
and memory.

As reviewed in the introduction section, there have been explosive multidisci-
plinary efforts in recent years in advancing this emerging area of multiagent complex
systems with biological or intelligence signatures (as opposed to more traditional and
passive particle systems in physics). The innate complexities (associated with mul-
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tiagency, probing and sensing, intelligence, and dynamical reorganization and tran-
sience) have made rigorous mathematical analysis of such systems highly challenging.
Therefore, to no one’s surprise, the aim of most contemporary works has been to

(i) construct complex models that reproduce specific biological phenomena or
design technology-driven applications, e.g., for ant armies, elephant herds, or
robotic or sensor networks; and

(ii) simulate (via computing) these complex models, fine-tuning model parame-
ters to obtain good approximations of the targeted biological or technological
flocking phenomena.

As is well known in information theory [5] or the most recent learning theory (e.g.,
Vapnik [26] and Cucker and Smale [6]), a universal tradeoff always exists between
the complexity of a model and its so-called generalization power, or the power of
interpretation. Most practical flocking models in the several disciplines mentioned
above have mainly attempted to reproduce faithful real-life flocking behavior, i.e., the
interpretation power. Typically, these models involve many interacting terms, often
nonlinear, nonconvex, or nonlocal. They are built upon good heuristic intuition but
defy attempts at rigorous mathematical analysis.

On the other hand, recently the collective efforts of a group of mathematicians, in-
cluding, for example, Cucker, Smale, Bertozzi, and their colleagues, have been focused
on scaling down some model complexity at the necessary loss of certain interpreta-
tion power. The reduced models become more tractable mathematically, and also offer
their developers deeper insights into more involved versions of the models. As in other
major branches of complexity study, e.g., fluid dynamics or statistical mechanics [1],
complexity reduction has often been made possible by

(a) incorporating suitable symmetries and invariants;
(b) reducing the number of significant signals or governing variables; and
(c) introducing topological, combinatorial, or dynamical structures,

as witnessed in the Cucker–Smale model [7, 8] and the current work.

It is within this general picture of multidisciplinary flocking modeling that the
present work should be embedded. This author, and probably other interested re-
searchers from the applied mathematics community as well, will continue to increase
model complexities subject to mathematical rigor and analytic tractability.
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NEURAL TIMING IN HIGHLY CONVERGENT SYSTEMS∗

COLLEEN MITCHELL† AND MICHAEL REED‡

Abstract. In order to study how the convergence of many variable-response neurons on a single
target can sharpen timing information, we investigate the limit as the number of input neurons and
the number of incoming spikes required to fire the target both get large with the ratio fixed. We
prove that the standard deviation of the firing time of the target cell goes to zero in this limit, and
we derive the asymptotic forms of the density and the standard deviation near the limit. We use the
theorems to understand the behavior of octopus cells in the mammalian cochlear nucleus.
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1. Introduction. A fundamental question in neurobiology is to understand how
the central nervous system (CNS) can perform accurate and reliable calculations with
neurons that are intrinsically variable and unreliable devices. Three more concrete
versions of the question have received much attention: (1) How can network and/or
cellular properties sharpen timing information or create accurate coincidence detec-
tors? (2) How can synchronous activity in large groups of neurons be created and
maintained? (3) Under what circumstances can intrinsic noise improve information
processing capabilities?

The first question has long been studied in the auditory brainstem because it is
experimentally accessible and because cellular, behavioral, and psychoacoustic exper-
iments show that the auditory system can make extremely fine timing distinctions in
the microsecond (or even nanosecond) range, even though individual neurons in the
auditory nerve (AN) show latency standard deviations of approximately one millisec-
ond in repeated trials with the same sound [25, 10, 45, 33, 50]. Lord Rayleigh [34]
first proposed that the auditory system uses binaural timing distinctions to localize
sound, and Jeffress [21] proposed the first neural mechanism based on delay lines and
coincidence detection. Colburn [8] clearly formulated the question of how the audi-
tory system can detect small time differences, given the noise in the AN, and went on
to create some of the first mathematical models [9]. Important experimental studies
include those of Rhode and Smith [37, 38] and Goldberg and Brown [14].

All fibers of the AN synapse on cells of the cochlear nucleus (CN). There are many
different cell types in the CN that receive different numbers of AN synapses and have
different response properties. Two experimental properties have received continuing
attention from experimentalists and modelers. First, several CN cell types show “on-
set” responses; that is, they fire a single spike shortly after the initiation of the sound;
the time lag is called the latency. The standard deviation of latency in AN fibers under
repeated trials is of the order of 1 msec, but the standard deviation of latency in some
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onset units of the CN is as much as an order of magnitude lower. Second, AN fibers
phase lock to low frequency sounds, and this phase locking is even better in some CN
units. Burkitt and Clark [4, 5] use numerical simulations of leaky integrate-and-fire
models to study how convergence of inputs effects both the onset response and the
increase in synchrony seen in target cells. Kalluri and Delgutte [23, 24] have created
a computational model using leaky integrate-and-fire for the CN target cells and an
adaptively filtered Poisson processes to model spike trains along each of the convergent
AN fibers. They are interested in determining what properties of the target cell—the
filtered Poisson process in AN fibers, the convergence from AN fibers to the target,
and adaptation in the hair cells—cause the target neuron to have an onset response
with low spontaneous rate. Young, Rothman, and coworkers [51, 39, 40, 41, 42, 43]
have conducted experiments and used numerical simulations of biophysical models
to investigate how the response properties of CN neurons depend on the details of
their channel kinetics. Similarly, Cai, Walsh, and McGee [6, 7] used simulations of
biophysical models to investigate the onset response of octopus cells in the CN using
the physiological properties discovered by Oertel and coworkers [15, 13, 32].

The overall goal of this computational modeling was to investigate how conver-
gence, detailed biophysics of CN neurons, and the known properties of auditory spike
trains give rise to onset responses, higher synchrony, and the sharpening of timing in
CN neurons. The numerical computations of the above investigators suggest strongly
that there is a connection between the amount of convergence and the sharpening of
timing information. However, their models are so elaborate and have so many param-
eters that it is difficult to make precise the mechanisms by which convergence sharpens
timing. For this reason, we have been studying the much simpler model described
below in which convergence and the sharpening of timing are isolated as the objects of
study. The simplicity of the model allows us to use the tools of probability theory and
mathematical statistics to prove theorems that make precise the relationship between
convergence and the sharpening of timing. The previous numerical modeling and
our theorems not only contribute to understanding the auditory brainstem but also
address question (1) and by implication question (2) if several of these systems are
connected in series. In other auditory brainstem work, Svirskis et al. [48] investigate
through experiment and biophysical modeling the properties of medial superior olive
neurons that make them excellent coincidence detectors and propose that coincidence
detection is improved in some circumstances by a noisy background. Thus their work
relates directly to the ideas of stochastic resonance in neural systems put forward by
Greenwood et al. [17] and Stemmler [47] and so addresses question (3).

In our simple convergence model (see Figure 1), there are n identical input neu-
rons, and all receive the same stimulus. Each fires a single action potential at a time
selected independently from a probability density f with standard deviation 1 msec.
The axons of the n neurons are of equal length and project to one target neuron
that fires a single action potential the first time that it has received m inputs in the
previous ε msec. Of course, the target neuron may not fire at all in response to a
particular stimulus. We denote the conditional density of the time of firing of the
target neuron, given that it fires, by gn,m,ε,f and its standard deviation by σn,m,ε,f ,
since both will depend on n, m, ε, and f . If σn,m,ε,f < 1 msec, then we say that
timing has been sharpened. A change of variables shows that there is a scaling law
σn,m,ε,f = sσn,m, εs ,fs

, where fs(t) ≡ sf(st), so there is no loss in generality in taking
the standard deviation of the input density f to be 1 msec [35, 29].

Although the formulation of the problem is simple, it is difficult or impossible to
derive closed form expressions for gn,m,ε,f and σn,m,ε,f except in very special cases.
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Fig. 1. The basic model. The target cell receives n independently and identically distributed
inputs and fires the first time it receives m within ε msec.

Additionally, Monte Carlo simulations [35] show that, for n and f fixed, σn,m,ε,f

can have surprisingly complicated behavior as a function of m, the numbers of hits
required, and ε, the size of the time window. For example, even for simple choices
of f (uniform, exponential, normal) and n = 10, σn,m,ε,f is sometimes monotone and
sometimes nonmonotone as a function of either m or ε with the other held fixed. In
these circumstances, it is natural to ask whether the behavior of σn,m,ε,f is simpler in
certain asymptotic limits. As ε → ∞, the neuron will surely fire at the time of the mth
hit, so σn,m,∞,f is given by order statistics, which is well understood. In the literature
this model is called the (nonleaky) integrate-and-fire model. It is used by Marsalek,
Koch, and Maunsell [27], it is the simplest model used by Burkitt and Clark [4], and
it is the “analytic coincidence detector model” of Kalluri and Delgutte [23]. Thus
those models are a special case of our model. Mitchell [29, 30] considered the singular
asymptotic limit ε → 0, proved that

(1) gn,m,ε,f → fm∫
fm

independent of n, and derived an asymptotic form for gn,m,ε,f and σn,m,ε,f near the
limit.

In this paper, we study the limit as n → ∞, m → ∞ with the ratio m
n held

fixed. There are good theoretical and experimental reasons to think that this limit is
important. First, it is relatively easy to see (Theorem 2.1 below), under reasonable
hypotheses on f , that σn,m,ε,f → 0 as n → ∞ with m held fixed. That is, one
can sharpen up timing as much as one wants by assuming a model with n large, for
example by choosing m = 1, in which case the target always fires at first hit. Young,
Robert, and Schofner [51] already pointed out that if f is exponential and m = 1, then
σn,1,ε,f = 1

n . The trouble is that many neurons (in particular those in the auditory
nerve) have high spontaneous firing rates, and so with high n and low m the target
cell will have a high spontaneous rate, which ruins its role as a neuron that measures
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the time since the stimulus. Thus it is natural to ask whether taking both n and m
large can produce a system that sharpens timing dramatically but also has a very
low spontaneous rate. The approximate calculations of Burkitt and Clark [4] and the
numerical simulations of Kalluri and Delgutte [23] suggest strongly that there should
be a clean asymptotic limit as n → ∞ with m

n held fixed. Furthermore, there is good
reason to think that octopus cells in the cochlear nucleus operate near this asymptotic
limit. Oertel [32] has found that the octopus cells receive up to 100 inputs from AN
fibers and that between 20 and 50 hits within a small time window are required to
make them fire.

In section 2, we answer the above question by showing that σn,m,ε,f → 0 as
n → ∞, m → ∞, with m

n fixed. In section 3, we derive the asymptotic forms of
gn,m,ε,f and σn,m,ε,f near the limit. And in section 4, we apply the results to octopus
cells.

2. Limit theorems as n → ∞. Let {Xi}ni=1 denote the n independently and
identically distributed random variables for the firing times of the inputs. Assume
that the Xi’s have density f(x), continuous distribution F (x), and finite mean and
standard deviation. We will use Tn to denote the random variable for the firing time
of the output (a formal definition is given in (6)). For some of the results below we
also assume that there is an xo so that

(2)

∫ xo

−∞
f(x) dx = 0 and

∫ x+a

xo

f(x) dx > 0 for all a > 0.

This is reasonable biologically since the input neurons cannot respond before the
stimulus (and perhaps not for some fixed delay afterwards).

We first consider the case where n → ∞ while m and ε are fixed.
Theorem 2.1. Let f be a given probability density satisfying (2), and let 0 <

ε ≤ ∞ and m be fixed. Then, as n → ∞, the following hold:
(i) The probability that the target cell fires −→ 1.
(ii) gn,m,ε,f −→ δxo ; that is, Tn −→ x0 in distribution. Further, Tn converges in

probability to the point mass at xo.
(iii) If f has compact support, then σn,m,ε,f −→ 0.

Proof. Let a > 0 be given, and define γ ≡
∫ xo+a

xo
f(x) dx > 0. Let Yi be the

random variable with value 1 if xo ≤ Xi ≤ xo + a and zero otherwise. Then, for
each k,

P

{
n∑

i=1

Yi = k

}
= γk(1 − γ)n−k

(
n

k

)
,

so that

(3) P

{
n∑

i=1

Yi < m

}
=

m−1∑
k=0

γk(1 − γ)n−k

(
n

k

)
≤ Cβn,

where β satisfies 1 − γ < β < 1. The constants β and C depend on m and γ but not
on n, and so

(4) P

{
n∑

i=1

Yi ≥ m

}
→ 1 as n → ∞.
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Let S denote the event that the target cell fires and Tn be the time of firing. If we
choose a = ε, then

P{S} ≥ P{S ∩ {xo ≤ Tn ≤ xo + ε}} = P{
∑n

i=1Yi ≥ m},

so (i) follows from (4). For all 0 < a ≤ ε,

(5) P{{xo ≤ Tn ≤ xo + a}|S} = P{S ∩ {xo ≤ Tn ≤ xo + a}}/P{S} → 1

as n → ∞, which proves (ii).
To prove (iii) without assuming compact support, we would need to prove a

uniform integrability condition. We will prove such a condition in the case of the main
theorem of this section (Theorem 2.3) but omit it here. If we assume that f does have
compact support, which is a reasonable hypothesis from a biological perspective, then
it is easy to check that E(Tn|S) → xo and E(T 2

n |S) → x2
o as n → ∞, which gives (iii).

Theorem 2.1 shows, as expected, that if it takes a fixed number of hits in an ε
time window to fire the target cell, then one can achieve any improvement in accuracy
one wants by taking n large enough. This confirms the general belief in the literature
[51, 4, 23] that greater convergence sharpens timing information. However, notice the
important hypothesis that m is held fixed. Example 2.1 shows that if m is not fixed,
then increasing convergence may make timing worse. Example 2.2 shows that, given a
firing mechanism at the target cell, the answer to the question of whether timing gets
better of worse depends on f . Thus one should be very careful about drawing general
conclusions from simulations, since the results may depend on the form chosen for the
noise.

Example 2.1. If m = n, ε = ∞, and f is exponential, the standard deviation of
the firing times is monotone increasing. This is because the cell will fire when the last
(nth) hit arrives. For large n this will be somewhere out in the tail of the distribution.
See Table 1 for values. The final entry is computed using the asymptotic behavior
of the nth order statistic [44]. Note that this case is not covered by Theorem 2.2
below because ε = ∞. It is also not covered by Theorem 2.3 below because the set
{x |F (x) − F (x− ε) ≥ m

n } is empty.
Example 2.2. If m = n, ε = ∞, and f is uniform, the standard deviation of the

firing times is monotone decreasing. This is because the nth hit out of n will be likely

Table 1

Values of σ for different n.

n Exponential Uniform
1 1.000 msec 1.000 msec
2 1.118 msec 0.816 msec
3 1.166 msec 0.671 msec
4 1.193 msec 0.566 msec
5 1.210 msec 0.488 msec
6 1.221 msec 0.429 msec
7 1.230 msec 0.382 msec
8 1.236 msec 0.344 msec
9 1.241 msec 0.313 msec

10 1.245 msec 0.287 msec
15 1.257 msec 0.203 msec
20 1.263 msec 0.157 msec
30 1.270 msec 0.108 msec
∞ 1.283 msec 0.000 msec
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F(x) - F(x - ε)

x-ε x 

m
n = const.

f(x) 

Fig. 2. An example density to illustrate the derivation of T. T is the smallest value for x so
that the area under the density curve between x− ε and x is at least m

n
.

to be close to the right edge of the distribution. Note that this case is not covered by
Theorem 2.2 below because {x |F (x) − F (x − ε) ≥ m

n } is not empty. It is also not
covered by Theorem 2.3 below because F (x) − F (x− ε) is not increasing at T .

We now consider the more interesting case where n → ∞ with m
n fixed. To see

the intuition, consider the particular f depicted in Figure 2. For any x, we expect
that approximately the fraction F (x) − F (x − ε) of n selections from f should lie
in the interval [x − ε, x]. Thus if F (x) − F (x − ε) ≥ m

n , we expect that m or more
selections will lie in [x − ε, x], and thus x is certainly a candidate for the firing time
of the target cell. Recall that the cell fires the first time that it gets m hits in an ε
interval. Therefore, we define

T = inf
x

{
x |F (x) − F (x− ε) ≥ m

n

}

and expect that for large n the firing time should be close to T . Of course, depending
on f , there may be no points in the set {x |F (x) − F (x− ε) ≥ m

n }.
For the proofs below, we need to introduce some machinery. For each set of n

independent selections, {Xi}ni=1, from f , we consider the sample distribution function

Fn(x) ≡ 1

n

n∑
i=1

I(Xi ≤ x),

where I is the indicator function taking value 1 if Xi ≤ x and 0 otherwise. We can
now define the random variable for the output firing time Tn in terms of Fn. Choose
any M > T , and define the random variable Tn to be

(6) Tn = inf
x

{
x |Fn(x) − Fn(x− ε) ≥ m

n

}

if the set is nonempty and Tn = M otherwise.
For n large it is known that Fn(x) is a good approximation to F (x). This is

expressed via the Kolmogorov–Smirnov distance,

Dn ≡ sup
−∞<x<∞

|Fn(x) − F (x)|.
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The classical Glivenko–Cantelli lemma (for a proof, see [2]) states that Dn → 0 with
probability one.

Theorem 2.2. Suppose that 0 < ε < ∞ and 0 < m
n ≤ 1 are fixed and that the

set {x |F (x)−F (x− ε) ≥ m
n } is empty. Then the probability that the target cell fires

converges to zero as n → ∞.
Proof. Since F is continuous and {x |F (x)−F (x−ε) ≥ m

n } is empty, there exists
α > 0 so that

F (x) − F (x− ε) ≤ m

n
− α for all x.

Therefore,

P{target cell fires} = P{at least m hits in [x− ε, x] for some x}
= P{at least m hits in (x− ε, x] for some x}

= P
{
Fn(x) − Fn(x− ε) ≥ m

n
for some x

}
≤ P{Fn(x) − F (x) + F (x− ε) − Fn(x− ε) ≥ α for some x}
≤ P{2Dn ≥ α},

which converges to zero by the Glivenko–Cantelli lemma. Thus, the probability that
the target cell fires goes to zero as n → ∞.

Theorem 2.3. Suppose that the set {x |F (x)−F (x− ε) ≥ m
n } is nonempty, and

define T as above. Suppose that F (x) − F (x− ε) is strictly increasing at T and that
0 < ε ≤ ∞ and the ratio 0 < m

n ≤ 1 are fixed. Then, as n → ∞, the following hold:
(i) The probability that the target cell fires −→ 1.
(ii) gn,m,ε,f −→ δT ; that is, Tn −→ T in distribution. Further, Tn converges to

the point mass at T with probability one.
(iii) σn,m,ε,f −→ 0.
Proof. To prove (i), note that, by the strict monotonicity at T , the set {x |

F (x) − F (x − ε) ≥ m
n } is nonempty. Note that here we have used only that the set

is not empty, but we use the stronger monotonicity hypothesis for the proof of (ii).
Thus, there is an x̄ so that F (x̄)−F (x̄− ε) ≡ γ > m

n . Let Yi be the random variable
that has value 1 if Xi is in [x̄−ε, x̄] and 0 otherwise. The Yi are independent Bernoulli
random variables with mean γ. Thus,

P{Y1 + · · · + Yn < m} = P

{
Y1 + · · · + Yn

n
− γ <

m

n
− γ

}
−→ 0

as n → ∞ by the weak law of large numbers. If there are m or more of the Xi in the
particular interval [x̄− ε, x̄], the target cell fires, and so (i) is proved.

To prove (ii), let 0 < μ < M − T be given, where M is the constant from the
definition of Tn (6). We note that the continuity of F and the fact that F (x) → 0 as
x → −∞ imply that there is an α > 0 so that

(7) sup
x<T−μ

(F (x) − F (x− ε)) <
m

n
− α.

Further, by the continuity of F and monotonicity at T , there is a β > 0 so that

(8) sup
x<T+μ

(F (x) − F (x− ε)) >
m

n
+ β.
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We will show that P{|Tn − T | > μ} → 0 as n → ∞. First,

P{Tn < T − μ} = P
{
∃x < T − μ |Fn(x) − Fn(x− ε) ≥ m

n

}
≤ P{∃x < T − μ |Fn(x) − Fn(x− ε) − (F (x) − F (x− ε)) ≥ α}
≤ P{2Dn > α}.

Similarly,

P{Tn > T + μ} = P
{
Fn(x) − Fn(x− ε) <

m

n
∀x < T + μ

}
≤ P{F (x) − F (x− ε) − Fn(x) + Fn(x− ε) > β ∀x < T + μ}
≤ P{2Dn > β}.

In each case the probability converges to zero by the Glivenko–Cantelli lemma, which
proves (ii). Note that since Dn converges with probability one, so does Tn. This in
turn implies convergence in distribution.

To prove (iii) we need to show that the sequences {Tn} and {T 2
n} are uniformly

integrable (for a proof, see [44]), i.e., that limc→∞ supn

∫∞
c

xgn,m,ε,fdx = 0 and that

limc→∞ supn

∫∞
c

x2gn,m,ε,fdx = 0. We begin by bounding the density of Tn, gn,m,ε,f ,
which we will abbreviate gn(x). In [30] we derived an explicit integral formula for
gn(x). It is more convenient to write this expression in terms of the ordered inputs
known as the order statistics. Let Yi be the ith order statistic, i.e., the random variable
which is the ith smallest of the Xi’s. Let f{Yi|Tn=Yi}(x) denote the conditional density
of Yi given that Tn = Yi, and let Pi be the probability that Tn = Yi. The density
gn(x) of Tn is the normalized sum from m to n of these conditional densities:

(9) gn(x) =

∑n
i=m f{Yi|Tn=Yi}(x)Pi

P (success)
.

Using the joint density of the Yi’s, we can compute f{Yi|Tn=Yi}(x) by integrating over
the appropriate event:

f{Yi|Tn=Yi}(x)

=
1

Pi
n!f(x)

∫
Ω3

n∏
j=i+1

f(yj)

∫
Ω2

i−1∏
j=i−m+1

f(yj)

∫
Ω1

j=i−m∏
j=1

f(yj)

i−1∏
j=1

dyj

n∏
j=i+1

dyj ,(10)

where Ω1, Ω2, and Ω3 are the sets

Ω1 = {y1 < · · · < yi−m and yk < yk+m−1 − ε for k = 1, . . . , i−m},
Ω2 = {x− ε < yi−m+1 < · · · < yi−1 < x},
Ω3 = {x < yi+1 < · · · < yn}.

The sets Ω1, Ω2, and Ω3 correspond to the statements that the first i−1 arriving hits
do not fire the cell, that the ith does, and that the remaining times can be anything.

We can attain a bound on the integral by replacing Ω1 with the larger set

Ω1 = {y1 < · · · < yi−m and yi−m < x− ε}.

Next we can integrate explicitly to obtain the bound on the conditional density

f{Yi|Tn=Yi}(x) ≤ 1

Pi
n!f(x)

(1 − F (x))n−i

(n− i)!

(F (x) − F (x− ε))m−1

(m− 1)!

F (x− ε)i−m

(i−m)!
.
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Summing over i in (9) gives the bound

gn(x) ≤ 1

P (success)
n!

(1 − (F (x) − F (x− ε)))n−m

(n−m)!

(F (x) − F (x− ε))m−1

(m− 1)!
f(x).

For large c, F (x)−F (x− ε) goes to zero. We can make a straightforward calculation

using Stirling’s formula to show that n! (1−(F (x)−F (x−ε)))n−m

(n−m)!
(F (x)−F (x−ε))m−1

(m−1)! is uni-

formly bounded independent of n for F (x)−F (x−ε) sufficiently small. Specifically if
c is large enough so that F (x)−F (x−ε) < aa

(a−1)a−1 for all x > c, where a is the ratio

n/m, then there is a constant A so that gn(x) ≤ A
P (success)f(x) for all x > c. Since f

has a finite mean and standard deviation, this bound implies that {Tn} and {T 2
n} are

both uniformly integrable, and so E(Tn) → T and E(T 2
n) → T 2, which proves (iii).

Theorem 2.3 shows that if F (x) − F (x − ε) crosses m
n the first time it reaches

m
n , then the firing time will converge to the point mass at this time as n → ∞. The
following two examples show that while most sets of parameters will be covered in
the above theorems, we have not addressed what will happen if F (x) − F (x − ε) is
not increasing at T but rather reaches m

n and is constant for some time or reaches m
n

and immediately drops back down. This situation is unlikely in the biological context
but is of mathematical interest. Example 2.3 shows that if f is exponential, then
either Theorem 2.2 or 2.3 will apply unless F (xo+ε) is exactly m

n . In Example 2.4 we
discuss various cases in which the hypotheses of Theorem 2.3 are, or are not, satisfied.

Example 2.3. If f is exponential, then F (x)−F (x−ε) will be monotone increasing
from xo to xo+ε and monotone decreasing for x > xo+ε. If the value of F (x)−F (x−ε)
at its peak, namely F (xo + ε), is greater than m

n , then T will be less than ε and the
hypotheses of Theorem 2.3 will be satisfied, so the standard deviation will go to zero
(see Figure 3(A)). If, on the other hand, the value at the peak is less than m

n , then
the set {x |F (x) − F (x − ε) ≥ m

n } is empty and the hypotheses of Theorem 2.2 will
be satisfied, so the probability of firing will go to zero. It is of mathematical interest
to study what will happen in the borderline case where F (xo + ε) is exactly m

n .

Example 2.4. Let xo < x1 < yo < y1 and suppose that the support of the
density f consists of the two intervals [xo, x1] and [yo, y1]. In addition, suppose that
x1−xo < ε, y1−yo < ε, and yo−x1 > ε, so the intervals are small and well separated
compared to ε. Let p =

∫ x1

xo
f(x) dx and q =

∫ y1

yo
f(x) dx. There are several cases to

consider. If p > m
n , then xo < T < x1 and the “strictly increasing” hypothesis holds,

so the conclusions of Theorem 2.3 hold. If p < m
n and q < m

n , then the probability of
firing goes to zero as n → ∞ with m

n fixed by Theorem 2.2. If p < m
n and q > m

n , then
yo < T < y1 and again the “strictly increasing” hypothesis holds, so the conclusions
of Theorem 2.3 hold. Finally, suppose that m

n = 1
2 and that p = q = 1

2 . Then
T = x1 but the “strictly increasing” hypothesis does not hold. The number of hits
in the first region is given by the binomial B(n, p). Thus the probability of firing
in this first interval, P (B(n, p) ≥ m), converges to 1

2 as n → ∞ with m
n fixed. A

straightforward argument shows that the conditional density (conditioned on firing in
the first interval) converges to δx1 . The same arguments show that if the neuron does
not fire in the first interval, then it has probability 1

2 of firing in the second interval,
and the conditional density (conditioned on firing in the second interval) converges to
δy1 . Therefore, as n → ∞ with m

n fixed, the density (conditioned on firing) converges
to 2

3δx1 + 1
3δy1 . Thus, if the “strictly increasing at T” hypothesis does not hold, the

conclusions of Theorem 2.3 may not hold.
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3. The asymptotic form. We will now prove the asymptotic normality of Tn.
We will consider the case where, in addition to the left edge hypothesis (2) we assume
that T < x0 + ε. This means that there is more than m/n probability in the interval
(x0, x0 + ε), i.e., F (xo + ε) − F (xo) > m/n, and therefore that F (x − ε) = 0 for all
x < xo + ε.

Theorem 3.1. Suppose that T < x0 + ε; then Tn is asymptotically normal with
mean T and standard deviation

(11) σc =

(
m
n

(
1 − m

n

))1/2
f(T )n1/2

.

We call the standard deviation σc because it is a result of the convergence studied
in sections 1 and 2.

Proof. Fix t and let

Gn(t) = P

(
Tn − T

σn
≤ t

)
.

We wish to show that Gn(t) → Φ(t), where Φ is the cumulative distribution for the
standard normal. We begin by rewriting Gn(t) using the definition of Tn given in (6):

Gn(t) = P (Tn ≤ T + tσn)

= P
(
∃x ≤ T + tσn|Fn(x) − Fn(x− ε) ≥ m

n

)
.

Since σn → 0 as n → ∞ and T < x0 + ε, there is an n̄ such that for all n ≥ n̄,
T + tσn < x0 + ε. Therefore if n ≥ n̄ and x ≤ T + tσn, F (x− ε) = 0. Note that, by
the definition of Fn, if F (x− ε), then the probability of a hit before x− ε is zero and
Fn(x− ε) is also zero for all n. So, for n ≥ n̄,

Gn(t) = P
(
∃x ≤ T + tσn|Fn(x) ≥ m

n

)
= P

(
Fn(T + tσn) ≥ m

n

)
,

where we have used the monotonicity of Fn. Notice that since F (T − ε) = 0, the
value T is just the value of the m

n th quantile, which we will denote ξ. The m
n th

quantile is defined by ξ = inf{x : F (x) ≥ m
n }. The proof rests upon the asymptotic

normality of the sample m
n th quantile, ξn, defined by ξn = inf{x : Fn(x) ≥ m

n }. ξn
is asymptotically normal with mean ξ and standard deviation σn [44]. Now we can
write Gn in terms of the quantiles:

Gn(t) = P (ξn ≤ ξ + tσn).

Therefore the asymptotic normality of the sample quantile implies the asymptotic
normality of Tn.

It is the hypothesis that T < x0 + ε that makes the proof of Theorem 3.1 easy by
reducing the question to the asymptotic behavior of quantiles. Intuitively, the hypoth-
esis means that there is a lot of probability close to the initial point x0. Example 3.1
shows that this hypothesis is biologically reasonable. Example 3.2 shows what can
happen if this hypothesis is violated and gives a conjecture for the general case.

Example 3.1. For AN neurons, the density f looks like a (translated, smoothed)
exponential [25, 51, 49] with standard deviation approximately 1 msec. In Figure 3(A)
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Fig. 3. Examples illustrating the importance of the hypothesis T < xo + ε in Theorem 3.1.
Panel (A) shows the density for the exponential as in Example 3.1. The shaded portion has area
m
n
, and one can see that T (2) = xo + ln 5

3
< xo + ε so that Example 3.1 satisfies the hypotheses of

Theorem 3.1. Similarly, the shaded portion in panel (B) has area m
n
, but in this case T = 1.7−

√
6 >

xo + ε so that Theorem 3.1 does not apply. Panel (C) compares results of Monte Carlo simulations
(data are the dots on the middle curve) to the predictions of Theorem 3.1 (bottom curve, σc). We
see that the theorem does not apply, but that our conjecture (top curve, σ̄c) for this more general
case is supported.

we show the exponential distribution (starting at x0) with standard deviation 1 msec.
It is easy to check that T = x0 + ln n

n−m . Consider three cases m1

n1
= .2, m2

n2
= .4,

and m3

n3
= .5, which will have corresponding T (1) = x0 + ln 5

4 , T (2) = x0 + ln 5
3 , and

T (3) = x0 + ln 2. Thus, if ε = 1 msec, which is reasonable for octopus cells [15, 32]
and many other neurons, we will have T (i) < x0 + ε in all three cases, so Theorem 3.1
applies.

Example 3.2. On the other hand, suppose that f is the piecewise linear “hat”
distribution (see Figure 3(B)). In order to have standard deviation 1 msec, the density
is supported on the interval [−

√
6
√

6] (so xo =
√

6). In all of the cases above T (i) >
xo + ε, and so Theorem 3.1 does not apply. For example if m

n = .2, then T =

−
√

6 + 1.7 ≈ −0.75. In this case the standard deviation does not converge to the
value σc given in Theorem 3.1 but instead to another higher value. We conjecture
that in this case Tn will be asymptotically normal with mean T and standard deviation

σ̄c =

(
m
n

(
1 − m

n

))1/2
(f(T ) − f(T − ε))n1/2

.

Figure 3(C) shows the values for σc (bottom curve), σ̄c (top curve), and the standard
deviation computed using Monte Carlo simulations as in [35] (middle curve; each dot
was computed using 100,000 trials). We can see that for large n the values do not
approach σc but rather σ̄c, supporting our conjecture.

4. Applications to octopus cells. The latency of a neuron in the auditory
system is the length of time between the start of a sound and the time of the first
action potential produced by the neuron. In mammals, AN neurons, which provide the
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input to the auditory brainstem, have latencies in the range 2 to 8 msec, with standard
deviations of approximately 1 msec under repeated trials [25]. The auditory system
must use group properties of these highly variable inputs to extract sharp timing
information so that the animal can make time distinctions in the low microsecond
range. According to Oertel et al. [32], much of this processing is done by octopus cells
in the cochlear nucleus that “detect coincident firing within populations of auditory
nerve fibers and convey acoustic information in precisely timed action potentials.” It
is estimated that octopus cells receive synapses from roughly 60 to 100 AN neurons
(i.e., 60 ≤ n ≤ 100) and require that 20% to 50% of these synapses be activated by
incoming action potentials within 1 msec in order fire an action potential (i.e., ε =
1 msec and 0.2 ≤ m

n ≤ 0.5) [32, 15]. It is therefore of interest to test whether the
predictions of the theorems in this paper are consistent with the observed in vivo and
in vitro behavior of octopus cells. For some parameter choices we can also make more
specific predictions for optimal values of m and n.

The histograms of latencies in AN neurons are quite variable but look roughly
like smoothed exponential distributions. Thus, we shall assume that f is exponential
with standard deviation 1 msec, and it follows that T = xo+log n

n−m . If ε ≥ T , which
holds for all cases considered below (see Example 3.1 above), then F (T − ε) = 0, and
the asymptotic formula (11) has the simple form

(12) σ2
c =

m
n

(1 − m
n )n

.

If we evaluate σc for n and m in the physiological ranges given above, we obtain
values in the range 0.05 msec to 0.13 msec (Table 2). Oertel et al. report that the
standard deviations of latencies of octopus cells in response to sounds are approxi-
mately 0.1 msec [32], so the formula (11) certainly predicts the order of magnitude
improvement of timing seen in vivo in octopus cells.

Table 2

Values of σc.

n m σc (msec)
100 20 0.05
100 33 0.07
100 50 0.10
60 30 0.13

We can use (12) to explore a variety of questions about the physiology of octopus
cells. First we ask why n isn’t larger than the range 60–100. σc is the standard
deviation in the latency of the octopus cell due to the variation in firing times of the
inputs. However, there are other sources of variation. The AN neurons that synapse
on the octopus cell may have somewhat different axonal lengths and diameters, both
of which will affect arrival times. Second, due to such factors as the diffusion of
neurotransmitter across the synaptic cleft, the finite number of postsynaptic receptors,
and the variation in the local membrane chemistry, the integration of synaptic inputs
by the octopus cell will have variation under repeated trials even if the timing of the
inputs is the same. Assuming that these other factors are independent of the noise in
the firing times of the inputs, and denoting the corresponding standard deviation by
σother, we have σ2

o = σ2
c + σ2

other. Fortunately, the experiments in [15], where shocks
are applied to the nerve root, give a good estimate, σother = 0.05 msec. Figure 4
shows the behavior of σo as a function of n in two cases, m

n = 1
2 and m

n = 1
5 , that are
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σ

n

Fig. 4. Predicted values of the standard deviation of the latency of octopus cells, σo, for different
values of n.

Fig. 5. Predicted values of the spontaneous rate of the octopus cell as a function of m with
n = 100 and four different assumptions about the spontaneous rate, r, of AN neurons.

the expected extremes for the ratio m
n . In both cases there is not much extra decrease

in σo after n = 60 and very little after n = 100.
Many AN neurons have high or very high spontaneous rates, even ranging as

high as 100 spikes/sec [25, 19]. If n is high and m is low, then many of the successful
firings of the octopus cell will be spontaneous, i.e., unrelated to input. However, it
is known that octopus cells have essentially no spontaneous rate [37, 38, 46]. Thus,
it is a natural question to ask how large m must be so that the spontaneous rate of
the octopus cell in our model is 1 spike/sec or less. Assume ε = 1 msec, and suppose
that each incoming AN neuron has a spontaneous rate of r spikes/msec. Then, the
probability that any particular AN neuron delivers a spike within a 1 msec interval is
approximately r. Assuming that the AN neurons are independent, the probability of
m or more incoming spikes within the 1 msec interval is approximately

(13) Prob{#incoming hits ≥ m} =

n∑
k=m

(
n

k

)
rk(1 − r)n−k,

and thus the spontaneous firing rate of the octopus cell in spikes/sec, denoted by
SR(r, n,m), will be approximately 1000 times the probability in (13). Figure 5 shows
the graphs of SR(r, n,m) as functions of m for n = 100 and for four different choices
of r. If the incoming AN fibers have spontaneous rates of r = .075 spikes/msec
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Fig. 6. The region of the (m
n
, n) plane for which σo ≤ 0.1 and the octopus cell has a spontaneous

firing rate ≤ 1 spike/sec is the region below the solid curve and above the dashed curve.

(75 spikes/sec), SR(.075, 100,m) does not go below 1 spike/sec until m = 18. Thus
the model, with n = 100, predicts that m is 18 or higher, which corresponds well with
the estimates of experimentalists [15, 32, 13].

We can also allow both m
n and n to be free and ask what is the region in the

(n, m
n ) plane that gives the observed physiological behavior. First, we require that the

standard deviation of the latency of the octopus cell satisfy σo ≤ 0.1 msec. Since σ2
o =

σ2
c + σ2

other, this is equivalent to the requirement that σ2
c ≤ .12 − .052. Equation (12)

can be rearranged to give a bound on m
n in terms of this maximum allowable standard

deviation:

(14)
m

n
≤ (σ2

c )n

1 + (σ2
c )n

.

Second, we require that the spontaneous firing rate of the octopus cell be less than the
maximum value rmax = .001 spike/msec or 1 spike/sec. Using (13) and the normal
approximation to the binomial gives

(15)
m

n
≥ Φ−1(1 − rmax)

√
r(1 − r)

n
+ r,

where Φ is the cumulative distribution function of the standard normal and r is
the spontaneous rate of the incoming neurons. The points below the solid curve in
Figure 6 satisfy (14), and the points above the dashed curve satisfy (15) in the case
r = .075 spikes/msec.

In Figure 6 we assumed that the standard deviation of f is 1 msec and that the
spontaneous rate of the AN neurons r = 75spikes/sec. For other assumptions the
curves are somewhat different. For example, instead of choosing σc = .0866, we could
recognize that it is not particularly beneficial to require that σc be smaller than σother.
In this case we require that σc be roughly the same as σother so that both are equal
to .05 msec and repeat the above calculations (shown in Figure 7), predicting a much
smaller region of possible values for m and n. In this case we require n ≥ 80 and that
m
n be between 18% and 20%. This is within the experimental estimates but suggests
a much smaller range of optimal values. From this calculation we can predict that
ideally n should be near the high end of its range, close to 100, and that m should be
near the low end of its range, close to 20.
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Fig. 7. The region of the (m
n
, n) plane for which σc ≤ 0.05 and the octopus cell has a sponta-

neous firing rate ≤ 1 spike/sec is the region below the solid curve and above the dashed curve. In
both Figures 6 and 7, we assume that the standard deviation of f is 1 msec and that the spontaneous
rate of the AN neurons r = 75 spikes/sec.

5. Discussion. The model given in Figure 1 was formulated to allow a math-
ematical investigation of how convergence (the number of incoming neurons, n) and
the number of hits required to make the target cell fire, m, affect the sharpening
of timing information when the firing times of the incoming neurons are noisy. The
main theorem (Theorem 2.3) shows that if n → ∞ and m → ∞ with m

n fixed, then
the standard deviation of the time of firing of the target cell goes to zero. The phys-
iological significance of the result is that timing can be sharpened by taking both
n large and m large (to avoid spontaneous firing of the target). That there should
be a theorem like this was suggested by the approximate calculations of Burkitt and
Clark [4] and the numerical simulations of Kalluri and Delgutte [23]. In section 3 we
derived approximate formulas for gn,m,ε,f and σn,m,ε,f near the limit. In section 4,
we used the asymptotic formula for σn,m,ε,f to study octopus cells of the mammalian
cochlear nucleus and saw that the predictions of the mathematical model correspond
quite well to experimental observations.

We hope that the theorems proved in this paper can be a first step in proving
theorems about more complicated and difficult neurophysiological questions. One such
question is the improved phase locking of CN neurons compared to the phase locking in
the AN [19, 22, 43, 4, 23], which is universally believed to occur because of convergence
of many AN fibers on CN target cells. The mathematical situation here is more
complicated, since typically one models the firing pattern in individual AN fibers by a
Poisson process whose parameter λ(t) depends on the sound; for example, λ(t) would
be periodic for a pure tone. The quantity of interest is the distribution of spike times
of the target cell modulo the nearest multiple of the period. For some cells the target
cell may fire at first hit, while for other cells many subthreshold hits in a small time
window may be necessary for firing. Because of the background noise caused by the
high spontaneous rates of many AN fibers, this may be an excellent use of the theory of
stochastic resonance [17, 47]. To prove such theorems one would need to represent the
noise as stochastic processes rather than making the simple approximations that we
have used in section 4. Another such question is how synchronous firing of large groups
of neurons in the CNS is created and maintained. Such firing has been proposed as
central to “binding” mechanisms in the visual system [12, 26, 28], the improvement
of coordination of motor systems in the cerebellum [20], and the creation of the γ
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rhythm [3]. The approximation theorem in section 3 is a natural starting point for
studying synfire chains [1, 11, 36, 18] that have both noise and high convergence
from level to level. Many of the models for these systems involve inhibition, so an
important step would be the extension of the results in [35, 30] and this paper to
include inhibitory neurons.

In applying our model to octopus cells we have simplified the biological situation
in several ways. First, AN neurons synapse serially on the large dendrites of octopus
cells, not directly on the cell body as in our model. Oertel has shown [32] that the
AN neurons that carry higher frequency sounds (they fire on average earlier) synapse
further out on the dendrite, and the AN neurons that carry lower frequency sounds
(they fire on average later) synapse closer to the cell body. Golding, Ferragamo, and
Oertel [16] conclude that this arrangement on the dendrite, as well as the thickness
of the dendrite and special channel properties, insure that the influence of each AN
neuron arrives (on average) at the cell body at the same time, which justifies our
assumption that all the AN neurons synapse directly on the cell body.

A much more serious simplification is that we have ignored the detailed biophysics
of synapses and the postsynaptic membrane. All the biophysics is contained in the
two parameters, ε, the time window, and m, the number of hits required in that
time window to fire the target cell. We believe that the results in section 4 show
conclusively that our model, with these two simple parameters, explains why octopus
cells improve the standard deviation of timing by one order of magnitude and why
octopus cells have no spontaneous rates. Of course, the values of these two parameters
arise from the detailed biophysics of the synapses and postsynaptic membrane.

Finally, it is reasonable to ask whether octopus cells, or indeed any neurons, have
sharp time windows as we assume in our model. Ferragamo and Oertel [13] have
conducted a detailed study of the potential of the postsynaptic membrane of octopus
cells. They showed that it is the rate of rise of the potential (dependent on the rate
of arrival of incoming spikes) that determines whether the octopus cell fires. This is
exactly what one would expect if the octopus cell had a sharp time window. If the
rate of rise is high enough, then there will be enough incoming spikes in the time
window, and if the rate of rise is too slow, then there will not be enough incoming
spikes in the time window. More generally, we have studied a number of frequently
used nonlinear models for the biophysics of postsynaptic membranes and have shown
that, in reasonable parameter ranges, they have quite sharp time windows. These
results will appear in a subsequent publication [31].
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Abstract. Stability analysis of a single-lane microscopic car-following model is studied ana-
lytically from the perspective of delayed reactions of human drivers. In the literature, the delayed
reactions of the drivers are modeled with discrete delays, which assume that drivers make their con-
trol decisions based on the stimuli they receive from a point of time in the history. We improve this
model by introducing a distribution of delays, which assumes that the control actions are based on
information distributed over an interval of time in history. Such an assumption is more realistic, as
it takes into consideration the memory capabilities of the drivers and the inevitable heterogeneity of
their delay times. We calculate exact stability regions in the parameter space of some realistic delay
distributions. Case studies are provided demonstrating the application of the results.
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1. Introduction. Traffic behavior has been an important research topic since
the 1930s, with the of aim of reducing the undesirable social (e.g., vehicle accidents)
and economic (for example, congestion and increasing pollution) effects of increasingly
complex traffic loads. For this purpose, one needs a good understanding of traffic
dynamics, in which many parameters or constraints play an important role, such as
the physical conditions of highways, mechanical properties of vehicles, psychological
states of the drivers, traffic laws, on- and off-ramps, multiple lanes, traffic density,
etc. The literature contains various models addressing different phenomena; see, e.g.,
the survey [12] and the references therein.

Among the parameters that play a major role in traffic behavior, there exists
a critical one which has been recognized as early as the 1950s [4], namely the time
delay. It mainly originates due to the time needed by human drivers for sensing,
being conscious, and performing control actions [7]. Consequently, traffic dynamics,
and ultimately its mathematical models, inherently carry time delays. See, e.g., [2,
23, 19, 18, 26, 27] for some delay models and related discussions.

Stability characterizations of traffic models may be quite different when time
delays are taken into account; for instance, a stable delay-free dynamics may become
unstable when delays are considered. Therefore, a thorough stability analysis of the
dynamics in the time delay domain is necessary. Without entering into details, we
shall consider a continuous-time microscopic car-following model proposed in [4, 21]
to describe traffic behavior. What distinguishes this study is the idea of incorporating
distributed delays in order to represent the memory of the drivers.
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Human-in-the-loop modeling. From the perspective of control theory, traffic
flow can be seen as human-in-the-loop dynamics [16], since human drivers play the
major role in the evolution of the traffic flow. Such a dynamical structure exhibits
richer and more complicated features not only due to the challenges of modeling
human beings, but also due to the delayed control actions of the drivers, which dis-
tinguishes them from fast response characteristics of sensors and controllers. On the
other hand, the modeling of time-delays representing the behavior of the drivers is a
challenge. Models in the existing literature make use of discrete delays [2, 27, 23],
which describe an action of the driver at time t that is based on what is experienced
at a point of time t − τ , τ ≥ 0, in the past. The stability of the arising dynamics
has been studied by several authors from various perspectives. See [2, 6, 18, 19] for
the utilization of nonlinear optimal velocity functions relating headway versus desired
velocity; [19, 18, 20] for one- and two dimensional bifurcation analysis as well as phase
diagrams characterizing oscillations, collision, and the stopping motion nature of the
traffic flow; [27] for incorporating human driver modeling into traffic flow where hu-
man adaptation and anticipation are considered along with multiple vehicle following
strategies and phase diagrams revealing collisions, oscillations, and accident-free traf-
fic flow; and [23] for the stability analysis of traffic flow in which multiple discrete
time-delays corresponding to different time scales of reaction of human drivers against
velocity and headway changes are taken into account.

We note, however, that discrete-delay models can have their shortcomings. For
instance, regarding τ as a fixed unchanging quantity with known value would ignore
the possibility that the dynamics may possess inherent “memory” effects which use the
past history of the received information. Especially for the traffic flow, the presence
of human drivers suggests that memory effects should be taken into consideration.
Moreover, the behavior of individual drivers and their reactions are not identical, and
in reality exhibit a distribution of inhomogeneous behavior. Therefore, the use of
a model taking into account the distributed nature of the delays will yield a better
representation of reality. Such an argument has also some potential in modeling the
dynamics of human-in-the-loop systems [16], which will ultimately open new research
directions for designing driver assistance or semiactive controllers that can guide the
human beings for a safer drive in uncertain environments.

In the present work, motivated by the above reasoning, we model the delayed
action/decision of human drivers using distributed delays. The physical basis of the
model is the fact that the drivers perform their decisions based on what they continu-
ously observe (during a memory window) from the evolving traffic flow, during which
some information is retained and used in the decision-making process. These deci-
sions are clearly limited by the capacity of the memory, i.e., the size of the memory
window, which will be an important parameter in the analysis.

Objective and approach. The main objectives of the paper are to (a) study the
stability margin of the traffic flow dynamics over a microscopic car-following model in
the parameter space defining the memory effects, and (b) discuss the analytical and
physical interpretations of the results for several practical traffic scenarios.

For the stability analysis, we use a frequency-domain approach combined with
some simple geometric ideas, and give necessary and sufficient conditions for the
stability of the dynamics. In this context, we also explore whether the stability
region consists of a single connected set or of several “islands” (also called pockets) of
stability. We note that in the present text the stability is robust against small delay
variations (section 2); thus small delay perturbations do not induce instability; see
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some discussions in [24, 10, 17, 15]. The focus of the work here is an analytical study
of the effects of distributed delays on the stability of traffic flow.

Moreover, it is shown in [1] that distributed memory enhances the stability margin
in a network stabilization scheme. It is interesting to see whether a similar stability-
enhancing feature also exists in traffic flow dynamics when the drivers make use of
the past history of the traffic evolution in their decision-making, which would clearly
have significance in realistic traffic modeling.

To model memory effects one can use common delay distributions, namely γ-
distribution with and without a gap, uniform distribution. As discussed below, the
first two cases are easier to handle, whereas the uniform distribution needs a more
careful treatment. This mainly originates from a characteristic equation which does
not exactly fit into standard classes treated in the literature, in that (i) the delay terms
appear not only in exponential terms but also in the coefficients, (ii) the characteristic
equation includes complex coefficients, which does not carry the features of those
with real coefficients as treated in the literature [24, 17, 10, 15], (iii) there exist two
independent delay parameters; stability investigations under the presence of more
than one delay is quite complicated [9, 17, 22, 25, 24, 15].

The key ideas of our analysis are based on decoupling the dynamics into lower
dimensions and introducing an interconnection scheme interpretation from control
feedback systems theory. Such an analysis is the key to the complete analytical
treatment of the arising characteristic equation. Connections with existing approaches
and methodologies will be made in the following sections. In section 2, we present
the microscopic car-following model and the spatial configuration of vehicles in traffic.
Section 3 introduces some preliminaries, and section 4 is devoted to the main results
on the stability analysis, where analytical and geometrical arguments for deriving
the stability results are developed. Section 5 illustrates the results with numerical
examples for several traffic scenarios, and a brief summary in section 6 concludes the
presentation.

Notation. We use R for real numbers, where an additional + or − sign as a
subscript indicates the positive and negative real numbers, respectively. Similarly, C+

and C− denote complex numbers with positive and negative real parts, respectively.
The imaginary axis of the complex plane is denoted by jR, where j =

√
−1. We use

s ∈ C for the Laplace variable, whose values on the imaginary axis are denoted by
s = jω for ω ∈ R. The eigenvalues of the matrix A are represented by λi(A). ∠z
denotes the argument of the complex number z.

2. Microscopic car-following model with distributed delays. Although
undesirable, the presence of time-delays in the process of decision making and per-
forming a control action by human drivers is neither avoidable nor negligible (e.g.,
[27, 26, 2, 23]). In this section, we develop memory effects on a conceptual microscopic
car-following model.

Microscopic car-following model. In order to understand the behavior of traf-
fic flow and to propose ways to avoid its undesirable effects (congestion, accidents,
economic losses, time losses, degradation of the quality of the environment), vari-
ous mathematical models have been proposed in the literature [8, 12, 6, 18, 27, 26].
Despite the available results, the topic still offers open problems today.

A main direction in traffic research is focused on highway traffic models [27, 19,
12, 6], since travel times on highways are longer and travel speed is relatively high,
and health and economic issues are largely at risk [12]. Furthermore, in most cases
a single-lane problem is considered. Such an assumption is quite realistic and also



STABILITY OF TRAFFIC FLOW WITH DISTRIBUTED DELAYS 741

allows one to obtain further insight on the problem due to its simpler mathematical
formulation. This type of model also forms the main focus in our study. A single-lane
traffic flow, in which a chain of vehicles travels at a constant velocity (so-called quasi
steady-state) without changing lanes, is considered. We use a microscopic model in
which the dynamics of individual vehicles and drivers is taken into account. Despite
the simplicity of the model, an analytical stability investigation becomes nontrivial due
to the presence of time-delays, as we present below. Furthermore, there exist various
complications in realistically modeling human beings and their delayed reactions.

The primary interest in this work is to shed light, from the perspective of memory
effects of human drivers, on the stability of traffic behavior. As a starting point
in this new direction, the linear stability analysis of the perturbations around the
constant-velocity solutions will be of particular interest in order to reveal the stability
features with respect to the parametric domain defining the memory effects. In order
to achieve this, a linear mathematical model inspired by earlier work is introduced
in what follows. Due to the linear stability analysis, however, the mathematical
model considered here is not dependent on some additional parameters defining the
traffic, such as dependence on headway, drivers’ sensitivity as a function of headway,
acceleration and deceleration characteristics, human anticipation, etc. Readers are
directed to the work in [6, 12, 20, 27] for more elaborate models.

Discrete-delay models. Many studies in the literature model the time-delayed
actions of the drivers by a discrete delay τ . One such microscopic car-following model
is given as [4, 12, 21, 23]

(2.1) v̇i(t) = κi(vi−1(t− τ) − vi(t− τ)).

This model represents the dynamics of the velocity perturbations vi around constant-
velocity solutions (the equilibrium at which all vehicles travel at a constant velocity
V ) of the traffic flow. The parameter κi > 0 denotes the sensitivity of a driver to
the velocity difference between his vehicle and the one in front, and gives a measure
of the driver’s reactivity (aggressiveness) based on his experience and knowledge of
the environment. For further information on discrete-delay models, refer to [2, 6,
18, 20, 27]; on the links between the stability features of discrete-delay models and
Hopf bifurcations, some interesting arguments can be found in [18, 20, 19]; and on
the phase diagrams of traffic flow characterizing collisions, oscillations, and accident-
free flow, see [20, 27]. The cited references are also valuable sources for various
mathematical models over which additional parameters not considered here, such as
headway, sensitivity, acceleration, and deceleration dependence can be studied.

Distributed delay model. By incorporating a general memory effect, f(τ), into the
system (2.1), we arrive at the following generalized model:

(2.2) v̇i(t) = κi

∫ ∞

0

f(τ)(vi−1(t− τ) − vi(t− τ)) dτ,

where we assume that the delay kernel f is a measurable function of exponential order.
When f is a Dirac delta function, (2.2) reduces to the discrete delay model (2.1). See
above for discussions of earlier work on discrete delay models.

Delay distributions. We will consider the following common distribution functions
f in the model (2.2):

(1) Uniform distribution. For δ > 0 and h ≥ 0, the distribution

(2.3) f(τ) =

{
1/δ if h < τ < h + δ,
0 otherwise,
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Fig. 2.1. (a) Uniform distribution with h being dead-time and δ being size of the memory
window. (b) γ-distribution with gap, h = 0.5, for p = 5 (dashed curve), p = 10 (thick curve), p = 20
(thin curve), where pq = 1.

Fig. 2.2. Ring and linear configurations of the traffic model with n vehicles.

represents an average of the information available in the short-term memory, and can
be considered as a first order approximation to a more complicated distribution; see
Figure 2.1(a). It will be of interest to see how h (corresponding to some dead-time
before the perception of the sensory input by the driver) and the window size δ affect
the stability.

(2) γ-distribution with and without gap. We have

(2.4) f(τ) =

⎧⎪⎨
⎪⎩

(τ − h)p−1e−(τ−h)/q

qpΓ(p)
if τ ≥ h,

0 if τ < h,

where p, q are positive parameters of the distribution, Γ denotes the gamma function,
and the gap h ≥ 0 represents the dead-time. The mean value of f is h + pq, and the
variance is pq2 (which exist for p > 2), which is a measure of the length of the memory
window, q being a scaling factor (q = 1, mean value = h+ p, variance = p). It will be
of interest to see how the quantities h, p, and q affect stability. See in Figure 2.1(b)
the γ-distribution with gap for various p values keeping pq fixed.

Spatial configuration of the model. We consider two widely utilized configurations
(Figure 2.2) with n number of vehicles: (a) vehicles traveling around a ring, and
(b) vehicles arranged along a linear path. In the linear configuration, the vehicle
in front (for which we use the convention of labeling with index i = 1) travels at a
constant velocity, i.e., v̇1(t) = 0. Hence, the linear configuration can be derived from
the circular one by setting κ1 = 0.
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3. Problem statement and preliminaries. The system (2.2) can be expressed
in vector form as

(3.1) v̇(t) =

∫ ∞

0

Jv(t− τ)f(τ) dτ,

where v = (v1, . . . , vn) and J ∈ Rn×n is a configuration matrix weighted by the driver
sensitivities κi. For the circular form of the configuration in Figure 2.2, it is obvious
that v0 = vn; thus the appropriate index selection in (2.2) becomes i = 1, . . . , n.
Consequently, the matrix J takes the form

(3.2) J =

⎛
⎜⎜⎜⎜⎜⎝

−κ1 0 · · · 0 κ1

κ2 −κ2 0 · · · 0
0 κ3 −κ3 · · · 0
...

...
. . .

. . .
...

0 · · · 0 κn −κn

⎞
⎟⎟⎟⎟⎟⎠ .

The configuration matrix for the linear arrangement of vehicles is obtained by
setting κ1 = 0, and it is denoted by J ′.

The characteristic equation for (3.1) is given by

(3.3) χ(s) = det[sI − JF (s)] = 0,

where F (s) is the Laplace transform of f . We assume the generic case that J is
diagonalizable; that is, its eigenvectors form a basis for R

n. Then (3.3) can be ex-
pressed as χ(s) =

∏n
i=1(s − λi(J)F (s)) = 0, where λi(J) is the ith eigenvalue of J .

In the remainder of the text, λi will denote λi(J) unless otherwise stated. The roots
corresponding to the ith factor of χ, i.e., the solutions s of the equation

(3.4) χi(s) � s− λiF (s) = 0,

determine the fate of perturbations along the ith eigenvector of J . The perturbations
die out if and only if Re(s) < 0 for all solutions s of (3.4). As the stability depends
on the spectrum of J , the following properties will be needed in the analysis.

Lemma 3.1. The configuration matrix J has a simple zero eigenvalue, and all
its remaining eigenvalues have negative real parts. Furthermore, |λi| ≤ 2κmax, i =
1, . . . , n, where κmax = max{κi}. If κi = κ for all i, then the eigenvalues of J are
given by

(3.5) λi = κ(ej2π(i−1)/n − 1), i = 1, . . . , n.

If J ′ denotes the matrix obtained from J by setting κ1 = 0, then the eigenvalues of J ′

are real and given by 0,−κ2,−κ3, . . . ,−κn.
Proof. The rows of J sum to zero, implying that zero is an eigenvalue corre-

sponding to the eigenvector (1, 1, . . . , 1)�. The circular configuration corresponds to
a (weighted) directed graph which is strongly connected; that is, there is a directed
path from every vertex to any other vertex. It follows that zero is a simple eigenvalue
of the graph Laplacian matrix, which is equal to J in the present case. Furthermore,
by Gershgorin’s theorem [13], the eigenvalues of J are located in the union of discs

(3.6) λi ∈
n⋃

�=1

B(−κ�) = B(−κmax),
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where B(r) = {s ∈ C : |s − r| ≤ |r|} is the disc centered at r ∈ R with radius |r|.
Hence, all nonzero eigenvalues of J have negative real parts since κi > 0 for all i.
Moreover, |λi| ≤ 2κmax by (3.6). One can also directly calculate the characteristic
polynomial of J by an easy expansion by cofactors to obtain

(3.7)
n∏

i=1

(λ + κi) −
n∏

i=1

κi = 0.

So, if κi = κ for all i, then (λ/κ + 1)n = 1; i.e., λ/κ + 1 are the nth roots of unity,
which yields (3.5). The spectrum of J ′ follows from (3.7) by setting κ1 = 0.

We make the convention of labeling the zero eigenvalue of J as λ1, and denote
the corresponding eigenvector as v1 = (1, 1, . . . , 1)�. Hence, Re(λi) < 0 for i ≥ 2.
Note that s = 0 is a solution of (3.4) when i = 1. This is the indicator of the rigid
body rotation of the whole configuration of vehicles, and consequently the stability of
the configuration is determined by the roots of the modified characteristic equation

(3.8) χ̂(s) =
n∏

i=2

(s− λiF (s)) = 0.

Hence, car-following dynamics given by (2.2) is stable if all solutions s of (3.8) have
negative real parts.

Remark 3.2. Notice that all roots of the delay-free form of (3.8) are stable, as
per Lemma 3.1. This forms only the starting point of the stability analysis. The main
results presented in the following section reveal the necessary and sufficient conditions
for the complete stability analysis of (2.2) with respect to the parametric domain
of interest: delay distribution f(τ) and the spectrum of J . Readers are directed to
some other models in the earlier cited references for the incorporation of additional
parameters that may play a role in the stability of traffic dynamics.

4. Main results. We first introduce an interconnection scheme idea for the
characteristic equation (3.8), which will allow a geometric approach to the stability
analysis by an appropriate separation of parameters.

4.1. Interconnection scheme interpretation. Consider first the uniform dis-
tribution (2.3), whose Laplace transform is

(4.1) F (s) =
e−sh(1 − e−sδ)

sδ
.

Note that F (s) → e−sh as δ → 0, corresponding to the fact that f approaches a Dirac
delta at h, where one recovers the discrete-delay model (2.1) with τ = h. Using (4.1)
in (3.4) gives

(4.2) χi(s) = s− λie
−sh 1 − e−sδ

sδ
= 0.

The singularity of χi at zero is removable since lims→0 χi(s) = −λi. Hence by defining
χi(0) = −λi, we can treat χi as an analytical function and use arguments based on
the continuous dependence of its roots on the parameters. In particular, since λi �= 0
for i ≥ 2, by Lemma 3.1, the following result is immediate.

Lemma 4.1. s = 0 is not a solution to (4.2) for i = 2, . . . , n.
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We rearrange (4.2) as

Hi(s) · Δ(s) = 1, i = 2, . . . , n,(4.3)

where Hi(s) =
λie

−sh

s
, Δ(s) =

1 − e−sδ

sδ
.(4.4)

The advantage of the form (4.3) lies mainly in the separation of the parameter δ and
the eigenvalues of J , which will simplify the analysis. Similarly, for the γ-distribution
we have F (s) = e−hs(qs+1)−p, and the corresponding characteristic equation can be
expressed as an interconnection scheme,

(4.5) Hi(s) · Δγ(s) =
λie

−sh

s
· 1

(qs + 1)p
= 1.

Note that |Δγ(jω)| ≤ 1 ∀ω ∈ R, for any q.

4.2. Stability analysis. Given λi, the roots of (3.8) depend continuously on
the parameters of the distribution f(τ) (see [5]). The method for stability analysis
can then be summarized as follows. (a) Check the stability of the delay-free dynamics
(3.8). (b) Calculate the characteristic roots on the imaginary axis, s = jω, of the
interconnection scheme Hi(s)Δ(s) − 1 = 0. (c) Check in which direction s = jω
crosses the imaginary axis with respect to the parametric domain of interest. Notice
that the characteristic equation in (4.2) does not necessarily exhibit complex conjugate
s solutions if λi ∈ C.

We present below the stability analysis of (4.3) for the case of uniform distribu-
tion. The technique is easily extendable to γ-distribution with and without a gap
with the construct of the interconnection scheme. The challenges in assessing the sta-
bility are (i) analysis should be performed in the multiple parameter space (h, δ, λi);
(ii) the interconnection scheme carries complex coefficients; (iii) one of the parameters
from (i), δ, appears both in an exponent and in the denominator of the interconnec-
tion scheme. The complications (i)–(iii) prevent our benefiting from many stability
analysis techniques [3, 24, 17, 22, 15]. Before we introduce how to tackle these diffi-
culties, we start with some conditions for the roots of (4.3) to exhibit imaginary axis
crossings.

The following algorithm enables the calculation of the curves in the (h, δ) domain
on which (4.3) has a solution of the form s = jω.

Computation algorithm for s = jω and (h, δ) pairs. Given λi, the char-
acteristic roots s = jω crossing the imaginary axis and the corresponding parameter
pairs (h, δ) can be exhaustively computed as follows. First, we write the magnitude
condition in (4.3), at s = jω, which allows us to compute δ independently from h.
(This is a direct consequence of the separation feature introduced by the intercon-
nection scheme interpretation.) Second, on the same equation (4.2), we write the
argument condition, which yields h.

Step 1. Define the continuous function fΔ : R → R+ by

(4.6) fΔ(u) =

{
sin2 u/u2, u �= 0,
1, u = 0.

Let

(4.7) u =
δω

2
∈ R.



746 R. SIPAHI, F. M. ATAY, AND S.-I. NICULESCU

Step 2. By substituting (4.7) into the magnitude of (4.3),

(4.8) |Hi(jω)|2|Δ(jω)|2 = 1,

one obtains

(4.9)
|λi|2
(ω)2

fΔ(u) = 1,

which can be alternatively written as

(4.10) fΔ(u)
|λi|2δ2

4u2
= 1 ⇒ fΔ(u) =

4u2

|λi|2δ2
= ku2,

where k = 4/(|λi|2δ2).
The following proposition is immediate using Steps 1–2 above.
Proposition 4.2 (frequency-sweeping characterization [17]). s = jω is a root

of (4.3) if and only if ω ≤ |λi|.
Proof. It is clear from (4.6) and (4.7) that |Hi(jω)| = |λi|/|ω| > 1 should be

satisfied such that (4.8) holds.
Step 3. One simply sweeps u and obtains ω from (4.9).
Step 4. Using u and ω from Step 3, solve for δ from (4.7).
Step 5. Define next

(4.11) λi = |λi|ejφi with φi = ∠λi,

where φ ∈ (π/2, 3π/2) as per Lemma 3.1, and use the argument condition on (4.3) to
compute h.

Step 6. Rearrange (4.3) as

e−jωh =
−δ(ω)2

λi(1 − e−jδω)
,

from which one obtains the following by equating the arguments of both sides:

(4.12) h =
1

ω
[−π + φi + ∠(1 − cos(δω) + j sin(δω)) + 2π�], � ∈ Z.

Step 7. Using (4.7), it is clear that ∠(1 − cos(δω) + j sin(δω)) = tan−1
(

cosu
sinu

)
=

π
2 − u, simplifying (4.12) to

(4.13) h =
1

ω

(
−π

2
+ φi − u + 2π�

)
.

Proposition 4.3. There exists a connected stability region of the traffic flow
dynamics (2.2) in the parameter space (h, δ) that includes the origin (h, δ) = (0, 0).
The bounds of this region on the δ and h axes are respectively given by

(4.14) h̄ = min
2≤i≤n

(
2φi − π

2|λi|

)
and δ̄ = min

2≤i≤n

(
− (2φi − π)2

2|λi| cos(φi)

)
.

Remark 4.4. We shall show later that the stability region mentioned in the above
proposition is actually the unique stability region in the parameter space.
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Proof. When h = δ = 0, the distribution function in (2.3) is a Dirac delta
whose Laplace transform equals 1. From (4.2), the characteristic roots are s = λi,
i = 2, . . . , n, where Re(λi) < 0 by Lemma 3.1. Thus, (2.2) is stable for (h, δ) = (0, 0).
Consequently, the stability region in the (h, δ) parameter domain contains an open
neighborhood of the origin (h, δ) = (0, 0) [5]. We next calculate the stability margins
along the δ- and h-axes.

Stability when δ = 0. For δ → 0 the characteristic equation (4.2) becomes

(4.15) s = λie
−sh.

Equation (4.15) has a stable root for h = 0 (see Proposition 4.3), and stability is lost if
a characteristic root crosses the imaginary axis for some h �= 0. Thus, the stability is
preserved between h = 0 and the minimum positive h for which (4.15) has a solution
s = jω. This minimum h is computed as follows. By Lemma 4.1, the magnitude
condition on (4.15) yields ω = ∓|λi|, and the argument condition requires

(4.16) h =
1

|λi|

(
−π

2
∓ φi + 2π�

)
, � ∈ Z,

with +φi when ω > 0. Using the above equation, one obtains the smallest positive h,
h̄ as given in (4.14). Hence, when δ = 0, (4.2) is stable for h ∈ [0, h̄).

Stability when h = 0. The smallest positive value of δ for which stability is lost is
denoted by δ̄; that is, the stability interval along δ-axis is δ ∈ [0, δ̄). The characteristic
equation (4.2) when h = 0 is

(4.17)
δs2

λi
+ e−sδ − 1 = 0.

Letting s = jω, solving for the exponential term, and equating the magnitude condi-
tions of both sides, one easily obtains δ:

(4.18) δ = −2|λi| cos(φi)

ω2
.

Moreover, solving the exponential term in (4.17), equating the arguments of both
sides, substituting δ from (4.18), and noting that ω �= 0 by Lemma 4.1, we obtain

ω =
2|λi| cos(φi)

∠(− cos(2φi) + j sin(2φi)) ± 2π�
, � = 0, 1, 2, . . . ,

which simplifies and gives rise to δ

(4.19) ω =
2|λi| cos(φi)

π − 2φi ∓ 2π�
, δ = − (π − 2φi ∓ 2π�)2

2|λi| cos(φi)
.

When δ = 0 the dynamics is stable. Following the root continuity arguments [5], the
stability is lost for the smallest positive δ, which is attained when � = 0 and equal to
δ̄ as given in (4.14).

Characterization of the geometry of the stability boundaries. The sta-
bility boundaries are among those curves in the (h, δ) parametric domain which give
rise to an s = jω solution in the interconnection scheme. In order to characterize
the geometry of the stability boundaries, one has to establish the link from u domain
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Fig. 4.1. fΔ(u) versus u. B� and C� are end points and the local maxima of the segments ℘�,
� > 0, respectively.

to (h, δ). To achieve this, we give some definitions first. Define the extrema points
of fΔ function with A(fΔ(0)), B�(fΔ(�π)), and C�(fΔ((2� + 1)π/2)), � = 1, 2, 3, . . . ;
see Figure 4.1. Partition fΔ(u) into segments and label each one of them as follows:
℘0 = fΔ(u) with u ∈ [0, π]; ℘�,� = fΔ(u) with u ∈ [�π, (2� + 1)π/2]; ℘�,�+1 = fΔ(u)
with u ∈ [(2� + 1)π/2, 2�π], � = 1, 2, 3, . . . . Obviously,

(4.20) fΔ =
⋃
�≥0

℘�, where ℘� = ℘�,�

⋃
℘�,�+1 ∀� > 0.

Notice that each of the “segments” ℘0, ℘�,�, and ℘�,�+1 as a function is monotonic
with respect to the variable u, as seen in Figure 4.1. The points B� and C� in this
figure correspond to the end points and the local maxima of the segments ℘�, � > 0,
respectively. Due to the symmetry of the function fΔ, f(u) = f(−u), and by (4.7),
we will restrict our subsequent analysis to positive ω, ω > 0.

Monotonicity properties. We will now utilize the monotonicity properties of
the “segments” of fΔ(u) in order to explain how their mapping in (h, δ) forms. We
first comment on the extremities in u and (h, δ) domains. Given λi, at point A we
have fΔ(u = 0) = 1; hence from (4.8), ω = |λi| and from (4.7), δ = 0. At the end
points of ℘�, that is B� and B�+1, we have limu→�π fΔ(u) → 0+; thus for a solution of
the interconnection scheme in the form of s = jω to exist, it is clear from (4.9) that
ω → 0+. Therefore, the image of B� and B�+1 on (h, δ) space corresponds to infinity,
since these curves are open-ended curves.

Recall that if s = jω solution of the interconnection scheme exists, then (4.10)
holds. This indicates that u solutions of (4.8) lie at the intersection points of the
curve fΔ(u) and the parabola u2 parameterized by k. This relationship is generically
depicted in Figure 4.2(a) for various k values and for positive u > 0. Notice from
(4.10) that δ is inversely proportional to k.

Let us now elaborate on Figure 4.2(a), since it depicts the geometry of the solution
points in u (such as points C, D, E, and F ), which we will use for characterizing the
corresponding geometry in the (h, δ) domain. Denote this correspondence from u
domain to (h, δ) domain by fΔ(u) �→ ζ(h, δ) : R+ �→ R × R+. Next, define ζ0, ζ�,�,
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Fig. 4.2. (a) Generic depiction of fΔ and ku2 versus u, where the parabola sweeps the first
quadrant counterclockwise with increasing k. Inset: Distinction between points D1 and C1. (b) The
mapping of the intersection points between fΔ and ku2 to the (h, δ) domain (Ci �→ C′

i, Di �→ D′
i,

E �→ E′, etc.). Arrows indicate decreasing direction of ω.

and ζ�,�+1 segments in the (h, δ) domain that correspond to the segments ℘0, ℘�,�,
and ℘�,�+1, respectively, in u domain, and similarly, let ζ� = ζ�,�

⋃
ζ�,�+1 ∀� > 0.

Figure 4.2(b) presents generically some of these curves in the (h, δ) domain, where E′

corresponds to E of Figure 4.2(a); D′
1, D

′
2, D

′
3, etc., are the mappings of the points at

which the parabola in Figure 4.2(a) is tangent to ℘11, ℘22, ℘33, etc., segments (shown
in Figure 4.1), respectively; C ′

1, C
′
2, C

′
3, etc., are the mappings of the local maxima

points C ′
1, C

′
2, C

′
3, etc., at which the maximum omega on a respective ζ�, � > 0, curve.

The points C� can also be seen as the end points of ζ�,� and ζ�,�+1 curves.
Notice that, for a given λi, intersection points in Figure 4.2(a) for fixed k give

rise to fixed δ, as per (4.10). For instance, for a particular selection of k, the parabola
may intersect ℘1,1 and ℘1,2, giving rise to two points, one on ζ1,1 and the other on
the ζ1,2 curve. Furthermore, all such points are earmarked by ω. See the two points
in Figure 4.3(c)–(d) labeled with ω1 and ω2 as an example.

Remark 4.5. The ζ0 curve in Figure 4.2(b) is due to mapping of the ℘0 segment;
see also Figure 4.3(a)–(b). For the remaining segments, we state the following. For a
given k, any two points at the intersection of the parabola and the segment ℘�, � > 0,
give rise to two points on the ζ� curve; see Figure 4.3(c)–(d). These two points are
generated by two distinct u values, the larger of which corresponds to the larger ω as
per (4.9). It is clear from (4.13) that larger u corresponds to smaller h. Consequently,
the point marked by ω1 in Figure 4.3(c)–(d) arises from the intersection between ku2

and ℘1,2; thus it lies on the ζ1,2 curve, and ω1 > ω2 holds. The arrows on ζ curves
in Figure 4.2(b) and Figure 4.3(c)–(d) indicate the direction of decreasing ω on the
respective curves. Finally, the point marked with C� indicates the location of maximum
ω attained on the curve ζ�, � > 0, which is clearly due to the local maximum of the
fΔ curve in the interval u ∈ (π, 2π) (maximum u thus maximum ω as per (4.13)).
Figure 4.3 presents separately the way in which the first two curves (℘0 �→ ζ0 and
℘1 �→ ζ1) are generated.

Proposition 4.6 (crossing curve characterization). The boundary of the sta-
bility region defined in Proposition 4.3 and depicted in Figure 4.3 arises from the
correspondence ℘0(u) �→ ζ0(h, δ). The necessary and sufficient condition forming this
boundary in the (h, δ) domain is obtained only from the interval u ∈ [0, π/2).
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Fig. 4.3. (a)–(b) Mapping of ℘0 to ζ0. (c)–(d) Mapping of ℘1 = ℘1,1 ∪ ℘1,2 to ζ1 = ζ1,1 ∪ ζ1,2
(℘1,i �→ ζ1,i, for i = 1, 2). Arrows indicate the decreasing direction of ω, which attains its maximum
on a respective ζ� curve at point C�, � > 0.

Proof. (i) Condition u ∈ [0, π/2). By Proposition 4.3, the stability boundary
intersecting the h axis, h̄, is created when δ = 0. Since δ = 0 corresponds to u = 0,
starting from u = 0, tracing the intersection points of the parabola ku2 and the curve
℘0, one extracts the boundary of the single connected stability region in (h, δ). On
this boundary, δ is monotonically increasing considering (4.7) and Proposition 4.8.
To complete the proof, one should take into account the constraint of h > 0. Hence, δ
should increase until h becomes zero. This occurs when the boundary of the stability
region intersects the δ-axis at δ̄; see Proposition 4.3. The u value corresponding to δ̄
is u = ωδ/2 < π/2 as per (4.19).

(ii) Necessary and sufficient condition. There exists no u interval other than
u ∈ [0, π/2) that gives rise to a (h, δ) point on the stability boundary, since fΔ(u)
values attained in the interval u ∈ [0, π/2) cannot be attained by any u > π/2. Hence
u ∈ [0, π/2) is necessary and sufficient for the computation of this boundary.

Remark 4.7. Geometrically, the interval u ∈ [0, π/2) corresponds to the segment
AF in Figure 4.2(a).

Proposition 4.8 (local monotonicity property). On the stability boundary, in-
creasing k monotonically decreases u and δ solutions arising from the intersection
points between fΔ(u) and the parabola ku2.

Proof. From (4.10), k = fΔ(u)/u2. The variation of k with respect to u is
dk
du = f ′

Δ(u) 1
u2 − 2

u3 fΔ(u). Since fΔ(u) > 0 and f ′
Δ(u) < 0 in the interval u ∈ [0, π/2)

defining the stability boundary, dk/du is negative. Recall that δ and k are inversely
proportional; thus δ on the stability boundary is decreasing for increasing k.
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Readers are directed to the work in [11] as an example of the deployment of
monotonicity ideas which gives rise to the characterization of the geometry of stability
regions of a class of delay differential equations.

Lemma 4.9. dh/du on the stability boundary is nonpositive for all u ∈ [0, π
2 ).

Proof. From (4.9), ω2 = fΔ|λi|2. For u ∈ [0, π/2), one can take ω =
√
fΔ|λi| =

sin(u)|λi|/u for studying the variations of h in (4.13). Note that the h variation on
the stability boundary is obtained for � = 0; see Proposition 4.3. Hence, the variation
of h along the stability boundary is found as

(4.21)
d

du

(φi − π/2 − u)u

|λi| sin(u)
= −A(u)φi + B(u)

2|λi| sin2(u)
,

where A(u) = 2u cosu − 2 sinu and B(u) = 4u sinu − uπ cosu − 2u2 cosu + π sinu.
Notice that A(u) < 0 for all u ∈ (0, π/2) since u < tan(u) in this interval; thus the
inequality in (4.21) becomes A(u)φi + B(u) > 0, which can be rewritten as

−B(u)

A(u)
> φi ∀u ∈

(
0,

π

2

)
,

where in our case φi ∈ (π/2, 3π/2). Consequently, it is sufficient to prove that
−B(u)/A(u) > 3π/2, that is,

2u− π

u− π
− u

tan(u)
< 0 ∀u ∈

(
0,

π

2

)
.

The fact that the above inequality holds can be seen from Figure 4.4. Although an
analytical proof can be given, the algebraic manipulations are rather involved and
thus omitted.

Fig. 4.4. Plot of 2u−π
u−π

− u
tan(u)

versus u, u ∈ (0, π/2).

Remark 4.10. By Proposition 4.8 and Lemma 4.9, increasing u corresponds to
increasing δ and decreasing h. Hence, on the stability boundary, we have the property
∂δ
∂u

∂u
∂h = ∂δ

∂h < 0.
Remark 4.11. Since parameter u depicting the stability boundary is bounded

as per Proposition 4.6, all ω satisfying the interconnection scheme belong to the set
Γω = {ω | Hi(jω)Δ(jω) − 1 = 0, u = δω/2, u ∈ [0, π/2)}. As such, the imaginary
roots on the stability boundary are given by the set jΓω. From (4.9), one can obtain
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Γω as Γω = (
√

2|λi|/π, |λi|]. This interval of ω is obviously a subset of the interval
claimed in Proposition 4.2, since the interval of u creating the stability boundary is
now restricted as u ∈ [0, π/2).

Let us comment on the remaining part of the ℘0 curve, u ∈ (π/2, π). Following
part (i) of the above proof, we state that corresponding h values obtained by u,
u ∈ (π/2, π), are all negative and thus ignored. Values of h on the curves obtained
by the shifting 2π�/ω, � = 1, 2, . . . , as per (4.13), however, may become positive, and
thus should be carefully treated.

Proposition 4.12 (crossing curves property). The curves ζ�,� and ζ�,�+1, � ≥ 1,
do not intersect the stability boundary formed by ζ0.

Proof. It is sufficient to prove infδ∈(ζ�,�∪ζ�,�+1) δ > supδ∈ζ0 δ. From Proposi-
tion 4.8, it is clear that infδ∈(ζ�,�∪ζ�,�+1) δ arises from the u = u1 value at point D1 in
Figure 4.2. As per Propositions 4.6 and 4.8, supδ∈ζ0 δ is found at u = π/2 (point F
in Figure 4.2). Since u1 > π/2, using Proposition 4.8, one can see that the inequality
infδ∈(ζ�,�∪ζ�,�+1) δ > supδ∈ζ0 δ holds.

It is now proven that ζ0 does not intersect with the remaining ζ�,i (i = �, � + 1,
� ≥ 1) segments; however, one also needs to show stability properties around the
regions bordered by all the ζ curves in order to reveal the stability regions in the
parametric domain of (h, δ). The following proposition helps achieve this.

Proposition 4.13 (crossing direction along h, for δ fixed). Given λi and δ, the
crossing direction of the imaginary root(s) s = jω along the h-axis is independent of
the delays h + 2π

ω �, � = 0, 1, . . . , creating these imaginary roots.
Proof. The characteristic equation χi in (4.2) can be expressed as χi = s −

λie
−shΔ(s) = 0 using (4.4). Then, the sensitivity expression at s = jω, after sup-

pressing the arguments to conserve space, becomes
(4.22)

S(jω) =
ds

dh

∣∣∣∣
s=jω

=

(
−∂χi

∂h

(
∂χi

∂s

)−1
)

s=jω

= − sλie
−shΔ

1 + λie−sh(hΔ − Δ′)

∣∣∣∣
s=jω

,

where Δ′ = ∂Δ
∂s . The above equation simplifies to

(4.23) S(jω) = − sΔ

λ−1
i esh + hΔ − Δ′

∣∣∣∣
s=jω

.

Let S(jω) = SNR(ω)+jSNI(ω)
SDR(ω)+jSDI(ω) with SNR, SNI , SDR, SDI ∈ R. Then the real part of

(4.23), which indicates the crossing direction of the s = jω root across the imaginary
axis, becomes

(4.24) � (S(jω)) =
SNRSDR + SNISDI

S2
DR + S2

DI

.

Notice that if sgn(� (S(jω))) = +1 (or −1), this will indicate an imaginary axis
crossing from left to right (or from right to left) half of the complex plane. Since the
denominator of (4.24) is positive, it is dropped for studying the sign. Consequently,
the numerator of (4.24) will determine the crossing direction, which becomes

ω

(
(Δ)

(
h�(Δ) −�(Δ′) + �

(
ejhω

λi

))
−�(Δ)

(
h(Δ) −(Δ′) + 

(
ejhω

λi

)))

= ω

(
(Δ)

(
−�(Δ′) + �

(
ejhω

λi

))
−�(Δ)

(
−(Δ′) + 

(
ejhω

λi

)))
.(4.25)
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After some manipulations and dropping ω > 0, this yields

(4.26) sgn (� (S(jω))) = sgn
(

(
Δ̄(jω)(Δ′(jω) − λ−1

i ejhω)
))

,

where Δ̄(jω) is the complex conjugate of Δ(jω). Notice that the above equation
is independent of h due to the exponential terms ejhω remaining unchanged for the
selection of h + 2π

ω �, � = 0, 1, . . . .

Remark 4.14. The invariance feature of the root sensitivity expression in (4.26)
enables an effective tool which helps reveal the stability/instability regions of the traffic
dynamics in the entire (h, δ) ∈ R

2
+ parametric domain.

We finally develop some ideas in the following borrowing from the implicit function
theorem in order to study the smoothness and stability transition behavior around
the ζ0 curve in (h, δ) domain.

4.3. Local vs. global characterization. We elaborate on the geometry of ζ0
from the implicit function theorem [14], which states that, on the imaginary axis, the
characteristic equation a(s, h, δ)|s=jω = Hi(jω)Δ(jω) − 1 = 0 may be used to locally
express h and δ in terms of ω as an implicit function, in the form of (h, δ) = ϕ(ω),
if da/dω �= 0 holds. This condition is nothing but the definition of the existence of
regular points that allows the implementation of the implicit function theorem locally.

By the help of the interconnection scheme interpretation and the monotonicity
ideas, the local representation can be extended. Following the theorem, one first clas-
sifies the points on ζ0 in the (h, δ) domain. Such a classification identifies whether
the implicit function theorem is applicable or not on the function a(s, h, δ) = 0. Pa-
rameter δ is continuous on ζ0, and its variation with respect to k is nonzero. Similar
arguments also hold for h; see Proposition 4.6). The smoothness and nonzero deriva-
tive of the variables h on ζ0 indicate that ζ0 consists of only “regular points.” This
suffices to show that the theorem is applicable around any local point of ζ0. By in-
troducing the variable u along with the interconnection scheme, which only scales ω,
we manage to separately express h = ϕ1(u) and δ = ϕ2(u) globally on the stability
boundary ζ0.

So far we have shown the existence and the geometry of the stability region
connected to the origin of the parametric domain (h, δ), intersecting the h and δ
axis. In the following, the characterization of the stability/instability transition of
the dynamics in (h, δ) using (4.2) is presented. For this objective, we use the idea
based on the implicit function theorem [9], along with the separation of variables h
and δ via the interconnection scheme that we have considered.

Take the characteristic equation a(s, h, δ) = HiΔ − 1 = 0. When s moves along
the imaginary axis, an (h, δ) pair moves along ζ0(h, δ). Let us first define the following
for a given ω ∈ Γω on the ζ0(h, δ) curve:

R0 = �
(
j

s

∂a(s, h, δ)

∂s

)
s=jω

, R1 = −�
(

1

s

∂a(s, h, δ)

∂h

)
s=jω

,

I0 = 
(
j

s

∂a(s, h, δ)

∂s

)
s=jω

, I1 = −
(

1

s

∂a(s, h, δ)

∂τν

)
s=jω

,

R2 = −�
(

1

s

∂a(s, h, δ)

∂δ

)
s=jω

, I2 = −
(

1

s

∂a(s, h, δ)

∂δ

)
s=jω

.
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By Lemma 4.1, a(s, h, δ) = 0 is an analytical function, and using the implicit
function theorem, the tangent of ζ0(h, δ) is expressed as

(4.27)

(
dh/dω
dδ/dω

)
=

(
R1 R2

I1 I2

)−1 (
R0

I0

)
=

1

R1I2 −R2I1

(
R0I2 − I0R2

I0R1 −R0I1

)
,

provided that R1I2 − R2I1 �= 0. In order to characterize the stability transition,
one needs to consider h and δ as functions of s = μ + jω. Since the tangent of
ζ0(h, δ) along the positive direction (i.e., increasing ω direction) is (dh/dω, dδ/dω),
the normal to the ζ0(h, δ) curve pointing to the left-hand side of the positive direction
is (−dδ/dω, dh/dω). Also, as a pair of complex conjugate roots of a(s, h, δ) = 0 crosses
the imaginary axis at s = jω to C+, (h, δ) moves along the direction (∂h/∂μ, ∂δ/∂μ).
So, if the inner product of this vector with the normal vector is positive, i.e.,

(4.28)

(
∂h

∂ω

∂δ

∂μ
− ∂δ

∂ω

δh

∂μ

)
s=jω

> 0,

then the region on the left of the stability curve ζ0(h, δ) at s = jω has two more
unstable roots than the right of ζ0(h, δ) curve. On the other hand, if the inner
product is negative, then the region on the left of the stability curve ζ0(h, δ) has two
fewer unstable roots than the region on its right. Similar to the tangency condition
defined in (4.27), we can express (∂h/∂μ, ∂δ/∂μ) as in the following:
(4.29)(

∂h/∂μ
∂δ/∂μ

)
=

(
R1 R2

I1 I2

)−1 (
I0

−R0

)
=

1

R1I2 −R2I1

(
R0R2 + I0I2
−R0R1 − I0I1

)
.

Proposition 4.15. Given any (h, δ) pair on the stability curve ζ0(h, δ), the
inequality (4.28) is always satisfied.

Proof. Simple manipulations show that
(
∂h
∂ω

∂δ
∂μ − ∂δ

∂ω
δh
∂μ

)
s=jω

> 0 if

(4.30) R2I1 −R1I2 =

(
|λi|
ω

)2
4 sin2(δω/2) − δω sin(δω)

(δω)3
> 0.

As per (4.7) and from Proposition 4.6, for u ∈ (0, π/2), the inequality in (4.30) can
be alternatively studied over

(4.31) 2 sin2(u) − u sin(2u) > 0, u �= 0.

This inequality always holds since it can be rewritten in the form of a well-known
trigonometric property, sin(u)/u > cos(u), in the interval u ∈ (0, π/2). For the case
when u = 0, we state that fΔ is continuous and its derivative exists at u = 0; therefore
similar arguments on the smoothness of ζ0 hold for u = 0 as well.

Remark 4.16. Since the region below ζ0 is known to be stable, Proposition 4.15
indicates that the region on the other side of ζ0 has two unstable roots. Also, with the
above proof, the smoothness of the stability curve ζ0 is guaranteed.

γ-distribution with and without a gap. We finally comment on the γ-
distribution with and without gap. By (4.5), the characteristic equation is

(4.32) s(qs + 1)p − e−hsλi = 0.

When h = 0, the above equation becomes a polynomial in s whose stability is easy
to determine. At the origin of the parameter domain (p, q) = (0, 0), the characteristic
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equation becomes s− λi = 0, which is stable by Lemma 4.1. For p �= 0 or q �= 0, the
stability can be studied by numerical computation of the roots or by using the jury
test. In the example case studies, we will study the stability of (4.32) via numerical
computations.

When the γ-distribution has a positive gap h, the analysis is more complicated.
In the parametric domain of (p, q), the problem reduces to assuring the stability of
the dynamics (2.2) with respect to λi and gap h. We study the stability in the (h, q)
parametric domain by taking fixed p values. The procedure is as follows. Using the
fact that eigenvalues of J are in complex conjugate pairs, one can reform the char-
acteristic equation directly from (3.8) with real coefficients and perform the stability
analysis for various selections of fixed p in the domain of (h, q). We mention that
there exist various techniques in the literature to handle this analysis [17, 10, 22, 24].

5. Illustrative examples. In the following, some example cases are presented
to demonstrate the memory effects on the stability of traffic flow dynamics and their
physical interpretations. The developed theory equally allows one to study various
scenarios such as the influence of the number of vehicles, presence of nonidentical
drivers, aggressiveness of drivers, etc. In order to preserve coherence among the
example cases, we will present the case when the drivers are identical (thus κi = κ) and
compare the arising stability features of traffic dynamics with respect to aggressiveness
of the drivers κ and the two spatial configurations given in Figure 2.2.

5.1. Uniform distribution. We take κi = κ = 1.5 and κi = κ = 2, respectively,
which are in the same order of magnitude with those given in [2]. Figure 5.1(a) depicts
the stability region for the ring configuration. The region shaded by light gray, Φ1,
represents the stability domain when κ = 2. When κ = 1.5, the stability region is
enlarged by an additional region labeled as Φ2 (dark grey); hence Φ1 ∪ Φ2 becomes
the stability region.

From Figure 5.1(a) we conclude that for both κ values the size of the memory
window that is “tolerable” (to maintain stability) is the widest when h = 0. With a
nonzero dead-time (h �= 0) the allowable window size becomes narrower and eventually
disappears.

Fig. 5.1. (a) The size of the memory window δ (sec) versus h (sec) for the system (2.2) with
uniformly distributed delays (2.3) and n = 20 vehicles. The shaded area is the stability region.
(b) Comparison of stability regions for ring and linear spatial configuration of vehicles, with κ = 2
and n = 20 vehicles.
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Fig. 5.2. Stability regions in the parameters mean delay and memory size, for n = 20 vehicles.
(a) Ring configuration for κ = 1.5 and κ = 2, (b) comparison between linear and ring configurations
with κ = 2.0.

5.1.1. Stability regions for ring and linear configurations. We now com-
pare the stability regions for the different spatial configurations of the vehicles de-
picted in Figure 2.2. Figure 5.1(b) compares the stability regions for n = 20 vehicles.
The regions labeled by Φ1 in subfigures (a) and (b) are identical. Thus, the linear
configuration offers an enhancement in the stability by the additional Φ3 region.

The stability enhancement in the linear configuration can be explained mathe-
matically. In a global sense, one can state a measure of the stability enhancement by
how large h̄ and δ̄ are. This can be easily checked by the results in Proposition 4.3.
By Lemma 3.1, the eigenvalues of the configuration matrix J ′ are real in the linear
configuration, implying φ = π. For this setting of φ, it can be verified from (4.14)

that h̄ and δ̄ attain their maximum values: h̄ = π
2κmax

and δ̄ = π2

2κmax
. This can be

proven by assuming identical drivers with special form of λi as per (3.5), which can
be used in (4.14) to show that as φ → π, the stability margins increase on both h
and δ axes.

Physically, the linear configuration represents more degrees of freedom in the
coupled dynamics, since the leading car is not restricted by the traffic, whereas in
the ring configuration the motion of each vehicle plays a role in determining stability,
thus limiting larger stability regions.

5.1.2. Stability with respect to mean delay versus memory size. We now
present stability regions in the parameter domain mean delay (h+δ/2) versus memory
size (δ). The mean of the uniform distribution represents the averaged effects of the
memory, and it converges to the discrete delay case as the memory size approaches
zero. Hence, the mean can also be seen as a link from discrete to distributed delays.

The traffic scenario is the same as in section 5.1. We first take a ring configuration
of n = 20 vehicles with identical drivers and depict the stability regions in the new
parametric domain. Thus, the stability pictures in Figure 5.1(a) correspond to those
in Figure 5.2(a). The region Φ1 is distorted in the new domain, h× δ → (h + δ/2) ×
δ : Φ1 �→ Λ1, and similarly (Φ1 ∪ Φ2) �→ (Λ1 ∪ Λ2). Figure 5.2(b) compares the
stability regions for the ring and linear configurations, for κ = 2.0. The labeled
regions correspond to those in Figure 5.1(b) as Φ1 �→ Ω1, and (Φ1 ∪Φ2) �→ (Ω1 ∪Ω2).

Figure 5.2(a) shows how overaggressive drivers (large κ) cause instability, unless
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Fig. 5.3. (a) Maximum allowable mean delay and the corresponding variance of the γ-
distribution (h = 0) for varying p values. (b) Crossing boundary in mean vs. variance of the
γ-distribution (h = 0).

Fig. 5.4. (a) Stability regions in (h, q) domain for various values of the parameter p of the
γ-distribution with gap. (b) Corresponding stability boundaries in (h, pq) domain.

the mean delay and the memory window are reduced, i.e., they can react almost
instantaneously. This is analogous to feedback control systems where high gains may
cause instability. Figure 5.2(b) shows that the linear configuration of the vehicles
allows larger memory windows that can be utilized by the drivers without inducing
instability. For this particular example, the allowable memory size (that preserves
stability) in linear configuration of the vehicles is five times more than that of the
ring configuration. An interesting observation from Figure 5.2(b) is that if the mean
delay is relatively large (e.g., h + δ/2 = 1 in linear configuration), stability is still
possible, but too small or too large window sizes yield instability. In contrast, for
smaller values of mean delay, the window size can even become zero, resuming the
discrete delay case. This clearly shows the nontrivial qualitative effects of distributed
delays.

5.2. γ-distribution with and without gap. We consider n = 3 vehicles and
identical drivers with κ = 2. For h = 0 and p ∈ [2, 6], we identify the maximum
allowable q for which the characteristic equation (4.32) remains stable. Using these q
values, the mean pq and the variance pq2 of the distribution are plotted with respect
to the parameter p in Figure 5.3. Notice that for smaller p the variance becomes
larger, which corresponds to larger mean delay. This is also an indication of larger
stability regions. In other words, increasing the variance of the delay distribution for
a fixed mean delay enlarges the stability region.

In the case of a nonzero gap h, i.e., in the presence of a dead-time, the stability
regions are shown in Figure 5.4(a) as p values. The shaded zones S3, S2 ∪ S3, and
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S1 ∪ S2 ∪ S3 correspond to stability regions for p = 4, p = 3, and p = 2, respectively.
The subplots in Figure 5.4 have the same color coding. Note that the influence
changing p on the stability region is more pronounced for small values of h than for
larger values. We emphasize that, when modeling memory effects, the presence of a
gap may not be negligible since the dynamics may become sensitive even to a small
gap.

6. Conclusions. We have studied the stability of a single-lane microscopic car-
following model in the parametric domain describing the delayed reactions of human
drivers. In contrast to the literature, we have modeled such delayed reactions based
on the “memory capabilities” of human drivers, which assumes that control actions
are based on a “memory window” distributed over the the time history of the traffic
flow dynamics. The resulting system with distributed delays offers a more realistic
model, although the corresponding stability analysis becomes more difficult. In the
analytical development of the paper, we have derived necessary and sufficient condi-
tions for the stability of the traffic flow with distributed delays. Numerical examples
have been given for two common delay distributions, two spatial configurations, and
a realistic set of parameter values. The results show some nontrivial effects of dis-
tributed delays and reiterate that the modeling and analysis of traffic holds many
mathematical challenges.
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SHOCK SOLUTIONS FOR PARTICLE-LADEN THIN FILMS∗
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Abstract. We derive a lubrication model describing gravity-driven thin film flow of a suspension
of heavy particles in viscous fluid. The main features of this continuum model are an effective mixture
viscosity and a particle settling velocity, both depending on particle concentration. The resulting
equations form a 2 × 2 system of conservation laws in the film thickness h(x, t) and in φh, where
φ(x, t) is the particle volume fraction. We study flows in one dimension under the constant flux
boundary condition, which corresponds to the classical Riemann problem, and we find the system
can have either double-shock or singular shock solutions. We present the details of both solutions
and examine the effects of the particle settling model and of the microscopic length scale b at the
contact line.

Key words. thin liquid films, contact lines, Riemann problem, systems of conservation laws,
suspension flow, sedimentation, singular shocks
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1. Introduction. The flow of thin viscous films [44] is of great importance to
many problems in science and engineering. Flows in thin films can result from slow
processes such as spreading [17] and evaporation [6] or stronger driving forces such as
capillarity [38] or gravity [21]. As shown by Huppert in [21], gravity-driven films on
an incline can be described roughly by the conservation law

(1.1)
∂h

∂t
+

∂

∂x
h3 = 0

for the film thickness h. However, in many cases, there exist large gradients in h and
dry regions where h = 0, requiring more complex models that incorporate capillary
forces and the thermodynamic wetting process.

Wetting occurs as a fluid domain evolves, moving in particular the contact line,
where the solid, liquid, and vapor phases meet. Despite the fundamental importance of
contact lines to fluid dynamic boundary conditions, many of their basic properties are
not fully understood [2, 13]. The standard no-slip boundary condition is inadequate
near a moving contact line [14, 20], and two common contact line models either
allow a small slip velocity [20] or assume a thin “precursor” film rather than a dry
substrate [55]. These models have contributed to understanding the capillary ridge
that often develops near the contact line [3, 16, 19, 23, 28, 55], the rupture of thin
films [39, 57], the contact angle that the free surface makes with the substrate [16,
23, 25, 50], and the relevance of the material composition of the fluid and substrate
[12, 24, 50]. A “fingering” instability observed in [21] which deforms the contact line in
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some driven films has also motivated analysis [3, 55], simulation [28], and experiments
[12, 24, 50] on thin film flow.

Film flows of more complex materials are much less understood. For dry granular
flows, air can frequently be neglected, and the central modeling challenge is to deter-
mine an appropriate constitutive relation [26]. Replacing the fluid with a suspension,
however, introduces the possibility of phase segregation, allowing new behaviors not
seen in pure fluids and only recently observed in film flows [54, 59]. Segregation of
viscous suspensions can be driven by gravity [59], but has also been observed with
neutrally buoyant particles in thin films [54] and in the related Hele–Shaw flow [53].
Direct numerical simulation of suspension flows considering individual particles is
computationally demanding, and existing methods do not account for the complexi-
ties of a contact line [49, 58]; consequently, continuum models play an essential role
in understanding these flows.

Continuum descriptions of viscous suspensions involve three main effects: an
“effective viscosity” greater than that of the suspending fluid [30, 52], the settling of
heavy particles due to gravity [11], and particle fluxes thought to result from particle
interactions in the presence of shear [34]. Various models have incorporated some or
all of these effects [40, 42, 45, 47]; however, only a limited number of flow geometries
have been studied, most commonly the one-dimensional Couette and Poiseuille flows
(for exceptions see [15]). In particular Schaflinger, Acrivos, and Zhang [47] model a
gravity-driven thin film, though they do not consider variation in the flow direction
caused by gravitational segregation that we model below.

Our work is motivated by the experiment and model described by Zhou et al. in
[59]. The experiment consists of a gravity-driven film of a dense (≥ 17% by volume)
suspension of glass beads in oil which flows down an inclined plane under constant flux
upstream conditions. They observed three different particle behaviors in this exper-
iment, depending on the inclination angle and particle concentration of the initially
well-mixed suspension, which they summarized in a phase diagram. At low inclina-
tion angles and concentrations, the particles settle out of the flow, leaving a film of
clear fluid, while at intermediate angles and concentrations the suspension appeared
well mixed for the duration of the experiment. At high angles and concentrations the
particles accumulate near the moving contact line in a “particle-rich ridge.” They also
observed that while the well-known fingering instability [21] occurs in the first two
regimes, it is largely suppressed when the ridge appears. Their new model describes
this third regime, characterized by spatially varying rheology, which appears to have
no analogue in pure fluid motion.

Zhou et al. derived their model by treating the mixture locally as a Newtonian
fluid, which allows the use of standard lubrication techniques. The two-phase flow is
described by an overall velocity determined from the local value of a concentration-
dependent effective viscosity, and a settling velocity of the heavy particles relative to
the fluid. They derived a system of two coupled fourth-order evolution equations for
the film thickness and particle concentration, and argued that the essential dynamics
are determined by a system of conservation laws obtained by retaining only the first-
order terms. They also presented double-shock solutions for this system depending on
the parameter b appearing in their contact line model, which represents the thickness
of a precursor film appearing ahead of the bulk flow. They compared these solutions
to the experimentally observed ridge, and noted that the calculated speeds of the
two shocks become nearly equal at small values of b. Their calculations, however,
were not sufficient to determine whether the shock speeds actually coincide at some
finite b∗ > 0, an important issue since this would call into question the existence of
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solutions for b < b∗. Furthermore, they described the physical derivation and the
shock solutions only briefly.

The purpose of the present work is to give a more complete derivation of this model
describing the ridge regime, and to more thoroughly characterize its shock solutions,
including their dependence on b. Aspects of these solutions motivate a revision of the
particle settling model, which appears later in the manuscript. In section 2 we present
a full derivation following the assumptions of Zhou et al., which was not included in
their work. While the equations we derive are slightly different, they appear to have
the same qualitative behavior. As in [59] we present two forms of the model equations.
The “full system” including fourth-order terms due to surface tension is beyond the
scope of our subsequent analysis, but nonetheless important for a faithful description
and for modeling phenomena such as the capillary ridge and the fingering instability.
The first-order “reduced system,” which we study in section 4, is expected though not
guaranteed to approximate the full system away from the contact line. In section 3 we
recall the classical theory for hyperbolic systems of conservation laws, and in section 4
we apply these methods to the reduced system. For double-shock solutions, we find
the two shock speeds do become equal at a certain precursor thickness b, below which
the equations have no classical solution. In section 5 we compare this case to the
mathematical theory of singular shocks, in which a delta mass is concentrated at the
discontinuity. We study one approximate singular shock solution and find the particle
concentration exceeds the limit of close packing, suggesting this form of the model
is inaccurate at high concentrations. We propose a modified form for the settling
velocity in section 6 which causes both the particle and fluid velocities to vanish at
close packing, and we find the resulting equations appear to be well-posed for all
precursor thicknesses. We summarize our results in section 7, concluding that the
modified equations appear more realistic, though a comparison with the fourth-order
system and/or with experiments is still needed to establish their ultimate validity.

2. Derivation. Two common methods for describing binary mixtures in a con-
tinuum framework are the “two-fluid” and the “mixture” or “one-fluid” models [56].
The two-fluid model balances forces on the two components separately, with the forces
of interaction appearing explicitly as a function of the two velocities. It therefore re-
quires a separate viscosity for each phase. The one-fluid model balances forces on the
mixture as a whole, using an effective viscosity, and postulates a form for the relative
velocity between the two components. Since empirical formulae are readily available
for the effective mixture viscosity and settling velocity, we follow Zhou et al. in using
the one-fluid model. We also note that the fluid and particle velocities are nearly
equal, so the one-fluid equations describing average and relative velocities can be
expected to be less strongly coupled than their two-fluid counterparts.

Deriving a one-fluid model involves balancing forces first for the mixture as a
whole, without regard to interactions between the two components. In the present
case inertia is negligible, and these forces are just gravity and viscous stress. We use
an empirical expression for the latter in which the mixture is considered a Newtonian
fluid, with an effective viscosity depending on the particle volume fraction φ. For a
fluid of kinematic viscosity μf one form for this relation is [30, 52]

(2.1) μ(φ) = μf (1 − φ/φm)−2,

where φm ≈ 0.67 is the random packing fraction of spheres. This viscosity leads to a
stress tensor of the form

(2.2) Π = pI − 1

2
μ(φ)

[
∇v + (∇v)T

]
,
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where p is the fluid pressure and v is a velocity characterizing the motion of the
mixture. Since the two mixture components in general have different velocities, say
vf and vp for the fluid and particulate phases, respectively, v must be some average of
the two. Much of the experimental literature deals with neutrally buoyant mixtures,
in which the two velocities are the same and the distinction is unnecessary, but in
this case the question is relevant. We argue that since the constitutive model involves
neither inertia nor gravity, it should be independent of the masses of the two phases.
Therefore we select the volume-averaged velocity: defining

(2.3) v = (1 − φ)vf + φvp, vrel = vp − vf

thus comprises the one-fluid model for the mixture, and the individual phase velocities
can be recovered by

(2.4) vp = v + (1 − φ)vrel, vf = v − φvrel.

The average velocity satisfies the Stokes equations:

(2.5) ∇ · Π = ρ(φ)g, ∇ · v = 0,

where ρ(φ) is the mixture density and g is the gravitational field. The density is given
by ρ(φ) = ρf (1+Δφ), where Δ = (ρp− ρf )/ρf and ρf and ρp are the densities of the
fluid and particulate phases.

Fig. 2.1. Geometry of the film problem. While our derivation will allow y dependence, we study
the y-independent case. Our model assumes φ is independent of z.

We now define the problem geometry as in Figure 2.1, considering an advancing
film that coats a plane inclined at the angle θ. In deriving the equation for v, we
follow the standard methods used for pure fluid films [17, 44]. The lubrication ap-
proximation, valid at small Reynolds numbers and geometric aspect ratios, assumes v
lies in the x-y plane and

∣∣∂v
∂z

∣∣ � max
(∣∣∂v

∂x

∣∣, ∣∣∂v
∂y

∣∣). Correspondingly, we now consider

all velocities to be two-dimensional vectors, as well as the gradient ∇ = x ∂
∂x + y ∂

∂y ,

and define g⊥ = g · z = |g| cos θ and g‖ = g− g⊥z = (|g| sin θ)x. In this notation, the
Stokes equations now read

∂p

∂z
= −ρ(φ)g⊥,(2.6a)

∇p = μ(φ)
∂2v

∂z2
+ ρ(φ)g‖.(2.6b)

The Laplace–Young boundary condition states that the pressure at the free sur-
face, z = h(x, y), is given by

(2.7) p (x, y, h(x, y)) = −γ∇2h(x, y),
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where γ is the coefficient of surface tension. The pressure is then determined by

(2.8) p(x, y, z) = −γ∇2h(x, y) +

∫ h(x,y)

z

ρ(φ(x, y, z′))g⊥dz
′

from the depth and particle concentration of the film. Here it is convenient to assume
the particle concentration is independent of the z coordinate, so that the integral in
(2.8) is merely ρ(φ)g⊥(h−z). We will discuss this assumption further in our treatment
below of particle motion.

Combining (2.6b) and (2.8) and defining P (x, y) = −γ∇2h + ρ(φ)g⊥h, we have

(2.9) ∇P − zg⊥ρ
′(φ)∇φ = μ(φ)

∂2v

∂z2
+ ρ(φ)g‖.

The boundary conditions of interest are no stress (∂v/∂z = 0) at the free interface
and no slip (v = 0) at the solid interface. Equation (2.9) can now be integrated twice
in z with the constants of integration determined by these conditions, to arrive at the
equation

(2.10) μ(φ)v =

(
hz − z2

2

)
(ρ(φ)g‖ −∇P ) +

1

2
(h2z − z3/3)g⊥∇ρ(φ)

for the volume-averaged velocity. Integrating once more gives the depth-averaged
velocity

(2.11) vav =
h2

3μ(φ)

[
γ∇∇2h− g⊥

(
∇(ρ(φ)h) − 5

8
h∇ρ(φ)

)
+ ρ(φ)g‖

]
.

Modeling the relative velocity due to particle settling turns out to be more dif-
ficult. Recall that in the above lubrication analysis, we have assumed the particles
are evenly distributed across the film depth. This may seem unrealistic because the
normal component of gravity is pulling the particles toward the solid substrate, but
this model is concerned with the particle-rich ridge regime occurring at high angles
and concentrations, in which Zhou et al. found that particles do not settle out of
the flow. A similar effect was also observed in a thin film experiment [54] performed
by Timberlake and Morris with neutrally buoyant particles: they found higher con-
centrations near the free surface, and attributed this to a shear-induced particle flux
such as Leighton and Acrivos describe in [34]. This flux consists of a nonlinear diffu-
sion in the presence of shear, and in inhomogeneous flows an additional migration of
particles away from regions of high shear. Schaflinger, Acrivos, and Zhang, in their
model for film flow [47], balance gravity-driven settling with only the diffusive flux,
and find steady state solutions in which the concentration increases with depth. While
the corresponding problem including both diffusion and migration remains unsolved,
Carpen and Brady found nonmonotone concentration profiles in a model for the re-
lated inclined Poiseuille flow [9] and also showed that these profiles are unstable due
to heavy material suspended above lighter material. Thus it is unclear whether the
actual concentration profile for film flow increases or decreases with depth, so we find
it reasonable to consider the simplest case, a uniform depth profile.

We begin our model of the relative motion with the settling velocity

(2.12) vs =
2a2Δρfg‖

9μf
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of a single sphere of radius a in R
3, while noting that this expression neglects the ef-

fects of the solid boundary, the free surface, and other particles. Equation (2.12) uses
g‖ because particles were not observed to settle vertically in the ridge regime. The
problem of determining settling rates of concentrated mixtures is complex, even in
the idealized case of monodisperse spherical particles in a large domain [11]. Some of
the challenges are summing the interactions between spheres, which decay only as 1/r
in Stokes flows, and interpreting theoretical results that imply divergent fluctuations
about the mean particle velocity [5, 8]. Since there is no general agreement of theo-
retical and numerical results with experiments, sedimentation is commonly modeled
by an empirical hindered settling function,

(2.13) vrel = f(φ)vs,

such as the Richardson–Zaki function (see [46])

(2.14) fRZ(φ) = (1 − φ)n, n ≈ 5.

We also seek a correction to represent the impeding effect of the solid substrate
on particle motion. A similar problem involving a sphere falling next to a vertical
wall has been solved approximately by the method of images [18], leading to the series
solution

(2.15) vrel =

(
1 − 259

256

(a
z

)
+

9

16

(a
z

)
log

(a
z

)
− 1

16

(a
z

)3

+
15

256

(a
z

)4

+ · · ·
)

vs

for the velocity, where z > a is the distance from the center of the particle to the wall.
The important quantity in a lubrication model is the depth-averaged velocity, which

in the case of particle settling can be interpreted as (1/h)
∫ h

a
v(z)dz. Figure 2.2 shows

this average for a range of the nondimensional parameter h/a, along with the simpler
function that we will use to approximate wall effects:

(2.16) w(h) =
A(h/a)2√

1 +
[
A(h/a)2

]2
with A = 1/18. This function has the desired properties w ≈ 0 for h < a, w ≈ 1 for
h � a, and unlike (2.15) is differentiable and positive on (0,∞). We have chosen the
parameter A so that this function resembles (2.15), but since the latter neglects the
net flow and the effects of other particles it should mainly be viewed as a correction
to ensure vrel → 0 for very thin films.

For lack of a comprehensive theory incorporating both wall effects and hindered
settling, we simply assume the effects are multiplicative, obtaining the settling velocity

(2.17) vrel = f(φ)w(h)vs

relative to the fluid which we interpret as a depth average. We assume f refers to
fRZ until section 6, when we consider another settling function. The velocities vrel

in (2.17) and vav in (2.11) complete the one-fluid description (2.3). The evolution
equations

(2.18)
∂h

∂t
+ ∇ · (hvav) = 0,

∂φh

∂t
+ ∇ · (φhvp) = 0
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Fig. 2.2. Our correction representing the impeding effect of the solid boundary on a single
particle’s settling velocity (solid), and the depth average of (2.15) (dashed).

follow from conservation of volume in both the mixture as a whole and, using (2.4),
in the particulate phase. Note that (2.18) differs from the model proposed by Zhou
et al., which incorrectly used conservation of mass. Identifying vav in (2.18) with v
in (2.4) and inserting (2.11) and (2.17) into (2.18) then gives the complete system

∂h

∂t
+ ∇ ·

(
h3

3μ(φ)

[
γ∇∇2h− g⊥

(
∇(ρ(φ)h) − 5

8
h∇ρ(φ)

)
+ ρ(φ)g‖

])
= 0,(2.19a)

∂(φh)

∂t
+ ∇ ·

(
φh3

3μ(φ)

[
γ∇∇2h− g⊥

(
∇(ρ(φ)h) − 5

8
h∇ρ(φ)

)
+ ρ(φ)g‖

]

+ φh(1 − φ)f(φ)w(h)vs

)
= 0.(2.19b)

Next we nondimensionalize the equations for the constant flow rate problem, with
the rescaling used in [3] for a clear fluid. If the upstream gate height h0 represents a
typical film thickness, then the first- and fourth-order terms in (2.19) are comparable
at a length scale x0 = (�2h0)

1/3, where � =
√
γ/ρfg‖ is the capillary length. The

time derivative is on the same scale as well if t ∼ t0 = (3μf/γ)x0�
2/h2

0, and the

corresponding capillary number is Ca ≡ μfx0/γt0 = h2
0/3�

2. Defining h̃ = h/h0,

x̃ = x/x0, t̃ = t/t0, ρ̃(φ) = 1+Δφ, μ̃(φ) = (1−φ/φm)−2, w̃(h̃) = w(h), and dropping
the tildes, and replacing ∇ with ∂/∂x in anticipation of a y-independent solution, we
obtain the dimensionless system

∂h

∂t
+

∂

∂x

(
h3

μ(φ)

[
hxxx −D(θ)

(
(ρ(φ)h)x − 5

8
hρ(φ)x

)
+ ρ(φ)

])
= 0,(2.20a)

∂(φh)

∂t
+

∂

∂x

(
φh3

μ(φ)

[
hxxx −D(θ)

(
(ρ(φ)h)x − 5

8
hρ(φ)x

)
+ ρ(φ)

]

+ vsφh(1 − φ)f(φ)w(h)

)
= 0.(2.20b)
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Note that the inclination angle θ has been scaled out, and now appears only in the
parameter D(θ) = (3Ca)1/3 cot θ measuring the relative importance of the second-
order terms.

Before introducing the boundary conditions, a discussion is necessary of the mi-
croscopic contact-line physics, for which we rely on literature dealing with pure fluids.
It has been shown [14] that the no-slip boundary condition we have employed above
requires infinite viscous energy dissipation in the vicinity of a moving contact line.
This singularity is removed if the fluid-solid boundary condition is modified to allow
finite slip [20], which generally takes the form

(2.21) v|z=0 = b
∂v

∂z

∣∣∣∣
z=0

,

where b is a length on the order of the molecular size. This slip length has been
observed experimentally and is known to be particularly large (on the order of mi-
crons [33]) for polymer liquids such as the PDMS used in [59]. Another technique used
to model the contact line derives from attractive Van der Waals forces between the
fluid and solid, which for many wetting films (again including PDMS on acrylic) causes
a precursor film of microscopic thickness to extend ahead of the apparent contact line
[1, 10]. Modeling this precursor explicitly is a complex thermodynamic problem at a
microscopic length scale; however, it has been shown that the effect of the precursor
on the macroscopic fluid problem can be approximated by incorporating this length
scale into the fluid boundary condition [13]. Models that simply impose a thickness
b for the precursor have been used successfully [3, 55] and been seen to give similar
predictions to the slip model with the same value of b [41, 51]. In both cases b is
difficult to know precisely and is often treated as an unknown parameter. Meaningful
values range from perhaps 100 μm for a prewet surface down to 1 nm for a smooth,
dry surface.

In this work, we choose the precursor model because it preserves the symmetry of
the Riemann problem, discussed in section 3 below, and will present results for a range
of thicknesses. With an inflow at concentration φL and a precursor of nondimensional
thickness b 
 1 and concentration φR, the initial conditions for the constant flow rate
problem are

(2.22) (h, φ)|t=0 =

{
(1, φL) if x < 0,
(b, φR) if x > 0.

In addition to b, φR is also a model parameter not determined by the bulk flow, and
must be specified. The appropriate value of φR may vary: for a prewet surface it
may be equal to φL, while in a microscopic precursor it is probably zero. We mainly
consider φR = φL for definiteness, but also discuss φR = 0.

The large-scale behavior of lubrication equations such as (2.20) is often well
described by the corresponding first-order system, obtained by simply dropping all
higher-order terms. This reduced system,

∂h

∂t
+

∂

∂x

(
h3ρ(φ)/μ(φ)

)
= 0,(2.23a)

∂(φh)

∂t
+

∂

∂x

(
φh3ρ(φ)/μ(φ) + vsφh(1 − φ)f(φ)w(h)

)
= 0,(2.23b)

corresponds to a rescaling of (2.19) with x � x0 and t � t0; however, we study it
below because it allows solutions to be understood as simple shocks and rarefactions,
while retaining the essential convective dynamics.
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Zhou et al. [59] presented numerical evidence that first-order and fourth-order
models agree well for this problem. This agreement is also seen in the homogeneous
case (φ ≡ 0, or φ ≡ φ0 > 0 with a = 0), where (2.23) reduces to (1.1). The Riemann
problem for that equation features simple shock solutions; however, it was first studied
by Huppert with Dirac mass initial data, which leads to rarefaction-shock solutions
(defined in section 3) that compare favorably to a constant-volume experiment [21].
Such correspondence between full and reduced systems is not guaranteed, however:
Bertozzi, Münch, and Shearer [4] studied a variant of (1.1) in which Marangoni forcing
competes with gravity, and they described examples of more complex shock structures
for which the first-order and fourth-order solutions do not agree. Similar lubrication
models have given rise to pairs of equations describing a thin film containing surfactant
[22, 35]. Also related are models for sedimenting mixtures in which the particle
concentration exhibits kinematic shocks [31].

3. The Riemann problem for systems of conservation laws. This section
reviews the theory of systems of nonlinear conservation laws in one dimension, of
which (2.23) is an example. This class contains equations of the form

(3.1a)
∂U

∂t
+

∂

∂x
F (U) = 0, U, F (U) ∈ Ω ⊂ R

n.

Although initial-value problems for (3.1a) are not in general well-posed, there is a
large body of analytical techniques for finding and characterizing solutions when they
exist [32]. The analysis is especially simplified for the Riemann problem, in which the
initial data is a step function

(3.1b) U(x, 0) =

{
UL if x < 0,
UR if x > 0,

such as (2.22) with uniform concentration.
Both the equation and initial data of the Riemann problem can be expressed in

terms of the single variable ξ = x/t, and this symmetry extends to solutions as well.
Imposing this form on the solution reduces the problem to finding a heteroclinic orbit
for the autonomous system [

J
(
U(ξ)

)
− ξI

]
U̇(ξ) = 0,(3.2a)

U(−∞) = UL, U(+∞) = UR,(3.2b)

where J(U) is the Jacobian derivative of the flux function F . Smooth solutions of
(3.1a), known as rarefactions, are therefore either constant or vary along integral
curves Ri of a Jacobian eigenvector ri. For this reason, most existence results apply
to strictly hyperbolic systems, in which the eigenvalues are real and distinct.

Equation (3.2a) also requires that rarefaction solutions be parametrized by the
corresponding eigenvalue λi, which is possible only if λi is strictly increasing on Ri

between UL and UR. We discuss here the simplified case when F satisfies the genuine
nonlinearity condition, which states that λi varies strictly monotonically along Ri for
all i and Ri; we consider the more general case in the appendix.

In a genuinely nonlinear system, Ri(U) consists of two connected curves R+
i (U) =

{U ′ ∈ Ri(U) | λi(U
′) > λi(U)} and R−

i (U) = {U ′ ∈ Ri(U) | λi(U
′) < λi(U)},

and a connecting orbit exists when UL = U and UR ∈ R+
i (U), or UR = U and

UL ∈ R−
i (U). Consequently smooth solutions do not exist for general data, and

solutions are generally sought from the larger class of weak solutions.
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A weak solution to the conservation law (3.1a) is an L∞ function U(x, t) that in
addition to the initial condition satisfies

(3.3)

∫ x2

x1

(
U(x, t2) − U(x, t1)

)
dx +

∫ t2

t1

(
F (U(x2, t)) − F (U(x1, t))

)
dt = 0

for all x2 > x1 and t2 > t1 > 0. This includes all smooth solutions to (3.1a), but also
allows discontinuities along a curve x = st that satisfies the vector Rankine–Hugoniot
condition

(3.4) F (U+) − F (U−) = s
(
U+ − U−),

where U− and U+ are the values of U on either side of the discontinuity. The Hugoniot
locus H(U−) is defined as the set of U+ that satisfy (3.4) for some s. (Note that while
the symmetry of (3.4) implies U2 ∈ H(U1) is equivalent to U1 ∈ H(U2), it does not
follow that H(U1) = H(U2).)

Such weak solutions are not unique, however, and a method must be chosen
to select a single solution. Various criteria, known as entropy conditions, have been
proposed in order to distinguish the shock, or admissible discontinuity, from any other
weak solutions. One condition, the method of viscous profiles, is motivated by the
fact that conservation laws often appear physically as approximations to higher-order
regularized equations such as

(3.5)
∂

∂t
U ε +

∂

∂x
F (U ε) = ε

∂2

∂x2
U ε,

which are well-posed for ε > 0. A solution to (3.1a), according to this method, should
be stable in the sense that it appears as the pointwise limit in x, t of solutions Uε

to (3.5) as ε → 0. This condition has the advantage of a clearly desirable physical
interpretation that assures shock solutions are unique; however, it has the drawback
of being difficult to verify.

A simpler method from the analytical perspective is the Lax entropy condition,
which is equivalent to the viscous profile condition for a certain class of scalar con-
servation laws. This method relies on strict hyperbolicity to index the eigenvalues
λi of J(U) in increasing order for each U . These eigenvalues represent the char-
acteristic speeds at which the equation propagates information, as can be seen in
rarefaction solutions to the Riemann problem in the persistence of the left state UL

for x ≤ λi(UL)t and the right state UR for x ≥ λi(UR)t. The Lax entropy condition
requires the discontinuity to be continually reinforced by conflicting information from
a single characteristic field, i.e., it moves with a speed s that satisfies

(3.6) λi(UL) > s > λi(UR)

for exactly one i. That characteristic is emphasized by calling the discontinuity an
i-shock.

In a neighborhood of any U the Hugoniot locus H(U) consists of two smooth
curves intersecting at U , and the four branches leaving U correspond to the four cases
of 1- or 2-shocks with U as the right or left state. We denote the continuations of these
branches by U+

i if U is the left state and U−
i if U is the right state. The allowable

connections C+
i (UL) = R+

i (UL) ∪ S+
i (UL) through the ith characteristic also locally

form a smooth curve for each i. The variation of an i-shock or i-rarefaction solution
is confined to the interval {ξ : min(λi(UL), λi(UR)) < ξ < max(λi(UL), λi(UR))},
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so compound connections can be generated by stringing together waves of different
characteristics as long as ξ increases with i. In fact, {C+

i }ni=1 locally generate a
smooth coordinate system, so if UR is sufficiently close to UL, the Riemann problem
is well-posed.

Existence of solutions for large data depends on the topology of H(U). A famous
example of a system with no solutions for certain Riemann data is the Keyfitz–Kranzer
equation (5.1) [29], in which H(U) is compact. A bounded Hugoniot locus implies a
bound on the strength of a shock, and consequently some large-data Riemann prob-
lems have no weak solutions. Section 5 describes a theory for such systems relating
the regularized profiles to a Dirac mass; however, this theory is far from complete.

A final complication to the selection of weak solutions is the nature of the reg-
ularization actually present in the physical system. The Lax and Oleinik conditions
are intended to admit those shocks that appear as viscous limits under the simplest
possible regularization. If the actual regularization is different, the viscous profiles
could converge to a weak solution other than that selected by the entropy criteria.
This possibility is indeed relevant to conservation laws describing thin films, which
are generally regularized by nonlinear fourth-order capillary terms such as in (2.20).
In fact, a scalar thin film equation with similar regularization is known to select an
entropy-violating double-shock solution, rather than the single-shock entropy solu-
tion [4].

4. Particular solutions. The system (2.23) is physically meaningful for h > 0
and 0 ≤ φ < φm, or equivalently 0 ≤ v < φmu in terms of the conserved quantities
u ≡ h and v ≡ φh. While the above theory depends on the latter parameterization,
the equations are most simply expressed in terms of the physical variables h and φ,
which we will use to present our results.

As shown in Figure 4.1, the equations using (2.14) are not strictly hyperbolic
near the maximum concentration, where the eigenvalues become complex and the
equations become elliptic. It is not clear whether this feature is desired in a model
of the thin film. Change of type certainly complicates the mathematical question
of well-posedness for such a system, but the parabolic system (2.20) is well-posed
regardless of the first-order approximation. Also models proposed for dry granular
materials result variously in hyperbolic, parabolic, and elliptic equations, so physically
the change of type does not seem altogether unreasonable. Equations (2.23) are also
not genuinely nonlinear on the entire domain; the significance of this is discussed in
the appendix.

Since h has been rescaled to unity and θ appears only in the time scale, solutions
to (2.23), (2.22) depend on φL, φR, b, and a. Although the relative values of φL

and φR appear to be important, we consider only the cases φR = φL and φR = 0,
which are most likely to occur in experiments. The value of φL itself appears to have
only qualitative significance. The particle radius a has two effects: the time scale is
proportional to a2, and the film thickness at which the wall effect cutoff occurs (the
inflection point of w(h)) is proportional to a. The appropriate range for a is fairly
small, however; as for a > 0.2 discrete particle effects may be important, and for
small a the relative velocity vanishes as a2, so we use a = 0.1 for all calculations.
The precursor thickness b is the most important parameter, but before discussing its
effects we describe a typical solution.

We choose (hL, φL) = (1.0, 0.3) as a representative left (upstream) state, and
display in Figure 4.1 the four connection curves (1-shock, 1-rarefaction, 2-shock, 2-
rarefaction) containing points that can be reached directly from this state. The rar-
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Fig. 4.1. The phase space of the reduced model, and the connections from (h0, φ0) = (1.0, 0.3),
�. The system is hyperbolic except in the shaded region. Black lines represent shock connections
and gray represents rarefactions. Solid lines are connections to the right, i.e., the (h0, φ0) is the
left state, and dashed lines are connections to the left. 1-waves and 2-waves can be distinguished
by their slope at (h0, φ0): 2-waves are nearly horizontal at this scale. Except at very small h, the
shocks and rarefactions nearly coincide.

efaction curves have been integrated from (3.2a) by a Runge–Kutta method, and
H(UL) has been calculated by eliminating s from (3.4) at each point and solving the
resulting equations for u and v. For a given shock connection, the shock speed can
be recovered by substituting u and v back into (3.4).

For a specified right state (b, φR) representing the precursor, a solution can be
determined by finding an intersection between the two connection diagrams, since
the intersection represents an intermediate state that connects to both the left and
right boundary conditions through shocks and/or rarefactions. In Figure 4.2 we have
plotted the possible shock-shock connections for four values of b with φR = φL. At
b = 0.1 there is a solution with a 1-shock from the upstream state to an intermediate
height and concentration slightly larger, and a 2-shock from this intermediate state
to the precursor. As the precursor becomes thinner, the height and concentration of
this intermediate state increase. For b = 0.01 the intermediate state is approximately
(h, φ) = (1.1757, 0.3663). In Figure 4.3 we compare this connection with a numerical
solution with the same initial data and find that both shock speeds and the height and
concentration of the ridge are in agreement. The numerical solution was calculated
using the Lax–Friedrichs finite difference method with grid spacing 3.3 × 10−7 and
time step 3.3 × 10−7.

At b = 0.008 the Hugoniot locus has undergone a bifurcation such that the 1- and
2-shock curves are no longer distinct, and an additional connected component has
appeared. Inspection of the shock speed and characteristic speeds along these curves
reveals that various sections correspond to 1-shocks, 2-shocks, or are not admissible
at all. There is still a shock-shock connection for b = 0.008 that satisfies the Lax
entropy condition; however, at b = 0.0015 there are no longer any intersections, and
therefore no solution. We discuss this last case in section 5, and in section 6 describe
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Fig. 4.2. 1-shock connections (solid line) from an upstream state (hL, φL) = (1.0, 0.3) (�) and
1- and 2-shock connections from four precursor states (hR, φR) = (b, 0.3) (�), where b = 0.1 (dot),
0.01 (dash), 0.002 (dot-dash), and 0.0005 (dot-dash-dash). The solutions involve an intermediate
state between the two shocks, marked by ©. As b becomes small, the Hugoniot locus undergoes a
bifurcation and ultimately fails to produce a shock solution.
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Fig. 4.3. Film thickness (solid) and concentration (dashed) of a numerical solution of the
conservation laws at t = 1, with (hL, φL) = (1.0, 0.3) and (hR, φR) = (0.01, 0.3). The intermediate
state (between the shocks) is (h, φ) = (1.1757, 0.3663), as calculated in Figure 4.2. The speed of the
(trailing) 1-shock is nearly equal to one of the characteristic speeds, making this shock especially
susceptible to numerical diffusion.

a change to the hindered settling function that ensures a solution does exist.
If the concentration in the precursor is taken to be 0 rather than φL, double-shock

solutions still occur for moderately small b, and again no solution exists for smaller
b. At larger b, another type of solution occurs consisting of a 1-rarefaction and a
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Fig. 4.4. Numerical solution of the conservation laws at t = 1, with (hL, φL) = (1.0, 0.3) and
(hR, φR) = (0.02, 0), corresponding to a 1-rarefaction and 2-shock. While some of the smoothness
is due to numerical diffusivity, the 1-rarefaction can also be distinguished from a 1-shock by the fact
that both h and φ are less than their values on the left.

2-shock, with both h and φ in the intermediate state less than their values at the left.
A numerical solution for this case is shown in Figure 4.4, again computed using the
Lax–Friedrichs method in a moving frame.

As found by Zhou et al., the double-shock solutions agree qualitatively with the
particle-rich ridge seen in experiments. The consistent trend is toward a thicker and
more concentrated ridge as the b becomes smaller, until the solution ceases to exist.
While it is difficult to know what value to use for b for a given experiment, this trend
does indicate that a prewet surface or a more strongly wetting fluid-solid combination
will result in a relatively smaller and less concentrated ridge. Very small values of b
for which there is no solution are harder to interpret, since it is possible that solutions
to the full system (2.20) display behavior that cannot be approximated by first-order
equations. The problem of nonexistence is avoided, however, in the modified equations
introduced below in section 6, which indicate a simple continuation of the trend toward
thicker ridges. In contrast the rarefaction-shock solutions obtained with a fairly thick
and particle-free precursor are unlike anything seen in experiments. These solutions
are characterized by a thinner, particle-depleted region near the contact line which
is created as the advancing film is diluted by the clear fluid in the precursor, and
this effect is enhanced as the resulting drop in viscosity causes the depleted region
to spread downstream. Perhaps this behavior may be observable with a sufficiently
thick and particle-free prewet surface.

5. Singular shocks. The problem of nonexistence due to nontrivial Hugoniot
topology has been studied before, and a weaker form of solution known as a singular
shock has been described. An illustrative example is the Keyfitz–Kranzer equation [29]

(5.1)
∂

∂t

(
u
v

)
+

∂

∂x

(
u2 − v
1
3u

3 − u

)
= 0,

which is everywhere both strictly hyperbolic and genuinely nonlinear, but for all U =
(u, v) the Hugoniot locus is compact, specifically figure-eight shaped. Thus shocks can
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only connect states that are sufficiently close, and certain Riemann problems have no
classical solution.

In [27], Kranzer and Keyfitz present three sequences of functions U ε(ξ = x/t) to
(5.1) that approximately solve (5.1) as ε → 0 but are also singular in this limit. The
first sequence results from an asymptotic expansion of the solution to the regularized
equation

(5.2)
∂U

∂t
+

∂

∂x
F (U) = εt

∂2U

∂x2

in ε, and the second and third are explicitly constructed from C∞ functions and
piecewise constant functions. They introduce a space of measures in which these se-
quences converge to a limit involving Dirac-like masses superimposed on a classical
shock. They also propose overcompression as an admissibility requirement for singu-
lar shocks, i.e., (3.6) must hold for both characteristics; if singular shocks are accepted
under this restriction, (5.1) is well-posed for all Riemann data. However, these con-
clusions are restricted to (5.1). Also, Kranzer and Keyfitz emphasize that while the
limiting measures appear as limits of approximate solutions, no well-defined criterion
has been proposed by which the limits themselves can be called solutions.

Sever discusses the selection mechanism for singular shocks in a more general
context in [48]. For a distribution solution

(5.3) U(x, t) = M(t)δ(x− st) +

{
UL if x < st,
UR if x > st

characterized by a point mass M(t) located at x = st, conservation implies the singular
mass must satisfy

(5.4)
dM

dt
= s(UR − UL) −

[
F (UR) − F (UL)

]
.

Since the speed s is unknown, this is an undetermined system for the n+1 parameters
dM/dt, s. For (5.1), Kranzer and Keyfitz determined unique solutions by requiring
the first component of M to vanish, justified by an argument specific to that system.
Sever writes that this last constraint generally comes from properties of the system
such as symmetry groups or a convex entropy function. The proper constraint for
system (2.23) is not yet apparent.

Equations (2.23) with regularization (3.5) also show behavior consistent with a
singular shock. In order to investigate this, numerical solutions were generated with
a fully implicit centered difference scheme on a moving nonuniform grid. The number
of grid points at each mesh size was fixed; however, every 10 time steps the grids were
rearranged using cubic interpolation as necessary to center the area of maximum
resolution around the singularity. Meanwhile the entire computational domain moved
at a constant speed chosen to approximately match the speed of the discontinuity.
The scaling of the regularized solution satisfies U ε(x, t) = U1(εx, εt), so rather than
take ε → 0 we fixed ε = 1 and evaluated the solution at long times.

Figure 5.1 contains the results of this calculation. Both components of the singular
mass increase linearly in time, as required by (5.4), and the singularity is overcom-
pressive. As the singularity evolves in time the maximum height and concentration
grow, and at t ≈ 3× 108 the concentration exceeds the packing fraction. Clearly this
solution does not describe the physical problem. While the nonlinear fourth-order dif-
fusion in (2.20) may behave differently than the linear second-order diffusion studied
here, possibly resulting in realistic solutions for the full model, the modification to
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Fig. 5.1. Film thickness (top) and particle concentration (bottom), from numerical solutions
of the regularized system (3.5) in the singular shock regime, with b = 0.001, φ0 = 0.3, and ε = 1,
calculated on a grid moving at speed s = 0.45547 and evaluated at times 5 × 107 (solid), 1 × 108

(dot-dash), and 2 × 108 (dot).

the model introduced in section 6 suggests the crucial issue is the high-concentration
physics, rather than any divergence between the first- and fourth-order equations.

6. Alternative settling function. In this section we propose a modification
to the unregularized system (2.23) that prevents the concentration from exceeding
φm. We begin with a heuristic explanation of how (2.14) may be incompatible with
(2.1) in the limit φ → φm. The volume-averaged velocity is controlled by μ(φ)−1,
which vanishes in this limit, while fRZ(φ), and hence the relative flux, is nonzero.
This imposes a forward flux of particles with no net volume flux, requiring fluid
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Fig. 6.1. Two forms of the hindered settling function. The Richardson–Zaki function (solid
line) given by (2.14) vanishes at concentration 1.0; the Buscall et al. function (dashed line) given
by (6.1) vanishes at the packing fraction φm = 0.67.

therefore to move backward. This situation is probably unrealistic, because the limit
μ(φ) → ∞ is intended to model the case when the particles are packed tightly enough
to prevent any shear flow. In that case, it seems more appropriate to model the
particles as an immobile porous medium, with a Darcy’s law flux of pure fluid and
vrel < 0. Incorporating such a transition into the current model presents challenges,
as the particle velocity must be specified relative to the laboratory frame rather than
the fluid, essentially changing to a two-fluid model at high concentrations. A much
simpler alternative is to simply let vrel vanish along with v at φ = φm; this is readily
accomplished by using the hindered settling function proposed by Buscall et al. [7],

(6.1) fB(φ) = (1 − φ/φm)5,

instead of (2.14). The two settling functions are plotted in Figure 6.1.
With this modification, solving the Riemann problem is simplified in two signif-

icant ways: the equations are strictly hyperbolic throughout the relevant domain Ω,
and the bifurcation causing shock solutions to break down does not occur. In Fig-
ure 6.2 we have plotted shock-shock connections for four values of b. These solutions
exist even for very small precursors, so the system appears to be well-posed regardless
of b. Figure 6.3 summarizes the manner in which the type of solution depends on the
settling function and the Riemann data.

In Figures 6.4–6.5, we compare the shock solutions to the two systems and their
dependence on the precursor b. The behavior of the Hugoniot curves in the fRZ(φ)
system, shown in Figure 4.2, implies the intermediate height and concentration ap-
proach a maximum value at a critical precursor thickness b = b∗ ≈ 9 × 10−4, below
which there is no meaningful solution. As b → 0 in the fB(φ) system, the intermediate
height increases apparently without bound and the concentration approaches φm. We
also observed in both limits that the speeds of the 1- and 2-shocks become approx-
imately equal, indicating that the ridge, located between the shocks, is compressed
horizontally while growing vertically.
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Fig. 6.2. Shock connections using the settling function fB(φ) instead of fRZ(φ). The bifurca-
tion that caused some initial data to have no solution no longer occurs. The solid line is the 1-shock
connection from (hL, φL) (�), and the 2-shocks are plotted from various precursors (�) given by
b = 10−1 (dot), 10−2 (short dash), 10−3 (long dash), 10−4 (dot-dash), 10−5 (dot-dot-dash), and
10−6 (dot-dash-dash). Each solution involves an intermediate state marked by ©.
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Fig. 6.3. Type of solution (1-rarefaction and 2-shock, 1-shock and 2-shock, or singular shock)
as determined by b and φL (assuming hL = 1 and either φR = φL or φR = 0) for both hindered
settling functions. Richardson–Zaki settling and φR = φL (upper left), Richardson–Zaki settling
and φR = 0 (lower left), Buscall et al. settling and φR = φL (upper right), Buscall et al. settling
and φR = 0 (lower right).
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Fig. 6.4. Height and concentration of the intermediate state vs. the precursor thickness b.
Squares and circles are the height and concentration of solutions using the hindered settling function
fRZ(φ), triangles and diamonds are the height and concentration of solutions using fB(φ).
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Fig. 6.5. The speed of the shocks that make up the solutions to the connection problem for
various precursors. Squares are solutions using the hindered settling function fRZ(φ), and triangles
with fB(φ).

7. Conclusion. In section 2, we derived a lubrication model for particle-laden
films in the case where particle settling occurs only in the direction of flow. We did not
analyze this fourth-order system, but rather the associated first-order reduced model;
analogies with similar problems suggest this may be a reasonable approximation to the
full system. While establishing correspondence between the reduced and full models
is beyond the scope of this paper, the potential correspondence motivates our main
result, a complete characterization of the first-order problem and a discussion of its
possible connections to experiments.
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The most important parameter in the reduced system is the precursor thickness
b. When b is large enough, this system has a double-shock solution in qualitative
agreement with the experimentally observed particle-rich ridge, while for smaller b,
there is no classical solution. If the concentration in the precursor is the same as in
the upstream source, these are the only two cases; setting the precursor concentration
to zero allows a third possibility of a rarefaction-shock solution that has not been
seen in experiments. We have confirmed the converging shock speeds that Zhou
et al. reported in their preliminary discussion of the double-shock solutions, and we
find that the speeds appear to become equal precisely (at the same value of b) when
the classical shock solution breaks down.

At precursor thicknesses for which classical solutions do not exist, we have in-
vestigated a simple regularization of the equations for which the solution resembles
a singular shock. These solutions are not at all realistic, partly because the growing
delta mass at the shock location means the height is unbounded as t → ∞, and partly
because the close packing concentration φm is eventually exceeded.

A heuristic explanation was offered in section 6 for this exotic behavior: inspecting
the limiting fluxes as φ → φm suggests the relative velocity should also vanish in this
limit. This can be achieved by substituting the hindered settling function (6.1) of
Buscall et al. for that of Richardson and Zaki, and the resulting Riemann problem
appears to be well-posed for all precursor thicknesses. Thus physical arguments and
the expectation of a well-posed first-order system both suggest that functions such as
fB(φ) that vanish at φm are most appropriate for this problem.

Many interesting questions remain unanswered regarding this model. More work
is needed to determine how well the present results concerning the first-order system
(2.23) approximate the full fourth-order system (2.20). Also of interest is the sta-
bility of the two-dimensional model (2.19) with respect to fingering patterns, as the
experiments of Zhou et al. found the instability to be suppressed when a particle-rich
ridge develops [59]. Other questions arise from the limitations of the current model.
Explaining the three distinct settling behaviors observed by Zhou et al. requires a
more general model considering particle settling in the normal direction, perhaps
balanced by a shear-induced particle flux as in [47]. In addition to explaining the
phase diagram, such a model could help determine whether the assumption in the
current model—that particle concentration is constant across the film depth—is real-
istic. Changes to the model may also be needed to describe very high concentrations,
as suggested in section 6, because contact forces between particles can be expected to
become important.

Appendix. Genuine nonlinearity. While most physical systems are strictly
hyperbolic, systems arising naturally are often not genuinely nonlinear. In the Eu-
ler equations of compressible flow, one characteristic field is linearly degenerate:
ri · ∇λi ≡ 0. For this characteristic, Ri(U) and Si(U) coincide and connections
take the form of contact discontinuities, which satisfy (3.4) with the inequalities in
(3.6) replaced by equality. More generally, when the variation of λi along Ri changes
sign, the strict inequality in (3.6) becomes too restrictive and a more general entropy
condition is needed to select which contact discontinuities are admissible solutions.

For a scalar conservation law, genuine nonlinearity is simply the strict convexity
(or concavity) of the flux function F . If the function changes concavity, contact
discontinuities are chosen by the Oleinik condition [43], which states that the shock
speed s(UL, UR) satisfies

(A.1) s(UL, UR) ≤ s(UL, U)
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Fig. A.1. Failure of genuine nonlinearity for (2.23): ∇λ1 ·r1 = 0 on the gray line. Connections
from (hL, φL) = (1.0, 0.3) (�) are plotted on the dashed line, which include shocks up to (h∗, φ∗) ≈
(1.18, 0.369) (�) or a compound shock to (h∗, φ∗) followed by a rarefaction. 2-shocks are plotted from
right states (�) for one case (b = 0.02, dotted line) with a simple 1-shock, 2-shock solution, and
another case (b = 0.002, dashed line) with a compound 1-shock, 1-rarefaction wave and a 2-shock.
The equations are elliptic in the shaded region.

for every U between UL and UR. Liu has generalized the Oleinik condition to 2×2 [36]
and n× n systems [37] by requiring (A.1) to hold for all U ∈ H(UL) between UL and
UR. Both Liu’s and Oleinik’s conditions reduce to (3.6) for a genuinely nonlinear
system. While potentially only a bounded segment of H(UL) could be available for
discontinuous waves, relaxing condition (3.6) provides more solutions by allowing
both continuous and discontinuous waves in the same characteristic. Liu provides an
existence proof by constructing such a compound wave. This connection involves a
shock to the first point U∗ satisfying s(UL, U∗) = λi(U∗), followed by a rarefaction
from U∗ to UR ∈ R+

i (U∗). The point U∗ is both the first local minimum of s along
H(UL), hence the last point for which Liu’s entropy condition is satisfied, and the
first point for which λi ≥ s, necessary for a continuing rarefaction wave.

In (2.23), r1 ·∇λ1 = 0 holds along the curve shown in Figure A.1. For (hL, φL) =
(1, 0.3) the branches S+

1 and R−
1 nearly coincide, so this branch represents to good

approximation the states accessible through a 1-shock, 1-rarefaction compound wave
as well. In Figure A.2 the eigenvalue and shock speed are plotted on this curve as a
function of φ. For φ < φL, both speeds increase away from UL, indicating a simple
rarefaction. With φL < φ∗ ≈ 0.369, the shock speed is strictly decreasing with φ
so the connection is a shock satisfying the Liu–Oleinik condition. This case includes
the solutions described in section 4 for b = 0.1 and b = 0.01. For φ > φ∗ neither
simple wave is feasible, but a contact discontinuity from φL to φ∗ can connect with
a rarefaction from φ∗ to φ because λ1 is now both increasing and greater than the
shock speed.

This compound wave is in practice difficult to distinguish from a simple shock. As
noted above, the states accessible to a compound wave are nearly the same states lying
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Fig. A.2. Rarefaction speeds (dashed line) and shock speeds (solid) for the connections along
the first characteristic from a left state (hL, φL) = (1.0, 0.3) (�) (corresponding to Figure 4.1),
plotted as a function of the concentration φR at the right state. The linear degeneracy curve in
Figure A.1 indicates the location of the minimum characteristic speed. If φR > φ∗ ≈ 0.37 (�), a
single shock solution is not admissible and the solution consists of a hybrid shock-rarefaction wave.

on R1 or S1, so the constant state UI appearing between 1-waves and 2-waves cannot
easily be used to identify the compound wave. Additionally, Figure A.2 demonstrates
that λ1 changes very slowly along its characteristic at intermediate concentrations,
so, for instance, in the presence of numerical diffusion, the rarefaction appears indis-
tinguishable from a shock. Thus although some solutions are necessarily compound
waves, their observable properties (other than failing to satisfy the Lax condition) are
similar to those of a simple shock.
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Abstract. We discuss an inverse source problem for a general parabolic differential equation in
R
n×R+ with constant coefficients and a source whose strength and support may vary with time. We

demonstrate that a knowledge of the solution on any bounded open set M in R
n located away from

the source for any fixed time T ≥ 0 determines the so-called carrier support (originally defined in the
article “Notions of support for far fields” [J. Sylvester, Inverse Problems, 22 (2006), pp. 1273–1288]
as a nontrivial subset of the support of the true source) at that coincident time. Additionally, we
provide a reconstruction algorithm which can locate the time-varying position of the carrier support
of the assumed unknown source with extremely few discrete (possibly nonuniform) measurements
taken on such an open set over a wide range of regularity classes of the source. Finally, we provide
a few numerical examples which illustrate the efficacy and robustness of this location and tracking
method.
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1. Introduction. Remote sensing endeavors, especially those in connection with
modern defense and industrial quality control applications, have evolved significantly
in recent years in both their technologies and the realistic scenarios they address.
In particular, the release of toxic or impure substances into an environment of in-
terest, urban or otherwise, by either intentional or unintentional means has become
an outstanding contemporary problem of considerable and immediate importance
and consequence. Recently, many promising technologies, such as those presented
in [12, 7, 4, 6, 14, 13], have been created which can remotely detect the presence of
foreign materials in a region of interest and estimate their concentration as a func-
tion of position and time, provided one has ample knowledge of the diffusion field on
either large spatial measurement sets or over long periods of time, or both. Clearly,
however, we can never hope to simultaneously monitor vast regions of space in many
real-world settings, nor can we tolerate the need for long periods of measurement
time, or indefinite ones for that matter. Hence, there is an immediate need to possess
the capability to quickly detect and determine the location(s) and output strength(s)
of life-threatening, or otherwise destructive, sources with extremely limited measure-
ments in space and time of such diffusing substances.

An immediate extension of the work developed in [10] and more recently in [16]
is made in this article that efficiently treats the problem of determining the location

∗Received by the editors July 11, 2007; accepted for publication (in revised form) September 26,
2007; published electronically January 4, 2008. This research was partially supported by the Centre
Nationale de la Recherche Scientifique (CNRS), France.

http://www.siam.org/journals/siap/68-3/69697.html
†New Frontier Advisors, LLC, Boston, MA 02110 (skusiak@newfrontieradvisors.com). Part of this

research was done while this author was a research fellow at the Laboratoire POEMS, UMR 2706,
CNRS/ENSTA/INRIA, Ecole Nationale Supérière de Techniques Avancées (ENSTA), 32 Boulevard
Victor, 75739 Paris cedex 15, France.

‡Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02420 (wax@alum.
mit.edu).

784



IDENTIFICATION OF A SOURCE IN A PARABOLIC PDE 785

of a (potentially mobile) source in a generalized advection-diffusion environment with
extremely limited real-world resources. For instance, the technology lends itself ex-
tremely well to the problem of the airborne release of a life-threatening substance
aboveground or in an underground subway system. Specifically, in n-dimensional
space, if the concentration of the diffusing substance can be measured on a small,
coarsely sampled or highly distributed, n-dimensional array of sensors, at a single
snapshot in time, then we can robustly, and expeditiously, determine the location of
the source with considerable accuracy in the presence of considerable measurement
noise. Hence, with a collection of such time snapshots of measurement data, we fur-
ther show that we are able to locate the time-varying position of a moving source and
track its current location. Such a capability is of tremendous value to time-sustained
source release problems across a variety of scenarios.

We begin the analytical treatment of this problem by considering the general
nonhomogeneous second order parabolic partial differential equation

(1.1) (∂t − Lx)u(x, t) = f(x, t), u(x, 0) = 0, (x, t) ∈ R
n × R+, n ≥ 1,

where we define the elliptic operator Lx as

Lx :=

n∑
i,j=1

ai,j∂xi∂xj +

n∑
j=1

bj∂xj + c,

which governs such things as the molecular diffusion of gases, or particulates, gen-
erated by the autonomous source f throughout x ∈ R

n and over time t ∈ R+. For
the purposes of clarity we will limit ourselves to the treatment of the case where Lx

has constant coefficients. We note, however, that much of the following analysis and
framework suits the more general case of coefficients which at least vary with position.
This is in fact the aim of future work.

In the treatment to follow we will assume that the source may be decomposed
into the product of a temporally dependent function s ≥ 0 with a potentially spatially
dependent and mobile one g ≥ 0, such that

f(x, t) = g(x− γ(t))s(t) ≥ 0 ∀ (x, t) ∈ R
n × R+,

where, a priori, g is assumed to be compactly supported for each time t within the
domain BR(p), i.e., the ball of radius R and center p, and γ : [0, T ] → R

n, T ≥ 0.
Moreover, we assume that the structure of the strength function s is such that s
identically vanishes for values of t < 0 and takes the form of regular or possibly
singular distribution for values of t ≥ 0, e.g., the Dirac-delta distribution or the
Heaviside function.

Characterization of the source amounts to determining the (possibly time-varying)
carrier support—which we will define in detail shortly, and for more detail refer the
reader to [16]—of the source f , which we will assume to be strictly positive for this
article. The concept of the carrier support generalizes that of the so-called scattering
support, which was originally defined and analyzed in much detail in [10]. In short,
for any differential operator, such as P = ∂t − Lx, which admits the concept of the
unique continuation principle (UCP),1 the carrier support of the measured field u on
M at time T in the differential equation Pu = f , where f is compactly supported,

1Suppose Pu = 0 in some domain V. Then if u restricted to an open subset M ⊂ V vanishes,
the UCP implies that u vanishes throughout the larger domain V.
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is that subset of the support of f such that there exists an equivalent source f̃ = g̃s̃
(with f̃ residing in the same regularity class as f , and where f̃ �= f in the sense of

distributions) in the sense that Pu = f̃ everywhere on the complement of the support
of f . We summarize this concept with the following definition.

Definition 1.1 (carrier support). Let P be a differential operator which admits
the UCP such that Pu = f on V and supp f ⊂ Ω � V, and let P possess the
fundamental solution EP . Then, for some open set M ⊂ V, where M∩ Ω = ∅, and
τ ≤ T ,

carr supp u(·, T )|M :=
⋂

EP ∗f̃=u(·,T )|M

ch supp f̃(·, τ), 0 ≤ τ ≤ T,

where ch denotes the convex hull.
In summary, this definition states that the carrier support of the solution u re-

stricted to the set M is that common set over all possible sets such that there exists
a compactly supported source away from M such that u on M may be generated by
such a candidate source f̃ , i.e., Pũ = f̃ on V and ũ agrees with u on V\ch supp f .

We should also remark that this definition implies that there exists the possibility
that the source generating the data u on M could have existed previous to time T ,
i.e., T ≥ τ . This means that the solution as observed on M is that of a now-extinct
source that last existed at time τ whose support was last on supp g̃(·, τ). This may be
summarized through the following (identity) example. Let Hτ (t) denote the Heaviside
function,2 and suppose for 0 ≤ τ1 < τ2 that

f(x, t) = δγ(t)(x) (Hτ1(t) −Hτ2(t))

moves along the trajectory γ : [0, T ] → R
n. Then

carr supp u(·, t)|M =

⎧⎪⎨
⎪⎩
∅, t < τ1,

supp δγ(t)(x), τ1 ≤ t ≤ τ2,

supp δγ(τ2)(x), t ≥ τ2.

It should be mentioned that this is a very desirable phenomenon, in that detection
of the location of an impulse-like source released at time τ ≥ 0 can be made with the
observed data u on M at time t ≥ τ . This amounts to the ability to track mobile
time-sustained sources and determine the point of detonation of impulse-like ones,
both of which are invaluable capabilities for a variety of modern and future endeavors
across many disciplines and industries.

We note that even though—as we shall come to prove in the following section—
we can determine the current location, or that final one when the source’s strength
was last nonzero, with a snapshot of the current diffusion field on M, we cannot
reconstruct the entirety of γ over all times subsequent to t. In particular this means
we may analytically extend the solution u of the homogeneous equation (∂t−Lx)u = 0
back to time t∗ at which minimal time u was the solution of a nonhomogeneous
equation of the form (∂t − Lx)u = f̃ �= 0. Again, we shall revisit this concept in
further detail and provide all the necessary technical arguments which support this
notion in the following section and in the proof of our main result (Theorem 3.2) in
section 3.

2For a test function φ ∈ C∞(Rn × R), for δγ(t)Hτ ∈ E ′(Rn)⊗D′(R), we define the action of the

distributional pairing 〈δγ(t)Hτ , φ〉 =
∫∞
τ

∫
Rx

φ(x, t)δ(x− γ(t))dxdt.
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Several results have been presented to date which can determine the actual sup-
port of the source and its strength function s as a function of time; see, for example,
[12, 7, 4, 6]. The fundamental difference between these methods and that to follow
in this article is that we require knowledge of the scalar diffusion field only at single
snapshots in time on some (possibly small) open subset of the ambient space R

n which
we will assume to be disjointly located from the source in question. Since we require
far less information than that required in these previous works, we might expect to
fail to fully characterize the source in all its attributes. We shall come to see that this
is indeed the case, and that what we can estimate with this limited information is that
of the carrier support of the instantaneous support of the true source f at each point
T ≥ 0 in time. We accomplish this by following a strategy similar in nature to the one
presented in the articles [10, 11]. Essentially, we employ a unique continuation-like
strategy for the assumed positive solution which, together with the Picard theorem,
gives us a way to uniquely determine the carrier support at any time T . We will
describe these ideas in much further detail in a subsequent section.

We again stress the importance of having measurements on some limited finite
domain located away from the source, and which need not surround the source, which
serves such applications as source-release problems in complex urban environments,
and atmospheric or reservoir problems. More important, if the source is moving, we
wish to determine its trajectory, and current location, for purposes of perhaps its
rapid neutralization, i.e., the source is emitting toxic or impure substances into a
domain of interest.

We will make several assumptions on the nature of the coefficients appearing in
Lx and of that of the bounded open set M ⊂ R

n, where will assume to know the
scalar values of the time-varying field u(x, t); for instance, we require M to have a
smooth boundary for the purposes of maintaining well-behaved norms of the solution
on such sets of interest. Additionally, we will define a few function spaces of interest
in which our solutions of the main problem will uniquely exist.

Remark 1. In the analysis to follow in the upcoming section, we will assume
that the following conditions hold:

• ∂t − Lx is parabolic on R
n × R, i.e.,

n∑
i,j=1

ai,jξiξj > 0, R � ξi, ξj �= 0.

• c ≤ 0.
• The matrix of coefficients ai,j is positive definite and invertible.

Remark 2. Additionally, for −n/2 < σ1 ≤ 0 and −1/2 < σ2 ≤ 0, we define the
function spaces3

o

Hσ1
+ (Ω) = {g ∈ Hσ1(Rn) : g ≥ 0, supp g ⊂ Ω},

where Hσ is the usual Sobolev space of regularity σ ∈ R, and similarly

Hσ1
+ (R) = {g ∈ Hσ1(R) : g ≥ 0}.

Using these conventions we define the positive space of sources, i.e., distributions,

f ∈
o

Hσ1
+ (Ω)

⊗ o

Hσ2
+ ([0, T ])

3We wish to include singular temporal and spatial distributions such as the Dirac-delta distri-
bution in the larger collection of positive sources; hence we are interested in taking 0 ≥ σ1 > −n/2
and 0 ≥ σ2 > −1/2.
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and the space of restricted solutions

u|M ∈ L2
+

(
[0, T ], L2

+(M)
)
,

where

L2
+(Rn) = {g ∈ L2(Rn) : g ≥ 0}.

In order to minimize symbolic clutter and ease notation a bit, we make the iden-
tification

Xσ1,σ2

f (Ω, T ) =
o

Hσ1
+ (Ω)

⊗ o

Hσ2
+ ([0, T ])

and note that its dual space admits the representation

(
Xσ1,σ2

f

)′
= H−σ1

+ (Rn)
⊗

H−σ2
+ (R+)

for any finite T and bounded M. Finally, we note that since 0 ≤ −σ1 < n/2 and
0 ≤ −σ2 < 1/2, by (complex) interpolation, i.e., see, for instance, [17, p. 277],

[L2(Rn), Hk(Rn)]θ = Hkθ(Rn), k = 0, 1, 2, . . . , 0 ≤ θ ≤ 1,

we have the inclusion

Hn
+(Rn)

⊗
H1

+(R+) ⊂
(
Xσ1,σ2

f

)′
⊂ L2

+(Rn)
⊗

L2
+(R+).

This last fact will be important for us in characterizing the behavior of the solution in
the following section on the forward problem.

The plan of the remainder of the paper is as follows. In section 2 we discuss the
forward problem. Namely, we describe how, given a well-defined source, f generates
the solution u and develop the appropriate mapping characterizations between the
two. In section 3, we focus on the inverse source problem, which again is to locate
the support of f from measurements of the diffusion field u taken on some open
region which is disjoint and distant from the assumed unknown source f . In this
section we prove uniqueness results for the time-varying reconstruction of the carrier
support of f as well as develop a viable reconstruction method which estimates it
with little, sparse, and possibly nonuniformly sampled data. Section 4 considers
a few numerical examples which robustly illustrate the simplicity and effectiveness
of this reconstruction algorithm for a spatially stationary, impulse-like point-source
release in one dimension and a time-sustained, moving point source in a convective
two-dimensional environment.

2. The forward problem. We begin this section by noting that the solution
of (1.1) is well known and may be constructed with the aid of a fundamental solution
which we will call Z; see [5, 3] for the original details of this parametrix-based method.
Specifically, let A = det ai,j and ai,j be the determinant and matrix inverse of the
positive definite matrix a, respectively. Then

(2.1) u(x, t) =

∫ t

0

∫
Rn

y

Z(x, y, t, τ)f(y, τ)dydτ,
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where

Z(x, y, t, τ) = W (x, y, t, τ) +

∫ t

τ

∫
Rn

z

W (x, z, t, s)Φ(z, y, s, τ)dzds

and where we define

W (x, y, t, τ) = [(4π(t− τ))nA]
−1/2

exp

⎛
⎝−

n∑
i,j=1

ai,j(xi − yi)(xj − yj)

4(t− τ)

⎞
⎠

and lastly require that Φ satisfy

Φ(x, y, t, τ) = (Lx − ∂t)W (x, y, t, τ) +

∫ t

τ

∫
Rn

z

(Lx − ∂t)W (x, z, t, s)Φ(z, y, s, τ)dzds.

For convenience we will denote the action of Z acting on f as simply Zf . Fur-
thermore, we will denote the restriction of Z to observations on M and limited to
sources f having compact support on Ω as Z|(M,Ω) in what is to follow. Additionally,
we note that we will write Z(x− y, t− τ) in the place of Z(x, y, t, τ) when it appears
in the context of the kernel of the convolution integral which maps the source f to
the solution u.

We recall some important properties established in [5]. We use them to prove the
following boundedness and denseness result.

Proposition 2.1 (local boundedness of the solution on M). Given the assump-
tions detailed earlier in Remarks 1 and 2, then for each T ≥ 0, Z : Xσ1,σ2

f (Ω, T ) →
L2

+,loc(R
n\Ω) and has dense range in the latter space.

Proof. First, for x ∈ R
n\Ω,

|u(·, T )|2 =

∣∣∣∣∣
∫ T

0

∫
Ω

Z(x− y, T − τ)f(y, τ)dydτ

∣∣∣∣∣
2

=
∣∣〈Z, f〉L2(Ω×[0,T ])

∣∣2
≤ ‖Z(x− ·, T − ·)‖2

(Xσ1,σ2
f )

′‖f‖2
X

σ1,σ2
f (Ω,T )

≤ ‖Z(x− ·, T − ·)‖2(
X

n/2,1/2
f

)′‖f‖2
X

σ1,σ2
f (Ω,T )

≤ ‖Z(x− ·, T − ·)‖2

(Xn,1
f )

′‖f‖2
X

σ1.σ2
f (Ω,T )

.

Then, according to the Malgrange–Ehrenpreis theorem, the remainder of the proof
follows immediately from the fact that Z(x− ·, T − ·) is smooth on M, i.e., that∫

K

‖Z(x− ·, T − ·)‖2

(Xn,1
f )

′dx < ∞

for all compact subsets K in R
n\Ω.

We now employ some supporting facts of interest discussed and proven in Chap-
ter 1, and Theorems 1 and 15, of [5] which help us to establish the claim that Z as
a map from Xσ1,σ2

f (Ω, T ) into L2
+,loc(R

n\Ω) has dense range in L2
+,loc(R

n\Ω). We
first note, as given on page 28 of [5], that Z and its adjoint are related through the
identity

Z(x, y, t, τ) = Z∗(y, x, τ, t), t > τ.
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We also remark that, again under the assumptions made in Remark 1, Z is a positive
kernel, in the sense that the action of Z on any nonnegative source f must be greater
than or equal to zero. Next, we examine the homogeneous integral equation for the
unknown function v ∈ L2

+,loc(R
n\Ω),

(2.2) (Z∗v) (x, t) = 0.

Since v is nonnegative, in addition to the action Z∗ on any nonnegative function in
its domain, then it follows that (2.2) admits only the trivial solution v = 0. Hence,
according to Proposition 2.3 on page 46 of [9], Z as a map from Xσ1,σ2

f (Ω, T ) to

L2
+,loc(R

n\Ω) has dense range in L2
+,loc(R

n\Ω).
We now consider a unique continuation principle for general parabolic differential

equations. Friedman [5] has shown the following proposition for p0 = (x0, t0) ∈
R

n × R+ and

N(p0) = {(x, t) ∈ R
n × R+ : 0 ≤ t ≤ t0, and the cylinder {x} × [0, t]

centered at p0 is simply connected as t increases}.

Proposition 2.2. If (∂t − Lx)u ≤ 0 ( (∂t − Lx)u ≥ 0) in R
n × R+ and if u

has a positive maximum (negative minimum) which is attained at p0 = (x0, t0), then
u(p) = u(p0) for all p ∈ N(p0).

This proposition implies that should u vanish on any open, simply connected
subset of R

n for any T ≥ 0, then u must vanish everywhere such that u remains a
(homogeneous) solution of (∂t − Lx)u = 0. This property is essential in the range
characterization to follow and to our estimation of the carrier support of u(·, T )|M.

We now turn our attention to a few fundamental properties of the restriction
of Z to the sets M and Ω, which we call Z|(M,Ω), and note that it is especially
important for our inverse problem of determining the location of the unknown source
f given measurements away from, but not necessarily surrounding, it. In what follows,
R(Z|(M,Ω)) denotes the range of Z|(M,Ω).

Proposition 2.3. Let Ω1,2 ∈ R
n be two convex open sets whose closures have

empty intersection, and suppose M∩ (Ω1 ∪ Ω2) = ∅. Then

R
(
Z|(M,Ω1)

)
∩R

(
Z|(M,Ω2)

)
= {0}.

Proof. Let Ω1 ∩ Ω2 = ∅ and let

(∂t − Lx)u1 = f1, supp f1(·, t) ⊂ Ω1,

(∂t − Lx)u2 = f2, supp f2(·, t) ⊂ Ω2

such that u1 and u2 do not vanish on M. Next, let v = u1 − u2. Then v satisfies

(∂t − Lx)v = f1 on Ω1,

(Lx − ∂t)v = f2 on Ω2,

so that v = u1 on Ω1 and v = −u2 on Ω2. Hence, u1,2 vanish on Ω2,1, respectively.
Then, by Proposition 2.2, u1 and u2 must also vanish on R

n\Ω2,1. Hence, u1,2 ≡ 0
on M. This is a contradiction.

We now consider the remainder of the fundamental properties of the restricted
mapping Z|(M,Ω).
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Proposition 2.4. Let M and Ω be open subsets of R
n such that Ω ⊃ supp f(·, t)

for all time t ∈ [0, T ] and assume M ∩ Ω = ∅. Then, for all T ≥ 0, Z|(M,Ω) :
Xσ1,σ2

f (Ω, T ) → L2
+(M) is a compact linear map and has dense range in the latter

space.
Proof. Let f ∈ Xσ1,σ2

f (Ω, T ). Since Z(x − ·, t − ·) ∈ C∞
+ (Rn\Ω × [0, T ]) by the

Malgrange–Ehrenpreis theorem, for each T ≥ 0 we have

‖(Z|(M,Ω)f)(·, T )‖2
L2

+(M) =

∫
M

∣∣∣∣∣
∫ T

0

∫
Ω

Z(x− y, T − τ)f(y, τ)dydτ

∣∣∣∣∣
2

dx

=

∫
M

∣∣∣〈Z, f〉L2
+(Rn×[0,T ])

∣∣∣2 dx
≤

∫
M

‖Z(x− ·, T − ·)‖2

(Xσ1,σ2
f )

′‖f‖2
X

σ1,σ2
f (Ω,T )

dx

≤
∫
M

‖Z(x− ·, T − ·)‖2(
X

n/2,1/2
f

)′‖f‖2
X

σ1,σ2
f (Ω,T )

dx

≤
∫
M

‖Z(x− ·, T − ·)‖2

(Xn,1
f )

′‖f‖2
X

σ1,σ2
f (Ω,T )

dx

≤ C1,n,Ω,M‖f‖2
X

σ1,σ2
f (Ω,T )

,

where C1,n,Ω,M is a constant given by

C1,n,Ω,M = nμ(M) max
M

‖Z(x− ·, T − ·)‖2

(Xn,1
f )

′ < ∞.

Now, since

‖Z(x− ·, T − ·)f‖2
Hn

+(M) = ‖Z(x− ·, T − ·)f‖2
L2

+(M) +

∥∥∥∥∥∥
n∑

k,i=1

∂k
xi
Z(x− ·, T − ·)f

∥∥∥∥∥∥
2

L2
+(M)

,

Dirichlet’s theorem and the same arguments above imply that

∥∥∥∥∥∥
n∑

k,i=1

∂k
xi
Z(x− ·, T − ·)f

∥∥∥∥∥∥
2

L2
+(M)

≤ C2,n,Ω,M‖f‖2
X

σ1,σ2
f (Ω,T )

,

where

C2,n,Ω,M = nμ(M) max
M

1≤k≤n

‖Z(x− ·, T − ·)‖2

(Xk,1
f )

′ < ∞.

Hence, Z is bounded between
o

Hσ1
+ (Ω)

⊗ o
Hσ2

+ ([0, T ]) and Hn
+(M). Finally, since the

inclusion maps

Hn
+(M)

i
↪→ Hn−1

+ (M)
i
↪→ · · · i

↪→ H1
+(M)

i
↪→ L2

+(M)

are compact (see, for example, Theorem 6.98 in [15]), so must it be that Z is compact

from the source space
o

Hσ1
+ (Ω)

⊗ o
Hσ2

+ ([0, T ]) into L2
+(M) for each T .
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Lastly, Z|(M,Ω) has dense range in L2
+(M) since, according to Proposition 2.1,

the adjoint equation posed on R
n × R+,

Z∗v(x, t) = 0,

implies v(x, t) vanishes throughout R
n × R, and again according to Proposition 2.3

on page 46 of [9], while linearity of Z|(M,Ω) is clear.
Of interest to us in the following section on the inverse problem is the existence

of the Hilbert adjoint of this restricted operator. This result follows as a corollary to
the previous proposition. That is, we obtain the following.

Corollary 2.5 (Hilbert adjoint). Let M and Ω be open subsets of R
n such

that Ω ⊃ supp f(·, T ) and assume M ∩ Ω = ∅. Then, for all T ∈ R+, Z|∗(M,Ω) :

L2
+(M) → Xσ1,σ2

f (Ω, T ) exists as a bounded linear map. Moreover,

(
Z|∗(M,Ω)u

)
(x, T ) =

∫
M

Z(z − x, T )u(z, T )dz.

Proof. Let f ∈ Xσ1,σ2

f (Ω, T ) and suppose u(·, T ) ∈ L2
+(M). Since M, Ω, and

T are all bounded, then each of the spaces on which they integrate is sigma finite,
and hence we may interchange all orders of integration. We arrive at the formula for
Z|∗(M,Ω) by noting that

〈u(·, T )|M,Z|(M,Ω)f〉L2
+(M) =

∫
M

u(x, T )

∫ T

0

∫
Ω

Z(x− y, T − τ)f(y, τ)dydτdx

=

∫ T

0

∫
Ω

∫
M

u(x, T )Z(x− y, T − τ)dxf(y, τ)dydτ

= 〈Z|∗(M,Ω)u(·, T )|M, f〉L2
+(Rn×[0,T ]).

Hence,

(
Z|∗(M,Ω)u

)
(x, T ) =

∫
M

Z(z − x, T )u(z, T )dz.

Similarly, we complete the proof by noting that

∣∣∣〈u(·, T )|M,Z|(M,Ω)f〉L2
+(M)

∣∣∣2 =

∣∣∣∣∣
∫
M

u(x, T )

∫ T

0

∫
Ω

Z(x− y, T − τ)f(y, τ)dydτdx

∣∣∣∣∣
2

=

∣∣∣∣∣
∫ T

0

∫
Ω

∫
M

u(x, T )Z(x− y, T − τ)dxf(y, τ)dydτ

∣∣∣∣∣
2

=
∣∣∣〈Z|∗(M,Ω)u(·, T )|M, f〉L2

+(Rn×[0,T ])

∣∣∣2
≤ ‖Z|∗(M,Ω)u(·, T )|M‖2(

X
σ1,n/2
f (Ω,T )

)′‖f‖2
X

σ1,σ2
f (Ω,T )

< ∞.

To ease notation, in what follows R
(
Z|Xσ1,σ2

f (Ω,T )

)
denotes the range of Z re-

stricted to positive sources supported on the set Ω and observations limited to M.
Additionally, we will use the shorthand Z to denote Z|(M,Ω). Finally, if Ω is a set in
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R
n, then Nε(Ω) denotes the union of the set Ω and a neighborhood of its boundary,

so that Ω is strictly contained in Nε(Ω) for each ε > 0.
We are now able to fully characterize the range of Z|(M,Ω) acting on distributions

in the space Xσ1,σ2

f (Ω, T ) for various sets Ω, without specifying their regularity param-

eter σ = (σ1, σ2) ∈ R
2. This will prove of much use in the numerical implementation

and of the forthcoming result. That is, we have the following.
Proposition 2.6. Let Ω1,2 be bounded convex subsets of R

n with smooth bound-
aries. Then

R(Z|Xσ1,σ2
f (Ω1∩Ω2,T )) ⊂ R(Z|Xσ1,σ2

f (Ω1,T ))∩R(Z|Xσ1,σ2
f (Ω2,T )) ⊂ R(Z|X0,0

f (Nε(Ω1∪Ω2),T )).

Proof. Let t ∈ [0, T ] and let Ω1,2 be as stated above. The left lower containment
follows from the fact that for f1,2 ∈ Xσ1,σ2

f (Ω1,2, T ), the trivial extension of the form

f̃1(x, t) =

{
f1(x, t), (x, t) ∈ Ω1 × [0, T ],

0, x /∈ Ω1,

ensures the containment.
Next, in the spirit of the proof of Lemma 3.6 in [10] let f1,2 ∈ Xσ1,σ2

f (Ω1,2, T )
such that for each T , Zf1 = Zf2 = u|M. Then, by the unique continuation principle
given in Proposition 2.2, we have

(Zf1)(x, T ) = (Zf2)(x, T ), x ∈ R
n\(Ω1 ∪ Ω2).

Let φ ∈ C∞(Rn × [0, T ]) be a smooth cut-off function satisfying

φ(x, t) =

{
1, (x, t) ∈ R

n\Nε(Ω1 ∩ Ω2) × [0, T ],

0, (x, t) ∈ Nε/2(Ω1 ∩ Ω2) × [0, T ].

Then, for

v(x, t) =

⎧⎪⎨
⎪⎩
φ(x, t)u1(x, t), (x, t) ∈ R

n\Ω1 × [0, T ],

φ(x, t)u2(x, t), (x, t) ∈ R
n\Ω2 × [0, T ],

0, (x, t) ∈ Ω1 ∩ Ω2 × [0, T ],

it follows that v ∈ C∞
+ (Rn × [0, T ]) and that (∂t −Lx)v = f3 ∈ C∞

+ (Rn × [0, T ]) such
that

(Zf3)(x, T ) = u1(x, T ) = u2(x, T ), x /∈ Ω1 ∩ Ω2.

More importantly,

(Zf3)(x, T ) = u1(x, T ) = u2(x, T ), x ∈ M,

where f3 ∈ X0,0
f (Nε(Ω1 ∩ Ω2), T ).

3. The inverse source problem. We present our main result (theorem) con-
cerning the estimation of the time-varying carrier support in this section. The main
result presented here owes itself in part to Picard’s theorem. This theorem essentially
provides a denumerable representation of a compact linear operator A between two
Hilbert spaces H1 and H2 in terms of the operator’s singular system, as well as a
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means to assess whether a given element of the second space H2 is also an element of
the closure of the range of A. We take a moment to state the theorem and refer to [1]
for its proof and further commentary.

Theorem 3.1 (Picard). Let A : H1 → H2 be a compact linear operator from the
Hilbert space H1 into the Hilbert space H2 with singular system {λn, ϕn, ψn}∞n=1, i.e.,

Aϕn = λnψn

and

A∗ψn = λnϕn,

and let 〈·, ·〉 denote the inner product on H2. Then the equation Af = g is solvable if
and only if g ∈ N(A∗)⊥ and

∞∑
n=1

|〈g, ψn〉|2
λ2
n

< ∞.

Moreover, any f̃ of the form

f̃ =
∞∑

n=1

〈g, ψn〉
λn

ϕn

solves Af̃ = g.
Given Picard’s theorem and our previous range characterizations of the operator

Z|(M,Ω), presented in the previous section, we now have a test which can determine
whether the carrier support of the field u on M at time T is fully within some set of
interest Ω by means of testing the convergence of the sum

‖f̃‖2
Xσ

f (Ω,T ) =

∞∑
n=1

∣∣∣∣∣ 〈u(·, T )|M, ψ
(σ)
n (·, T )〉

λ
(σ)
n

∣∣∣∣∣
2

,

where

f̃(x, t) = (Z|∗(M,Ω)Z|(M,Ω))
−1Z|∗(M,Ω)u(·, T )|M, (x, t) ∈ Ω × [0, T ],

and where the functions ψ
(σ)
n (·, T ), ϕ

(σ)
n (·, T ), and λ

(σ)
n —which depend on the regu-

larity parameter σ = (σ1, σ2) and the sets of interest M and Ω—are defined through
the relationships (

Z|∗(M,Ω)ψ
(σ)
n

)
(x, T ) = λ(σ)

n ϕ(σ)
n (x, t), 0 ≤ t ≤ T,

and (
Z|(M,Ω)ϕ

(σ)
n

)
(x, T ) = λ(σ)

n ψ(σ)
n (x, T ).

If the sum does not converge, then we are able to conclude that the carrier support
of u(·, T )|M at time T is not fully within the test region Ω.

We formalize this statement with the main theorem of this section.
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Theorem 3.2 (carrier support). Let f ∈ Xσ1,σ2

f (Ω, T ). Suppose further that
Ω ⊂ R

n is bounded with a smooth boundary and let Z|∗(M,Ω) denote the Hilbert adjoint

of Z|(M,Ω) such that Z|∗(M,Ω) : L2
+(M) → Xσ1,σ2

f (Ω, T ). Suppose further that

(
Z|(M,Ω)ϕ

(σ)
n

)
(x, T ) = λ(σ)

n ψ(σ)
n (x, T ).

Then, for each fixed T ,

carr supp u(·, T )|M ⊂ Ω ⇔
∞∑

n=1

∣∣∣∣∣ 〈u(·, T )|M, ψ
(σ)
n (·, T )〉

λ
(σ)
n

∣∣∣∣∣
2

< ∞.

Proof. Suppose carr supp u(·, T )|M ⊂ Ω. Then, by definition of the carrier
support, there exists a source f ∈ Xσ1,σ2

f (Ω, T ) supported on a subset of Ω such

that for each T , (Z|(M,Ω)f)(x, T ) = u(·, T )|M, where u(·, T )|M ∈ R
(
Z|Xσ1,σ2

f (Ω,T )

)
.

Since Z is a compact linear operator between the two Hilbert spaces exhibited in the
previous proposition, it admits the representation

Z =
∞∑

n=1

λ(σ)
n ψ(σ)

n ⊗ ϕ(σ)
n

such that the action of Z on f may be written as

(Zf)(x, T ) =

∞∑
n=1

λ(σ)
n 〈f, ϕ(σ)

n 〉ψ(σ)
n (x, T ), x ∈ M.

Since the left and right eigenfunctions, ψ
(σ)
n and ϕ

(σ)
n , satisfy

Z∗ψ(σ)
n = λ(σ)

n ϕ(σ)
n

we note that

〈f, ϕ(σ)
n 〉 =

∫ T

0

∫
Ω

f(x, τ)ϕ(σ)(x, τ)dxdτ

= 〈f,Z∗ψ(σ)
n /λ(σ)

n 〉

= 1/λ
(σ)
n 〈Zf, ψ(σ)

n 〉

= 1/λ
(σ)
n 〈u(·, T )|M, ψ(σ)

n (·, T )〉.

Bessel’s inequality states

∞∑
n=1

|〈f, ϕ(σ)
n 〉|2 ≤ ‖f‖2

X
σ1,σ2
f (Ω,T )

< ∞.

Hence,

∞∑
n=1

∣∣∣∣∣ 〈u(·, T )|M, ψ
(σ)
n (·, T )〉

λ
(σ)
n

∣∣∣∣∣
2

< ∞.
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Now, suppose u(·, T )|M ∈ R(Z|Xσ1,σ2
f (Ω,T )), where the closure of the latter space

is L2
+(M), which we established in Proposition 2.1, and suppose the Picard sum

∞∑
n=1

∣∣∣∣∣ 〈u(·, T )|M, ψ
(σ)
n (·, T )〉

λ
(σ)
n

∣∣∣∣∣
2

converges. Let f be any source of the form

f(x, t) =

∞∑
n=1

〈u(·, T )|M, ψ
(σ)
n (·, T )〉

λ
(σ)
n

ϕ(σ)
n (x, t), (x, t) ∈ Ω × [0, T ].

Then, since each ϕ
(σ)
n is supported on Ω, any such source will have similar such

support. Also, its nontrivial image, a fact from Proposition 2.3, under Z is in L2
+(M)

for each T . Finally,

‖Zf‖2
L2

+(M) =

∞∑
n=1

|〈u(·, T )|M, ψ(σ)
n (·, T )〉|2 ≤ ‖u(·, T )‖2

L2
+(M) < ∞.

Hence, carr supp u(·, T )|M ⊂ Ω.
Our main result provides us with a reconstruction algorithm which can determine

the time-dependent carrier support of the field u|M. We describe this algorithm in
the form of the following

Corollary 3.3. Let Ω be an open bounded convex subset of R
n, and let {λ(σ)

n ,

ψ
(σ)
n , ϕ

(σ)
n } be the singular system for Z|(M,Ω). Then

carr supp u(·, T )|M =
⋂

Ω such that

∞∑
n=1

∣∣∣∣∣ 〈u(·, T )|M, ψ
(σ)
n (·, T )〉

λ
(σ)
n

∣∣∣∣∣
2

< ∞.

Proof. Let Ω be an open bounded convex set and suppose that the infinite se-
ries in Corollary 3.3 converges. Then there exists a source g(Ω), depending on Ω,
in Xσ1,σ2

f (Ω, T ) such that Z|(M,Ω)g
(Ω) = u(·, T )|M. Taking the intersection of the

supports of all such g’s then yields⋂
Ω =

⋂
Z|(M,Ω)g(Ω)=u|M

supp ch g(Ω) = carr supp u(·, T )|M.

This summability test offers a theoretical and computational basis for the deter-
mination and ultimate reconstruction of the carrier support of u(·, T )|M. Numerically
speaking, however, there is some issue of how to actually sum the infinite series. The
fact that the operator Z|(M,Ω) is compact and smoothing tells us that zero is either
an eigenvalue or a point of accumulation. It turns out that zero is a point of accu-

mulation and so the singular values λ
(σ)
n rapidly converge to zero, thereby creating a

computational instability problem if we seek to sum the series numerically. Hence,
either the summability test needs to be regularized in some manner or we need to
pursue another approach which is linked to the infinite series.

4. Numerical examples. We now consider two numerical examples which dem-
onstrate the ability of the proposed theorem to locate the positions of two localized
sources. In the first case, we consider the delta-function impulse source f(x, t) =
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δp(x)δ0(t) ∈ E ′(R) ⊗ E ′(R). Here, we study the two problems of having knowledge
of the scalar diffusion field away from the source with a nontrivial convection field
flowing in the downstream sense; i.e., the measurement set is, say, to the left of the
source, while the flow field moves from the left to the right. We examine this problem
in the two cases where, in the first, we have values of u at some fixed time larger
than zero sampled uniformly on our measurement interval, and where, in the second,
these values are measured in a nonuniform fashion. In short, in both situations, the
minimum of the logarithm of the truncated moving Picard sum is evidently observable
and location of the impulse point source is readily accomplished.

In the second case, we study another convective problem, specifically in two-
dimensional space R

2. In this case we allow the source to be a sustained one in
time—once it has “turned on”—and allow it to move through space along a T ∗-period
track or orbit γ(t), of lifetime T ∗, i.e.,

f(x, t) = δγ(t)(x)(H0(t) −HT∗(t)).

For this problem we present only the case with uniform measurements on M, now
in R

2, yet we are able to clearly demonstrate that the instantaneous tracking, or
location, of the localized source may be done in a very robust fashion, as evidenced
by the comparison of the exhibited true and reconstructed source trajectories.

For simplicity in the numerical generation of the data and the numerical imple-
mentation of the main results of this article we assume the coefficients in parabolic
operator Lx take the form

a = I on R
n, n = 1, 2,

b =

{
−1 on R

1,

−(1, 0) on R
2,

c = 0.

This means our governing equations of interest in the one- and two-dimensional cases
are (

∂t + ∂x − ∂2
x

)
u(x, t) = f(x, t), (x, t) ∈ R × R+,

and (
∂t + ∂x − ∂2

x − ∂2
y

)
u(x, y, t) = f(x, y, t), (x, y, t) ∈ R × R+ × R+.

Remark 3. In the following numerical experiments the variable c will now, in-
stead, denote a coordinate value in either R or R

2, depending on whether we are
addressing the inverse problem on the real line or on the real plane, which will be ev-
idently clear from the associated context. This coordinate value represents the center,
and hence the preferable letter c, of certain test domains of interest (Ωc), which will
be moved around the larger space of interest and will be centered at the various points
c to follow.

Location, and tracking of the moving source, is accomplished by covering the
totality of the search space of interest Ωs with candidate test domains of the forms

Ω(1,2)
c = Ω

(1,2)
0 + {cj},

where in R � cj we have
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Ω
(1)
0 = [0, 1/10]

and in R
2 � c we define

Ω
(2)
0 = [0, 1/10] × [0, 1/10],

and by seeking to minimize the objective function

J(Ωc) = ‖Z|†(M,Ωc)
u(·, T )|M‖2.

Here, † denotes the pseudoinverse.
In summary, when the test set Ωc fully contains the carrier support of the source,

then the objective function should take on small values; contrarily, when such a test
domain does not fully contain the source it should be singular. We acknowledge that
the phrasing “small values” is indeed rather ambiguous; however, in the numerical
examples to follow, we observe a global minimum value of the objective function when
the test domain is exactly centered on the support of the true source. Furthermore,
we add that the test domain position centers are taken as

R � cj = {−10 + j/20}, j = 0, 1, 2, . . . , 400,

and

R
2 � cj = (−2 + j/20, 0 + j/20), j = 0, 1, 2, . . . , 80.

We end this section, which discusses the overall strategy pursued in the generation
of the numerical evaluation of the results presented in this article, with a few words
on the simulated data used in this evaluation. In summary, we discretize the standard
action of Zf and employ a Newton–Cotes-type numerical integration scheme to gen-
erate its approximation on discretely sampled points of M. More importantly, so as
to not perpetrate an inverse crime, we corrupt these approximations with considerable
white noise in the levels of approximately 5%, 10%, and 30%.

4.1. Locating a stationary impulse source in R. In this section the scalar
field is generated by the discretization scheme (via the standard rectangle rule) of the
integral

(4.1) u(x, T ) =

∫ T

0

∫
R

e−
|x−(T−τ)−y|2

4(T−τ)√
4π(T − τ)

δp(y)δ0(τ)dydτ =
1√
4πT

∫
R

e−
|x−T−y|2

4T δp(y)dy

and again subsequently corrupted by various levels of white noise to avoid committing
the standard inverse crime. We examine the data taken over the discretely sampled
uniform domain,

M1 = {−1.0,−0.8,−0.6,−0.4,−0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0} ⊂ R,

and the nonuniform domain,

M2 = {−0.14,−0.178,−.21,−.23,−.49,−0.8,−0.01, 0.62, 0.81, 0.90, 1.0} ⊂ R.

We examine three instances of noise-corrupted data, in the amounts 10, 20, and
30 dB—which amounts to 32.0%, 10.0%, and 3.2% relative signal-to-noise ratio. For
relative time T = 10 after impulse release, for the discrete samplings taken on M1

and M2, we observe that the running truncated Picard series are each minimized
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Fig. 1. The exact and measured (noise-corrupted) diffusion fields and the norm of the associated
truncated Picard test series on a uniform measurement grid.

at, or very near, the point of the impulse release, which is p = 5.0 in all cases.
This observation is very helpful in establishing the fact that the discrete samplings
taken on general sets of observation M are not restricted to such things as equally
spaced gridded points. Rather, any collection of discrete points which are coplanar
in R

n will suffice. Moreover, numerical investigations have shown that larger random
samplings yield better conditioned systems than for the analogous case of equally
separated points, when the number of samplings is the same in both instances. For
commercial purposes, this is both necessary and highly advantageous. Figures 1 and 2
demonstrate the efficacy of locating the localized source, again at p = 5, when we have
uniform measurements on M1 and nonuniform ones on M2.

4.2. Locating a sustained moving source in R × R+ × R+. As in the
previous subsection, we begin with the description of the integral which we discretize,
and corrupt with ample random noise, which provides our simulated data. Here,
we present the numerical method used to construct the numerical solution to the
two-dimensional forward problem. We begin by considering the two-dimensional heat
equation with a time-dependent source g((x, y) − γ(t))s(t) located at (xs(t), ys(t)) =
γ(t) and given by

(
∂t + ∂x − ∂2

x − ∂2
y

)
u(x, y, t) = g((x, y) − γ(t))s(t).
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Fig. 2. The exact and measured (noise-corrupted) diffusion fields and the norm of the associated
truncated Picard test series on a nonuniform (random) measurement grid.

Following [2] the fundamental solution for the above operator (defined over all space)
is given by

Z(x− ξ1, y − ξ2, t− τ) =
1

4π(t− τ)
e−

((x−ξ1)−(t−τ)+(y−ξ2))2

4(t−τ) .

In our two-dimensional simulation problem we are interested in solving the inverse
source problem for the convective-diffusion equation on the half space

Π+ = [−∞,∞] × [0,∞],

where we assume there is no flux of the field over the boundary {y = 0}, i.e.,
∂yu(x, 0, t) = 0 for all x and t. This problem then resembles (in one less dimen-
sion) the problem of some form of elevated source release in, say, a large but local
neighborhood of the atmosphere and its contact with the ground. Then, in this case,
using the method of images (see [8, 2]), we form the Green’s function

Z̃(x− ξ1, y − ξ2, t− τ) = Z(x− ξ1, y − ξ2, t− τ) + Z(x− ξ1, y + ξ2, t− τ),

which satisfies our boundary condition.
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To solve the diffusion equation with a time- and spatially dependent source term
one can integrate it against such a Green’s function to obtain

(4.2) u(x, y, T ) =

∫ T

0

∫
Rξ1

∫
Rξ2

Z̃(x− ξ1, y − ξ2, T − τ)f(ξ1, ξ2, τ)dξ1dξ2dτ.

Due to the the weak singularity at τ = T , the numerical integration requires
special treatment. To perform the integration we used a member of the semiopen
quadrature rules [18] that do not explicitly evaluate their integrand at the limit of the
integration range where the singularity exists. The explicit scheme selected for this
investigation is given by (for an integrand f(x) that is singular at the left endpoint x1)

(4.3)

∫ xN

x1

f(x)dx = h

[
23

12
f2 +

7

12
f3 + f4 + f5 + · · · + fN−2 +

13

12
fN−1 +

5

12
fN

]
.

Note that substituting the expression v = T − τ in (4.2) results in the singular limit
at the left-hand endpoint, to which (4.3) can be applied.

We employed the source moving along the figure-eight-like lemniscate over one
period (of 10 units), which then goes extinct, i.e., in this case

f(x, y, t) = δ(cos 2πt
10 ,sin 4πt

10 )(x, y)(H0(t) −H10(t)), (x, y) ∈ Π+.

Moreover, our data was then sampled on the grid of points

M = {0, 1/2, 1} × {0, 1/2, 1}

at snapshots in time corresponding to every 1/10 of unitless time. We demonstrate
the outcome of this numerical experiment in Figures 3, 4, 5, and 6. We use a signal-to-
noise level of 25 dB, which again corresponds to 5.6% relative error between the signal
strength and that of the additive white noise. The truncation value N which defines
the dimension of the singular system used in the truncated Picard series test is chosen

so that the singular values obey λ
(0,0)
n < 10−4 for each n > N , that is, our TSVD

tolerance is 0.0001. We used this value as we found the singular values λ
(0,0)
n rapidly

approach zero after this value. Hence, our method of regularization is based on the
philosophy of principle component analysis. That is, we found the tolerance criterion

λ
(0,0)
n ≥ 10−4 yielded the principle (dominant) components of the (pseudoinverted)

operator in question.
Figure 3 shows the entire ensemble of the reconstructed truncated Picard series

over all the test domains at time T = 1.0. The colored surface is the value of the
logarithm of the truncated series

‖f̃j‖X0
f (Ω,T ) =

⎛
⎝ N∑

n=1

∣∣∣∣∣ 〈u(·, T )|M, ψ
(0)
n,j(·, T )〉

λ
(0)
n,j

∣∣∣∣∣
2
⎞
⎠

1/2

.

Figure 4 shows the same objective-type function as the previous one in Figure 3,
only here we look from beneath to better observe the minimum located near the
coordinate pair (2π/10, 4π/10).

After obtaining the global minimum of the objective function which locates the
(potentially mobile) source, we then use smaller moving, time-adaptive test domains
of interest to locate the source, knowing with 100% certainty that the source and its
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Fig. 3. Numerical truncated Picard tests at time T = 1.0 for the localized two-dimensional
moving source over the fully tessellated domain.
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Fig. 4. Inverted view of the former numerical truncated Picard tests at time T = 1.0 for the
localized two-dimensional moving source over the fully tessellated domain.

carrier support reside with each such test domain. Using the most previous estimates
of the coordinates of the autonomous source, (x̂j−1, ŷj−1), this adaptive search domain
is formed as

Ωj = [x̂j−1 − 1/4, x̂j−1 + 1/4] × [ŷj−1 − 1/4, ŷj−1 + 1/4] , j ≥ 1.

Clearly, we do this to make the computations as efficient as possible and avoid un-
necessary searching. This idea and its results are presented in Figure 5, which shows
the localized inversions at the time snapshots T = 2.0, T = 4.0, T = 6.0, T = 8.0,
T = 10.0, and T = 12.0.
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Fig. 5. Localized numerical truncated Picard tests at the time snapshots T = 2.0, T = 4.0,
T = 6.0, T = 8.0, T = 10.0, and T = 12.0.

Finally, in Figure 6 we show the true track of the source, and its locations at
the discrete snapshots in time, along with the estimated or reconstructed track and
its instantaneous estimated positions. We remark that at time T = 10.0, when the
source turns off, i.e., s(10) = 0, the carrier support’s location remains constant, up to
the noise and ill-posedness of the problem. That is, in the event of perfect data and a
very well conditioned linear system, the source estimate would remain fixed at point
(1, 2).

5. Summary and conclusions. We have demonstrated that a simple knowl-
edge of the instantaneous scalar field u on any bounded open set M located away from
the (possibly time-varying) support of a source f is sufficient to estimate a nontrivial
subset of the actual convex hull of the support of the source which we have called
the carrier support of u|M. Additionally, we have provided and examined a viable
numerical implementation of this result which can estimate, to essentially arbitrary
precision, the trajectory of the carrier support over time, and hence track the mov-
ing source in real time, without a priori assumptions on the regularity of the source.
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Fig. 6. The discretely sampled true two-dimensional source track and the reconstructed (esti-
mated) source track for the one-period sustained source.

Moreover, we have shown that nonuniform sampling of the bounded and open mea-
surement set M works as effectively as a uniform one. This result is important as
it suggests that a wide collection of point samples distributed over a large domain of
interest constitutes a robust methodology to locate and track sources of interest in a
variety of applied problems, such as complex convective urban environments or large
(aquatic) reservoir-like problems. In each of these, the robust and timely location
of the effluent source is critical in nature, and may be accomplished with the few,
sparse, and possibly nonuniformly sampled data assumed known in the analysis in
this article.

In brief we mention that the concept of the carrier support does not provide us
with a direct method which allows us to estimate the source strength as a function
of time, and that this is certainly a significant problem of interest. In some simple
cases, such as for constant coefficients of Lx, it may well be the case that by simply
examining the local behavior of the objective function near the source, and observing
it diminish in size over time, we may conclude that the source is no longer emitting
into the system of interest and has become extinct. However, when the coefficients of
Lx become more complex, such a simple observation may not persist. In such cases
we propose an additional (forthcoming) technique which can estimate the strength of
s over the time interval of measurements, [0, T ], which is based on a combination of
the results provided here and some analysis of the Laplace transform of the governing
equations of our main problem. Additionally, the current framework developed here
accommodates the location and tracking of a source having but one component. The
extension of the result to the problem of sources having multiple disjoint components
is of much interest and is underway at the time of this writing.

Clearly, many future paths of research exist and warrant pursuit, foremost among
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them being a sensitivity analysis of how this method performs when the coefficients are
known only to within some specified tolerance of their true values. Additional work
consists of treating the problem in a stochastic setting, where these coefficients are not
known instantaneously, as we have assumed throughout this article; rather they are
known to possess certain distributional moments and belong to certain distributional
families. Again, the possibilities for interesting and valuable future work are many
indeed.
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Abstract. We describe a new class of surface flows, diffeomorphic surface flows, induced by
restricting diffeomorphic flows of the ambient Euclidean space to a surface. Different from classical
surface PDE flows such as mean curvature flow, diffeomorphic surface flows are solutions of integro-
differential equations in a group of diffeomorphisms. They have the potential advantage of being both
topology-invariant and singularity free, which can be useful in computational anatomy and computer
graphics. We first derive the Euler–Lagrange equation of the elastic energy for general diffeomorphic
surface flows, which can be regarded as a smoothed version of the corresponding classical surface
flows. Then we focus on diffeomorphic mean curvature flow. We prove the short-time existence
and uniqueness of the flow, and study the long-time existence of the flow for surfaces of revolution.
We present numerical experiments on synthetic and cortical surfaces from neuroimaging studies in
schizophrenia and auditory disorders. Finally we discuss unresolved issues and potential applications.
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1. Introduction. Surface evolution is both an important tool and an intriguing
focus of mathematical research in geometric analysis, e.g., [5], and geometric PDEs,
e.g., [37]. It also has been extensively applied in image processing, e.g., [3], and
computer vision and interface modeling, e.g., [38]. In this paper, we develop and
study a novel method of surface evolution under the action of the diffeomorphisms of
the ambient Euclidean space.

We are interested in flows that can minimize surface area or mean curvature of a
surface without inducing changes in topology or creating singularities. Therefore, it
is natural to consider surface flows that are described by diffeomorphisms of the am-
bient Euclidean space. Motivated by the general framework of deformable template
theory [17], we study transformations acting on objects, rather than the objects them-
selves. More specifically, we analyze flows on a group of diffeomorphisms of Euclidean
space, rather than studying flows on the surfaces themselves. The foundations of this
general framework have been rigorously established and have enabled comparisons to
be made between deformable objects; see [11, 32] and the references therein. The the-
ory has been successfully applied to image matching problems in which landmarks [24],
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curves [14], or surface patches [41] evolve under diffeomorphisms of Euclidean space.
Here we use this framework in a variational setting, in an approach that is reminiscent
of shape optimization methods [10].

In this paper, we transform variational formulations of classical surface flows (that
minimize geometrical properties such as area, elastic energy, or total curvature) into
optimization problems on a group of diffeomorphisms. This approach leads to solving
the corresponding Euler–Lagrange equations as evolutions in the group that induce,
via the group action, stable evolutions of surfaces. We call such flows diffeomorphic
surface flows.

In the last decade, there have been studies on geometric flows such as the cele-
brated mean curvature flow, e.g., [12] and references therein, surface diffusion flow,
e.g., [13], and the Willmore flow, e.g., [27, 26]. The equations for these surface flows
are second or fourth order parabolic PDEs which require sophisticated numerical
methods, e.g., [9]. Moreover, these flows can change surface topology and introduce
singularities, e.g., [12, 29, 30].

We show that diffeomorphic surface flows can be regarded as smooth versions of
the corresponding classical surface flows. They flow to minimize the energy while
preserving surface topology and do not break down due to finite-time singularities
since they are induced from the evolution of diffeomorphisms. Moreover, these flows
are solutions of integro-differential equations on the diffeomorphism group, which are
somewhat easier to discretize than the PDEs that govern the classical surface flows.

A major motivation for this work came from a desire to smooth triangulated
cortical surfaces that are generated by marching cubes or tetrahedra isosurface al-
gorithms [28, 18] based on a threshold derived from the segmentation of volumetric
images of the brain, e.g., [35, 36]. In addition, topological defects generated by iso-
surface algorithms can be corrected by multiscale and morphological operations, e.g.,
[20, 21]. The end result is a triangulated surface that may contain several anomalous
protrusions which may distort the true curvature of the surface and thus confound the
interpretation of possible biological processes in disease such as neuronal migration
of tissues, e.g., [1, 4]. Smoothing flows could be used to minimize these distortions.
However, it is important that the topological properties of the surfaces be preserved
to reflect the inherent biology at the scale of the voxel resolution of 0.5mm3 or 1mm3

and to not generate additional artifacts.
Algorithms for smoothing “noisy” surfaces have been the focus of intense efforts

in the computer vision field, e.g., [23, 45]. Unfortunately little effort has been made
to apply these sophisticated algorithms to cortical surfaces without losing accuracy
and simplification. Among the earliest such algorithms, Joshi et al. [25] used the
approach of Hamann [19] for generating local quadratic approximations to a discrete
surface in order to locally smooth triangulated meshes and thus curvature. More
sophisticated algorithms have since been developed. Among the most recent such
methods are PDE algorithms based on the powerful level set method, e.g., [39, 43, 7],
which, however, may lead to topological changes or singularities that may confound
biological inference.

In this paper, we will present some encouraging preliminary results in which
cortical surfaces are smoothed using diffeomorphic surface flows. In future work we
will further develop the method and apply it in statistical analysis of cortical surfaces.

The organization of the paper is as follows. In section 2 we describe the mathemat-
ical background on flows of diffeomorphisms, classical surface energies, and the vari-
ational formulation for the surface flow. In section 2.3 we derive the Euler–Lagrange
equations for diffeomorphic surface flows for a general elastic energy before focusing
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our attention on diffeomorphic mean curvature flow. In section 3 we prove the short-
time existence of the solution of the diffeomorphic mean curvature flow equation and
discuss the long-time existence for surfaces of revolution. In section 4 we describe a
numerical implementation of the method, and in section 5 we present the results of our
numerical simulations. Finally, unresolved issues and future directions are discussed
in section 6.

2. Mathematical background.

2.1. Flows of diffeomorphisms. The set of diffeomorphisms, ϕ, of R
3 forms a

group under the operation of composition of mappings. Following the theory of flows
of diffeomorphisms [11, 40], we introduce a Hilbert space V of smooth vector fields
on R

3, which is assumed to be continuously included in X 1
0 (R3), the set of all C1

vector fields that converge to zero (with their first derivatives) at infinity, equipped
with the supremum norm. Any time-dependent vector field, νt : R → V , generates a
trajectory, ϕt, in the group of diffeomorphisms by

(2.1)
∂ϕt

∂t
◦ ϕ−1

t = νt,

with initial condition ϕ0 = Id. We let G denote the group generated by all solutions
ϕt of (2.1) with νs ∈ V for all s ≤ t and maxs≤t ‖νs‖V < ∞. (The fact that this set
forms a group is proved, for example, in [40].) We shall also use the notation GV to
make explicit the dependence of this group on the Hilbert space V .

We want to implement gradient descent algorithms in the group of diffeomor-
phisms, which is an issue often referred to as shape optimization [10]. A basic notion
in this context is the one of shape differential. Given a scalar function F defined on
GV and an element ϕ ∈ GV , the shape differential of F at ϕ, denoted ∂F (ϕ), is (if it
exists) the linear form on V (∂F (ϕ) ∈ V ∗) defined by

∂F (ϕ).v =
d

dε
F ((id + εv) ◦ ϕ).

Assume that, for each ϕ, a dot product 〈 . 〉ϕ is defined on V ∗. The gradient of F
at ϕ with respect to this dot product, denoted ∇F (ϕ), is then defined by the following
identity: for all m ∈ V ∗,

〈∂F (ϕ),m〉ϕ = m.∇F (ϕ).

The associated gradient descent algorithm is the flow defined by

(2.2)
dϕ

dt
= −∇F (ϕ) ◦ ϕ.

By the chain rule, we can write

(2.3)
d

dt
F (ϕ) =

d

dε
F ((id − ε∇F (ϕ)) ◦ ϕ) = −‖∂F (ϕ)‖2

ϕ,

which shows that the algorithm does indeed minimize F . If ∇F (ϕ) is a smooth vector
field over a time interval [0, T ], then ϕ in (2.2) is the flow associated to an ODE and
therefore a diffeomorphism.

We denote by K the duality operator between V ∗ and V , defined by m.v =
〈Km, v〉V for m ∈ V ∗ and v ∈ V . The assumption that V is continuously included in
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X 1
0 (R3) implies that K is a kernel operator, making V a reproducing kernel Hilbert

space [2, 42]. Indeed, for a ∈ R
3, the linear form m = a⊗ δx defined by m.v = aT v(x)

is continuous on V , so that K(a ⊗ x) ∈ V is well defined and obviously linear in a.
This defines a mapping (also denoted K) from R

3 × R
3 to GL3(R) by

(2.4) K(x, y)a = K(a⊗ δx)(y).

A key point here is that V can be specified by the definition of its kernel. In our
case, K will be chosen as a scalar Gaussian kernel (or more precisely by a Gaussian
kernel multiplied by the identity matrix). The corresponding Hilbert space (at scale
σ) is defined by

(2.5) Vσ =

{
v = K1/2u =

∫
R3

e−
2‖x−y‖2

σ2 u(y)dy, u ∈ L2(R3)

}
,

where the inner product on Vσ is defined by 〈K1/2u,K1/2u′〉V = 〈u, u′〉L2 . The
associated kernel is K = (K1/2)2, which is proportional to exp(−‖x− y‖2/(2σ2)).

The dual dot product on V ∗ comes straightforwardly from the fact that K is a
duality operator, yielding

〈m, m̃〉V ∗ = m.(Km̃).

The ϕ-dependent dot product 〈 . , . 〉ϕ used in this paper will be weighted versions of
this dual product, taking the form

〈m, m̃〉ϕ = 〈ρϕm, ρϕm̃〉V ∗ = m.(ρϕK(ρϕm̃)),

where ρϕ is a nonnegative scalar function and (ρϕm).v := m(ρϕv). The associated
gradient descent algorithm becomes

(2.6)
dϕ

dt
= −(ρϕK(ρϕ∂F (ϕ))) ◦ ϕ.

We now describe how this is implemented, with a suitable choice for ρϕ, for surface
evolution.

2.2. Surface energy. We consider the general surface energy functional [34, 22]

(2.7) E(Σ) =

∫
Σ

(α + βH2 − γG)dσ, where α ≥ 0, β ≥ γ ≥ 0,

where H and G are the mean and Gauss curvature of Σ, respectively. This elastic
energy functional is a linear combination of three basic energy functionals:

• area: U(Σ) =
∫
Σ
dσ,

• Willmore energy: U(Σ) =
∫
Σ

4H2dσ, and
• total curvature: U(Σ) =

∫
Σ

(4H2 − 2G)dσ =
∫
Σ

(k2
1 + k2

2)dσ, where k1, k2 are
principal curvatures.

These energy functionals can be locally minimized using the classical surface flows
known as mean curvature (area-minimizing), Willmore, and total curvature flow, re-
spectively.

We generate diffeomorphic surface flows as follows. If Σ0 is the initial surface, we
can define F (ϕ) = E(ϕ(Σ0)). We then let Σt = ϕt(Σ0), where ϕt is given by (2.6).
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2.3. Euler–Lagrange equation. In this section, we derive the gradient flow
equation for the diffeomorphic surface flow minimizing the elastic energy. From sec-
tion 2.2, we first compute the variation of the energy. The following lemma is due to
Nitsche [34]. For simplicity, we suppose that all surfaces are oriented and closed. Let
the surface be Σ(p) and its variation be Σε(p) = Σ(p) + εν(p).

Lemma 2.1 (variation of elastic energy). For surface elastic energy, E(Σ) =∫
Σ

(α + βH2 − γG)dσ, the energy variation is

(2.8)
∂

∂ε
E(Σε)|ε=0

=

∫
Σ

αν⊥H − βν⊥(ΔΣH + 2H(H2 −G))dσ,

where ν⊥ = 〈ν,N〉 is the normal component of the vector field ν, ΔΣ is the intrinsic
Laplace operator, and N is the surface normal.

A proof may be found in Willmore [44, pp. 279–282].
Remark 1. For a closed surface, the term with γ is absent since by the Gauss–

Bonnet theorem, the integral of the Gauss curvature is a constant.
This lemma directly provides the expression of the shape derivative of F at ϕ,

since, for Σ = ϕ(Σ0), ((id + εv) ◦ ϕ)(Σ0) = Σ + εv(Σ), yielding

∂F (ϕ).ν =

∫
Σ

αν⊥H − βν⊥(ΔΣH + 2H(H2 −G))dσ.

Now, from (2.6), we obtain the diffeomorphic evolution equations, in which we
assume that ρϕ depends on ϕ only via the deformed surface Σ, hence employing the
notation ρϕ = ρΣ and Σt = ϕt ◦ Σ0:

(2.9)
∂ϕt(y)

∂t
= −ρΣt(ϕt(y))

·
∫
q∈Σt

(
αH − β(ΔΣtH + 2H(H2 −G))

)
K(ϕt(y), q)ρΣt(q)N(q)dσt(q).

We define ρΣ as an area normalization factor as follows. Define, for a surface Σ,
the local area function

(2.10) aΣ(p) =

∫
q∈Σ

K(p, q)dσ.

We then set

(2.11) ρΣ(p) = aΣ(p)−1/2.

Choosing this normalization ensures that the right-hand sides in the diffeomorphic
flows have the same dimensions as the corresponding classical flows (e.g., 1/length for
the mean curvature flow). Doing so, the large-scale behavior (relative to the width of
the kernel) is expected to be similar for both flows.

Although all quantities introduced so far are defined on the whole space, we are
primarily interested in the evolution of the surface Σt = ϕt ◦ Σ0. Hence, for the
area and Willmore energy functionals, the equations that govern the flow of each
point p = ϕt(y) on the closed surface Σt are given by the following integro-differential
equations:

• diffeomorphic mean curvature flow (α = 1 and β = 0):

(2.12)
∂p

∂t
= −a

−1/2
Σt

(p)

∫
q∈Σt

K(p, q)H(q)a
−1/2
Σt

(q)N(q)dσt,
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• diffeomorphic Willmore flow (α = 0 and β = 1):

(2.13)
∂p

∂t
= a

−1/2
Σt

(p)

·
∫
q∈Σt

K(p, q)(ΔΣtH(q) + 2H(q)(H2(q) −G(q)))a
−1/2
Σt

(q)N(q)dσt.

We will use these formulae in the numerical implementation in section 4. Notice
that they are similar to the corresponding equations for the classical mean curvature
and Willmore flows. The diffeomorphic surface flows have the same energy minimizing
property as their classical counterparts, but since they are diffeomorphisms, they pre-
serve the topology of the surface. In the next section, we focus only on diffeomorphic
mean curvature flow.

3. Diffeomorphic mean curvature flow. From now on, we use the Gaussian
kernel function

(3.1) K(p, q) = e−
‖p−q‖2

2σ2 .

Here σ is the kernel size, which corresponds (up to a change in the normalization
factor) to the reproducing kernel of Vσ given by (2.5).

The flow equation is therefore given by

(3.2)
∂ϕt(y)

∂t
= −aΣt

(ϕt(y))
−1/2

∫
q∈Σt

e−
‖ϕt(y)−q‖2

2σ2 H(q)aΣt(q)
−1/2N(q)dσt,

with the initial condition ϕ0 = id. As indicated by (2.3), this is an area-minimizing
flow for the surface Σt, with the explicit formula

d|Σt|
dt

= −
∫

Σ2
t

e−
‖p−q‖2

2σ2

(
H(p)N(p)√

aΣt(p)

)T (
H(q)N(q)√

aΣt(q)

)
dσt(p)dσt(q).

3.1. Short-time existence of solution. The classical flows are local flows and
by PDE theory, there are short-time solutions for smooth initial data. Because of the
integro-differential form of diffeomorphic surface flows, short-time existence follows
from standard ODE arguments on Banach spaces.

Theorem 1 (short-time existence and uniqueness). For any initial compact
smooth surface, there exists a unique solution for the flow equation (3.2) in a small
time interval [0, t0].

Proof. Consider the space A = R
3 × GL3(R) × Bil(R3,R3), where the last factor

is the set of bilinear functions from R
3 × R

3 to R
3. A generic element of A will

be denoted Q = (ε, F, S), and we will consider the Banach space B of continuous
functions Q(·) : R

3 → A, with the supremum norm

(3.3) ‖Q‖ = ‖ε‖∞ + ‖F‖∞ + ‖S‖∞.

Here ε(y) is a C2 vector field that converges to zero (with its first and second deriva-
tives) at infinity, and F (y) and S(y) are first and second derivatives of ε(y).

Letting ϕ(y) = y + ε(y), we first embed (3.2) in an ODE on B. We rewrite
the right-hand side of (3.2) using integrals over Σ0. Covering Σ0 with local charts
f : U → Σ0, we have that Σt(y) = ϕt ◦ f(y). Suppose that {fu, fv, N0} is an
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orthonormal basis at the point y. Then, using N(t, ϕ(y)) = dϕ−TN0/‖dϕ−TN0‖ [6]
and the expression for the mean curvature in coordinates (omitting the subscript t),
we have

H(t, ϕ) =
1

‖dϕfu × dϕfv‖2 ‖dϕ−TN0‖2

(
〈dϕ−1d2ϕ(fu, fu) + fuu, N0〉‖dϕfv‖2

+ 〈dϕ−1d2ϕ(fv, fv) + fvv, N0〉‖dϕfu‖2

− 2〈dϕ−1d2ϕ(fu, fv) + fuv, N0〉〈dϕfu, dϕfv〉
)
.

Defining the quadratic forms on TΣ = dϕTΣ0,

(3.4) Aϕ(g, h) = 〈dϕ−1d2ϕ(dϕ−1g, dϕ−1h), N0〉

and

(3.5) IIϕ(g, h) = −〈dϕ−1g, dN0dϕ
−1h〉,

and using the fact that ‖dϕfu × dϕfv‖ = |detDϕ| ‖dϕ−TN0‖, we can rewrite

(3.6) H(t, ϕ) =
trace(Aϕ) + trace(IIϕ)

|detDϕ|2 ‖dϕ−TN0‖4
.

So, the evolution equation can be written as

(3.7)
∂ϕt(y)

∂t
= −aΣ(ϕt(y))

−1/2

·
∫

Σ0

e−
‖ϕt(x)−ϕt(y)‖2

2σ2
trace(Aϕt) + trace(IIϕt)

|detDϕt| ‖dϕ−T
t N0‖4

aΣ(ϕt(x))−1/2dϕ−T
t N0(x)dσ0,

with

aΣ(ϕ(y)) =

∫
Σ0

e−
‖ϕ(x)−ϕ(y)‖2

2σ2 |detDϕ| ‖dϕ−TN0‖dσ0(x).

Introducing dϕ = Id + dε = Id + F and d2ϕ = d2ε = S, (3.7) takes the form

(3.8)
dε

dt
= J0(ε, F, S).

The time evolution of F is obtained by computing the differential of this equation
with respect to the space variable. Since in (3.7), the variable y appears only in
evaluations of ϕ (not its derivatives), it is clear that the evolution of F will also take
the form dF/dt = J1(ε, F, S). Since the same argument can be made for S, we obtain
the fact that (ε, F, S) follows an ODE in B of the form

(3.9)
dε

dt
= J0(ε, F, S),

dF

dt
= J1(ε, F, S),

dS

dt
= J2(ε, F, S).

It is clear now that J0, J1, J2 are integrals of rational functions of ε, F, S which
are well defined in a neighborhood of (ε, F, S) = (0, 0, 0). This ensures short-term
existence of solutions of the system in B.

It remains to show that, if (ε, F, S) is a solution of this system, the first component,
ε, is in fact a solution of (3.8) with initial condition ε0 = 0. For this it suffices to
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Fig. 1. Interaction of three nearby spheres during the diffeomorphic mean curvature flow. The
initial radius of all spheres is 0.5, and the minimum distance among them is 0.1. The kernel size
is σ = 0.3, and the stopping time is T = 1.

prove that ε is twice differentiable, with its first and second differentials given by F
and S. This follows from standard arguments for ODEs, and we omit the details here.
Finally, it is easy to see that we have a unique solution ϕ(y) = y+ε(y) for the original
flow equation (3.2).

Remark 2. The result in Theorem 1 also holds for the more general diffeomorphic
surface evolution

∂ϕt(y)

∂t
= a

−1/2
Σt

(ϕt(y))

·
∫
q∈Σt

K(ϕt(y), q)f(q,N(q), dN(q), d2N(q), . . . , dmN(q))a
−1/2
Σt

(q)dσt,

where f has continuous derivatives for each variable, Σ0 is a smooth surface, m is an
integer, and N is the surface normal. The proof follows along the same general lines as
the proof we gave above. We rewrite the integral as an integral on the original surface
and the function f as a function G(ϕ, dϕ, d2ϕ, . . . , dm+1ϕ). Then the equations of the
derivatives of dϕ, d2ϕ, . . . , dm+1ϕ involve only the derivatives of the kernel and G.

We can show that the solution ϕ is in fact a diffeomorphism by standard argu-
ments using Gronwall’s lemma [46, Chap. 10].

Theorem 2 (diffeomorphism). If ϕt is the solution of the flow equation (3.2) on
the interval [0, T ], then ϕt is a diffeomorphism for all t ∈ [0, T ].

We have the following important consequence.
Corollary 1 (topology invariance and singularity free). The solution of the

flow equation (3.2) at each time t gives a smooth surface with the same topology as
the initial surface as long as the solution exists.

We are obviously interested in the long-time existence of the flow. Numerical
evidence and analysis for simple surfaces so far suggest that the flow has a long-
time solution. However, the interactions between remote parts of a surface make the
long-time behavior difficult to analyze (see, for example, Figure 1). Analyzing the
proof of Theorem 1, we see that being able to extend a solution beyond a given time
t < t0 depends only on the regularity of the surface at time t. More precisely, a
standard lower-bound of how far a current solution of an ODE in a Banach space can
be extended beyond t is directly related to the Lipschitz constant of the ODE. In
our proof, the Lipschitz properties of the system rely on the surface only via upper-
bounds on the second derivative of the normal in (3.6) and via lower-bounds on the
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local area aΣ. So solutions of (3.9) can be extended in time as long as the surface
does not develop singularities.

A consequence of this analysis is that, if we can exhibit an evolution starting at
some Σ0 on some interval [0, T ] on which the total curvature of the evolving surface
remains bounded from above and the local area remains bounded from below, then
this evolution is the only solution of (3.2) starting at Σ0.

1 This property will be used
in the next section when we provide simplified equations for surfaces of revolution.

3.2. Surfaces of revolution. In this subsection we analyze the diffeomorphic
mean curvature flow for a surface of revolution, Σ. Because of the uniqueness of
solutions, the solution of (3.2) must preserve rotational symmetry. Consequently, it
suffices to evolve the profile curve of Σ. Therefore, here we derive an equation for
the evolution of the profile curve for the diffeomorphic mean curvature flow equation
(3.2). It is much more computationally efficient to solve the equation for the profile
curve than it is to solve the full flow equation (3.2) for a triangulated surface.

We parameterize a surface of revolution by

(3.10) x(u, v) = (α(u) cos v, α(u) sin v, β(u)).

Here u ∈ [−1, 1], v ∈ [0, 2π], and the profile curve γ(u) = (α(u), β(u)) satisfies suitable
conditions. For a closed curve, we need α > 0, while for an open curve, we require
that α ≥ 0 with α = 0 only at the end points, and also β′ = 0 at the end points. Here
and below α′, β′ denote the derivatives of the functions α, β. The orientation of the
curve is taken to be counterclockwise.

We now derive the induced flow equation for the profile curve. First, we have

N =
(−β′ cos v,−β′ sin v, α′)√

(α′)2 + (β′)2
,(3.11)

dσ = α
√

(α′)2 + (β′)2dudv, 2H =
β′

α
√

(α′)2 + (β′)2
+ κ,(3.12)

where κ is the curvature of the profile curve and the normal vector N is outward
pointing.

Using these expressions, we can characterize the evolution of the profile curve
x(u, 0) = (α(u), 0, β(u)) as follows:

∂α(u)

∂t
= −a(u)−1/2

·
∫ 1

−1

e−
1

2σ2 ((α(u)−α(ut))
2+(β(u)−β(ut))

2)g1(α(u)α(ut))H(ut)α(ut)β
′(ut)a(ut)

−1/2dut,

∂β(u)

∂t
= a(u)−1/2

·
∫ 1

−1

e−
1

2σ2 ((α(u)−α(ut))
2+(β(u)−β(ut))

2)g0(α(u)α(ut))H(ut)α(ut)α
′(ut)a(ut)

−1/2dut,

a(u) =

∫ 1

−1

e−
1

2σ2 ((α(u)−α(ut))
2+(β(u)−β(ut))

2)g0(α(u)α(ut))α(ut)
√
α′(ut)2 + β′(ut)2dut,

(3.13)

1Total curvature plays a role in the analysis of the classical mean curvature flow [12, Thm. 3.4].
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where

g1(x) =

∫ 2π

0

ex(cos(v)−1)/σ2

cos(v)dv, g0(x) =

∫ 2π

0

ex(cos(v)−1)/σ2

dv.

For a discrete profile curve consisting of finite line segments, (3.13) is a system of
ODEs which has a short-time solution and can be solved numerically using MATLAB.
In section 5 we use this system of ODEs to study the long-time behavior of the solution
for surfaces of revolution.

For the classical mean curvature flow of a surface of revolution the only possible
singularities are on the axis of revolution [12]. We conjecture that for a closed profile
curve if the curvature is bounded, then α > 0 for all time. In fact, numerical results
suggest that an even stronger result is true.

Conjecture 1 (long-time solution for surfaces of revolution). There exists a
unique solution for the flow equation (3.13) for all t ≥ 0.

3.3. Sphere evolution. When the surface is the sphere, we have an explicit
solution for the diffeomorphic mean curvature flow equation.

Proposition 1 (sphere evolution). If the initial surface Σ0 is a sphere of radius
R0, then the solution of the diffeomorphic mean curvature flow (3.2) exists for all
time, and at each time t the surface Σt is a sphere of radius Rt, where Rt satisfies
the equation

(3.14)
dRt

dt
= − (R2

t + σ2)e−2R2
t/σ

2

+ R2
t − σ2

R3
t (1 − e−2R2

t/σ
2)

.

Proof. By symmetry and from the uniqueness of solutions, the evolving surface
remains a sphere at all times. Equation (3.14) is a direct application of the general
formulae with α(ut) = Rt cos(πut/2), β(ut) = Rt sin(πut/2) at u0 = 1. For example,

aΣt(1) = 2π

∫ 1

−1

e−
R2

t
σ2 (1−sin

πut
2 )R2

t

π

2
cos

πut

2
dut

= 2πR2
t e

−R2
t

σ2

∫ 1

−1

e
R2

t z

σ2 dz

= 2πσ2(1 − e−
2R2

t
σ2 ).

Similar computations can be done for the other integral, leading to (3.14). One can
check that the function f(r),

r → − (r2 + σ2)e−2r2/σ2

+ r2 − σ2

r3(1 − e−2r2/σ2)
,

is well defined and differentiable over R (including 0), vanishes at 0, and is negative
for r > 0. This implies that solutions starting at R0 > 0 decrease without reaching 0,
and can be extended to infinite time.

A Taylor expansion of the equation at Rt = 0 yields dRt/dt � −(2/3σ2)Rt at
t = 0, yielding an exponential decay of the radius.

By a similar argument, we can show that the following proposition holds.
Proposition 2 (cylinder evolution). The evolution of a circular (infinite) cylin-

der exists and is unique for all t ≥ 0.
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Fig. 2. Diffeomorphic mean curvature flow of a sphere. Left: Flows with different kernel
sizes, σ (dotted curves). The classical mean curvature flow is indicated by the solid curve with
stars. Right: Validation of the numerical algorithm in section 4 (circles) by comparison with the
analytical solution from Theorem 1 (dashed curves) with σ = 0.5. The classical mean curvature flow
is indicated by the solid curve.

We leave the proof to the reader. In this case, the first order expansion for the
evolution of the radius is dRt/dt � −(1/2σ2)Rt, yielding here also an exponential
decay, at a rate slower than for the sphere.

Recall that for the classical mean curvature flow, a sphere vanishes into a point
and the circular cylinder into the y axis at finite time [12]. However, the diffeomorphic
mean curvature flow preserves surface topology for all times.

In the left panel of Figure 2 we compare the classical mean curvature flow for a
sphere to the diffeomorphic mean curvature flow for a range of kernel sizes, σ. Notice
that for the mean curvature flow the surface collapses to a point at time t = 0.5,
whereas for all kernel sizes the solution of the diffeomorphic mean curvature flow
exists for all times. Moreover, from the evolution equation (3.14), it is not hard to
prove that for the unit sphere, as the kernel size converges to zero, the solution of the
diffeomorphic mean curvature flow converges to that of the mean curvature flow over
the interval 0 ≤ t ≤ 0.5. This suggests the following conjecture.

Conjecture 2 (mean curvature flow limit). Suppose, for an initial compact
smooth surface, that the mean curvature flow exists for all times t ∈ [0, T ]. Then for
any time T1 < T , on the time interval [0, T1] the diffeomorphic mean curvature flow
converges uniformly to the mean curvature flow as the kernel size goes to zero.

4. Numerical implementation. In this section we give the details of the nu-
merical implementation of diffeomorphic surface flows via the Runge–Kutta method.
We focus on two aspects: the estimation of geometric quantities such as the nor-
mal and curvature on discrete surfaces, and the ODE solver for diffeomorphic surface
flows.

4.1. Discrete differential geometry of surfaces. Surfaces are discretized as
triangulated meshes. Consequently, to numerically solve the diffeomorphic surface
flow equations, we need to define discrete geometry quantities that approximate the
normal and curvature functions on a smooth surface. Several such discretization
methods have been described in the literature but none is universally used [19, 15, 31,
8]. We will use the discrete differential operators method of Meyer et al. [31], which
is easy to implement and suitable for our examples.

Given a triangulated mesh with vertices vi and faces fj , the vertex one-ring R1(i)
of a vertex vi is the set of all adjacent vertices, and the face one-ring F1(i) of vi is
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the set of all faces containing vi. We determine the geometry at each vertex from the
vertex one-ring of that vertex. If none of the triangles in F1(i) is obtuse, we define
the area A(vi) at the vertex vi to be the Voronoi area of that vertex:

(4.1) AVoronoi =
1

8

∑
j∈R1(i)

(cotαij + cotβij)‖vi − vj‖,

where αij and βij are the two angles opposite the edge vivj in the two triangles sharing
that edge. However, if some of the triangles in F1(i) are obtuse, we define the area
A(vi) to be the mixed area Amixed described in [31].

Then the mean curvature normal vector HN at vi is given by

(4.2) HN(vi) =
1

4A(vi)

∑
j∈R1(i)

(cotαij + cotβij)(vi − vj).

We can also obtain the normal, mean curvature, and Gauss curvature formu-
lae [31], which are not used in this paper.

4.2. ODE solution. We evolve a triangulated surface via its vertices; i.e., the
surface vertices are used to discretize the flow equation (3.2). The resulting ODE
system is solved numerically using a Runge–Kutta method.

The algorithm is as follows.

Algorithm 1. ODE solver for diffeomorphic surface flow.

1: Initialize the flow time T and kernel size σ
2: Initialize surface with vi and Fj

3: Generate the one-ring neighborhood structure R1(i) and F1(i) for each vertex
4: while t < T do
5: Compute the geometry of the surface HN i = HN(vi) and Ai = Amixed(vi)
6: Compute the Gaussian kernel weights Kij = K(vi, vj)
7: Compute the local area weights loci = (

∑
j=all KijAj)

−0.5

8: Compute the flow speed term ui = − loci
∑

j=all Kij locj HN jAj

9: Obtain the new vertices from a Runge–Kutta solver vi = RK(vi, ui)
10: end while
11: Output the surface

Remark 3. We did not attempt to determine an automatic stopping condition.
We simply stopped after time T .

Remark 4. It is possible to use implicit ODE solvers.
Remark 5. In step 8, for each i it is possible to sum only over those indices j

for which the Gaussian kernel Kij exceeds a small threshold. Alternatively, for large
kernel size one could use the fast Gauss transform [16].

Remark 6. For mean curvature flows of surfaces of revolution, we used a public-
domain MATLAB toolbox for level set methods [33]. For mean curvature flows of
triangulated meshes we used Algorithm 1 but with ui = −HN i.

5. Results. We used MATLAB to implement the algorithm on a Pentium IV
3.2 GHz machine with 2 GB of RAM. In general for a synthetic surface with 7200
faces and 3600 vertices, one loop takes about 10 seconds. However, for cortical surface
applications we used a C++ implementation that takes about 1 second per loop for
a surface with 5000 vertices.
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Fig. 3. Flow of a fat torus. Left: The fat torus with mean curvature indicated by the grayscale.
Right: Comparison between the profile curves obtained using the ODE solution of (3.13) for surfaces
of revolution and those obtained using the numerical algorithm in section 4.2, respectively, indicated
by dashed curves and plus symbols. The initial profile curve is shown with the two largest solid
circles. Here T = 0.5, and σ = 0.3.
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Fig. 4. Comparison of flows for the fat torus. Left: Diffeomorphic mean curvature flow with
σ = 0.1 and T = 0.25 obtained using the ODE algorithm for surfaces of revolution. Right: Classical
mean curvature flow with T = 0.2.

Sphere. In the right panel of Figure 2 we show the diffeomorphic mean curvature
flow of a sphere for a kernel size of σ = 0.3 computed using Algorithm 1 (circles) and
using the ODE (3.14) for the radius of the sphere (dashed curve). The agreement
between the two methods is excellent. For comparison, we show the result for the
classical mean curvature flow with a solid curve. For the algorithm, we generated an
initial sphere with 642 vertices and 1280 faces using recursive subdivision of a cube.
The solution of the ODE (3.14) was obtained using the MATLAB function ode45. As
shown in Figure 1, three disconnected spheres can influence one another. It would be
very interesting but difficult to analyze the long-time behavior of such interactions.

Circular torus. The circular torus was generated by rotating a circle about the
y axis. The triangulated mesh had 3600 vertices and 7200 faces. We chose a “fat”
torus with inner radius 0.2 and outer radius 1.2, as shown in Figure 3. In the right
panel of Figure 3 we examined the solutions of the diffeomorphic mean curvature
flow, obtained both by solving the surface of revolution flow equation (3.13) using the
MATLAB function ode45 and by flowing the triangulated surface using Algorithm 1
indicated by dashed curves and plus symbols. The initial surface is represented by
the two largest circles. The close agreement between the two sets of curves provides a
mutual validation of both algorithms. For the surface flow we obtain the profile curves
from the discrete surface by projecting the evolving base curves onto the plane.

Figure 4 provides a comparison between diffeomorphic flow with small σ (left)
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Fig. 6. Comparison of flows for the dumbbell in Figure 5. Left: Diffeomorphic mean curvature
flow with σ = 0.1 and T = 0.25. Right: Mean curvature flow with T = 0.25.

and classical mean curvature flow (right). For the latter, the profile curve reaches the
y axis, changes topology, and eventually becomes a sphere. On the other hand, for
the diffeomorphic mean curvature flow, part of the curve very closely approaches the
y axis but slows down as time increases to infinity and does not actually reach the y
axis. In fact, the profile curve flows towards a semicircular shape. This experiment
also illustrates the scale-dependent aspect for diffeomorphic flows. In Figures 3 (right)
and 4 (left), diffeomorphic flows starting from the same surfaces have very different
evolutions. The large value of σ in the first figure prevents the torus from collapsing on
itself as it does in the second case, which is much closer to mean curvature evolution.

Dumbbell. Figures 5 and 6 show results for a dumbbell generated by a curve
with neck shape y = x2+c and c = 0.3. In the right-hand panel of Figure 6 we see that
for the classical mean curvature flow, the thin neck breaks down and the dumbbell
becomes two spheres. However, the diffeomorphic mean curvature flow does not break
down even though, as we see in the right-hand panel of Figure 5, it flows towards two
spheres connected by a very thin tube. One likely explanation for this shape is that
the cylindrical part flows faster than the spherical part where the width of the neck
is smaller than the kernel size.

Dumbbell with asymmetric ends. To illustrate typical problems encountered
in real applications, we constructed a dumbbell shape with asymmetric ends. Figure 7
shows promising results. For classical mean curvature flow, the smaller end vanished
quickly unlike in the diffeomorphic mean curvature flow.

Cortical surfaces. Figure 8 illustrates the application of diffeomorphic and clas-
sical mean curvature flows to a superior temporal gyrus cortical surface [35]. The voxel
resolution of the image volume from which this surface was generated was 1 mm3. For
the diffeomorphic flows we used a kernel size of σ = 0.3. For surfaces with boundary,
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Fig. 7. Comparison of flows for a dumbbell with asymmetric ends. Left: The dumbbell with
asymmetric ends. Middle: Mean curvature flow for T = 0.025. Right: Diffeomorphic mean curva-
ture flow with kernel size σ = 0.1 and T = 0.025.

we simply flow the boundary vertex along with the closest interior vertex. The top
row indicates the smoothing effect of both flows. Magnified views of a crest region
of the surface indicate that mean curvature flow results in singular folds unlike dif-
feomorphic flows. Furthermore, the left-hand panel of Figure 9 shows that Hausdorff
distances between the original surface and the final surfaces are within one voxel. The
smoothing effect of the flows is also reflected in the mean curvature histograms in the
right-hand panel of Figure 9.

6. Discussion. In this study, we proposed diffeomorphic surface flows as an
alternative to classical mean curvature and Willmore flows. We obtained the flow
equation for the elastic energy of a closed surface and proved the short-time existence
and uniqueness of the flow. Then we examined the diffeomorphic mean curvature flow
both by analyzing the case of a surface of revolution and by numerical experiments
on arbitrary discrete surfaces. Our conjecture is that the solution continues to be well
behaved for long times while preserving some of the characteristics of classical mean
curvature flows (such as smoothing and decreasing area).

Furthermore, in computational anatomy applications, diffeomorphic surface flows
can be used to evolve submanifolds of the brain such as planum temporale, superior
temporal gyrus (STG), and cingulate cortical surfaces in neuroimaging studies of
schizophrenia and auditory disorders. They can also be used for smoothing where the
speed is controlled by changing the kernel size without changing the topology.

Diffeomorphic flows, while they clearly avoid topological changes, cannot, how-
ever, be considered as smoothing flows. Since they generate a diffeomorphic evolution,
they cannot make a surface smoother (in terms of the number of derivatives) than it
was initially. In particular, they cannot deal with surfaces corrupted by white noise.
They can, however, have some smoothing effect, in the sense that they reduce the
curvature of the surfaces on which they operate. There is an important scale factor
in this regard, related to the scale of the kernel. Bumps larger than the kernel size
will in general be removed in a way similar to classical flows, whereas small bumps
are likely to survive after long time intervals. The choice of the kernel size therefore
needs to be adapted to the roughness of the surface.

Several open problems remain. Among the numerical issues, there is a need to
improve the discretization methods, especially in the case of the Willmore flow for
which the computation of higher derivatives is a potential source of instability.

We have already mentioned the issue of long-term existence of the flow. As
discussed in this paper, this requires controlling the smoothness of the surface during
the evolution, which is made difficult by nonlocal interactions. The limit behavior
of the evolution as the kernel size tends to zero is another open problem. It seems
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Fig. 8. The top row shows STG cortical surfaces at T = 0 (left), T = 1 with mean curvature
flow (middle), and T = 1 with diffeomorphic mean curvature flow using σ = 0.3 (right). Mean
curvature is indicated by the vertical color bar. The bottom row shows the corresponding magnified
view of the crest on the STG which is a subset of the region within the black borders indicated in
the top row. The irregular color pattern in the magnified view of the mean curvature flow indicates
that singularities occurred during the evolution with triangles crossing over.

reasonable to expect that it should somewhat resemble the classical flows, but the
nature of the convergence (and proof) needs to be investigated.

Another interesting issue, related to long-term evolution, is to characterize the
limit shapes of the shrinking surfaces for the diffeomorphic mean curvature flow. Our
experiments seem to indicate that such limit shapes exist and are not restricted to
spheres.

It would be interesting also, for theoretical and practical purposes, to consider
numerical schemes in which the kernel size is allowed to evolve with time, starting with
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Fig. 9. Left: Cumulative density function profiles of the oriented distances between the original
surface and final surfaces. Right: Mean curvature histograms of the original and final surfaces at
T = 1.

a rigid evolution and progressively decreasing spatial smoothing to get closer to the
mean curvature flow. The question here is to define sufficient conditions for such an
annealed scheme that ensure a diffeomorphic evolution while providing a smoothing
effect similar to that of the standard mean curvature flow.

While these topics provide interesting sources of future work, diffeomorphic sur-
face flows already represent a promising family of surface evolutions. Initial experi-
ments in this paper demonstrate several important features, regarding, in particular,
the absence of topological change, that make them appropriate for a large range of
practical situations.
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THE NONLINEAR CRITICAL LAYER FOR KELVIN MODES ON A
VORTEX WITH A CONTINUOUS VELOCITY PROFILE∗

S. A. MASLOWE† AND N. NIGAM†

Abstract. We consider in this paper the propagation of neutral modes along a vortex with
velocity profile V̄ (r), r being the radial coordinate. In the linear inviscid stability theory for swirling
flows, modes that are singular at some value of r denoted rc, the critical point, are particularly
significant. The singularity can be dealt with by adding viscous and/or nonlinear effects within a
thin critical layer centered on the critical point. At high Reynolds numbers, the case of most interest
in applications such as aeronautics and geophysical fluid dynamics, nonlinearity is the appropriate
choice, although viscosity may still play a subtle role. We determine here the scaling and equations
that govern the nonlinear critical layer. The method of characteristics is then employed to obtain
an exact solution of the governing inviscid system composed of four coupled PDEs, of which two are
nonlinear and two are linear. Finally, assuming zero phase change across the critical layer, solutions
are obtained for the outer eigenvalue problem demonstrating the existence of modes not possible in a
linear theory. This result may have important implications for the short wave cooperative instability
mechanism that has received so much attention in the context of aircraft trailing vortices.

Key words. waves on vortices, Kelvin modes, nonlinear critical layers
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1. Introduction. The propagation of helical perturbations to a columnar vortex
seems to have been studied first by Lord Kelvin, whose results were published in
1880. In cylindrical coordinates (r, θ, z), the problem involves the investigation of
infinitesimal perturbations (ur, uθ, uz) superimposed on a flow with velocity profile
{0, V̄ (r), 0}. Kelvin considered the case of a fluid in rigid rotation, i.e., V̄ = Ω0 r
contained within a cylinder of radius a. A single equation can be obtained for the
pressure perturbation, and it is Bessel’s equation of order m, where m is the azimuthal
wavenumber. Imposition of the boundary conditions at r = 0 and r = a leads to an
eigenvalue problem for the frequency ω = ω(k,m), where k is the axial wavenumber.
The review article by Ash and Khorrami [1] is a convenient reference for the details.

In this paper, we are primarily interested in waves propagating on an unbounded
vortex, and a model that has often been employed to study this phenomenon is the
discontinuous Rankine vortex with velocity profile

V̄ (r) =

{
Ω0r, 0 ≤ r ≤ a,

Ω0a
2

r , r > a.

The solutions on either side of the discontinuity of vorticity at r = a are matched
using kinematic and pressure conditions, and this leads to an eigenvalue problem for
the dispersion relation. Bessel functions are again involved, and the modal solutions
obtained are termed Kelvin modes. The monograph by Saffman [2] details the analysis
and presents dispersion curves for different azimuthal wavenumbers.
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Much of the recent research on the stability of vortices is motivated by the aircraft
trailing vortex problem. A pair of counterrotating vortex filaments serves as a model
that has been widely studied as representing the vortices shed from the wingtips of
aircraft which, if they are jumbo jets, pose a major hazard to following aircraft. Given
that the strength of the trailing vortices is related to the weight of the aircraft, it is
clear that any smaller aircraft attempting to land behind the new Airbus A380 is at
serious risk.

A number of theoretical investigations have treated the problem of a vortex sub-
ject to an external strain, this being a way of modelling the strain induced on one
member of a pair of trailing vortices by the other. A long wave instability first ex-
plained by Crow [3] initially received the most attention, but more recently the short
wave cooperative instability mechanism (often termed the elliptic instability) has at-
tracted a great deal of interest. The latter mechanism involves interacting Kelvin
waves. Specifically, Moore and Saffman [4] showed that for an arbitrary strained
vortex two neutral modes are coupled by the strain field if a certain resonance condi-
tion is satisfied. They derived an approximate expression for the growth rate of the
resonant modes by an asymptotic analysis valid when the strain field is small. The
first quantitative investigation of this instability was by Tsai and Widnall [5], who
employed the discontinuous Rankine vortex in their calculations. They found that
the most unstable perturbations corresponded to a pair of Kelvin modes having zero
frequency and azimuthal wavenumbers m = ±1.

Real vortices, however, have continuous profiles, and the use of Rankine vortices
in theoretical studies was criticized in the review article by Spalart [6] (see section 2.2).
Clearly, it is important to ask what effect the use of a profile whose vorticity is con-
tinuous might have on this instability mechanism. Sipp and Jacquin [7] have, in fact,
recently done so, and they concluded that the “Widnall instabilities” will not occur
because of the presence of a critical layer in the continuous case. Their argument,
which is correct as far as it goes, is based on linear viscous stability calculations for
the Lamb–Oseen vortex V̄ (r) = (1 − e−r2

)/r which show that the neutral Kelvin
modes required for the resonant interaction discussed in [4] and [5] would be damped
in the continuous case.

In this paper, we reexamine the question and investigate the effect of retaining
nonlinear terms in the critical layer rather than viscous terms, as is usually done in
the theory of hydrodynamic stability. This is of interest in its own right as part of
the theory of Kelvin modes, and its pertinence to the cooperative elliptic instability
mechanism provides further motivation. The possibility that nonlinear critical layer
modes could be neutral rather than damped was, in fact, suggested in [7, p. 265].
In section 3, we will determine a parameter that measures the relative importance
of nonlinearity to viscosity. The larger the Reynolds number, the smaller the per-
turbation amplitude needs to be for nonlinearity to be the appropriate choice. A
number sometimes cited as representative for trailing vortices behind jumbo jets is
Re = 107. Clearly, this is large enough to motivate the formulation of a nonlinear
approach. Even if the turbulence usually present is accounted for by introducing an
effective Reynolds number, this value is still very large. Gerz and Ehret [8], in an
investigation of the influence of wingtip vortices on atmospheric pollution caused by
the jet exhaust, estimate the effective Re as 6 · 105 for the wake behind a Boeing 747.

Although the foregoing discussion focused on the trailing vortex problem, the re-
sults are pertinent to other applications in engineering and geophysical fluid dynamics.
In turbomachinery, for example, the flow through a duct is sometimes modelled by
representing the flow by a superposition of a solid body rotation and a potential axial
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vortex [9]. And in geophysical fluid dynamics, an important application is to hurri-
canes. In their numerical simulations of a hurricane, Chen, Brunet, and Yau [10] find
that absorption of vortex Rossby waves at the critical level leads to an acceleration of
the mean wind in the lower troposphere (the location of the critical layer is indicated
in Figure 11 of their paper).

Before presenting the analysis, it is worth noting that the critical point singularity
in a stratified shear flow has a very similar behavior to that occurring in a vortex.
It is therefore possible to anticipate certain results based on those that have been
demonstrated for stratified shear flows. For example, Miles [11] proved that when
the local Richardson number is everywhere greater than 1/4, all singular modes must
decay according to linear theory. However, when the critical layer is nonlinear and
inviscid, singular neutral modes have been shown to exist (see section 3.1.1 of the
review article by Maslowe [12]). For Kelvin modes on vortices, we will show that the
same is true; i.e., inviscid nonlinear modes exist in regions of parameter space where
they would be damped if viscosity were used to deal with the critical layer. As a result,
we revive the possibility not only of cooperative instabilities but of other instability
mechanisms that have been observed experimentally in which Kelvin modes interact to
destroy vortices. In the experiments of Maxworthy, Hopfinger, and Redekopp [13], for
example, unstable interactions between axisymmetric and helical waves were observed,
the outcome of which depended on the amplitude of the axisymmetric mode.

The reason that neutral modes with nonlinear critical layers can exist when they
would be damped in a linear, viscous theory is a direct result of the absence of any
phase change across the singular critical point. This means essentially that terms with
branch points are written simply as absolute values, whereas in the viscous theory, a
term with a branch point at r = rc is written as |r− rc| ei φ for r < rc, and the phase
change φ is nonzero. In either case, the result must be derived by determining what
outer solution can be matched to the critical layer solution.

Before proceeding with the analysis, we mention briefly that the simpler two-
dimensional case of waves propagating only in the azimuthal direction, i.e., k = 0, has
been investigated recently by Le Dizès [14] and by Balmforth, Smith, and Young [15].
Each paper points out the relevance of the results to plasma physics, as well as to
vortices. The critical layer analysis in [14] is closer to our own, one reason being that
the waves are forced in [15] and may be transient, but some brief comparisons will be
made after presenting our own analysis for helical modes.

2. Formulation and outer expansion. We consider small-amplitude helical
perturbations to a vortex with azimuthal velocity profile V̄ (r) and a corresponding
radial pressure distribution p̄(r). Away from the critical layer, the perturbations are
sinusoidal with phase ξ = kz + mθ − ωt and, because we are dealing with neutral
modes, it will be convenient to use ξ as an independent variable. The momentum and
continuity equations can then be written as(m

r
uθ − ω

) ∂ur

∂ξ
+ ur

∂ur

∂r
− u2

θ

r
+ k uz

∂ur

∂ξ
= −∂p∗

∂r
+

1

Re

∂2ur

∂r2
,(2.1a)

(m
r
uθ − ω

) ∂uθ

∂ξ
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∂r
+

ur uθ

r
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r
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= 0.(2.1d)
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Our analysis being primarily inviscid, we have retained in the above momentum equa-
tions only those viscous terms involving second derivatives with respect to r, because
these terms will be the largest in the critical layer.

The scaling employed in the foregoing equations deserves some discussion because
we wish to identify parameter regimes where analytical progress is possible. To begin,
we denote by Ω0 the angular velocity of the vortex at its center and use this to scale
the frequencies and time. A characteristic length scale for the vortex denoted a is used
to nondimensionalize r and the wavenumber k, while Ω0 a is employed to scale the
velocities. Finally, the dimensionless pressure p∗ is obtained by dividing the actual
pressure by ρΩ2

0 a
2, where ρ is the constant density. After introducing this scaling

into the momentum equations, the Reynolds number Re = a2Ω0/ν, where ν is the
kinematic viscosity.

We next consider the linear, inviscid theory because it describes the perturbation
to leading order in the outer region. A separation of variables can be achieved in the
linearized equations by writing

ur = ε u(r) sin ξ,(2.2a)

uθ = V̄ (r) + ε v(r) cos ξ,(2.2b)

uz = εw(r) cos ξ,(2.2c)

and p∗ = p̄(r) + ε p(r) cos ξ,(2.2d)

where ε � 1 is a dimensionless amplitude parameter. After linearizing and then
substituting (2.2a)–(2.2d) into (2.1a)–(2.1d), we obtain the system

γ(r)u = 2
V̄

r
v − p ′,(2.3a)

γ(r) v =
1

r
(rV̄ )′ u− m

r
p,(2.3b)

γ(r)w = −k p,(2.3c)

(r u)′ = mv + k r w,(2.3d)

where

(2.4) γ(r) = m
V̄

r
− ω = m Ω̄ − ω.

Critical point singularities occur at any value of r for which γ(r) = 0.
Equations (2.3a)–(2.3d) can be combined into a single second order differential

equation for u(r), namely,

(2.5) γ2D{SD∗u}−
{
γ2 +

mγ

r2

(
D[SD(rV̄ )]− 3

S

r
D(rV̄ )

)
− 2 V̄ k2 S

r
Q(r)

}
u = 0,

where

D =
d

dr
, D∗ =

d

dr
+

1

r
, S =

r2

m2 + k2r2
, and Q(r) =

D(rV̄ )

r
.

Q(r) can be recognized as the vorticity of the mean flow nondimensionalized with
respect to Ω0, the angular velocity at the center of the vortex.

Equation (2.5) can be obtained from the equation derived by Howard and Gupta
[16] for swirling flows by setting the axial velocity W = 0 in equation (18) of [16].
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Noting the similarity of their equation (18) to the Taylor–Goldstein equation governing
stratified shear flows, Howard and Gupta derived a Richardson number 1/4 stability
theorem for swirling flows, employing an integral approach as in Howard’s earlier
paper on stratified flows [17]. This theorem, however, was limited to axisymmetric,
i.e., m = 0, perturbations, thus underlining the importance of perturbations with
m �= 0, where only a bound on the growth rate could be obtained.

The mathematical similarities to the case of a stratified shear flow are nonethe-
less useful, and it will be seen that in our analysis the paper by Miles [18] is most
pertinent. Miles used Frobenius expansions near the critical point to derive a number
of important results, including the Richardson number 1/4 theorem. Following his
approach and notation, we expand all terms in (2.5) around the critical point rc to
obtain a solution valid locally having the form

(2.6) u(r) = Au+(r) + B u−(r),

where

(2.7) u±(r) = (r − rc)
1
2 (1±ν) w±(r)

and the functions w±(r) are regular in the neighborhood of rc. We have defined a
local Richardson number analogous to the one arising in stratified shear flows by

(2.8) Jc =
2 k2 V̄c Qc

rc (γ′
c)

2
,

and the parameter ν in (2.7) is related to Jc by ν = (1 − 4 Jc)
1/2.

Miles used arguments based on the variation of the Reynolds stress to prove a
number of useful results that apply to singular neutral modes. For example, within
the framework of linear theory, a neutral mode comprising part of a stability boundary
must be proportional to one or the other of the Frobenius solutions. Even though the
expression for the Reynolds stress is quite different in cylindrical coordinates, we show
in the appendix that the same conclusion applies here; i.e., on a stability boundary
with Jc < 1/4, the case we treat in this paper, either A or B must be zero in (2.6).

There are two exceptional cases, however, that should be mentioned. First, when
Jc is small, the second term in the series for w−(r) in (2.7) is very large, becoming
infinite as Jc → 0. That case is of interest in the vortex problem because it arises,
for example, when rc is far from the center and the vorticity Qc is then small. The
Frobenius solution u− in (2.6) can then be replaced by a linear combination of u+

and u− that is well behaved as Jc → 0; the associated nonlinear critical layer theory
has been developed by Caillol and Maslowe [19]. The second exceptional case occurs
when Jc is greater than 1/4 so that the Frobenius exponents are complex. We do not
treat that case here, but it does arise, for example, when there is an external forcing.
Let us proceed now to the derivation of the critical layer equations for the case of
Jc ∼ O(1) with ν real.

3. Critical layer scaling and governing equations. There are several ways
to determine the scaling for the nonlinear critical layer. Of these, the most direct is
to try to get a balance between linear inertial terms and the nonlinear terms with
the largest derivatives in r. Because we are dealing with a system, however, different
equations yield different results. For the present Kelvin wave problem, either the v
or the w momentum equation in (2.1) leads to the correct scaling, but that was not
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obvious a priori. That being the case, it is a great help to have an alternative method.
The most reliable is to examine several terms in the outer expansion which proceeds
in powers of ε, the amplitude parameter. The power of ε where the expansion first
breaks down yields the critical layer thickness. We illustrate this below, but first the
behavior of all variables near rc in the linear problem must be determined.

Let us concentrate on the case Jc < 1/4 corresponding to (2.6)–(2.8). The most
singular Frobenius solution is the one with the minus sign in front of ν; we denote this
exponent δ. Because the pressure perturbation satisfies an equation nearly identical
to the one satisfied by u (see p. 244 of [2]), it will have the same behavior near rc.
Although not a trivial exercise, consideration of the system (2.3a)–(2.3d) leads to the
conclusion that

(3.1) v ∼ (r − rc)
δ−1, w ∼ (r − rc)

δ−1, and p ∼ (r − rc)
δ,

where to be consistent with the first of equations (2.3)

(3.2)

(
dp

dr
− 2V̄

r
v

)
c

∼ (r − rc)
1+δ.

Considering now higher order terms in the outer expansion, if we were to write
(2.2) as an expansion in powers of ε, then the O(ε2) terms would involve second
harmonics, and in particular (2.2a) would include a term u2(r) sin 2ξ. A single non-
homogeneous second order ODE can be derived for u2(r) by following exactly the same
steps that were used to obtain (2.5), the equation for u(r), from (2.3a)–(2.3d). (A
detailed derivation of the Howard–Gupta equation is given in section 2.4 of [1].) For
the purpose at hand, however, only the most singular of the nonhomogeneous terms
need be considered. The foregoing procedure leads to the result that u2 ∼ (r−rc)

2δ−2,
and we see that the first two terms in the expansion for ur become the same order of

magnitude when (r − rc) ∼ ε
1

2−δ .
From the behavior deduced immediately above, we find that appropriate inde-

pendent variables in the nonlinear critical layer are

(3.3) ξ = k z + mθ − ω t and R =
r − rc
εβ

, where β =
1

2 − δ
.

When k = 0, δ = 0 and β = 1/2, as in [14] and [15]. With the critical layer thickness
now determined, we can deduce from (2.2b) that in a frame of reference rotating with
the angular velocity at the critical point, the magnitude of the azimuthal velocity
perturbation is equal to that of the mean flow. This follows by expanding V̄ in a
Taylor series about rc, and from the behavior of v(r) as given by (3.1), it can be seen
that ε v(r) is the same order of magnitude as the mean flow when (r − rc) ∼ O(εβ).
Noting that point, an appropriate scaling for V (R, ξ), the azimuthal velocity in the
critical layer, is given by

(3.4) uθ − V̄c ∼ V̄c
′(r − rc) + ε v(r) cos ξ = εβ [V (R, ξ) + Ω̄c R],

where the R-term is included because it simplifies the governing equations. The
remaining dependent variables in the case Jc < 1/4 (but not small) are scaled as

(3.5) ur = ε2βU(R, ξ), uz = εβW (R, ξ), and p∗ − 1

2
Ω̄c

2
r2 = ε2βP (R, ξ).

Now substituting (3.3)–(3.5) into the governing equations (2.1), the nonlinear
critical layer equations to lowest order are the following:
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rc
∂P

∂R
− 2 V̄cV = 0,(3.6a)

2
V̄c

rc
U +

m

rc

∂P

∂ξ
= −

[
U
∂V

∂R
+

(
m

rc
V + kW

)
∂V

∂ξ

]
+ λ

∂2V

∂R2
,(3.6b)

k
∂P

∂ξ
= −

[
U
∂W

∂R
+

(
m

rc
V + kW

)
∂W

∂ξ

]
+ λ

∂2W

∂R2
,(3.6c)

and rc
∂U

∂R
+ m

∂V

∂ξ
+ krc

∂W

∂ξ
= 0.(3.6d)

The parameter λ = 1/Re ε3β ; taking λ � 1, means that the nonlinear critical layer
thickness εβ is greater than that of the viscous critical layer, whose thickness is Re−1/3.
In most applications outside of the laboratory, that condition will be satisfied easily.

The critical layer problem is highly nonlinear, and the solution even at lowest
order involves all the harmonics. In matching to the outer expansion, however, we
can ignore higher harmonics because they decay more rapidly at large R than those
terms involving the primary mode. After expanding the reduced pressure in (3.5) in
a Taylor series about rc and transforming to inner variables, we obtain the following
asymptotic conditions:

U ∼ u0 R
δ sin ξ, V ∼ γ′

crc
m

R + v0 R
δ−1 cos ξ, W ∼ w0 R

δ−1 cos ξ,

and P ∼ γ′
cV̄c

m
R2 + p0 R

δ cos ξ as R → ∞.(3.7)

Of the four constants u0, v0, w0, and p0, one is arbitrary. A convenient choice is
p0 = 1, and the system (2.3) can then be used to express the other three constants in
terms of this constant.

3.1. The λ = 0 limit. Given that the Reynolds number is very large in most
applications, the λ = 0 limit is clearly of considerable interest even though we expect
viscosity to still play a subtle role. For example, arbitrary functions that arise in
integrating the governing PDEs can be determined uniquely only by introducing a
small viscosity. Moreover, in related earlier studies thin viscous layers were required
along streamlines separating open and closed regions in order for the vorticity and
velocity components to be continuous. Most of the flow field is inviscid, though, and
an exact solution of the system (3.6) will now be presented for that case.

We begin by writing the system (3.6) in the following matrix form:

(3.8) A(u)
∂u

∂ξ
+ B(u)

∂u

∂R
= c,

where A and B are 4 × 4 matrices and the vectors u and c are given by

(3.9) u(R, ξ) =

⎛
⎜⎜⎝

P (R, ξ)
U(R, ξ)
V (R, ξ)
W (R, ξ)

⎞
⎟⎟⎠ and c =

⎛
⎜⎜⎝

2 ΩcV (R, ξ)
−2 ΩcU(R, ξ)

0
0

⎞
⎟⎟⎠ .

The matrices A and B are given by

A(u) =

⎛
⎜⎜⎝

0 0 0 0
m
rc

0 α 0

k 0 0 α
0 0 m krc

⎞
⎟⎟⎠ , B(u) =

⎛
⎜⎜⎝

1 0 0 0
0 0 U(R, ξ) 0
0 0 0 U(R, ξ)
0 rc 0 0

⎞
⎟⎟⎠ ,
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where α(R, ξ) = (m/rc)V (R, ξ) + kW (R, ξ).
It is clear that B(u) becomes singular when U = 0. This tells us that solving the

system by the method of lines (using a spectral collocation method in the ξ direction
followed by integration in the R variable) will lead to a numerically stiff system since
(3.6a)–(3.6d) turn into a system of differential-algebraic equations. Indeed, when
U = 0, we are led to the constraints V = 0, P = constant, W = constant. This is
also the reason why the small-λ limit of equations (3.6) is difficult (in the sense of
stability) to simulate numerically. We should also note that the low-rank behavior of
A(u) does not present computational difficulties. In order to deal with the possibly
singular behavior of B, we now introduce an alternate solution strategy.

3.2. Solution by the method of characteristics. If we denote by dR
dξ = 1

μ the
slope of the characteristics, they are given by the roots of the characteristic polynomial
|A − μB| = 0. For the system (3.6), this condition yields

det(A − μB) = μ2rc(α− μU)2 = 0,

where α = (m/rc)V + kW . Even though the system is not totally hyperbolic, i.e.,
there are only two characteristic directions, it develops that we can still solve (3.6)
by integrating along the two characteristic directions given by

(3.10)
dR

dξ
=

U

(m/rc)V + kW
and

dξ

dR
= 0.

In accordance with the above result, we define a family of characteristics by

(3.11)

(
∂R

∂s

)
τ

= U and

(
∂ξ

∂s

)
τ

=
m

rc
V + kW,

where s measures distance along a characteristic and τ is a parameter identifying a
particular characteristic. Eliminating ∂P

∂ξ from the azimuthal and axial momentum

equations in (3.6) and using the characteristic equations (3.11), we obtain the following
integral:

(3.12) rc V + 2 V̄c R− m

k
W = F (τ).

A second integral can be obtained along the same family of characteristics by writing
the directional derivative for the pressure, namely,

(3.13)

(
∂P

∂s

)
τ

=

(
∂P

∂R

)
ξ

(
∂R

∂s

)
τ

+

(
∂P

∂ξ

)
R

(
∂ξ

∂s

)
τ

.

Expressions for ∂P/∂R and ∂P/∂ξ are provided by (3.6a) and (3.6c), i.e., the radial
and axial momentum equations. The characteristic equations (3.11) yield the other
partial derivatives, and substitution of these four partial derivatives into (3.13) then
allows us to integrate with respect to s to obtain the following expression for the
pressure:

(3.14) P = a0
m

k
RW+

(
a0R− m

kr2
c

W

)
F (τ)−a0V̄cR

2− 1

2

[
1+

(
m

krc

)2
]
W 2+G(τ),

where a0 = 2 V̄c/r
2
c .
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The arbitrary functions F (τ) and G(τ) are determined by matching to the outer
solution and will be specified below. First, however, two more equations are required
to complete the solution. One is provided by the radial momentum equation; i.e.,
(3.6a) gives us a simple expression for ∂P

∂R , and we can integrate along the vertical lines
ξ = const., because they are characteristics. The fourth relationship that we require is
obtained not by integrating along a characteristic but by defining the parameter τ in
such a way that the continuity equation is satisfied; the characteristics τ = const. are
then analogous to the streamlines in two-dimensional flows. Specifically, we require τ
to satisfy the conditions

(3.15)
∂τ

∂ξ
= U and

∂τ

∂R
= −(m/rc)V − kW.

The numerical procedure that we use is to begin the integration at a large value
of |R| and then integrate toward the center of the critical layer. This allows us to
determine an expression for τ that is valid as R → ∞ that we can use to begin
the integration. First, we integrate the second of equations (3.15); the resulting
expression for τ contains an arbitrary function of ξ which can then be determined by
differentiating with respect to ξ and comparing with the asymptotic behavior of U
given in (3.7). It can be verified that the following expression for τ satisfies (3.15),
as well as being consistent with the asymptotic conditions (3.7) and the continuity
equation:

(3.16) τ = − γ′
c

R2

2
− u0 |R|δ cos ξ.

Noting that τ ∼ R2 for large |R|, it can be seen that F ∼
√
τ in (3.12) and that G ∼ τ

in (3.14). By substituting into (3.12) and (3.14) and using the asymptotic conditions
(3.7), we find more precisely that

(3.17) F (τ) = (r V̄ )′c
√
−2 τ/γ′

c and G =
2 V̄c (r V̄ )′c

γ′
c r

2
c

τ.

3.3. Numerical procedure. As mentioned in the previous section, we begin
integration of the characteristic equations for P , V , W , and the radial variable R at
large initial values of R. We first locate τ(ξ) for this large value of R using (3.16).
The values of τ(ξ) will subsequently be decreased by a fixed amount, dτ , which in
turn changes V , W , and R through the second of equations (3.15). We implement a
backward Euler update:

(3.18) dτ = (τ − τold) = −
(
m

rc
V + kW

)
(Rold −R).

Here the subscripts old refer to the values of the variable at the previous τ -step. We
also write an Euler update to compute the new values of P in terms of its current
values, and use this to update V , W , and R. We are thus led to a nonlinear system
of four equations comprising (3.12), (3.14), (3.18), and

rc(P − Pold) − 2V̄cV (R−Rold) = 0.

The nonlinear system needs to be solved for the new values of (P, V,W,R) at each
τ -step. The manifold on which these solutions evolve seems particularly sensitive to
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initial guesses in V and W ; hence, we retain only the updated P and R values from
each iteration. We can then explicitly calculate from these the updated values of V
and W . We note here that though it may seem appealing to solve for V and W in
terms of P and R using (3.12) and (3.14), the latter is a quadratic in W . This would
force us to make a choice for the sign of the root (and is, indeed, the source of the
numerical sensitivity to initial guesses in V and W ). Instead, we use all four equations
to derive explicit expressions for V and W in terms of the other variables.

Certain constants must be fixed in order to initiate the integration from above
and below the critical layer, so the procedure is discussed briefly here. If we assume
that in crossing the critical layer there is no phase change, then absolute values are
used to deal with the branch point at rc in (2.5)–(2.7), the Frobenius solution for u.
Two limiting cases were treated in [19]; in the first, it was assumed that the vorticity
Qc � 1, whereas the second case assumed waves that are long in the axial direction,
i.e., k � 1. In both limits, it was found as in previous nonlinear critical layer studies
that there was no phase change across the critical layer. It is therefore likely that the
same result is generally true for vortical flows with Jc < 1/4. Consistent with the
assumption of zero phase change, we take u0 in (3.7) to be the same on both sides
of the critical layer, in which case U will be an even function. Observing that U is
differentiated with respect to R in the continuity equation, i.e., the last of equations
(3.6), it is clear that V and W will be odd functions of R so that u0 and w0 in (3.7)
must have opposite signs above and below the critical layer. Similar considerations
lead us to conclude that P is an even function.

The foregoing considerations were used to compute the solution illustrated in
Figures 3.1–3.4 for a Lamb–Oseen vortex profile. Initial values were obtained from
(3.7), and the computation was initiated at large values of τ on both sides of the
critical layer; i.e., τ is even in R. This beginning value of τ depends on the choice of
k, rc, and γ′

c.
In Figure 3.1, we present the characteristics R and pressures P obtained by the

procedure described above. We repeated the procedure with several values of dτ , and
present the converged solutions. We show the results of two experiments; in Figures
3.1(a) and 3.1(c), k = 0.36, m = 1, rc = 1.4, γ′

c = −0.424907. In Figures 3.1(b)
and 3.1(d), k = 0.18, m = 1, rc = 0.88, γ′

c = −0.53425. The procedure used is to
decrease τ in increments of 0.05 until a characteristic is reached that goes beyond the
corners at R = 0 and ξ = ±π. This occurs on the characteristic τ = 2.4 in the first
experiment and on τ = 1.0 in the second.

For clarity, only a few of the characteristics are shown. The similarity of Figures
3.1(a) and 3.1(c) compared with the streamline patterns in the stratified shear flow
computations in Figure 2 of Maslowe [20] is striking, even including a cusp at the
corners. Although the characteristics are not streamlines in our problem, they do
serve the same purpose mathematically by providing a solution of the continuity
equation; thus to this extent comparisons are valid.

Figure 3.2 shows that the nonlinear critical layer equations (3.8)–(3.9) completely
eliminate the singular behavior exhibited by the linear problem. We show the fields
for the azimuthal and axial velocity components V and W , respectively, because
these are the most singular according to (3.8). We again chose k = 0.36, rc = 1.4,
γ′
c = −0.424960. For this particular example, δ = 0.230, so that v ∼ |r − rc|−0.770 as

|r − rc| → 0 in the outer problem and w has the same behavior.
Our solution is not yet complete because we must still deal with the region of

closed characteristics. In addition, there are discontinuities in V and W at the cor-
ners where the separatrices meet, although the radial velocity U is continuous. Distor-
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Fig. 3.1. Characteristic curves of R and P as functions of ξ, for varying τ . Left figures:
rc = 1.4, k = 0.36. Right figures: rc = 0.88, k = 0.18. Blue curves: integration from large R-values
above the critical layer toward the critical layer. Red curves: integration from below. Particularly
note the cusp-like behavior near R = 0 at ξ = ±π.

tions in the mean flow, as well as thin viscous layers, would be needed to completely
eliminate these discontinuities. This is not surprising in view of previous research on
nonlinear critical layers in stratified shear flows. Both Haberman [21], in the small
Richardson number case, and Troitskaya [22], who studied the forced wave problem
with Jc > 1/4, found that a temperature jump took place across the critical layer
and the vorticity was also discontinuous. The need for these mean flow corrections
in our Kelvin wave problem is clear in Figure 3.2(b), where the axial velocity com-
ponent W is illustrated and it can be seen that W is discontinuous at the corners
(R, ξ) = (0,±π).

While such a vortex sheet is permitted in an inviscid problem, mean flow distor-
tions are required to make this a valid solution in the sense of being the limit of a
viscous flow as Re → ∞. A comprehensive study of the λ ∼ O(1) problem would
be required with consideration given to the limit as λ → 0. Although we have not
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Fig. 3.2. Shown are curves of V and W as functions of ξ for different τ-steps. Left: the
V -component of velocity. Right: the W -component of velocity. For both, k = 0.36, rc = 1.4.

Fig. 3.3. The characteristic solution for the pressure P , in (r, ξ) coordinates. Here ξ ∈ [−π, π].
Recall R = r−rc

εβ
; in this plot, R ∈ [−8.29, 8.29]. We have scaled the radial variable to enable easier

reading of the graph. Note that P is continuous as we move across the critical layer.

yet completed such an analysis, we can still anticipate to some extent the changes
in mean flow based on the results in [21] and [22] and the small vorticity analysis of
Caillol and Maslowe [19]. Before discussing these distortions further, however, let us
proceed to the analysis of the closed characteristics region because related issues arise
there.

3.4. The closed characteristics region. For a steady inviscid two-dimensional
flow, a general solution of the Euler equations is ∇2ψ = f(ψ), where ψ is the stream-
function and the function f is arbitrary. By considering a small viscous perturbation
to the basic flow, Batchelor [23] proved that ∇2ψ, the vorticity, must be a constant
within a region of closed streamlines. The value of the constant can be determined
only by matching to the solution outside the separatrix. This is the counterpart of
a difficulty here, namely, that the functions F (τ) and G(τ) are no longer determined
by the outer region. We follow a procedure comparable to what is done in the case of
a plane parallel flow, but the three-dimensionality of the present problem naturally
adds complications.

To begin, we can exploit the analogy between rotating and stratified flows. For a
stratified flow, Grimshaw [24] extended Batchelor’s result by showing that the temper-
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(a) V (r, θ, z) (b) W (r, θ, z)

Fig. 3.4. V and W as functions of r, θ, and z for a fixed t. Recall that P, V,W are periodic
in ξ = mθ + kz − ωt. The spirals correspond to the surfaces (10(rc + R(ξ)), θ, z) for varying τ (the
radial variable is scaled to improve readability). The colors on the surfaces indicate the values of
V and W .

ature is constant within a region of closed streamlines. This is intuitively reasonable
because both the vorticity and the thermal energy equation are diffusion equations,
for the vorticity and heat, respectively. If we compare the first of equations (3.6) with
the vertical momentum equation for a stratified flow, it can be seen that the azimuthal
velocity V is the equivalent of the temperature. In both cases, the pressure gradient
balances some force, the buoyancy force or the linearized centrifugal force. We will
therefore assume that the axial component of vorticity ∂V

∂R + Ω̄c is constant in the re-
gion of closed flow. This was proved in [19] for the small vorticity case by projecting
onto a plane z = const., and it must be nearly true in general. Integrating now with
respect to R, we obtain the following expression for V (R, ξ) inside the separatrices:

(3.19) V (R, ξ) = (Ω̄c + G0)R + g(ξ),

where G0 is the axial component of vorticity in the original frame of reference. We
fix G0 by matching the velocity V at ξ = 0 and determine g(ξ) by matching V along
the separatrices. It develops that we must take g(ξ) = 0 in order to preserve the
symmetry in our solution.

The determination of W (ξ,R) is less clear cut. As an approximation, we will again
assume that the vorticity, this time the azimuthal component, is constant within the
separatrices. In the critical layer, to lowest order, the azimuthal vorticity is given by
−∂W

∂R , and, as a result, we obtain

(3.20) W (R, ξ) = H0 R + h(ξ),

where H0 and h(ξ) are determined in the same way as their counterparts governing
V and again symmetry requires h(ξ) = 0.

Returning now to the question of changes in the mean flow as the critical layer is
crossed, to account for these we would include O(εβ) mean flow components V̄1(r) and
W̄1(r), say, in equations (2.2). These would then be expanded in Taylor series about
the critical point rc, and additional terms would appear in the matching conditions
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for V and W in (3.7). We included such terms in order to investigate their effect on a
trial and error basis, and, as expected from earlier studies, including these mean flow
jumps does remove some of the discontinuities. Viscosity, however, is still required to
smooth out derivatives in velocity that appear in the equations defining the vorticity.
The results of these experiments are not presented here because the procedure is not
rigorous. It is nonetheless worth mentioning that a sign change in ∂W

∂R seems necessary
to eliminate the discontinuity in W at the corners (R, ξ) = (0,±π). It turned out,
surprisingly, that introducing a jump in the mean flow vorticity gradient Q(r) was the
most effective way to accomplish this; i.e., as a consequence of nonlinearity, a change
in V̄ can significantly modify the behavior of W .

4. The eigenvalue problem. We now outline the procedure for solving (2.5)
numerically for neutral modes with no phase change across the critical point. Results
will be presented for the Lamb–Oseen vortex profile V̄ (r) = (1 − e−r2

)/r. The range
of integration is from r = 0 to r → ∞, and, because (2.5) has a regular singular point
at r = 0 and an irregular singular point at infinity, series solutions are required at
both ends. A Runge–Kutta method was used to carry out the integration.

Near the origin, the solution can be represented by a Frobenius expansion having
the form

u = u0 r
|m|−1 [1 + ζ1r

2 + O(r4)],

so that the radial perturbation velocity vanishes at the center of the vortex except in
the case m = 1, the so-called bending mode, and then is continuous. Far from the
center of the vortex, the velocity profile can be approximated as a potential vortex so
that V̄ ∼ r−1. For a potential vortex, the pressure perturbation satisfies a modified
Bessel equation (see pp. 341–342 of [1]) so that the pressure can be approximated
using the asymptotic expansion for Km, the solution that decays exponentially. To
determine an expression for u valid for large r, the asymptotic result for p can then
be substituted into the first two equations of the system (2.3) to obtain

u ∼ u∞
e−kr

√
kr

(
1 +

κ1

kr
+

κ2

k2r2
+ O[(kr)−3]

)
.

Near the critical layer, we employ a linear combination of the two Frobenius
solutions, as in (2.6) and (2.7). Using the above conditions to initiate the integration,
we integrate toward the critical layer from either side. All variables are real, and if
we let 2 η = |r − rc| and choose B = 1 as the arbitrary constant, then as the critical
layer is approached from the vortex center, we write

u(η−) = Au+(η−) + u−(η−) or else u(η+) = Au+(η+) + u−(η+)

if the critical layer is approached from outside. Requiring u′/u, as well as the constant
A to be the same on either side of the critical layer, gives us enough conditions to
determine the constants u0 and u∞, as well as the dispersion relation ω(k) for a given
value of m.

In Figure 4.1, a dispersion curve is illustrated for the bending mode m = 1. The
local Richardson number at the critical point is also shown. The bending mode is the
most important, and it is clear from Figures 5 and 11 of Leweke and Williamson [25]
that this is the mode that arises naturally in their experiments. Because the m = 1
mode essentially disappears in the k = 0 limit treated in [14] and [15], the importance
of generalizing the theory to helical modes is evident. The solutions that we obtained
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Fig. 4.1. The dispersion relation ω(k) and Richardson number at the critical point defined in
(2.8) for the m = 1 bending mode.
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Fig. 4.2. Variation of the frequency and decay rate ωi as a function of wavenumber according
to linear theory for a Lamb–Oseen vortex V̄ (r) =

(
1 − exp(−r2)

)
/r.

for m ≥ 2 had very large values of k, never being smaller than 7.80. Given that short
waves are damped by viscosity this is likely the reason that they are not observed in
the experiments.

To compare the results when there is a phase change with those in Figure 4.1, we
have written a program that avoids the singularity in (2.5) by indenting the contour of
integration. Because γ′

c is negative, the integration path passes above the singularity
in the complex r plane, corresponding to the viscous limit as Re → ∞ or to the initial
value problem as t → ∞. The damping rate is quite large for long waves, but it is
small for k ≥ 1.20. This may mean that it takes very little nonlinearity to generate a
neutral mode if the wavelength is not long. The reason that the frequencies in Figures
4.1 and 4.2 are not far apart for k ≥ 1.4 is that rc ≥ 2.8 and the singularity is weak
that far from the center of the vortex. It is practically a potential vortex there, so
how the singularity is crossed has little effect on the frequency for a given wavelength.

5. Conclusions. The differential equation governing the eigenvalue problem for
helical waves propagating on a vortex has a critical point singularity if for some value
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of r the frequency ω = mΩ̄(r), where Ω̄(r) is the angular velocity of the vortex. Our
paper treats the class of waves for which this condition is satisfied and for which ε,
a dimensionless amplitude parameter, is small enough so that linear theory is a good
approximation outside a thin critical layer. At high Reynolds numbers, however,
we have shown that nonlinear effects cannot be neglected in this layer even if ε is
very small. Whether nonlinearity or viscosity is dominant depends on the parameter
λ = 1/(Re ε3β), where 1/2 > β > 2/3. It can be recognized that λ1/3 is the ratio of
the viscous to the nonlinear critical layer thickness, so the conditions for validity of
the classical viscous theory are not only ε � 1 but εβ � Re−1 as well. This limits
the role of the linear viscous theory to laboratory experiments, where the Reynolds
number is much smaller than in such applications as aircraft trailing vortices.

In our analysis of the nonlinear critical layer, the similarities were noted between
the helical modes on a vortex and the propagation of nonlinear waves in a stratified
shear flow. This enabled us to benefit from the knowledge gained in studies of the
latter. In particular, we know that the scaling and details of the matching depend
very much on the value of Jc, the local Richardson number at the critical point (i.e.,
the equivalent local Richardson number defined in (2.8) above). There are three
different regimes corresponding to Jc greater than 1/4, Jc less than 1/4, and finally
Jc ∼ O(ε1/2). Even for the stratified shear flow critical layer, however, questions
remain to be answered about the mean flow distortion because only the cases of
Jc ∼ O(ε1/2) [21] and Jc > 1/4 [22] have been treated.

The system of four coupled PDEs that govern the nonlinear critical layer was
derived in section 3, and these equations are the same in all three regimes. The
matching conditions, however, are different in the three cases. We have focused pri-
marily on the Richardson number less than 1/4 case, but for some vortex profiles the
case Jc > 1/4 may also be of interest, particularly if there is some external forcing.
An analytical solution of the inviscid governing equations was found by the method
of characteristics in section 3.1, and this solution shows that the problem is highly
nonlinear. One measure of the nonlinearity is that within the critical layer, all the
higher harmonics are the same order of magnitude as the fundamental perturbation
mode. Another is that there are discontinuities in the mean flow, particularly in the
axial velocity induced by the wave. While vortex sheets are often employed as models
in inviscid fluid dynamics, in real flows a thin shear layer is present in which viscosity
is required to smooth out the discontinuity.

An analysis of the case where Qc, the vorticity, is small at the critical point [19]
confirmed that both the azimuthal and axial vorticity components are different on
either side of the critical layer. The complexity of that analysis made it clear that a
numerical solution of equations (3.6) including viscosity, i.e., with λ ∼ O(1), would
be desirable in order to avoid having to deal with higher order terms in both the
inner and outer expansions. We have initiated such a study and have been successful
in obtaining solutions of (3.6) for moderate values of λ. Dealing with small values,
however, is a computational challenge that will be overcome only after we have devised
a way to solve (3.6) and (3.7) as a boundary value problem. That means finding a
way to impose the asymptotic behavior below the critical layer without knowing the
phase change in advance, as was done by Haberman [26] for the unstratified parallel
shear flow, where the singularity, being logarithmic, is not as strong.

To conclude, we address the question of observability of the nonlinear waves
described in this paper, whether in the atmosphere, the laboratory, or in numeri-
cal simulations. The mathematical similarities to the corresponding stratified shear
flow problem make this the obvious place to look for some idea of what might be
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expected. Stratified shear flows with nonlinear critical layers have a structure resem-
bling radar observations of what meteorologists call Kelvin–Helmholtz billows (see
section 3 of [20]). Despite the fact that these billows contain localized turbulent lay-
ers, the large scale coherence of the wave is maintained. However, in the laboratory it
has not yet been possible to achieve large enough Reynolds numbers to compare with
the theory. As a consequence, its greatest utility has been in numerical simulations,
where structural details first revealed by the nonlinear critical layer theory appeared
several years later in computational work (see section 5 of [12] and section 4.6 of [27]).

Despite the mathematical analogies, the physical context is sufficiently different
that it is not clear to what extent experience with stratified shear flows can be extrap-
olated to the trailing vortex problem. In the latter case, even though the flow is often
laminar in the vortex core, its environment and upstream history are such that it is
likely to be turbulent elsewhere in an aircraft wake. Of course, nonlinear waves play a
role in some turbulence theories, but it would be difficult to identify a nonlinear wave
in observations because of the danger in making detailed measurements. Numerical
simulations are a possibility, but the Reynolds numbers are too low in computations
reported to date. It would appear, therefore, that experiments offer the most promise.
The paper by Delisi and Robins [28] reports an investigation to determine the effect
of stratification on the trajectory of a pair of vortices. There is a table in their pa-
per giving the Reynolds numbers for experiments reported in several papers. These
are all large enough so that with only a slight forcing, a wave could be generated
satisfying the requirements of our theory, and such experiments are currently under
consideration. Suppose we consider a small perturbation with ε = 0.03 at the value
Re = 2.5 · 104 of the experiments in [28]. The calculation is not sensitive to the value
of β; using Jc = 0.09 to compute β, we find that λ = 0.01, which is clearly in the
nonlinear critical layer regime.

Appendix: Variation of the Reynolds stress. It is well known in hydrody-
namic stability theory that valuable information about neutral modes can be obtained
by evaluating the Reynolds stress for an unstable perturbation and then taking the
limit as the growth rate tends to zero. From the energy equation for an unstable
perturbation, as discussed in the review article by Stuart [29], it can be seen that the
energy exchange between the mean flow and the perturbation is given by the integral

E = −
∫ r1

0

Ω̄
′
(r)UrUθ r

2 dr,

where the Reynolds stress τ = −UrUθ. In this appendix we use capital letters for the
velocity fluctuations, as in most texts on turbulence. The overline signifies an average
over one wavelength in ξ, and we write the radial perturbation velocity as

Ur = Ûr (r) ei ξ + Û∗
r (r) e− i ξ,

where ∗ indicates the complex conjugate.
The complex amplitude Ûr is a combination of the two Frobenius solutions

Ûr = AX+(r) + BX−(r),

where X+ and X− are identical to the series u± in (2.6) and (2.7) above. The reason
for changing our notation is to agree with that used by Miles [18] in order to permit
comparison with his very similar development for stratified shear flows. One small
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difference is that, owing to the cylindrical geometry, the lower limit of our domain is
r = 0.

In order to compute τ , the Reynolds stress, we need an expression for Ûθ (r). The
system (2.3) yields a simple relationship between Ûθ (r) and Ûr (r), namely,

Ûθ = S

[
k2Q

γ
+

m

r
D∗

]
Ûr.

Using this expression now for Ûθ, the Reynolds stress can be expressed in terms of
the Frobenius solutions as follows:

τ = 2S(r)
m

r
Im

[
Û

′

rÛ
∗
r

]
= 2S(r)

m

r
Im

[
|A|2X∗+X

′+ + |B|2X∗−X
′− + A∗BX∗+X

′− + AB∗X∗−X
′+
]
.

The differential equation satisfied by the Reynolds stress is

d τ

d r
= 2mD

(
S(r)

r

)
Im(Û

′

rÛ
∗
r ) − 2

m

r
S(r) Im

[
Û

′′

r Û
∗
r

]
= −4m

S(r)

r2
Im

[
Û

′

rÛ
∗
r

]

= −2
τ

r
, which is readily integrated to obtain τ(r) =

τ0
r2

.

The r−2 behavior of τ contrasts with the case of a parallel shear flow, where τ =
const.; however, in both cases we must consider the possibility of the constant being
discontinuous across rc, as in the case of the Blasius boundary layer, for example.

For the vortices that are of primary interest in this paper, τ0 = 0 for r < rc,
because the Reynolds stress must be finite at r = 0. And, with the exception of the
limiting case Jc → 0, the Frobenius solutions (2.7) show that τ = 0 at the critical
point. Therefore, we must also have τ0 = 0 for r > rc. If Jc is less than 1/4, the
Reynolds stress near the critical point is given by

−UrUθ = 2νmrc
S(rc)

r2
Im[AB∗], r > rc,

and −UrUθ = 2νmrc
S(rc)

r2
Im[AB∗ e−iπ(1+ν)], r < rc.

It follows that either A = 0 or B = 0, as was shown by Miles for stratified shear flows.

For Jc > 1/4, on the other hand, the corresponding expressions are

−UrUθ = −μmrc
S(rc)

r2
(|B|2 − |A|2), r > rc,

and −UrUθ = −μmrc
S(rc)

r2
(|A|2eπμ − |B|2e−πμ), r < rc,

where μ = (4Jc − 1)1/2. The stress is zero when |B| = |A| eπμ. Finally, if there is no
phase change, as is the case when the critical layer is nonlinear, the constants A and
B are real, so a neutral mode can be a linear combination of both Frobenius solutions.
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PARTIALLY REFLECTED DIFFUSION∗

A. SINGER† , Z. SCHUSS‡ , A. OSIPOV§ , AND D. HOLCMAN¶

Abstract. The radiation (reactive or Robin) boundary condition for the diffusion equation is
widely used in chemical and biological applications to express reactive boundaries. The underlying
trajectories of the diffusing particles are believed to be partially absorbed and partially reflected at
the reactive boundary; however, the relation between the reaction constant in the Robin boundary
condition and the reflection probability is not well defined. In this paper we define the partially
reflected process as a limit of the Markovian jump process generated by the Euler scheme for the
underlying Itô dynamics with partial boundary reflection. Trajectories that cross the boundary are
terminated with probability P

√
Δt and otherwise are reflected in a normal or oblique direction.

We use boundary layer analysis of the corresponding master equation to resolve the nonuniform
convergence of the probability density function of the numerical scheme to the solution of the Fokker–
Planck equation in a half-space, with the Robin constant κ. The boundary layer equation is of the
Wiener–Hopf type. We show that the Robin boundary condition is recovered if and only if trajectories
are reflected in the conormal direction σn, where σ is the (possibly anisotropic) constant diffusion
matrix and n is the unit normal to the boundary. Otherwise, the density satisfies an oblique derivative
boundary condition. The constant κ is related to P by κ = rP

√
σn, where r = 1/

√
π and σn = nTσn.

The reflection law and the relation are new for diffusion in higher dimensions.

Key words. stochastic differential equations, reactive boundary condition, Markovian jump
process, Wiener–Hopf boundary layer equation
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1. Introduction. The Fokker–Planck equation (FPE) with radiation (also
called reactive or Robin) boundary conditions is widely used to describe diffusion
in a biological cell with chemical reactions on its surface [1], [2], [3], [4], [5], [6], [7],
[8], [9]. The Robin boundary conditions are used in [2], [4], [5], [6] as a homoge-
nization of mixed Dirichlet–Neumann boundary conditions given on scattered small
absorbing windows in an otherwise reflecting boundary. The mixed boundary condi-
tions may represent, e.g., ligand binding or pumping out ions at sites on the boundary
of a biological cell and no flux through the remaining boundary. The reactive rate
constant in the Robin boundary conditions is chosen in the homogenization process
so that the decay rate of the survival probability is the same as that in the mixed
Dirichlet–Neumann boundary value problem.

The definition of the Itô stochastic dynamics

(1.1) ẋ = a(x, t) +
√

2σ(x, t) ẇ
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on the positive axis with total or partial reflection at the origin was given first by
Feller [10] for the one-dimensional case with a(x, t) and σ(x, t) independent of t, as a
limit of Itô processes, which are terminated when they reach the boundary or moved
instantaneously to a point x = ρj > 0 with probability pj . When pj → 1 and ρj → 0
with

(1.2) lim
j→∞

1 − pj
ρj

= c,

where c is a constant, the partially reflected process converges to a limit. The
transition probability density function (pdf) of the limit process, p(y, t |x, s) dy =
Pr{x(t) ∈ (y, y + dy) | x(s) = x}, is the solution of the FPE

(1.3)
∂p(y, t |x, s)

∂t
= −∂[a(y, t)p(y, t |x, s)]

∂y
+

∂2[σ(y, t)p(y, t |x, s)]
∂y2

or, equivalently,

∂p(y, t |x, s)
∂t

= −∂J(y, t |x, s)
∂y

for all y, x > 0,

where

(1.4) J(y, t |x, s) = a(y, t)p(y, t |x, s) − ∂[σ(y, t)p(y, t |x, s)]
∂y

,

is the flux. The initial condition is

(1.5) p(y, t |x, s) → δ(y − x) as t ↓ s,

and the radiation boundary condition is

(1.6) −J(0, t |x, s) = κp(0, t |x, s),

where κ is a constant related to the constant c and to the values of the coefficients at
the boundary. The no flux and Dirichlet boundary conditions are recovered if c = 0
or c = ∞, respectively. Feller’s method does not translate into a Brownian dynamics
simulation of the limit process, because his approximations are continuous-time Itô
processes. Skorokhod [11] defines the reflection process inside the boundary. Several
numerical schemes have been proposed for simulating this process (see, e.g., [11],
[12], [13], [14]). The main issue there is to approximate the local time spent on the
boundary.

The definition of a diffusion process with absorbing or reflecting boundaries as
limits of Markovian jump processes, which is the basis for all simulations, gives in the
limit diffusion processes with well-defined boundary behavior. However, the definition
of a diffusion process with partially reflecting boundaries as a limit of Markovian jump
processes gives different diffusions for different jump processes. This is expressed in
different relations between the termination probability of the jump process and the
boundary conditions for the FPEs (see, e.g., [8]). The process x(t) defined by (1.1)
with partially absorbing boundaries can be defined as the limit of the solutions of the
Markovian jump processes generated by the Euler scheme

xΔt(t + Δt) = xΔt(t) + a(xΔt(t), t)Δt +
√

2σ(xΔt(t), t) Δw(t,Δt) for t ≥ s,(1.7)

xΔt(s) = x(1.8)
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in the interval x > 0, for 0 ≤ t − s ≤ T , with Δt = T/N , t − s = iT/N (i =
0, 1, . . . , N), where for each t the random variables Δw(t,Δt) are normally distributed
and independent with zero mean and variance Δt. The partially absorbing boundary
condition for (1.7) has to be chosen so that the pdf pΔt(x, t) of xΔt(t) converges to the
solution of (1.3)–(1.6). At a partially reflecting boundary for (1.7), the trajectories
are reflected with probability (w.p.) R and otherwise terminated (absorbed), once
they cross the origin. We show below that keeping R constant (e.g., R = 1/2) as
Δt → 0 leads to the convergence of the pdf pΔt(x, t) to the solution of the FPE
with an absorbing rather than the Robin boundary condition. Thus the reflection
probability R must increase to 1 as Δt → 0 in order to yield the Robin condition
(1.6). Moreover, the reactive constant κ is related to the limit

(1.9) lim
Δt→0

1 −R√
Δt

= P.

The reflecting boundary condition is recovered for P = 0, while the absorbing bound-
ary condition is obtained for P = ∞. Motivated by these considerations, we design
the following simple boundary behavior for the simulated trajectories that cross the
boundary, identified by xΔt(t) + a(xΔt(t), t)Δt +

√
2σ(xΔt(t), t) Δw < 0:

(1.10)

xΔt(t + Δt) =

{
−(xΔt(t) + a(xΔt(t), t)Δt +

√
2σ(xΔt(t), t) Δw) w.p. 1 − P

√
Δt,

terminate trajectory otherwise.

The exiting trajectory is normally reflected w.p.

(1.11) R = 1 − P
√

Δt

and is otherwise terminated (absorbed). The scaling of the termination probability
with

√
Δt reflects the fact that the discrete unidirectional diffusion current at any

point, including the boundary, is O(1/
√

Δt) (see [15], [16]). This means that the
number of discrete trajectories hitting or crossing the boundary in any finite time
interval increases as 1/

√
Δt. Therefore, to keep the efflux of trajectories finite as

Δt → 0, the termination probability of a crossing trajectory, 1−R, has to be O(
√

Δt).
The pdf pΔt(x, t), however, does not converge to the solution p(x, t) of (1.3)–(1.6) on
the boundary, as discussed in section 2. This is due to the formation of a boundary
layer, as is typical for diffusion approximations of Markovian jump processes that
jump over the boundary [17], [18], [19]. The boundary layer equations are typically
Wiener–Hopf integral equations. The Wiener–Hopf boundary layer equation for the
particular case of a partially reflected Brownian motion on the positive axis (i.e.,
a(x, t) = 0 and σ(x, t) = σ in (1.7)) was recently solved in [8], and the relationship
κ = P

√
σ/

√
π was found.

The convergence of the pdf of an Euler scheme has been studied in [20], [21] for
the higher-dimensional problem with oblique reflection. Bounds on the integral norm
of the approximation error are given for the solution of the backward Kolmogorov
equation. These, however, do not resolve the boundary layer of the pdf of the numer-
ical solution. The solution of the forward equation for the Euler scheme converges
nonuniformly to the solution of the FPE due to the appearance of a boundary layer in
the first order spatial derivative. This distorts the boundary flux and gives incorrect
boundary conditions. A boundary layer expansion is needed to capture the boundary
phenomena.
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The derivation of the radiation condition has a long history. Collins and Kim-
ball [22] (see also [23]) derived the radiation boundary condition (1.6) for the limit
p(x, t) = limΔt→0 pΔt(x, t) from an underlying discrete random walk model on a semi-
infinite one-dimensional lattice with partial absorption at the endpoint. Their model
assumes constant diffusion coefficient and vanishing drift, for which they find the re-
active constant in terms of the absorption probability and the diffusion coefficient.
Previous simulation schemes that recover the Robin boundary condition [1], [24], [25],
[26], [27] make use of the explicit solution to the half-space FPE with linear drift term
and constant diffusion coefficient with a Robin condition. In [28] and the references
therein, the specular reflection method near a reflecting boundary has been shown to
be superior to other methods such as rejection, multiple rejection, and interruption.

An apparent paradox arises when using (1.7) and other schemes: while the pdf
pΔt(y, t |x, s) of the solution of (1.7), (1.8), (1.10), (1.11) converges to the solution
of the FPE (1.3) and the initial condition (1.5), each approximant pΔt(y, t |x, s) does
not satisfy the boundary condition (1.6), not even approximately; that is, the error
does not decay as Δt → 0. For a general diffusion coefficient and drift term, the
boundary condition is not satisfied even for the case of a reflecting boundary condi-
tion. This problem plagues other schemes as well. The apparent paradox is due to
the nonuniform convergence of pΔt(y, t |x, s) to the solution p(y, t |x, s) of the FPE,
caused by a boundary layer in pΔt(y, t |x, s), as is typical of boundary behavior of
diffusion approximations to Markovian jump processes. The limit p(y, t |x, s), how-
ever, satisfies the boundary condition (1.6) for some κ. Our analysis can be extended
to other schemes in a straightforward way. It is well known that the Euler scheme
produces an O(

√
Δt) error in estimating the mean first passage time to reach an

absorbing boundary. There are several recipes to reduce the discretization error to
O(Δt) [29], [30], [31], [32], [33]. Another manifestation of the boundary layer is that
the approximation error of the pdf near absorbing or reflecting boundaries is O(

√
Δt),

and some methods, including [1], [34], reduce this error to O(Δt). Thus, we expect
the formation of a boundary layer of size O(

√
Δt) for the Euler scheme (1.7) with the

boundary behavior (1.10).
This paper is concerned with the convergence of the partially reflecting Markovian

jump process generated by (1.7), (1.10) in one and higher dimensions. We show that
this scheme, with the additional requirement that the pdf converges to the solution
of the FPE with a given Robin boundary condition, defines a unique diffusion process
with partial reflection at the boundary. This definition is then generalized to higher
dimensions. In contrast to Collins and Kimball’s [22] discrete scheme, this definition
is not restricted to lattice points, and the drift and diffusion coefficients may vary.
The advantage of the current suggested design (1.10) is its simplicity, which is both
easily and efficiently implemented and amenable to analysis. There is no need to
make any assumptions on the structure of the diffusion coefficient or the drift. From
the theoretical point of view, it serves as a physical interpretation for the behavior of
diffusive trajectories near a reactive boundary.

Our main result in the one-dimensional case is the relation between the reactive
“constant” κ(t) and the absorption parameter P for the dynamics (1.1) on the positive
axis with drift and with a variable diffusion coefficient,

(1.12) κ(t) = rP
√
σ(0, t), r =

1√
π
.

The relation (1.12) is new for diffusion with variable coefficients. The value r = 1/
√
π

is different from values obtained for other schemes, e.g., from the value r = 1/
√

2,
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predicted by the discrete random walk theory of radiation boundaries [22]. Values of
r for other schemes are given in [8]. We show the effect of using (1.12) in numerical
simulations.

The scheme (1.10) is generalized to diffusion with drift and anisotropic constant
diffusion matrix σ(t) in the half-space, x1 > 0, with partial oblique reflection. We
show that the Robin boundary condition is recovered if and only if trajectories are
reflected in the direction of the unit vector

(1.13) v =
σn

‖σn‖ ,

where n is the unit normal to the boundary. The radiation parameter κ(x, t) in
the d-dimensional Robin boundary condition and the absorption parameter P (x) are
related by

(1.14) κ(x, t) = rP (x)
√
σn(t), x1 = 0,

with r given in (1.12) and σn(t) = nTσ(t)n. The relation (1.14) is new for higher-
dimensional diffusion in a half-space with drift and anisotropic diffusion matrix.

In the most common case of constant isotropic diffusion our result extends to
domains with curved boundaries. This is due to the fact that a smooth local mapping
of the domain to a half-space with an orthogonal system of coordinates preserves
the constant isotropic diffusion matrix, though the drift changes according to Itô’s
formula. In this case the vector v coincides with the normal n.

2. Boundary layer analysis in one dimension. The aim of the boundary
layer analysis below is to examine the convergence of the pdf pΔt(y, t |x, s) of the
solution xΔt(t) of (1.7), (1.8) to the solution p(y, t |x, s) of (1.3)–(1.6), and to find
the relation between the parameter P of (1.10) and the reactive constant κ in (1.6).
Using abbreviated notation, the pdf pΔt(y, t |x, s) = pΔt(y, t) satisfies the forward
Kolmogorov equation [15], [16], [17], [18], [19], [35]

pΔt(y, t + Δt) =

∫ ∞

0

pΔt(x, t)√
4πσ(x, t)Δt

{
exp

[
− (y − x− a(x, t)Δt)

2

4σ(x, t)Δt

]

+ (1 − P
√

Δt) exp

[
− (y + x + a(x, t)Δt)

2

4σ(x, t)Δt

]}
dx.(2.1)

For P = 0 the pdf pΔt(y, t) satisfies the boundary condition

(2.2)
∂pΔt(0, t)

∂y
= 0,

which is obtained by differentiation of (2.1) with respect to y at y = 0. If P 
= 0, we
obtain

(2.3)
∂pΔt(0, t + Δt)

∂y
=

pΔt(0, t)P√
4πσ(0, t)

+ O(
√

Δt),

which holds also in the limit Δt → 0. However, the order of the limits Δt → 0 and
y ↓ 0 matters; indeed,

(2.4) lim
Δt→0

lim
y↓0

∂pΔt(y, t)

∂y

= lim

y↓0
lim

Δt→0

∂pΔt(y, t)

∂y
.
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The limit of (2.3) is not the boundary condition that the limit function p(y, t) =
limΔt→0 pΔt(y, t) (for y > 0) satisfies. To find the boundary condition of p(y, t), in
either case P = 0 or P 
= 0, we show below that p(y, t) satisfies the FPE (1.3) and
the initial condition (1.5) for all y > 0. Since for P = 0 the simulation preserves
probability (the population of trajectories),

(2.5) 0 =
d

dt

∫ ∞

0

p(x, t) dx = −∂[σ(0, t)p(0, t)]

∂y
+ a(0, t)p(0, t) = J(0, t).

Equation (2.5) is the no flux boundary condition. The discrepancy between (2.5) and
(2.2) is due to the nonuniform convergence of pΔt(y, t) to its limit p(y, t) in the interval.
There is a boundary layer of width O(

√
Δt), in which the boundary condition (2.2) for

pΔt(y, t) changes into the boundary condition (2.5) that p(y, t) satisfies. To analyze
the discrepancy between (2.2) and (2.5), we introduce the local variable y = η

√
Δt

and the boundary layer solution

(2.6) pBL(η, t) = pΔt(η
√

Δt, t).

Changing variables x = ξ
√

Δt in the integral (2.1) gives

pBL(η, t + Δt) =

∫ ∞

0

pBL(ξ, t)√
4πσ(ξ

√
Δt, t)

⎧⎪⎨
⎪⎩exp

⎡
⎢⎣−
(
η − ξ − a(ξ

√
Δt, t)

√
Δt
)2

4σ(ξ
√

Δt, t)

⎤
⎥⎦

+ (1 − P
√

Δt) exp

⎡
⎢⎣−
(
η + ξ + a(ξ

√
Δt, t)

√
Δt
)2

4σ(ξ
√

Δt, t)

⎤
⎥⎦
⎫⎪⎬
⎪⎭ dξ.(2.7)

The boundary layer solution has an asymptotic expansion in powers of
√

Δt:

(2.8) pBL(η, t) ∼ p
(0)
BL(η, t) +

√
Δt p

(1)
BL(η, t) + Δt p

(2)
BL(η, t) + · · · .

Expanding all functions in (2.7) in powers of
√

Δt and equating similar orders, we
obtain integral equations that the asymptotic terms of (2.8) must satisfy. The leading
order O(1) term gives the Wiener–Hopf-type equation on the half-line

(2.9) p
(0)
BL(η, t) =

∫ ∞

0

p
(0)
BL(ξ, t)√
4πσ(0, t)

{
exp

[
− (η − ξ)2

4σ(0, t)

]
+ exp

[
− (η + ξ)2

4σ(0, t)

]}
dξ

for η > 0. The kernel

(2.10) K(η, ξ) = exp

[
− (η − ξ)2

4σ(0, t)

]
+ exp

[
− (η + ξ)2

4σ(0, t)

]

is an even function of η and ξ; i.e., K(η, ξ) = K(−η, ξ) = K(η,−ξ) = K(−η,−ξ).

Therefore, we extend p
(0)
BL(ξ, t) to the entire line as an even function (p

(0)
BL(ξ, t) =

p
(0)
BL(−ξ, t)) and rewrite (2.9) as

(2.11) p
(0)
BL(η, t) =

∫ ∞

−∞

p
(0)
BL(ξ, t)√
4πσ(0, t)

exp

[
− (η − ξ)2

4σ(0, t)

]
dξ
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for −∞ < η < ∞. The only solution of the integral equation (2.11) is the constant

function, that is, p
(0)
BL(η, t) = f(t), independent of η. This follows immediately from

the Fourier transform of (2.11), whose right-hand side is a convolution.
Away from the boundary layer the solution admits an outer solution expansion

(2.12) pOUT (y, t) ∼ p
(0)
OUT (y, t) +

√
Δtp

(1)
OUT (y, t) + · · · ,

where p
(0)
OUT satisfies the Fokker–Planck equation (1.3) and the initial condition (1.5).

Indeed, the integrals in (2.1) are of Laplace type with the small parameter Δt. For
interior points y �

√
Δt, the second integral, which represents only boundary inter-

actions, is negligible relative to the first. We change variables in (2.1) by setting

η =
y − x− a(x, t)Δt√

2σ(x, t)Δt
,

and extend integration over the entire line in the first integral and expand all functions
in powers of

√
Δt. The resulting integrals are moments of the normal distribution.

We obtain

pΔt(y, t + Δt) − pΔt(y, t)

Δt
= −∂[a(y, t)pΔt(y, t)]

∂y
+

∂2[σ(y, t)pΔt(y, t)]

∂y2
+ O(

√
Δt).

The leading term in the expansion of pΔt(y, t) is p
(0)
OUT (y, t), which therefore satisfies

the Fokker–Planck equation (1.3). The initial condition (1.5) is recovered from the

Gaussian integral as Δt → 0. The boundary condition that p
(0)
OUT (y, t) satisfies can

be determined only after the boundary layer is resolved by matching. The leading
order matching condition of the boundary layer and the outer solutions is

lim
η→∞

p
(0)
BL(η, t) = p

(0)
OUT (0, t).

Therefore

(2.13) p
(0)
BL(η, t) = p

(0)
OUT (0, t).

The matching condition at order
√

Δt gives

η
∂p

(0)
OUT (0, t)

∂y
+ p

(1)
OUT (0, t) ∼ p

(1)
BL(η, t) for η → ∞,

which means that p
(1)
BL(η, t) is asymptotically a linear function of η; therefore the limit

of its derivative is a constant. Thus the matching condition reduces to

(2.14) lim
η→∞

∂p
(1)
BL(η, t)

∂η
=

∂p
(0)
OUT (0, t)

∂y
.

The first order boundary layer term satisfies the integral equation

(2.15)

p
(1)
BL(η, t) =

∫ ∞

0

p
(1)
BL(ξ, t)√
4πσ(0, t)

{
exp

[
− (η − ξ)2

4σ(0, t)

]
+ exp

[
− (η + ξ)2

4σ(0, t)

]}
dξ
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− P

∫ ∞

0

p
(0)
BL(ξ, t)√
4πσ(0, t)

exp

[
− (η + ξ)2

4σ(0, t)

]
dξ

− σy(0, t)

2σ(0, t)

∫ ∞

0

p
(0)
BL(ξ, t)√
4πσ(0, t)

ξ

{
exp

[
− (η − ξ)2

4σ(0, t)

]
+ exp

[
− (η + ξ)2

4σ(0, t)

]}
dξ

+
σy(0, t)

4σ(0, t)2

∫ ∞

0

p
(0)
BL(ξ, t)√
4πσ(0, t)

ξ

{
(η − ξ)2 exp

[
− (η − ξ)2

4σ(0, t)

]
+ (η + ξ)2 exp

[
− (η + ξ)2

4σ(0, t)

]}
dξ

+
2a(0, t)

4σ(0, t)

∫ ∞

0

p
(0)
BL(ξ, t)√
4πσ(0, t)

{
(η − ξ) exp

[
− (η − ξ)2

4σ(0, t)

]
− (η + ξ) exp

[
− (η + ξ)2

4σ(0, t)

]}
dξ.

Evaluating explicitly the last four integrals in (2.15) and using (2.13) gives

p
(1)
BL(η, t) =

∫ ∞

0

p
(1)
BL(ξ, t)√
4πσ(0, t)

{
exp

[
− (η − ξ)2

4σ(0, t)

]
+ exp

[
− (η + ξ)2

4σ(0, t)

]}
dξ(2.16)

− P

2
p
(0)
OUT (0, t) erfc

(
η

2
√
σ(0, t)

)

+
σy(0, t) − a(0, t)√

πσ(0, t)
p
(0)
OUT (0, t) exp

[
− η2

4σ(0, t)

]
.

Differentiating (2.16) with respect to η and integrating by parts, we obtain

∂p
(1)
BL(η, t)

∂η
=

1√
4πσ(0, t)

∫ ∞

0

∂p
(1)
BL(ξ, t)

∂η

{
exp

[
− (η − ξ)2

4σ(0, t)

]
− exp

[
− (η + ξ)2

4σ(0, t)

]}
dξ

(2.17)

+
P

2
√
πσ(0, t)

p
(0)
OUT (0, t) exp

[
−η2

4σ(0, t)

]
− σy(0, t) − a(0, t)

2
√
π σ(0, t)3/2

p
(0)
OUT (0, t) η exp

[
−η2

4σ(0, t)

]
.

Setting

(2.18) g(η, t) =
∂p

(1)
BL(η, t)

∂η
− P

2
√
πσ(0, t)

p
(0)
OUT (0, t) exp

[
− η2

4σ(0, t)

]
,

we rewrite (2.17) as
(2.19)

g(η, t) = φ(η, t) +
1√

4πσ(0, t)

∫ ∞

0

g(ξ, t)

{
exp

[
− (η − ξ)2

4σ(0, t)

]
− exp

[
− (η + ξ)2

4σ(0, t)

]}
dξ,

where

φ(η, t) =
P√

8πσ(0, t)
p
(0)
OUT (0, t) exp

[
−η2

8σ(0, t)

]
erf

(
η√

8σ(0, t)

)
(2.20)

− σy(0, t) − a(0, t)

2
√
π σ(0, t)3/2

p
(0)
OUT (0, t) η exp

[
−η2

4σ(0, t)

]
.

Since φ(η, t) is an odd function of η, we can define g(η, t) for negative values as an
odd function by setting g(η, t) = −g(−η, t) for η < 0. Then (2.19) can be rewritten
as

(2.21) g(η, t) = φ(η, t) +
1√

4πσ(0, t)

∫ ∞

−∞
g(ξ, t) exp

[
− (η − ξ)2

4σ(0, t)

]
dξ,
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which in Fourier space is

(2.22) ĝ(k, t) =
φ̂(k, t)

1 − exp[−σ(0, t)k2]
.

Using the Wiener–Hopf method, we decompose

(2.23) ĝ(k, t) = ĝ+(k, t) + ĝ−(k, t),

where g+(η) = g(η)χ[0,∞)(η), g−(η) = g(η)χ(−∞,0](η). The Fourier transform ĝ(k, t)
exists in the sense of distributions, and ĝ±(k, t) are analytic in the upper and lower

halves of the complex plane, respectively. Taylor’s expansion of φ̂(k, t) in (2.20) gives
(2.24)

φ̂(k, t) = 2ip
(0)
OUT (0, t)

{
P
√
σ(0, t)√
π

− [σy(0, t) − a(0, t)]

}
k + O(k3) as k → 0.

The nonzero poles of (2.22) split evenly between ĝ+(k, t) and ĝ−(k, t), and using
ĝ+(k, t) = −ĝ−(−k, t), the pole at the origin gives
(2.25)

ĝ+(k, t) = ip
(0)
OUT (0, t)

{
P√

πσ(0, t)
− σy(0, t) − a(0, t)

σ(0, t)

}
1

k
+ O(k) as k → 0.

Inverting the Fourier transform ĝ+(k, t), by closing the contour of integration around
the lower half-plane, we obtain

(2.26) lim
η→∞

∂p
(1)
BL(η, t)

∂η
= p

(0)
OUT (0, t)

{
P√

πσ(0, t)
− σy(0, t) − a(0, t)

σ(0, t)

}
.

The matching condition (2.14) implies

(2.27)
∂p

(0)
OUT (0, t)

∂y
= p

(0)
OUT (0, t)

{
P√

πσ(0, t)
− σy(0, t) − a(0, t)

σ(0, t)

}
.

Multiplying by σ(0, t) and rearranging, we obtain the radiation boundary condition

(2.28) −J(0, t) =
∂

∂y

[
σ(0, t)p

(0)
OUT (0, t)

]
− a(0, t)p

(0)
OUT (0, t) =

P
√
σ(0, t)√
π

p
(0)
OUT (0, t).

Since p(y, t) = p
(0)
OUT (y, t), the reactive “constant” in (1.6) is

(2.29) κ(t) =
P
√

σ(0, t)√
π

.

3. Numerical simulations in one dimension. The explicit analytical solu-
tion of the FPE (1.3) with the initial condition (1.5) and the radiation boundary
condition (1.6) for the case of vanishing drift (a = 0) and constant diffusion coeffi-
cient (σ(x, t) = σ) was first given by Bryan in 1891 [36] (see [37, sect. 14.2, p. 358]):

p(x, t |x0) =
1√

4πσt

[
exp

{
− (x− x0)

2

4σt

}
+ exp

{
− (x + x0)

2

4σt

}]

− κ

σ
exp

{
κ(x + x0 + κt)

σ

}
erfc

[
x + x0 + 2κt√

4σt

]
.

(3.1)
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The first term in (3.1) is the fundamental solution of (1.3) and (1.5) with a reflecting
boundary condition, whereas the second term may be transformed into

− κ√
πσ3t

∫ ∞

0

exp

{
−κξ

σ

}
exp

{
− (x + x0 + ξ)2

4σt

}
dξ,

which represents the density due to a line of exponentially decreasing sinks extending
from −x0 to −∞. The method of Laplace transforming (1.3) with respect to t was
later employed [1], [38] to obtain explicit analytical solution for the FPE (1.3)–(1.5)
with a constant diffusion coefficient and a (not necessarily vanishing) constant drift
term a(x, t) = a:

p(x, t |x0)

=
1√

4πσt

[
exp

{
− (x− x0 − at)2

4σt

}
+ exp

{
−ax0

σ
− (x + x0 − at)2

4σt

}]

− 2κ + a

2σ
exp

{
ax + κ[x + x0 + (κ + a)t]

σ

}
erfc

[
x + x0 + (2κ + a)t√

4σt

]
.

(3.2)

Setting κ = 0 in (3.2) reduces to Smoluchowski’s [39] explicit analytical solution for a
reflecting boundary with a constant drift term, while setting a = 0 reduces to Bryan’s
solution (3.1).

We conducted several numerical experiments in which n = 107 trajectories were
simulated according to the Euler scheme (1.7) with the boundary behavior (1.10). The
diffusion coefficient was constant σ = 1, and the reactive constant was κ = 1, giving
P =

√
π in (2.29). The trajectories were initially located at x0 = 1, and their statistics

were collected at time t = 1 and compared to the predicted p(x, t = 1 |x0 = 1).
The convergence of the scheme was tested by using four different time steps, Δt =
10−1, 10−2, 10−3, 10−4.

The first experiment corresponds to a vanishing drift a = 0. Figure 1 shows
the convergence of the numerical scheme to the analytic solution (3.1). The rate
of convergence of the numerical scheme to the analytic solution is

√
Δt. This is

demonstrated, for example, by the survival probability

psur(x0, t) =

∫ ∞

0

p(x, t |x0) dx

of finding the trajectory inside the domain at time t, that is, the probability that the
trajectory was not absorbed prior to t. Integrating (3.1) gives psur(1, 1) = 0.77095 . . .
for σ = κ = 1. The survival probability is estimated numerically by the ratio of the
number of survived (unabsorbed) trajectories nsur and the total number of simulated
trajectories n = 107. Table 1 shows that the convergence rate of the estimated sur-
vival probability to its analytic value is

√
Δt, as predicted by our boundary layer

analysis. The statistical estimation (variance) error due to the finite number of simu-
lated trajectories is

√
psur(1 − psur)/n = 0.00013 . . . , which is an order of magnitude

smaller than the smallest (bias) error obtained for Δt = 10−4 (see Table 1).
In the second experiment, the drift term a = −1 shifts the density leftward and

causes more trajectories to react with the boundary. Figure 2 shows the convergence
of the numerical scheme to the analytic solution (3.2).

The final experiment corresponds to a reflecting boundary, P = κ = 0, and a
constant nonvanishing drift toward the boundary a = −1. We simulated n = 108 tra-
jectories to obtain a finer resolution at the boundary. Figure 3 shows a comparison
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Fig. 1. No drift: the analytical solution (3.1) (magenta) and the three numerical densities
Δt = 10−1 (blue), Δt = 10−2 (green), Δt = 10−3 (red) approaching it from below. The numerical
density of Δt = 10−4 is not shown because it is difficult to distinguish it from the analytic density.
(Parameters: σ = κ = x0 = t = 1, a = 0, P =

√
π, n = 107.)

Table 1

Survival probability: the difference between the analytic value of the survival probability psur =
0.77095 . . . and its numerical estimation nsur/n decreases by roughly

√
10 whenever Δt is decreased

by an order of magnitude. (Parameters: σ = κ = x0 = t = 1, a = 0, n = 107.)

Δt nsur psur − nsur/n

10−1 7253450 0.0456
10−2 7577156 0.0132
10−3 7670969 0.0039
10−4 7698523 0.0011

between the analytical solution (3.2) and the numerical densities for Δt = 10−1, 10−2.
The no flux condition J = 0 of a reflecting boundary together with (1.4) gives a neg-
ative boundary derivative, py(0, t) = −p(0, t) < 0. In particular, the analytic solution
(3.2) satisfies py(0, 1) = −p(0, 1) = −(2 +

√
π)/(2

√
π) ≈ −1.06. The numerical densi-

ties, however, are flat at the boundary. Their first derivatives vanish at the boundary,
as predicted in (2.2) and shown in Figure 3. The first derivative changes from 0 to
O(1) on an interval of length O(

√
Δt), manifesting a boundary layer behavior, though

there is no such behavior in the density itself.

4. Diffusion in R
d with partial oblique reflection at the boundary. We

consider the d-dimensional stochastic dynamics

(4.1) ẋ = a(x, t) +
√

2B(t) ẇ

in the half-space

Ω = {x = (x1, x2, . . . , xd) ∈ R
d : x1 > 0},
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Fig. 2. Drift, a = −1: the analytical solution (3.2) (magenta) and the numerical densities
Δt = 10−1 (blue), Δt = 10−2 (green), Δt = 10−3 (red) that approach it from below. (Parameters:
σ = κ = x0 = t = 1, P =

√
π, n = 107.)
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Fig. 3. Drift, a = −1, reflecting boundary P = κ = 0: the analytic solution (3.2) (red) and the
numerical densities Δt = 10−1 (blue) and Δt = 10−2 (green) with n = 108 simulated trajectories to
obtain a finer boundary resolution. (Parameters: σ = κ = x0 = t = 1.)
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where w is a vector of d independent Brownian motions and we assume that the

diffusion tensor σ(t) = B(t)BT (t) is uniformly positive definite for all t ≥ s. The
case of space-dependent diffusion involves many technically complicated calculations
and will be considered in a separate paper. We use henceforth the abbreviation
σ(t) = σ. The radiation condition (1.6) becomes

(4.2) −J(y, t |x, s) · n = κ(y, t)p(y, t |x, s), for y ∈ ∂Ω, x ∈ Ω,

where the components of the flux vector J(y, t |x, s) are defined by

(4.3) Jk(y, t |x, s) = −[ak(y, t)p(y, t |x, s)] +

d∑
j=1

∂

∂yj

[
σj,kp(y, t |x, s)

]
,

where σj,k are the elements of the diffusion matrix σ. The Fokker–Plank equation for
the pdf of x(t) can be written as

(4.4)
∂p(y, t |x, s)

∂t
= −∇y · J(y, t |x, s) for all y,x ∈ Ω.

If x ∈ Ω, but

x′ = x + a(x, t)Δt +
√

2B(t) Δw(t,Δt) /∈ Ω,

the Euler scheme for (4.1) with oblique reflection in ∂Ω reflects the point x′ obliquely
in the constant direction of v to a point x′′ ∈ Ω, as described below. First, we denote
by x′

B the normal projection of a point x′ on ∂Ω, that is, x′
B = x′ − (x′ ·n)n. Then

we write the Euler scheme for (4.1) with partially reflecting boundary as

(4.5) x(t + Δt) =

⎧⎪⎨
⎪⎩

x′ for x′ ∈ Ω,

x′′ w.p. 1 − P (x′
B)

√
Δt if x′ /∈ Ω,

terminate trajectory w.p. P (x′
B)

√
Δt if x′ /∈ Ω.

The value of the termination probability P (x′
B)

√
Δt, which varies continuously in

the boundary, is evaluated at the normal projection of the point x′ on the boundary.
The oblique reflection in the direction of the unit vector v (v1 
= 0) is defined by

(4.6) x′′ = x′ − 2x′
1

v1
v.

Note that x′′
1 = −x′

1 guarantees that the reflected point of a crossing trajectory is
inside the domain Ω. The fact that the normal components of x′′ and x′ are of equal
lengths makes the high-dimensional boundary layer analysis similar to that in one
dimension. Normal reflection corresponds to v = n = (1, 0, . . . , 0).

We note that for a point y ∈ Ω, we can write Pr{x′′ = y} = Pr{x′ = y′}, where

(4.7) y = y′ − 2y′ · n
v1

v

is the oblique reflection of y′ (see Figure 4). Given y, (4.7) defines y′ as

(4.8) y′ = y − 2
y1

v1
v.
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Fig. 4. A simulated trajectory can get from x to y in a single time step Δt in two different
ways: (i) directly from x to y, without crossing the boundary, and (ii) by crossing the boundary from
x to y′ and reflection in the oblique direction v with probability 1−P (y′

B)
√

Δt to y. The reflection
law (4.5)–(4.7) satisfies y′1 = −y1.

As in the one-dimensional case, the forward Kolmogorov equation is

pΔt(y, t + Δt) =

∫
x1>0

pΔt(x, t)

(4πΔt)d/2
√

detσ

{
exp

[
−B(x + a(x, t)Δt,y)

4Δt

]

+ (1 − P (y′
B)

√
Δt) exp

[
−B(x + a(x, t)Δt,y′)

4Δt

]}
dx,(4.9)

where

(4.10) B(x,y) = (x− y)Tσ−1(x− y).

We construct a boundary layer of width O(
√

Δt) in the normal direction to the bound-
ary. The layer extends infinitely in the d− 1 directions tangent to the boundary

(4.11) pBL(η1, y2, . . . , yd, t) = pΔt(η1

√
Δt, y2, . . . , yd, t).

In other words, pBL(η1n+yB , t) = pΔt(η1

√
Δtn+yB , t), where yB = (0, y2, y3, . . . , yd).

As in the one-dimensional case, we assume the asymptotic expansion

(4.12) pBL(η1n + yB , t) ∼ p
(0)
BL(η1n + yB , t) +

√
Δt p

(1)
BL(η1n + yB , t) + · · ·
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and substitute

(4.13) x = yB +
√

Δt ξ

in the integral (4.9). We obtain

pBL(η1n + yB , t + Δt) =

∫
ξ1>0

pBL(ξ1n + yB +
√

Δt ξB , t)

(4π)d/2
√

detσ
(4.14)

×
{

exp

[
−B(ξ + a(yB , t)

√
Δt, η1n)

4

]
+ (1 − P (y′

B)
√

Δt)

× exp

[
−1

4
B
(
ξ + a(yB , t)

√
Δt, η1n− 2η1

v1
v

)]}
dξ + O(Δt).

We calculate separately the integral of the first and second terms in the braces. Sub-
stituting

(4.15) z = σ−1/2(ξ − η1n)

in the first integral of (4.14) transforms the domain of integration into

(4.16) z · ñ > − η1√
σn

,

where ñ = σ1/2n
‖σ1/2n‖ is a unit vector and σn = nTσn = ‖σ1/2n‖2. Similarly, we

transform the second integral by substituting z′ = σ−1/2
(
ξ − η1n + 2η1

v1
v
)
. Using

the expansion (4.12), we obtain at the leading order the integral equation

p
(0)
BL(η1n + yB , t)

=
1

(4π)d/2

∫
z·ñ>− η1√

σn

p
(0)
BL ((η1 +

√
σn z · ñ)n + yB , t) exp

[
−‖z‖2

4

]
dz

+
1

(4π)d/2

∫
z′·ñ>

η1√
σn

p
(0)
BL ((−η1 +

√
σn z

′ · ñ)n + yB , t) exp

[
−‖z′‖2

4

]
dz′.

Integrating in the d− 1 directions orthogonal to ñ yields

p
(0)
BL(η1n + yB , t) =

1√
4π

∫ ∞

− η1√
σn

p
(0)
BL ((η1 +

√
σn u)n + yB , t) exp

[
−u2

4

]
du

+
1√
4π

∫ ∞

η1√
σn

p
(0)
BL ((−η1 +

√
σn u)n + yB , t) exp

[
−u2

4

]
du

=
1√

4πσn

∫ ∞

0

p
(0)
BL (un + yB , t)

{
exp

[
− (u− η1)

2

4σn

]
+ exp

[
− (u + η1)

2

4σn

]}
du.

This is the same leading order integral equation as that of the one-dimensional case
(2.9); thus the solution is independent of η1, and matching to the outer solution gives

(4.17) p
(0)
BL(η1n + yB , t) = p

(0)
OUT (yB , t).
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To evaluate the O(
√

Δt) terms, we expand in the first integral in (4.14)

B(ξ + a(yB , t)
√

Δt, η1n) = (ξ − η1n) · σ−1(ξ − η1n)

+
√

Δt 2a(yB , t) · σ−1(ξ − η1n),(4.18)

and in the second integral

B
(
ξ + a(yB , t)

√
Δt, η1n− 2η1

v1
v

)
=

(
ξ − η1n +

2η1

v1
v

)
· σ−1

(
ξ − η1n

2η1

v1
v

)

+
√

Δt 2a(yB , t) · σ−1

(
ξ − η1n

2η1

v1
v

)
.(4.19)

The O(
√

Δt) contribution of the drift term for the first exponential term is

−1

4

∫
ξ1>0

p
(0)
OUT (yB , t)

(4π)d/2
√

detσ
exp

{
−B(ξ, η1n)

4

}[
2a(yB , t) · σ−1(ξ − η1n)

]
dξ

= −1

4

p
(0)
OUT (yB , t)√

4π
2a(yB , t) · σ−1/2ñ

∫ ∞

−η1/
√
σn

ue−u2/4 du

= −1

2

p
(0)
OUT (yB , t)√

πσn
a(yB , t) · n exp

{
−η2

1

4σn

}
.(4.20)

The second exponential has the same contribution, so the overall contribution of the
drift to the O(

√
Δt) term is

(4.21) −p
(0)
OUT (yB , t)√

πσn
a(yB , t) · n exp

{
−η2

1

4σn

}
.

Now, we expand

p
(0)
BL

(
(η1 +

√
σn z · ñ)n + yB +

√
Δt (σ1/2z)B , t

)
= p

(0)
BL ((η1 +

√
σn z · ñ)n + yB , t)

(4.22)

+
√

Δt∇p
(0)
BL ((η1 +

√
σn z · ñ)n + yB , t) · (σ1/2z)B + O(Δt).

Together with (4.17), the expansion (4.22) reduces to

p
(0)
BL

(
(η1 +

√
σn z · ñ)n + yB +

√
Δt (σ1/2z)B , t

)
= p

(0)
OUT (yB , t) +

√
Δt∇p

(0)
OUT (yB , t) · (σ1/2z)B + O(Δt).

Integrating as above, we obtain the O(
√

Δt) integral equation as

p
(1)
BL(η1n + yB , t)

=
1√

4πσn

∫ ∞

0

p
(1)
BL (un + yB , t)

{
exp

[
− (u− η1)

2

4σn

]
+ exp

[
− (u + η1)

2

4σn

]}
du

− P (y′
B) p

(0)
OUT (yB , t)√
4πσn

∫ ∞

0

exp

[
− (u + η1)

2

4σn

]
du

+
1√
4π

∫ ∞

η1√
σn

∇p
(0)
OUT (yB , t) ·

(
2σ1/2uñ− 2η1

v1
v

)
B

exp

[
−u2

4

]
du

− p
(0)
OUT (yB , t)√

πσn
a(yB , t) · n exp

{
−η2

1

4σn

}
.
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Differentiating with respect to η1 and integrating by parts (as was done in the one-
dimensional case), we arrive at the integral equation

∂p
(1)
BL(η1n + yB , t)

∂n

=
1√

4πσn

∫ ∞

0

∂p
(1)
BL (un + yB , t)

∂n

{
exp

[
− (u− η1)

2

4σn

]
− exp

[
− (u + η1)

2

4σn

]}
du

− P (y′
B) p

(0)
OUT (yB , t)√
4πσn

exp

[
−η2

1

4σn

]

+ ∇p
(0)
OUT (yB , t) ·

⎧⎨
⎩− 1

√
πσn

[
σn

σn
− v

v1

]
η1 exp

[
−η2

1

4σn

]
− v

erfc
(

η1

2
√
σn

)
v1

⎫⎬
⎭

B

+
p
(0)
OUT (yB , t)√

πσn
a(yB , t) · n

η1

2σn
exp

[
−η2

1

4σn

]
.

The Wiener–Hopf method requires the extension of the erfc function discontinuously

as an odd function, that is, to define ẽrfc(x) = sgn(x) erfc(|x|). Following the calcu-
lations of the one-dimensional case, it remains to determine the small k behavior of

the Fourier transform of ẽrfc(x). Using

(4.23)

∫ ∞

−∞
ẽrfc

(
η

2
√
σn

)
exp{ikη} dη ∼ 2ik

∫ ∞

0

erfc

(
η

2
√
σn

)
η dη = 2ikσn,

we obtain, as in (2.24),

φ̂(k) ∼ 2ik

{
P (y′

B) p
(0)
OUT (yB , t)

√
σn√

π
− 2σn∇p

(0)
OUT (yB , t) ·

[
σn

σn
− v

2v1

]
B

+ p
(0)
OUT (yB , t)a(yB , t) · n

}
as k → 0.

Therefore,

lim
η1→∞

∂p
(1)
BL(η1n + yB , t)

∂n

=

{
P (y′

B) p
(0)
OUT (yB , t)√
πσn

− 2∇p
(0)
OUT (yB , t) ·

[
σn

σn
− v

2v1

]
B

+ p
(0)
OUT (yB , t)

a(yB , t) · n
σn

}
.

Combining with the matching condition

(4.24) lim
η→∞

∂p
(1)
BL(η1n + yB , t)

∂n
=

∂p
(0)
OUT (yB , t)

∂n
,

we obtain

∂p
(0)
OUT (yB , t)

∂n

=

{
P (yB) p

(0)
OUT (yB , t)√
πσn

− 2∇p
(0)
OUT (yB , t) ·

[
σn

σn
− v

2v1

]
B

+ p
(0)
OUT (yB , t)

a(yB , t) · n
σn

}
.
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The requirement that the pdf of the limiting diffusion process satisfies the Robin
boundary condition leads to the only possible choice,

(4.25) v =
σn

‖σn‖ .

Otherwise, we obtain an oblique derivative boundary condition. Since y′
B → yB as

Δt → 0, we obtain the Robin boundary condition

−JOUT (yB , t) · n = ∇p
(0)
OUT (yB , t) · σn− p

(0)
OUT (yB , t)a(yB , t) · n

=
P (yB) p

(0)
OUT (yB , t)

√
σn√

π
.

The reflection direction v of crossing trajectories is the conormal direction σn. Nor-
mal reflection (i.e., replacing v by n) gives rise to the boundary normal flux if and
only if n is an eigenvector of the diffusion tensor σ. The limit of the outer solution
as Δt → 0 is the solution of the Fokker–Planck equation (4.4) with the radiation
boundary condition

(4.26) −J(y, t) · n = κ(y)p (y, t) for y ∈ ∂Ω,

where the reactive “constant” is

(4.27) κ(y) =
P (y)

√
σn√

π
.

Note that normal reflection will not recover the normal flux of the radiation condition
if n is not an eigenvector of σ.

5. Numerical simulations in two dimensions. To illustrate the conormal
reflection law (4.25) in the Euler scheme (4.5)–(4.7) in the half-plane x ≥ 0, we
ran several numerical experiments. The simulations show the convergence of the pdf
of the numerical solution to that of the FPE with the radiation boundary condi-
tion (4.26)–(4.27). Unlike in the one-dimensional case, no explicit solution of the
anisotropic Robin problem for the FPE in the half-plane is available, so we compare
the statistics of the simulated trajectories with a numerical solution of the FPE. The
latter is constructed by the stable Crank–Nicolson scheme on lattice points, where in
each time step the sparse linear system is solved by the conjugate gradient method.

In all numerical experiments the initial point is (x0, y0) = (0.3, 0), and the statis-
tics are collected at time T = 0.5. We choose the reactive constant κ = 1 and the
diffusion matrix B in (4.1),

B =

(
0.3 0.4
0 1

)
,

which gives the anisotropic diffusion tensor

σ = BBT =

(
0.25 0.4
0.4 1

)
.

We simulate n = 107 trajectories with time steps Δt = 10−1, 10−2, 10−3, 10−4 in each
experiment.
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Fig. 5. The marginal density of x(T ) with no drift and correct oblique reflection (the first
experiment). The numerical solution of the FPE (blue) with grid size Δx = 0.01 and estimates from
the simulation of n = 107 trajectories with time steps Δt = 10−1, 10−2, 10−3, 10−4.

In the first experiment the drift vanishes (a = 0). The normal n = (1, 0) and the
conormal σn = (0.25, 0.4) point in different directions. The simulated trajectories are
reflected in the conormal direction according to the prescription (4.25). The simulated
and the numerical solutions of the FPE give the marginal densities shown in Figures
5 and 6. Figure 5 shows the marginal density of x(T ),

p(x, T |x0, y0) =

∫ ∞

−∞
p(x, y, T |x0, y0) dy,

while Figure 6 shows the marginal density of y(T ),

p(y, T |x0, y0) =

∫ ∞

0

p(x, y, T |x0, y0) dx.

Table 2 gives the computed survival probability and indicates the convergence rate.
We illustrate the importance of using the correct reflection law in the second

experiment, in which the simulated trajectories are reflected in the normal direction
n = (1, 0). Clearly, the marginal density of x(T ) coincides with that of the first
experiment, because both oblique and normal reflections have the same x-coordinate
(see (4.6)). However, the plot of the marginal density of y(T ) differs significantly from
that in the previous experiment. It is apparent from the comparison to the numerical
solution of the FPE that the simulation does not recover the Robin boundary condition
in the limit Δt → 0 (see Figure 7). Note that the peak of the density is at y > 0,
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Fig. 6. The marginal density of y(T ) with no drift and correct oblique reflection (the first
experiment). The numerical solution of the FPE (blue) with grid size Δx = 0.01 and estimates from
the simulation of n = 107 trajectories with time steps Δt = 10−1, 10−2, 10−3, 10−4.

Table 2

Survival probability for a = 0. The third column lists the error between the numerical value
of the survival probability psur = 0.6799545 from the solution of the FPE and its estimate nsur/n
from the simulation. The error decreases by about

√
10 whenever Δt is decreased by an order of

magnitude, indicating the convergence rate
√

Δt of the simulation.

Δt nsur psur − nsur/n

10−1 5986662 0.0814708
10−2 6449991 0.0351379
10−3 6707318 0.0094052
10−4 6775672 0.0025698

though the reflection is normal. This is due to the anisotropy of the diffusion tensor,
which causes the probability flux density vector to have a positive y component.

In the third experiment the drift is the constant vector a = (−1, 0), and the dif-
fusion tensor is as in the first experiment. The density is shifted toward the boundary
(see Figures 8 and 9). The results are summarized in Table 3.

6. Summary and discussion. We have defined a diffusion process with par-
tially reflecting boundary as a limit of Markovian jump processes generated by the
Euler scheme for the dynamics in a half-space with partial absorption of exiting tra-
jectories and partial oblique reflection in the boundary. We derived an expression
for the radiation constant in the Robin boundary condition for the one-dimensional
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Fig. 7. The marginal density of y(T ) with no drift and with normal reflection (the second
experiment). The numerical solution of the FPE (blue) with grid size Δx = 0.01 and estimates from
the simulation of n = 107 trajectories with time steps Δt = 10−1, 10−2, 10−3, 10−4.

Fokker–Planck equation for the case of diffusion with variable drift and diffusion coef-
ficients, as a function of the absorption probability. We found that the Euler scheme
for a diffusion in a half-space with variable drift and constant anisotropic diffusion has
to be reflected in a particular oblique direction in order to recover the Robin boundary
condition. Also for this case we found the radiation “constant” as a function of the
local absorption probability on the boundary. We found a boundary layer of width
O(

√
Δt) in the pdf of the Euler scheme and solved the boundary layer equation, which

is of Wiener–Hopf type.
The boundary layer of pΔt(y, t) makes the calculation of the boundary flux non-

trivial. The net boundary flux of the simulation profile pΔt(y, t) is

(6.1) −JΔt(0, t) = lim
Δt→0

1

Δt

P
√

Δt√
4πσΔt

∫ 0

−∞
dy

∫ ∞

0

pΔt(x, t) exp

{
− (x− y)2

4πσΔt

}
dx,

which is the probability of the trajectories that propagate out of the domain per unit
time, discounted by the probability of trajectories returned into the domain by the
partially reflecting Euler scheme. Changing the order of integration and then changing
the variable of integration into z = x/2

√
σΔt gives

(6.2) −JΔt(0, t) = P
√
σ

∫ ∞

0

erfc(z)pΔt(2z
√
σΔt, t) dz =

P
√
σ√
π

p
(0)
BL(0, t) + O(

√
Δt).
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Fig. 8. The marginal density of x(T ) with drift a = (−1, 0) and correct oblique reflection (the
third experiment). The numerical solution of the FPE (blue) with grid size Δx = 0.01 and estimates
from the simulation of n = 107 trajectories with time steps Δt = 10−1, 10−2, 10−3, 10−4.

This straightforward calculation of the flux gives the correct radiation constant, pro-
vided that

(6.3) p
(0)
BL(0, t) = p

(0)
OUT (0, t).

The latter, however, depends on the mode of reflecting a trajectory from x′ outside to
x′′ inside the domain. We have shown that for x′′ = −x′ the provision holds; however,
for other schemes, e.g., x′′ = −αx′ (α 
= 1), the provision (6.3) fails in general, though
(6.2) still holds. On the other hand, the differential form of the flux, (1.4), has to be
obtained from (6.1) in the limit Δt → 0, which is not the case for pΔt(y, t), though
it is for pOUT (y, t). This shows up in spades in the multidimensional case, because
although (6.3) holds for any direction of reflection, the differential form of the flux is
obtained in the limit only if the correct direction of oblique reflection is chosen.

The generalization of the multidimensional case to domains with curved bound-
aries and to a variable diffusion tensor σ(x, t) is not straightforward and will be done
separately. Note that if the diffusion tensor is constant, but anisotropic, a local orthog-
onal mapping of the boundary to a plane converts the diffusion tensor from constant
to variable, as can be seen from Itô’s formula. However, as mentioned in section 1, in
the most common case of constant isotropic diffusion, our result extends to domains
with curved boundaries because the mapping leaves the Laplacian unchanged, though
the drift changes according to Itô’s formula. In this case the vector v coincides with
the normal n.
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Fig. 9. The third experiment (a = (−1, 0), correct oblique reflection): y-marginal den-
sities. The numerical solution (blue) is compared to four simulated solutions (with time steps
Δt = 10−1, 10−2, 10−3, 10−4). n = 107. Resolution: Δx = 0.01.

Table 3

Survival probability for a = (−1, 0). The third column lists the error between the numerical
value of the survival probability psur = 0.3722893 from the solution of the FPE and its estimate
nsur/n from the simulation.

Δt nsur psur − nsur/n

10−1 2541947 0.1180946
10−2 3399528 0.0323365
10−3 3632622 0.0090271
10−4 3693905 0.0028988
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A MATHEMATICAL MODEL FOR THE STEADY ACTIVATION OF
A SKELETAL MUSCLE∗

J.-P. GABRIEL† , L. M. STUDER‡ , D. G. RÜEGG§ , AND M.-A. SCHNETZER¶

Abstract. A skeletal muscle is composed of motor units, each consisting of a motoneuron
and the muscle fibers it innervates. The input to the motor units is formed of electrical signals
coming from higher motor centers and propagated to the motoneurons along a network of nerve
fibers. Because of its complexity, this network still escapes actual direct observations. The present
model describes the steady state activation of a muscle, i.e., of its motor units. It incorporates the
network as an unknown quantity and, given the latter, predicts the input-force relation (activation
curve) of the muscle. Conversely, given a suitable activation curve, our model enables the recovery of
the network. This step is performed by using experimental data about the activation curve, and the
whole activation process of a muscle can then be theoretically investigated. In this way, this approach
provides a link between the macroscopic (activation curve) and microscopic (network) levels. From
a mathematical viewpoint, solving the preceding inverse problem is equivalent to solving an integral
equation of a new type.

Key words. integral equation, muscle, physiology
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1. Introduction. The activation of a muscle is a fascinating phenomenon in-
volving complex and subtle physiological processes. Muscles responsible for volun-
tary motions are called striated (or skeletal) and are composed of motor units (MUs)
consisting of a motoneuron (MN) together with the muscle fibers under its control.
Depending on the muscle, the number of MUs can vary from ten up to several thou-
sands. The MNs are located in the spinal chord and are connected to the central
nervous system (CNS) through nerve fibers (input fibers) propagating the signal (in-
put) in the form of electrical impulses called action potentials (APs).

When an AP reaches an MN through a (synaptic) contact, it modifies the electri-
cal potential of its membrane, generating a so-called excitatory postsynaptic potential
(EPSP). On a given MN, the effects of different APs are supposed to be additive.
When the membrane potential reaches a specific threshold value, the MN starts gen-
erating APs which are transmitted to the muscle fibers and induce their contractions.
As the activity of the input fibers increases, new stronger MUs are recruited (size
principle). Additionally already active MUs enhance their forces, a process called
frequency modulation [8, 9]. As soon as all MUs are recruited, frequency modulation
is the only way for a muscle to increase its force. For simplicity reasons, we consider
here only stationary isometric contractions and we assume that the total muscle force

∗Received by the editors October 14, 2005; accepted for publication (in revised form) Septem-
ber 27, 2007; published electronically January 25, 2008.

http://www.siam.org/journals/siap/68-3/64271.html
†Department of Mathematics, University of Fribourg, Rue du Musée 5, 1700 Fribourg, Switzerland

(jean-pierre.gabriel@unifr.ch).
‡Department of Computer Science and Economics, University of Applied Sciences, av. Max-Huber

6, 3960 Sierre, Switzerland (leo.studer@mus.ch).
§Department of Medicine, Division of Physiology, University of Fribourg, Rue du Musée 5, 1700

Fribourg, Switzerland (dieter.ruegg@unifr.ch).
¶Department of Mathematics, University of Applied Sciences, bd de Pérolles 82, 1700 Fribourg,
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is given by the sum of all MU forces. The input-force relation of a muscle or its graph
is alternatively called the activation curve.

MUs are ordered according to their maximal (tetanic) contraction forces t. The
way input fibers activate MNs is extremely complex and the details of a corresponding
network are not yet understood. On the level of an MN, this network, also called
synaptic weight and denoted g(t) (or sometimes g), is the missing quantity in our
approach. Observations provide information about the shape of an activation curve.
Our model is then used to recover g from this information (inverse problem). At this
point, all aspects of the activation process of a muscle can be predicted.

For an arbitrary but fixed network, let F (t) be the muscle force as a function of
the last recruited MU. Clearly F (t) has to be an increasing function of t. It will be
seen that g(t) can be deduced directly from F (t) and it is thus sufficient to focus on
the last function. F (t) turns out to be a solution of an integral equation of the form

(1) F (t) =

∫ t

a

k(s, F (s), F (t)) ds,

and our task will be to solve (1). The presence of F (t) in the kernel of (1) has
striking consequences: on one hand this integral equation is not a classical Volterra
equation and thus belongs to an extended type; on the other hand it admits infinitely
many discontinuous solutions. Fortunately this equation has a unique continuous
solution and this property turns out to be equivalent to increasingness. Since F (t) is
increasing in t, (1) admits one and only one physiologically meaningful solution. By
using the latter, (1) can be reduced to a classical Volterra equation whose analytical
and numerical properties are well known.

Analysis shows that the activation process has the following interesting properties:
(a) Similarly to the notion of the standard normal random variable in probability

theory, there exists a standard hyperbolic muscle from which the activation
curve of any muscle can be obtained.

(b) Despite the large number of parameters involved in the model, any activation
curve is totally determined by a unique number called the activation factor.

(c) Several functionals related to the activation process can be introduced and
characterized analytically, e.g., the ratio of the forces due to frequency mod-
ulation and recruitment.

All the published models of the MN pool-muscle complex (MNPMC) quantita-
tively describe the relation between the input to the MN pool and the muscle force
[17, 18, 43, 12] or the electromyogram [12]. The models are similar in their structure
but differ in the choice of the quantities given a priori. In the literature, all MNPMC
models have been reduced to the following three unknowns: (1) the synaptic weight,
(2) the MU population, and (3) the activation curve or the electromyogram. Since two
of the unknowns can be given and the third one can be deduced from the model, we
have three possible configurations: (1) and (2) are given and (3) is computed [17, 12];
(1) and (3) are given and (2) is computed [43]; and—the approach that we propose—
the MU population (2) and the activation curve (3) are given and the synaptic weight
(1) is determined. The main reason for this choice is that data at the level of the MNs
are available for both unknowns (2) and (3) but not for unknown (1). As mentioned
above, this configuration also leads to a new and interesting mathematical problem.

1.1. The model. We expose here the mathematical aspects of the model de-
veloped in [42], where a thorough discussion of the physiological hypotheses can be
found. We focus mainly on equation (1), which is the key to the present investigation.
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Since a typical skeletal muscle contains several hundred MUs, it is adequate to
represent the MU population by a density function ρ. Choosing the tetanic contraction
force t as variable, we get t ∈ [tmin, tmax] �→ ρ(t), where tmin and tmax are the tetanic
forces of the weakest and strongest MUs and the number of MUs in the pool is given
by

∫ tmax

tmin
ρ(s) ds. All our considerations hold for all integrable and almost everywhere

(a.e.) strictly positive functions ρ. We assume that tmin and tmax are given through ρ.
The global input In to the MNPMC is defined as the sum of all AP frequencies

[43]. Each fiber contacts each MN of the pool and its activity induces EPSP conduc-
tance changes in the postsynaptic membrane. The EPSPs generated by single input
fibers are smaller than 100 μV [15], the activity of these fibers is asynchronous [7],
and the voltage threshold for APs is about 12 mV [5]. These three experimental find-
ings imply that the variations of the membrane potential are smaller than 1% of the
threshold voltage and are therefore neglected in the model. The EPSP conductances
are thus represented by their time averages in the present time-independent approach.
Due to the lack of precise information and for simplicity reasons, we assume that the
EPSP conductance GEPSP of each MN is proportional to the input:

(2) GEPSP (In) = g In,

where the MN-dependent factor g is the synaptic weight. This linearity assumption
entails some restrictions on the MN connectivity [42].

The inactive (or subthreshold) MN is modeled with a single compartment and
a homogeneous, electrically isolated membrane obeying Ohm’s law. The total mem-
brane current itot is the sum of the capacitive and ionic currents:

(3) itot = C U̇ +
∑
k

Gk (U − Ek),

where U is the membrane potential, U̇ the time derivative of U , Gk the conductance
of ion k, Ek its equilibrium potential, and C the membrane capacity. Three types
of ionic conductances are distinguished: (a) a transmitter-sensitive conductance GE

k

caused by the synaptic input, (b) a voltage-dependent conductance GU
k generating

APs and EU
k its equilibrium potential, and (c) a leakage conductance GL and EL

its equilibrium potential. Clearly, we have GEPSP =
∑

k G
E
k . For lack of data

about particular MNs that are activated by synaptic input, we rely on data from
current injection experiments [24]. The capacitive current is 0 in the steady state
and since the membrane is isolated, the total current is equal to the injected current
iinj . Consequently, (3) can be rewritten iinj =

∑
k G

E
k (U −Ek) +

∑
k G

U
k (U −EU

k ) +

GL(U−EL) = GEPSP (U−
∑

k GE
k Ek

GEPSP
)+

∑
k G

U
k (U−EU

k )+GL (U−EL). Introducing
the variable V := U − EL, the reversal potential of the EPSP current EEPSP :=∑

k GE
k Ek

GEPSP
− EL, and EV

k := EU
k − EL, we then get

(4) iinj = GEPSP (V − EEPSP ) +
∑
k

GU
k (V − EV

k ) + GL V.

The current iEPSP := GEPSP (V −EEPSP ) will be called the EPSP induced current.
A subthreshold MN is inactive as long as it receives synaptic inputs without gen-

erating APs. During subthreshold depolarizations, there is a small increase of the
sodium conductance which tends to depolarize the membrane and a small increase of
the potassium conductance which tends to hyperpolarize the membrane. Since the
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two currents are in opposite directions, they tend to cancel each other (ultimately, this
could be quantitatively derived from the Hodgkin–Huxley equations [22]). Therefore,
we assume that the voltage-dependent channels are closed in subthreshold MNs, and
consequently, the voltage-dependent currents are 0. Moreover, if iinj = 0, the mem-
brane potential corresponding to the EPSP is denoted VEPSP and (4) becomes

(5) GEPSP (VEPSP − EEPSP ) + GL VEPSP = 0.

According to (2) and (5), the membrane potential as a function of the input is

(6) VEPSP (In) =
g InEEPSP

GL + g In
.

The threshold input InT is the maximum input an MN can receive in the sub-
threshold state. It evokes an EPSP equal to the firing threshold voltage VT and
therefore satisfies VEPSP (InT ) = VT . Assuming that all MNs of the pool have the
same firing threshold [42], (6) at threshold provides

(7) g̃ =
VT

(EEPSP − VT ) InT
,

where g̃ := g
GL

is called relative synaptic weight. Two quantities in (7) are MU-
dependent, namely, the relative synaptic weight and the threshold input. According
to (7), it is equally adequate to determine either one of them.

Fitting the frequency-injected current relations with a straight line with slope κ
[42, 24], the MN firing frequency ν(GEPSP , iinj) as a function of GEPSP and iinj is
given by

(8) ν(0, iinj) = κ (iinj − iT ) + νT if iinj ≥ iT and 0 otherwise,

where νT is the threshold frequency and iT the threshold current. Estimations of their
values have been determined with current injection experiments on MNs [25].

The relation between the frequency evoked by a synaptic input and the injected
current is not at all simple since iEPSP , but not iinj , depends on the membrane po-
tential. We look for an injected current iinj(GEPSP ) which evokes the same frequency
as the synaptic input, namely, ν(GEPSP , 0) = ν(0, iinj(GEPSP )).

Let us suppose that such a current exists for all values of GEPSP : iinj(GEPSP ) =
−iEPSP . Although the membrane potential of active MNs varies, we replace it by
a constant virtual potential VA which is independent of the firing frequency and is
supposed to have similar effects as the time-varying membrane potential. In this
approach, we set VA = VT and we get iinj(GEPSP ) = GEPSP (EEPSP − VT ). By
inserting (2) and (7) into the last equation, we obtain iinj(GEPSP (In)) = GL VT In

InT
.

Since In = InT at threshold, the injected threshold current is iT = GL VT .
The frequency-force relation of an MU during maintained contractions is built

by fitting data obtained by injecting long-lasting currents of different intensities into
MNs [26]. The MU force is given by

(9) f(ν) = t (1 − c exp(−γ (ν − νT ))),

where t is the MU tetanic contraction force, νT is its threshold frequency, and γ
controls the shape of the curve. The number c determines the fraction of the tetanic
force at recruitment according to f(νT ) = t (1 − c). Since MUs are parameterized
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by their tetanic contraction forces t, the threshold input InT (t) is the smallest value
necessary to recruit the MU with tetanic force t. Equation (8), iT = GL VT , and (9)
lead to the following representation of the MU transfer function:

(10) f(t, In) := t

(
1 − c exp

(
−α

In− InT (t)

InT (t)

))
if In > InT (t) and 0 otherwise,

where α := γ κGL VT .
In muscles with parallel fibers, the total muscle force is the sum of the contraction

forces of its MUs, and thus its activation curve is F(In) =
∫ tmax

tmin
ρ(s) f(s, In) ds.

Figure 1 depicts the different steps leading from In to F(In).

In
Input

↓
GEPSP (In) = gIn
EPSP conductance

↓

VEPSP (In) =
gInEEPSP

GL + g In
membrane potential

↓

ν(GEPSP , 0) = κ

(
GLVT In

InT
− iT

)
+ νT

firing frequency

↓
f(t, In) = t (1 − c exp( In−InT (t)

InT (t) ))I{In>InT (t)}
MU force

↓
F(In) =

∫ tmax

tmin
ρ(s)f(s, In) ds.

muscle force

Fig. 1. Steps for the construction of the activation curve F(In).

According to the size principle [21], MUs are recruited according to their tetanic
contraction force during muscle activation; i.e., weaker MUs are recruited before
stronger MUs. Therefore, the threshold input InT (t) activates all MUs with tetanic
forces smaller than or equal to t. Replacing In by InT (t), we obtain

(11) F(InT (t)) =

∫ t

tmin

ρ(s) f(s, InT (t)) ds.

Human subjects who superimposed ballistic contractions on background activities of
different levels [38] provided information to determine the unknown function InT (t).
The data suggest that the force generated by two inputs In1 and In2 is the sum of the
forces induced by the single inputs. If In0 denotes the minimal input necessary to re-
cruit the smallest MU of the pool, we get the functional equation F(In0+In1+In2) =
F(In0 + In1) + F(In0 + In2). Its unique nonnegative solution with F(In0) = 0 is
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(see [1]) F(In) = k (In − In0). This is the equation of a straight line with slope k.
After recruitment, the activation curve is strictly concave. Since no additional force
due to newly recruited MUs is available, it is an integral of strictly concave functions
given in (10). Consequently, the affine (“linear” in [42]) relation can hold exclusively
during recruitment. In a forthcoming paper, we will show that the possible activation
curves are not limited to affine functions.

It should also be noted that the value of In corresponding to the end of recruit-
ment is not specified a priori. This is a “free boundary” which will be determined by
the model.

One could wonder whether a muscle response, which is not exactly additive,
can be reasonably approximated by an additive function or not. The following re-
sults [29] shed some light on this question: a function f : R → R is called ε-additive
if |f(x + y) − f(x) − f(y)| ≤ ε for all x, y ∈ R. It can be seen that, if g is additive,
any function f fulfilling |f(x) − g(x)| ≤ ε for all x ∈ R is 3ε-additive. Conversely,
it can be proved that, for any ε-additive function f , there exists a unique additive

function g : R → R such that |f(x) − g(x)| ≤ ε, given by g(x) = limn→∞
f(nx)

n . As a
consequence, if a muscle response F is only ε-additive, then there exists an additive
function g contained in a band of width 2ε around F . Moreover, if F is either bounded
above or measurable, then g is continuous.

Replacing In by InT (t) as above, we get, for t ∈ [tmin, tmax], F(InT (t)) =
k (InT (t) − In0), and with (10) and (11),

(12) F(InT (t)) =

∫ t

tmin

h(s)

(
1 − c exp

(
−α

F(InT (t)) −F(InT (s))

F(InT (s)) + Δ

))
ds,

where h(t) = t ρ(t) is the force density function of the muscle and Δ = k In0.
Equation (12) contains the parameters α, c, Δ, and h [42]. Experimental obser-

vations suggest that α [24, 26, 2] and c [27] are MU-independent, and, in the present
approach, we assume muscle independence. On the basis of experimental data, α was
set to 1.14 and c to 0.9 [42], but the forthcoming general discussion is valid for all
α > 0, 0 < c < 1, and Δ > 0. A muscle is thus specified by Δ and h. In0 cannot be
measured experimentally, and in [42] it was assumed to be the same for all muscles.
This assumption is however not required here.

2. The integral equation.

2.1. General considerations. Equation (12) is an integral equation for the
unknown function F(InT (t)). By introducing the notation F (t) = F(InT (t)), (12)
takes the form

(13) F (t) =

∫ t

tmin

h(s)

(
1 − c exp

(
−α

F (t) − F (s)

F (s) + Δ

))
ds, t ∈ [tmin, tmax].

With our assumptions about ρ, the preceding integral has to be understood in the
Lebesgue sense and, for obvious physiological reasons, we look for nonnegative solu-
tions.

Equation (13) is not of Volterra type because its kernel

k(s, F (s), F (t)) := h(s)

(
1 − c exp

(
−α

F (t) − F (s)

F (s) + Δ

))

involves F (t) and not only s, t, and F (s). If (13) has a nonnegative locally bounded
solution F (t), t ∈ [tmin, tmax], for α > 0, 0 < c < 1, and Δ > 0, it may admit discon-
tinuous solutions. Indeed, as a consequence of the dominated convergence theorem, for
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every sequence (tn)n∈N, tn ∈ [tmin, tmax], with limn→∞ tn = t and limn→∞ F (tn) = γ,

we have limn→∞
∫ tn
tmin

k(s, F (s), F (tn)) ds =
∫ t

tmin
k(s, F (s), γ) ds. Thus (13) admits

a locally bounded solution discontinuous at t∗ ∈ [tmin, tmax] if and only if the set

At∗ = {x ∈ R; x =
∫ t∗

tmin
k(s, F (s), x) ds} contains an element β �= F (t∗). Indeed, if

the preceding property holds, the function F ∗(t) taking the values β at t = t∗ and
F (t) elsewhere is obviously a discontinuous solution of (13), and the converse is clear.
It can be seen, for example, numerically, that At contains two elements for t large
enough.

2.2. The hyperbolic muscle. The presence of F (t) in the kernel of (13) rules
out most of the arguments of the classical theory of integral equations. It is not clear
whether this equation admits a solution or not, and this point is important because,
in our model, (13) governs the activation of a muscle.

Since ρ is strictly positive a.e., the function H(t) =
∫ t

tmin
h(s) ds, t ∈ [tmin, tmax],

is strictly increasing and hence invertible. Let us note that H(t) is the force of the
muscle when all MUs up to level t produce their tetanic force and H(tmax) = Fmax.

By introducing K(a, b) = 1 − c exp(−α b−a
a+Δ ), a, b ∈ R+ = [0,+∞), (13) can be

written F (v) =
∫ v

tmin
K(F (u), F (v))h(u) du. Since H is strictly increasing and ab-

solutely continuous, the change of variable u = H−1(s) leads to F (v) =
∫H(v)

H(tmin)

K(F (H−1(s)), F (v)) ds for v ∈ [tmin, tmax]. Without risk of confusion we write
H(v) = t and because H(tmin) = 0, H(tmax) = Fmax, we obtain F (H−1(t)) =∫ t

0
K(F (H−1(s)), F (H−1(t))) ds for t ∈ [0, Fmax]. By defining Y (t) := F (H−1(t))

and T = Fmax, we get

(14) Y (t) =

∫ t

0

(
1 − c exp

(
−α

Y (t) − Y (s)

Y (s) + Δ

))
ds, t ∈ [0, T ].

Since (14) describes the activation of a muscle whose MU density is the hyperbola
ρ(t) = 1

t (t > 0), it is natural to call it hyperbolic. Clearly, such a muscle has no
physiological reality since any interval (0, T ] contains infinitely many of its MUs. This
theoretical muscle is nevertheless interesting. By playing with the notation, we get

(15) F (t) = Y (H(t)), t ∈ [tmin, tmax],

and we see that the force of an arbitrary muscle can be deduced from that of a
hyperbolic one. It is therefore enough to study (14).

2.3. Existence and unicity of a physiological solution. Straightforward
computations provide the following theorem.

Theorem 1. Let 0 < c < 1, α > 0, Δ > 0, and a, b ∈ R+ �→ K(a, b) =
1 − c exp(−α b−a

a+Δ ).
(a) K(a, b) together with the partial derivatives Ka(a, b), Kb(a, b), and Kbb(a, b)

are continuous and bounded.
(b) Ka(a, b) < 0, Kb(a, b) > 0, Kbb(a, b) < 0, and K(a, b) is thus a concave

function in the variable b.
We first prove the existence and unicity of a nonnegative solution of (14) for small

values of T . For 0 < T < ∞, the set ET = {f : [0, T ] �→ R; f is measurable and
bounded}, equipped with the metric d(f, g) := supt∈[0,T ] |f(t) − g(t)|, is a complete

metric space. Since uniform convergence preserves nonnegativity, E+
T = {f ∈ ET ; f ≥

0} is a closed subset of ET and hence also a complete metric space. Clearly, a
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solution of (14) is a fixed point of the operator AT f(t) =
∫ t

0
K(f(s), f(t)) ds, t ∈

[0, T ], f ∈ E+
T , which maps E+

T into itself. According to Theorem 1, the mean value
theorem can be applied to K(a, b) and provides, for any f, g ∈ E+

T : d(AT f,AT g) ≤
2T M d(f, g), where M := supa,b∈R+

(|Ka(a, b)|, |Kb(a, b)|). We conclude that AT

admits a unique fixed point for T < 1
2M since it is a contraction, and we prove the

following theorem.
Theorem 2. For T < 1

2M , (14) admits a unique nonnegative solution in E+
T .

Physiologically, a solution Y (t) of (14) represents the force developed by a hy-
perbolic muscle, all of whose MUs, up to level t, are recruited. Therefore, Y has
to be a nondecreasing function with Y (0) = 0, and any such solution will be called
physiological. Since 0 < 1 − c ≤ K(a, b) ≤ 1 for 0 ≤ a ≤ b, we get 0 ≤ Y (t) ≤ t for
t ∈ [0, T ], and Y is an element of ST := {f ∈ ET ; f is nondecreasing, 0 ≤ f(t) ≤ t,
t ∈ [0, T ]}. Clearly, ST ⊂ E+

T and every element f of ST satisfies f(0) = 0.
We now prove the existence of a physiological solution of (14) for an arbitrary

T > 0 and start by recalling the following.
Theorem of Schauder (see [41]). Any nonempty compact and convex subset

of a normed space has the fixed point property; i.e., every continuous mapping of such
a subset into itself has at least one fixed point.

Theorem of Helly (see [6]). Let (fn)n∈N be a sequence of uniformly bounded,
nondecreasing, and right continuous functions defined over an interval in R. Then
there exist a subsequence (fnk

)k∈N and a nondecreasing right continuous function f
such that limk→∞ fnk

(t) = f(t), for all continuity points t of f .
Theorem 3. Every sequence in ST contains a subsequence converging in the

mean of order 1 to an element of ST . Furthermore, ST is nonempty and convex.
Proof. For any sequence (fn)n∈N in ST , the functions t ∈ [0, T ] �−→ f+

n (t) =
limh↓0 fn(t + h) are also in ST and right continuous. According to Helly’s theorem,
there exist a subsequence (nk)k∈N and a nondecreasing right continuous function f+

such that fnk
(t) converges to f+(t), as k → ∞, for every continuity point t of f+ in

[0, T ]. Since f+ is in ST and the exceptional set is at most countable, the convergence
takes place a.e. and hence in measure. Furthermore, the sequence, being uniformly
bounded by T , is uniformly integrable, and we conclude to its convergence in the
mean of order 1. Because nonemptyness and convexity of ST are obvious, the proof
is complete.

Since Schauder’s theorem requires a normed space, we introduce E∗
T = ET (mod

a.e.) equipped with the L1 norm. Let us recall that an element of E∗
T is an equivalence

class of functions which are equal a.e. to a representative. Hence, S∗
T is the subset of

E∗
T such that each equivalence class contains an element of ST . S∗

T is nonempty and
convex. Since every sequence in S∗

T has a corresponding sequence of representatives
in ST , S∗

T is also a compact subset of the normed space E∗
T as a consequence of the

first part of Theorem 3.
Let f∗ be the equivalence class in S∗

T of an element f ∈ ST . Since f = f ′ (a.e.)
for elements in ST implies that AT f = AT f

′ (a.e.), we can define A∗
T over S∗

T with
A∗

T f
∗ = (AT f)∗ because it is independent of the representative.
Theorem 4. A∗

T is a continuous mapping of S∗
T into itself.

Proof. Let f be a nondecreasing representative of f∗ in ST . Since 0 < 1 − c ≤
K(a, b) ≤ 1 for 0 ≤ a ≤ b, we get 0 ≤ AT f(t) ≤ t for t ∈ [0, T ]. Furthermore, K(a, b)
is nonnegative and increasing in the second variable for a, b ≥ 0, and consequently,

for 0 ≤ t ≤ t′ ≤ T , we have AT f(t) =
∫ t

0
K(f(s), f(t)) ds ≤

∫ t′

0
K(f(s), f(t′)) ds =
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AT f(t′). Therefore, AT f is an element of ST and A∗
T f

∗ belongs to S∗
T since a.e. equal-

ities are preserved by AT . To prove the continuity assertion, let us consider a sequence
(f∗

n)n∈N in S∗
T which converges to f̃∗ in L1. Since S∗

T is closed as a compact subset of

a Hausdorff space, we conclude that f̃∗ belongs to S∗
T . Furthermore, convergence in

L1 entails convergence in measure, and, for any σ-finite measure, the latter is equiva-
lent to the statement “every subsequence contains a subsequence converging a.e.” By
using this property and the boundedness and continuity of K(., .), we get the desired
result via the dominated convergence theorem.

Theorem 5. For every T > 0, (14) admits a physiological solution.
Proof. Schauder’s theorem provides the existence of a fixed point f∗ of A∗

T in S∗
T .

For any nondecreasing representative f of the latter, we have AT f = f (a.e.) in [0, T ].
The exceptional set E having measure 0, its complementary Ec is dense in [0, T ], and
for every t ∈ Ec, one can define f−(t) as the left-hand limit of f over Ec since f
is nondecreasing and bounded. The function f̃(t) := lims↑t f(s) is nonnegative and
nondecreasing. By using the boundedness and continuity of K(., .) and the dominated
convergence theorem, one can show that f̃ satisfies AT f̃(t) = f̃(t) for every t in [0, T ],
and the proof is complete.

We prove that increasingness and continuity are equivalent properties for solutions
of (14).

Lemma 6. Let f : [a, b] �→ R be continuous and f(a) = f(b). For every δ > 0,
there exist a ≤ t < t′ ≤ b with 0 < t′ − t < δ and f(t) = f(t′).

Proof. The property clearly holds if f is constant. Otherwise, replacing f by
−f if necessary, we can assume that f admits a maximum M �= f(a) at t∗ in the
open interval (a, b). Choosing λ < M sufficiently close to M , the intermediate value
theorem for continuous functions implies the existence of a < t < t∗ < t′ < b, such
that f(t) = f(t′) = λ and t, t′ are as close as we want to t∗. Let us note that if
f is not constant, it is even possible to choose t and t′ so that f(s) �= f(a) for all
s ∈ [t, t′].

Theorem 7. A continuous solution of (14) starting at 0 is strictly increasing.
Proof. We first show that strict positivity of a continuous solution Y of (14) over

an interval J ⊂ (0, T ] entails its injectivity. Assuming the contrary, one can find
a < b in J with Y (a) = Y (b). According to the preceding lemma, there exist t < t′

in J , as close as we want, with Y (t) = Y (t′) = λ > 0 and, from (14), we deduce

0 = Y (t′) − Y (t) =
∫ t′

t
K(Y (s), λ) ds. Since K(λ, λ) > 0 and K is continuous over

R
2
+, K(Y (s), λ) > 0 over [t, t′] for t, t′ sufficiently close to each other. Therefore, the

preceding integral is positive and we get a contradiction.
To prove the theorem, we observe that the form of the kernel K implies the

existence of a neighborhood of (0, 0) in R
2 over which K(., .) > 0. Since Y (0) = 0

and Y is continuous, there exists 0 < t0 < T , such that for all 0 ≤ s ≤ t ≤ t0,
K(Y (s), Y (t)) > 0 and hence Y (t) > 0 over (0, t0]. Consequently, Y is injective and
hence increasing over [0, t0]. A first zero of Y after t0 would violate its injectivity over
an interval of positivity, and the proof is complete.

The following lemma will be used to discuss the converse of the preceding result.
In what follows, we shall use the notation fx := ∂f

∂x for a function f .
Lemma 8. Let Y , Y (0) = 0, be a nondecreasing solution of (14) defined over

some interval [0, T ] and G(a, b) :=
∫ a

0
K(Y (s), b) ds for (a, b) ∈ [0, T ] × R. The

function G has the following properties: (a) For every fixed a ∈ [0, T ], G(a, b) is a
strictly increasing and concave function of b. (b) G(a, b) is continuous. (c) Gb(a, b)
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is continuous, and the same property holds for Ga(a, b) if Y is continuous. (d) If Y
is continuous, so are G(t, Y (t)) and Gb(t, Y (t)) as functions of t.

Proof. Strict monotonicity in (a) is obvious and concavity follows from the fact
that it is preserved by integration. Properties (b) and (c) can be deduced from the
dominated convergence theorem and suitable estimations, and (d) is obvious.

Theorem 9. Any nondecreasing solution of (14) starting at 0 is continuously
differentiable.

Proof. Let Ỹ defined over [0, T ] (Ỹ (0) = 0) be a nondecreasing solution of (14)
and Y the function of its right-hand limits. Y is nondecreasing and right continuous,
and, by a density argument, continuity of Ỹ and Y are equivalent. Moreover, the
dominated convergence theorem provides Y (t) =

∫ t

0
K(Ỹ (s), Y (t)) ds and since Ỹ (t) =

Y (t) (a.e.), Y (t) is also a solution of (14). Because of the concavity property (a) in
Lemma 8, for every t ∈ [0, T ], G(t, y) = y admits at most two solutions, one of them
being Y (t) since G(t, Y (t)) = Y (t). Moreover, if for a given t the preceding equation
has two distinct solutions y1(t) < y2(t), then Gb(t, y2(t)) < 1 and Gb(t, y1(t)) > 1.

According to Theorem 2, over a sufficiently small right-hand interval of 0, (14) ad-
mits a unique nonnegative solution in the space of bounded measurable functions. As
a consequence, Y (t) is the unique solution of G(t, y) = y for t small enough. The
function G satisfies all regularity conditions of the implicit function theorem [41].
Since G(0, 0) = 0 and Gb(0, 0) = 0 < 1, the latter entails the existence of a unique
continuous function y such that y(0) = 0 and G(t, y(t)) − y(t) = 0 over a right-hand
neighborhood of 0. The preceding unicity property implies Y ≡ y for t small enough
and continuity entails Gb(t, Y (t)) < 1 over some right-hand interval of 0. Hence there
is an interval [0, β) of maximal length β over which Gb(t, Y (t)) < 1.

If Y is not continuous over [0, β), then there is a point of discontinuity t0 �= 0
because Y is continuous for small values of t. Y is right continuous and since it is in-
creasing, its left and right-hand limits at t0 satisfy Y (t−0 ) < Y (t+0 ) = Y (t0). According
to the implicit function theorem, there exists a unique continuous function y0 defined
over an open interval It0 containing t0, such that y0(t0) = Y (t0) and G(t, y0(t)) = y0(t)
for t ∈ It0 . Since Gb(t0, Y (t0)) < 1, the continuity of y0 implies the existence of t < t0
in It0 , with Gb(t, y0(t)) < 1 and Y (t−0 ) < y0(t). Because Y (t) ≤ Y (t−0 ), we obtain the
configuration G(t, Y (t)) = Y (t), G(t, y0(t)) = y0(t), Gb(t, Y (t)) < 1, Gb(t, y0(t)) < 1,
and Y (t) �= y0(t). This is a contradiction of the concavity of G(t, b) in the variable b,
and Y is continuous over [0, β) and thus identical to Ỹ .

The function Gb(a, b) is continuous and, because of (c) in Lemma 8, the continuity
of Y implies that of Ga(a, b). Consequently, G is continuously differentiable and,
according to another version of the implicit function theorem [10, 11], every locally
defined continuous solution y provided by the last theorem is also differentiable. Since
Y is continuous over [0, β), local unicity implies local identity of y and Y and entails
the differentiability of the latter over [0, β).

In the following considerations, every interchange of integration and derivation
can be justified with the dominated convergence theorem. For t ∈ [0, T ] we introduce

φ(t) := Gb(t, Y (t)) =
∫ t

0
α c

Y (s)+Δ (exp(−αY (t)−Y (s)
Y (s)+Δ )) ds. Writing ′ = d

dt and using the

differentiability of Y , for every t ∈ [0, β) we get

(16) φ′(t) = Kb(Y (t), Y (t)) +
1 − c

1 − φ(t)

∫ t

0

Kbb(Y (s), Y (t)) ds.

We now suppose that β < T and claim that supt∈[0,β) φ(t) = m < 1. If not,
m = 1 as a consequence of the definition of β, and by using the mean value theorem
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of differential calculus, one can choose an increasing sequence (tn)n∈N such that tn ↑ β
as n → ∞ and φ′(tn) ≥ 0 for every n ∈ N. The first term in (16) is positive and
bounded, and the integral is negative and bounded away from 0. Since 0 < c < 1, the
quotient before the integral tends to +∞ as t ↑ β. According to (16), φ′(tn) < 0 for
n sufficiently large, and we get a contradiction and conclude that m < 1.

Because of the monotonicity of Y , Y (t) ≤ Y (β) for all t ∈ [0, β), and thus, for any

sequence un ↑ β, we have
∫ un

0
α c

Y (s)+Δ (exp(−αY (β)−Y (s)
Y (s)+Δ )) ds ≤ φ(un) ≤ m. Letting

n → ∞ in the integral, we get φ(β) ≤ m < 1 and thus Gb(β, Y (β)) < 1. Applying
once more the implicit function theorem, we get a unique continuous function y+

defined over an open interval Iβ containing β with y+(β) = Y (β), G(t, y+(t)) = y+(t)
over Iβ , and Gb(t, y

+(t)) < 1 for every t sufficiently close to β. If Y ≡ y+ does not
hold over a right-hand open neighborhood of β, then one can find a sequence vn ↓ β
as n → ∞, such that Y (vn) �= y+(vn) for every n. Monotonicity and concavity entail
Y (β) ≤ Y (vn) < y+(vn), and hence Y (vn) → Y (β) as n → ∞. Concavity again
implies that Gb(vn, Y (vn)) > 1, and thus, letting n → ∞, Gb(β, Y (β)) ≥ 1, which is
a contradiction. Since Y ≡ y+ on a right-hand open interval of β, Gb(t, Y (t)) < 1
for all sufficiently small t to the right of β, which is a contradiction of its maximality.
Consequently β = T and Y is continuous over [0, T ]. Moreover, Y is also differentiable,
and the relations Y ′(t) = 1−c

1−φ(t) = 1−c
1−Gb(t,Y (t)) show that it is even continuously

differentiable and Y ′(t) > 0 over [0, T ].
We would like to stress that, in Theorem 9, the condition 0 < c < 1 plays a

delicate role. Indeed, let us assume that c = 1 and look for a solution of (14) of the
form Y (t) = a I(t∗,+∞)(t), where I denotes the indicator function and t∗ and a have
to be specified. For t ≤ t∗, (14) is satisfied since both sides are equal to 0. For t > t∗,
it reduces to a = t∗ (1 − exp(−αa

Δ )). By choosing t∗ so that t∗α
Δ > 1 and the positive

solution of the preceding equation for a, we get a discontinuous nondecreasing solution
of (14).

Collecting all the preceding results, we get the following theorem.
Theorem 10. The following properties are equivalent for a solution Y of (14)

with Y (0) = 0: (a) Y is physiological, i.e., nondecreasing, (b) Y is strictly increas-
ing, (c) Y is continuous, and (d) Y is continuously differentiable and Y ′ is strictly
positive.

It is interesting to note that although (14) admits possibly discontinuous solutions,
any physiological solution is automatically continuously differentiable.

Theorem 11. Equation (14) admits a unique physiological solution.
This uniqueness result can be deduced from Gronwall’s inequality and the fact

that, according to the proof of Theorem 9, φ(t) < 1 over [0, T ]. We propose another
argument which will also provide a nice way to get the solution of (14).

Proof. We proved that every nondecreasing solution Y of (14) over [0, T ] is strictly
increasing and continuously differentiable with a strictly positive and bounded deriva-
tive. Consequently, X = Y −1 has the same properties as Y and Y (X(t)) = t for every
t ≥ 0. In particular, the derivative of X, denoted x, is continuous. Performing the
change of variables s = X(u) and v = X(t) in (14) and rewriting s and t instead of u
and v, we get

(17) t =

∫ t

0

x(s)

(
1 − c exp

(
−α

t− s

s + Δ

))
ds.

Equation (17) is a linear Volterra equation of the first kind for x, the derivative of X
(inverse function of Y ). Since the kernel of (17) satisfies all the conditions of Theorem
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1.3.5 in [4], this equation admits a unique continuous solution, and thus Theorem 11
is proved.

It is interesting to note that (17) has an interpretation. Indeed, it is an integral
equation for the force density function x of a muscle whose force is t if its MUs up to
level t are recruited.

For continuous x, derivation and integration by parts of (17) provide, respectively,

x(t) =
1

1 − c
− α c

1 − c

∫ t

0

x(s)
1

s + Δ
exp

(
−α

t− s

s + Δ

)
ds and(18)

X(t) =
t

1 − c
− α c

1 − c

∫ t

0

X(s)
t + Δ

(s + Δ)2
exp

(
−α

t− s

s + Δ

)
ds.(19)

The last two equations are linear Volterra equations of the second kind, for which
theory and numerical treatments are well known [4, 14, 32].

Let us remark that existence and unicity of Y for every T > 0 automatically
provide a unique solution of (14) defined over [0,∞).

We would like to point out that Theorem 10 together with the preceding ar-
guments also lead to the existence of an increasing and continuously differentiable
solution of (14). However, Schauder’s theorem provides the existence of a nonde-
creasing solution without continuity assumption and thus without Theorem 10. Both
approaches are interesting, and methodological diversity is always welcome for the
treatment of future investigations.

3. Properties of the physiological solution. In the following, x will be the
unique continuous solution of (17) defined over [0,+∞) and X(t) =

∫ t

0
x(s) ds. As

can be seen in (18), x depends on the parameters α, c, and Δ = k In0. Since α and c
are fixed and muscle-independent, x, X, and Y will be considered as functions of the
two variables t ≥ 0 and Δ > 0 and written x(t,Δ), X(t,Δ), and Y (t,Δ).

Theorem 12. For every fixed Δ > 0, the following properties hold: (a) x(t,Δ)
is continuously differentiable in the variable t, (b) x(0,Δ) = 1

1−c , (c) 0 < x(t,Δ) ≤
(1 − c)−1 for every t > 0, (d) 0 < X(t,Δ) ≤ t

1−c for every t > 0, (e) as a function

of t, X(t,Δ)
t is decreasing over (0,∞), and (f) as a function of u, Y (u,Δ)

u is increasing
over (0,∞).

Proof. Part (a) follows from the facts that (18) is again differentiable in t and
that the result involves only continuous functions. Since the integrand in (18) is
bounded, letting t → 0, we get (b). The second inequality in (c) follows from (18)
and x(t,Δ) = Xt(t,Δ) > 0. Integrating (c) provides (d). To prove (e), we have

to show that ∂
∂t (

X(t,Δ)
t ) = 1

t (x(t,Δ) − X(t,Δ)
t ) ≤ 0, that is, X(t,Δ)

t ≥ x(t,Δ) for

t > 0. We divide (19) by t and obtain X(t,Δ)
t = 1

1−c +
∫ t

0
K(s, t) s

t
t+Δ
s+Δ

X(s,Δ)
s ds =

1
1−c +

∫ t

0
K̃(s, t) X(s,Δ)

s ds, where K(s, t) := − α c
1−c

1
s+Δ exp(−α t−s

s+Δ ) is the kernel

of (18). We observe that K̃(s, t) = K(s, t) st
t+Δ
s+Δ . A straightforward computation

based on kernel iterations shows that the corresponding resolvents R(s, t) and R′(s, t)
also satisfy R′(s, t) = R(s, t) st

t+Δ
s+Δ . Obviously for Δ > 0 and 0 < s ≤ t, we

have s
t
t+Δ
s+Δ < 1, and according to the general theory [4], we can write X(t,Δ)

t =

(1−c)−1+(1−c)−1
∫ t

0
R′(s, t) ds = (1−c)−1+(1−c)−1

∫ t

0
R(s, t) st

t+Δ
s+Δ ds ≥ (1−c)−1+

(1 − c)−1
∫ t

0
R(s, t) ds = x(t,Δ). The last inequality clearly holds if R(s, t) ≤ 0,

and it is enough to prove the latter. The resolvent formula [4] provides −R(s, t) =
α c
1−c

1
s+Δ exp(−α t−s

s+Δ ) +
∫ t

s
R(s, u) α c

1−c
1

u+Δ exp(−α t−u
u+Δ ) du. Applying the changes of
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variables u = v−Δ and then v = exp(w) and rewriting t′ = ln(t+Δ), s′ = ln(s+Δ),
for fixed s′, −R′(s′, t′) = −R(exp(s′)−Δ, exp(t′)−Δ) is a solution of the convolution-

type integral equation −R′(s′, t′) = f(t′) +
∫ t′

s′ R
′(s′, w)h(t′ − w) dw, where f(t′) =

α c
1−c

1
exp(s′) exp(−α exp(t′)−exp(s′)

exp(s′) ) and h(t′) = α c
1−c exp(α − α exp(t′)). Since f(T )

f(t) =

exp(−α e−s′ (eT − et)) ≤ exp(−α e−s(eT − et)) = h(T−s)
h(t−s) for 0 ≤ s′ ≤ s < T < t,

according to Theorem 6.1 in [32], we conclude to R′(s′, t′) ≤ 0.
For t1 = Y (u1,Δ) and t2 = Y (u2,Δ), t1 < t2 implies u1 < u2. By using (e) and

Y (t,Δ) = X−1(t,Δ) in the variable t, we get u1

Y (u1,Δ) = X(Y (u1,Δ),Δ)
Y (u1,Δ) = X(t1,Δ)

t1
≥

X(t2,Δ)
t2

= X(Y (u2,Δ),Δ)
Y (u2,Δ) = u2

Y (u2,Δ) , and (f) is proved.

Theorem 13. For every λ > 0, t ≥ 0, u ≥ 0, and Δ > 0, we have (a) x(t, λΔ) =
x( t

λ ,Δ), (b) x(λt,Δ) = x(t, Δ
λ ), (c) x(λt, λΔ) = x(t,Δ), (d) X(λt, λΔ) = λX(t,Δ),

(e) Y (λu, λΔ) = λY (u,Δ), and (f) YΔ(u,Δ) + uYu(u,Δ) = Y (u,Δ).

Proof. For every λ > 0, (17) yields t =
∫ t

0
x(s,Δ)(1 − c exp(−α λt−λs

λs+λΔ )) ds. By
using the change of variable s = z

λ and ultimately replacing λ t by t, we get t =∫ t

0
x( z

λ ,Δ)(1 − c exp(−α t−z
z+λΔ )) dz. However, according to (17), we also have t =∫ t

0
x(z, λΔ)(1 − c exp(−α t−z

z+λΔ )) dz. Since (17) admits a unique continuous solution,
we conclude that x(z, λΔ) = x( z

λ ,Δ) for all possible values of their arguments. This
is equivalent to (a) and (b), and writing z = λ s yields (c). Part (d) follows from

X(λt, λΔ) =
∫ λt

0
x( z

λ ,Δ)dz =
∫ λt

0
x(z, λΔ)dz = λ

∫ t

0
x(s,Δ)ds = λX(t,Δ). By using

Theorem 13(d) and the fact that, for fixed Δ, Y is the inverse function of X, we can
write λt = Y (X(λt, λΔ), λΔ) = Y (λX(t,Δ), λΔ) = λY (X(t,Δ),Δ). The equality
Y (λX(t,Δ), λΔ) = λY (X(t,Δ),Δ) is valid for every t ≥ 0. Because X(t,Δ) is
strictly increasing in t, we substitute u = X(t,Δ), and (e) is proved. According to
Theorem 13(e), Y (u,Δ) = ΔY ( u

Δ , 1), and the differentiability of Y with respect to u
entails that with respect to Δ.

For any differentiable function F (u), d
dvF (v)|λu = 1

λ
d
duF (λu), and thus Yv(v, 1)| u

Δ

= ΔYu( u
Δ , 1) = Yu(u,Δ). By using Theorem 13(e) again, YΔ(u,Δ) = ∂

∂Δ (ΔY ( u
Δ , 1)) =

Y ( u
Δ , 1)+Δ(− u

Δ2 )Yv(v, 1)| u
Δ

and YΔ(u,Δ) = 1
ΔY (u,Δ)− u

ΔYu(u,Δ). The last equal-
ity is equivalent to (f). The latter, which is the differential equivalent of (e), provides
a partial differential equation for Y . Unfortunately, the initial condition is given along
a characteristic curve and is equivalent to a solution of (17).

Theorem 14. Let x∞ := (1 − c
∫ 1

0
exp(−α 1−s

s ) ds)−1.

(a) For every t ≥ 0, limΔ↑∞ x(t,Δ) = 1
1−c .

(b) For every t > 0, limΔ↓0 x(t,Δ) = x∞ and limΔ↓0 x(0,Δ) = 1
1−c .

(c) For every Δ > 0, limt↑∞ x(t,Δ) = x∞.
Proof. By using the continuity of x, x(0,Δ) = 1

1−c , and Theorem 13(a), we

get 1
1−c = limt↓0 x(t,Δ) = limλ↑∞ x( t

λ ,Δ) = limλ↑∞ x(t, λΔ) = limΔ↑∞ x(t,Δ), and
(a) is proved.

It is enough to consider (b) for t > 0. For every 0 < t < t∗ and Δ > 0,
according to Theorem 13(c), we have x(t,Δ) = x( t

t∗ t
∗, t

t∗
t∗

t Δ) = x(t∗, t∗

t Δ). Let
Δn ↓ 0 and x(t,Δn) → lim infΔ↓0 x(t,Δ) as n ↑ ∞. The preceding equality en-

tails lim infΔ↓0 x(t,Δ) = limn↑∞ x(t,Δn) = limn↑∞ x(t∗, t∗

t Δn) ≥ lim infΔ↓0 x(t∗,Δ).
Since for the same reasons the converse inequality also holds, we conclude that
lim infΔ↓0 x(t,Δ) = lim infΔ↓0 x(t∗,Δ). Hence, for t > 0, lim infΔ↓0 x(t,Δ) is in-
dependent of t, and the same property holds for lim supΔ↓0 x(t,Δ). By using (Δn)
such that limn→∞ x(t,Δn) = x, (17) and the dominated convergence theorem provide
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Fig. 2. A: Force of the standard hyperbolic muscle as a function of the tetanic force of the last
recruited MU. B: Frequency modulation to recruitment ratio (FMR). C: Recruitment rate.

t =
∫ t

0
x (1 − c exp(−α t−s

s )) ds. Replacing s by s t in the preceding integral leads

to x = (1 − c
∫ 1

0
exp(−α 1−s

s ) ds)−1 = x∞. Since the same argument holds for
x = lim supΔ↓0 x(t,Δ), we conclude that x = x = x∞, and the proof of (b) is complete.

(c) follows from (b), with limt↑∞ x(t,Δ) = limλ↓0 x( t
λ ,Δ) = limλ↓0 x(t, λΔ) =

limΔ↓0 x(t,Δ) = x∞.
The existence of the limits in the next theorem follows from the monotonicity

properties discussed above.

Theorem 15. For every Δ > 0, we have (a) limt↑∞
X(t,Δ)

t = x∞, (b) limt↓0
X(t,Δ)

t

= 1
1−c , (c) limu↑∞

Y (u,Δ)
u = 1

x∞
, and (d) limu↓0

Y (u,Δ)
u = 1 − c.

Proof. (a) follows from Theorem 14(a) and the fact that ordinary convergence
implies convergence in the Cesaro sense. Since X(0,Δ) = 0, the definition of the
right-hand derivative at 0 provides (b). Part (d) follows from the same argument
applied to the inverse function Y . To prove (c), for fixed Δ we substitute t = Y (u,Δ)

in (a) and use x∞ = limt↑∞
X(t,Δ)

t = limu↑∞
X(Y (u,Δ),Δ)

Y (u,Δ) = limu↑∞
u

Y (u,Δ) .

3.1. Representation of the physiological solution. The use of Theorem 13
requires caution with units. For simplicity of notation, we introduce two rules:

• The argument of F(h,Δ) and F̃(h,Δ) is always expressed in Newtons.
• The presence or absence of units attributed to F(h,Δ) and Y is imposed by

the context.
Since α and c are muscle-independent, the solution F of (13),

F (t) =

∫ t

tmin

h(s)

(
1 − c exp

(
−α

F (t) − F (s)

F (s) + Δ

))
ds, t ∈ [tmin, tmax],

depends only on h and Δ and is therefore denoted F(h,Δ). Recall that a muscle with
h ≡ 1 was called hyperbolic, and with the new notation we have F(1,Δ)(t) = Y (t,Δ)
for all t ≥ 0. By using Theorem 13(e) and (15), we get F(h,Δ)(t) = Y (H(t),Δ) =

ΔY (H(t)
Δ , 1) = ΔF(1,1)(

H(t)
Δ ). F(1,1) is the solution of (13) for h ≡ 1 and Δ = 1, a

muscle which will be called standard hyperbolic (Figure 2A). Introducing the relative

force F̃(h,Δ)(t) :=
F(h,Δ)(t)

Fmax
, we get

F̃(h,Δ)(t) =
Δ

Fmax
F(1,1)

(
H(t)

Δ

)
=

Δ

Fmax
F(1,1)

(
H(t)
Fmax

Δ
Fmax

)
= AF(1,1)

(
H̃(t)

A

)
,
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where H̃(t) := H(t)
Fmax

and A := Δ
Fmax

, a unit-free number. Thus

(20) F̃(h,Δ)(t) = AF(1,1)

(
H̃(t)

A

)

shows that the solution of (13) for an arbitrary muscle can be derived from F(1,1),
which is the inverse function of the solution X(t, 1) of (19) with Δ = 1: X(t, 1) = t

1−c−
αc
1−c

∫ t

0
X(s, 1) t+1

(s+1)2 exp(−α t−s
s+1 ) ds. The values of F(1,1) can therefore be computed

very accurately once and for all and then memorized for subsequent computations
(Figure 2A).

The relative synaptic weight. By using InT (t) =
F(h,Δ)(t)

k +In0, (7), and (20),
the relative synaptic weight as a function of the tetanic force t is given by

(21) g̃(t) =
VT

(EEPSP − VT )In0(F(1,1)(
H̃(t)
A ) + 1)

.

The range of g̃ is

[g̃(tmax), g̃(tmin)] =

[
VT

(EEPSP − VT )In0(F(1,1)(
1
A ) + 1)

,
VT

(EEPSP − VT )In0

]

and is thus independent of the shape of the MU distribution.
The trace of the muscle in g̃(t) appears in H̃(t) and A. According to the pre-

ceding results, there always exists a unique relative synaptic weight providing a

given affine muscle response during recruitment. Since F(1,1)(
H̃(t)
A ) is strictly in-

creasing in t, g̃(t) is strictly decreasing. The integrability of ρ and (21) imply that

ρ(t)
a.e.
= Δ

t
d
dtF

−1
(1,1) ( VT

(EEPSP−VT )In0g̃(t)
− 1). For fixed values of Δ and In0 (or equiv-

alently for fixed k and In0) and once two densities equal a.e. have been identified,
there is a one-to-one correspondence between the relative synaptic weight and the
MU density function.

4. Activation of the muscle and related functionals. The study of the
activation of a muscle is simplified by normalization of the input Ĩn = In

In0
and the

muscle force F̃ = F
Fmax

. The curve given by Ĩn �→ F̃(Ĩn) will be called the relative

activation curve. During recruitment, the latter is given by F̃(Ĩn) = Δ
Fmax

(Ĩn − 1)

(Figure 3A). The unit-free number A = Δ
Fmax

in (20) is the slope of the preceding
straight line and is called the activation factor (denoted S in [42]). It is remarkable
that A depends on ρ only through its first moment Fmax.

Recruitment ratio. The recruitment ratio is the fraction Q of the force at the
end of recruitment and the maximal force of the muscle. As a ratio of two forces,

Q is a unit-free number. By using (20), we can write Q = AF(1,1)(
H(tmax)

Δ ). Since

H(tmax) = Fmax and A = Δ
Fmax

, the recruitment ratio (Figure 3C) depends on A
only since

(22) Q(A) = AF(1,1)

(
1

A

)
.

Since F(1,Δ)(t) = Y (t,Δ), Q(A) =
Y ( 1

A ,1)
1
A

, and because of Theorem 12(f), it is a

decreasing function of A. Therefore, by using Theorem 15(c) and (d), for all A > 0
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Fig. 3. A: Relative activation curves and end-recruitment curve as a function of the relative
input. They are obtained by projection of the curves in Figure 4 in the (Ĩn, A) plane. B: Relative
recruitment range R(A). C: Recruitment ratio Q(A).

we have 1 − c = limu↓0
Y (u,1)

u ≤ Q(A) ≤ limu↑∞
Y (u,1)

u = x−1
∞ . For the estimated

values α = 1.14 and c = 0.9, we get 0.1 ≤ Q(A) ≤ 0.66 for all A > 0 and thus for all
muscles.

Relative recruitment range. We call relative recruitment range R the smallest
relative input range within which all MUs are recruited. It is also the factor by which
the threshold input of the smallest MU of the pool has to be multiplied in order
to recruit all MUs. Since ĨnT (tmin) = 1, we have R = ĨnT (tmax) − 1. Since A is
the slope of the relative activation curve during recruitment (affine range), we have
R = Q

A . Because of (22), R is a function of A only, given by R = F(1,1)(
1
A ) and thus

decreasing (Figure 3B).
If A → ∞, then R(A) → 0 and Q(A) → 0.1, meaning that all MUs tend to

have the same threshold and be instantaneously recruited. The muscle force is then
close to 10% of the maximal muscle force since, at recruitment, each MU contracts at
10% of its tetanic force (1− c = 0.1). If A → 0, then R(A) → +∞ and Q(A) → 0.66.
The muscle force increases with a slope close to 0. Each recruited MU increases its
firing frequency nearly to the tetanic contraction force until the next is recruited.
Thus frequency modulation and recruitment develop parallel to each other, and at
completion of the MU recruitment, the muscle force approaches 66% of its maximal
force.

Relative activation surface. We know that F(In) =
∫ tmax

tmin
ρ(s)f(s, In) ds,

where f(s, In) = s (1− c exp(−α In−InT (s)
InT (s) )) if In > InT (s) and 0 otherwise. Accord-

ing to (7) and (21), we have

(23) ĨnT (s) = F(1,1)

(
H̃(s)

A

)
+ 1, s ∈ [tmin, tmax].

By using the preceding relations and the change of variable u = H(s), for Ĩn ≥ 1, we
get

(24) F̃(Ĩn) =

∫ 1

0

I{u≤AF−1
(1,1)(Ĩn−1)}

(
1 − c exp

(
−α

Ĩn− (F(1,1)(
u
A ) + 1)

F(1,1)(
u
A ) + 1

))
du,

IE denoting the indicator function of the set E. For fixed α and c, we see that F̃(Ĩn)
is a function of Ĩn and A only. Therefore, it can be interpreted as a surface Σ, called
the relative activation surface (Figure 4) and denoted F̃(A, Ĩn).
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Fig. 4. The relative activation surface, the relation between the relative input, the activation
factor, and the relative force. Vertical sections parallel to the (F̃ , Ĩn) planes are the relative activa-
tion curves. The interconnected ends of the relative activation curves give the recruitment boundary
curve (bold line).

Since the function F̂(1,1) is strictly increasing, (24) implies the equivalence of

A1 < A2 and F̃(A1, Ĩn) < F̃(A2, Ĩn) for all Ĩn > 1. Consequently, their projections
on the (input, force) plane (Figure 3A) never intersect each other for Ĩn > 1. The
end of the affine part of an activation curve is a point on Σ corresponding to the
end of recruitment. The set of these points defines a curve Γ called the recruitment
boundary curve (bold line in Figure 4). One of the parametric forms of Γ is 0 < A �→
(A, 1 + R(A), Q(A)). We can project Γ on three different planes:

(a) The projection on (A, F̃) provides the recruitment ratio Q(A) (Figure 3C).
(b) The projection on (A, Ĩn) provides, up to a translation, the relative recruit-

ment range R(A) (Figure 3B).
(c) The projection on (Ĩn, F̃) provides the end-recruitment curve. Simple com-

putations lead to its representation Ĩn �→ Ĩn−1
F−1

(1,1)(Ĩn−1)
(Figure 3A), which,

according to Theorem 12(e), is an increasing function.
The vertical sections of Σ parallel to the (Ĩn, F̃) plane are the relative activation
curves, and according to (24), each one of them is determined by A only (Figure 3A).

Relative force contributions due to recruitment and frequency modula-
tion and related functions. The total muscle force is the sum of the contributions
due to recruitment and frequency modulation F(Ĩn) = Frec(Ĩn) + Fmod(Ĩn). Di-
viding by Fmax, we get F̃(Ĩn) = F̃rec(Ĩn) + F̃mod(Ĩn). It is sufficient to compute
F̃rec, which is the fraction (1 − c) of the maximal force produced by all recruited

MUs for the input Ĩn. Thus F̃rec(Ĩn) = (1 − c)H(t(Ĩn))
Fmax

, where t(Ĩn) is the tetanic

force of the strongest MU recruited by the relative input Ĩn. By using (23), we get

Ĩn = F(1,1)(
H(t(Ĩn))

Δ ) + 1, and hence,

(25) F̃rec(Ĩn) =

{
(1 − c)AF−1

(1,1)(Ĩn− 1) if 1 ≤ Ĩn ≤ Ĩn(tmax),

1 − c if Ĩn > Ĩn(tmax).
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Again we see that the relative muscle forces due to recruitment and to frequency
modulation, as functions of Ĩn, depend only on the activation factor. Straightforward
computations provide the unit independent quotients for 1 ≤ Ĩn ≤ InT (tmax):

Frec

F (Ĩn) =
F̃rec

F̃
(Ĩn) = (1 − c)

F−1
(1,1)(Ĩn− 1)

Ĩn− 1
,

Fmod

Frec
(Ĩn) =

F̃mod

F̃rec
(Ĩn) =

1

1 − c

Ĩn− 1

F−1
(1,1)(Ĩn− 1)

− 1.

We call the recruitment rate the number 100 F̃rec

F̃ (Figure 2C) since it gives, at the

end of recruitment, the percentage of the force due to recruitment. The ratio F̃mod

F̃rec

will be called frequency modulation to recruitment ratio or simply FMR (Figure 2B).

According to Theorem 12(e), F̃rec

F̃ is decreasing and F̃mod

F̃rec
increasing. Both func-

tions are muscle-independent as long as recruitment is not achieved. At the end of
recruitment (e.r.), we have Ĩn− 1 = R(A) and thus

Frec

F |e.r. =
F̃rec

F̃
|e.r. =

(1 − c)

Q(A)
,

Fmod

Frec
|e.r. =

F̃mod

F̃rec
|e.r. =

1

1 − c
Q(A) − 1.

The last two quantities depend only on A, and according to Theorem 12(f), the
first one is increasing and the second one is decreasing. For fixed values of Δ, the
same properties hold for the variable Fmax instead of A.

Recruitment gain. The recruitment gain, introduced in [28] in the context of H-
reflexes, is the “size of threshold differences to recruit additional MUs.” The situation
is simple in the case of the H-reflex since MUs are activated only once during this
reflex and rate modulation is thus nonexistent. The recruitment gain corresponds
to the derivative, during recruitment, of the number of active MUs with respect to

the relative input. It is given by Rg(Ĩn) = d
dĨn

∫ t(Ĩn)

tmin
ρ(s) ds = ρ(t(Ĩn)) d

dĨn
t(Ĩn).

As we have seen before, t(Ĩn) = H−1(ΔF−1
(1,1)(Ĩn − 1)), and by differentiating both

sides with respect to Ĩn and denoting ′ = d
dĨn

, we obtain ρ(t(Ĩn)) t(Ĩn) t
′
(Ĩn) =

Δ(F−1
(1,1))

′
(Ĩn− 1). Finally, the last three equations lead to

Rg(Ĩn) =
Δ(F−1

(1,1))
′
(Ĩn− 1)

H−1(ΔF−1
(1,1)(Ĩn− 1))

.

In contrast to the preceding relations derived in this section, Rg(Ĩn) depends on the
particular muscle via H and Δ.

5. Discussion. The relative synaptic weight, which specifies the efficacy of the
synaptic input to the individual MNs, cannot be determined with the present experi-
mental techniques. However, every model of the MNPMC requires this quantity, and
we present here an approach allowing its computation. A main feature of the model
is that it is based on a known behavior of the activation curve during recruitment. In-
direct measurements [38] indicate that this function is affine during recruitment, and
this turns out to be sufficient to determine the relative synaptic weight. The MNPMC
model can now be used to compute various functionals related to the muscle activation.
They provide a deeper insight into the processes occurring during muscle activation
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and also yield values for missing experimental data required for more complex models
of the MNPMC. The computed relative synaptic weight has been implemented in a
time-dependent model which considers each MU individually [36, 39].

Normalizing the force by the maximal muscle force Fmax and the input by the
threshold input In0 is the source of several advantages. In this new frame, the slope
k of the activation curve during recruitment is transformed into the activation factor
A = kIn0

Fmax
. The signature in A of the muscle MU population is Fmax, the first moment

of ρ. One could have expected a more intricate dependence since ρ is an arbitrary
nonnegative and integrable function.

The activation factor is the parameter which governs completely the activation
process of a muscle in our model. Indeed, the relative activation surface depends on
Ĩn and A. It turns out that the relative activation curve depends only on A (even
after recruitment is completed), entailing that the recruitment boundary curve Γ, the
end-recruitment curve γ, the relative activation curves, the relative recruitment ratio
Q, and the relative recruitment range R(A) depend only on A.

It is also quite remarkable that the ratios F̃mod

F̃rec
= Fmod

Frec and F̃rec

F̃ = Frec

F , as

long as recruitment is not achieved, depend only on the function F−1
(1,1) and are thus

totally independent of the muscle. Of course, the values of these ratios depend on A
at the end of recruitment. However, the relative synaptic weight depends on In0 and
A, and finally, the recruitment gain Rg(Ĩn) depends on Δ and ρ. As in [45], several
functionals become muscle-independent or depend only on the activation factor.

The preceding normalization also allows for the comparison of muscles with differ-
ent strengths, as described in [42] for the first dorsal interosseus, a small hand muscle,
and the gastrocnemius, a much stronger leg muscle.

We proved that for fixed values of k and In0, the MU population density ρ and
the relative synaptic weight g̃ are linked by a one-to-one relation. The MU population
ρ of a muscle can therefore be recovered from the synaptic weight and conversely is
a feature which might be used by the CNS. If the properties of an MU population
change by a lesion or a pathological situation such as muscular dystrophy, or simply
by disuse or training, an input to the MN pool does not result in the force expected
by the CNS. As a consequence, the relative synaptic weight in the MN pool might
be readjusted in order to achieve the activation curve required for a properly working
motor control. Sensory input from muscle spindles and additional sensors might play
a major role in such a feedback system. This hypothesis could be tested in patients
with motor diseases, in subjects participating at bed rest and thus concerned with
muscle atrophy, or in subjects undergoing a force training.

The activation curve is composed of an affine part, prescribed a priori during
recruitment, followed by a nonaffine portion due to frequency modulation only. Our
model predicts that the affine part can be maintained up to at most 66% of the
maximal muscle force, a situation achievable with a slope approaching 0. For muscle
forces above the relative recruitment range, the slope of the activation curve is steadily
decreasing. As a consequence, relatively strong inputs are required to adjust high
force levels. The activation curve has not yet been investigated in muscles with a
large activation factor where the nonaffine range extends over an important domain
of the input. However, there is evidence that an affine relationship holds in the
working range of the human soleus muscle. Unpublished data (D. G. Ruegg and
T. H. Kakebeeke) show that humans are able to voluntarily contract the soleus muscle
up to only about 60% of its maximal force, and the activation curve is affine over
that range, suggesting that the behavior of the soleus is compatible with our model.
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In this way, the CNS might limit the muscle’s working field to the affine range, a
possibly very useful property. Indeed, motor centers that are hierarchically above
the MN pool would be faced with a fixed activation curve. Consequently, a control
mechanism at the spinal level would be sufficient to adjust the synaptic weight in order
to maintain the activation curve, when changes in the MU population are induced by
training, disuse, or disease. Moreover, the whole activation curve is automatically
adjusted by the affine part since it depends only on its slope, namely, the activation
factor. The verification of this property requires subjects with a modified MU density
function.
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Abstract. Classical results for randomly covering a one-dimensional domain are generalized to
multiple domains. The density function for the number of gaps is derived in the context of Bell’s
polynomials. Limiting forms are determined as well. The multiple domain configuration is a good
model for DNA sequencing scenarios in which the target is fragmented, e.g., filtered DNA libraries
and macronuclear genomes. Large-scale sequencing efforts are now starting to focus on such projects.
Fragmentation effects are most prominent for small targets but vanish for very large targets. Here,
the current model converges with classical theory. Pyrosequencing has been suggested as a viable,
much cheaper alternative for large filtered projects. However, our model indicates that a recently
demonstrated microscale Sanger reaction will likely be far more effective.
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1. Introduction. The basic problem of covering a one-dimensional domain with
randomly placed segments has been studied extensively for over a century [40]. The
probability density function (PDF) for gaps has been described for the unit circle [41],
as have moments of coverage [38] and asymptotic characteristics [18, 23, 39]. The real
line has been similarly examined [13].

A notable result emerging from this work is Stevens’s theorem [40, 41]. Suppose
there are i trials, which are not independent of each other. If the probability for any
specific σ of these trials to have outcome Γ is f (σ), regardless of the outcomes for the
remaining i− σ trials, then the PDF for γ instances of Γ is

(1.1) P (i,Γ = γ) = Ci,γ

i−γ∑
σ=0

Ci−γ,σ (−1)
σ
f (σ + γ) ,

where Ci,γ are the binomial coefficients. The relationship between (1.1) and the
standard inclusion-exclusion approach is readily demonstrated [16, 28]. In his paper,
Stevens [41] went on to show, via straightforward geometric arguments, that the
number of gaps in coverage for a circular domain of unit circumference is governed by
the kernel probability f (σ) = (1−σ ϕ)i−1

+ , where i is the number of random covering
segments, ϕ is the fractional length of each segment, and (t)+ = max (0, t).

The eminent mathematician-scientist Harold Jeffreys offered one of the more col-
orful interpretations of the one-dimensional problem [14]. He imagined a bicyclist
passing through an intersection strewn with tacks. Upon emerging, the rider wants to
know if any tacks have been picked up in her tire but can only glance down at short
random intervals as she moves down the road. If each glance covers a fraction ϕ of
the tire circumference, what is the probability that the whole tire has been examined
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Fig. 1.1. Schematic of the shotgun covering process for double-stranded DNA. The target is
shown as two concentric circles, representing equivalent lengths of complimentary nucleotide se-
quence. Covering fragments for the outer and inner strands are depicted as arcs lying outside and
inside the circles, respectively. The circularized configuration is characteristic of numerous DNA
molecules, for example, bacterial chromosomes, genomic plasmids, mitochondrial DNA, and cloned
fragments (e.g., bacterial artificial chromosomes (BACs), fosmids, plasmid subclones, etc.).

after i glances? According to (1.1), the solution is P (i,Γ = 0), the instance in which
there are no observational gaps.

Aside from its mathematical significance [17] and the perhaps surprising rele-
vance to cycling, the one-dimensional configuration is a useful abstraction for a vari-
ety of physical problems. Here, we are interested in its singularly important role in
modeling DNA processing, particularly the various random “shotgun” strategies for
sequencing and mapping [32]. DNA is a nonbranching biopolymer, usually of high
molecular weight. Biochemical limitations preclude direct experimental characteriza-
tion of DNA molecules, for example, at the level of chromosomes or whole genomes.
However, smaller fragments can readily be resolved by methods such as Sanger’s chain-
termination sequencing reaction [37]. On a conceptual level, the shotgun approach
consists of nothing more than randomly oversampling a library of suitably small frag-
ments with the objective of covering a larger domain of interest [1, 11]. A number of
models have been devised for shotgun processing [29, 35], and these have been shown
to be special cases of Stevens’s equation (our (1.1)) [46].

One of the factors that has not yet been adequately considered is target multi-
plicity, of which perhaps the simplest illustration is the double-stranded configuration
of DNA itself. For example, if random covering fragments are derived from phage
clones, the actual strand from which any particular fragment originates is not known
(Figure 1.1). Existing theories tacitly assume that all fragments come from the same
strand, meaning that strand information is essentially lost. However, computational
algorithms that assemble these fragments find overlaps by checking both the actual
sequence and its reverse complement. (The latter is a fragment’s representation on
the opposite strand deduced from Watson–Crick base-pairing rules.) In effect, strand
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information is restored ex post facto. Biologists consider closure on both strands,
independent of one another, to be important for fully resolving a desired DNA se-
quence [8, 21]. In particular, this allows detection of strand-specific anomalies [15].

The issue of stranding implies that we are actually dealing with the random,
simultaneous covering of two domains, as shown in Figure 1.1. As with the standard
independently and identically distributed (IID) assumption for spatial distribution
of the fragments, one could presume fragments to be IID over the domains as well.
Incidentally, the problem depicted in Figure 1.1 is really the correct analogue to
Jeffreys’s bicyclist, where the rider glances randomly at both the back and front tires;
Jeffreys’s original interpretation applies strictly to unicycles!

Quite a few scenarios in DNA sequencing actually demand the generalization of
this idea to larger numbers of domains. For example, the most recalcitrant genomes
are not directly amenable to the conventional whole genome shotgun method. Biolo-
gists have developed various filtering techniques to identify and remove those regions
that cannot be resolved using current technology [47]. The filtering process cleaves the
original target into thousands of smaller domains (essentially the individual genes).
The required shotgun procedure is then performed on the collective set of domains. A
similar multiple-target scenario arises with organisms having macronuclear genomes
that consist of thousands of small chromosomal structures [12, 33].

Another area of growing interest is the so-called metagenomic project, where a
community of microbe types is extracted and sequenced directly, i.e., without the
need for culturing [10, 20, 30, 36, 43]. Here, there may be as many as 105 distinct
microbial DNA targets [2]. Strictly speaking, a number of more traditional scenarios
are also multiple-target problems—the whole genome shotgun method applied to mul-
tichromosome organisms (tens of domains) [42], whole genome reads projected over
large-insert libraries (hundreds to tens of thousands of domains, depending upon the
project) [34], and clone mapping projects (tens of domains) [24].

Existing theoretical work is limited, either focusing on relevant expected val-
ues [45] or assuming distribution of segments according to an expected value argu-
ment [31]. Here, we report a more comprehensive characterization of the multiple-
domain problem based on the PDF and its limiting forms. These results are applied
to a number of unresolved issues in DNA sequencing.

Let us take Γ as the random variable representing the number of gaps in a problem
having an arbitrary number of domains N , over which i covering segments have been
randomly placed. Here, Γ is the total number of gaps, i.e., the sum of the numbers
of gaps over all the individual target domains. This interpretation corresponds to
the biological motivations of the problem, especially that of characterizing closure
probabilities for the overall DNA target. Each target domain has a length Δ > 0,
while each covering segment has a length Λ, where 0 < Λ < Δ. Consequently, the
total target size is NΔ. We do not consider the configuration Λ = Δ, as it reduces
to the classical occupancy problem [16, 28], which does not exhibit the type of gaps
we are interested in here. Segment placements are presumed to be IID within each
domain as well as over the N domains. Relevant dimensionless groups are the domain
ratio ϕ = Λ/Δ, the target ratio ϕ/N , and the covering redundancy ρ = iϕ/N .
The latter can be thought of as the number of segments covering the average target
position.

2. The multiple-domain kernel probability. The kernel probability f (σ) in
(1.1) is the probability of gaps after σ specific segments, regardless of the gap status
associated with all other remaining segments. It can be derived by a straightforward
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geometric argument for N = 1, as shown by Stevens [41]. For N > 1, we must
also consider the combinatorial aspect of how these σ particular segments can be
partitioned over the various N domains. The multiple-domain kernel function is then
given by the following constructs.

Lemma 2.1. Let xk be the probability of realizing any given configuration of the i
segments over the N domains, where σ specific segments are partitioned in a certain
permutation over k of the domains. Then

xk = N−i
k∏

β=1

(N − β + 1) ,

where k ∈ {1, 2, . . . , σ}.
Proof. Probability xk is a function of two components—one representing the σ

segments partitioned in a specified way over the k domains and the other for the
remaining i − σ nonpartitioned segments, which can be distributed in any manner
over all N domains. These components are clearly independent of one another so
that xk is simply the product of the two individual probabilities.

Consider a particular permutation of the σ partitioned segments. Let any k of
these segments be placed on any k distinct domains. The remaining σ−k segments in
the partition must then each fall on a specific domain to satisfy the given permutation.
The probability of this event is

N − 0

N
× N − 1

N
× N − 2

N
× · · · × N − k + 1

N
×

(
1

N

)σ−k

·

There are N i−σ ways of placing the remaining i − σ nonpartition segments over
all N domains. Each of these arrangements is equiprobable, giving a probability of
N−(i−σ) for any specific one. The product of these two expressions yields

(
1

N

)i−σ (
1

N

)σ−k k∏
β=1

(
N − β + 1

N

)
,

from which Lemma 2.1 follows directly.
Lemma 2.2. Let Π (σ) be the geometric probability for gaps appearing after the

σ partitioned segments described in Lemma 2.1 for the union of all configurations
of the remaining i − σ segments over the N domains. Π (σ) connotes the partition
gν1
1 gν2

2 · · · gνσ
σ , where the number of islands hosting the given partitioned segments is

k = ν1 + ν2 + · · · + νσ. The probability is

Π (σ) = (N − σϕ)
i−σ

σ∏
β=1

(1 − βϕ)
(β−1) νβ

+ .

Proof. This expression can be demonstrated via systematic enumeration, accord-
ing to how the i− σ nonpartition segments can be distributed among all N domains.
Each arrangement is mutually exclusive of all others, so the union is evaluated by sim-
ple summation. The geometric probability is formulated along the lines of Stevens’s
argument [41] for each distinct arrangement of segments. That is, a domain of inter-
est hosts 1 ≤ π ≤ σ of the partitioned segments, along with 0 ≤ j ≤ i − σ of the
nonpartitioned segments. Stevens’s term, localized for this domain, can be written in
the form (1 − π ϕ)π+j−1

+ .
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A partition can be represented in the general form gν1
1 gν2

2 · · · gνσ
σ , where σ =

1ν1 + 2ν2 + · · · + σνσ specific segments are partitioned over k = ν1 + ν2 + · · · + νσ
domains of interest. That is, each gπ represents one of these domains, which hosts
π of the σ segments. This partitional notation implies a left-to-right arrangement
of the k domains, though the ordering is simply a convenience. Now, consider all
configurations where j of the i− σ nonpartitioned segments are “mixed in” with the
partitioned segments; i.e., they reside in some manner on the same k domains where
the partitioned segments lie. Then, the remaining i− σ − j segments must lie on the
other N − k domains.

We must first quantify the joint geometric probabilities for all the different ways
that the j nonpartitioned segments can be distributed over the k domains. For ex-
ample, if all j reside on the leftmost g1 domain, we have a geometric probability of
the form

(1 − 1 ϕ)
1+j−1
+ (1 − 1 ϕ)

1+0−1
+ · · · (1 − 1 ϕ)

1+0−1
+︸ ︷︷ ︸

ν1 such terms representing all “g1” domains

(1 − 2 ϕ)
2+0−1
+ · · · (1 − σ ϕ)

σ+0−1
+ .

Note that all j nonpartition segments are assigned to the leftmost term representing
the leftmost g1 domain. This expression would also have a coefficient Ci−σ,j to account
for the number of ways to pick j segments from the collection of i − σ nonpartition
segments. Also, there is an implied multiplier of unity, indicating that there is only
one way to assign the j segments to this single domain.

In a similar fashion, we then consider all the remaining ways of distributing the
j nonpartitioned segments over the k domains, formulating the appropriate joint ge-
ometric probability in each case. In addition to the Ci−σ,j coefficient for the num-
ber of ways of picking the j segments, we have the appropriate k-nomial coefficient
j!/ (j1!j2! · · · jk!), where j1 + j2 + · · · + jk = j, to account for the number of ways of
assigning the j segments to the k domains. All of these joint geometric probabilities
are summed, and the result is multiplied by (N −k)i−σ−j , which represents the num-
ber of ways the i− σ− j remaining nonpartitioned segments could be assigned to the
other N − k domains. The resulting summation Sj is such that one can factor out
the product

(1 − 1 ϕ)
1−1
+ · · · (1 − σ ϕ)

σ−1
+ =

σ∏
β=1

(1 − βϕ)
(β−1) νβ

+ = P .

Note that the ( )+ limiters continue to govern the positivity of P, and because P is
a multiplicative factor, these limiters are superfluous for the remaining Stevens-type
terms in the summation. Consequently, the overall expression can be written

Sj = (N − k)
i−σ−j · Ci−σ,j · P ·

[
(1 − 1 ϕ)

j
+ · · · + (1 − σ ϕ)

j
]
,

where the ( )+ notation has been dropped from the summed terms. These terms
collapse via the multinomial theorem, and, after some algebraic manipulation, this
expression can be written

Sj = (N − k)
i−σ−j · Ci−σ,j · P ·

[
ν1 (1 − 1 ϕ) + · · · + νσ (1 − σ ϕ)

]j
.

By factoring further, Sj reduces to

Sj = (N − k)
i−σ−j · Ci−σ,j · P · (k − σϕ)

j
.
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Considering the union of all cases for j ∈ {0, 1, . . . , i− σ}, we find

Π (σ) = P ·
i−σ∑
j=0

Ci−σ,j · (N − k)
(i−σ)−j · (k − σϕ)

j
,

which itself collapses via the binomial theorem into Lemma 2.2.
Theorem 2.3. The kernel probability for the multiple-domain covering problem

can be cast in terms of Bell’s exponential polynomials [3, 9]

f (σ) =
∑
Π(σ)

σ! xk

ν1! ν2! · · · νσ!

(g1

1!

)ν1
(g2

2!

)ν2

· · ·
(gσ
σ!

)νσ

,

where the xk are probabilities given by Lemma 2.1 and the set partitions gν1
1 gν2

2 · · · gνσ
σ

represent the probabilities given by Lemma 2.2.
Proof. The kernel probability for σ specific segments can be found by consider-

ing the union of all the ways to both partition these σ specific segments and assign
the remaining i − σ nonspecific segments over the N domains. That is, f (σ) is the
summation over all the segment configurations of PcPg, which are probability of the
configuration itself and the geometric gap probability associated with the configura-
tion, respectively.

The probabilities for all configurations having a common permutation of the σ
partitioned segments are identical, as discussed in Lemma 2.1. Thus, xk is the factored
configurational probability that multiplies the corresponding sum of geometric prob-
abilities given by Lemma 2.2. Finally, the coefficients in Bell’s polynomials account
for how many ways a given partition can be permuted.

As an example, consider the partitioning of exactly four segments. Theorem 2.3
takes the form

(2.1) f (4) = 1 g4 x1 +
(
4 g3 g1 + 3 g2

2

)
x2 + 6 g2 g

2
1 x3 + 1 g4

1 x4 .

The g4 partition indicates that all four segments lie on one domain, g3 g1 specifies
three segments on one domain with the fourth on another, etc. Polynomial coefficients
indicate the number of ways each partition can be permuted. Stevens’s problem for
a single domain [41] can be thought of as a special case of Theorem 2.3 in which only
the first term of each polynomial σ is retained. That is, f(σ) = 1gσx1, where x1 = 1
and gσ is Stevens’s geometric probability.

3. Asymptotic limiting cases. Although the results in the previous section
are exact, there are well-known limitations for evaluating Bell’s polynomials as σ
becomes large. Complications arise primarily as a result of growing N because terms
are needed up to xN in each polynomial. Here, we report two asymptotic limiting
cases that are of biological relevance.

First asymptotic limit. Consider the case of a finite, fixed target size, but
where the target itself becomes progressively more fragmented. In the limit, the
size of the individual target domains approaches the covering segment length. This
scenario implies that ϕ/N can be held at certain constant values such that ϕ → 1.
Here, Stevens’s solution shows that for any given domain

P (i = 1,Γ = γ) =

{
0 : γ = 0,
1 : γ = 1,

and P (i ≥ 2,Γ = γ) →
{

1 : γ = 0,
0 : γ = 1
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as well as P (i,Γ ≥ 2) = 0. Consequently, finding the distribution of gaps among
the target domains is asymptotically equivalent to the problem of determining the
distribution of domains having exactly one segment each. The latter is a variation of
the classical occupancy problem [16, 28].

Within the combinatorial context of our analysis thus far, the most straightfor-
ward solution for this case is given by the following construct.

Theorem 3.1. The probability distribution P1 for the first asymptotic case
ϕ → 1 is

P1 (i,Γ = γ) = N−i
∑
Π(i)

i!

ν1! ν2! · · · νi! (1!)
ν1 (2!)

ν2 · · · (i!)νi
δγ,ν1(N)k ,

where δ is the Kronecker delta, (N)k = N (N−1) · · · (N−k+1), and Γ ∈ {0, 1, 2, . . . , N}.
Proof. Bell’s coefficient (the quotient) gives the number of ways to realize a given

partition of i segments over k = ν1 + ν2 + · · ·+ νσ specific domains, where ν1 of these
domains have exactly one segment each. There are (N)k permutations of a k-bin
arrangement so that the product of the two values is the total number of ways to find
the ν1 domains of interest among the N total domains. The enumeration is summed
over all partitions, tallying only those where ν1 = γ via the Kronecker delta. There
are N i possible configurations of the i segments over the N domains. Assuming each
is equally likely, the probability is the quotient of the above enumeration and N i.

One can actually find the distribution of domains having any desired number of
segments by simply adjusting the second subscript on δ appropriately. Other combi-
natorial results for this problem are available as well [28]. Unfortunately, such solu-
tions are not terribly practical from a computational standpoint for reasons already
discussed above. A more amenable form comes directly from probability theory [16]:

(3.1) P1 (i,Γ = γ) =
(−1)

γ
N ! i!

γ! N i

min(N,i)∑
j=γ

(−1)
j
(N − j)

i−j

(j − γ)! (N − j)! (i− j)!
·

Computing each PDF using (3.1) requires evaluation of (N + 1)(N + 2)/2 terms for
the usual case of interest, i.e., i ≥ N .

Second asymptotic limit. We can extend the previous concept to the scenario
where the original target is infinitely large. Specifically, the target is fragmented into
N → ∞ domains such that ϕ → 1 (thus ϕ/N → 0). This variation once again
has a direct analogue in the corresponding occupancy problem, which converges to a
Poisson process if the rate remains bounded. That is, the distribution for the second
asymptotic case approaches

(3.2) P2 (i,Γ = γ) =
exp (−λ)λγ

γ!
,

where the rate is λ = i exp (−i/N) [16].

4. Discussion. Shotgun DNA sequencing is a comparatively new research tool
to the biomedical sciences [1, 11], yet it is already responsible for numerous discov-
eries of fundamental importance. Sequencing projects continue to be guided almost
exclusively by the collective empirical experience of the sequencing community, with
little to no input from theoretical foundations. This is largely attributable to the fact
that the latter have not evolved sufficiently to treat many of the biologically relevant
phenomena of sequencing.
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Lander and Waterman developed what most biologists consider to be the stan-
dard model almost two decades ago [29]. This theory provides the expected value
of gaps based on the assumption of a single, monolithic DNA target. In fact, subse-
quent work has focused almost entirely on the monolithic target [35, 46]. Yet, many
sequencing scenarios now routinely involve fragmented targets, as outlined above.
Wendl and Barbazuk [45] have extended the standard theory to multiple domains of
linear molecules, but their model still considers only expected values. Here, boundary
conditions (i.e., “edge-effects”) appreciably influence sequencing progress. However,
expected value analysis is of little use for circular configurations. Indeed, it is fairly
straightforward to show that the expected number of gaps for a fragmented target
is identical to the Lander–Waterman expression if the target is large enough. This
suggests that the influences of fragmentation may be more subtle.

Here, we illustrate a few applications of the theory for which fragmentation is
known, or at least presumed, to play a role. Unless otherwise stated, a covering
segment length of 1,000 is assumed. This value represents the current limit of what
can be resolved by the chain-termination sequencing reaction [37] on a sustained basis.
Each calculation uses 700 digits behind the decimal point. We will also abbreviate
DNA nucleotide bases and base-pairs as “nuc” and “bp,” respectively.

Trends under increasing fragmentation. How does the gap census evolve
as targets become progressively more fragmented? This question has some practical
bearing on DNA sequencing projects, especially for sample-related calculations that
depend upon the variance [22].

First, let us examine fragmentation in the mild to moderate range. In general,
the PDF becomes increasingly diffuse, but the degree to which this occurs is highly
dependent upon the parameters. Consider, for example, the case ϕ/N = 1/80, which
corresponds to the shotgun sequencing of a standard double-stranded 40,000 bp fosmid
clone [26]. The total target size is 80,000 nuc. Figure 4.1 shows gap PDFs for three
configurations—a single 80,000 nuc target, four 20,000 nuc target domains, and eighty
1,000 nuc domains. The last configuration corresponds to the first asymptotic limit in
(3.1). Functions are shown for light redundancy ρ = 1 and moderate redundancy ρ =
4. Note that we calculate ρ based on the total number of nucleotides. Consequently,
our definition differs by a factor of two from the casual, more common usage of ρ,
which does not consider stranding.

Graphical resolution shows no difference between the single monolithic target
N = 1 and a mildly fragmented target consisting of N = 4 domains. Differences for
these two configurations would be noticeable only for smaller target sizes, e.g., those
characteristic of single gene islands (see below). Consequently, it appears that the
issue of stranding we described above can be neglected in most cases of biological
interest. It also appears that mild fragmentation will not have a significant effect for
most projects, especially since read lengths will often be somewhat less than 1000 bp.
Conversely, the first asymptotic case (3.1) does differ to some degree. For example, the
PDF is clearly more diffuse at ρ = 1, although this configuration shows a significant
trend toward convergence at ρ = 4.

At the opposite extreme is the scenario where a very large target is fragmented
into numerous very small domains. Such is the case, for example, when filtering
schemes are used to extract and sequence the gene complement of large genomes [47]
or when sequencing certain genomes that are inherently highly fragmented [12, 33]. In
particular, filtering something like the maize genome gives a target size on the order
of 5 × 108 bp with about 2 × 105 islands [47]. In these scenarios, one finds complete
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Fig. 4.1. Gap density functions at 1-fold and 4-fold redundancies for a fosmid-class target at
various levels of fragmentation.

convergence with the classical theory for monolithic targets; i.e., the influence of
fragmentation vanishes. The Poisson rate in the second asymptotic limit (3.2) is
equivalent to λ = i exp (−ρ) since ϕ → 1. The binomial PDF for monolithic targets,
e.g., equation (9) in [46], associates a Bernoulli probability of exp (−ρ) with i trials.
Consequently, it converges to this same expression for large targets.

In summary, these results indicate that ϕ is a strong variable when ϕ/N is rela-
tively large. Conversely, the process is essentially independent of ϕ as ϕ/N becomes
vanishingly small.

The stopping problem. One of the more practical questions that arises in all
sequencing projects is when to halt the random phase of processing. This is the
so-called stopping problem. Appreciable economic consequences revolve around this
decision because subsequent directed procedures are at least an order of magnitude
more expensive per unit sequence recovered. Incidentally, the nonrandom continuation
is required because non-IID characteristics become apparent at higher redundancies,
making it difficult to achieve a γ = 0 “base-perfect” sequence using the random
method alone.

Although early work established ρ = 10 as the nominal “full shotgun” stopping
point [48], the matter is still debated. For example, Bouck et al. [6] advise ρ ≤ 6, while
Blakesley et al. [4] recommend ρ ≥ 8. Draft sequences have been reported for as low
as ρ ≈ 3.5 [49] and as high as ρ ≈ 17.5 [19]. Although one finds sequence redundancies
distributed somewhat uniformly between 5-fold and 15-fold, they do not correlate with
any gross genome features, e.g., genome size [44]. In short, available data indicate that
there is no commonly accepted system by which stopping points should be chosen.
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Fig. 4.2. Intersection probabilities for three classes of DNA target.

Wendl [44] proposed a quantity called the intersection probability P∩ to quan-
tify stopping points probabilistically. The idea is based on the simple observation
that pairs of density functions separated by intervals of ρ = 1 share increasing frac-
tions of their event spaces as ρ grows. P∩ is the tail probability calculated from the
overlap. This implies that any differences in two identical but independent projects
become more attributable to stochastic variation rather than the disparity in their
redundancies.

Figure 4.2 shows the intersection probability plotted as a function of redundancy
for three classes of genomic targets—a 5 kbp gene-sized island, a 40 kbp fosmid clone,
and a 250 kbp BAC clone. The trends confirm a number of earlier observations. First,
fragmentation tends to be important only in scenarios where the total target size is
small. For example, the effect of mild fragmentation (N = 4) is apparent only for the
5 kbp gene island at low redundancy. Likewise, the state of maximal fragmentation
(the first asymptotic) rapidly converges to the classical result. In particular, it is
almost indistinguishable from the N = 1 curve for the BAC. It appears that the
classical model could be used to calculate P∩ in many cases. For smaller targets, the
effect of fragmentation, though mild, suggests halting the random phase earlier than
for the equivalent nonfragmented project.

The second trend echoes what previous work has found with respect to P∩ for
genome coverage: larger projects should be sequenced to higher redundancies [44].
In other words, successive PDFs spaced 1-fold units of redundancy apart are more
isolated from one another in larger projects. This clearly applies whether a genomic
target is fragmented or not. Results shown in Figure 4.2 advise substantially lower
redundancies for large-insert clone targets than what is often specified at the present
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time. For example, the P∩ = 0.3 threshold implies limiting redundancies to something
less than 4 and 6 for fosmids and BACs, respectively. This is most in line with the
empirical findings of Bouck et al. [6].

Cost optimization of filtered projects. With the completion of the human
genome project [25], many large-scale efforts are now shifting to even more recalci-
trant, repeat-laden genomes, e.g., maize. Current thinking holds that standard whole
genome methods are unlikely to succeed here, which has prompted proposals for var-
ious forms of genomic filtering [47]. Filtration schemes produce numerous low-copy,
sequenceable islands, thereby circumventing many of the well-known problems of ge-
nomic assembly. Maximizing read length is not nearly as critical in these scenarios,
and this has led to growing debate surrounding proper choice of read length [7].

One of the more relevant aspects on which to judge this question would certainly
be cost, specifically overall project cost. Traditional Sanger sequencing instruments,
e.g., the ABI 3730xl, provide “full-length” reads but at relatively high per-read ex-
penditures [25]. Conversely, newer platforms such as the 454 GS-20 pyrosequencer
yield short, much lower-cost reads [27]. Let us assume that high-throughput labs
can generate Sanger 3730xl reads and GS-20 pyrosequencing reads for about $0.44
and $0.013 each, respectively. Instruments based on a recent demonstration of dra-
matically scaled-down Sanger reactions [5] will be future contenders as well. Such
devices should easily be able to sequence for about one-tenth the cost of the current
generation of Sanger-based machines.

Figure 4.3 shows overall project cost for sequencing a filtered maize library as a
function of the amount of random sequence. The latter is quantified by the inter-
section probability rather than standard redundancy because it provides for scale-
free comparisons [44]. Results are all generated using the second asymptotic limit
in (3.2). We specify read lengths of 719, 556, and 110, respectively, for traditional
Sanger reads [47], next-generation Sanger reads [5], and pyrosequencing reads [27].
We also examine three thresholds for detecting overlaps [29]: 30, 40, and 50 bp.
These correspond, respectively, to minimum, typical, and highly conservative val-
ues [47].

The plot shows a number of notable trends. First, the current landscape clearly
favors pyrosequencing over traditional Sanger sequencing, although not by as much
as we might intuitively expect based on the > 30-fold difference in unit costs. The
pyrosequencing technique yields a larger project in the sense of ϕ/N , meaning that
comparatively higher redundancies are needed to obtain given milestones of P∩. This
effect was shown in Figure 4.2 and is discussed extensively in [44].

The economics of pyrosequencing reads are quite sensitive to how much overlap is
required for detection, whereas this sensitivity is not much of a factor for Sanger data.
This is somewhat intuitive, since a given overlap consumes a larger fraction of read
length for the former. Conversely, traditional Sanger reads are tied more strongly
to P∩ than pyrosequencing reads. P∩ is a free parameter, and its choice will have a
larger bearing on total project cost for Sanger data.

The next-generation Sanger data show the more surprising results. We have
assumed a plausible unit cost of just over 4 cents per read—roughly 3-fold higher
than that for pyrosequencing. Yet, the overall project cost predictions are significantly
lower. Moreover, these data show little sensitivity to P∩ and are almost constant with
respect to the overlap detection threshold. Various commentators have advocated
decreasing unit costs or increasing read length, but it is clearly their combination
that is most important.
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Fig. 4.3. Project cost estimates for sequencing a filtered 540 Mb maize library using three
different methods of data generation.

5. Closing remarks. The problem of randomly covering multiple domains is
sufficiently interesting from a mathematical perspective but also provides a good
model for many scenarios of DNA sequencing. Investigators have yet to devise a
suitable a priori model of cloning bias, so results for Sanger-generated data should be
considered in this context. Pyrosequencing does not utilize bacterial cloning, so its
predictions are probably somewhat more realistic.

Commercial instruments that eventually implement the miniaturized Sanger par-
adigm [5] will almost surely realize unit costs even lower than what we have presumed
here. It is also likely that read lengths could be extended further. With respect to
overall cost of de novo sequencing projects, our results suggest that this approach is
much more promising than other techniques that emphasize read cost at the expense
of read length.
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THE FACTORIZATION METHOD FOR ELECTRICAL IMPEDANCE
TOMOGRAPHY IN THE HALF-SPACE∗

MARTIN HANKE† AND BIRGIT SCHAPPEL†

Abstract. We consider the inverse problem of electrical impedance tomography in a conducting
half-space, given electrostatic measurements on its boundary, i.e., a hyperplane. We first provide a
rigorous weak analysis of the corresponding forward problem and then develop a numerical algorithm
to solve an associated inverse problem. This inverse problem consists of the reconstruction of certain
inclusions within the half-space which have a different conductivity than the background. To solve
the inverse problem we employ the so-called factorization method of Kirsch, which so far has only
been considered for the impedance tomography problem in bounded domains. Our analysis of the
forward problem makes use of a Liouville-type argument which says that a harmonic function in
the entire two-dimensional plane must be a constant if some weighted L2-norm of this function is
bounded.
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1. Introduction. Electrical impedance tomography (EIT) is a technique to re-
cover information of the interior of a conducting object from electrostatic measure-
ments taken on its boundary. In mathematical terms, this amounts to recovering
information about the spatially varying (nonnegative) conductivity σ in the elliptic
partial differential equation

(1.1) ∇ · σ∇u = 0 in B

from Neumann and Dirichlet boundary values of all stationary electric potentials
u. This inverse boundary value problem goes back to Calderón [8] who considered
(1.1) in a bounded domain B, provoking substantial interest in the medical imaging
community.

In geoelectric applications, on the other hand, the domain B and its boundary are
typically very large compared to the small fraction of its boundary where data can be
measured. Therefore it makes sense to reconsider the inverse boundary value problem
for (1.1) in unbounded domains B with unbounded boundary ∂B, with the half-space
being the most obvious and prominent example. Another application for this model
problem concerns the automatic recognition of gesture input for interactive displays,
called touchless interaction, which has recently been considered by van Berkel and
Lionheart [26]. Finally, in its original medical context, the half-space problem may
serve as an appropriate model for certain mammography systems (cf., e.g., [2, 16, 22])
where measurements are taken on only a small portion of the patient’s skin.

For the half-space B, Druskin [11] has shown that the conductivity can be recon-
structed from the knowledge of the boundary data on a subdomain Γ ⊂ ∂B, provided
that B can be subdivided into a finite set of domains with piecewise smooth bound-
aries and constant conductivities, respectively. In this paper we are concerned with
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numerical algorithms to reconstruct the conductivity σ or partial information about
it. In general, reconstruction methods can be divided into iterative and direct meth-
ods (we refer to Borcea [4, 5] for a relatively recent survey with the focus on bounded
domains), but concerning unbounded domains B we are aware only of previous algo-
rithms based on linearization with or without an outer iteration; cf. Lukaschewitsch,
Maass, and Pidcock [20, 21], Mueller, Isaacson, and Newell [22], and the references
therein. Iterative methods require the repeated solution of forward problems in each
iteration, i.e., differential equations, which tends to be extremely time-consuming.
We therefore present a noniterative reconstruction algorithm which can be used to
detect abrupt local deviations of the conductivity from a homogenous background
conductivity.

Our method is a variation of the so-called factorization method which goes back
to an idea of Kirsch [18] in the context of inverse scattering and has been applied
successfully to the impedance tomography problem by Brühl [6, 7]. In these and
subsequent papers all authors have formulated the problem in either bounded domains
or all of R

n, thus avoiding the difficulties that arise with domains with unbounded
boundaries. Here we employ a general framework developed by Gebauer [12] to adapt
this method to the case of the half-space

B = R
n
+ = {x ∈ R

n : x · en > 0},

with en ∈ R
n a given unit vector, the inner normal vector on ∂B. Most results will

be presented for the case n = 3, but at the end of this paper we will give a short
summary of the two-dimensional case.

For our approach we assume a constant background conductivity σ1 = 1, where
1 is the function identically 1, and consider conductivities of the form

(1.2) σ(x) =

{
κ(x), x ∈ Ω,

1, x ∈ R
3
+ \ Ω,

where Ω ⊂ B is a finite collection of separated and bounded domains with sufficiently
smooth boundary Σ = ∂Ω, and for which R

n
+ \ Ω is connected. Below we will denote

by ν the normal of Σ pointing into Ω.
The positive conductivity κ ∈ L∞(Ω) is assumed to be significantly higher or

lower than the background conductivity; i.e., there exists ε > 0 such that

(1.3) κ(x) ≥ 1 + ε or ε ≤ κ(x) ≤ 1 − ε for x ∈ Ω.

By means of the factorization method we provide an explicit characterization of the
inclusions Ω in terms of the (local) Neumann–Dirichlet operator Λσ which maps Neu-
mann boundary values of a potential u in (1.1) to its Dirichlet boundary values.

We should mention that in principle it should be possible to relax the assumption
that the background conductivity is constant. However, the numerical implementation
of our method will then become much more difficult, as the algorithm requires the
availability of the associated Neumann function.

The paper is organized as follows: We first introduce appropriate function spaces
to deal with the forward problem (1.1) in the half-space B = R

3
+, and then clarify

our notion of weak solutions of (1.1) and their existence. The inverse problem and
some preliminary statements will be specified in section 3. Then, in sections 4 and 5
we prove the characterization of inclusions from the knowledge of Λσ. In section 6
we comment on our numerical algorithm and present some reconstructions based
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on simulated data. To conclude, we briefly comment in section 7 on the necessary
modifications of our theory in two space dimensions.

In an appendix we establish a Liouville-type result for harmonic functions in the
plane which we use to show that certain apparently different function spaces over R

3
+

which have been introduced in the literature, and which are relevant for our problem,
are essentially the same.

2. Function spaces and weak solutions of the forward problem. The
forward problem associated with impedance tomography in the half-space is the Neu-
mann problem

(2.1) ∇ · σ∇u = 0 in R
3
+, −σ

∂u

∂e3
= f on R

2,

together with an appropriate growth condition near infinity. Problem (2.1) represents
the physical process of injecting a current f into the upper half-space B = R

3
+ from

its boundary. In this section the conductivity σ is assumed to be bounded and strictly
positive in R

3
+. In (2.1) and in the remainder of this paper, we always identify the

boundary of R
3
+ with R

2, with straightforward abuse of notation.
Care has to be taken concerning the correct behavior of u(x) for |x| → ∞ which is

reflected by the choice of appropriate function spaces for the solution u. For example,
physically relevant solutions of problem (2.1)—like the fundamental solution of the
Laplace equation—need not belong to the Sobolev space H1(R3

+).

Example 2.1 (see [21]). For σ = 1 and f(y) = (1 + |y|2)−3/2, a solution of (2.1)
is given by u(x) = |x + e3|−1. It is easy to see that u does not belong to L2(R3

+);
however, the gradient of u is square integrable on R

3
+.

To construct a suitable function space we recall the following familiar definitions
and notation. For a (possibly unbounded) domain G ⊂ R

3 we take C∞
0 (G) to be the

set of all functions u ∈ C∞(G) with compact support suppu, and let

C∞
0 (G) = {u|G : u ∈ C∞

0 (R3)}.

Furthermore, D′(G) is the set of distributions, i.e., the continuous linear functionals
on C∞

0 (G).
In view of the physical setting (and in accordance with Example 2.1) it appears

appropriate to restrict our attention to solutions of (2.1) with finite energy, which
means that the H1-seminorm of u is finite. Note that this seminorm is actually a
norm on C∞

0 (R3
+) because constant functions do not belong to this set. We write

H(R3
+) for the closure of C∞

0 (R3
+) with respect to this norm, denoted subsequently

by ‖ · ‖H(R3
+). According to Boulmezaoud [3], this space coincides with the weighted

Sobolev space

(2.2) {u ∈ D′(R3
+) : (1 + |x|2)−1/2u ∈ L2(R3

+), ∇u ∈ L2(R3
+)3}.

Obviously, we have H(R3
+) ⊂ H1

loc(R
3
+), and for every bounded domain G ⊂ R

3
+

the restriction operator u 
→ u|G is continuous as a mapping from H(R3
+) → H1(G).

We point out here that for the two-dimensional case the analogous completion of
C∞

0 (R2
+) with respect to the H1-seminorm does not yield a space of distributions

(cf. Deny and Lions [10]), and we refer to section 7 for the modifications which are
necessary in two space dimensions.

It has been shown by Janßen [17] that every function u ∈ H(R3
+) has a trace in

L2,1(R2) = {g : (1 + |y|2)−1/2g ∈ L2(R2)},
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and that the trace operator is continuous with respect to the norm

‖g‖2
L2,1(R2) =

∫
R2

(1 + |y|2)−1g2(y) dy

of L2,1(R2). Note that the dual space of L2,1(R2) can be identified with

L2,−1(R2) = {f : (1 + |y|2)1/2f ∈ L2(R2)}

using L2(R2) as a pivot space in the Gelfand triple. The associated norm of L2,−1(R2)
is denoted by ‖ · ‖L2,−1(R2), the dual pairing between L2,−1(R2) and L2,1(R2) by

〈f, g〉R2 =

∫
R2

f(y)g(y) dy.

Now we return to the Neumann problem (2.1) for u ∈ H(R3
+). The corresponding

weak formulation follows in the usual way by making use of Green’s formula for
u, v ∈ H(R3

+) established in [3]: Find u ∈ H(R3
+) such that

(2.3)

∫
R

3
+

σ∇u · ∇v dx =

∫
R2

fv dy for all v ∈ H(R3
+).

Problem (2.3) is well defined for every f ∈ L2,−1(R2), and a standard application of
the Lax–Milgram lemma establishes existence of a unique solution u ∈ H(R3

+) of (2.3)
with

(2.4) ‖u‖H(R3
+) ≤ c‖f‖L2,−1(R2)

for some constant c > 0 depending only on the conductivity σ. We call u the weak
solution of problem (2.1).

Example 2.2. If σ = 1, i.e., if we consider the Laplace equation, then

(2.5) u(x) =
1

2π

∫
R2

f(y)

|x− y| dy, x ∈ R
3
+,

is the physically relevant classical solution of problem (2.1) provided that f is con-
tinuous and that there exists a positive and monotonic function ε ∈ L1(R+) such
that |f(y)| ≤ ε(|y|); see, e.g., Dautray and Lions [9, Chapter II]. In particular,
for f(y) = (1 + |y|2)−3/2 this yields the function u of Example 2.1. For arbitrary
f ∈ L2,−1(R2) the integral representation (2.5) defines the weak solution u ∈ H(R3

+),
as is most easily seen by using the Kelvin transformation; see [25] for further details.

Remark 2.3. In principle one can alternatively start with C∞(R3
+) instead of

C∞
0 (R3

+) and consider for some α ≥ 0 the completion W 1
α(R3

+) of

{u ∈ C∞(R3
+) : (1 + |x|2)−1/2−α/2u ∈ L2(R3

+), ∇u ∈ L2(R3
+)3}

with respect to the norm

(2.6) ‖u‖2
W 1

α(R3
+) =

∫
R

3
+

(1 + |x|2)−1−αu2(x) dx +

∫
R

3
+

|∇u(x)|2 dx;

cf. [17] and [21]. With an argument due to Hanouzet [15, Théorème I.1] it can be
shown that for α = 0 this space coincides with H(R3

+).
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Because of a Poincaré-type inequality established in [21, Theorem 2.10], the spaces
W 1

α(R3
+) with α > 1/2 are all the same and contain H(R3

+) as a closed subspace;
we denote this space by H1/2+(R3

+) and remark that H(R3
+) is a proper subspace

of H1/2+(R3
+) because the latter includes the constants. As we will prove in the

appendix, we have, in fact,

(2.7) H1/2+(R3
+) = H(R3

+) ⊕ span{1};

i.e., H1/2+(R3
+) is made up only from H(R3

+) and the constants.
Yet another variant, considered in [21], is to start with C∞-functions in R

3
+ which

are vanishing for |x| → ∞. The completion of this space with respect to the norm
(2.6) always yields the space H(R3

+) no matter what value of α ≥ 0 is used [25,
Appendix A].

Thus, both of the aforementioned variants lead essentially to the same notion of
a weak solution of problem (2.1), for the constants always belong to the null space of
the differential operator under consideration.

3. Basic properties of the inverse problem. Now we are going to specify
somewhat further the impedance tomography problem we consider in this paper. We
shall assume throughout that the conductivity σ has the form given in (1.2), (1.3) and
recall that, by virtue of (2.4), we have a well-defined bounded linear operator from
L2,−1(R2) into H(R3

+) which maps a given boundary current f ∈ L2,−1(R2) onto the
induced potential uσ ∈ H(R3

+). By passing on to the trace of uσ on R
2 we obtain the

Neumann–Dirichlet operator

Λg
σ : L2,−1(R2) → L2,1(R2), f 
→ uσ|R2 .

Here, the superscript g stands for global, because for practical purposes it is often
sufficient to restrict the attention to currents f supported on some bounded subset
Γ ⊂ R

2, and also to confine oneself to taking measurements of uσ only on Γ. This
gives rise to the so-called local Neumann–Dirichlet operator

Λ�
σ : L2(Γ) → L2(Γ), f |Γ 
→ uσ|Γ.

It is easy to check that there holds

(3.1) Λ�
σ = PΛg

σP
′,

where P is the projection

P : L2,1(R2) → L2(Γ), g 
→ g|Γ,

and

P ′ : L2(Γ) → L2,−1(R2), f 
→
{
f(y), y ∈ Γ,

0, y ∈ R
2 \ Γ,

is the dual operator of P .
Our inverse problem is now the following:

Let the conductivity σ be of the form (1.2) with κ as in (1.3), and
let Λg

σ—or Λ�
σ for some bounded and relatively open subset Γ ⊂ R

2,
respectively—be given. How can we reconstruct the support of κ, i.e.,
the discontinuities of σ?
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Before we proceed to derive a constructive answer to this question, we list some
elementary properties of the operators Λg

σ and Λ�
σ.

Lemma 3.1.

(i) Λ�
σ : L2(Γ) → L2(Γ) is compact, self-adjoint, and positive.

(ii) Let f ∈ L2,−1(R2), and let σ1, σ2 ∈ L∞(R3
+) with σ1, σ2 ≥ ε almost every-

where in R
3
+. Then, if σ1 ≤ σ2, we have

〈f,Λg
σ1
f〉R2 ≥ 〈f,Λg

σ2
f〉R2 .

Proof. Consider some bounded domain G ⊂ R
3
+ with Γ ⊂ ∂G. Then, as men-

tioned before, the operator which restricts u ∈ H(R3
+) to u|G ∈ H1(G) is bounded,

and the trace operator from H1(G) to L2(Γ) is compact. Hence, Λ�
σ is compact.

Let 0 �= f , f̃ ∈ L2(Γ), and uσ, ũσ ∈ H(R3
+) be the solutions of (2.3) with f ′ = P ′f

and f̃ ′ = P ′f̃ , respectively. Then by virtue of (3.1) we have

〈f,Λ�
σ f̃〉L2(Γ) = 〈f ′,Λg

σ f̃
′〉R2 =

∫
R

3
+

σ∇uσ · ∇ũσ dx = 〈f̃ ,Λ�
σf〉L2(Γ).

Thus Λ�
σ is self-adjoint. With f = f̃ we obtain, using (1.3), that

〈f,Λ�
σf〉L2(Γ) =

∫
R

3
+

σ|∇uσ|2 dx ≥ ε

∫
R

3
+

|∇uσ|2 dx = ε‖uσ‖2
H(R3

+),

and hence, Λ�
σ is positive.

Now, let f ∈ L2,−1(R2) be given, and let uσ1
, uσ2

∈ H(R3
+) be the weak solutions

of (2.1) for the two conductivities σ1 and σ2, respectively. From (2.3) it follows that
uσ1 is the unique minimizer in H(R3

+) of the quadratic energy functional

1

2

∫
R

3
+

σ1 |∇u|2 dx− 〈f, u〉R2

with minimum value − 1
2 〈f, uσ1〉R2 . Therefore

−1

2
〈f,Λg

σ1
f〉R2 =

1

2

∫
R

3
+

σ1 |∇uσ1
|2 dx− 〈f, uσ1

〉R2

≤ 1

2

∫
R

3
+

σ1 |∇uσ2 |2 dx− 〈f, uσ2〉R2(3.2)

≤ 1

2

∫
R

3
+

σ2 |∇uσ2
|2 dx− 〈f, uσ2

〉R2 = −1

2
〈f,Λg

σ2
f〉R2 ,

which was to be shown.
Our approach to the solution of the inverse problem is based on a comparison of

the measured Neumann–Dirichlet operator Λg
σ or Λ�

σ with the reference operator Λg
1 or

Λ�
1, respectively, corresponding to the homogeneous background with conductivity 1.

From Lemma 3.1 we immediately conclude the following.
Corollary 3.2. Under the assumptions (1.2), (1.3), Λg

σ−Λg
1 as well as Λ�

σ−Λ�
1

are self-adjoint and positive (resp., negative) if κ ≤ 1 − ε (resp., κ ≥ 1 + ε).
Proof. An adaptation of the proof of Lemma 3.1(i) establishes that Λg

σ and Λg
1 are

self-adjoint. For the remainder of the proof we consider only the case where κ ≤ 1− ε
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for some ε > 0; the other case is treated similarly. For this situation we obtain from
Lemma 3.1 that

(3.3) 〈f, (Λg
σ − Λg

1)f〉R2 = 〈f,Λg
σf〉R2 − 〈f,Λg

1f〉R2 ≥ 0

for every f ∈ L2,−1(R2); moreover, strict inequality holds in (3.2), and thus in (3.3),
if the two potentials uσ and u1 occurring in the proof of Lemma 3.1 are different.

Thus, assuming equality in (3.3) for some f ∈ L2,−1(R2), we can conclude that

0 = 〈f,Λg
σf〉R2 − 〈f,Λg

1f〉R2 =

∫
Ω

(κ− 1)|∇u1|2 dx,

and hence, u1 is constant in Ω. Since u1 is harmonic in R
3
+, this implies that it is

constant in the entire half-space. It follows that f = 0, which proves that Λg
σ − Λg

1 is
positive.

For the local Neumann–Dirichlet operators we consider f ∈ L2(Γ), and set f ′ =
P ′f . By virtue of (3.1) we obtain

〈f, (Λ�
σ − Λ�

1)f〉L2(Γ) = 〈f ′, (Λg
σ − Λg

1)f ′〉R2 ,

where the latter is positive according to the first part of this proof, unless f = 0.
Therefore Λ�

σ − Λ�
1 is also a positive operator.

4. The framework for the factorization method. In what follows our no-
tation will no longer make explicit whether we are talking about local or global mea-
surements; i.e., we write Λσ for either Λg

σ or Λ�
σ. Furthermore, we denote by T = R

2

or T = Γ the domain, on which measurements shall be taken. In accordance with this
notation, we let H(T ) be either L2,1(R2) or L2(Γ), respectively.

To simplify the presentation we will assume throughout that Ω consists of only
one connected component. Our theory extends to the general case, and whenever nec-
essary we will point out the appropriate modifications for this more general situation
(see also [24]).

We want to apply the general framework of Gebauer and therefore adopt his
notation from [12] in what follows. We first introduce, similar to H(B) = H(R3

+),

a function space H(Q) on Q = B \ Ω by closing C∞
0 (Q) with respect to the H1-

seminorm, which will be denoted by ‖ · ‖H(Q). The space H(Q) has properties similar
to those of H(B). In particular, there is a continuous trace operator γQ→T from
H(Q) to H(T ), and H(Q) is continuously embedded in H1(G \ Ω) for any bounded
neighborhood G ⊂ R

3
+ of Ω. For u ∈ H(Q) we can thus define a normalized trace

operator

(4.1) γQ→Σv = v − 1

|Σ|

∫
Σ

v do, v ∈ H(Q).

Here, |Σ| is the volume of the surface Σ, and γQ→Σ is a bounded and surjective
operator from H(Q) onto

H(Σ) =

{
v ∈ H1/2(Σ) :

∫
Σ

v do = 0

}
.

In accordance with H(Σ) we also introduce the function space

H(Ω) =

{
w ∈ H1(Ω) :

∫
Σ

w do = 0

}
,



914 MARTIN HANKE AND BIRGIT SCHAPPEL

which, again, can be equipped with the H1-seminorm, so that the usual trace operator
γΩ→Σ maps H(Ω) continuously onto H(Σ). We mention that the need for a Poincaré-
type inequality is the reason to enforce vanishing means over Σ for elements from
H(Ω).1

The framework of Gebauer also requires a linkage between the spaces H(B),
H(Q), and H(Ω). In particular, we need to define “restriction operators” EQ :
H(B) → H(Q) and EΩ : H(B) → H(Ω). In fact, we can take the natural re-
striction for EQ, i.e., EQu = u|Q, but we need to be more careful in the definition of
EΩ: Similarly to (4.1), we let

(4.2) EΩu = u|Ω − 1

|Σ|

∫
Σ

u do, u ∈ H(B),

such that the compatibility condition γQ→ΣEQ = γΩ→ΣEΩ holds true.
Classical extension operators

γ−
Q→Σ : H(Σ) → H(Q) and γ−

Ω→Σ : H(Σ) → H(Ω)

yield continuous right inverses of the two “trace operators.” Note that γΩ→Σ has a
continuous extension to the classical trace operator γ̂Ω→Σ : H1(Ω) → H1/2(Σ), and
likewise, γ−

Ω→Σ has a continuous extension to a right inverse γ̂−
Ω→Σ : H1/2(Σ) → H1(Ω)

of γ̂Ω→Σ by setting γ̂−
Ω→Σ1 = 1.

In addition we need to construct continuous right inverses E−
Q and E−

Ω of EQ and
EΩ, respectively. To this end we set

E−
Ωw =

{
w on Ω,

γ−
Q→ΣγΩ→Σw on Q,

and E−
Qv =

{
γ̂−
Ω→Σv|Σ on Ω,

v on Q.

It follows, e.g., from Renardy and Rogers [23, Lemma 6.85], that these piecewise
defined functions belong to H1

loc(R
3
+), and that E−

Ω and E−
Q are continuous opera-

tors. Moreover, we obviously have the compatibility requirement that EQE
−
Ωw = 0

whenever γΩ→Σw = 0. The corresponding requirement for the case that γQ→Σv = 0
for v ∈ H(Q) is slightly more complicated: In this case we necessarily have that
v|Σ is constant over Σ, and hence, γ̂−

Ω→Σv|Σ is a constant also. This shows that the
restriction of E−

Qv to Ω is a constant function, and hence EΩE
−
Qv = 0 by virtue of

(4.2).
Finally, given

ψ ∈ H ′(Σ) =

{
ψ ∈ H−1/2(Σ) :

∫
Σ

ψ do = 0

}
,

the variational problem

(4.3)

∫
Q

∇v · ∇w dx =

∫
Σ

ψw do for all w ∈ H(Q)

has a unique solution v ∈ H(Q), and this solution can be used to introduce the
operator

(4.4) L : H ′(Σ) → H(T ), ψ 
→ v|T ,

1When Ω consists of more than one connected component, the elements of H(Σ) and H(Ω) need
to have a vanishing mean over each connected component of Σ. The trace operator (4.1) then needs
to be modified accordingly, i.e., by subtracting from v different constants on the different components
of Σ. A similar comment applies to the restriction operator EΩ of (4.2).
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which will play a fundamental role in what follows. As in section 2, it can be shown
that v is the physically relevant (weak) solution of the exterior Neumann problem

(4.5) Δv = 0 in Q,
∂v

∂ν
= ψ on Σ,

∂v

∂e3
= 0 on R

2.

Now we can formulate our first main result, using the notation R(A) to denote
the range space of some operator A.

Theorem 4.1. Under the assumptions (1.2), (1.3), there holds

R
(
|Λσ − Λ1|1/2

)
= R(L),

where L is given by (4.4).

Proof. The assertion is an immediate consequence of Theorem 3.1 in [12]. Except
for the straightforward discussion of the bilinear forms occurring in [12], we have
already verified all the assumptions of this theorem. Making use of the standard
identification of H ′(Σ) with the dual space of H(Σ), employing L2(Σ) as pivot space
in the Gelfand triple, it is also obvious that the operator L of (4.4) is nothing but a
reformulation of the operator L defined in [12].

We mention that the operator L of (4.4) and its dual operator appear naturally
in a factorization of the difference of the two measurement operators,

Λσ − Λ1 = LFL′

(cf. [12]), hence the name of the factorization method. Within the framework of
Gebauer, an explicit derivation of this factorization and the operator F , in particu-
lar, is not necessary. In fact, a specification of F requires the introduction of some
additional diffraction problems, similar to the ones in [6, 7]: Since we never need to
return to this operator, we omit the details here, but rather refer the reader to [25]
or the aforementioned papers for the details.

5. The range test. The range identity of Theorem 4.1 can be exploited to
characterize the set Ω, since the range of L is easy to describe.

Theorem 5.1. Let z ∈ R
3
+ be arbitrarily chosen. Then, for every d ∈ R

3 \ {0}
the function

(5.1) gz,d(x) =
d · (x− z)

|x− z|3 , x ∈ T,

belongs to R(L) if and only if z ∈ Ω.

Proof. We first observe that gz,d = uz,d|T , where

uz,d(x) =
1

2
d · ∇z

(
1

|x− z| +
1

|x− z′|

)
, x ∈ R

3
+ \ {z},

is the superposition of two dipole potentials in z and z′. Here, z′ = z − 2(z · e3)e3 is
the reflection of z with respect to the plane R

2. Therefore, uz,d is a harmonic function
in R

3
+ \ {z} with zero flux across R

2. Moreover, uz,d belongs to H(Q) if and only if
z ∈ Ω. Therefore, if z ∈ Ω and ψ = ψz,d is the flux of uz,d across Σ into Ω, then
uz,d is the solution of the exterior Neumann problem (4.5). Note that ψz,d belongs
to H−1/2(Σ); see, e.g., Girault and Raviart [13, Theorem 2.5]. Finally, we have for
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z ∈ Ω that∫
Σ

ψz,d dox =
1

2
d · ∇z

(∫
Σ

∂

∂νx

1

|x− z| dox +

∫
Σ

∂

∂νx

1

|x− z′| dox

)

=
1

2
d · ∇z

(
4π1(z)

)
= 0

(see, e.g., [19, Example 6.16]), which shows that ψz,d ∈ H ′(Σ). We therefore have
proved that Lψz,d = gz,d, i.e., that gz,d ∈ R(L) for z ∈ Ω.

Now let z ∈ R
3
+ \ Ω, and assume that gz,d ∈ R(L), i.e., that gz,d = Lψ for some

ψ ∈ H ′(Σ). This is equivalent to the statement that gz,d = v|T , where v ∈ H(Q) is the
weak solution of (4.5). Thus, uz,d and v are two harmonic functions in R

3
+ \ ({z}∪Ω)

which share the same Cauchy data on R
2. By the uniqueness of the Cauchy problem

(see, e.g., [9, Chapter II]) the two functions must be the same in R
3
+ \ ({z}∪Ω). This,

however, contradicts the fact that uz,d has a singularity in z and, hence, does not
belong to H(Q). Therefore we have shown that gz,d /∈ R(L) whenever z ∈ R

3
+\Ω.

As a corollary of Theorems 4.1 and 5.1 we obtain the following useful range test
to decide whether some point z ∈ R

3
+ belongs to Ω or not.

Corollary 5.2. A point z ∈ R
3
+ belongs to Ω if and only if the function gz,d of

Theorem 5.1 belongs to the range of |Λσ − Λ1|1/2.
6. Numerical results. We now present a numerical realization of the range

test of Corollary 5.2 for simulated data in three space dimensions. Data are given
on T = Γ = [0, 2]2, shown as the somewhat darker area of the bounding plane in
the subsequent figures. In all examples to follow, data have been generated by a
boundary element method, with the conductivity within the inclusion being set to
κ = 0.5. Modifications of κ have a negligible effect on the reconstructions, provided
that (1.3) is satisfied for any small ε; this has been demonstrated convincingly in [7]
for bounded domains in two space dimensions.

A very detailed discussion of the general approach for implementing the range test
can be found in [7, 14], so here we focus mainly on the differences that are important
for this half-space problem.

The first major difference is the fact that data are given on a two-dimensional
interval rather than a one-dimensional interval. We have found it convenient to use
tensor products of piecewise constant Haar wavelets (with vanishing mean over Γ) as
current patterns and to expand the simulated potentials in the same orthogonal basis.
The data we use thus correspond to the Galerkin projection of Λσ−Λ1 onto the space
of the particular current patterns. All our computations use the corresponding first
1023 basis functions, which are far more than is required for the resolution of our
reconstructions due to the inevitable presence of noise in the data.

Figure 6.1 reveals a second major difference from the results in [7, 14], which
appears to be a characteristic property of the factorization method in three space
dimensions. The eigenvalues of Λσ −Λ1 do not obey a strict geometric decay; rather,
they tend to come in clusters of increasing size. Note that, in theory, the function gz,d
belongs to the range of |Λσ − Λ1|1/2 if and only if the corresponding Picard series

(6.1)

∞∑
j=1

〈gz,d, vj〉2L2(Γ)

|λj |

converges; here vj , j ∈ N, are the orthonormal eigenfunctions of Λσ −Λ1, and λj are
the associated eigenvalues. In [7, 14] we have estimated the geometric decay of the
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Fig. 6.1. First test case: eigenvalues of Λσ − Λ1.

Fig. 6.2. First test case: an ellipsoidal object (top) and its reconstruction (bottom).

individual terms of this series to decide whether we believe that (6.1) converges or
not. Here, instead, we have decided to average the eigenvalue clusters and investigate
the root convergence factor of the geometric decay of the associated partial sums.
The eigenvalue plot in Figure 6.1 (and similarly in Figure 6.4) contains dotted lines
to indicate the eigenvalues that were considered to be clustered. The clustering has
always been performed manually and is optimized to some extent to improve the
quality of the reconstructions. Eigenvalue clusters below 10−10 have been ignored
(except for section 6.4).

6.1. First test case. In the first example, which we have already mentioned,
the object to be reconstructed is an ellipsoid with center in P = (1.2, 0.8, 0.4) as
shown in Figure 6.2. Its semiaxes are aligned with the coordinate axes and have
radii r1 = 0.2, r2 = 0.15, and r3 = 0.1. This isosurface plot is based on a certain
average of the root convergence factors obtained from nine different dipole moments
dk, k = 1, . . . , 9. (We refer the reader to [25] for further details.) We emphasize, as
this might be difficult to see, that the reconstruction is at the correct place and has
about the right size. It is only the boundary which is not accurate. Alternatively, we
have also evaluated the series (6.1) for the respective range of eigenvalues and have
used this function of z for a surface plot, as was done, e.g., by Kirsch in [18]. However,
this gave somewhat inferior reconstructions.

6.2. Second test case. Our second example (see Figures 6.3 and 6.4) con-
sists of two objects. One is an ellipsoid with center in P = (0.4, 0.4, 0.4) and radii
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Fig. 6.3. Second test case: two objects (top) and their reconstruction (bottom).
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Fig. 6.4. Eigenvalues for the second test case.

r1 = r2 = 0.2 and r3 = 0.1, respectively; again, the semiaxes are aligned with the
coordinate axes. The other object has the shape of a kidney and is located around the
point Q = (1.2, 1.2, 0.8). The corresponding reconstructions are again at the correct
locations. Note that the nonconvexity of the kidney is still well depicted, although it
is a little farther away from Γ. On the other hand, its reconstruction is somewhat too
small. If the nonconvex boundary is turned upwards, however, the reconstruction is
qualitatively worse.

6.3. Third test case. The third test case is similar to the previous one, but
now the ellipsoidal object is moved off to the side; i.e., its orthogonal projection onto
R

2 is outside of Γ; see Figure 6.5. More precisely, the ellipsoid of the second test case
now has its center at R = (−0.2,−0.2, 0.4). Our method reconstructs both objects
at their true locations, but the reconstruction of the ellipsoid exhibits typical shady
artifacts, similar to two-dimensional reconstructions shown in [14].

6.4. Fourth test case. For the next experiment we return to the ellipsoid from
our first example, and increase its vertical distance to the plane. Figure 6.6 shows
the reconstructions for three snapshots. As one expects, the quality deteriorates with
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Fig. 6.5. Third test case: two objects (top), one being off to the side, and their reconstruction
(bottom).

x3 = 0.4:

x3 = 0.8:

x3 = 1.2:

Fig. 6.6. Fourth test case: reconstructions of ellipsoids with increasing vertical heights.
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Fig. 6.7. Eigenvalues in the presence of noise.

no noise:

0.1% noise:

1% noise:

Fig. 6.8. Reconstructions in the presence of noise.

increasing distance x3, measured at the center of the ellipsoid; see Figure 6.6. For
these reconstructions we have used a slightly larger range of eigenvalues, going down
to 10−12.

6.5. Fifth test case. In a final study, we investigate the influence of noise on our
reconstructions. To this end we superpose the data of our first test case (cf. Figure 6.2)
with 0.1% and 1% noise, respectively. (These noise levels refer to the L2-norms of the
noise over the L2-norm of the exact data.) Figure 6.7 shows the resulting eigenvalues
of Λσ − Λ1. It is easy to see how the eigenvalues level off in the presence of noise,
from which we can easily determine which eigenvalues can reliably be used to perform
the range test. Figure 6.8 shows the corresponding reconstructions, which are quite
reasonable even with 1% noise (bottom reconstruction).
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7. The two-dimensional case. In this section we briefly comment on the mod-
ifications of our theory in two space dimensions; as a general reference we refer the
reader to [25]. In two dimensions, solutions of the boundary value problem

(7.1) ∇ · σ∇u = 0 in R
2
+, −σ

∂u

∂e2
= f on R,

are unique (up to additive constants) within the space H1,0+(R2
+) which is obtained

by closing either C∞(R2
+) or C∞

0 (R2
+) with respect to the inner product (2.6) for

any α > 0 (replacing the integrals by integrals over R
2
+, of course). These spaces all

contain the same functions, independent of the choice of α > 0, including in particular
the constant functions. We can get rid of these constants by turning to the quotient
space H(R2

+) = H1,0+(R2
+)/ span{1}, for which we can use the H1-seminorm as an

equivalent norm.

Investigating the weak formulation of (7.1), the existence of a solution in H1,0+(R2
+)

is guaranteed provided that the imposed current f belongs to

L2,−1−α
� (R) =

{
f : (1 + |y|2)1/2+α/2f ∈ L2(R) :

∫
T

f dy = 0

}

for some α > 0; note that the normalization condition
∫
T
f dy = 0 has not been

required in the three-dimensional case.

Since the solution u of (7.1) is unique only up to additive constants, it is necessary
to normalize the trace of u to set up a well-defined associated Neumann-to-Dirichlet
operator. Accordingly, the general framework developed in section 4 requires some
obvious changes for two space dimensions; in particular, a similar normalization is
required in the definition of the operator L of (4.4). With these modifications, how-
ever, the result of Theorem 4.1 remains true, and a valid test function to be used in
Theorem 5.1 (again, up to a suitable additive constant) is given by

(7.2) gz,d(x) =
d · (x− z)

|x− z|2 , x ∈ T.

We refer the reader to [25] for several numerical reconstructions in two space
dimensions; preliminary results had been published in [14] and [24].

Appendix. In this appendix we prove that the weighted Sobolev space H1/2+(R3
+)

introduced in Remark 2.3 is the direct sum

H1/2+(R3
+) = H(R3

+) ⊕ span{1}.

In the proof of this result we use the following Liouville-type theorem on bounded
harmonic functions in the entire space, which appears to be of independent interest.

Theorem A.1. Every harmonic function u over R
3 which satisfies

(A.1)

∫
R3

|u(x)|2
(1 + |x|2)5/2 dx < ∞

is a constant.

Proof. Our proof makes use of an appropriate modification of the argument given
in Axler, Bourdon, and Ramey [1], which starts with the mean-value property of
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harmonic functions, to write

|u(x∗) − u(0)| =
3

4πr3

∣∣∣∣
∫
Br(x∗)

u(x) dx−
∫
Br(0)

u(x) dx

∣∣∣∣
=

3

4πr3

∣∣∣∣
∫
Dr

s(x)u(x) dx

∣∣∣∣
for any fixed x∗ ∈ R

3. In this equation Br(y) denotes the ball of radius r around y,
Dr = Br(x) ∪ Br(0) \ (Br(x) ∩ Br(0)) is the symmetric difference of the two balls,
and s is a sign function that attains the two values ±1 in the respective components
of Dr. We denote |x∗| by r∗ and restrict r to be larger than r0 ≥ 2r∗ + 1 in what
follows. Then Dr is contained in the annulus

Ar = {x ∈ R
3 : r − r∗ < |x| < r + r∗},

and we can estimate

|u(x∗) − u(0)| ≤ 3

4πr3

∫
Ar

|u(x)|dx ≤ c

∫
Ar

|u(x)|
(1 + |x|2)3/2 dx,

where, from now on, we use c to denote a generic positive constant, depending only
on x∗. Integrating the above inequality from r = r0 to some R > r0, we obtain

|u(x∗) − u(0)| ≤ c

R− r0

∫ R

r0

∫
Ar

|u(x)|
(1 + |x|2)3/2 dxdr

≤ 2r∗c

R− r0

∫
r0−r∗<|x|<R+r∗

|u(x)|
(1 + |x|2)3/2 dx.

Thus, the Cauchy–Schwarz inequality yields

|u(x∗) − u(0)|2 ≤ c

(R− r0)2

∫
|x|>r0−r∗

|u(x)|2
(1 + |x|2)5/2 dx

∫
|x|<R+r∗

1

(1 + |x|2)1/2 dx

≤ c

(R− r0)2

∫
|x|>r0−r∗

|u(x)|2
(1 + |x|2)5/2 dx

∫ R+r∗

0

(1 + r2)1/2 dr

≤ c

(
R + r∗ + 1

R− r0

)2 ∫
|x|>r0−r∗

|u(x)|2
(1 + |x|2)5/2 dx.

Now, if R is sufficiently large, then we can choose r0 = R/2 and thus obtain

|u(x∗) − u(0)|2 ≤ c

∫
|x|>R/2−r∗

|u(x)|2
(1 + |x|2)5/2 dx = o(1)

as R → ∞. It follows that u(x∗) = u(0), i.e., that u is a constant.
We mention that this result is sharp in that all polynomials u in x of exact degree

one are harmonic in R
3 and satisfy (A.1) for any exponent in the denominator bigger

than 5/2.
Now we turn to verify (2.7). Let w ∈ H1/2+(R3

+), and consider the variational
problem∫

R
3
+

∇w0(x) · ∇v(x) dx =

∫
R

3
+

∇w(x) · ∇v(x) dx for all v ∈ H(R3
+).



THE FACTORIZATION METHOD FOR EIT IN THE HALF-SPACE 923

This problem has a unique solution w0 ∈ H(R3
+), and it follows that u = w − w0 ∈

H1/2+(R3
+) satisfies ∫

R
3
+

∇u(x) · ∇v(x) dx = 0

for all v ∈ C∞
0 (R3

+), and hence, according to Weyl’s lemma, u is a harmonic function
in R

3
+ with vanishing Neumann boundary values on the boundary of this half-space.

Thus, u can be extended by reflection to an even harmonic function ũ over the entire
space R

3; cf., e.g., [1]. As u ∈ H1/2+(R3
+) and hence has finite norm (2.6) for any

α > 1/2, it follows that ũ satisfies (A.1). Thus ũ and u are constant functions by
virtue of Theorem A.1, and we have shown that any function w ∈ H1/2+(R3

+) can
be decomposed in a unique way as w = w0 + c, where w0 ∈ H(R3

+) and c is some
constant. This proves (2.7).
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A VARIATIONAL APPROACH
TO REMOVING MULTIPLICATIVE NOISE∗
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Abstract. This paper focuses on the problem of multiplicative noise removal. We draw our
inspiration from the modeling of speckle noise. By using a MAP estimator, we can derive a functional
whose minimizer corresponds to the denoised image we want to recover. Although the functional is
not convex, we prove the existence of a minimizer and we show the capability of our model on some
numerical examples. We study the associated evolution problem, for which we derive existence and
uniqueness results for the solution. We prove the convergence of an implicit scheme to compute the
solution.

Key words. calculus of variation, functional analysis, BV , variational approach, multiplicative
noise, speckle noise, image restoration
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1. Introduction. Image denoising is a widely studied problem in the applied
mathematics community. We refer the reader to [4, 14] and references therein for an
overview of the subject. Most of the literature deals with the additive noise model:
given an original image u, it is assumed that it has been corrupted by some additive
noise v. The problem is then to recover u from the data f = u+ v. Many approaches
have been proposed. Among the most famous are wavelet approaches [17], stochastic
approaches [21], and variational approaches [37, 30].

In this paper, we are concerned with a different denoising problem. The assump-
tion is that the original image u has been corrupted by some multiplicative noise v:
the goal is then to recover u from the data f = uv. Multiplicative noise occurs as soon
as one deals with active imaging systems: laser images, microscope images, synthetic
aperture radar (SAR) images, etc. As far as we know, the only variational approach
devoted to multiplicative noise is the one by Rudin, Lions, and Osher [36] as used,
for instance, in [33, 28, 29, 38]. The goal of this paper is to go further and to propose
a functional that is well adapted to removing multiplicative noise. Inspired from the
modeling of active imaging systems, this functional is

E(u) =

∫
|Du| +

∫ (
log u +

f

u

)
,

where f is the original corrupted image and
∫
|Du| stands for the total variation of u.

From a mathematical point of view, part of the difficulty comes from the fact
that, contrary to the additive case, the proposed model is nonconvex, which causes
uniqueness problems, as well as the issue of convergence of the algorithms. Another
mathematical issue comes from the fact that we deal with a linear growth functional.
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The natural space in which we compute a solution is BV , the space of functions with
bounded variations. But contrary to what happens with classical Sobolev spaces, the
minimum of the functional does not verify an associated Euler–Lagrange equation
(see [3] and [2] where this problem is studied) but a differential inclusion involving
the subdifferential of the energy.

The paper is organized as follows. We draw our inspiration from the modeling
of active imaging systems, which we describe to the reader in section 2. We use the
classical MAP estimator to derive a new model to denoise nontextured SAR images
in section 3. We then consider this model from a variational point of view in section 4
and we carry out the mathematical analysis of the functional in the continuous setting.
In section 5 we illustrate our model by displaying some numerical examples. We also
compare it with other models. Then in section 6 we study the evolution equation
associated to the problem. To prove the existence and the uniqueness of a solution
to the evolution problem we first consider a semi-implicit discretization scheme and
then we let the discretization time step go to zero. The proofs are rather technical,
and we give them in the appendix.

2. Speckle noise modeling. SAR images are strongly corrupted by a noise
called speckle. A radar sends a coherent wave which is reflected on the ground and
then registered by the radar sensor [26, 31]. If the coherent wave is reflected on a
coarse surface (compared to the radar wavelength), then the image processed by the
radar is degraded by a noise with large amplitude: this gives a speckled aspect to
the image, and this is the reason such a noise is called speckle [24]. To illustrate the
difficulty of speckle noise removal, Figure 1 shows a 1-dimensional (1D) noise free
signal and the corresponding speckled signal (the noise free signal has been multiplied
by a speckle noise of mean 1). It can be seen that almost all the information has
disappeared (notice in particular that the vertical scale goes from 40 to 120 for the
noise free signal presented in Figure 1(a), whereas it goes from 0 to 600 on the speckled
signal presented in Figure 1(b)). As a comparison, Figure 1(c) shows the 1D signal of
Figure 1(a) once it has been multiplied by a Gaussian noise of mean 1 and standard
deviation 0.2 (as used, for instance, in [36]), and Figure 1(d) shows the 1D signal
of Figure 1(a) with the addition of a Gaussian noise of zero mean and standard
deviation σ = 15 (notice that for both Figures 1(c) and (d), the vertical scale goes
from 20 to 140).

If we denote by I the image intensity considered as a random variable, then I
follows a negative exponential law. The density function is gI(x) = 1

μI
e
− x

μI 1{x≥0},

where μI is both the mean and the standard deviation of I. In general the image is
obtained as the summation of L different images (this is very classical with satellite
images). If we assume that the variables Ik, 1 ≤ k ≤ L, are independent and have the

same mean μI , then the intensity J = 1
L

∑L
k=1 Ik follows a gamma law, with density

function gJ(x) =
(

L
μI

)L 1
Γ(L)x

L−1 exp
(
−Lx

μI

)
1{x≥0}, where Γ(L) = (L−1)!. Moreover,

μI is the mean of J , and μI√
L

is its standard deviation.

The classical modeling [41] for SAR images is I = RS, where I is the intensity
of the observed image, R the reflectance of the scene (which is to be recovered), and
S the speckle noise. S is assumed to follow a gamma law with mean equal to 1:

gS(s) = LL

Γ(L)s
L−1 exp(−Ls)1{s≥0}. In the rest of the paper, we will assume that the

image to recover has been corrupted by some multiplicative gamma noise.

Speckle removal methods have been proposed in the literature. There are geo-
metric filters, such as the Crimmins filter [15] based on the application of convex hull



A VARIATIONAL APPROACH FOR MULTIPLICATIVE NOISE 927

(a) Noise free signal (b) Speckled signal
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(c) Degraded by multiplicative Gaussian noise (d) Degraded by additive Gaussian noise
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Fig. 1. Speckle noise in one dimension: notice that the vertical scale is not the same on the
different images (scale between 40 and 120 on (a), 0 and 600 on (b), 20 and 140 on (c), 20 and 140
on (d)). (a) 1D signal f ; (b) f degraded by speckle noise of mean 1; (c) f degraded by a multiplicative
Gaussian noise (σ = 0.2); (d) f degraded by an additive Gaussian noise (σ = 15). Speckle noise
is much stronger than classical additive Gaussian noise [37] or classical multiplicative Gaussian
noise [36].

algorithms. There are adaptive filters, such as the Lee filter, the Kuan filter, or its
improvement proposed by Wu and Maitre [42]: first and second order statistics com-
puted in local windows are incorporated in the filtering process. Adaptive filters with
some modeling of the scene, such as the Frost filter, have been proposed. The criterion
is based on a MAP estimator, and Markov random fields can be used as in [40, 16].
Another class of filters are multitemporal, such as the Bruniquel filter [10]: by comput-
ing barycentric means, the standard deviation of the noise can be reduced (provided
that several different images of the same scene are available). A last class of methods
are variational methods as in [37, 36, 6], where the solution is computed with PDEs.

3. A variational multiplicative denoising model. The goal of this section is
to propose a new variational model for denoising images corrupted by multiplicative
noise and in particular for SAR images. We start from the following multiplicative
model: f = uv, where f is the observed image, u > 0 the image to recover, and v the
noise. We consider that f , u, and v are instances of some random variables F , U , and
V . In the following, if X is a random variable, we denote by gX its density function.
We refer the interested reader to [25] for further details about random variables. In
this section, we consider discretized images. We denote by S the set of the pixels of
the image. Moreover, we assume that the samples of the noise on each pixel s ∈ S are
mutually independent and identically distributed (i.i.d.) with density function gV .

3.1. Density laws with a multiplicative model. Our goal is to maximize
P (U |F ), and thus thanks to the Bayes rule we need to know P (F |U) and gF |U .
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Proposition 3.1. Assume that U and V are independent random variables, with
continuous density functions gU and gV . Let us set F = UV . Then we have for u > 0

(3.1) gV

(
f

u

)
1

u
= gF |U (f |u).

Proof. The proof is a standard result (see [25], for instance). We give the proof
here for the sake of completeness.

Let A be an open subset in R. We have

∫
R

gF |U (f |u)1{f∈A} = P (F ∈ A|U) =
P (F ∈ A, U)

P (U)
=

P
((
V = F

U

)
∈ A

U , U
)

P (U)
.

Using the fact that U and V are independent, we have

P
((
V = F

U

)
∈ A

U , U
)

P (U)
= P

((
V =

F

U

)
∈ A

U

)
=

∫
R

gV (v)1{v∈A
u } dv

=

∫
R

gV (f/u)1{f∈A}
df

u
.

3.2. Our model via the MAP estimator. We assume the following multi-
plicative model: f = uv, where f is the observed image, u the image to recover, and
v the noise. We assume that v follows a gamma law with mean 1 and with density
function

(3.2) gV (v) =
LL

Γ(L)
vL−1e−Lv 1{v≥0}.

Using Proposition 3.1, we therefore get

(3.3) gF |U (f |u) =
LL

uLΓ(L)
fL−1e−

Lf
u .

We also assume that U follows a Gibbs prior,

(3.4) gU (u) =
1

Z
exp(−γφ(u)),

where Z is a normalizing constant and φ is a nonnegative given function. We aim to
maximize P (U |F ). This will lead us to the classical MAP estimator. From the Bayes

rule, we have P (U |F ) = P (F |U)P (U)
P (F ) . Maximizing P (U |F ) amounts to minimizing the

log-likelihood:

(3.5) − log(P (U |F )) = − log(P (F |U)) − log(P (U)) + log(P (F )).

We remind the reader that the image is discretized. We denote by S the set
of the pixels of the image. Moreover, we assume that the samples of the noise on
each pixel s ∈ S are mutually i.i.d. with density gV . We therefore have P (F |U) =∏

s∈S P (F (s)|U(s)), where F (s) (resp., U(s)) is the instance of the variable F (resp.,
U) at pixel s. Since log(P (F )) is a constant, we just need to minimize:

(3.6) − log(P (F |U)) − log(P (U)) = −
∑
s∈S

(log(P (F (s)|U(s))) − log(P (U(s)))) .



A VARIATIONAL APPROACH FOR MULTIPLICATIVE NOISE 929

Using (3.3), and since Z is a constant, we eventually see that minimizing − log(P (F |U))
amounts to minimizing

(3.7)
∑
s∈S

(
L

(
logU(s) +

F (s)

U(s)

)
+ γφ(U(s))

)
.

The previous computation leads us to propose the following functional for restor-
ing images corrupted with gamma noise:

(3.8)

∫ (
log u +

f

u

)
dx +

γ

L

∫
φ(u) dx.

Remarks. (1) It is easy to check that the function u → log u + f
u reaches its

minimum value 1 + log f over R
+
∗ for u = f .

(2) Multiplicative Gaussian noise: in the additive noise case, the most classical
assumption is to assume that the noise is a white Gaussian noise. However, this can
no longer be the case when dealing with multiplicative noise, except in the case of tiny
noise. Indeed, if the model is f = uv, where v is a Gaussian noise with mean 1, then
some instances of v are negative. Since the data f is assumed positive, this implies
that the restored image u has some negative values, which is, of course, impossible.
Nevertheless, numerically, if the standard deviation of the noise is smaller than 0.2
(i.e., in the case of tiny noise), then it is very unlikely that v takes some negative
values. See also [32] where some limitations of the Bayesian estimator approach are
investigated.

4. Mathematical study of the variational model. In this section, we pro-
pose a nonconvex model for removing multiplicative noise, for which we prove the
existence of a solution.

4.1. Preliminaries. Throughout our study, we will use the following classical
distributional spaces. Ω ⊂ R

2 will denote an open bounded set with Lipschitz bound-
ary.

• D(Ω) = C∞
0 (Ω) is the set of functions in C∞(Ω) with compact support in Ω.

We denote by D′(Ω) the dual space of D(Ω), i.e., the space of distributions on Ω.
• Wm,p(Ω) denotes the space of functions in Lp(Ω) whose distributional deriva-

tives Dαu are in Lp(Ω), p ∈ [1,+∞), m ≥ 1, m ∈ N, |α| ≤ m. For further details on
these spaces, we refer the reader to [19, 20].

• BV (Ω) is the subspace of functions u ∈ L1(Ω) such that the following quan-
tity is finite:

(4.1) J(u) = sup

{∫
Ω

u(x) div(ξ(x)) dx / ξ ∈ C∞
0 (Ω,R2), ‖ξ‖L∞(Ω,RN ) ≤ 1

}
.

BV (Ω) endowed with the norm ‖u‖BV = ‖u‖L1 + J(u) is a Banach space. If u ∈
BV (Ω), the distributional derivative Du is a bounded Radon measure, and (4.1)
corresponds to the total variation, i.e., J(u) =

∫
Ω
|Du|.

For Ω ⊂ R
2, if 1 ≤ p ≤ 2, we have BV (Ω) ⊂ Lp(Ω). Moreover, for 1 ≤ p < 2, this

embedding is compact. For further details on BV (Ω), we refer the reader to [1].
• Since BV (Ω) ⊂ L2(Ω), we can extend the functional J (which we still denote

by J) over L2(Ω):

(4.2) J(u) =

{ ∫
Ω
|Du| if u ∈ BV (Ω),

+∞ if u ∈ L2(Ω)\BV (Ω).
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We can then define the subdifferential ∂J of J [35]: v ∈ ∂J(u) if and only if for all
w ∈ L2(Ω), we have J(u+w) ≥ J(u)+ 〈v, w〉L2(Ω), where 〈., .〉L2(Ω) denotes the usual
inner product in L2(Ω).

• Decomposability of BV (Ω). If u in BV (Ω), then Du = ∇u dx + Dsu, where
∇u ∈ L1(Ω) and Dsu ⊥ dx. ∇u is called the regular part of Du.

• Weak * topology on BV (Ω). If (un) is a bounded sequence in BV (Ω), then
up to a subsequence, there exists u ∈ BV (Ω) such that un → u in L1(Ω) strong, and
Dun → Du in the sense of measure; i.e., 〈Dun, φ〉 → 〈Du, φ〉 for all φ in (C∞

0 (Ω))2.
• Approximation by smooth functions. If u belongs to BV (Ω), then there exists

a sequence un in C∞(Ω)
⋂

BV (Ω) such that un → u in L1(Ω) and J(un) → J(u) as
n → +∞.

• In this paper, if a function f belongs to L∞(Ω), we denote by supΩ f (resp.,
infΩ f) the sup ess of f (resp., the inf ess of f). We recall that sup ess f = inf{C ∈ R;
f(x) ≤ C a.e.} and inf ess f = sup{C ∈ R; f(x) ≥ C a.e.}.

4.2. The variational model. The application we have in mind is the denoising
of nontextured SAR images. Inspired by the works of Rudin et al. [37, 36], we decide
to choose φ(u) = J(u).

We thus propose the following restoration model (λ being a regularization param-
eter):

(4.3) inf
u∈S(Ω)

J(u) + λ

∫
Ω

(
log u +

f

u

)
,

where S(Ω) = {u ∈ BV (Ω), u > 0} and f > 0 in L∞(Ω) is the given data.
From now on, without loss of generality, we assume that λ = 1.

4.3. Existence of a minimizer. In this subsection, we show that problem (4.3)
has at least one solution.

Theorem 4.1. Let f be in L∞(Ω) with infΩ f > 0; then problem (4.3) has at
least one solution u in BV (Ω) satisfying

(4.4) 0 < inf
Ω

f ≤ u ≤ sup
Ω

f

Proof. Let us denote inf f by α and sup f by β. Let us consider a minimizing
sequence (un) ∈ S(Ω) for problem (4.3). Let us set

(4.5) E(u) = J(u) +

∫
Ω

(
log u +

f

u

)
.

We split the proof into two parts.
Part 1. We first show that we can assume without restriction that α ≤ un ≤ β.
We remark that x → log x + f

x is decreasing if x ∈ (0, f) and increasing if x ∈
(f,+∞). Therefore, if M ≥ f , one always has

(4.6)

(
log(min(x,M)) +

f

min(x,M)

)
≤ log x +

f

x
.

Hence, if we let M = β = sup f , we find that

(4.7)

∫
Ω

(
log inf(u, β) +

f

inf(u, β)

)
≤

∫
Ω

(
log u +

f

u

)
.
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Moreover, we have that (see Lemma 1 in section 4.3 of [27], for instance)

J(inf(u, β)) ≤ J(u).

We thus deduce that

(4.8) E(inf(u, β)) ≤ E(u).

And in the same way we get that E(sup(u, α)) ≤ E(u), where α = inf f .
Part 2. From the first part of the proof, we know that we can assume that

α ≤ un ≤ β. This implies in particular that un is bounded in L1(Ω).
By definition of (un), the sequence E(un) is bounded; i.e., there exists a constant

C such that J(un) +
∫
Ω

(
log un + f

un

)
≤ C. Moreover, standard computations show

that
∫
Ω

(
log un + f

un

)
reaches its minimum value

∫
Ω

(1 + log f) when u = f , and thus
we deduce that J(un) is bounded.

Therefore we get that un is bounded in BV (Ω) and there exists u in BV (Ω) such
that up to a subsequence, un → u in BV (Ω) weak * and un → u in L1(Ω) strong.
Necessarily, we have 0 ≤ α ≤ u ≤ β, and thanks to the lower semicontinuity of the
total variation and Fatou’s lemma, we get that u is a solution of problem (4.3).

4.4. Uniqueness and comparison principle. In this subsection, we address
the problem of the uniqueness of a solution of problem (4.3). The question remains
open in general, but we prove two results: we give a sufficient condition ensuring
uniqueness and we show that a comparison principle holds.

Proposition 4.2. Let f > 0 be in L∞(Ω); then problem (4.3) has at most one
solution û such that 0 < û < 2f .

Proof. Let us set

(4.9) h(u) = log u +
f

u
.

We have h′(u) = 1
u − f

u2 = u−f
u2 and h′′(u) = − 1

u2 + 2 f
u3 = 2f−u

u3 . We deduce that if
0 < u < 2f , then h is strictly convex, implying the uniqueness of a minimizer.

We now state a comparison principle.
Proposition 4.3. Let f1 and f2 be in L∞(Ω) with infΩ f1 > 0 and infΩ f2 > 0.

Let us assume that f1 < f2. We denote by u1 (resp., u2) a solution of (4.3) for f = f1

(resp., f = f2). Then we have u1 ≤ u2.
Proof. We use here the following classical notation: u ∨ v = sup(u, v), and

u ∧ v = inf(u, v).
From Theorem 4.1, we know that u1 and u2 do exist. We have, since ui is a

minimizer with data fi,

(4.10) J(u1 ∧ u2) +

∫
Ω

(
log(u1 ∧ u2) +

f1

u1 ∧ u2

)
≥ J(u1) +

∫
Ω

(
log u1 +

f1

u1

)

and

(4.11) J(u1 ∨ u2) +

∫
Ω

(
log(u1 ∨ u2) +

f2

u1 ∨ u2

)
≥ J(u2) +

∫
Ω

(
log u2 +

f2

u2

)
.

Adding these two inequalities and using the fact that J(u1 ∧ u2) + J(u1 ∨ u2) ≤
J(u1) + J(u2) [12, 23], we get
(4.12)∫

Ω

(
log(u1 ∧u2)+

f1

u1 ∧ u2
− log u1 −

f1

u1
+log(u1 ∨u2)+

f2

u1 ∨ u2
− log u2 −

f2

u2

)
≥ 0.
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Writing Ω = {u1 > u2} ∪ {u1 ≤ u2}, we easily deduce that

(4.13)

∫
{u1>u2}

(f1 − f2)
u1 − u2

u1u2
≥ 0.

Since f1 < f2, we thus deduce that {u1 > u2} has a zero Lebesgue measure; i.e.,
u1 ≤ u2 a.e. in Ω.

4.5. Euler–Lagrange equation associated to problem (4.3). Let us now
write an “Euler–Lagrange” equation for any solution of problem (4.3), the difficulty
being that the ambient space is BV (Ω).

Proposition 4.4. Let f be in L∞(Ω) with infΩ f > 0. If u in BV (Ω) is a
solution of problem (4.3), then we have

(4.14) −h′(u) ∈ ∂J(u).

Proof. This is a consequence of the maximum principle (4.4) of Theorem 4.1.
Indeed, h can be replaced below the value infΩ f by its C1-quadratic extension, and
this change does not alter the set of minimizers. The new functional has a Lipschitz
derivative, and then standard results can be used to get (4.14).

To give more insight into (4.14), we state the following result (see Proposition 1.10
in [2] for further details).

Proposition 4.5. Let (u, v) be in L2(Ω) with u in BV (Ω). The following
assertions are equivalent:

(i) v ∈ ∂J(u).
(ii) Denoting by X(Ω)2 = {z ∈ L∞(Ω,R2) : div(z) ∈ L2(Ω)}, we have

(4.15)

∫
Ω

vu dx = J(u)

and

(4.16)
∃z ∈ X(Ω)2, ‖z‖∞ ≤ 1, z.N = 0 on ∂Ω
such that v = −div(z) in D′(Ω).

(iii) (4.16) holds, and

(4.17)

∫
Ω

(z,Du) =

∫
Ω

|Du|.

From this proposition, we see that (4.14) means that −h′(u) = div z, with z
satisfying (4.16) and (4.17). This is a rigorous way to write −div

( ∇u
|∇u

)
+ h′(u) = 0.

5. Numerical results. We present in this section some numerical examples
illustrating the capability of our model. We also compare it with some other existing
models.

5.1. Algorithm. To numerically compute a solution to problem (4.3), we use
the equation −div

( ∇u
|∇u

)
+ h′(u) = 0 and, as it is classically done in image analysis,

we embed it into a dynamical equation which we drive to a steady state:

(5.1)
∂u

∂t
= div

(
∇u

|∇u|

)
+ λ

f − u

u2
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with initial data u(x, 0) = 1
|Ω|

∫
Ω
f . We denote this model as the AA model. We

use the following explicit scheme, with finite differences (we have checked numerically
that for δt > 0 small enough, the sequence (un) satisfies a maximum principle):

(5.2)
un+1 − un

δt
=

(
div

(
∇un√

|∇un|2 + β2

)
− λh′(un)

)

with β a small fixed parameter.

5.2. Other models. We have compared our results with some other classical
variational denoising models.

Additive model ( log). A natural way to turn a multiplicative model into an
additive one is to use the logarithm transform (see [5, 22], for instance). Nevertheless,
as can be seen on the numerical results, such a straightforward method does not
produce satisfactory results. In the numerical results presented in this paper, we refer
to this model as the log model. We first take the logarithm of the original image f .
We then denoise log(f) by using the Rudin–Osher–Fatemi (ROF) model [37, 13], with
the functional infy

(
J(y) + 1

2λ‖x − z‖2
L2

)
. We finally take the exponential to obtain

the restored image. As can be seen in Figures 2 and 3, there is no maximum principle
for this algorithm. In particular, the mean of the restored image is much smaller than
that of the original image. In fact, in such an approach, the assumptions are not
consistent with the modeling, as explained hereafter.

The original considered model is the following: f = uv, under the assumptions
that u and v are independent, and E(v) = 1 (i.e., v is of mean 1). Hence E(f) = E(u).

Now, if we take the logarithm, denoting by x = log(f), y = log(u), and z = log(v),
we get the additive model x = y + z. To recover y from x, the classical assumption is
E(z) = 0: this is the basic assumption in all the classical additive image restoration
methods [11, 4] (total variation minimization, nonlinear diffusion, wavelet shrinkage,
nonlocal means, heat equation, etc.).

But, from Jensen’s inequality, we have exp(E(z)) ≤ E(exp(z)), i.e., 1 ≤ E(v).
As soon as there is some noise, we are no longer in the case of equality in Jensen’s
inequality, which implies E(v) > 1. As a consequence, E(u) < E(f) (in the numerical
examples presented in Figures 2 and 3, we obtain E(u) ≈ E(f)/2).

As a conclusion, if one wants to use the logarithm to get an additive model, then
one cannot directly apply a standard additive noise removal algorithm. One needs to
be more careful.

RLO model. The second model we use is a multiplicative version of the ROF
model: it is a constrained minimization problem proposed by Rudin, Lions, and Osher
in [36, 34], and we will call it the RLO model. In this approach, the model considered
is f = uv, under the constraints that

∫
Ω
v = 1 (mean 1) and

∫
Ω

(v − 1)2 = σ2 (given
variance). The goal is then to minimize

∫
Ω
|Du| under the two previous constraints.

The gradient projection method leads to

(5.3)
∂u

∂t
= div

(
∇u

|∇u|

)
− λ

f2

u3
− μ

f

u2
.

The two Lagrange multipliers λ and μ are dynamically updated to satisfy the
constraints (as explained in [36]). With this algorithm, there is no regularization
parameter to tune: the parameter to tune here is the number of iterations (since the
considered flow is not associated to any functional). In practice, it appears that the
Lagrange multipliers λ and μ are almost always of opposite signs.
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Notice that the model proposed in this paper (AA) is specifically devoted to the
denoising of images corrupted by gamma noise. The RLO model does not make such
an assumption on the noise and therefore cannot be expected to perform as well as
the AA model for speckle removal. Notice also that in the case of small Gaussian
multplicative noise, both the RLO and AA models give very good results, as can be
seen in Figure 5.

5.3. Deblurring. It is possible to modify our model to incorporate a linear
blurring operator K. With u being the image to recover, we assume that the observed
image f is obtained as f = (Ku).v. The functional to minimize in this case becomes

(5.4) inf
u

(
J(u) + λ

∫
Ω

(
f

Ku
+ log(Ku)

))
.

The associated Euler–Lagrange equation is (denoting by KT the transpose of K)

(5.5) 0 ∈ ∂J(u) + λKT

(
−f

(Ku)2
+

1

Ku

)
.

Numerically, we use a steepest gradient descent approach by solving

(5.6)
∂u

∂t
= div

(
∇u

|∇u|

)
+ λKT

(
f −Ku

(Ku)2

)
.

5.4. Results. In Figure 2, we show a first example. The original synthetic image
is corrupted by some multiplicative noise with gamma law of mean 1 (see (3.2)). We
display the denoising results obtained by our approach (AA), as well as with the RLO
model. Due to the very strong noise, the RLO model experiences some difficulties in
bringing back in the range of the image some isolated points (white and black points
on the denoised image) and at the same time keeping sharp edges: to remove these
artifacts, one needs to regularize more, and therefore some part of the edges are lost.
Moreover, the mean of the original image is not preserved (the mean of the restored
image is quite larger than that of the original image): this is the reason why the
signal-to-noise ratio (SNR) is not much improved, and also why the restored image
with the RLO model looks lighter. We also display the results obtained with the log
model: as explained before, this model gives bad results, due to the fact that the
mean is not preserved (with the log model, the mean is much reduced). This is the
reason why the restored image with the log model is much darker.

In Figure 3, we show how our model behaves with a complicated geometrical
image. We also give the results with the RLO model and the log model (which have
the same drawbacks as in Figure 2).

In Figure 4, we show the result we get on a SAR image provided by the CNES
(French space agency). The reference image (also furnished by the CNES) has been
obtained by amplitude summation.

In Figure 5, we show how our model behaves with multiplicative Gaussian noise.
We have used the same parameters for the Gaussian noise as in [36], i.e., a standard
deviation of 0.2 (and a mean equal to 1). The original image is displayed in Figure 3.
In this case, we see that we get a very good restoration result. Notice that such a
multiplicative Gaussian noise is much easier to handle than the speckle noise which
was tackled in Figures 2–4. But, as far as we know, this is the type of multiplicative
noise which was considered in all the variational approaches inspired by [36] (as used,
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Noise free image Speckled image (f), SNR = −0.065

u (AA) (λ = 30), SNR = 21.2 u (RLO) (iterations = 600), SNR = 6.5

u (log) (λ = 2), SNR = 6.9

Fig. 2. Denoising of a synthetic image with gamma noise. f has been corrupted by some
multiplicative noise with gamma law of mean 1. u is the denoised image.

for instance, in [33, 28, 29, 38]). We also show the results with the RLO model and
the log model. Notice that in this case all the models perform very well, even the log
model: indeed, since the noise is small, Jensen’s inequality is almost an equality.

In Figure 6, we finally show a deblurring example with our model (5.4). The
original image (displayed in Figure 3) has been convolved with a Gaussian kernel of
standard deviation

√
2 and then multiplied by a Gaussian noise of standard devia-

tion 0.2 and mean 1 (we use the same parameters as in [36]). Even though the restored
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Noise free image Speckled image (f), SNR = −0.063

u (AA) (λ = 30), SNR = 13.6 u (RLO) (iterations = 600), SNR = 9.1

u (log) (λ = 1), SNR = 6.7

Fig. 3. Denoising of a synthetic image with gamma noise. f has been corrupted by some
multiplicative noise with gamma law of mean 1.

image is not as good as in the denoising case presented in Figure 5, we see that our
model works well for deblurring.

6. Evolution equation. In this section we study the evolution equation asso-
ciated to (4.14). The motivation is that when searching for a numerical solution of
(4.14) it is, in general, easier to compute a solution of the associated evolution equa-
tion (by using, for example, explicit or semi-implicit schemes) and then studying the
asymptotic behavior of the process to get a solution of the stationary equation.
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Reference image Speckled image (f) u (AA) (λ = 180)

Fig. 4. Denoising of a SAR image provided by the CNES.

Noisy image (f), SNR = 14.0 u (AA) (λ = 500), SNR = 20.9

u (RLO) (iterations = 500), SNR = 20.1 u (log), λ = 0.5, SNR = 20.0

Fig. 5. Denoising of a synthetic image degraded by multiplicative Gaussian noise with σ = 0.2.
The original noise free image is shown in Figure 3.

We first consider a semidiscrete version of the problem: the space Ω is still in-
cluded in R2, but we discretize the time variable. We consider the case of a regular
time discretization, (tn), with t0 given and tn+1 − tn = δt in R

∗
+ (in this section, δt is

fixed). We define un = u(., tn), and we consider the following implicit scheme:

(6.1) 0 ∈ un+1 − un

δt
+ ∂J(un+1) + h′(un+1),

where J is the extended total variation as defined in (4.2). We first need to check that
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Noisy and blurred image (f) Deblurred image u (λ = 1000)

Fig. 6. Deblurring of the synthetic image of Figure 3 (the original image, which is shown
in Figure 3, was first convolved with a Gaussian kernel of standard deviation σ =

√
2 and then

multiplied by some Gaussian noise of mean 1 and standard deviation σ = 0.2).

(6.1) indeed defines a sequence (un). To this end, we intend to study the following
functional:

(6.2) inf
u∈BV (Ω), u>0

F (u, un)

with

(6.3) F (u, un) =

∫
Ω

u2

2
dx−

∫
Ω

unu dx + δt

(
J(u) +

∫
Ω

h(u) dx

)
.

We want to define un+1 as

(6.4) un+1 = argmin
{u∈BV (Ω), u>0}

F (u, un).

6.1. Existence and uniqueness of the sequence (un). We first need to
check that the sequence (un) is indeed well defined.

Proposition 6.1. Let f be in L∞(Ω) with infΩ f > 0. Let (un) be in BV (Ω)
such that infΩ f ≤ un ≤ supΩ f . If δt < 27(infΩ f)2, then there exists a unique un+1

in BV (Ω) satisfying (6.4). Moreover, we have

(6.5) inf
(
inf
Ω

f , inf
Ω

u0

)
≤ un ≤ sup

(
sup
Ω

f , sup
Ω

u0

)
.

Proof. We split the proof into two parts.
Part 1. We first show the existence and uniqueness of un+1. We consider: g(u) =

δth(u)+u2/2−unu. We have g′′(u) = 1+δt f−u
u2 = u3−δtu+2δtf

u3 . A simple computation
shows that if δt < 27(infΩ f)2, then g′′(u) > 0 for all u > 0, i.e., g strictly convex on
R

∗
+. It is then standard to deduce the existence and uniqueness of un+1.

Part 2. As in the proof of Theorem 4.1, we have

(6.6)

∫
Ω

(
log inf(u, β) +

f

inf(u, β)

)
≤

∫
Ω

(
log u +

f

u

)
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and J(inf(u, β)) ≤ J(u).

We remark that x → x2/2 − xun is decreasing if x ∈ (0, un) and increasing if
x ∈ (un,+∞). Therefore, proceeding as in the proof of Theorem 4.1, we get

(6.7)

∫
Ω

(inf (u , supun))
2

2
− un inf (u , supun) ≤

∫
Ω

u2

2
− uun.

Thus the truncation procedure decreases the energy, and we deduce the right-hand
side inequality in (6.5). We get the other one in the same way.

We can thus derive the following theorem.

Theorem 6.2. Let f be in L∞(Ω) with infΩ f > 0, and u0 in L∞(Ω)
⋂

BV (Ω)
with infΩ u0 > 0 be given. If δt < 27(infΩ f)2, then there exists a unique sequence
(un) in BV (Ω) satisfying (6.4). Moreover, the following estimates hold:

(6.8) inf
(
inf
Ω

f , inf
Ω

u0

)
= α ≤ un ≤ β = sup

(
sup
Ω

f , sup
Ω

u0

)

and

(6.9) J(un) ≤ J(u0) +

∫
Ω

h(u0) dx−
∫

Ω

(1 + log f).

Proof. This theorem is just a consequence (by induction) of Proposition 6.1,
except for estimate (6.9) which we prove now.

From (6.4), we have F (un+1, un) ≤ F (un, un), which means

δt

(
J(un+1) − J(un) +

∫
Ω

h(un+1) −
∫

Ω

h(un)

)

+
1

2

∫
Ω

(un+1 − un)
2 ≤ 0.(6.10)

This implies

(6.11) J(un+1) − J(un) +

∫
Ω

h(un+1) −
∫

Ω

h(un) ≤ 0.

By summation, we obtain

(6.12) J(un+1) ≤ −
∫

Ω

h(un+1) +

∫
Ω

h(u0) + J(u0).

Standard computations show that
∫
Ω
h(un+1) ≥

∫
Ω

(1 + log f) dx, from which we
deduce (6.9).

6.2. Euler–Lagrange equation. We have the following “Euler–Lagrange”
equation.

Proposition 6.3. The sequence (un) satisfying (6.4) is such that

(6.13) 0 ∈ un+1 − un

δt
+
(
∂J(un+1) + h′(un+1)

)
.

Proof. The proof is similar to that of Proposition 4.4.
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6.3. Convergence of the sequence un. The following convergence result
holds.

Proposition 6.4. Let f be in L∞(Ω) with infΩ f > 0, and u0 in L∞(Ω)
⋂
BV (Ω)

with infΩ u0 > 0 be fixed. Let δt < 27(infΩ f)2. The sequence (un) defined by (6.1) is
such that there exists u in BV (Ω) with un ⇀ u (up to a subsequence) for the BV (Ω)
weak * topology, and u is solution of

(6.14) 0 ∈ ∂J(u) + h′(u)

in the distributional sense.
Proof. As in the proof of Theorem 6.2, we get the same kind of equation as (6.10):

(6.15)
1

2

∫
Ω

(un+1 − un)
2 ≤ δt

(
J(un) − J(un+1) +

∫
Ω

h(un) −
∫

Ω

h(un+1)

)
.

By summation, we obtain

1

2

N−1∑
n=0

∫
Ω

(un+1 − un)
2 ≤ δt

(
J(u0) − J(uN ) +

∫
Ω

h(u0) −
∫

Ω

h(uN )

)

≤ δt

(
J(u0) +

∫
Ω

h(u0) −
∫

Ω

h(f)

)
< +∞

(since
∫
Ω
h(uN ≥

∫
Ω
h(f)). In particular, this implies that un+1 − un → 0 in L2(Ω)

strong.
From estimate (6.9), we know that there exists u in BV (Ω) such that up to a

subsequence un ⇀ u for the BV (Ω) weak * topology. Moreover, un → u in L1(Ω)
strong. Let v ∈ L2(Ω). From (6.13), we have

(6.16) J(v) ≥ J(un+1) +

〈
v − un+1,−

un+1 − un

δt
− h′(un+1)

〉
L2(Ω)

.

Using estimate (6.8) and the fact that un → u in L1(Ω) strong, we deduce from
Lebesgue’s dominated convergence theorem that (up to a subsequence) un → u in
L2(Ω) strong. Moreover, since un+1 − un → 0 in L2(Ω) strong, and thanks to the
lower semicontinuity of the total variation, we get J(v) ≥ J(u)+ 〈v−u,−h′(u)〉L2(Ω).
Hence (6.14) holds.

6.4. Continuous setting. Let us consider the evolution equation

(6.17)
∂u

∂t
∈ −∂J(u) − h′(u)

with the initial condition u(0) = u0 and with h(u) = f
u +log u, i.e., h′(u) = u−f

u2 . J(u)
still denotes the extended total variation of u with respect to the space variable x.

To show the existence and uniqueness of a solution for (6.17), we could apply the
theory of maximal monotone operator [9, 8, 2]. This theory works provided that h′

is Lipschitz. One need only replace h by its C1-quadratic extension below infΩ. This
would yield a solution in L2(Ω). Here, we derive sharper bounds with the next result,
whose proof is given in Appendix A.

Theorem 6.5. Let f be in L∞(Ω) with infΩ f > 0, and u0 in L∞(Ω)
⋂

BV (Ω)
with infΩ u0 > 0. Then problem (6.17) has exactly one solution u in L∞

w ((0, T );BV (Ω))⋂
W 1,2((0, T );L2(Ω)).
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Remark. u belongs to L∞
w ((0, T );BV (Ω)) means that u belongs to L∞((0, T )×Ω)

and Du belongs to L∞
w ((0, T );Mb(Ω)). L∞

w ((0, T );Mb(Ω)) is the space of equiv-
alent classes of weak * measurable mappings μ that are essentially bounded; i.e.,
sup essx∈Ω ‖μ(x)‖ < +∞ (we say that μ is weak * measurable if 〈μ(x), f〉Mb(Ω)×C0(Ω;R2)

is measurable with respect to x for every f in C0(Ω; R2); see Lemma A.5 and [7] for
further details).

Appendix A. Evolution equation: Continuous setting. To show that
problem (6.17) has a solution, we start from the semidiscrete problem we have studied
in the previous section. We therefore consider a sequence (un) satisfying (6.4). From
Proposition 6.3, we know that (un) satisfies

(A.1) 0 ∈ un+1 − un

δt
+
(
∂J(un+1) + h′(un+1)

)

and un+1 satisfies Neumann boundary conditions ∂un+1

∂N = 0 on the boundary of Ω.
From Theorem 6.2, we know that the sequence (un) exists and is unique provided
that δt < 27(infΩ f)2.

A.1. Definitions of interpolate functions. We classically introduce two func-
tions defined on Ω × R

+. We assume that t0 = 0 and tn = nδt. Then

(A.2) ũδt(t, x) = u[t/δt]+1(x) = un+1(x) if tn < t ≤ tn+1,

where [t/δt] is the integer part of t/δt. ũδt(., x) is thus piecewise constant. We also
introduce

(A.3) ûδt(t, x) = (t− tn)
un+1(x) − un(x)

δt
+ un(x)

with n = [t/δt]. ûδt(., x) is piecewise affine and continuous, and we have

(A.4)
∂ûδt

∂t
(t, x) =

un+1(x) − un(x)

δt
, tn < t < tn+1.

With this notation, we can rewrite (A.1) as

(A.5)
ũδt(t, x) − ũδt(t− δt, x)

δt
∈ −∂J(ũδt(t, x)) − h′(ũδt(t, x)),

i.e.,

(A.6)
∂ûδt

∂t
(t, x) ∈ −∂J(ũδt(t, x)) − h′(ũδt(t, x)).

A.2. A priori estimates. We first need to show some a priori estimates.
Proposition A.1. Let T > 0 be fixed, f in L∞(Ω) with infΩ f > 0, and u0 in

L∞(Ω)
⋂

BV (Ω) with infΩ u0 > 0. Then if 0 ≤ t ≤ T ,

(A.7) inf
(
inf
Ω

f , inf
Ω

u0

)
= α ≤ ũδt, ûδt ≤ β = sup

(
sup
Ω

f , sup
Ω

u0

)

and

(A.8) sup
t∈(0,T )

{J(ũδt), J(ûδt)} ≤ J(u0) +

∫
Ω

h(u0) −
∫

Ω

h(f).



942 GILLES AUBERT AND JEAN-FRANÇOIS AUJOL

Proof. (A.7) for ũδt comes from (6.8) in Theorem 6.2, and (A.8) comes from (6.9).
We then get the estimates for ûδt from (A.3).

Proposition A.2. Let T > 0 be fixed. There exists a constant C > 0, which
does not depend on δt, such that

(A.9)

∫ T

0

∥∥∥∥∂ûδt

∂t

∥∥∥∥
2

L2(Ω)

≤ C.

Proof. Let us denote [t/δt] by N . We have

(A.10)

∫ tn+1

tn

∥∥∥∥∂ûδt

∂t

∥∥∥∥
2

L2(Ω)

= δt

∫
Ω

∣∣∣∣un+1(x) − un(x)

δt

∣∣∣∣
2

dx.

By using (6.15), we get

(A.11)

∫ tn+1

tn

∥∥∥∥∂ûδt

∂t

∥∥∥∥
2

L2(Ω)

≤ 2

(
J(un) − J(un+1) +

∫
Ω

h(un) −
∫

Ω

h(un+1)

)
.

Hence,

N−1∑
n=0

∫ tn+1

tn

∥∥∥∥∂ûδt

∂t

∥∥∥∥
2

L2(Ω)

≤ 2

(
J(u0) − J(uN ) +

∫
Ω

h(u0) −
∫

Ω

h(uN )

)

≤ 2

(
J(u0) +

∫
Ω

h(u0) −
∫

Ω

h(f)

)
.

We thus deduce that

(A.12)

∫ T

0

∥∥∥∥∂ûδt

∂t

∥∥∥∥
2

L2(Ω)

dt ≤ 2T

(
J(u0)+

∫
Ω

h(u0)−
∫

Ω

h(f)

)
+

∫ T

tN

∥∥∥∥∂ûδt

∂t

∥∥∥∥
2

L2(Ω)

dt.

But, by using (6.15), we have

∫ T

tN

∥∥∥∥∂ûδt

∂t

∥∥∥∥
2

L2(Ω)

dt ≤ 2
T − tn

δt

(
J(uN ) − J(uN+1) +

∫
Ω

h(uN ) −
∫

Ω

h(uN+1)

)

≤ 2

(
J(u0) − J(uN+1) +

∫
Ω

h(uN ) −
∫

Ω

h(uN+1)

)
.

We then get from (6.9) and (6.8) that there exists B > 0 which does not depend on

N and δt such that
∫ T

tN

∥∥∂ûδt

∂t

∥∥2

L2(Ω)
dt ≤ B. We then conclude the proof thanks to

(A.12).
Corollary A.3. Let T > 0 be fixed. Then

(A.13) lim
δt→0

∫ T

0

‖ûδt − ũδt‖2
L2(Ω) dt = 0.

Proof. Let us denote [t/δt] by N . We have
(A.14)∫ T

0

‖ûδt − ũδt‖2
L2(Ω) dt =

N−1∑
n=0

∫ tn+1

tn

‖ûδt − ũδt‖2
L2(Ω) dt +

∫ T

tN

‖ûδt − ũδt‖2
L2(Ω) dt.
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But

(A.15)
N−1∑
n=0

∫ tn+1

tn

‖ûδt− ũδt‖2
L2(Ω) dt =

N−1∑
n=0

∫ tn+1

tn

‖(t− tn−δt)(un+1−un)‖2
L2(Ω) dt.

We then deduce from (A.4) that

N−1∑
n=0

∫ tn+1

tn

‖ûδt − ũδt‖2
L2(Ω) dt ≤

N−1∑
n=0

∫ tn+1

tn

∥∥∥∥δt∂ûδt

∂t

∥∥∥∥
L2(Ω)

dt

≤ (δt)2
∫ T

0

∥∥∥∥∂ûδt

∂t

∥∥∥∥
2

L2(Ω)

dt

︸ ︷︷ ︸
→ 0 as δt → 0

.

And

(A.16)

∫ T

tN

‖ûδt − ũδt‖2
L2(Ω) dt ≤ (δt)3

∥∥∥∥uN+1 − uN

δt

∥∥∥∥
2

L2(Ω)

dt

︸ ︷︷ ︸
→ 0 as δt → 0

.

We summarize the a priori estimates we have proved in the following corollary.
Corollary A.4. Let T > 0 be fixed. There exists a constant C > 0 such that

sup

{
sup

t∈(0,T )

‖ũδt‖L∞(Ω) , sup
t∈(0,T )

‖ûδt‖L∞(Ω)

}
≤ C,(A.17)

sup

{
sup

t∈(0,T )

J(ũδt) , sup
t∈(0,T )

J(ûδt)

}
≤ C,(A.18)

∫ T

0

∥∥∥∥∂ûδt

∂t

∥∥∥∥
2

L2(Ω)

≤ C,(A.19)

lim
δt→0

∫ T

0

‖ûδt − ũδt‖2
L2(Ω) dt = 0.(A.20)

A.3. Existence of a solution. We can now prove Theorem 6.5.
Proof. The uniqueness of u will come from Proposition A.6. Here we just show

the existence of u.
We first remark that, from inequalities (A.17) and (A.19), ûδt is uniformly bound-

ed in W 1,2((0, T );L2(Ω)). Thus, up to a subsequence, there exists u in W 1,2((0, T );
L2(Ω)) such that ûδt ⇀ u in W 1,2((0, T );L2(Ω)) weak. Since W 1,2((0, T );L2(Ω)) is
compactly embedded in L2((0, T );L2(Ω)) (see [39, Theorem 2.1, Chapter 3]), ûδt → u
strongly in L2((0, T );L2(Ω)).

Since (A.17) and (A.18) hold, we can apply Lemma A.5 (stated below) with (ũδt).
Thus, up to a subsequence, there exists ũ in L∞

w ((0, T );BV (Ω)) such that ũδt ⇀ ũ
in L∞(Ω × (0, T )) weak * and Dxũδt ⇀ Dxũ in L∞

w ((0, T );Mb(Ω)) weak *. From
(A.20), we have that ũδt → u strongly in L2((0, T );L2(Ω)), and we thus deduce that
ũ = u.
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The semidiscrete implicit scheme writes for a.e. t ∈ (0, T )

(A.21) −∂ûδt

∂t
− h′(ũδt) ∈ ∂J(ũδt);

i.e., for all v in BV (Ω), v > 0, and a.e. t ∈ (0, T ),

(A.22) J(v) ≥ J(ũδt) +

〈
v − ũδt,−

∂ûδt

∂t
− h′(ũδt)

〉
L2(Ω)×L2(Ω)

.

Let φ in C0
c (0, T ) be a test function, φ ≥ 0. We multiply (A.22) by φ and integrate

on (0, T ):
(A.23)∫ T

0

J(v)φ(t) dt ≥
∫ T

0

J(ũδt)φ(t) dt +

∫ T

0

∫
Ω

(v − ũδt)

(
−∂ûδt

∂t
− h′(ũδt)

)
φ(t) dt dx.

We want to let δt → 0 in (A.23). By convexity, we have

(A.24) lim inf

∫ T

0

J(ũδt)φ(t) dt ≥
∫ T

0

J(u)φ(t) dt.

Now, since ũδt → u strongly in L2((0, T );L2(Ω)), ∂ûδt

∂t ⇀ ∂u
∂t in L2((0, T );L2(Ω))

weak, and h′ is bounded on the interval [α, β], the second term on the right-hand side
of (A.23) tends to ∫ T

0

∫
Ω

(v − u)

(
−∂u

∂t
− h′(u)

)
φ(t) dt dx.

We thus get

(A.25)

∫ T

0

J(v)φ(t) dt ≥
∫ T

0

J(u)φ(t) dt+

∫ T

0

∫
Ω

(v− u)

(
−∂u

∂t
− h′(u)

)
φ(t) dt dx.

This inequality holds for all φ ≥ 0, and we deduce that for a.e. t in (0, T )

(A.26) J(v) ≥ J(u) +

∫
Ω

(v − u)

(
−∂u

∂t
− h′(u)

)
dx;

i.e., −∂u
∂t ∈ ∂J(u) + h′(u). Hence we deduce that u is a solution of (6.17) in the

distributional sense.
In the above proof, we have used the following lemma.
Lemma A.5. Let (un) be a bounded sequence in L∞

w (Ω×(0, T )), such that (Dxun)
is a bounded sequence in L∞

w ((0, T );Mb(Ω)). Then, up to a subsequence, there exists
u in L∞

w ((0, T );BV (Ω)) such that un ⇀ u in L∞(Ω×(0, T )) weak * and Dxun ⇀ Dxu
in L∞

w ((0, T );Mb(Ω)) weak *; i.e., for all ψ in L1((0, T );C0(Ω)),

(A.27)

∫ T

0

〈Dun, ψ〉Mb(Ω)×C0(Ω;R2) dt →
∫ T

0

〈Du,ψ〉Mb(Ω)×C0(Ω;R2) dt,

where 〈., .〉Mb(Ω)×C0(Ω) denotes the duality product between bounded measures on Ω
and C0(Ω; R2) denotes the space of functions continuous on Ω and vanishing in ∂Ω.

Proof. From the Riesz representation theorem [1, 20], there is an isometric iso-
morphism between Mb(Ω) and the dual space of C0(Ω). Moreover, since C0(Ω) is
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separable, there is an isometric isomorphism between L∞
w ((0, T );Mb(Ω)) and the dual

space of L1((0, T );C0(Ω)) (see [7] or [18, page 588]). Up to a subsequence, there exist
u in L∞(Ω× (0, T )) and v in L∞

w ((0, T );Mb(Ω)) such that un ⇀ u in L∞(Ω× (0, T ))
weak *, and Dxun ⇀ v in L∞

w ((0, T );Mb(Ω)) weak *. We therefore have for all ψ in
L1((0, T );C0(Ω))

(A.28)

∫ T

0

〈Dun, ψ〉Mb(Ω)×C0(Ω;R2) dt →
∫ T

0

〈v, ψ〉Mb(Ω)×C0(Ω;R2) dt.

Moreover, we have Dxun → Dxu in D′(Ω × (0, T )) and Dxun → v in D′(Ω × (0, T )):
this implies that Dxu = v.

A.4. Uniqueness of the solution. A uniqueness result holds.
Proposition A.6. Let f be in L∞(Ω) with infΩ f > 0, and let u0 be in

L∞(Ω)
⋂
BV (Ω) with infΩ u0 > 0. Then problem (6.17) has at most one solution

u such that 0 < α ≤ u ≤ β.
Proof. This is a standard result. It is based on the convexity of J , the fact that

h′ is Lipschitz on [infΩ f,+∞), and the Gronwall inequality.
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sité Paris-Sud 11, Orsay, France, 1972.

[9] H. Brezis, Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces
de Hilbert, North–Holland, Amsterdam, 1973.

[10] J. Bruniquel and A. Lopes, Analysis and enhancement of multitemporal SAR data, in Proc.
SPIE 2315, SPIE, Bellingham, WA, 1994, pp. 342–353.

[11] A. Buades, B. Coll, and J. M. Morel, A review of image denoising algorithms, with a new
one, Multiscale Model. Simul., 4 (2005), pp. 490–530.

[12] A. Chambolle, An algorithm for mean curvature motion, Interfaces Free Bound., 6 (2004),
pp. 1–24.

[13] A. Chambolle, An algorithm for total variation minimization and applications, J. Math.
Imaging Vision, 20 (2004), pp. 89–97.



946 GILLES AUBERT AND JEAN-FRANÇOIS AUJOL
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Abstract. Motivated by a class of orbit problems in astrophysics, this paper considers solutions
to Hill’s equation with forcing strength parameters that vary from cycle to cycle. The results are
generalized to include period variations from cycle to cycle. The development of the solutions to
the differential equation is governed by a discrete map. For the general case of Hill’s equation in
the unstable limit, we consider separately the cases of purely positive matrix elements and those
with mixed signs; we then find exact expressions, bounds, and estimates for the growth rates. We
also find exact expressions, estimates, and bounds for the infinite products of several 2 × 2 matrices
with random variables in the matrix elements. In the limit of sharply spiked forcing terms (the
delta function limit), we find analytic solutions for each cycle and for the discrete map that matches
solutions from cycle to cycle; for this case we find the growth rates and the condition for instability
in the limit of large forcing strength, as well as the widths of the stable/unstable zones.
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1. Introduction. This paper presents new results concerning Hill’s equation of
the form

(1)
d2y

dt2
+ [λk + qkQ̂(t)]y = 0,

where the function Q̂(t) is periodic, so that Q̂(t+ π) = Q̂(t), and normalized, so that∫ π

0
Q̂dt = 1. The parameter qk is denoted here as the forcing strength, which we

consider to be a random variable that takes on a new value every cycle (the index k
determines the cycle). The parameter λk, which determines the oscillation frequency
in the absence of forcing, also varies from cycle to cycle. In principal, the duration of
the cycle could also vary; our first result (see Theorem 1) shows that this generalized
case can be reduced to the problem of (1).

Hill’s equations [HI] arise in a wide variety of contexts [MW], and hence the con-
sideration of random variations in the parameters (qk, λk) is a natural generalization
of previous work. This particular form of Hill’s equation was motivated by a class of
orbit problems in astrophysics [AB]. In many astrophysical systems, orbits take place
in extended mass distributions with triaxial forms. Examples include dark matter
halos that envelop galaxies and galaxy clusters, stellar bulges found at the centers of
spiral galaxies, elliptical galaxies, and young embedded star clusters. These systems
thus occur over an enormous range of scales, spanning factors of millions in size and
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factors of trillions in mass. Nonetheless, the basic form of the potential is similar
[NF, BE, AB] for all of these systems, and the corresponding orbit problem repre-
sents a sizable fraction of the orbital motion that takes place in our universe. In this
context, when a test particle (e.g., a star or a dark matter particle) orbits within the
triaxial potential, motion that is initially confined to a particular orbital plane can be
unstable to motion in the perpendicular direction [AB]. The equation that describes
the development of this instability takes the form of (1). Further, the motion in the
original orbital plane often displays chaotic behavior, which becomes more extreme
as the axis ratios of the potential increase [BT]. In this application, the motion in
the original orbit plane—in particular, the distance to the center of the coordinate
system—determines the magnitude of the forcing strength qk that appears in Hill’s
equation. The crossing time, which varies from orbit to orbit, determines the value
of the oscillation parameter λk. As a result, the chaotic behavior in the original or-
bital plane leads to random forcing effects in the differential equation that determines
instability of motion out of the plane (see Appendix A for further discussion).

Given that Hill’s equations arise in a wide variety of physical problems [MW],
we expect that applications with random forcing terms will be common. Although
the literature on stochastic differential equations is vast (e.g., see the review of [BL]),
specific results regarding Hill’s equations with random forcing terms are relatively
rare.

In this application, Hill’s equation is periodic or nearly periodic (we generalize
to the case of varying periods for the basic cycles), and the forcing strength qk varies
from cycle to cycle. Since the forcing strength is fixed over a given cycle, one can solve
the Hill’s equation for each cycle using previously developed methods [MW], and then
match the solutions from cycle to cycle using a discrete map. As shown below, the
long-time solution can be developed by repeated multiplication of 2× 2 matrices that
contain a random component in their matrix elements.

The subject of random matrices, including the long term behavior of their prod-
ucts, is also the subject of a great deal of previous work [BL, DE, BD, FK, FU, LR,
ME, VI]. In this application, however, Hill’s equation determines the form of the ran-
dom matrices, and the repeated multiplication of this type of matrix represents a new
and specific application. Given that instances where analytic results can be obtained
are relatively rare, this set of solutions adds new examples to the list of known cases.

This paper is organized as follows. In section 2, we present the basic formulation
of the problem, define relevant quantities, and show that aperiodic generalizations
of the problem can be reduced to random Hill’s equations. The following section
(section 3) presents the main results of the paper: We find specific results regarding
the growth rates of instability for random Hill’s equations in the limit of large forcing
strengths (i.e., in the limit where the equations are robustly unstable). These results
are presented for purely positive and for mixed signs in the 2×2 matrix map. We also
find limiting forms and constraints on the growth rates. Finally, we find bounds and
estimates for the errors incurred by working in the limit of large forcing strengths.
This work is related to the general existence results of [FU] but provides much more
detailed information in our setting. In the next section (section 4) we consider the
limit where the forcing terms are Dirac delta functions; this case allows for analytic
solutions to the original differential equation. We note that the growth rates calculated
here (section 3) depend on the distribution of the ratios of the principal solutions to
(1), rather than (directly) on the distributions of the parameters (λk, qk). Using the
analytic solutions for the delta function limit (section 4), we thus gain insight into
the transformation between the distributions of the input parameters (λk, qk) and the
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parameters that specify the growth rates. Finally, we conclude, in section 5, with a
summary and discussion of our results.

2. Formulation.
Definition. A random Hill’s equation is defined here to be of the form given

by (1), where the forcing strength qk and oscillation parameter λk vary from cycle to
cycle. Specifically, the parameters qk and λk are stochastic variables that take on new
values every cycle 0 ≤ [t] ≤ π, and the values are sampled from known probability
distributions Pq(q) and Pλ(λ).

2.1. Hill’s equation with fixed parameters. Over a single given cycle, a
random Hill’s equation is equivalent to an ordinary Hill’s equation and can be solved
using known methods [MW].

Definition. The growth factor fc per cycle (the Floquet multiplier) is given by
the solution to the characteristic equation and can be written as

(2) fc =
Δ + (Δ2 − 4)1/2

2
,

where the discriminant Δ = Δ(q, λ) is defined by

(3) Δ ≡ y1(π) +
dy2

dt
(π),

and where y1 and y2 are the principal solutions [MW].
It follows from Floquet’s theorem that |Δ| > 2 is a sufficient condition for insta-

bility [MW, AS]. In addition, periodic solutions exist when |Δ| = 2.

2.2. Random variations in forcing strength. We now generalize to the case
where the forcing strength qk and oscillation parameter λk vary from cycle to cycle.
In other words, we consider each period from t = 0 to t = π as a cycle and consider
the effects of successive cycles with varying values of (qk, λk).

During any given cycle, the solution can be written as a linear combination of the
two principal solutions y1 and y2. Consider two successive cycles. The first cycle has
parameters (qa, λa) and solution

(4) fa(t) = αay1a(t) + βay2a(t),

where the solutions y1a(t) and y2a(t) correspond to those for an ordinary Hill’s equa-
tion when evaluated using the values (qa, λa). Similarly, for the second cycle with
parameters (qb, λb) the solution has the form

(5) fb(t) = αby1b(t) + βby2b(t).

Next we note that the new coefficients αb and βb are related to those of the previous
cycle through the relations

(6) αb = αay1a(π) + βay2a(π) and βb = αa
dy1a

dt
(π) + βa

dy2a

dt
(π).

The new coefficients can thus be considered as a two dimensional vector, and the
transformation between the coefficients in one cycle and the next cycle is a 2 × 2
matrix. Here we consider the case in which the equation is symmetric with respect to
the midpoint t = π/2. This case arises in the original orbit problem that motivated
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this study—the forcing function is determined by the orbit as it passes near the center
of the potential and this passage is symmetric (or very nearly so). It also makes sense
to consider the symmetric case, which is easier, first. Since the Wronskian of the
original differential equation is unity, the number of independent matrix coefficients
is reduced further, from four to two. We thus have the following result.

Proposition 1. The transformation between the coefficients αa, βa of one cycle
and the coefficients αb, βb of the next may be written in the form

(7)

[
αb

βb

]
=

[
h (h2 − 1)/g
g h

] [
αa

βa

]
≡ M(qa)

[
αa

βa

]
,

where the matrix M (defined in the second equality) depends on the values (qa, λa)
and h = y1(π) and g = ẏ1(π) for a given cycle.

Proof. This result can be verified by standard matrix multiplication, which
yields (6) above.

After N cycles with varying values of (qk, λk), the solution retains the general
form given above, where the coefficients are determined by the product of matrices
according to

(8)

[
αN

βN

]
= M(N)

[
α0

β0

]
, where M(N) ≡

N∏
k=1

Mk(qk, λk).

This formulation thus transforms the original differential equation (with a random
element) into a discrete map. The properties of the product matrix M(N) determine
whether the solution is unstable and the corresponding growth rate.

Definition. The asymptotic growth rate γ∞ is that experienced by the system
when each cycle amplifies the growing solution by the growth factor appropriate for
the given value of the forcing strength for that cycle, i.e.,

(9) γ∞ ≡ lim
N→∞

1

πN
log

[
N∏

k=1

1

2

{
Δk +

√
Δ2

k − 4
}]

,

where Δk = Δ(qk, λk) is defined by (3), and where this expression is evaluated in the
limit N → ∞. In this definition, it is understood that if |Δk| < 2 for a particular
cycle, then the growth factor is unity for that cycle, resulting in no net contribution
to the product (for that cycle).

Notice that the factor of π appears in this definition of the growth rate because
the original Hill’s equation is taken to be π-periodic [MW, AS]. As we show below, the
growth rates of the differential equation are determined by the growth rates resulting
from matrix multiplication. In many cases, however, the growth rates for matrix
multiplication are given without the factor of π [BL, FK], so there is a mismatch of
convention (by a factor of π) between growth rates of Hill’s equations and growth
rates of matrix multiplication.

Notice that this expression for the asymptotic growth rate takes the form

(10) γ∞ = lim
N→∞

1

N

N∑
k=1

γ(qk, λk) → 〈γ〉,

where γ(qk, λk) is the growth rate for a given cycle. The asymptotic growth rate is
thus given by the expectation value of the growth rate per cycle for a given probability
distribution for the parameters qk and λk.
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We note that a given system does not necessarily experience growth at the rate
γ∞ because the solutions must remain continuous across the boundaries between
subsequent cycles. This requirement implies that the solutions during every cycle will
contain an admixture of both the growing solution and the decaying solution for that
cycle, thereby leading to the possibility of slower growth. In some cases, however, the
growth rate is larger than γ∞; i.e., the stochastic component of the problem aids and
abets the instability. One could also call γ∞ the direct growth rate.

2.3. Generalization to aperiodic variations.
Theorem 1. Consider a generalization of Hill’s equation so that the cycles are

no longer exactly π-periodic. Instead, each cycle has period μkπ, where μk is a random
variable that averages to unity. Then variations in period are equivalent to variations
in (q, λ); i.e., the problem with three stochastic variables (qk, λk, μk) reduces to a
π-periodic problem with only two stochastic variables (qk, λk).

Proof. With this generalization, the equation of motion takes the form

(11)
d2y

dt2
+
[
λk + qkQ̂(μkt)

]
y = 0,

where we have normalized the forcing frequency to have unit amplitude (Q̂ = Q/qk).
Since Q̂ (and Q) are π-periodic, the jth cycle is defined over the time interval 0 ≤
μkt ≤ π, or 0 ≤ t ≤ π/μk. We can rescale both the time variable and the “constants”
according to

(12) t → μkt , λk → λk/μ
2
k = λ̃j , and qk → qk/μ

2
k = q̃j ,

so the equation of motion reduces to the familiar form

(13)
d2y

dt2
+
[
λ̃j + q̃jQ̂(t)

]
y = 0.

Thus, the effects of varying period can be incorporated into variations in the forcing
strength qk and oscillation parameter λk.

3. Hill’s equation in the unstable limit. In this section we consider Hill’s
equation in the general form (for the delta function limit see section 4) but restrict
our analysis to the case of symmetric potentials so that y1(π) = h = ẏ2(π). We also
consider the highly unstable limit, where we define this limit to correspond to large
h � 1. Since the 2 × 2 matrix of the discrete map must have its determinant equal
to unity, the matrix of the map has the form given by (7), where the values of h and
g depend on the form of the forcing potential.

The discrete map can be rewritten in the general form

(14) M = h

[
1 x

1/x 1

]
+

[
0 −1/g
0 0

]
.

In the highly unstable limit h → ∞, the matrix simplifies to the approximate form

(15) M ≈ h

[
1 x

1/x 1

]
≡ hC,

where we have defined x ≡ h/g, and where the second equality defines the matrix C.
In this problem we are concerned with both the long-time limit N → ∞ and the

“unstable” limit h → ∞. In the first instance considered here we take the unstable
limit first, but below we analyze precisely the difference between taking the long time
limit first and then the unstable limit.



952 FRED C. ADAMS AND ANTHONY M. BLOCH

3.1. Fixed matrix of the discrete map. The simplest case occurs when the
stochastic component can be separated from the matrix, i.e., when the matrix C does
not vary from cycle to cycle. This case arises when the Hill’s equation does not contain
a random component; it also arises when the random component can be factored out
so that x does not vary from cycle to cycle, although the leading factors hk can vary.
In either case, the matrix C is fixed. Repeated multiplications of the matrix C are
then given by

(16) CN = 2N−1C.

With this result, after N cycles the Floquet multiplier (eigenvalue) of the product
matrix and the corresponding growth rate take the form

(17) Λ =
N∏

k=1

(2hk) and γ = lim
N→∞

1

πN

N∑
k=1

log(2hk).

Note that this result applies to the particular case of Hill’s equation in the delta
function limit (section 4), where the forcing strength qk varies from cycle to cycle
but the frequency parameter λk is constant. The growth rate in (17) is equal to the
asymptotic growth rate γ∞ (see (9)) for this case.

3.2. General results in the unstable limit. We now generalize to the case
where the parameters of the differential equation vary from cycle to cycle. For a given
cycle, the discrete map is specified by a matrix of the form specified by (15), where
x = xk = hk/gk, with varying values from cycle to cycle. The values of xk depend
on the parameters (qk, λk) through the original differential equation. After N cycles,
the product matrix M(N) takes the form

(18) M(N) =

N∏
k=1

hk

N∏
k=1

Ck,

where we have separated the two parts of the problem. One can show (by induction)
that the product of N matrices Ck has the form

(19) C(N) =

N∏
k=1

Ck =

[
ΣT (N) x1ΣT (N)

ΣB(N)/x1 ΣB(N)

]
,

where x1 is the value of the variable for the first cycle and where the sums ΣT (N) and
ΣB(N) are given by

(20) ΣT (N) =

2N−1∑
j=1

rj and ΣB(N) =

2N−1∑
j=1

1

rj
,

where the variables rj are ratios of the form

(21) rj =
xa1xa2 . . . xan

xb1xb2 . . . xbn

.

The ratios rj arise from repeated multiplication of the matrices Ck, and hence the
indices lie in the range 1 ≤ ai, bi ≤ N . The rj always have the same number of factors
in the numerator and the denominator, but the number of factors (n) varies from 0
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(where rj = 1) up to N/2. This upper limit arises because each composite ratio rj has
2n values of xj , which must all be different, and because the total number of possible
values is N .

Next we define a composite variable

(22) S̃ ≡ 1

2N
[
ΣT (N) + ΣB(N)

]
=

1

2N

2N−1∑
j=1

(
rj +

1

rj

)
.

With this definition, the (growing) eigenvalue Λ of the product matrix M(N) takes
the form

(23) Λ = S̃
N∏

k=1

(2hk)

and the corresponding growth rate of the instability has the form

(24) γ = lim
N→∞

[
1

πN

N∑
k=1

log(2hk) +
1

Nπ
log S̃

]
.

The first term is the asymptotic growth rate γ∞ defined by (9) and is thus an average of
the growth rates for the individual cycles. All of the additional information regarding
the stochastic nature of the differential equation is encapsulated in the second term
through the variable S̃. For example, if the composite variable S̃ is finite in the limit
N → ∞, then the second term would vanish. As shown below, however, the stochastic
component can provide a significant contribution to the growth rate and can provide
either a stabilizing or destabilizing influence. In the limit N → ∞, we can thus write
the growth rate in the from

(25) γ = γ∞ + Δγ,

where we have defined the correction term Δγ,

(26) Δγ ≡ lim
N→∞

1

Nπ
log S̃.

Since the asymptotic growth rate γ∞ is straightforward to evaluate, the remainder
of this section focuses on evaluating Δγ as well as finding corresponding estimates
and constraints. This correction term Δγ is determined by the discrete map C, whose
matrix elements are given by the ratios x = h/g, where h and g are determined by
the solutions to Hill’s equation over one cycle. One should keep in mind that the
parameters in the original differential equation are (λk, qk). The distribution of these
parameters determines the distributions of the principal solutions (the distributions
of hk and gk), whereas the distribution of the ratios xk of these latter quantities
determines the correction Δγ to the growth rate. The problem thus separates into
two parts: (1) the transformation between the distributions of the parameters (λk, qk)
and the resulting distribution of the ratios xk that define the discrete map, and (2) the
growth rate of the discrete map for a given distribution of xk. The following analysis
focuses on the latter issue (whereas section 4 provides an example of the former issue).



954 FRED C. ADAMS AND ANTHONY M. BLOCH

3.3. Growth rates for positive matrix elements. This subsection addresses
the cases where the ratios xk that define the discrete map C all have the same sign.
For this case, the analysis is simplified, and a number of useful results can be obtained.

Theorem 2. Consider the general form of Hill’s equation in the unstable limit
so that h = y1(π) = ẏ2(π) � 1. For the case of positive matrix elements, rj > 0, the
growth rate is given by (25), where the correction term Δγ is given by

(27) Δγ = lim
N→∞

1

πN

N∑
j=1

log(1 + xj1/xj2) − log 2

π
,

where xj1 and xj2 represent two different (independent) samples of the xj variable.1

Proof. Using the same induction argument that led to (19), one finds that from
one cycle to the next the sums ΣT (N) and ΣB(N) vary according to

(28) ΣT (N+1) = ΣT (N) +
x

x0
ΣB(N)

and

(29) ΣB(N+1) = ΣB(N) +
x0

x
ΣT (N).

In this notation, the variable x (no subscript) represents the value of the x variable
at the current cycle, whereas x0 represents the value at the initial cycle. The growing
eigenvalue of the product matrix of (19) is given by Λ = ΣT (N) + ΣB(N). As a result,
the eigenvalue (growth factor) varies from cycle to cycle according to
(30)

Λ(N+1) = Λ(N) +
x

x0
ΣB(N) +

x0

x
ΣT (N) = Λ(N)

[
1 +

(x/x0)ΣB(N) + (x0/x)ΣT (N)

ΣB(N) + ΣT (N)

]
.

The overall growth factor is then determined by the product

(31) Λ(N) =

N∏
j=1

[
1 +

(x/x0)ΣB(N) + (x0/x)ΣT (N)

ΣB(N) + ΣT (N)

]
.

The growth rate of matrix multiplication is determined by setting the above product
equal to exp[Nπγ]. The growth rate Δγ also includes the factor of 2 per cycle that is
included in the definition of the asymptotic growth rate γ∞. We thus find that

(32) Δγ ≈ 1

Nπ

N∑
j=1

log

[
1 +

(xj1/xj2)ΣB(N) + (xj2/xj1)ΣT (N)

ΣB(N) + ΣT (N)

]
− log 2

π
.

Note that this expression provides the correction Δγ to the growth rate. The full
growth rate is given by γ = γ∞+Δγ (where γ∞ is specified by (9) and Δγ is specified
by (27)). In the limit of large N , the ratio of the sums ΣT (N) and ΣB(N) approaches
unity, almost surely, so that

(33)
ΣT (N)

ΣB(N)
→ 1 as N → ∞.

1Specifically, the index j labels the cycle number, and the indices j1 and j2 label two successive
samples of the x variable; since the stochastic parameters of the differential equations are assumed
to be independent from cycle to cycle, however, the variables xj1 and xj2 can be any independent
samples.
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This result follows from the definition of ΣT (N) and ΣB(N): The terms in each of these
two sums are the product of ratios xa/xb, and the terms rj in the first sum ΣT (N)

are the inverse of those (1/rj) in the second sum ΣB(N). Since the fundamental
variables xk that make up these ratios, and the products of these ratios, are drawn
from the same distribution, the above condition (33) must hold. As a consequence,
the expression for the growth rate given by (32) approaches that of (27).

Corollary 2.1. Let σ0 be the variance of the composite variable log(xj1/xj2)
(see Theorem 2). The correction to the growth rate is positive semidefinite; specifically,
Δγ ≥ 0 and Δγ → 0 in the limit σ0 → 0. Further, in the limit of small variance, the
growth rate approaches the asymptotic form Δγ → σ2

0/(8π).
Proof. In the limit of small σ0, we can write xj = 1 + δj , where |δj | � 1. In this

limit, (27) for the growth rate becomes

(34) Δγ = lim
N→∞

1

πN

N∑
j=1

log
[
2 + δj1 − δj2 + δ2

j2 − δj1δj2 + O(δ3)
]
− log 2

π
.

In the limit |δj | � 1, we can expand the logarithm, and the above expression simplifies
to the form

(35) Δγ = lim
N→∞

1

2πN

N∑
j=1

[
δj1 − δj2 + δ2

j2 − δj1δj2 − (δj1 − δj2)
2/4 + O(δ3)

]
.

Evaluation of the above expression shows that

(36) Δγ =
1

2π

[
〈δ2

j2〉 −
1

4
〈(δj1 − δj2)

2〉 + O(δ3)

]
→ σ2

0

8π
.

As a result, Δγ ≥ 0. In the limit σ0 → 0, all of the xj approach unity and δj → 0;
therefore, Δγ → 0 as σ0 → 0.

Although (27) is exact, the computation of the expectation value can be difficult
in practice. As a result, it is useful to have simple constraints on the growth rate in
terms of the variance of the probability distribution for the variables xk. In particular,
a simple bound can be derived.

Theorem 3. Consider the general form of Hill’s equation in the unstable limit
so that h = y1(π) = ẏ2(π) � 1. Take the variables rj > 0. Then the growth rate is
given by (25) and the correction term Δγ obeys the constraint

(37) Δγ ≤ σ2
0

4π
,

where σ2
0 is the variance of the distribution of the variable ξ = log(xj1/xj2), and where

xj are independent samplings of the ratios xj = hj/gj.
Proof. First we define the variable ξj = log rj , where rj is given by (21) above

with a fixed value of n. In the limit of large n, the variable ξj has zero mean and
will be normally distributed. If the variables xj are independent, the variance of the
composite variable ξj will be given by

(38) σ2
ξ = nσ2

0 .

As shown below, in order to obtain 2N terms in the sums ΣT (N) and ΣB(N), almost all
of the variables rj will fall in the large n limit; in addition, n → ∞ in the limit N → ∞.
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As a result, we can consider the large n limit to be valid for purposes of evaluating the
correction term Δγ. In practice, the variables will not be completely independent, so
the actual variance will be smaller than that given by (38); nonetheless, this form can
be used to find the desired upper limit.

Given the large n limit and a log-normal distribution of rj , the expectation values
〈rj〉 and 〈1/rj〉 are given by

(39) 〈rj〉 = exp
[
nσ2

0/2
]

= 〈1/rj〉.

Note that the variable ξj is normally distributed, and we are taking the expectation
value of rj = exp ξj ; since the mean of the exponential is not necessarily equal to the
exponential of the mean, the above expression contains the (perhaps counterintuitive)
factor of 2. As expected, larger values of n allow for a wider possible distribution and
result in larger expectation values. The maximum expectation values thus occur for
the largest values of n. Since n < N/2, these results, in conjunction with (22), imply

that S̃ obeys the constraint

(40) S̃ < exp
[
Nσ2

0/4
]
.

The constraint claimed in (37) then follows immediately.
Combinatorics. To complete the argument, we must show that most of the vari-

ables rj have a large number n of factors (in the limit of large N). The number of
terms in the sums ΣT (N) and ΣB(N) is large, namely, 2N−1. Further, the ratios rj
must contain 2n different values of the variables xk. The number P (n|N) of different
ways to choose the 2n variables for N cycles (and hence N possible values of xk) is
given by the expression

(41) P (n|N) =
N !

(N − 2n)!(n!)2
.

Notice that this expression differs from the more familiar binomial coefficient because
the values of rj depend on whether or not the xk factors are in the numerator or
denominator of the ratio rj . Next we note that if n � N , then the following chain of
inequalities holds for large N :

(42) P (n|N) <
N2n

(n!)2
� 2N−1.

For large N and n � N , the central expression increases like a power of N , whereas
the right-hand expression increases exponentially with N . As a result, for n � N ,
there are not enough different ways to choose the xk values to make the required
number of composite ratios rj . In order to allow for enough different rj , the number
n of factors must be large (namely, large enough so that n � N does not hold) for
most of the rj . This conclusion thus justifies our use of the large n limit in the proof
of Theorem 3 (where we used a log-normal form for the composite distribution to
evaluate the expectation values 〈rj〉 and 〈1/rj〉).

Estimate. Theorem 3 provides an upper bound on the contribution of the cor-
rection term Δγ to the overall growth rate. This bound depends on the value of n,
which determines the magnitude of the expectation value 〈rj〉. It is useful to have
an estimate of the “typical” size of n. In rough terms, the value of n must be large
enough so that the number of possible combinations is large enough to account for the
2N−1 terms in the sums ΣT (N) and ΣB(N). For each n, we have P (n|N) combinations.
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Fig. 1. Comparison of the bound of Theorem 3 and the prediction of Theorem 2 with results
from numerical experiments. All cases use matrices Ck of the form given by (15), where the variables
xk are chosen according to distributions with variance σ2

0. For each distribution, the growth rate
Δγ due to matrix multiplication is plotted versus the variance of the distribution of the composite
variable ξ = log(xj/xk), where xk = y1k(π)/ẏ1k(π) and, similarly, xj = y1j(π)/ẏ1j(π). The solid
curve shows the results obtained by averaging 1000 realizations of the numerical experiments; the
overlying dashed curve shows the prediction of Theorem 2. The straight solid line shows the upper
bound of Theorem 3, i.e., Δγ ≤ σ2

0/(4π).

As a rough approximation, nP (n|N) accounts for all of the combinations of size less
than n. If we set nP (n|N) = 2N , we can solve for the ratio n/N required to have
enough terms and find n/N ≈ 0.11354 · · · ≈ 1/9. As a result, we expect the ratio
n/N to lie in the range

(43)
1

9
<

n

N
<

1

2
.

If we use this range of n/N to evaluate the expectation value using (39) and estimate
the growth rate, the upper end of this range provides a rigorous upper bound (Theo-
rem 3). The lower end of the range represents only a rough guideline, however, since
the variables are not fully independent. Nonetheless, it can be used to estimate the
expectation values 〈rj〉.

Notice that the upper bound is conservative. Figure 1 shows a comparison of the
actual growth rate (from Theorem 2) and the bound (Theorem 3). At large variance,
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the actual growth rate is much less than our bound. In fact, as shown in the following
section, in the limit of large variance, the growth rate Δγ ∝ σ0 (rather than ∝ σ2

0).
For this numerical experiment, we used a particular form for the xk variables,

namely, xk = 0.01 + (10aξk)
a, where ξk is a random variable in the range 0 ≤ ξk ≤ 1

and a is a parameter that is chosen to attain varying values of σ2
0 . The exact form

of the curve Δγ(σ2
0) depends on the distribution of the xk. However, all of the

distributions studied result in the general form shown in Figure 1, and all of the
cases show the same agreement between numerical experiments and the predictions
of Theorem 2.

3.4. Error bounds and estimates. The analysis presented thus far is valid in
the highly unstable limit, as defined at the beginning of this section. In other words,
we have found an exact solution to the reduced problem, as encapsulated in (15). In
this problem we are taking two limits—the long-time limit N → ∞ and the “unstable”
limit h → ∞. In the reduced problem, as analyzed above, we take the limit h → ∞
first and then consider the long-time limit N → ∞. In this subsection, we consider
the accuracy of this approach by finding bounds (and estimates) for the errors in the
growth rates incurred from working in the highly unstable limit. In other words, we
find bounds on the difference between the results for the full problem (with large but
finite hk) and the reduced problem.

To assess the error budget, we write the general matrix (for the full problem) in
the form

(44) M = hB, where B ≡
[

1 xφ
1/x 1

]
.

This form is the same as the matrix of the reduced problem (in the unstable limit)
except for the correction factor φ in the (1,2) matrix element, where φ ≡ (1 − 1/h2).

Let (Δγ)B denote the growth rate for the matrix B for the full problem defined
in (44). Similarly, let (Δγ)C denote the growth rate found previously for the reduced
problem using the matrix C defined in (15). Through repeated matrix multiplications,
the product of matrices Bk will be almost the same as for the product of matrices
Ck, where the difference is due to the continued accumulation of factors φk. Note
that the index k, as introduced here, denotes the cycle number, and that all of these
quantities vary from cycle to cycle.

Proposition 2. The error εBC = (Δγ)C−(Δγ)B introduced by using the reduced
form of the problem (the matrices Ck) instead of the full problem (the matrices Bk)
is bounded by

(45) 0 < εBC < − 1

π
〈log φk〉.

Proof. Since φk < 1, by definition, we see immediately that the growth rate for
the full problem is bounded from above by that of the reduced problem, i.e.,

(46) (Δγ)B < (Δγ)C .

Next we construct a new matrix of the form

(47) A ≡ φ

[
1 x

1/x 1

]
= φC.

The products of the matrices Ak will be almost the same as those for the matrices
Bk, where the difference is again due to the inclusion of additional factors of φk. Since
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the φk < 1, we find that the growth rate for this benchmark problem is less than (or
equal to) that of the full problem, i.e., (Δγ)A < (Δγ)B . Further, the growth rate
(Δγ)A for this new matrix can be found explicitly and is given by

(48) (Δγ)A = (Δγ)C + lim
N→∞

1

πN
log

[
N∏

k=1

φk

]
= (Δγ)C + lim

N→∞

1

πN

N∑
k=1

log φk.

Combining (46) and (48) shows that the growth rate for the full problem (Δγ)B is
bounded on both sides and obeys the constraint

(49) (Δγ)C +
1

π
〈log φk〉 < (Δγ)B < (Δγ)C .

Notice that the expectation value 〈log φk〉 < 0 since φk < 1. The error εBC introduced
by using the reduced form of the problem (the matrices Ck) instead of the full problem
(the matrices Bk) is thus bounded by

(50) 0 < εBC < − 1

π
〈log φk〉.

This bound can be made tighter by a factor of 2. Note that the product of two
matrices of the full problem has the form

(51) B2B1 =

[
1 + (x2/x1)φ2 x1φ1 + x2φ2

1/x1 + 1/x2 1 + (x1/x2)φ1

]
.

Thus, the product of two matrices contains only linear factors of φk. As a result, we
can define a new reference matrix Ã = φ1/2C that accumulates factors of φk only half
as quickly as the original matrix A in the above argument, so that

(52) Ã2Ã1 = φ
1/2
1 φ

1/2
2

[
1 + x2/x1 x1 + x2

1/x1 + 1/x2 1 + x1/x2

]
= φ

1/2
1 φ

1/2
2 C2C1.

The new reference matrix still grows more slowly than the matrix B of the full prob-

lem, but the product of N such matrices accumulates only N extra factors of φ
1/2
k .

Using this reference matrix in the above argument results in the tighter bound

(53) 0 < εBC < − 1

2π
〈log φk〉.

In the limit where all of the hk � 1, log φk ≈ −1/h2
k, and the above bound

approaches the approximate form

(54) 0 < εBC <
1

2π
〈h−2

k 〉.

This expression shows that the errors are well controlled. For large but finite hk,
the departure of the growth rates from those obtained in the highly unstable limit
(Theorem 2) are O(h−2

k ).
Given the above considerations, we can write the growth rate (Δγ)B for the full

problem in the form

(55) (Δγ)B = (Δγ)C − Kε

π
〈h−2

k 〉,
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where (Δγ)C is the growth rate for the reduced problem and where Kε is a constant
of order unity. In the limit of large hk (specifically for log φk ≈ 1/h2

k), the constant is
bounded and lies in the range 0 < Kε < 1/2. Our numerical exploration of parameter
space suggests that Kε ≈ 1/4 provides a good estimate for the correction term. In
any case, however, the correction term depends on hk through the quantity 〈h−2

k 〉 and
decreases with the size of this expectation value.

3.5. Matrix elements with varying signs. We now consider the case in which
the signs of the variables rj can be either positive or negative. Suppose that the system
has equal probability of attaining positive and negative factors. In the limit N → ∞,
one expects the sums ΣT (N),ΣB(N) → 0, which would seem to imply no growth.
However, two effects counteract this tendency. First, the other factor that arises in
the repeated matrix multiplication diverges in the same limit, i.e.,

(56)
N∏
k

(2hk) → ∞ as N → ∞.

Second, the sums ΣT (N) and ΣB(N) can random walk away from zero with an increas-
ing number N of cycles, where the effective step length is determined by the variance
σ0 defined previously. If the random walk is fast enough, the system can be unstable
even without considering the diverging product of (56). In order to determine the
stability (or instability) of the Hill’s equation in this case, we must thus determine
how the sums ΣT (N) and ΣB(N) behave with increasing N .

Theorem 4. Consider the case of Hill’s equation in the unstable limit with both
positive and negative signs for the matrix elements. Let positive signs occur with
probability p and negative signs occur with probability 1 − p. Then the general form
of the growth rate is given by

Δγ = lim
N→∞

1

πN

⎧⎨
⎩[p2 + (1 − p)2

] N∑
j=1

log
(
1 +

∣∣∣xj1

xj2

∣∣∣)+ 2p(1 − p)

N∑
k=1

log
∣∣∣1 −

∣∣∣xk1

xk2

∣∣∣∣∣∣
⎫⎬
⎭

− log 2

π
.

(57)

Proof. The same arguments leading to (32) in the proof of Theorem 2 can be
used, where the signs of the ratios xj1/xj2 must be taken into account. If p is the
probability of the xj variables being positive, the probability of the ratio of two
variables being positive will be given by p2 + (1 − p)2, i.e., the probability of getting
either two positive signs or two negative signs. The probability of the ratio being
negative is then 2p(1 − p). With this consideration of signs, the intermediate form
of (32) is modified to take the form

Δγ +
log 2

π
≈ 1

Nπ

NP∑
j=1

log

[
1 +

|xj1/xj2|ΣB(N) + |xj2/xj1|ΣT (N)

ΣB(N) + ΣT (N)

]
(58)

+
1

Nπ

NQ∑
j=1

log

[
1 −

|xj1/xj2|ΣB(N) + |xj2/xj1|ΣT (N)

ΣB(N) + ΣT (N)

]
,

where NP is the number of terms where the ratios have positive signs and NQ is the
number of terms where the ratios have negative signs. In the limit N → ∞, we argue
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(as before) that the sums ΣB(N) and ΣT (N) approach the same value. Notice also that
the two sums can be either positive or negative, but they will both have the same
sign (by construction). As a result, we can divide the sums out of the expression as
before. In the limit N → ∞, the fraction NP /N → p2 + (1 − p)2 and the fraction
NQ/N → 2p(1 − p). After some rearrangement, we obtain the form of (57).

Corollary 4.1. Let P (ξ) denote the probability distribution of the composite
variable ξ = xk/xj, and assume that the integral

∫
dξ(dP/dξ) log |ξ| exists. Then for

Hill’s equation in the unstable limit, and for the case of the variables xk having mixed
signs, in the limit of small variance the correction to the growth rate Δγ approaches
the following limiting form:

(59) lim
σ0→0

Δγ =
2p(1 − p)

π
[log σ0 + C0 − log 2] ,

where C0 is a constant that depends on the probability distribution of the variables xk.
Proof. In the limit of small σ0, the variables xk can be written in the form

xk = 1 + δk, where |δk| � 1. To leading order, the expression of (57) for the growth
rate becomes

Δγ +
log 2

π
= lim

N→∞

1

πN

{
[p2 + (p− 1)2]

N∑
j=1

log(2 + δj1 − δj2)(60)

+2p(1 − p)

N∑
k=1

log
∣∣δk1 − δk2

∣∣}.
In the limit of small variance σ0 → 0, the variables δk → 0, and the above expression
reduces to the form

(61) Δγ =
2p(1 − p)

π
[〈log |δk1 − δk2|〉 − log 2] .

We thus need to evaluate the expectation value given by

(62) 〈log |δk − δj |〉 =

∫
dξ log |ξ|dP

dξ
,

where we have defined the composite variable ξ = δk − δj . Notice that in the limit
|δ| � 1, the variance of ξ is σ2

0 . Next we define a dimensionless variable z ≡ ξ/σ0 so
that the integral becomes
(63)

I =

∫
dz

dP

dz
log(σ0z) = log σ0

∫
dz

dP

dz
+

∫
dz

dP

dz
log z = log σ0 +

∫
dz

dP

dz
log z.

As long as the differential probability distribution dP/dz allows the integral in the
final expression to converge, then I = log σ0 + C0, where C0 is some fixed number
that depends only on the shape of the probability distribution. This convergence
requirement is given by the statement of the corollary, so that Corollary 4.1 holds.
Notice also that in the limit of small σ0, the log σ0 term dominates for any fixed C0

so that Δγ ∼ 2p(1 − p)(log σ0)/π.
Figure 2 shows the growth rates as a function of the variance σ0 for the case of

mixed signs. For the case of positive signs only, p = 1, the correction Δγ to the
growth rate goes to zero as σ0 → 0. For the case of mixed signs, the correction to the
growth rate has the form Δγ ∝ log σ0 as implied by Corollary 4.1.
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Fig. 2. Correction Δγ to the growth rate for the case in which the signs of the random variables
xk are both positive and negative. The three curves show the results for a 50/50 distribution (bot-
tom), 75/25 (center), and the case of all positive signs (top). For all three cases, the solid curves
show the results of numerical matrix multiplication, where 1000 realizations of each product are
averaged. The overlying dashed curves, which are virtually indistinguishable, show the exact results
from Theorem 4.

Sometimes it is useful to explicitly denote when the growth rates under consider-
ation are the result of purely positive signs or mixed signs for the variables xk. Here,
we use the notation Δγp to specify the growth rate when all the signs are positive.
Similarly, Δγq denotes growth rates for the case of mixed signs.

Corollary 4.2. In the limit of large variance, σ0 → ∞, the growth rates for the
case of positive signs only and for the case of mixed signs converge, i.e.,

(64) lim
σ0→∞

Δγq = Δγp,

where Δγp denotes the case of all positive signs and Δγq denotes the case of mixed
signs.

Proof. The difference in the growth rates for two cases is given by

(65) Δγp − Δγq =
2p(1 − p)

π
lim

N→∞

1

N

N∑
j=1

[
log(1 + |xj1/xj2|) − log

∣∣∣1 − |xj1/xj2|
∣∣∣],
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where p is the probability for the sign of xk being positive. In the limit of large
variance σ2

0 → ∞, the ratios |xj/xk| are almost always far from unity. Only the
cases with |xj/xk| � 1 have a significant contribution to the sums. For those cases,
however, both of the logarithms in the sums reduce to the same form, log |xj/xk|, and
hence (65) becomes

(66) lim
σ0→∞

Δγp − Δγq =
2p(1 − p)

π
[〈log |xj/xk|〉 − 〈log |xj/xk|〉] → 0.

As a result, (64) is valid.
Corollary 4.3. In the limit of large variance σ0 → ∞, the growth rate Δγ

approaches the form given by

(67) lim
σ0→∞

Δγ =
σ0

π
C∞,

where C∞ is a constant that depends on the form of the probability distribution for
the variables xk. In general, C∞ ≤ 1/2.

Proof. Let the composite variable ξ = log(xk/xj) have a probability distribution
dP/dξ. Since the growth rate for the case of mixed signs converges to that for all
positive signs in the limit of interest (from Corollary 4.2), we need only to consider
the latter case (from Theorem 2). The growth rate is then given by the expectation
value

(68) Δγ =
1

π

∫ ∞

−∞
dξ

dP

dξ
log(1 + eξ).

The integral can be separated into the domains ξ < 0 and ξ > 0. For the positive
integral, we expand the integrand into two terms; for the negative domain, we change
the variables of integration so that ξ → −ξ. We thus obtain the three terms

(69) Δγ =
1

π

∫ ∞

0

dξ
dP

dξ
ξ +

1

π

∫ ∞

0

dξ
dP

dξ
log(1 + e−ξ) +

1

π

∫ ∞

0

dξ
dP̃

dξ
log(1 + e−ξ).

In the third integral, the probability distribution (dP̃ /dξ)(ξ) = (dP/dξ)(−ξ); the
second and third terms will thus be the same since the distribution is symmetric (by
construction, the composite variable ξ is the difference between two variables log xk

drawn from the same distribution). The sum of the second two integrals is bounded
from above by log 2 and can be neglected in the limit of interest. In the first integral,
we change variables according to z = ξ/σ, so that

(70) Δγ → σ0

π
〈z〉(ξ≥0), where 〈z〉(ξ≥0) ≡

∫ ∞

0

dz
dP

dz
z.

Since 〈1〉 = 1 and 〈z2〉 = 1, by definition, we expect the quantity 〈z〉(ξ≥0) = C∞ to
be of order unity. Further, one can show that C∞ as defined here is bounded from
above by 1/2. As a result, in this limit, we obtain a bound of the form π(Δγ) ≤
σ0/2 + log 2. We note that the constant C∞ cannot be bounded from below (in the
absence of further constraints placed on the probability distribution dP/dξ).

Corollary 4.4. In the limit of large variance σ2
0 � 1, the difference Δ(Δγ)

between the growth rate for strictly positive signs and that for mixed signs takes the
form

(71) lim
σ0→∞

Δ(Δγ) =
8p(1 − p)

πσ0
CΔ,
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where CΔ is a constant that depends on the form of probability distribution, and where
p is the probability of positive matrix elements for the case of mixed signs.

Proof. Using the results from Theorems 2 and 4 to specify the growth rates for
the cases of positive signs and mixed signs, respectively, the difference can be written
in the form

(72) Δ(Δγ) =
2p(1 − p)

π

∫ ∞

−∞
dξ

dP

dξ

[
log(1 + eξ) − log

∣∣1 − eξ
∣∣] .

Next we separate the integrals into positive and negative domains and change the
integration variable for the negative domain (ξ → −ξ). The integral (I) then becomes

(73) I =

∫ ∞

0

dξ
dP

dξ
log

(
1 + e−ξ

1 − e−ξ

)
+

∫ ∞

0

dξ
dP̃

dξ

(
1 + e−ξ

1 − e−ξ

)
,

where P̃ (ξ) = P (−ξ). Since we are working in the large σ0 limit, the variable ξ will
be large over most of the domain where the integrals have support, so we can expand,
using e−ξ as a small parameter. In this case, the integral I becomes

(74) I = 2

∫ ∞

−∞
dξ

dP

dξ
e−|ξ| = 2

∫ ∞

−∞
dz

dP

dz
e−σ0|z|,

where we have made the substitution z = ξ/σ. For large σ0, the decaying exponential
dominates the behavior of the integrand. In the limit σ → ∞, the exponential term
decays to zero before the probability dP/dz changes so that dP/dz → CΔ, where CΔ

is a constant. The integral thus becomes I = 4CΔ/σ0, and the difference between the
growth rates becomes

(75) Δ(Δγ) =
8p(1 − p)

πσ0
CΔ,

as claimed by Corollary 4.4.
Figure 3 illustrates the behavior implied by the last three corollaries. In the limit

of large variance, the growth rates for mixed signs and positive signs converge only
(Corollary 4.2). Further, growth rates for both cases approach the form Δγ ∝ σ0 (as
in Corollary 4.3). Finally, the difference between the growth rates for the two cases
has the characteristic form Δ(Δγ) ∝ 1/σ0 (from Corollary 4.4).

Corollary 4.5. For the case of mixed signs, the crossover point between growing
solutions and decaying solutions is given by the condition

(76) [p2 + (1 − p)2]〈log
∣∣1 + |xj/xk|

∣∣〉 + 2p(1 − p)〈log
∣∣1 − |xj/xk|

∣∣〉 = log 2.

Proof. This result follows from Theorem 4 by inspection.
Estimate for the crossover condition. Equation (76) is difficult to evaluate in

practice. In order to obtain a rough estimate of the threshold for instability, we
can consider the rj to be independent variables and use elementary methods to es-
timate the conditions necessary for systems with mixed signs to be unstable. We
first note that the sums ΣT (N) and ΣB(N) add up the composite variables rj , which
are made up of the variables xj (which in turn are set by the form of the original
differential equation). If the signs of the variables xj are symmetrically distributed,
then the signs of the composite variables rj are also symmetrically distributed. We
can thus focus on the variables rj .
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Fig. 3. Convergence of growth rates in the limit of large variance. The increasing solid curve
shows the growth rate as a function of variance for the case of all positive signs. The dashed curve
shows the growth rate for the cased of mixed signs with a 50/50 sign distribution, i.e., p = 1/2. The
decreasing curve marked by triangles shows the difference between the two curves (where the axis on
the right applies).

Since the signs can be either positive or negative, the probability of a net excess
of positive (or negative) terms is governed by the binomial distribution (which has a
Gaussian form in the limit of large N). The probability P of having a net excess of
m signs is given by the distribution

(77) P (m) = (πNS/2)−1/2 exp
[
−m2/2NS

]
,

where NS is the number of steps in the random walk. The sums ΣT (N) and ΣB(N)

have NS = 2N steps, where N is the number of cycles of the Hill’s equation.
If the net excess of signs of one type is m, the sums are reduced (from those

obtained with purely positive variables) so that

(78) S̃ = S̃0
m

NS
,

where S̃0 is the value of the composite sum obtained when the variables xj have only
one sign.
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The probability of a growing solution is given by

(79) PG =

∫ ∞

m∗

P (m)dm,

where m∗ is the minimum number of steps needed for instability. We can write m∗
in the form

(80) m∗ = NSe−NπΔγ0 = exp
[
N(log(2) − πΔγ0)

]
,

where Δγ0 is the correction to the growth rate for the case of positive signs only.
The integral can be written in terms of the variable ξ = m/(2NS)1/2 so that

(81) PG =
2√
π

∫ ∞

z∗

e−z2

dz,

where

(82) z∗ = exp

[
N

(
1

2
log 2 − πΔγ0

)]
.

Thus, the crossover for growth occurs under the condition

(83) Δγ0 ≈ log 2/(2π) .

Keep in mind that this result was derived under the assumption that the variables in
the random walk are completely independent. We can derive the above approximate
result from a simpler argument: The sums ΣT (N) and ΣB(N) random walk away

from zero according to �
√
NS = 〈r2

j 〉1/22N/2 = exp[nσ2
0 + (N/2) log 2]. As a result,

S̃ ≈ exp[nσ2
0 − (N/2) log 2] and hence Δγ ≈ (n/N)(σ2

0/π) − (log 2)/2π.

3.6. Specific results for a normal distribution. In this section we consider
the particular case where the composite variable ξ = log(xk/xj) has a normal distri-
bution. Specifically, we let the differential probability distribution take the form

(84)
dP

dξ
=

1√
2πσ0

e−ξ2/2σ2
0 ,

so that σ2
0 is the variance of the distribution. In order to determine the growth rates,

we must evaluate the integrals

(85) J± =
1√

2πσ0

∫ ∞

−∞
dξ e−ξ2/2σ2

0 log
∣∣1 ± eξ

∣∣ .
In the limit σ0 → 0, the correction part of the growth rate (Δγ) can be evaluated

and has the form

(86) lim
σ0→0

Δγ =
1

π

{[
p2 + (1− p)2

]σ2
0

8
+ 2p(1− p)

[
log σ0 −

γem

2

]
− 3p(1− p) log 2

}
,

where γem = 0.577215665 . . . is the Euler–Mascheroni constant. Note that for the
case of positive signs only (p = 1), this expression reduces to the form Δγ = σ2

0/(8π)
as in Corollary 2.1. For the case of mixed signs, this expression reduces to the form
Δγ ∝ log σ0 from Corollary 4.1.
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We can also evaluate the growth rate in the limit of large σ0, and find the asymp-
totic form

(87) lim
σ0→∞

Δγ =
σ0√
2π3/2

.

As a result, the constant C∞ from Corollary 4.3 is given by C∞ = 1/
√

2π. Note that
in this limit, the growth rate is independent of the probabilities p and (1− p) for the
variables xk to have positive and negative signs, consistent with Corollary 4.2. In
this limit, we can also evaluate the difference between the cases of positive signs and
mixed signs, i.e.,

(88) Δγp − Δγq =
8p(1 − p)√

2π3/2σ0

.

Thus, the constant CΔ from Corollary 4.4 is given by CΔ = 1/
√

2π for the case of a
normal distribution. Note that although CΔ = C∞ for this particular example, these
constants will not be the same in general.

Finally, for the case of purely positive signs, we can connect the limiting forms for
small variance and large variance to construct a rough approximation for the whole
range of σ0, i.e.,

(89) Δγ ≈ σ2
0/π

8 +
√

2πσ0

.

This simple expression, which is exact in the limits σ0 → 0 and σ0 → ∞, has a
maximum error of about 18% over the entire range of σ0.

3.7. Matrix decomposition for small variance. For completeness, and as
a consistency check, we can study the growth rates by breaking the transformation
matrix into separate parts. In this section we consider the case of small variance (see
Appendix B for an alternate, more general, separation). In the limit of small variance,
σ2

0 � 1, the variables xk have only small departures from unity and can be written
in the form

(90) xk = 1 + δk,

where |δk| � 1. The matrices of the discrete map can then be decomposed into two
parts so that

(91) Ck = Ak + skδkBk,

where sk = ±1 is the sign of the kth term, and where

(92) Ak =

[
1 sk
sk 1

]
and Bk =

[
0 1
−1 0

]
.

The matrices Ak and Bk have simple multiplicative properties. In particular,

(93) AjAk = 2Aj if sj = sk , but AjAk = 0 if sj �= sk,

and

(94) B2
k = −I , B3

k = −Bk , and B4
k = I.
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The product matrix
∏

Ck will contain long strings of matrices Ak and Bk multiplied
by each other. If any two matrices Ak have opposite signs in such a multiplication
string, then the product of the two matrices will be zero and the entire string will
vanish. As a result, after a large number N of cycles, the only matrices that are
guaranteed to survive in the product are those with only Bk factors and those with
only one Ak factor. Although it is possible for strings with larger numbers of Ak

to survive, it becomes increasingly unlikely (exponentially) as the number of factors
increases. To a good approximation, the eigenvalue of the resulting product matrix
will be given by the product

(95) Λ(N) ≈
N∏

k=1

δk.

We could correct for the possibility of longer surviving strings of Ak by multiplying
by a factor of order unity; however, such a factor would have a vanishing contribution
to the growth rate. The corresponding growth rate thus takes the form

(96) Δγ = lim
N→∞

2p(1 − p)

Nπ

N∑
k=1

log |δk|,

where the factor 2p(1 − p) arises because the matrices with all positive signs lead to
a zero growth rate in the limit σ0 → 0, so only the fraction of the cases with mixed
signs contribute. Next we note that the sum converges to an expectation value

(97) 〈|δk|〉 =

∫
dδ

dP

dδ
log |δ|.

Next we make the substitution z = δ/σ0 and rewrite the integral in the form

(98) 〈|δk|〉 = σ0

∫
dz

dP

dz
+

∫
dz

dP

dz
log z.

In the limit of interest, σ0 → 0, the first term dominates and the growth rate (to
leading order) approaches the form

(99) Δγ =
2p(1 − p)

π
log σ0.

This form agrees with the leading order expression found earlier in Corollary 4.1 (see
also Figure 2, which shows the growth rate as a function of the variance).

4. Hill’s equation in the delta function limit. In many physical applica-
tions, including the astrophysical orbit problem that motivated this analysis, we can
consider the forcing potential to be sufficiently sharp so that Q̂(t) can be considered
as a Dirac delta function. For this limit, we specify the main equation considered in
this section.

Definition. Hill’s equation in the delta function limit is defined to have the
form

(100)
d2y

dt2
+ [λ + qδ([t] − π/2)]y = 0,

where q measures the strength of the forcing potential and where δ(t) is the Dirac delta
function. In this form, the time variable is scaled so that the period of one cycle is
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π. The argument of the delta function is written in terms of [t], which corresponds to
the time variable mod-π, so that the forcing potential is π-periodic.

This form of Hill’s equation allows for analytic solutions, as outlined below, which
can be used to further elucidate the instability for random Hill’s equations. In partic-
ular, in this case, we can solve for the transformation between the variables (λk, qk)
that appear in Hill’s equation and the derived composite variables xk that determine
the growth rates.

4.1. Principal solutions. To start the analysis, we first construct the principal
solutions to (100) for a particular cycle with given values of forcing strength q and
oscillation parameter λ. The equation has two linearly independent solutions y1(t)
and y2(t), which are defined through their initial conditions

(101) y1(0) = 1,
dy1

dt
(0) = 0, and y2(0) = 0,

dy2

dt
(0) = 1.

The first solution y1 has the generic form

(102) y1(t) = cos
√
λt for 0 ≤ t < π/2,

and

(103) y1(t) = A cos
√
λt + B sin

√
λt for π/2 < t ≤ π,

where A and B are constants that are determined by matching the solutions across
the delta function at t = π/2. We define θ ≡

√
λπ/2 and find

(104) A = 1 + (q/
√
λ) sin θ cos θ and B = −(q/

√
λ) cos2 θ.

Similarly, the second solution y2 has the form

(105) y2(t) = sin
√
λt for 0 < t < π/2,

and

(106) y2(t) = C cos
√
λt + D sin

√
λt for π/2 < t ≤ π,

where

(107) C = (q/λ) sin2 θ and D =
1√
λ
− (q/λ) sin θ cos θ.

For the case of constant parameters (q, λ), we can find the criterion for instability
and the growth rate for unstable solutions. Since the forcing potential is symmetric,
y1(π) = dy2/dt(π), from Theorem 1.1 of [MW]. The resulting criterion for instability
reduces to the form

(108) H ≡
∣∣∣∣∣ q

2
√
λ

sin(
√
λπ) − cos(

√
λπ)

∣∣∣∣∣ > 1,

and the growth rate γ is given by

(109) γ =
1

π
log[H +

√
H2 − 1].

In the delta function limit, the solution to Hill’s equation is thus specified by two
parameters—the frequency parameter λ and the forcing strength q. Figure 4 shows
the plane of possible parameter space for Hill’s equation in this limit, with the unstable
regions shaded. Note that a large fraction of the plane is unstable.
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Fig. 4. Regions of instability for Hill’s equation in the delta function limit. The shaded regions
show the values of (λ, q) that correspond to exponentially growing (unstable) solutions, which rep-
resent unstable growth of the perpendicular coordinate for orbits in our triaxial potential that are
initially confined to one of the principal planes.

4.2. Random variations in the forcing strength. We now generalize to the
case where the forcing strength q varies from cycle to cycle, but the oscillation param-
eter λ is fixed. This version of the problem describes orbits in triaxial, extended mass
distributions [AB] and is thus of interest in astrophysics. As outlined in section 2.2,
the solutions from cycle to cycle are connected by the transformation matrix given
by (7). Here, the matrix elements are given by

(110)

h = cos(
√
λπ) − q

2
√
λ

sin(
√
λπ) and g = −

√
λ sin(

√
λπ) − q cos2(

√
λπ/2).

Theorem 5. Consider a random Hill’s equation in the delta function limit. For
the case of fixed λ, the growth rate of instability approaches the asymptotic growth rate
γ∞ in the highly unstable limit q/

√
λ � 1, where the correction term has the following

order:

(111) γ → γ∞

{
1 + O

(
λ/q2

)}
.
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Corollary 5.1. In the delta function limit, the random Hill’s equation with
fixed λ is unstable when the asymptotic growth rate γ∞ > 0.

Remark 5.2. Note that γ∞ > 0 requires only that a nonvanishing fraction of the
cycles be unstable.

Proof. For this version of the problem, the matrix M represents the transition
from one cycle to the next, where the solutions are written as linear combinations
of y1 and y2 for the given cycle. In other words, this transformation operates in the
(y1, y2) basis of solutions. However, one can also consider the purely growing and
decaying solutions, which we denote here as f+ and f−.

For a given cycle, the eigenvectors V± of the matrix M take the form

(112) V± =

[
1

±g/k

]
,

where the + (−) sign refers to the growing (decaying) solution. The eigenvalues have
the form Λ± = h ± k, where k ≡ (h2 − 1)1/2. Keep in mind that h = y1(π) and
g = ẏ2(π), and that Λ− = 1/Λ+. We can write any general solution in the form

(113) f = AV+ + BV−,

where the coefficients (A,B) are related to the coefficients (α, β) in the first basis
through the transformation

(114)

[
A
B

]
=

1

2

[
1 k/g
1 −k/g

] [
α
β

]
.

In the basis of eigenvectors, the action of the differential equation over any cycle is to
amplify the growing solution (eigenvector) and attenuate the decaying solution, and
this action can be written as the matrix transformation

(115)

[
A′

B′

]
=

[
Λ+ 0
0 Λ−

] [
A
B

]
.

At the end of the cycle, we can transform back to the original basis through the inverse
of the transformation (114). As a result, the original matrix M can be decomposed
into three components so that

(116) M(q, λ) =
1

2

[
1 1

g/k −g/k

] [
Λ+ 0
0 Λ−

] [
1 k/g
1 −k/g

]
.

For each cycle, the values of (q, λ) can vary. The next cycle will have a new matrix
of the same general form, with the matrix elements specified by (q′, λ′).

We now shift our view to the basis of eigenvectors, so that each cycle amplifies the
growing solution. Between the applications of the amplification factors, the action of
successive cycles “rotates” the solution according to a transition matrix of the form

(117) T(q, λ; q′, λ′) =
1

2

[
1 k′/g′

1 −k′/g′

]
.

[
1 1

g/k −g/k

]
=

1

2

[
1 + R 1 −R
1 −R 1 + R

]
,

where the primes denote the second cycle and where we have defined R ≡ k′g/(kg′).
For the case in which successive cycles have the same values of the original parameters
(q, λ), the transition matrix T becomes the identity matrix (as expected).
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For simplicity, we now specialize to the case where λ is held constant from cycle
to cycle, but the forcing strength q varies. We can evaluate the transition matrix for
the case in which Hill’s equation lies in the delta function limit and where we also
take the limit q/

√
λ � 1. In this regime,

(118) R = 1 +
q − q′

q′
2
√
λ

q

1 − 2 cos(
√
λπ)

sin(
√
λπ)

+ O
( λ

q2

)
≡ 1 + 2δ.

Note that R = 1 + 2δ to leading order, where δ (defined through the above relation)
is small compared to unity and the sign of δ can be both positive and negative. Thus,
not only is the parameter δ small, but it can average to zero. Repeated iterations of
the mapping lead to the (1,1) matrix element growing according to the product

(119) M(1,1) =

N∏
k=1

[Λk(1 + δk)] ≈
[

N∏
k=1

Λk

] [
1 +

N∑
k=1

δk +

N∑
k=1

O(δ2
k)

]
.

The other matrix elements are of lower order (in powers of 1/q) so that to leading order
the growing eigenvalue of the product matrix is equal to the (1,1) matrix element.
Further, for sufficiently well-behaved distributions of the parameter q, the sum of δk
averages to zero as N → ∞. The growth rate is thus given by

(120) γ =
1

πN

N∑
k=1

log(Λk) +
1

πN

N∑
k=1

log(1 + δk) = γ∞ + O
( λ

q2

)
.

The condition required for the δk to average to zero can be expressed in the form

(121) lim
N→∞

1

N

N∑
k=1

q′ − q

qq′
=

〈
1

q

〉
−
〈

1

q′

〉
= 0,

which will hold provided that the expectation value 〈1/q〉 exists. This constraint is
nontrivial in that a uniform probability distribution P (q) = constant that extends
to q = 0 will produce a divergent expectation value for 〈1/q〉. Fortunately, in the
physical application that motivated this analysis, the value of q is determined by
the distance to the center of an orbit (appropriately weighted) so that the minimum
value of q corresponds to the maximum value of the distance. Since physical orbits
have a maximum outer turning point (due to conservation of energy), physical orbit
problems will satisfy the required constraint on the probability distribution.

4.3. Second matrix decomposition. Another way to decompose the trans-
formation matrix is to separate it into two separate rotations, one part that is inde-
pendent of the forcing strength q, and another that is proportional to q. We can thus
write the matrix in the form

M(q, λ) = A − q

2
√
λ
B ≡

[
cos 2θ (sin 2θ)/

√
λ

−
√
λ sin 2θ cos 2θ

]
(122)

− q

2
√
λ

[
sin 2θ (2 sin2 θ)/

√
λ

2
√
λ cos2 θ sin 2θ

]
,

where the second equality defines the matrices A and B. With these definitions, one
finds that

(123) AN (θ) = A(Nθ) and BN (θ) = (2 sin 2θ)N−1B(θ),
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where we again take λ to be constant from cycle to cycle. As a result, after N cycles,
the effective transformation matrix can be written in the form

(124) M(N) =

N∏
k=1

(
A − qk

2
√
λ
B

)
.

In the asymptotic limit q/
√
λ → ∞, the matrix approaches the form

(125) M(N) = (−1)N

[
N∏

k=1

qk

2
√
λ

]
(2 sin 2θ)N−1B(θ).

The condition for stability takes the form |TrM(N)| ≥ 2, i.e.,

(126)

[
N∏

k=1

qk

] [
sin 2θ√

λ

]N
≥ 1.

When the system is unstable, the factor on the left-hand side of this equation rep-
resents the growth factor over the entire set of N cycles. The growth rate γ is thus
given by

(127) γ = lim
N→∞

1

πN
log

[
N∏

k=1

(
qk

sin 2θ√
λ

)]
= lim

N→∞

1

πN

N∑
k=1

log
(
qk

sin 2θ√
λ

)
.

Since Hk = qk(sin 2θ)/
√
λ in this asymptotic limit, the above expression for the

growth rate can be rewritten in the form

(128) γ = lim
N→∞

1

πN

N∑
k=1

log(2Hk) = lim
N→∞

1

N

N∑
k=1

γk = γ∞,

in agreement with Theorem 5.

4.4. Width of stable and unstable zones. In the plane of parameters (e.g.,
Figure 4), the width of the stable and unstable zones can be found for the delta
function limit. In this case, the leading edge of the zone of stability is given by the
condition

(129) θ =
√
λπ = nπ,

where n is an integer that can be used to label the zone in question. The beginning of
the next unstable zone is given by the condition |h| = 1. In the limit of large q � 1,
the width of the stable regime is narrow, and the boundary will fall at θ = nπ + ϕ,
where ϕ is small. In particular, ϕ will be smaller than π/2, so that the angle θ will
lie in either the first or the third quadrant, which in turn implies that sin θ and cos θ
have the same sign. As a result, the condition at the boundary takes the form

(130)
q

2
√
λ

=
1 + cosϕ

sinϕ
≈ 2

ϕ
.

If we solve this expression for ϕ and use the definition ϕ = θ − nπ, we can solve for
the value of λ at the boundary of the zone, i.e.,

(131) λ ≈ n2

(1 − 4/qπ)2
≈ n2

[
1 +

8

qπ
+ O(q−2)

]
.
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The width of the stable zone can then be expressed in the form

(132) Δλ =
8n2

πq
.

For any finite q, there exists a zone number n such that n2 > q and the width of the
zone becomes wide. In the limit q → ∞, the zones are narrow for all finite n.

Note that when the forcing strength qk varies from cycle to cycle, we can define
the expectation value of the zone widths:

(133) 〈Δλ〉 =
8n2

π

〈
1

qk

〉
.

This expectation value exists under the same conditions required for Theorem 5 to
be valid.

4.5. Variations in (λk, qk) and connection to the general case. As out-
lined earlier, the growth rates Δγ depend on the ratios of the principal solutions,
rather than on the input parameters (λk, qk) that appear in the original differen-
tial equation (1). Since we have analytic expressions for the principal solutions in
the delta function limit, we can study the relationship between the distributions of
the fundamental parameters (λk, qk) and the distribution of the composite variable
ξ = log(xk/xj) that appears in the theorems of this paper.

As a starting point, we first consider the limiting case where qk → ∞ and the
parameter λk is allowed to vary. We also focus the discussion on the correction Δγ
to the growth rate, which depends on the ratios xk. In this limit, using (110), we see
the variables xk reduce to the simple form

(134) xk =
π

θk

sin θk
1 + cos θk

,

where θk ≡
√
λπ. In this case the distribution of ξ = log(xk/xj) depends only on the

distribution of the angles θk, which is equivalent to the distribution of λk. Since the
xj and xk are drawn independently from the same distribution (of θk), the variance
of the composite variable σ2

0 = 2σ2
x, where σ2

x is the variance of log xk.
As a benchmark case, we consider the distribution of θ to be uniformly distributed

over the interval [0, 2π]. For this example,

(135) σ2
x =

∫ 2π

0

dθ

2π

[
log

(
π

θ

sin θ

1 + cos θ

)]2

−
[∫ 2π

0

dθ

2π
log

(
π

θ

sin θ

1 + cos θ

)]2

.

Numerical evaluation indicates that σ0 ≈ 2.159. Further, the correction to the growth
rate is bounded by Δγ ≤ σ2

0/(4π) ≈ 0.371 and is expected to be given approximately
by Δγ ∼ 0.13. In this limit we expect the asymptotic growth rate to dominate. For
example, if qk ∼ 1000, a typical value for one class of astrophysical orbits [AB], then
γ∞ ≈ 2, which is an order of magnitude greater than Δγ. Note that in the limit
of large (but finite) qk, the corrections to (134) are of order O(1/qk), which will be
small, so that the variance σ2

0 of the composite variable ξ will be nearly independent
of the distribution of qk in this limit.

As another way to illustrate the transformation between the (λk, qk) and the
matrix elements xk, we consider the case of fixed λk and large but finite (and varying)
values of qk. We are thus confining the parameter space in Figure 4 to a particular
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vertical line, which is chosen to be in an unstable band. We thus define θ =
√
λπ,

and the xk take the form

(136) xk =
qk(π/θ) sin θ − 2 cos θ

qk(1 + cos θ)/2 + (θ/π) sin θ
.

For purposes of illustration, we can make a further simplification by taking θ to have
a particular value; for example, if θ = π/2, the xk are given by

(137) xk =
2qk

qk + 1
.

For this case, the relevant composite variable ξ is given by

(138) ξ = log

[
qk
qj

qj + 1

qk + 1

]
,

where qj and qk are the values for two successive cycles. In the limit of large qj , qk �
1, the composite variable takes the approximate form ξ ≈ (qk − qj)/(qkqj), which
illustrates the relationship between the original variables (only the qk in this example)
and the xk, or the composite variable ξ, that appear in the growth rates.

Before leaving this section, we note that the more general case of Hill’s equation
with a square barrier of finite width can also be solved analytically (e.g., let Q̂(t) =
1/w for a finite time interval of width Δt = w, with Q̂(t) = 0 otherwise). For this
case, in the limit of large qk, the solution for hk takes the form

(139) |hk| ∝ sin(wqk)
1/2

(
qk
wλk

)1/2

.

In the limit of large but finite qk and vanishing width w → 0, we recover the result
from the delta function limit; i.e., the dependence on the width w drops out and
|hk| ∝ qk. In the limit of finite w and large qk (specifically, when (wqk) � 1 does not
hold); then |hk| ∝

√
qk. This example vindicates our expectation that large qk should

lead to large hk, but the dependence depends on the shape of the barrier Q̂(t). An
interesting problem for further study is to place constraints on the behavior of the
matrix elements hk (and gk) as a function of the forcing strengths qk for general Q̂(t).

5. Discussion and conclusion. This paper has considered Hill’s equation with
forcing strengths and oscillation parameters that vary from cycle to cycle. We denote
such cases as random Hill’s equations. Our first result is that Hill-like equations where
the period is not constant, but rather varies from cycle to cycle, can be reduced to a
random Hill’s equation (Theorem 1). The rest of the paper thus focuses on random
Hill’s equations, specifically, general equations in the unstable limit (section 3) and
the particular cases of the delta function limit (section 4), where the solutions can be
determined in terms of elementary functions.

For a general Hill’s equation in the limit of a large forcing parameter, we have
found general results governing instability. In all cases, the growth rates depend on
the distribution of values for the elements of the transition matrix that maps the
solution for one cycle onto the next. The relevant composite variable ξ is determined
by the principal solutions via the relation ξ = log[y1k(π)ẏ1j(π)/ẏ1k(π)y1j(π)], where
k and j denote two successive cycles; our results are then presented in terms of the
variance σ0 of the distribution of ξ. The growth rate can be separated into two
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parts—the asymptotic growth rate γ∞ that would result if each cycle grew at the
rate appropriate for an ordinary Hill’s equation, and the correction term Δγ that
results from matching the solutions across cycles. The asymptotic growth rate γ∞ is
determined by the appropriate average of the growth rates for individual cycles (see (9)
and (10)). In contrast, the correction term Δγ results from a type of random walk
behavior and depends on the variance of the distribution of the composite variable ξ
defined above.

For the case of purely positive matrix elements, the correction term Δγ has a
simple form (Theorem 2) and is positive semidefinite and bounded from above and
below. In the limit of small variance, the correction term Δγ ∝ σ2

0 , whereas in the
limit of large variance, Δγ ∝ σ0. For all σ0, the correction term to the growth rate
is bounded by Δγ ≤ σ2

0/4π (Theorem 3). A sharper bound could be obtained in the
future.

For the case of matrix elements with varying signs, we have found the growth
rate of instability (Theorem 4), where the results depend on the probability p of the
matrix elements having a positive sign. In the limit of small variance, the correction
term Δγ is always negative and approaches the form Δγ ∝ log σ0 (unless p = 1,
where Δγ → 0 in this limit). As a result, the total growth rate γ = γ∞ + Δγ
will always be negative—and hence the system will be stable—for sufficiently small
variance σ0 and any admixture of mixed signs. In the opposite limit of large variance,
the growth rate for mixed signs and that for purely positive signs converge, with both
cases approaching the form Δγ ∝ σ; the difference between the growth rates for the
two cases decreases as Δ(Δγ) ∝ 1/σ0.

For the delta function limit, we can find the solution explicitly for each cycle
and thus analytically define the matrix elements of the discrete map that develops
the solution (see (7) and (110)). For the case in which only the forcing strength
varies, the growth rate of the general solution approaches the asymptotic growth
rate (see (9)), which represents the growth the solution would have if every cycle
grows at the rate appropriate for a standard (nonstochastic) Hill’s equation. We have
calculated the widths of the stable and unstable zones for Hill’s equation in the limit
of delta function forcing and large growth rates, which represents a specific case of
the results presented in [WK], where this specific case includes random forcing terms.
Finally, we have used the analytic solutions for the delta function limit to illustrate the
transformation between the original variables (λk, qk) that appear in Hill’s equation
and the variables xk that determine the growth rates (section 4.5).

Although this paper takes a step forward in our understanding of Hill’s equation
(in particular, generalizing it to include random forcing terms) and the multiplication
of random matrices (of the particular form motivated by Hill’s equation), additional
work along these lines can be carried out. The analysis presented herein works primar-
ily in the limit of large qk, where the solutions are highly unstable, although we have
bounded the errors incurred by working in this limit. Nonetheless, the case in which
some cycles have stable solutions, while others have unstable solutions, should be con-
sidered in greater detail. This paper presents bounds on the correction term Δγ to
the growth rate, but a sharper bound could be found. In the treatment of this paper,
we considered the probability distribution of the composite variable ξ = log(xk/xj)
to be symmetric, which implies that xk and xj are independently drawn from their
distribution. In future work, correlations between successive cycles can be consid-
ered and would lead to asymmetric probability distributions. Most of the results of
this paper are presented in terms of the distributions of the composite variables xk,
rather than the original parameters that appear in Hill’s equation; the transformation
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between the distributions of the (λk, qk) and the xk thus represents another interesting
problem for future study. Another case of interest we intend to consider is the case
where Q̂(t) takes the form of a finite Fourier series. Finally, the relationship between
solutions to random Hill’s equations and the multiplication of random matrices should
be explored in greater generality.

Random Hill’s equations, and the properties of their solutions, have a wide variety
of applications. The original motivation for this work was a class of orbit problems
in astrophysics. In that context, many astrophysical systems—young embedded star
clusters, galactic bulges, and dark matter halos—are essentially triaxial extended mass
distributions. Orbits within these mass distributions are often chaotic; further, when
motion is initially confined to a plane, the equation of motion for the perpendicular
direction is described by a random Hill’s equation. The instability explored here thus
determines how quickly an orbiting body will explore the perpendicular direction. For
example, this class of behavior occurs in young embedded star clusters, which begin
in highly flattened configurations but quickly become rounder, in part due to the
instability described here. Dark matter halos are found (numerically) to display nearly
universal forms for their density distributions [NF, BE], but an a priori explanation
for this form remains lacking. Since the orbits of dark matter particles will be subject
to the instability studied herein, random Hill’s equations must play a role in the
explanation. As yet another example, galactic bulges often harbor supermassive black
holes at their centers; the resulting stellar orbits, including the instability considered
here, play a role in feeding stars into the central black hole. Finally, we note that in
addition to astrophysical applications, random Hill’s equations are likely to arise in a
number of other settings.

Appendix A: Astrophysical motivation. This appendix outlines the origi-
nal astrophysical problem that motivated this study of Hill’s equation with random
forcing. In the initial setting, the goal was to understand orbits in potentials resulting
from a density profile of the form

(A1) ρ = ρ0
f(m)

m
,

where ρ0 is a density scale. This form arises in many different astrophysical contexts,
including dark matter halos, galactic bulges, and young embedded star clusters. The
density field is constant on ellipsoids and the variable m has a triaxial form

(A2) m2 =
x2

a2
+

y2

b2
+

z2

c2
,

where, without loss of generality, a > b > c > 0. The radial coordinate ξ is given by
ξ2 = x2 + y2 + z2. The function f(m) is assumed to approach unity as m → 0 so
that the density profile approaches the form ρ ∼ 1/m. For this inner limit, one can
find an analytic form for both the potential and the force terms [AB]. For purposes
of illustration, we write the force terms for the three spatial directions in the form

Fx = − 2x

F (a)
ln

∣∣∣∣∣ 2F (a)
√

Γ + 2Γ − Λa2

a2
[
2F (a)ξ + Λ − 2a2ξ2

]
∣∣∣∣∣,(A3)

Fy = − 2y

|F (b)|

[
sin−1

(
Λ − 2b2ξ2√
Λ2 − 4ξ2Γ

)
− sin−1

(
2Γ/b2 − Λ√
Λ2 − 4ξ2Γ

)]
,(A4)
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Fz = − 2z

F (c)
ln

∣∣∣∣∣ 2F (c)
√

Γ + 2Γ − Λc2

c2
[
2F (c)ξ + Λ − 2c2ξ2

]
∣∣∣∣∣.(A5)

The coefficients in the numerators are given by the following quadratic functions of
the coordinates:
(A6)
Λ ≡ (b2 + c2)x2 + (a2 + c2)y2 + (a2 + b2)z2 and Γ ≡ b2c2x2 + a2c2y2 + a2b2z2.

The remaining function F is defined by

(A7) F (α) ≡
[
ξ2α4 − Λα2 + Γ

]1/2
.

Equations (A3)–(A7) define the force terms that determine the orbital motion of a
test particle moving in the potential under consideration (i.e., that resulting from a
triaxial density distribution of the form (A1)). The work of [AB] shows that when
the orbit begins in any of the three principal planes, the motion is (usually) highly
unstable to perturbations in the perpendicular direction. For example, for an orbit
initially confined to the x− z plane, the amplitude of the y coordinate will (usually)
grow exponentially with time. In the limit of small y, the equation of motion for the
perpendicular coordinate simplifies to the form

(A8)
d2y

dt2
+ ω2

yy = 0, where ω2
y =

4/b√
c2x2 + a2z2 + b

√
x2 + z2

.

Here, the time evolution of the coordinates (x, z) is determined by the orbit in the
original x − z plane. Since the orbital motion is nearly periodic, the (x, z) depen-
dence of ω2

y represents a periodic forcing term. The forcing strengths, and hence
the parameters qk appearing in Hill’s equation (1), are thus determined by the in-
ner turning points of the orbit (with appropriate weighting from the axis parameters
[a, b, c]). Further, since the orbit in the initial plane often exhibits chaotic behavior,
the distance of closest approach of the orbit, and hence the strength qk of the forcing,
varies from cycle to cycle. The orbit also has outer turning points, which provide a
minimum value of ω2

y, which defines the unforced oscillation frequency λk appearing
in Hill’s equation (1). As a result, the equation of motion (A8) for the perpendicular
coordinate has the form of Hill’s equation, where the period, the forcing strength, and
the oscillation frequency generally vary from cycle to cycle.

Appendix B: Growth rate for an ancillary matrix. In this appendix, we
separate the transformation matrix for the general case (not in the limit of small
variance) and find the growth rate for one of the matrices. We include this result
because examples where one can explicitly find the growth rates (Lyapunov exponents)
for random matrices are rare. Specifically, the transition matrix can be written in the
form given by (91), where the second term in the sum has the form

(B1) sk(xk − 1)Bk, where Bk =

[
0 1

−1/xk 0

]
.

Note that any pair of matrices Ak with opposite signs will vanish, and so will all
subsequent products.

The products of the second term (the matrices Bk along with the leading factor)
have a well-defined growth rate.
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Proposition 3. The growth rate of matrix multiplication for the matrix Mk =
(xk − 1)Bk is given by

(B2) γB = lim
N→∞

1

2πN

⎧⎨
⎩

N∑
k=1

log |xk − 1| +
N∑
j=1

log |1/xj − 1|

⎫⎬
⎭ .

Proof. The products of the matrices Bk follow cycles as shown by the first three
nontrivial cases:

(B3) B2B1 =

[
−1/x1 0

0 −1/x2

]
, B3B2B1 =

[
0 −1/x2

1/(x1x3) 0

]
,

and

(B4) B4B3B2B1 =

[
1/(x1x3) 0

0 1/(x2x4)

]
.

Thus, the even products of the matrices are diagonal matrices, whereas the odd prod-
ucts produce matrices with only off-diagonal elements. As a result, the product matrix
will approach the form

M(N) ∼
(

N∏
k=1

(xk − 1)

)[
Podd 0

0 Peven

]
or(B5)

M(N) ∼
(

N∏
k=1

(xk − 1)

)[
0 −Peven

Podd 0

]
,

where we have defined

(B6) Podd ≡
N∏

k=1,odd

1

xk
and Peven ≡

N∏
k=2,even

1

xk
.

For N even (odd), the eigenvalues are Λ = Peven, Podd (Λ = ±i
√
PevenPodd). Since

|Peven| = |Podd| in the limit N → ∞, the eigenvalues (and hence the growth rates)
have the same magnitudes in either case. To compute the growth rate γB , we need
to account for the fact that only half of the factors (either the even or the odd
terms) appear in the products Podd and Peven. After some rearrangement, we obtain
equation (B2).
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Abstract. This paper proposes a macroscopic fluid dynamic model dealing with the flows of
information on a telecommunication network with sources and destinations. The model consists of
a conservation law for the packet density and a semilinear equation for traffic distribution functions,
i.e., functions describing packet paths. We describe methods to solve Riemann problems at junctions
assigning different traffic distribution functions and two “routing algorithms.” Moreover, we prove
the existence of solutions to Cauchy problems for small perturbations of network equilibria.
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laws, fluid dynamic models

AMS subject classifications. 35L65, 35L67, 90B20

DOI. 10.1137/060674132

1. Introduction. This paper is concerned with the description and analysis of
a macroscopic fluid dynamic model dealing with flows of information on a telecom-
munication network with sources and destinations. The latter are, respectively, areas
from which packets start their travels on the network and areas where they end.

There are various approaches to telecommunication and data networks (see, for
example, [1], [3], [4], [15], [21], [22]). A first model for telecommunication networks,
similar to that introduced recently for car traffic, has been proposed in [10], where
two algorithms for dynamics at nodes were considered and the existence of solutions
to Cauchy problems was proved. The idea is to follow the approach used in [12] for
road networks (see also [7], [9], [11], [14], [16], [17], [18]), introducing sources and
destinations in the telecommunication model described in [10] and thus taking care
of the paths of the packets inside the network.

A telecommunication network consists of a finite collection of transmission lines,
modelled by closed intervals of R connected together by nodes (routers, hubs, switches,
etc.). We assume that each node receives and sends information encoded in packets,
which can be seen as particles travelling on the network. Taking the Internet network
as a model, we assume the following:

(1) Each packet travels on the network with a fixed speed and with an assigned
final destination.

(2) Nodes receive, process, and then forward packets. Packets may be lost with
a probability increasing with the number of packets to be processed. Each
lost packet is sent again.

Since each lost packet is sent again until it reaches the next node, looking at the
macroscopic level, it is assumed that the number of packets is conserved. This leads
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congested

Fig. 1.1. A possible cycling effect of (RA2).

to a conservation law for the packet density ρ on each line:

(1.1) ρt + f (ρ)x = 0.

The flux f(ρ) is given by v · ρ, where v is the average speed of packets among nodes,
derived considering the amount of packets that may be lost.

Recently, a conservation law model was obtained in [2] for supply chains, which
have a dynamics somehow related to our case.

On each transmission line we also consider a vector π describing the traffic types,
i.e., the percentage of packets going from a fixed source to a fixed destination. As-
suming that packet velocity is independent from the source and the destination, the
evolution of π follows a semilinear equation,

(1.2) πt + v(ρ)πx = 0;

hence inside transmission lines the evolution of π is influenced by the average speed
of packets.

The aim is then to consider networks in which many lines intersect. Riemann
problems at junctions were solved in [10] proposing two different routing algorithms:
(RA1) Packets from incoming lines are sent to outgoing ones according to their

final destination (without taking into account possible high loads of outgoing
lines).

(RA2) Packets are sent to outgoing lines in order to maximize the flux through the
node.

The main differences of the two algorithms are the following. The first one simply
sends each packet to the outgoing line which is naturally chosen according to the
final destination of the packet itself. The algorithm is blind to possible overloads
of some outgoing lines and, by some abuse of notation, is similar to the behavior of
a “switch.” The second algorithm, on the contrary, send packets to outgoing lines
taking into account the loads and thus possibly redirecting packets. Again by some
abuse of notation, this is similar to a “router” behavior.

One of the drawbacks of the second algorithm is that it does not take into account
the global path of packets, therefore leading to possible cycling. For example consider
a telecommunication network in which some nodes are congested: if we use (RA2)
alone, the packets are not routed towards the congested nodes, and so they can enter
in loops (see Figure 1.1). These cyclings are avoided if we consider that the packets
originated from a source and with an assigned destination have precise paths inside the
network. Such paths are determined by the behavior at junctions via the coefficients π.

In this paper different distribution traffic functions describing different routing
strategies have been considered:

• at a junction the traffic started at source s and with d as the final destination,
coming from the transmission line i, is routed on an assigned line j;
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• at a junction the traffic started at source s and with d as the final destination,
coming from the transmission line i, is routed on every outgoing line or on
some of them.

The first distribution traffic function has already been analyzed in [12] for road
networks using algorithm (RA1); thus we focus on the second one. In particular,
we define two ways according to which the traffic at a junction is split towards the
outgoing lines.

Let us now comment further on the differences with the results of [12]. In that
paper, only the routing algorithm (RA1) was considered, together with the first choice
of distribution traffic functions (which can be seen as a particular case of the second
choice). Since the algorithm (RA1) produces discontinuities in the map from traffic
types to fluxes (and densities), a new Riemann solver was introduced, which considers
the maximization of a quadratic cost. The latter produces as a drawback more diffi-
culties in analysis and numerics. Finally, the present paper presents a more general
approach and, using (RA2), the possibility of solving dynamics at nodes using linear
functionals.

Starting from the distribution traffic function, and using the vector π, we assign
the traffic distribution matrix, which describes the percentage of packets from an
incoming line that are addressed to an outgoing one. Then we propose methods to
solve Riemann problems considering the routing algorithms (RA1) and (RA2). The
key point to construct a solution on the whole network, using a way-front tracking
method, is to derive some BV estimates on the piecewise constant approximate so-
lutions in order to pass to the limit. In the case in which the traffic at junctions is
distributed on outgoing lines according to some probabilistic coefficients, estimates
on packet density function and on traffic-type functions are derived for the algorithm
(RA2) in order to prove the existence of solutions to Cauchy problems. More precisely,
we prove the existence of solutions, locally in time, for perturbations of equilibria.

The paper is organized as follows. Section 2 gives a general definition of the
network. Then, in section 3, we discuss possible choices of the traffic distribution
functions and how to compute the traffic distribution matrix from the latter functions
and the traffic-type function. We describe two routing algorithms in section 4, giving
explicit unique solutions to Riemann problems. Finally, section 5 provides the needed
estimates for constructing solutions to Cauchy problems.

2. Basic definitions. We consider a telecommunication network that is a finite
collection of transmission lines connected together by nodes, some of which are sources
and destinations. Formally we introduce the following definition.

Definition 2.1. A telecommunication network is given by a 7-tuple (N, I,F ,J ,
S,D,R), where we have the following:

Cardinality. N is the cardinality of the network, i.e., the number of lines in the net-
work.

Lines. I is the collection of lines, modelled by intervals Ii = [ai, bi] ⊆ R, i = 1, . . . , N .
Fluxes. F is the collection of flux functions fi : [0, ρmax

i ] �→ R, i = 1, . . . , N .
Nodes. J is a collection of subsets of {±1, . . . ,±N} representing nodes. If j ∈ J ∈ J ,

then the transmission line I|j| is crossing at J as an incoming line (i.e., at
point bi) if j > 0 and as an outgoing line (i.e., at point ai) if j < 0. For each
junction J ∈ J , we indicate by Inc(J) the set of incoming lines, which are
Ii’s such that i ∈ J , while by Out(J) the set of outgoing lines, which are Ii’s
such that −i ∈ J . We assume that each line is incoming for (at most) one
node and outgoing for (at most) one node.
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Sources. S is the subset of {1, . . . , N} representing lines starting from traffic sources.
Thus, j ∈ S if and only if j is not outgoing for any node. We assume that
S �= ∅.

Destinations. D is the subset of {1, . . . , N} representing lines leading to traffic des-
tinations. Thus, j ∈ D if and only if j is not incoming for any node. We
assume that D �= ∅.

Traffic distribution functions. R is a finite collection of functions rJ : Inc(J) × S ×
D → Out(J). For every J , rJ(i, s, d) indicates the outgoing direction of traffic
that started at source s, has d as the final destination, and reached J from
the incoming road i. (We will also consider the case of rJ multivalued.)

One usually assumes that the network is connected. However, this is not strictly
necessary to develop our theory.

2.1. Dynamics on lines. Following [10], we recall the model used to define the
dynamics of packet densities along lines. We make the following hypotheses:

(H1) Lines are composed of consecutive processors Nk, which receive and send
packets. The number of packets at Nk is indicated by Rk ∈ [0, Rmax].

(H2) There are two time scales: Δt0 represents the physical travel time of a single
packet from node to node (assumed to be independent of the node for sim-
plicity); T represents the processing time, during which each processor tries
to operate the transmission of a given packet.

(H3) Each processor Nk tries to send all packets Rk at the same time. Packets are
lost according to a loss probability function p : [0, Rmax] → [0, 1], computed
at Rk+1, and lost packets are sent again for a time slot of length T .

The aim is to determine the fluxes on the network. Since the packet transmission
velocity on the line is assumed constant, it is possible to compute an average velocity
function and thus an average flux function.

Let us focus on two consecutive nodes Nk and Nk+1, assume a static situation,
i.e., Rk and Rk+1 are constant, and call δ the distance between the nodes. During
a processing time slot of length T the following happens. All packets Rk are sent
a first time: (1 − p(Rk+1))Rk are sent successfully and p(Rk+1)Rk are lost. At the
second attempt, among the lost packets p(Rk+1)Rk, (1−p(Rk+1) p(Rk+1)Rk are sent
successfully and p2(Rk+1)Rk are lost, and so on.

Let us indicate by Δtav the average transmission time of packets, by v̄ = δ
Δt0

the

packet velocity without losses, and by v = δ
Δtav

the average packet velocity. Then we
can compute

Δtav =

M∑
n=1

nΔt0(1 − p(Rk+1))p
n−1(Rk+1),

where M = [T/Δt0] (here [·] indicates the floor function) represents the number of
attempts of sending a packet. We make a further assumption:

(H4) The number of packets not transmitted for a whole processing time slot is
negligible.

Hypothesis (H4) corresponds to assuming that Δt0 � T or, equivalently, M ∼
+∞. Making the identification, M = +∞, we get

Δtav =

+∞∑
n=1

nΔt0(1 − p(Rk+1))p
n−1(Rk+1) =

Δt0
1 − p(Rk+1)

,
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Fig. 2.1. Example of flux function.

and

(2.1) v =
δ

Δtav
=

δ

Δt0
(1 − p(Rk+1)) = v̄(1 − p(Rk+1)).

Let us now call ρ the averaged density and ρmax its maximum. We can interpret
the function p as a function of ρ and, using (2.1), determine the corresponding flux
function, given by the averaged density times the average velocity. It is reasonable
to assume that the probability loss function is null for some interval, which is a right
neighborhood of zero. This means that at low densities no packet is lost. Then
p should be increasing, reaching the value 1 at the maximal density, the situation
of being completely stuck. A possible choice of the probability loss function is the
following:

p (ρ) =

{
0, 0 ≤ ρ ≤ σ,
ρmax (ρ−σ)
ρ (ρmax−σ) , σ ≤ ρ ≤ ρmax;

then it follows that

(2.2) f (ρ) =

{
v̄ρ, 0 ≤ ρ ≤ σ,
v̄σ(ρmax−ρ)

ρmax−σ , σ ≤ ρ ≤ ρmax.

Setting, for simplicity, ρmax = 1 and σ = 1
2 , we get the simple “tent” function of

Figure 2.1. To simplify the treatment of the corresponding conservation laws, we will
assume the following:

(F) Setting ρmax = 1, on each line the flux fi : [0, 1] → R is concave, f(0) =
f(1) = 0, and there exists a unique maximum point σ ∈ ]0, 1[.

Notice that the flux of Figure 2.1 or, more generally, the flux given in (2.2) satisfies
assumption (F).

2.2. Dynamics on the network. On each transmission line Ii we consider the
evolution equation

(2.3) ∂tρi + ∂xfi (ρi) = 0,

where we use assumption (F). Therefore, the network load evolution is described by
a finite set of functions ρi : [0,+∞[ × Ii �→ [0, ρmax

i ].
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On each transmission line Ii we want ρi to be a weak entropic solution of (2.3);
that is, for every function ϕ : [0,+∞[×Ii → R smooth, positive with compact support
on ]0,+∞[ × ]ai, bi[ ,

(2.4)

∫ +∞

0

∫ bi

ai

(
ρi
∂ϕ

∂t
+ fi (ρi)

∂ϕ

∂x

)
dxdt = 0,

and for every k ∈ R and every ϕ̃ : [0,+∞[ × Ii → R smooth, positive with compact
support on ]0,+∞[ × ]ai, bi[ ,

(2.5)

∫ +∞

0

∫ bi

ai

(
|ρi − k| ∂ϕ̃

∂t
+ sgn(ρi − k) (fi (ρi) − fi (k))

∂ϕ̃

∂x

)
dxdt ≥ 0.

For each i ∈ S (resp., i ∈ D) we need an inflow function (resp., outflow) and thus
consider measurable functions ψi : [0,+∞[ → [0, ρmax

i ]. Then the corresponding
functions ρi must verify the boundary condition ρi(t, ai) = ψi(t) (resp., ρi(t, bi) =
ψi(t)) in the sense of [5].

Moreover, inside each line Ii we define a traffic-type function πi, which measures
the portion of the whole density coming from each source and travelling towards each
destination.

Definition 2.2. A traffic-type function on a line Ii is a function

πi : [0,∞[ × [ai, bi] × S ×D �→[0, 1]

such that, for every t ∈ [0,∞[ and x ∈ [ai, bi],∑
s∈S,d∈D

πi(t, x, s, d) = 1.

In other words, πi(t, x, s, d) specifies the fraction of the density ρi(t, x) that started
from source s and is moving towards the final destination d.

We assumed, on the discrete model, that a FIFO policy is used at nodes. Then it
is natural that the averaged velocity, obtained in the limit procedure, is independent
from the original sources of packets and their final destinations. In other words, we
make the following hypothesis:

(H5) On each line Ii, the average velocity of packets depends only on the value of
the density ρi and not on the values of the traffic-type function πi.

As a consequence of hypothesis (H5), we have the following. If x(t) denotes a
trajectory of a packet inside the line Ii, then we get

(2.6) πi(t, x(t), s, d) = const.

In fact, consider the packets that at time t are in position x(t). All such packets
have the same velocity by (H5); thus their trajectories coincide, independently of
their sources and destinations. In other words, at a time t′ > t all packets will be
in position x(t′). Then the fractions of the density, expressed by π, are the same at
(t, x(t)) and at (t′, x(t′)).

Taking the total differential with respect to the time of (2.6), we deduce the
semilinear equation

(2.7) ∂tπi(t, x, s, d) + ∂xπi(t, x, s, d) · vi(ρi(t, x)) = 0.
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This equation is coupled with (2.3) on each line Ii. More precisely, (2.7) depends on
the solution of (2.3), while in turn at junctions the values of πi will determine the
traffic distribution on outgoing lines as explained below.

For simplicity and without loss of generality, we assume from now on that the
fluxes fi are all the same, and we indicate them with f . Thus, the model for a single
transmission line consists of the system of equations{

ρt + f (ρ)x = 0,
πt + πx · v(ρ) = 0.

To treat the evolution at a junction, let us introduce some notation. Fix a junction
J with n incoming transmission lines, say I1, . . . , In, and m outgoing transmission
lines, say In+1, . . . , In+m. A weak solution at J is a collection of functions ρl :
[0,+∞[ × Il �→ R, l = 1, . . . , n + m, such that

(2.8)
n+m∑
l=1

(∫ +∞

0

∫ bl

al

(
ρl
∂ϕl

∂t
+ f (ρl)

∂ϕl

∂x

)
dxdt

)
= 0,

for every ϕl, l = 1, . . . , n + m, smooth having compact support in ]0,+∞[ × ]al, bl]
for l = 1, . . . , n (incoming transmission lines) and in ]0,+∞[ × [al, bl[ for l = n +
1, . . . , n + m (outgoing transmission lines), that are also smooth across the junction,
i.e.,

ϕi(·, bi) = ϕj(·, aj),
∂ϕi

∂x
(·, bi) =

∂ϕj

∂x
(·, aj), i = 1, . . . , n, j = n + 1, . . . , n + m.

Remark 2.3. Let ρ = (ρ1, . . . , ρn+m) be a weak solution at the junction J such
that each x → ρi(t, x) has bounded variation. We can deduce that ρ satisfies the
Rankine–Hugoniot condition at J , namely

n∑
i=1

f(ρi(t, bi−)) =

n+m∑
j=n+1

f(ρj(t, aj+)),

for almost every t > 0.
For a scalar conservation law a Riemann problem is a Cauchy problem for an initial

data of Heaviside type, that is, piecewise constant with only one discontinuity. One
looks for centered solutions, i.e., ρ(t, x) = φ(xt ) formed by simple waves, which are the
building blocks to construct solutions to the Cauchy problem via a wave-front tracking
algorithm. These solutions are formed by continuous waves called rarefactions and by
travelling discontinuities called shocks. The speed of waves is related to the values of
f ′; see [6], [8], [19], [20].

Analogously, we call the Riemann problem for a junction the Cauchy problem
corresponding to initial data ρ1,0, . . . , ρn+m,0 ∈ [0, 1], and πs,d

1 , . . . , πs,d
n+m ∈ [0, 1],

which are constant on each transmission line.
Definition 2.4. A Riemann solver (RS) for the junction J is a map that as-

sociates with Riemann data ρ0 = (ρ1,0, . . . , ρn+m,0) and Π0 = (π1,0, . . . , πn+m,0) at

J the vectors ρ̂ = (ρ̂1, . . . , ρ̂n+m) and Π̂ = (π̂1, . . . , π̂n+m) so that the solution on an
incoming transmission line Ii, i = 1, . . . , n, is given by the wave (ρi,0, ρ̂i) and on an
outgoing one Ij, j = n + 1, . . . , n + m, is given by the waves (ρ̂j , ρj,0) and (π̂j , πj,0).
We require the following consistency condition:

(CC) RS(RS(ρ0,Π0)) = RS(ρ0,Π0).
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We will define an RS at a junction in the next sections. Once an RS is defined and
the solution of the Riemann problem is obtained, we can define admissible solutions
at junctions.

Definition 2.5. Assume an RS is assigned. Let ρ = (ρ1, . . . , ρn+m) and Π =
(π1, . . . , πn+m) be such that ρi(t, ·) and πi(t, ·) are of bounded variation for every t ≥ 0.
Then (ρ,Π) is an admissible weak solution of (1.1) related to the RS at the junction
J if and only if the following properties hold:

1. ρ is a weak solution at junction J ;
2. Π is a weak solution at junction J ;
3. for almost every t setting

ρJ(t) = (ρ1(·, b1−), . . . , ρn(·, bn−), ρn+1(·, an+1+), . . . , ρn+m(·, an+m+)),

ΠJ(t) = (π1(·, b1−), . . . , πn(·, bn−), πn+1(·, an+1+), . . . , πn+m(·, an+m+))

we have

RS(ρJ(t),ΠJ(t)) = (ρJ(t),ΠJ(t)).

Given an admissible network (see [12]) we have to specify how to define a solution.
Definition 2.6. Consider an admissible network (N, I,F ,J ,S,D,R). A set of

initial-boundary conditions (IBC) is given assigning measurable functions ρ̄i : Ii �→
[0, ρmax

i ], π̄i : [ai, bi] × S × D �→ [0, 1], i = 1, . . . , N , and measurable functions ψi :
[0,+∞[ �→ [0, ρmax

i ], i ∈ S ∪ D, and ϑi,j : [0,+∞[�→ [0, 1], i ∈ S, j ∈ D, with the
property that

∑
j ϑi,j(t) = 1.

Definition 2.7. Consider an admissible network (N, I,F ,J ,S,D,R) and a
set of IBC. A set of functions ρ = (ρ1, . . . , ρN ) with ρi : [0,+∞[ × Ii �→ [0, ρmax

i ]
continuous as functions from [0,+∞[ into L1, and Π = (π1, . . . , πN ) with πi :
[0,+∞[ × Ii × S × D �→ [0, 1] continuous as functions from [0,+∞[ into L1 for
every s ∈ S, d ∈ D, is an admissible solution if the following holds. Each ρi is a
weak entropic solution to (2.3) on Ii, ρi(0, x) = ρ̄i(x) for almost every x ∈ [ai, bi],
ρi(t, ai) = ψi(t) if i ∈ S and ρi(t, bi) = ψi(t) if i ∈ D in the sense of [5]. Each πi is
a weak solution to the corresponding equation (2.7), πi(0, x) = π̄i(x) for almost every
x ∈ [ai, bi], and for every i ∈ S, j ∈ D πi,j

i (t, ai) = ϑi,j in the sense of [5]. Finally,
at each junction (ρ,Π) is a weak solution and is an admissible weak solution in the
case of bounded variation.

3. Traffic distribution at junctions. Consider a junction J in which there
are n transmission lines with incoming traffic and m transmission lines with outgoing
traffic.

We denote by ρi(t, x), i = 1, . . . , n, and ρj(t, x), j = n + 1, . . . , n + m, the traffic
densities, respectively, on the incoming transmission lines and on the outgoing ones
and by (ρ1,0, . . . , ρn+m,0) the initial datum.

Define γmax
i and γmax

j as follows:

(3.1) γmax
i =

{
f(ρi,0) if ρi,0 ∈ [0, σ],
f(σ) if ρi,0 ∈ ]σ, 1] ,

i = 1, . . . , n,

and

(3.2) γmax
j =

{
f(σ) if ρj,0 ∈ [0, σ],
f(ρj,0) if ρj,0 ∈ ]σ, 1] ,

j = n + 1, . . . , n + m.
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The quantities γmax
i and γmax

j represent the maximum flux that can be obtained by
a single wave solution on each transmission line. Finally, denote by

Ωi = [0, γmax
i ], i = 1, . . . , n,

Ωj = [0, γmax
j ], j = n + 1, . . . , n + m,

and by γ̂inc = (f(ρ̂i), . . . , f(ρ̂n)), γ̂out = (f(ρ̂n+1), . . . , f(ρ̂n+m)), where ρ̂ = (ρ̂1, . . . ,
ρ̂n+m) is the solution of the Riemann problem at the junction.

Now, we discuss some possible choices for the traffic distribution function:
(1) rJ : Inc(J) × S ×D → Out(J).
(2) rJ : Inc(J) × S ×D ↪→ Out(J); i.e., rJ is a multifunction.
If rJ is of type (1), then each packet has a deterministic route; this means that, at

the junction J , the traffic that started at source s and has d as the final destination,
coming from the transmission line i, is routed on an assigned line j (rJ(i, s, d) = j).

Instead, if rJ is of type (2), at the junction J , the traffic with source s and
destination d, coming from a line i, is routed on every line Ij ∈ Out(J) or on some
lines Ij ∈ Out(J). We can define rJ(i, s, d) in two different ways:

(2a) rJ : Inc(J) × S ×D ↪→ Out(J),
rj(i, s, d) ⊆ Out(J);

(2b) rJ : Inc(J) × S ×D → [0, 1]Out(J),

rJ(i, s, d) = (αi,s,d,n+1
J , . . . , αi,s,d,n+m

J )

with 0 ≤ αi,s,d,j
J ≤ 1, j ∈ {n + 1, . . . , n + m},

∑n+m
j=n+1 α

i,s,d,j
J = 1.

In case (2a) we have to specify in which way the traffic at junction J is split
towards the outgoing lines.

The definition (2b) means that, at the junction J , the traffic with source s and
destination d, coming from line Ii, is routed on the outgoing line j, j = n+1, . . . , n+m,
with probability αi,s,d,j

J .
Let us analyze how the distribution matrix A is constructed using π and rJ .
Definition 3.1. A distribution matrix is a matrix

A=̇ {αj,i}j=n+1,...,n+m,i=1,...,n ∈ R
m×n

such that

0 < αj,i < 1,

n+m∑
j=n+1

αj,i = 1,

for each i = 1, . . . , n and j = n + 1, . . . , n + m, where αj,i is the percentage of
packets arriving from the ith incoming transmission line that take the jth outgoing
transmission line.

In case (1) we can define the matrix A in the following way. Fix a time t, and
assume that for all i ∈ Inc(J), s ∈ S, and d ∈ D, πi(t, ·, s, d) admits a limit at the
junction J , i.e., the left limit at bi. For i ∈ {1, . . . , n}, j ∈ {n+ 1, . . . , n+m}, we set

αj,i =
∑

s∈S,d∈D,
rJ (i,s,d)=j

πi(t, bi−, s, d).

The fluxes fi(ρi) to be consistent with the traffic-type functions must satisfy the
following relation:

fj(ρj(·, aj+)) =

n∑
i=1

αj,ifi(ρi(·, bi−))
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for each j = n + 1, . . . , n + m.
Let us analyze how to define the matrix A in case (2a). We may assign ϕ(i, s, d) ∈

rJ(i, s, d) and set

αj,i =
∑

s∈S,d∈D,
i:ϕ(i,s,d)=j

πi(t, bi−, s, d),

αj,i = 0 if j /∈ rJ(i, s, d).

Example 3.2. Fix a junction J with two incoming lines {1, 2} and two outgoing
lines {3, 4}, and suppose that rJ(1, s, d) = {3, 4} and rJ(2, s, d) = {3}. Since α4,2 = 0,
we have α3,2 = 1. The coefficients α3,1 and α4,1 can assume the following values:{

α3,1 = 0,
α4,1 = 1,

or

{
α3,1 = 1,
α4,1 = 0.

We get a finite number of possible distribution matrices A:

A =

(
0 1
1 0

)
, A =

(
1 1
0 0

)
.

Remark 3.3. This model proposes an exclusive strategy; in fact all packet flow
at the junction is routed from line 1 to line 3 or to line 4.

However, it is more natural to assign a flexible strategy defining a set of admissible
matrices A in the following way:

A =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A : ∃αi,s,d,j
J ∈ [0, 1],

n+m∑
j=n+1

αi,s,d,j
J = 1, αi,s,d,j

J = 0 if j /∈ rJ(i, s, d) :

αj,i =
∑

s∈S,d∈D,
j∈rJ (i,s,d)

πi(t, bi−, s, d)αi,s,d,j
J

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

Finally, we now treat case (2b).
In this case the matrix A is unique and is defined by

(3.3) αj,i =
∑

s∈S,d∈D
πi(t, bi−, s, d)αi,s,d,j

J .

4. Riemann solvers at junctions. In this section we define solutions to Rie-
mann problems at junctions, since this is the basic ingredient to construct solutions
to Cauchy problems via a wave-front tracking algorithm.

We describe two different Riemann solvers at a junction that represent two dif-
ferent routing algorithms:
(RA1) We assume that

(A) the traffic from incoming transmission lines is distributed on outgoing trans-
mission lines according to fixed coefficients;

(B) respecting (A) the router chooses to send packets in order to maximize fluxes
(i.e., the number of packets which are processed).

(RA2) We assume that the number of packets through the junction is maximized
both over incoming and outgoing lines.

Remark 4.1. In what follows we analyze the case in which the traffic distribution
function is of type (2). Case (1) has been considered in [12] using the following rule:
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(RGP) We assume that
(A) the traffic from incoming transmission lines is distributed on outgoing trans-

mission lines according to fixed coefficients;
(B) respecting (A) the router chooses to send packets in order to maximize

c2

n∑
i=1

fi(ρi(·, bi−)) − c1[dist((f1(ρ1(·, b1−)), . . . , fn(ρn(·, bn−))), r)]2

subject to

fj(ρj(·, aj+)) =

n∑
i=1

αj,ifi(ρi(·, bi−)) for each j = n + 1, . . . , n + m,

where c1 and c2 are strictly positive constants, and dist(·, r) denotes the Eu-
clidean distance in R

n from the line r, which is given by⎧⎪⎨
⎪⎩

γ2 = p1γ1,
...

γn = pn−1γn−1,

and (p1, . . . , pn−1) determine a “level of priority” at the junctions of incoming
lines. This maximization procedure takes into account priorities over incom-
ing roads and ensures continuity of solutions with respect to the coefficients π.

4.1. Algorithm (RA1). We have to distinguish cases (2a) and (2b).
In case (2a) in order to solve the Riemann problem at the junction we have to

prove that the admissible region is convex. First we prove the following lemma.
Lemma 4.2. The set A is convex.
Proof. Let us consider a convex combination λA1+(1−λ)A2 with λ ∈ [0, 1], A1, A2 ∈

A. We have

(λA1 + (1 − λ)A2)i,j = λ
∑

s∈S,d∈D,
j∈rJ (i,s,d)

πiα
i,s,d,j
J,1 + (1 − λ)

∑
s∈S,d∈D,
j∈rJ (i,s,d)

πiα
i,s,d,j
J,2

=
∑

s∈S,d∈D,
j∈rJ (i,s,d)

πi(λα
i,s,d,j
J,1 + (1 − λ)αi,s,d,j

J,2 ) =
∑

s∈S,d∈D,
j∈rJ (i,s,d)

πiα̂
i,s,d,j
J ,

with α̂i,s,d,j
J ∈ [0, 1]. Moreover,

n+m∑
j=n+1

α̂i,s,d,j
J =

n+m∑
j=n+1

(λαi,s,d,j
J,1 +(1−λ)αi,s,d,j

J,2 ) = λ

n+m∑
j=n+1

αi,s,d,j
J,1 +(1−λ)

n+m∑
j=n+1

αi,s,d,j
J,2 = 1;

then λA1 + (1 − λ)A2 ∈ A.
Now recall that the admissible region is given by

Ωadm = {γ̂ : γ̂ ∈ Ω1 × · · · × Ωn,∃A ∈ A t.c.Aγ̂ ∈ Ωn+1 × · · · × Ωn+m} .

We can prove that this region is convex at least for the case of junctions with two
incoming and two outgoing lines; more precisely, we have the following lemma.

Lemma 4.3. Fix a junction J with n = 2 incoming lines and m = 2 outgoing
ones, and assume that there is a unique source and a unique destination. Then the
set Ωadm is convex.

Proof. We have to consider the following cases:
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(i) rJ(1, s, d) = 3 and rJ(2, s, d) = 3;
(ii) rJ(1, s, d) = 3 and rJ(2, s, d) = 4;
(iii) rJ(1, s, d) = {3, 4} and rJ(2, s, d) = 4;
(iv) rJ(1, s, d) = {3, 4} and rJ(2, s, d) = {3, 4}.
All other cases can be obtained by relabelling lines. Cases (i) and (ii) are imme-

diate, since γ̂ ∈ Ω1 × Ω2 satisfies γ̂ ∈ Ωadm if and only if γ̂1 + γ̂2 ≤ γmax
3 (case i) or

γ̂1 ≤ γmax
3 and γ̂2 ≤ γmax

4 (case ii).

Now consider case (iii). Then Aγ̂, A ∈ A, is the segment joining the point
(γ̂1, γ̂2) to the point (0, γ̂1 + γ̂2). Thus γ̂ ∈ Ω1 × Ω2 satisfies γ̂ ∈ Ωadm if and only if
γ̂1 + γ̂2 ≤ γmax

3 + γmax
4 and γ̂2 ≤ γmax

3 .

Finally, assume case (iv) holds true. Then Aγ̂, A ∈ A, is the segment joining the
point (γ̂1 + γ̂2, 0) to the point (0, γ̂1 + γ̂2). Thus γ̂ ∈ Ω1 × Ω2 satisfies γ̂ ∈ Ωadm if
and only if γ̂1 + γ̂2 ≤ γmax

3 + γmax
4 .

If the region Ωadm is convex, then rules (A) and (B) amount to the linear pro-
gramming problem:

max
γ̂∈Ωadm

(γ̂1 + γ̂2).

This problem clearly has a solution, which may not be unique.

Let us consider case (2b). We need some more notation.

Definition 4.4. Let τ : [0, 1] → [0, 1] be the map such that

1. f(τ(ρ)) = f(ρ) for every ρ ∈ [0, 1];
2. τ(ρ) �= ρ for every ρ ∈ [0, 1]\{σ}.

Clearly, τ is well defined and satisfies

0 ≤ ρ ≤ σ ⇔ σ ≤ τ(ρ) ≤ 1,
σ ≤ ρ ≤ 1 ⇔ 0 ≤ τ(ρ) ≤ σ.

To state the main result of this section we need some assumption on the matrix A
(satisfied under generic conditions for m = n). Let {e1, . . . , en} be the canonical
basis of R

n, and for every subset V ⊂ R
n indicate by V ⊥ its orthogonal. Define

for every i = 1, . . . , n, Hi = {ei}⊥, i.e., the coordinate hyperplane orthogonal to
ei, and for every j = n + 1, . . . , n + m let αj = {αj1, . . . , αjn} ∈ R

n, and define
Hj = {αj}⊥. Let K be the set of indices k = (k1, . . . , kl), 1 ≤ l ≤ n − 1, such that

0 ≤ k1 < k2 < · · · < kl ≤ n + m, and for every k ∈ K set Hk =
⋂l

h=1 Hh. Letting
1 = (1, . . . , 1) ∈ R

n, we assume that

(C) for every k ∈ K, 1 /∈ H⊥
k .

In case (2b) the following result holds.

Theorem 4.5 (Theorem 3.1 in [7] and 3.2 in [12]). Let (N, I,F ,J ,S,D,R) be
an admissible network and J a junction with n incoming lines and m outgoing ones.
Assume that the flux f : [0, 1] → R satisfies (F) and the matrix A satisfies condi-

tion (C). For every ρ1,0, . . . , ρn+m,0 ∈ [0, 1], and for every πs,d
1 , . . . , πs,d

n+m ∈ [0, 1],
there exist densities ρ̂1, . . . , ρ̂n+m and a unique admissible centered weak solution,
ρ = (ρ1, . . . , ρn+m), at the junction J such that

ρ1(0, ·) ≡ ρ1,0, . . . , ρn+m(0, ·) ≡ ρn+m,0,

π1(0, ·, s, d) = πs,d
1 , . . . , πn+m(0, ·, s, d) = πs,d

n+m(s ∈ S, d ∈ D).
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We have

ρ̂i ∈
{

{ρi,0} ∪ ]τ(ρi,0), 1] if 0 ≤ ρi,0 ≤ σ,
[σ, 1] if σ ≤ ρi,0 ≤ 1,

i = 1, . . . , n,(4.1)

ρ̂j ∈
{

[0, σ] if 0 ≤ ρj,0 ≤ σ,
{ρj,0} ∪ [0, τ(ρj,0)[ if σ ≤ ρj,0 ≤ 1,

j = n + 1, . . . , n + m,(4.2)

and on each incoming line Ii, i = 1, . . . , n, the solution consists of the single wave
(ρi,0, ρ̂i), while on each outgoing line Ij, j = n+1, . . . , n+m, the solution consists of

the single wave (ρ̂j , ρj,0). Moreover, π̂i(t, ·, s, d) = πs,d
i for every t ≥ 0, i ∈ {1, . . . , n},

s ∈ S, d ∈ D, and

π̂j(t, aj+, s, d) =

∑n
i=1 α

i,s,d,j
J πs,d

i (t, bi−, s, d)f(ρ̂i)

f(ρ̂j)

for every t ≥ 0, j ∈ {n + 1, . . . , n + m}, s ∈ S, d ∈ D.

4.2. Algorithm (RA2). To solve Riemann problems according to (RA2) we
need some additional parameters called priority and traffic distribution parameters.
For simplicity of exposition, consider first a junction J in which there are two trans-
mission lines with incoming traffic and two transmission lines with outgoing traffic.
In this case we have only one priority parameter q ∈ ]0, 1[ and one traffic distribution

parameter α ∈ ]0, 1[. We denote by (ρ1,0, ρ2,0, ρ3,0, ρ4,0) and (πs,d
1,0, π

s,d
2,0, π

s,d
3,0, π

s,d
4,0) the

initial data.
In order to maximize the number of packets through the junction over incoming

and outgoing lines we define

Γ = min {Γmax
in ,Γmax

out } ,

where Γmax
in = γmax

1 + γmax
2 and Γmax

out = γmax
3 + γmax

4 . Thus we want to have Γ as the
flux through the junction.

One easily sees that to solve the Riemann problem, it is enough to determine
the fluxes γ̂i = f(ρ̂i), i = 1, 2. In fact, to have simple waves with the appropriate
velocities, i.e., negative on incoming lines and positive on outgoing ones, we get the
constraints (4.1), (4.2). Observe that we compute γ̂i = f(ρ̂i), i = 1, 2, without taking
into account the type of traffic distribution function.

We have to distinguish two cases:
I. Γmax

in = Γ;
II. Γmax

in > Γ.
In the first case we set γ̂i = γmax

i , i = 1, 2.
Let us analyze the second case in which we use the priority parameter q. Not all

packets can enter the junction, and so let C be the amount of packets that can go
through. Then qC packets come from the first incoming line and (1 − q)C packets
from the second. Consider the space (γ1, γ2), and define the following lines:

rq : γ2 =
1 − q

q
γ1,

rΓ : γ1 + γ2 = Γ.

Define P to be the point of intersection of the lines rq and rΓ. Recall that the final
fluxes should belong to the region (see Figure 4.1):
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Fig. 4.1. Case Γmax
in > Γ.

Fig. 4.2. P belongs to Ω, and P is outside Ω.

Ω = {(γ1, γ2) : 0 ≤ γi ≤ γmax
i , i = 1, 2} .

We distinguish two cases:
(a) P belongs to Ω;
(b) P is outside Ω.
In the first case we set (γ̂1, γ̂2) = P , while in the second case we set (γ̂1, γ̂2) =

Q, with Q = projΩ∩rΓ(P ), where proj is the usual projection on a convex set; see
Figure 4.2.

The reasoning can be repeated also in the case of n incoming lines. In R
n the line

rq is given by rq = tvq, t ∈ R, with vq ∈ Δn−1, where

Δn−1 =

{
(γ1, . . . , γn) : γi ≥ 0, i = 1, . . . , n,

n∑
i=1

γi = 1

}

is the (n− 1) dimensional simplex and

HΓ =

{
(γ1, . . . , γn) :

n∑
i=1

γi = Γ

}

is a hyperplane where Γ = min{
∑

in γ
max
i ,

∑
out γ

max
j }. Since vq ∈ Δn−1, there exists

a unique point P = rq ∩ HΓ. If P ∈ Ω, then we set (γ̂1, . . . , γ̂n) = P . If P /∈ Ω,
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then we set (γ̂1, . . . , γ̂n) = Q = projΩ∩HΓ
(P ), the projection over the subset Ω ∩HΓ.

Observe that the projection is unique since Ω ∩HΓ is a closed convex subset of HΓ.
Remark 4.6. A possible alternative definition in the case P /∈ Ω is to set

(γ̂1, . . . , γ̂n) as one of the vertices of Ω ∩HΓ.

As for algorithm (RA1) π̂s,d
i = πs,d

i,0 , i = 1, 2.
Let us now determine γ̂j , j = 3, 4.
As for the incoming transmission lines we have to distinguish two cases:

I. Γmax
out = Γ;

II. Γmax
out > Γ.

In the first case γ̂j = γmax
j , j = 3, 4. Let us determine γ̂j in the second case.

Recall α, the traffic distribution parameter. Since not all packets can go on the
outgoing transmission lines, we let C be the amount that goes through. Then αC
packets go on the outgoing line I3 and (1−α)C on the outgoing line I4. Consider the
space (γ3, γ4) , and define the following lines:

rα : γ4 =
1 − α

α
γ3,

rΓ : γ3 + γ4 = Γ.

The line rα can be computed from the matrix A. In fact, if we assume that a traffic
distribution matrix A is assigned, then we compute γ̂1, . . . , γ̂n and choose vα ∈ Δm−1

by

vα = Δm−1 ∩ {tA(γ̂1, . . . , γ̂n) : t ∈ R} ,

where

Δm−1 =

{
(γn+1, . . . , γm+n) : γn+i ≥ 0, i = 1, . . . ,m,

n∑
i=1

γn+i = 1

}

is the (m− 1) dimensional simplex.
We have to distinguish cases (2a) and (2b) for the traffic distribution function.
Case (2a). Let us introduce the set

G =
{
Aγ̂T

inc : A ∈ A
}
.

Lemma 4.7. The set G is connected.
Proof. The set G is the image of a connected set through a continuous map. With

fixed (γ̂1, γ̂2) the map is defined by

(α̃1,s,d,3
J , α̃2,s,d,3

J ) ∈ [0, 1] × [0, 1] → (Σ, γ̂1 + γ̂2 − Σ),

where Σ =
∑

s,d(γ̂1π
s,d
1 α̃1,s,d,3

J + γ̂2π
s,d
2 α̃2,s,d,3

J ).
Let us denote with G1 and G2 the endpoints of this set. Since in case (2a) we

have an infinite number of matrices A, each one determining a line rα, we choose
the most “natural” line rα, i.e., the one nearest to the statistic line determined by
measurements on the network.

Recall that the final fluxes should belong to the region:

Ω =
{
(γ3, γ4) : 0 ≤ γj ≤ γmax

j , j = 3, 4
}
.

Define P = rα∩rΓ, R = (Γ−γmax
4 , γmax

4 ), Q = (γmax
3 ,Γ−γmax

3 ). We distinguish three
cases:
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Fig. 4.3. Traffic distribution function of type (2a).

(a) G ∩ Ω ∩ rΓ �= ∅;
(b) G ∩ Ω ∩ rΓ = ∅ and γ3(G1) < γ3(R);
(c) G ∩ Ω ∩ rΓ = ∅ and γ3(G1) > γmax

3 .
If the set G has a priority over the line rΓ, we set (γ̂3, γ̂4) in the following way. In

case (a) we define (γ̂3, γ̂4) = projG∩Ω∩rΓ(P ), in case (b) (γ̂3, γ̂4) = R, and finally in
case (c) (γ̂3, γ̂4) = Q. The three cases are shown in Figure 4.3.

Otherwise, if rΓ has a priority over G, we set (γ̂3, γ̂4) = minγ∈Ω F(γ, rα,G), where
F is a convex functional which depends on γ, rα, and the set G of the routing stan-
dards. A possible choice of F is F = d(γ,B), where B = w1rα+w2

∫
G rdr with w1, w2

real numbers and d denotes a distance.
The reasoning can also be repeated in the case of m outgoing lines.
The vector π̂s,d

i , j = 3, 4, is computed in the same way as for algorithm (RA1).
Case (2b). In case (2b) we have a unique matrix A and a unique vector vα,

and so the fluxes on outgoing lines are computed as in the case without sources and
destinations.

We distinguish two cases:
(a) P belongs to Ω;
(b) P is outside Ω.
In the first case we set (γ̂3, γ̂4) = P , while in the second case we set (γ̂3, γ̂4) = Q,

where Q = projΩadm
(P ). Again, we can extend to the case of m outgoing lines as for

the incoming lines defining the hyperplane HΓ = {(γn+1, . . . , γn+m) :
∑n+m

j=n+1 γj = Γ}
and choosing a vector vα ∈ Δm−1.

Finally, we define π̂s,d
i , j = 3, 4, as in case (2a):

π̂j(t, aj+, s, d) =

∑n
i=1 α

i,s,d,j
J πs,d

i (t, bi−, s, d)f(ρ̂i)

f(ρ̂j)

for every t ≥ 0, j ∈ {n + 1, . . . , n + m}, s ∈ S, d ∈ D.
Remark 4.8. Note that in the case of algorithm (RA2) we find, separately, a

solution on incoming and outgoing lines.
Remark 4.9. If Γmax

out < Γmax
in , we can define a different Riemann solver,

considering a priority order of sending packets: (sk1 , dl1) = c1, (sk2 , dl2) = c2,
(sk3 , dl3) = c3, . . . . Packets are sent until the quantity of packets that has been sent
is equal to

ῑ∑
ι=1

n∑
i=1

πcι
i γi0,
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where ῑ is the minimum such that
ῑ∑

ι=1

n∑
i=1

πcι
i γi0 > Γ.

Let us define d = Γ −
∑ῑ

ι=1

∑n
i=1 π

cι
i γi0; then

γ̂1 =

ῑ−1∑
ι=1

πcι
1 γ10 + d/2,

γ̂2 =

ῑ−1∑
ι=1

πcι
2 γ20 + d/2.

Once solutions to Riemann problems are given, one can use a wave-front tracking
algorithm to construct a sequence of approximate solutions. To pass to the limit
one has to bound the number of waves and the BV norm of approximate solutions;
see [6, 7]. In the next section we prove a BV bound on the density for the case
of junctions with two incoming and two outgoing transmission lines for both of the
routing algorithms.

5. Estimates on density variation. In this section we derive estimates on
the total variation of the densities along a wave-front tracking approximate solution
(constructed as in [7]) for algorithm (RA2) with the traffic distribution function of
type (2b). This allows us to construct the solutions to the Cauchy problem in the
standard way; see [6].

Let us consider an admissible network (N, I,F ,J ,S,D,R). We assume that
(A1) every junction has at most two incoming and at most two outgoing lines.
This hypothesis is crucial, because the presence of more complicated junctions

may provoke additional increases of the total variation of the flux and thus of the
density. The case where junctions have at most two incoming transmission lines and
at most two outgoing ones can be treated in the same way.

From now on we fix a telecommunication network (I,J ), with each node having
at most two incoming and at most two outgoing lines, and a wave-front tracking
approximate solution ρ,Π, defined on the telecommunication network.

Our aim is to prove an existence result for a solution (ρ,Π) in the case of a small
perturbation of the equilibrium (ρ̄, Π̄). We have to analyze the following types of
interactions:

I1. interaction of ρ-waves with ρ-waves on lines;
I2. interaction of ρ-waves with Π-waves on lines;
I3. interaction of Π-waves with Π-waves on lines;
I4. interaction of ρ-waves with junctions;
I5. interaction of Π-waves with junctions.
Observe that interaction of type I1 is classical and the total variation of the

density decreases. Interaction of type I3 cannot happen since Π-waves travel with
speed depending only on the value of ρ.

5.1. Interaction of type I2. Let us consider a line Ii. We report some results
proved in [12]. First we note that the characteristic speed of the density is smaller
than the speed of a Π-wave, as follows from the next lemma.

Lemma 5.1. Let ρ ∈ [0, 1] be a density, and let λ(ρ) be its characteristic speed.
Then λ(ρ) ≤ v(ρ), and the equality holds if and only if ρ = 0.

Lemma 5.2. Let us consider a shock wave connecting ρ− and ρ+. Then
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1. λ(ρ−, ρ+) < v(ρ−);
2. λ(ρ−, ρ+) ≤ v(ρ+) and the equality holds if and only if ρ− = 0.

Lemma 5.3. Let us consider a rarefaction shock fan connecting ρ− and ρ+. Then
v(ρ+) > v(ρ−) > f ′(ρ−).

Putting together the previous lemmas we obtain the following result.
Proposition 5.4. An interaction of a ρ-wave with a Π-wave can happen only

if the Π-wave interacts from the left with respect to the ρ-wave. Moreover, if this
happens, then the ρ-wave does not change, while the Π-wave changes only its speed.

5.2. Interaction of type I4. We consider interactions of ρ-waves with the
junctions. In general these interactions produce an increment of the total variation of
the flux and of the density in all the lines and a variation of the values of traffic-type
functions on outgoing lines.

Fix a junction J with two incoming transmission lines I1 and I2 and two outgoing
ones I3 and I4. Suppose that at some time t̄ a wave interacts with the junction J ,
and let (ρ−1 , ρ

−
2 , ρ

−
3 , ρ

−
4 ) and (ρ+

1 , ρ
+
2 , ρ

+
3 , ρ

+
4 ) indicate the equilibrium configurations at

the junction J before and after the interaction, respectively. Introduce the following
notation:

γ±
i = f(ρ±i ), Γ±

in = γ±
1,max + γ±

2,max, Γ±
out = γ±

3,max + γ±
4,max,

Γ± = min{Γ±
in,Γ

±
out},

where γ±
i,max, i = 1, 2, and γ±

j,max, j = 3, 4, are defined as in (3.1) and (3.2). In general
− and + denote the values before and after the interaction, while by Δ we indicate
the variation, i.e., the value after the interaction minus the value before. For example
ΔΓ = Γ+ − Γ−. Let us denote by TV (f)± = TV (f(ρ(t̄±, ·))) the flux variation of
waves before and after the interaction, and

TV (f)±in = TV (f(ρ1(t̄±, ·))) + TV (f(ρ2(t̄±, ·))),
TV (f)±out = TV (f(ρ3(t̄±, ·))) + TV (f(ρ4(t̄±, ·))),

the flux variation of waves before and after the interaction, respectively, on incoming
and outgoing lines.

Let us prove some estimates which are used later to control the total variation of
the density function. For simplicity, from now on we assume that

(A2) the wave interacting at time t̄ with J comes from line 1, and we let ρ1 be the
value on the left of the wave.

The case of a wave from an outgoing line can be treated similarly.
Lemma 5.5. We have

sgn (Δγ3) · sgn (Δγ4) ≥ 0.

Lemma 5.6. We have

sgn(γ+
1 − γ1) · sgn(Δγ2) ≥ 0,

where γ1 = f(ρ1).
Lemma 5.7. It holds that

TV (f)+out = |ΔΓ|.
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Lemma 5.8. We have

(5.1) TV (f)−in = TV (f)+in + |ΔΓ|.

From Lemmas 5.7 and 5.8, we are ready to state the following.
Lemma 5.9. It holds that

TV (f)+ = CTV (f)−.

A ρ-wave produces a Π-wave, but the following lemma holds.
Lemma 5.10. Let J be a junction with at most two incoming lines and two

outgoing ones. Suppose that a ρ-wave (ρ1, ρ10) approaches the junction J . If there
exists δ > 0 such that f(ρ1) > δ > 0, f(ρ1,0) > δ > 0, then there exists C > 0, such
that the variation of the traffic-type functions in outgoing lines is bounded by C times
the flux variation of the interacting wave, i.e.,

TV (Π)+ ≤ C

δ
TV (f)−.

Proof. Fix a source s ∈ S and a destination d ∈ D. We denote by πi,0, ρi,0 and
π̂i, ρ̂i (i ∈ {1, 2, 3, 4}) the values of the densities and of the traffic-type functions for
s and d at J , respectively, before and after the interaction of the ρ-wave with J . We
have for j ∈ {3, 4}

|πs,d
j,0 − π̂s,d

j |

=

∣∣∣∣∣α
1,s,d,j
J πs,d

1,0f(ρ1,0)

f(ρj,0)
+

α2,s,d,j
J πs,d

2,0f(ρ2,0)

f(ρj,0)
−

α1,s,d,j
J πs,d

2,0f(ρ̂1)

f(ρ̂j)
−

α2,s,d,j
J πs,d

2,0f(ρ̂2)

f(ρ̂j)

∣∣∣∣∣
≤

α1,s,d,j
J πs,d

1,0

f(ρj,0)f(ρ̂j)
|f(ρ1,0)f(ρ̂j) − f(ρ̂1)f(ρj,0)| +

α2,s,d,j
J πs,d

2,0

f(ρj,0)f(ρ̂j)
|f(ρ2,0)f(ρ̂j) − f(ρ̂2)f(ρj,0)|

≤ C ′

δ2
|f(ρ1,0)(f(ρ̂j) − f(ρj,0)) + f(ρj,0)(f(ρ1,0) − f(ρ̂1))|

+
C ′

δ2
|f(ρ2,0)(f(ρ̂j) − f(ρj,0)) + f(ρj,0)(f(ρ2,0) − f(ρ̂2))|

≤ C ′

δ2
f(ρ1,0)|f(ρ̂j) − f(ρj,0)| +

C ′

δ2
f(ρj,0)|f(ρ1,0) − f(ρ̂1)|

+
C ′

δ2
f(ρ2,0)|f(ρ̂j) − f(ρj,0)| +

C ′

δ2
f(ρj,0)|f(ρ2,0) − f(ρ̂2)|

=
C ′

δ
|f(ρ̂j) − f(ρj,0)| +

C ′

δ
|f(ρ1,0) − f(ρ̂1)|

+
C ′

δ
|f(ρ̂j) − f(ρj,0)| +

C ′

δ
|f(ρ2,0) − f(ρ̂2)|

=
C ′

δ
(|f(ρ̂j) − f(ρj,0)| + |f(ρ1,0) − f(ρ̂1)| + |f(ρ2,0) − f(ρ̂2)|) ≤ 2

C ′

δ
TV (f)−

with a suitable constant C ′. Set C = 2C ′.

5.3. Interaction of type I5. We consider interactions of Π-waves with the
junctions. Since Π-waves always have positive speed, they can interact with the
junction only from an incoming line.

Lemma 5.11. Let us consider a junction J and a Π-wave on an incoming line Ii
interacting with J . If A is the distributional matrix for J , whose entries are given by
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(3.3), then the interaction of the Π-wave with J modifies only the ith column of A.
Moreover, the variation of the ith column is bounded by the Π-wave variation.

Proof. For each s ∈ S and a destination d ∈ D, we denote by πs,d
i and πs,d

i,0 ,
respectively, the left and the right states of the Π-wave. Moreover, for every j ∈ {3, 4},
we denote by α−

j,i and α+
j,i, respectively, the entries of the matrix A before and after

the interaction of the Π-wave with J . By (3.3), it is clear that if l �= i, then the entries
αj,l are not modified. For l = i, we have

|α+
j,i − α−

j,i| =

∣∣∣∣∣∣
∑

s∈S,d∈D
πs,d
i αi,s,d,j

J −
∑

s∈S,d∈D
πs,d
i,0 α

i,s,d,j
J

∣∣∣∣∣∣
≤

∑
s∈S,d∈D

|πs,d
i − πs,d

i,0 |α
i,s,d,j
J .

This completes the proof.

Lemma 5.12. Let us consider a junction J and a Π-wave on an incoming line Ii
interacting with J . Then there exists C > 0, such that the variation of the fluxes is
bounded by C times the Π-wave variation, i.e.,

TV (f)+ ≤ CTV (Π)−.

Proof. For simplicity let us consider the case P ∈ Ω, where

Ω =
{
(γ1, γ2) ∈ Ω1 × Ω2 : A(γ1, γ2)

T ∈ Ω3 × Ω4

}
.

Since the solution of the Riemann problem depends on the position of the traffic
distribution line rα we consider

|A(π)γT
inc −A(π̂)γT

inc| = |(A(π) −A(π̂))γT
inc|

=

∣∣∣∣
(

α3,1(π) − α3,1(π̂) α3,2(π) − α3,2(π̂)
α4,1(π) − α4,1(π̂) α4,2(π) − α4,2(π̂)

)(
γ1

γ2

)∣∣∣∣
= |(α3,1(π) − α3,1(π̂))γ1 + (α3,2(π) − α3,2(π̂))γ2,

(α4,1(π) − α4,1(π̂))γ1 + (α4,2(π) − α4,2(π̂))γ2|
= |(α3,1(π) − α3,1(π̂), α4,1(π) − α4,1(π̂))γ1 + (α3,2(π) − α3,2(π̂), α4,2(π) − α4,2(π̂))γ2|
≤ γ1|(α3,1(π) − α3,1(π̂), α4,1(π) − α4,1(π̂))| + γ2|(α3,2(π) − α3,2(π̂), α4,2(π) − α4,2(π̂))|

= γ1

∣∣∣∣∣∣
⎛
⎝ ∑

s∈S,d∈D
(πs,d

1,0 − π̂s,d
1 )α1,s,d,3

J ,
∑

s∈S,d∈D
(πs,d

1,0 − π̂s,d
1 )α1,s,d,4

J

⎞
⎠
∣∣∣∣∣∣

+γ2

∣∣∣∣∣∣
⎛
⎝ ∑

s∈S,d∈D
(πs,d

2,0 − π̂s,d
2 )α2,s,d,3

J ,
∑

s∈S,d∈D
(πs,d

2,0 − π̂s,d
2 )α2,s,d,4

J

⎞
⎠
∣∣∣∣∣∣

= γ1

∣∣∣∣∣∣
∑

s∈S,d∈D

(
(πs,d

1,0 − π̂s,d
1 )α1,s,d,3

J , (πs,d
1,0 − π̂s,d

1 )α1,s,d,4
J

)∣∣∣∣∣∣
+γ2

∣∣∣∣∣∣
∑

s∈S,d∈D

(
(πs,d

2,0 − π̂s,d
2 )α2,s,d,3

J , (πs,d
2,0 − π̂s,d

2 )α2,s,d,4
J

)∣∣∣∣∣∣
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γ1

∣∣∣∣∣∣
∑

s∈S,d∈D
(πs,d

1,0 − π̂s,d
1 )(α1,s,d,3

J , α1,s,d,4
J )

∣∣∣∣∣∣
+γ2

∣∣∣∣∣∣
∑

s∈S,d∈D
(πs,d

2,0 − π̂s,d
2 )(α2,s,d,3

J , α2,s,d,4
J )

∣∣∣∣∣∣
≤ γ1

∑
s∈S,d∈D

|πs,d
1,0 − π̂s,d

1 ||(α1,s,d,3
J , α1,s,d,4

J )| + γ2

∑
s∈S,d∈D

|πs,d
2,0 − π̂s,d

2 ||(α2,s,d,3
J , α2,s,d,4

J )|

=
∑

s∈S,d∈D
(γ1|πs,d

1,0 − π̂s,d
1 ||(α1,s,d,3

J , α1,s,d,4
J )| + γ2|πs,d

2,0 − π̂s,d
2 ||(α2,s,d,3

J , α2,s,d,4
J )|)

≤ C
∑

s∈S,d∈D
(|πs,d

1,0 − π̂s,d
1 | + |πs,d

2,0 − π̂s,d
2 |)

for some constant C.

5.4. Existence of solutions for equilibria perturbations. Let us consider
an admissible network (N, I,F ,J ,S,D,R). We have the following proposition.

Proposition 5.13. Let (ρ̄, Π̄) be an equilibrium on the whole network such that

f(ρ̄) > δ > 0. Define λ̂ = max {f ′(0),−f ′(1)} and

Δt =
mini(bi − ai)

λ̂
,

which represents the minimum time for a wave to go from one junction to another.
For 0 < ε < δ/λ̂ there exists t̃ = t̃(δ, ε) such that the following holds. For every
perturbation (ρ̃, Π̃) of the equilibrium with

‖ρ̃‖BV ≤ ε,
∥∥∥Π̃

∥∥∥
BV

≤ ε

and

‖ρ̃− ρ̄‖∞ ≤ ε,
∥∥∥Π̃ − Π̄

∥∥∥
∞

≤ ε

there exists an admissible solution (ρ,Π) defined for every t ∈ [0, t̃] with initial datum
(ρ̃, Π̃).

Proof. Denote with (ρν ,Πν) a sequence of approximate wave-front tracking solu-
tions with initial data approximating (ρ̃, Π̃). Let us introduce the following notation:

TV (f(ρν(kΔt, ·))) = Tfk,

TV (Πν(kΔt, ·)) = TΠk.

For every interaction of a wave with a junction we have the estimates of Lemmas 5.9,
5.10, and 5.12; therefore

Tfk ≤ Tfk−1 + CTΠk−1,

TΠk ≤ TΠk−1 +
C

δk
Tfk−1,

where δk = δk−1−TV fk−1 and δ0 is such that f(ρ̃) > δ0 > 0 (notice that δ0 > δ− λ̂ε).
Setting

Tk = max
k

(Tfk, TΠk),

δk = δk−1 − Tk,
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we obtain

Tk ≤
(
C

δk
+ 1

)
Tk−1.

The exact computation of the existence time interval [0, t̃] is a bit involved, thus we
assume, for simplicity, that δ is small, and consider a continuous evolution. Defining
δ(t) = δ0 − T (t) we obtain

Ṫ (t) ≤ C

δ
T (t) =

CT (t)

δ0 − T (t)
,

from which we get δ0 ln(T ) − T = δ0 ln(T0) + CT − T0, which implicitly defines
T = T (t, δ0, T0). Define t̂ such that T (t̂, δ0, T0) = +∞; then for t ≤ t̃ = t̂/2 there
exists a constant C1 > 0 such that

TV (f(ρν(t, ·))) ≤ C1

TV (Πν(t, ·)) ≤ C1

uniformly in ν.
Now, by the Helly theorem, Πν and f(ρν) converge by subsequences strongly in

L1. Moreover, again by subsequences, ρν converges weakly in L1
loc. We then can

complete the proof as in [7].
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Abstract. Results of existence of stationary solutions are proved for a problem modeling the
growth of a spheroid tumor in absence of inhibitor agents, for both the nonnecrotic and necrotic
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1. Introduction. In contrast to the exceptional development in the modeling
aspects of tumor growth observed in recent years, rigorous mathematical analysis
of the behavior of the models considered is rare in the literature. This is by no
means surprising: the more the interrelated processes presented in cancer growth are
taken into account by the model, the harder the mathematical analysis of the model
becomes. (For a historical development of mathematical cancer modeling, see the
review article by Araujo and McElwain [2].)

The aim of this paper is to present a rigorous study of a variation on an early
model proposed by Byrne and Chaplain, introduced in [5] for the nonnecrotic case
and then in [6] for its necrotic version. Here we investigate the transition from the
nonnecrotic phase to the necrotic phase of the tumor and show how the stationary
solutions of the nonnecrotic model impart information about the stationary solutions
of the necrotic model.

In order to better situate the aim and scope of this paper, we describe briefly the
model we consider. It consists of a spherical mass of cells of radius R(t) (grow-
ing with time t), whose center, or necrotic core, contains only dead cells and is
bounded by an inner sphere of radius ρ(t) ≥ 0, while its surrounding symmetric
annulus is composed of proliferating cells. In radial coordinates with r = |x|, this
intermediary region ρ(t) < r < R(t) receives nutrients not only by diffusion, but also
through a developed network of capillary vessels, which is typical of in vivo cancer
growth.

The first equation of the model is a reaction-diffusion equation for the nutrient
concentration σ(r, t), which we present in dimensionless form:

(1.1) εσt =
1

r2

∂

∂r

(
r2 ∂σ

∂r

)
− f(σ)H(r − ρ(t)); 0 < r < R(t), t > 0.
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The coefficient ε = Td/Tg is the ratio between the time necessary for the diffusion of
nutrients Td and the time elapsed until the tumor doubles its size. Typical values for
Td and Tg are, respectively, on the order of minutes and days. Thus, ε ≈ 0. Since we
suppose that there is no blood supply within the necrotic core, the reaction term has
the form f(σ)H(r−ρ(t)), where H is the Heaviside function (that is, H(ξ) = 0 for all
ξ ≤ 0 and H(ξ) = 1 for all ξ > 0). The function f(σ) = C(σ)− V (σ) is the difference
between the consumption of nutrients by the cells of the tumor, which is given by
C(σ), and the transference of nutrients V (σ) between the tumor and the vasculature.
This transference usually occurs from the vasculature to the tumor; that is, the tumor
receives an extra supply of nutrients. (A detailed discussion on the absorption rate
can be found, e.g., in [4]. Our hypotheses and further discussion on f are at the end
of this section.)

In order to present the initial and boundary data for (1.1), we distinguish two
cases. The first one, ρ(t) ≡ 0, corresponds to the nonnecrotic phase of the tumor,
when there is no necrotic core. In this case, the initial conditions for the unknowns
R(t) and σ(r, t) are, respectively,

(1.2) R(0) = R0 and σ(r, 0) = σ0(r), 0 < r < R0,

which describe the initial radius of the tumor and the initial concentration of nutrients
on the tumor; the boundary conditions for σ are

(1.3) σr(0, t) = 0 and σ(R(t), t) ≡ σ̄, t > 0.

Since σ = σ(r, t) with r = |x|, ∇xσ = ∂σ
∂r

x
|x| , the boundary condition σr(0, t) = 0 is

natural, meaning that the radial component σr of the field σ is null at the center of
the tumor; mathematically, this condition is necessary to guarantee differentiability at
the origin. We also make the natural supposition that the concentration of nutrients
external to the tumor is constant, denoted by σ̄. For compatibility, the initial data
must satisfy σ′

0(0) = 0 and σ0(R0) = σ̄.

The second case describes the necrotic phase of the tumor: we suppose that
ρ(0) > 0. Aggressive tumors usually pass from the nonnecrotic phase to the necrotic
phase. There are several causes for this behavior: we will suppose that the local
concentration of nutrients is insufficient to sustain an individual cell.

The initial and boundary conditions for the necrotic phase of the tumor are

(1.4)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 ≤ ρ(0) < R(0),

σ(r, 0) = σnec if 0 ≤ r ≤ ρ(0),

σ(R(0), 0) = σ̄,

σ(r, t) ≡ σnec if 0 ≤ r ≤ ρ(t),

σr(ρ(t), t) = 0, σ(ρ(t), t) ≡ σnec, σ(R(t), t) ≡ σ̄ for t > 0.

Since all the cells in the necrotic core are dead, we admit that there is no absorption of
nutrients in that region and that, on its border, the concentration of nutrients satisfies
σ(ρ(t), t) = σnec < σ̄. The experimentally obtained constant σnec is a threshold
level below which the cells cannot survive. So, necrosis occurs when σ(r, t) < σnec

and cell proliferation is possible only if σ(r, t) > σnec. Because the initial data is
constant, from the maximum principle we infer that σ(r, t) = σnec for all 0 ≤ r ≤ ρ(t),
t ≥ 0.
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The second equation of the model

R2 dR

dt
=

∫ R(t)

0

[
S
(
σ(r, t)

)
H
(
r − ρ(t)

)
−N

(
σ(r, t)

)
H
(
ρ(t) − r

)]
r2dr

=

∫ R(t)

ρ(t)

S
(
σ(r, t)

)
r2dr −

∫ ρ(t)

0

N
(
σ(r, t)

)
r2dr

=

∫ R(t)

ρ(t)

S
(
σ(r, t)

)
r2dr − μ

ρ3(t)

3
(1.5)

describes the evolution of the tumor radius R(t) and is obtained by applying mass
balance equations with adequate constitutive laws and simplifying hypotheses to ob-
tain a closed system (see [1] for a detailed deduction). It incorporates two terms: the
proliferation rate S(σ), which is the balance between birth (mitosis) and natural death
rates of the cells (in the region ρ(t) < r < R(t)), and the term N(σ), which measures
necrosis and hypoxic apoptosis, i.e., death rates caused by deficiency of nutrients in
the necrotic core. Since we have σ ≡ σnec on the necrotic core, it is natural to assume
that N(σ) ≡ μ, where μ stands for a constant. (Other types of necrosis and apoptosis
are not taken into account by the model.) Of course, in the nonnecrotic phase of
the tumor, we have ρ(t) ≡ 0. (In the nonnecrotic case, a broader discussion on the
proliferation rate can be found in [4]. Our hypotheses on S are at the end of this
section.)

A quasi-stationary solution of both problems (nonnecrotic and necrotic) is a so-
lution of the respective problem in the case ε = 0, maintaining dependence on time t
(see [4]).

In the nonnecrotic phase of the tumor (ρ(t) ≡ 0), an evolutionary solution is a
C2-function σ(r, t) that satisfies (1.1)–(1.3), (1.5). On its turn, a stationary solution is
an equilibrium configuration in which the radius of the tumor stabilizes; it is obtained
as a pair (σR(r), R) such that both the concentration of nutrients σR(r) and the
stabilizing radius R do not depend on the time t.

A triple (σ(r, t), ρ(t), R(t)) is an evolutionary solution in the necrotic phase if
σ(r, t) is a C2-function in each region (necrotic and nonnecrotic) which satisfies (1.1),
(1.4), and (1.5) and has a C1-contact on the boundary r = ρ(t); as before, a stationary
solution is a triple (σ(r), ρnec, Rnec) such that the concentration of nutrients σ(r) and
both the inner and the outer radii ρnec and Rnec do not depend on time.

In this paper we deal only with stationary solutions. Initially, our approach
consists in establishing realistic hypotheses on the absorption rate f(σ) and on the
proliferation rate S(σ) that imply the existence of a stationary solution. Then, we
obtain bounds for the outer and inner radii of the tumor. In the nonnecrotic case, our
investigation deals with rather general nonlinear absorption and proliferation rates,
and we focus our analysis on different types of proliferation rates. In the necrotic case,
for simplicity, we assume that the proliferation rate S(σ) is a generic, continuous, and
increasing function. As mentioned before, our ultimate intention is to investigate
how the stationary solutions of the nonnecrotic model give information about the
stationary solutions of the necrotic model. In both the nonnecrotic and necrotic
cases, our approach naturally induces a simple numerical analysis of the problem,
conjugating an iterative process with a finite difference method.

In spite of the simplicity of the model considered here, its mathematical analysis
is interesting for various reasons: (a) detailed examination of phenomena not yet
considered in tumor growth often start with this model [9, 13], which is, in a certain
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sense, generic to the area; (b) more elaborated models reduce to it under appropriate
hypotheses [1, 7, 8, 11]; (c) the nonnecrotic model reproduces patterns observed in
tumors cultured in vitro; (d) since no explicit stationary solution is available in the
case of general absorption and proliferation rates, a rigorous proof of the existence of
stationary solutions is an open question.

The outline of the article is as follows. The initial phase of the tumor (i.e.,
nonnecrotic) is considered in section 2. In the case of linear absorption and prolif-
eration rates, the first theoretical results about the nonnecrotic model treated here
were pointed out by Byrne and Chaplain [5] and rigorously proved by Friedman and
Reitich [14]. However, for linear absorption and proliferation rates, the existence of
a stationary solution is not a problem in itself, since an explicit stationary solution
is available. (We stress that [14] is mainly devoted to the stability of the stationary
solution.) The first subsection of section 2 establishes results of existence, uniqueness,
and localization of stationary solutions for more realistic absorption and proliferation
rates. Subsection 2.2 comments on some results obtained by Byrne and Chaplain [5],
and subsection 2.3 compares our outcomes, by means of a numerical implementation,
with those in [14].

This section poses, however, a simple question: Is the stationary solution (when
it exists) a limit of solutions of the evolutionary problem? It is proved in [4] that
solutions σ(r, t) of the quasi-stationary problem (i.e., if we consider ε = 0) converge
monotonically to the stationary solution, which is also presented in this paper. This
result gives insight about what can be expected for small ε > 0 (a condition satisfied
by real data). For example, let us consider a nonnecrotic tumor which has stabiliz-
ing radius R∗ (a value that can be numerically computed, when the absorption and
proliferation rates are known). If ε is small enough, this would imply that, if the
tumor has radii R0 = R(t0) < R∗ for some time t = t0 and R1 = R(t1) > R∗ for
t = t1 > t0, then either no stationary solution will be achieved or the tumor will pass
to the necrotic phase.

Section 3 studies the relationship between the stationary solutions of the nonne-
crotic and necrotic models. This connection has been set aside in the mathematical
handling of tumor growth. However, it turns out that this relationship allows us to
predict if it is possible to achieve a stationary solution for the necrotic tumor. We
show the existence of a value σ∗, which determines the existence of stationary solu-
tions. Consequently, if the tumor is in the necrotic phase, the stationary solution
exists if and only if σ∗ < σnec < σ̄; it exists in the nonnecrotic phase if and only if
σ0 < σnec ≤ σ∗, where σ0 stands for the zero of the absorption rate. In other words,
if the phase of the tumor and the value of σnec are known, we can say whether it is
possible to achieve a stationary solution. In both cases these solutions are unique.
Under additional conditions on the behavior of the proliferation rate, we also present
some estimates on the radii of the stabilizing tumor. (We emphasize that the value
σnec can be empirically established.)

Our conclusions are presented in section 4, while most of the proofs of our results
are deferred to section 5.

We now describe succinctly our hypotheses on the absorption rate f(σ) and on
the proliferation rate S(σ). A more detailed discussion of these functions can be found
in [4].

In the majority of works, the functions f and S depend linearly on σ. Under
these hypotheses, existence and global stability of the nontrivial stationary solutions
are proved, respectively, in [14] and [10] for the nonnecrotic and the necrotic cases.
The approach used there rests on the existence of an explicit form for the stationary
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solution. Here our assumptions on both f and S are more general, and such an explicit
solution is not available.

In this work we consider nonlinear absorption and proliferation rates. This was
done not merely for generality reasons. Linearization of the absorption rate is just
an approximation of real data, while the choice of an adequate proliferation rate is
necessary for the evaluation of the mathematical model considered. Furthermore,
nonlinearities of both functions might be considered as indirect effects of inhibitors
on the absorption and proliferation rates if we are not able to mathematically describe
their action; a hypothesis now in discussion concerns the inhibitory effects of certain
nutrients on cancer growth.

We assume that the function f(σ) = C(σ) − V (σ) is such that the consumption
of nutrients by the tumor is an increasing function of σ, while the transference rate,
as mentioned before, is a positive function. It is natural to assume that V ′(σ) ≤ 0,
because the diminution of the concentration of nutrients in the tumor increases the
transference rate as a compensation mechanism. We also assume that f(σ) ≥ 0, which
means that C(σ) ≥ V (σ), and we accept that f(σ) = 0 happens at a single value σ0.
So, we suppose that the absorption rate is increasing for σ ∈ (σ0, σ̄]. Therefore, if
σ > σ0, the consumption rate is greater than the transference rate, and the difference
between these rates decreases when the concentration of nutrients decreases. Our
assumptions on f appear to be natural and are similar to those of [3] if one considers
only proliferating cells.

In the nonnecrotic phase, we acknowledge that S is continuous and either that
it is monotonic on the interval [σ0, σ̄] or that it assumes only one local extreme on
this interval. But, supposing that the number of cells is growing when the nutrient
concentration is σ̄, it follows that S(σ̄) > 0. And assuming that S increases in a
neighborhood of σ̄, our analysis is done when S(σ) is either increasing on [σ0, σ̄] or
decreasing on [σ0,Λ] and increasing on [Λ, σ̄], Λ denoting the local minimum of S.
These hypotheses include those made in the papers already cited (in some cases, if
one considers only proliferating cells).

In the necrotic case, to render the presentation less complex, we assume that S
is continuous and increasing on the interval [σ0, σ̄].

2. The nonnecrotic problem. Putting λ := R2, the change of variables σλ(r)
= σR(rR) transforms the system (1.1)–(1.3), (1.5) into the boundary value problem
(BVP)

(2.1)

{
(r2σ′

λ)′ = λr2f(σλ), 0 < r < 1,

σ′
λ(0) = 0, σλ(1) = σ̄,

and the integral equation

(2.2) λ

∫ 1

0

S(σλ(r))r2dr = 0.

Hence, a stationary solution for the system (1.1)–(1.3), (1.5) is equivalent to a
pair (σλ, λ) satisfying (2.1)–(2.2). We note that (σ̄, 0) is a trivial stationary solution.

We will first solve (2.1) for all λ > 0 and then consider λ as a parameter in order
to find a solution for (2.2).

Remark 1. Since σnec is an experimentally obtained value, the relation between
σ0 and σnec is unclear: it may be, for example, σ0 < σnec < σ̄. Let the pair (σλ∗ , λ∗)
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denote a solution of the problem (2.1)–(2.2). Since (2.1) and (2.2) are handled sepa-
rately, the stationary solution for the nonnecrotic model makes sense only when σλ∗(r)
is above σnec. This condition is fulfilled, for instance, if σnec ≤ σ0 < σ̄; as we shall
see, σλ(r) > σ0 for all λ ≥ 0.

2.1. Stationary solutions for the nonnecrotic model. In this subsection
we collect some properties of the solution of (2.1)–(2.2) and present some estimates
on the stabilizing radius. The technical proofs are found in section 5.

Proposition 2.1. Suppose that f(σ) ∈ C1([σ0, σ̄]) is increasing and vanishes
only at σ = σ0. Then, for each λ ≥ 0, there exists exactly one solution σλ of the BVP
(2.1), which satisfies

(2.3) σ0 < σλ(r) ≤ σ̄ for all r ∈ [0, 1].

Furthermore,
(i) σλ is strictly increasing;
(ii) σλ is strictly convex, and

(2.4) σ′′
λ(r) ≥ σ′

λ(r)

r
> 0 for all r ∈ (0, 1];

(iii) if 0 ≤ λ1 < λ2, then σλ2
(r) ≤ σλ1

(r) for all r ∈ [0, 1];
(iv) the map λ �→ σλ is continuous; and
(v) limλ→∞ σλ(r) = 0 pointwise in [0, 1) and uniformly in closed intervals con-

tained in [0, 1).
The properties of uλ (monotonicity with respect to r and λ, convexity, and con-

vergence to σ0) are displayed in Figure 2.1.

Fig. 2.1. For each λ ≥ 0, the functions σλ are convex and increasing. The sequence {σλn}
converges uniformly to σ0 in compact subsets of [0, 1) when λn → ∞.

The uniqueness assertion in Proposition 2.1 rests on a form of the maximum
principle (see section 5), while existence is based on the method of sub- and superso-
lutions. A numerical implementation of this method is very simple (see the remark
below and subsection 2.3). The convexity of the solutions uλ makes it possible to
handle nonmonotonic proliferation rates.
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Remark 2. The method of sub- and supersolutions (see [12]) is valid under more
general hypotheses on f—for example, if f ∈ C([σ0, σ̄]) and if there exists a constant
k such that f(σ) − kσ is decreasing (a condition fulfilled by Lipschitz continuous f).
Its numerical implementation is simple (see also subsection 2.3): the method produces
solutions of (2.1) given as limits of two iterative sequences of the form {σn}∞n=1, where

(r2σ′
n+1)

′ − kλr2σn+1 = λr2 (f(σn) − kσn) ,

σ′
n+1(0) = 0, σn+1(1) = σ̄,

starting at σ1(r) ≡ σ0 and σ1(r) = σ̄, respectively. (Taking into account the unique-
ness of solutions, both sequences have the same limit.)

Let the pair (σλ∗ , λ∗) denote a solution of the problem (2.1)–(2.2) such that
λ∗ > 0. Then λ∗ is obtained as a zero of the equation I(λ) = 0, where the continuous
function I : [0,∞) → R is defined by

(2.5) I(λ) =

∫ 1

0

S(σλ(r))r2dr

and σλ is given by Proposition 2.1.
In this case, the pair (σR∗ , R∗) is a stationary solution for the system (1.1)–(1.3),

(1.5), where R∗ =
√
λ∗ is the stabilizing radius and σR∗(r) = σλ∗(r/R∗) for all

r ∈ [0, R∗].
The simplest way to ensure the existence of a zero for I(λ) is given by the following

theorem.
Theorem 2.2. If the continuous function S(σ) satisfies the condition

(2.6) S(σ0)S(σ̄) < 0,

then there exists at least one positive value λ∗ such that I(λ∗) = 0. Moreover, if S(σ)
is also monotonic, then λ∗ is unique.

Proof. Since

I(0) =

∫ 1

0

S(σ̄)r2dr =
S(σ̄)

3

and

lim
λ→∞

I(λ) =

∫ 1

0

S

(
lim
λ→∞

σλ(r)

)
r2dr =

S(σ0)

3
,

the existence of λ∗ is a consequence of the continuity of the function I(λ). Uniqueness
follows from the monotonicity of I(λ).

We now handle more general cases. The proof of the next result is based on a
geometrical construction that strongly depends on the convexity of σλ. (See section 5.)

Theorem 2.3. Suppose that, for some α ∈ (σ0, σ̄), S is nondecreasing on [α, σ̄]
and

(2.7)

∫ σ̄

α

S(σ)(σ − α)2dσ = 0.

Then there exists λ∗ > 0 such that I(λ∗) = 0. Moreover,

(2.8) 3
(σ̄ − α)

f(σ̄)
≤ λ∗ ≤ 6

(σ̄ − α)

f(α)
.
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Remark 3. Theorem 2.3 is also valid if S ∈ C([σ0, σ̄]) attains a minimum value
at σ = Λ ∈ (σ0, σ̄), decreasing if σ ∈ [σ0,Λ] and increasing if σ ∈ [Λ, σ̄]. In this
situation, if S(σ0) ≤ 0 < S(σ̄), we change (2.7) to

∫ σ̄

Λ

S(σ)(σ − Λ)2dσ ≤ 0.

The technique applied in the proof of Theorem 2.3 may also be used to obtain
bounds for λ∗, even when S does not satisfy (2.7). As an example we mention the
following proposition

Proposition 2.4. Suppose that the continuous function S(σ) is increasing and
satisfies S(σ0) < 0 < S(σ̄). Then

(2.9) λ∗ ≥ max

{
3(σ̄ − α)

f(σ̄)
,
6(σ̄ − β)

f(σ̄)

}
,

where

(2.10) α = min

{
ξ ∈ [σ0, σ̄] :

∫ σ̄

ξ

S(σ)(σ − ξ)2dσ ≥ 0

}

and

(2.11) β = min

{
η ∈ [σ0, σ̄] :

∫ σ̄

η

S(σ)
√
σ − ηdσ ≥ 0

}
.

Now we state the existence of solutions for (2.1)–(2.2) when neither (2.6) nor
(2.7) is satisfied. From now on we assume that the proliferation rate S ∈ C([σ0, σ̄])
attains a minimum value at σ = Λ ∈ (σ0, σ̄), decreasing if σ ∈ [σ0,Λ] and increasing
if σ ∈ [Λ, σ̄]. The proof of the result below is obtained by refining the technique used
to demonstrate Theorem 2.3. (See section 5.)

Theorem 2.5. Let S be as above. In addition, suppose that S(σ0) = 0 < S(σ̄)
and ∫ σ̄

σ0

S(σ)dσ ≤ 0.

Then there exists at least one λ∗ such that I(λ∗) = 0. Moreover,

(2.12) λ∗ ≥ 6
(σ̄ − Λ)

f(σ̄)
.

Remark 4. In the last theorem, we can exchange S for a function that increases
from σ0 to a maximum value Λ and then decreases from Λ to σ̄. But the form of S
stated in the theorem appears to be more natural under the model considered. (See
the comments below.)

2.2. Comments. If σ̃ stands for a constant, the logistic form

(2.13) S(σ) = sσ(1 − σ/σ̃)

was suggested by Byrne and Chaplain [5], the terms sσ (s > 0) and sσ2/σ̃ meaning
the birth and death rates, respectively.
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In this case we have S(σ) > 0 if σ ∈ (0, σ̃) and S(σ) < 0 if σ > σ̄. If we have
0 < σ0 < σ̃ < σ̄, there exists a stationary solution, since (2.6) is fulfilled. Assuming
that σ0 = 0 (which corresponds to an avascular tumor in [5]) and σ̄ > σ̃, Remark 4

leads to the existence of λ∗, provided that
∫ σ̄

σ0
S(σ)dσ > 0.

The proliferation rate (2.13) was not analytically studied in [5], but some numeri-
cal implementations were done just for comparison with the linear case. In one of these
implementations Byrne and Chaplain considered f(σ) = 2σ − 1.2 and σ0 = σ̃ = 0.6
and obtained that the evolutionary solutions do not converge to any stationary solu-
tion. (See Figure 3 in that paper.)

According to our analysis,

(2.14) 0 ≤ σ0 < σ̃ < σ̄

is a necessary condition for the existence of stationary solutions, since σλ(r) ∈ (σ0, σ̄]
for all λ ≥ 0 and r ∈ [0, 1]. So, our results show that it was predictable that no
stationary solution was to be found as a limit of the evolutionary solutions in the
numerical implementation done in [5].

But (2.13)–(2.14) does not appear to be natural: it implies that S(σ̄) < 0, that is,
that the proliferation rate is negative when the concentration of nutrients is maximal,
and S(σ) grows when this concentration decreases, until it reaches the maximum value
S(σ̃/2).

On the other hand, if we suppose a proliferation rate of the form

S(σ) = sσ
(σ
σ̃
− 1

)
,

then (2.14) is still a necessary condition for the existence of a stationary solution.
Remark 3 then implies the existence of at least one stationary solution if

0 < σ0 < σ̃ < σ̄ and

∫ σ̄

σ̃/2

σ
(σ
σ̃
− 1

)(
σ − σ̃

2

)2

dσ ≤ 0

or

σ0 = 0 < σ̃ < σ̄ and

∫ σ̄

σ0

σ
(σ
σ̃
− 1

)
dσ ≤ 0.

In the first case, we obtain from Theorem 2.3 the estimates

3
(σ̄ − α)

f(σ̄)
< λ∗ < 6

(σ̄ − α)

f(α)

if α ∈ (0, σ̄) is such that

(2.15)

∫ σ̄

α

σ
(σ
σ̃
− 1

)
(σ − α)2dσ = 0.

In the second case, we obtain from Theorem 2.5 the lower bound

λ∗ > 6
(σ̄ − σ̃/2)

f(σ̄)
.
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2.3. Numerical implementation. The approach used to solve problem (2.1)–
(2.2) naturally induces a numerical method to deal with the problem. The numerical
procedure described below was first intended to test our approach and to compare our
outputs with results given in other papers for linear rates. Since they were coherent,
we have in mind a rigorous analysis of our numerical method.

To exemplify how our theoretical approach leads to a numerical treatment of
(2.1)–(2.2), we take σ̄ = 1 and consider quadratic absorption and proliferation rates:

f(σ) = (σ − 0.3)(σ + 0.5), S(σ) = 4σ
(σ
σ̃
− 1

)
.

The values of σ̃ are calculated from the given values of α by the equation

σ̃ =
2(α2 + 3α + 6)

5(α + 3)
, 0 ≤ α ≤ 1,

which is equivalent to (2.15). So, to each α ∈ [0, 1) corresponds a unique σ̃ ∈ [0.8, 1).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1

−0.5

0

0.5

1

1.5

S(σ)

f(σ)

Fig. 2.2. In the case of σ̃ corresponding to α = 0.6, the graphs of f(σ) and S(σ) are displayed.

In Figure 2.2, the graphs of f(σ) and S(σ) are shown, while Figure 2.3 displays
I(λ) for α = 0.6, in the interval [λ1, λ2], where

λ1 =
3(σ̄ − α)

f(σ̄)
=

3(1 − α)

1.05

and

λ2 =
6(σ̄ − α)

f(α)
=

6(1 − α)

(α− 0.3)(α + 0.5)
.

The zero λ∗ of I(λ) is to be found in this interval, according to Theorem 2.3, and
is confirmed by our numerical outputs. The same coherent behavior was observed for
various values of α we have tested.

To approximate the functions σ∗ = σλ∗ we have used an iterative method based
on super- and subsolutions (see Remark 2), where two numerical sequences are gen-
erated, one departing from the subsolution and the other from the supersolution.
Both sequences converge to the unique stationary solution (see Proposition 2.1). One
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0.04

0.06

I(λ)

Fig. 2.3. For σ̃ corresponding to α = 0.6, the graph of I(λ) is displayed in the interval [λ1, λ2],
with λ1 ≈ 1.1428, λ2 ≈ 7.2727, and λ∗ ≈ 1.8967.

function of these sequences was chosen to represent the solution, when the distance
between the functions of each individual sequence and also between correspondent
elements of both sequences was less than 10−3. In each iteration, centered finite
difference was used in a uniform 100-point grid. A maximum of 9 iterations was nec-
essary in the “critical case” corresponding to the least possible value for α. We point
out, however, that we have made no rigorous error analysis for this iterative method.

A simple method was chosen to evaluate I(λ)—the trapezoidal rule in a 100-point
uniform grid. To find the zero λ∗ of I(λ), the bisection method with approximation
of the order of 10−3 was used.

We now compare our results with those obtained in [14]. In order to do that, we
consider, as in that paper, a linear case:

f(σ) = σ and S(σ) = σ − σ̃,

with σ0 = 0, σ̄ = 1, and 0 ≤ σ̃ < 1. It holds that

α = 4σ̃ − 3, λ1 = 12(1 − σ̃), and λ2 =
24(1 − σ̃)

4σ̃ − 3
for 0.75 < σ̃ < 1.

Theorem 2.3 ensures that

2.64 ≤ λ∗ ≤ 44 if σ̃ = 0.78

and

0.48 ≤ λ∗ ≤ 1.1429 if σ̃ = 0.96.

Using the numerical approach described above, we find

(2.16) λ∗ ≈ 4.7697 if σ̃ = 0.78

and

(2.17) λ∗ ≈ 0.6363 if σ̃ = 0.96.
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The value η =
√
λ∗ is obtained as a solution of an algebraic equation (see [14]),

namely,

(2.18) tanh(η) =
η

1 + Λη2
,

where Λ = σ̃/3 ∈ (0, 1/3). The approximate solutions of (2.18) are

λ∗ = η2 ≈ 4.7681 if σ̃ = 0.78

and

λ∗ = η2 ≈ 0.6362 if σ̃ = 0.96,

which are very close to our results, given by (2.16) and (2.17).
Friedman and Reitich [14] observed that the constant Λcrit = 0.2727 . . . satisfies

(2.19) η(Λ) <
1√
Λ

if Λcrit < Λ < 1/3,

where η(Λ) denotes the solution of (2.18) for Λ ∈ (0, 1/3). The estimate we have
obtained is

η(Λ) ≤ 2

√
3(1 − 3Λ)

4Λ − 1
if 0.25 < Λ <

1

3
.

Our estimate is not only valid in a larger interval than that described in (2.19) but
also better when Λ is very close to 1/3. For example, when Λ = 0.32, we have

2

√
3(1 − 3Λ)

4Λ − 1
≈ 1.3093 <

1√
Λ

≈ 1.76781.

3. The necrotic model. In the analysis of the necrotic phase of the tumor, as
in the nonnecrotic phase, we suppose that f(σ) > 0 for σ ∈ [σnec, σ̄]. (This means
that the rate of consumption overcomes the rate of transference of nutrients from
vasculature in that region.) Furthermore, we also assume that f vanishes only at
σ0 ∈ [0, σnec) and is nondecreasing on the interval [σ0, σ̄]. For simplicity, we assume
here that the proliferation rate S(σ) is continuous and increasing on the interval
[σ0, σ̄].

A stationary solution for the necrotic model is a triple (σ, ρnec, Rnec) such that
σ ∈ C1[0, 1] ∩ C2[0, ρ] ∩ C2[ρ, 1] satisfies σ(r) ≡ σnec for all r ∈ (0, ρ) and

(3.1)

⎧⎪⎨
⎪⎩

(r2σ′)′ = r2f(σ), ρnec < r < Rnec,

σ′(ρnec) = 0, σ(ρnec) = σnec, σ(Rnec) = σ̄,∫ Rnec

ρnec
S(σ(r))r2dr = μ(ρnec)

3.

(We assume σ0 < σnec ≤ σ̄; see Remark 1.)
As before, by making the change of variables r → rRnec, we transform (3.1) into

the equivalent boundary value problem

(3.2)

{
(r2σ′)′ = λr2f(σ), ρ < r < 1,

σ′(ρ) = 0, σ(ρ) = σnec, σ(1) = σ̄,
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and the integral equation

(3.3)

∫ 1

ρ

S(σ(r))r2 = μρ3,

where λ = R2
nec and ρ = ρnec/Rnec < 1. Therefore, a stationary solution is still given

by a triple (σ(r), ρ, λ), which solves (3.2)–(3.3).

3.1. Stationary solutions for the necrotic model. In this subsection we give
conditions for the existence of solutions of (3.2). Our approach is basically the one
used to handle the nonnecrotic case, but now we treat both λ and the inner radius ρ as
parameters. The proofs of the next two results are similar to that of Proposition 2.1.

Lemma 3.1. Let ρ ∈ [0, 1) be fixed. Then the following hold:
(i) For each λ ∈ (0,∞), there exists a unique σλ ∈ C2[ρ, 1] satisfying

(3.4)

{
(r2σ′

λ)′ = λr2f(σλ), ρ < r < 1,

σ′
λ(ρ) = 0, σλ(1) = σ̄.

Furthermore, if λ > 0, then σλ is (strictly) increasing and strictly convex and
satisfies

(3.5) σ0 < σλ(r) ≤ σ̄ for all r ∈ [ρ, 1].

(ii) The application λ �−→ σλ from [0,∞) to C[ρ, 1] is continuous and nonin-
creasing; that is, σλ1 ≥ σλ2 if 0 ≤ λ1 < λ2.

(iii) limλ→∞ σλ = σ0 uniformly on each closed interval contained in [ρ, 1).
Since σ0 < σnec ≤ σ̄, property (iii) of Lemma 3.1 associates each ρ ∈ [0, 1) to a

unique λ = λρ so that σλρ(ρ) := σρ(ρ) = σnec. We stress that the localization of the
zero σ0 of the function f is critical for the existence of a stationary solution: it is
impossible to find a solution satisfying σ(ρ) = σnec, if σnec ≤ σ0.

Theorem 3.2. For each ρ ∈ [0, 1) there exist a unique λρ > 0 and a unique
function σρ ∈ C2[0, 1]∩C2[0, ρ]∩C2[ρ, 1] such that σρ(r) := σnec for all r ∈ [0, ρ) and

(3.6)

{
(r2σ′

ρ)
′ = λρr

2f(σρ), ρ < r < 1,

σ′
ρ(ρ) = 0, σρ(ρ) = σnec, σρ(1) = σ̄.

Furthermore, the maps

ρ ∈ [0, 1) �→ σρ ∈ C[0, 1] and ρ ∈ [0, 1) �→ λρ ∈ (0,∞)

are continuous and satisfy the following:
(i) ρ �→ σρ is nonincreasing:

0 ≤ ρ1 < ρ2 ⇒ σρ1(r) ≥ σρ2(r) for all r ∈ [0, 1].

(ii) ρ �→ λρ is (strictly) increasing and

(3.7) lim
ρ→1

λρ = ∞.

Remark 5. When ρ = 0, we will denote λρ by λnec and the corresponding solution
σρ by σλnec . So,

(r2σ′
λnec

)′ = λnecr
2f(σλnec), 0 < r < 1,

σ′
λnec

(0) = 0, σλnec(0) = σnec, σλnec(1) = σ̄.
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We stress that σλnec
is also a solution of the boundary value problem (2.1) for λ = λnec.

Since the differential equation (3.2) is solved, let us now consider the integral
equation (3.3). For this, we define

J(ρ) =

∫ 1

ρ

S(σρ(r))r
2dr − μρ3 for ρ ∈ [0, 1).

We will show how the nonnecrotic model brings information to the necrotic model.
For this, we assume1 that the proliferation rate S(σ) is a continuous, nondecreasing
function of the nutrient concentration σ.

Theorem 3.2 implies that the function J is continuous and nonincreasing. The
existence of a uniform bound for S(σρ) with respect to ρ implies that

(3.8) lim
ρ→1−

J(ρ) = −μ < 0.

According to Remark 5, we have

(3.9) J(0) = I(λnec),

where the function I is defined by (2.5). So, (3.2)–(3.3) has a solution (σ(r), ρ, λ)
with ρ > 0 if and only if I(λnec) > 0 (since λnec corresponds to ρ = 0, a nonnecrotic
solution).

As a consequence, we have the following result on the existence and uniqueness
of stationary solutions.

Theorem 3.3. Suppose that (σλ∗ , λ∗) is a solution of (2.1)–(2.2). Denote σλ∗(0)
by σ∗. There exists a (unique) solution of (3.2)–(3.3) if and only if σ∗ < σnec.

Proof. We have J(0) = I(λnec) > 0 = I(λ∗) if and only if λnec < λ∗, an inequality
that is equivalent to σ∗ < σnec.

Theorem 3.3 depends on the solution of (2.1)–(2.2), which can be numerically
obtained. A more intrinsic criterion is given by the following proposition.

Proposition 3.4. Suppose that S(σ0) < 0 < S(σ̄). Let σ̃ denote the zero of the
function S (that is, the value of the nutrient concentration at which the rates of birth
and death are equal). If σnec ≥ σ̃, then there exists a unique solution of (3.2)–(3.3).

Proof. Theorem 2.2 ensures the existence of a (unique) pair (σλ∗ , λ∗) that solves
(2.1)–(2.2). The inequality S(σ) ≥ 0 for all σ ∈ [σ̃, σ̄] implies I(λ) > 0 for all λ such
that σλ(0) ≥ σ̃. Therefore, I(λnec) > 0.

Remark 6. Comparing Proposition 3.4 with Theorem 3.3, we see that existence
of stationary solutions is possible even when σnec < σ̃.

(a) Imitating the proof of Theorem 2.3, it can be shown that if there exists
α ∈ (σ0, σ̄) such that

(3.10)

∫ σ̄

α

S(σ)(σ − α)2dσ = 0,

then α ≤ σ∗ (thus there is no stationary solution for the necrotic model if
σnec ≤ α) and there is a (unique) stationary solution when σnec ≥ kα :=

σ̄ − (σ̄−α)
2

f(α)
f(σ̄) . Moreover, we obtain a lower bound for the outer radius

1The same technique also copes with more general proliferation rates.
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Rnec =
√
λρ∗ of the stationary solution in terms of the parameters σnec and

σ̄, which are intrinsic to the tumor:

λρ∗ ≥ 6(σ̄ − σnec)

f(σ̄)
.

In addition, if the constant μ in (3.3) fulfills the condition

μ ≥ 1

(σnec − α)3

∫ σnec

α

|S(σ)|(σ − α)2dσ,

the following bounds for the inner and outer radii are true:

ρ∗ ≤ ρα :=
σnec − α

σ̄ − α

and

λρ∗ ≤ 6(σ̄ − α)

f(α)(1 − ρ3
α)

.

Let us now consider the linear case f(σ) = σ and S(σ) = σ − σ̃, as studied
in [6, 10]. Then kα is an improvement on the result given by Proposition 3.4.
More precisely, if

σ̃ ∈
(

7σ̄

8
, σ̄

)
,

then kα < σ̃ and we still have existence of stationary solutions for σnec ≥ kα.
A result of this type was obtained in [10].

(b) We can also improve Proposition 3.4 by following closely the proofs of Theo-
rem 2.3 and Proposition 2.4. In fact, suppose that S(σ0) < 0 < S(σ̄). Let us
denote

λ̄ := max

{
3(σ̄ − α)

f(σ̄)
,
6(σ̄ − β)

f(σ̄)

}
,

where α and β are given by (2.10) and (2.11), respectively. If we define
γ ∈ [σ0, σ̄] as the unique solution of

γ +
λ̄

6
f(γ) = σ̄,

it can be shown that there exists a (unique) stationary solution if σnec ≥ γ.
Besides, the outer radius is bounded by

λρ∗ ≥ 6(σ̄ − σnec)

f(σ̄)
.

If the constant μ is such that

μ ≥ 1

(σnec − γ)3

∫ σ̄

σnec

S(σ)(σ − γ)2dσ,

then

ρ∗ ≤ ργ :=
σnec − γ

σ̄ − γ
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and

λρ∗ ≤ λ̄

6(1 − ργ)2
.

Considering, as before, f(σ) = σ and S(σ) = σ − σ̃, this constant γ is an
enhancement in Proposition 3.4 if σ̃ ∈

(
3
5 σ̄, σ̄

)
.

4. Conclusions. Rigorous analysis of the model given by the system (1.1)–(1.3),
(1.5) was made considering only its stationary solutions. A realistic class of nonlinear
absorption and proliferations rates has also been regarded. Our procedure also takes
into account the results proved in this work and seems to be justified.

Dealing with nonlinear absorption and proliferation rates is not a simple task:
even the existence of stationary solutions for the model is questionable, while an
explicit stationary solution is available for its linear version.

Considering the nonnecrotic model, the chosen approach proved to be effective.
It was shown that a stationary solution is possible in many situations, and bounds for
the stabilizing radius were obtained. Comparing our result with that in other papers,
where only linear absorption and proliferations rates were considered, our bounds are
noteworthy.

Studying a nonnecrotic tumor, Byrne and Chaplain [5] considered a linear absorp-
tion rate and a nonlinear proliferation rate in a numerical implementation and looked
for a stationary solution as a limit of evolutionary solutions. Taking into account the
bounds for the stabilizing radius given in this paper, we easily concluded that the nu-
merical implementation done in that paper was destined to fail. This shows that prior
knowledge of the possibility of a stationary solution has practical implications. Of
course, similar circumstances are plausible in the mathematical analysis of a situation
in biomedical praxis.

On the nonnecrotic model, however, the principal contribution of our paper is
given by the ease of its computational implementation, as exemplified in section 2.3.

The major contribution of this paper involves the stationary solutions of the
necrotic model (3.2)–(3.3). It concerns the analysis of the intertwining of the nonne-
crotic and necrotic models. Results from the nonnecrotic model are decisive for the
study of the necrotic model: the (numerically obtainable) constant σ∗ conclusively
settles the possibility of existence of a stationary solution. Once more, the biomedical
consequences of this result are remarkable.

Of course, since the evolution equation has not been considered for nonlinear rates,
the results of this paper are given as possibilities and not as predictions. However,
in [4] we prove the stability of the stationary solution in the quasi-stationary case.
This shows that the outcomes of this paper are most likely valid in praxis.

5. Proofs. For the convenience of the reader, we state the following form of the
maximum principle, which is a fundamental tool in the demonstration of our results.
Its proof is a simple exercise.

Lemma 5.1. Suppose that w ∈ C2([ρ, 1],R) satisfies

(r2w′)′ = φ(r) + h(r)w, ρ < r < 1,

w′(ρ) ≥ 0,
(5.1)

where φ and h are continuous functions, with h ≥ 0 on [ρ, 1].
(i) If w(1) ≤ 0 and φ ≥ 0 on [ρ, 1], then maxw ≤ 0;
(ii) if w(ρ) ≥ 0 and φ > 0 on [ρ, 1], then minw = w(ρ) ≥ 0.
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Proof of Proposition 2.1. For each λ ≥ 0, the constant functions σ ≡ σ0 and
σ ≡ σ̄ are sub- and supersolutions of the BVP (2.1), respectively. Hence, there exists
at least one solution σλ ∈ C2([0, 1]) for this problem, satisfying

σ0 ≤ σλ(r) ≤ σ̄ for all r ∈ [0, 1].

Lemma 5.1 brings in the uniqueness of σλ. In fact, if σ1, σ2 ∈ C2([0, 1]) are two
solutions of this problem, w := σ1 − σ2 and −w satisfy

(r2w′)′ = h(r)w, 0 < r < 1,

w′(0) = 0 = w(1),

where

h(r) = λr2

∫ 1

0

f ′(ξσ1(r) + (1 − ξ)σ2(r))dξ ≥ 0.

By integrating (2.1) once, we obtain (i). Uniqueness for the initial value problem
implies that σ0 < σλ(0). Combining this with (i), we obtain σ0 < σλ(r) for all
r ∈ [0, 1]. Inequality (ii) results by substituting (i) into (2.1).

We obtain (iii) by using again Lemma 5.1. The continuity of the map λ �→ uλ is
proved by integrating (2.1) twice and then considering an increasing sequence (λn) in
[0,∞) such that λn ↗ λ∞ ∈ [0,∞]. We define

σ∞(r) = lim
n→∞

σn(r) = inf
λ≥0

σλ(r) for all r ∈ [0, 1].

Application of the Arzela–Ascoli theorem produces the result if λ∞ < ∞ (considering
also a decreasing subsequence). If λ∞ = ∞, the dominated convergence theorem
shows that σ∞ = σ0 almost everywhere in [0, 1]. A simple argument proves then that
the convergence is uniform on each closed interval of [0, 1).

Proof of Theorem 2.3. Taking into account Proposition 2.1, the function ψ(λ) =
σλ(0) is continuous and nonincreasing. It follows easily that ψ is onto (σ0, σ̄]. There-
fore, there exists at least one λα > 0 such that ψ(λα) = α.

The graph of the function

v(r) = α + (σ̄ − α)r

is the straight line through the points (0, α) and (1, σ̄). Since σλα is strictly convex,
for all r ∈ [0, 1] we have

(5.2) α ≤ σλα
(r) ≤ v(r) ≤ σ̄.

Now, let us consider the auxiliary function φ(λ) = σ′
λ(1) for λ ≥ 0. The contin-

uous function φ clearly satisfies φ(0) = 0. We claim that φ(∞) = ∞. In fact, from
(2.4) we obtain

rσ′
λ(1) ≥ σ′

λ(r) for all 0 < r < 1.

Integration of the last inequality produces

(5.3) σ′
λ(1)

(
1 − r2

2

)
≥ σ̄ − σλ(r), 0 < r < 1.
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Fig. 5.1. The geometrical construction in Theorem 2.3: α ≤ σλα (r) ≤ v(r) ≤ σλ1
(r) ≤ σ̄.

Consequently,

lim
λ→∞

φ(λ) ≥ lim
λ→∞

2(σ̄ − σλ(r))

1 − r2
=

2(σ̄ − σ0)

1 − r2
for each r ∈ [0, 1).

The claim results by making r → 1−.
Ergo, there exists λ1 > 0 such that φ(λ1) = σ̄ − α. The convexity of σλ1

implies
that

(5.4) σλ1
(r) ≥ (σ̄ − α)r + α = v(r), r ∈ [0, 1].

Combining (5.2) and (5.4) yields (see Figure 5.1)

α ≤ σλα(r) ≤ v(r) ≤ σλ1
(r) ≤ σ̄ for all r ∈ [0, 1].

Hence,

(5.5)

∫ 1

0

S(σλα(r))r2dr ≤
∫ 1

0

S(v(r))r2dr ≤
∫ 1

0

S(σλ1(r))r
2dr.

Since ∫ 1

0

S(v(r))r2dr =
1

(σ̄ − α)3

∫ σ̄

α

S(σ)(σ − α)2dσ = 0,

inequality (5.5) means that

I(λα) ≤ 0 ≤ I(λ1).

The existence of λ∗ ∈ [λ1, λα] such that I(λ∗) = 0 follows then by continuity.
Now we obtain the estimates (2.8). Since α = σλα(0) ≤ σλα(r) and

σλα(0) = σ̄ − λα

∫ 1

0

∫ θ

0

(s
θ

)2

f(σλα(s))dsdθ,

we have

α ≤ σ̄ − λα

6
f(α) ≤ σ̄ − λ∗

6
f(α),
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thus showing the upper bound for λ∗.
On the other hand, since

σ′
λ1

(0) = φ(λ1) = σ̄ − α = λ1

∫ 1

0

s2f(σλ1(s))ds,

we find

σ̄ − α ≤ λ1f(σ̄)

∫ 1

0

s2ds <
λ∗
3
f(σ̄),

from which we obtain the lower bound.
Proof of Proposition 2.4. Proposition 2.2 brings in existence and uniqueness of

λ∗. Since S(σ̄) > 0,

(5.6)

∫ σ̄

ξ

S(σ)(σ − ξ)2dσ ≥ 0 for all ξ near σ̄.

So, for each ξ as above, we repeat the construction of the last proof to find

I(λ1) ≥
∫ 1

0

S(v(r))r2dr =
1

(σ̄ − ξ)3

∫ σ̄

ξ

S(σ)(σ − ξ)2dt ≥ 0,

showing that λ1 ≤ λ∗. Because of that,

σ̄ − ξ ≤ λ1f(σ̄)

∫ 1

0

s2ds ≤ λ∗
3
f(σ̄)

implies the lower bound

λ∗ ≥ 3
(σ̄ − ξ)

f(σ̄)
.

But the same function S also satisfies

(5.7)

∫ σ̄

η

S(σ)
√
σ − ηdσ ≥ 0 for all η near σ̄.

Let λη > 0 be such that σ′
λη

(1) = 2(σ̄ − η). From (5.3) we obtain

σλη (r) ≥ σ̄ −
σ′
λη

(1)

2
(1 − r2) = η + (σ̄ − η)r2,

and, since S(σ) is increasing and

∫ 1

0

S(η + (σ̄ − η)r2)r2dr =
1

2 (σ̄ − η)
3/2

∫ σ̄

η

S(σ)
√
σ − ηdσ ≥ 0,

we conclude that I(λη) ≥ 0. The monotonicity of S then implies that λ∗ ≥ λη.
Accordingly,

2(σ̄ − η) = σ′
λη

(1) = λη

∫ 1

0

s2f(σλη (s))ds ≤ λ∗f(σ̄)

3
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implies the bound

λ∗ ≥ 6(σ̄ − η)

f(σ̄)
.

Collecting the two estimates, we obtain (2.9).

Proof of Theorem 2.5. Since I(0) = S(σ̄)/3 > 0 and limλ→∞ I(λ) =
∫ 1

0
S(σ0)r

2dr
= 0, it suffices to verify that I(λ) tends to zero by negative values.

Fix λΛ > 0 such that σλΛ
(0) = Λ. The monotonicity of σλ(r) with respect to λ

and to r ensures the existence of a unique rλ ∈ (0, 1) such that σλ(rλ) = Λ for all
λ ≥ λΛ. Denote by Γ the function whose graph is the straight line through the points
(rλ,Λ) and (1, σ̄). Since the functions σλ are strictly convex, Γ(r) > σλ(r) if r > rλ
and Γ(r) < σλ(r) if r < rλ. Now, for each λ ≥ λΛ, let (sλ, σλ(0)) be the point where
the horizontal line σ = σλ(0) ≤ Λ intersects Γ (see Figure 5.2).

Fig. 5.2. The geometrical construction in Theorem 2.5: sλ = σ̄−σλ(0)
σ̄−Λ

rλ − Λ−σλ(0)
σ̄−Λ

< rλ.

So, Γ is given by

Γ(r) = σλ(0) +
σ̄ − σλ(0)

1 − sλ
(r − sλ),

where

sλ =
σ̄ − σλ(0)

σ̄ − Λ
rλ − Λ − σλ(0)

σ̄ − Λ
< rλ.

From Proposition 2.1 we deduce that

lim
λ→∞

sλ = lim
λ→∞

rλ = 1.

Let us define the auxiliary function

(5.8) vλ(r) =

{
σλ(0) if 0 ≤ r ≤ sλ,

σλ(0) + σ̄−σλ(0)
1−sλ

(r − sλ) if sλ ≤ r ≤ 1.

Thus, vλ coincides with the horizontal line σ = σλ(0) for 0 ≤ r ≤ sλ and with Γ for
sλ ≤ r ≤ 1.
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For 0 ≤ r ≤ rλ we have vλ(r) ≤ σλ(r). Since S is decreasing in [0,Λ], we have
S(σλ(r)) < S(vλ(r)) for all r ∈ [0, rλ]. On the other hand, we have vλ(r) ≥ σλ(r)
if rλ ≤ r ≤ 1. Since S is increasing in the interval [Λ, σ̄], we have that S(σλ(r)) ≤
S(vλ(r)) for all r ∈ [rλ, 1]. We deduce that

S(σλ) ≤ S(vλ) on [0, 1].

For all λ ≥ λΛ, it follows that

I(λ) ≤
∫ 1

0

S(vλ(r))r2dr

=

∫ sλ

0

S(vλ(r))r2dr +

∫ 1

sλ

S(vλ(r))r2dr

= S(σλ(0))
s3
λ

3
+

∫ 1

sλ

S(vλ(r))r2dr.

Since S is decreasing for [σ0, σλ(0)] ⊂ [σ0,Λ] and S(σ0) = 0, we have

S(σλ(0))s3
λ/3 ≤ 0 for all λ ≥ λΛ.

Therefore,

I(λ) ≤
∫ 1

sλ

S(vλ(r))r2dr for all λ ≥ λΛ.

Making use of (5.8), we obtain∫ 1

sλ

S(vλ(r))r2dr = (1 − sλ)p(λ),

where

p(λ) =
1

(σ̄ − σλ(0))
3

∫ σ̄

σλ(0)

S(σ)[(1 − sλ)σ + σ̄sλ − σλ(0)2]dσ.

Since sλ → 1 and σλ(0) → σ+
0 when λ → ∞, we have

lim
λ→∞

p(λ) =
1

σ̄ − σ0

∫ σ̄

σ0

S(σ)dσ ≤ 0.

Consequently,

I(λ) ≤ (1 − sλ)p(λ) ≤ 0

for all λ ≥ λΛ large enough, since (1−sλ) > 0 for all λ ≥ λΛ. This shows the existence
of λ∗ > λΛ such that I(λ∗) = 0.

Furthermore, since Λ = σλΛ(0) and

Λ = σλΛ(0) = σ̄ − λΛ

∫ 1

0

∫ θ

0

(s/θ)2f(σλΛ(s))dsdθ ≥ σ̄ − λ∗
6
f(σ̄),

we obtain the lower bound (2.12) for λ∗.
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RECONSTRUCTING DISCONTINUITIES USING COMPLEX
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Abstract. In this paper we provide a framework for constructing general complex geometrical
optics solutions for several systems of two variables that can be reduced to a system with the Laplacian
as the leading order term. We apply these special solutions to the problem of reconstructing inclusions
inside a domain filled with known conductivity from local boundary measurements. Computational
results demonstrate the versatility of these solutions to determine electrical inclusions.
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1. Introduction. Inverse boundary value problems are a class of inverse prob-
lems where one attempts to determine the internal parameters of body by making
measurements only at the surface of the body. A prototypical example that has re-
ceived a lot of attention is electrical impedance tomography (EIT). In this inverse
method one would like to determine the conductivity distribution inside a body by
making voltage and current measurements at the boundary.

There are many applications of EIT ranging from early breast cancer detection [32]
to geophysical sensing for underground objects; see [18], [24], [25], [27]. The article [28]
and the ones reviewed in [29] assume that the measurements are made on the whole
boundary. However, it is often possible to make the measurements only on part of the
boundary; this is the partial data problem. This is the case for the applications in
breast cancer detection and geophysical sensing mentioned above.

The boundary information is encoded into the Dirichlet-to-Neumann map associ-
ated with the conductivity equation. More precisely, let Ω be an open bounded domain
with smooth boundary in R

d with d = 2 or 3. Assume that γ(x) > 0 in Ω possesses
a suitable regularity. The conductivity equation is described by the following elliptic
equation:

(1.1) ∇ · (γ(x)∇u) = 0 in Ω.

For an appropriate function f defined on ∂Ω, there exists a unique solution u(x) to
the boundary value problem for (1.1) with Dirichlet condition u|∂Ω = f . Thus, one
can define a map Λγ sending the Dirichlet data to the Neumann data by

Λγ(f) = γ
∂u

∂ν

∣∣∣
∂Ω

.
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The map Λγ is the Dirichlet-to-Neumann map associated with the conductivity equa-
tion (1.1). It is worth mentioning that even though (1.1) is linear, the map Λγ depends
nonlinearly on γ. The famous Calderón problem is to determine γ from the knowledge
of Λγ .

In [3], Calderón studied this inverse problem by linearizing the fully nonlinear
problem around a constant conductivity function. To attack this linearized prob-
lem, Calderón introduced harmonic functions of the form ex·ρ with ρ ∈ C

n and
ρ ·ρ = 0, which is the genesis of complex geometrical optics (CGO) solutions since the
phase function x ·ρ is complex-valued. Inspired by Calderón’s approach, Sylvester and
Uhlmann [28] solved the uniqueness question of Calderón’s problem for smooth con-
ductivities by constructing CGO solutions for (1.1). Since the conductivity equation
(1.1) is closely related to the Schrödinger equation (see (2.2)), it suffices to construct
CGO solutions for the Schrödinger which are of the form u(x) = ex·ρ(1 + r(x, ρ)),
where r is decaying in |ρ|. To motivate the name of the solution, we write

(1.2) u(x) = eih
−1x·(ω1+iω2)(1 + hr̃),

where h = |ρ|−1, i(ω1 + iω2) = |ρ|−1(Reρ + iImρ), and r̃ = h−1r = |ρ|r. The form
(1.2) is analogous to the geometrical optics solution for the wave propagation equa-
tion in which the phase function is real-valued. Here the phase function in (1.2) is
complex-valued. Nevertheless, it is linear. CGO solutions have been used in EIT and
have been instrumental in solving several inverse problems. We will not review these
developments in detail here; see [30] and [29] for references; other reviews in EIT are
[1], [2], and [4].

Recently, new CGO solutions that are useful for the partial data problem were
constructed in [20] for the conductivity equation and zeroth order perturbations of
the Laplacian. The real parts of the phase of these solutions are limiting Carleman
weights. They have been generalized to first order perturbation of the Laplacian for
scalar equations or systems in [5], [9], [26], and [31]. Constructions of CGO solutions
for the conductivity equation and zeroth order perturbations of the Laplacian using
hyperbolic geometry can be found in [16], [17]; these have been applied to determine
electrical inclusions in [10].

In two dimensions, when the underlying equation has the Laplacian as the lead-
ing part, due to the rich conformal structure, we have more freedom of choosing the
complex phases for the CGO solutions. In particular any harmonic function is a lim-
iting Carleman weight and can be the real part of a CGO solution. The aim of the
paper is to provide a framework for constructing these solutions for several systems
of two variables that can be reduced to a system with the Laplacian as the leading
term. We apply these special solutions to the problem of reconstructing inclusions
inside a domain filled with known conductivity from local boundary measurements.
We also provide numerical results to demonstrate the applicability and flexibility of
these special solutions.

From now on, we consider the case d = 2, i.e., the R
2 plane. Let n ∈ N and denote

U(x) = (u1(x1, x2), . . . , un(x1, x2))
�. We consider the following system of equations:

(1.3) PU := ΔxU + A1(x)∂x1
U + A2(x)∂x2

U + Q(x)U = 0 in Ω,

where Δx = ∂2
x1

+ ∂2
x2

and A1, A2, Q are n × n matrices whose regularities will be
specified later. The system (1.3) contains all scalar or two-dimensional physical sys-
tems that can be reduced to a system with the Laplacian as the leading part. Those
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systems include the conductivity equation, the magnetic Schrödinger equation, the
two-dimensional isotropic elasticity system, the two-dimensional Stokes system, etc.
In this paper we first study CGO solutions with special phase functions for (1.3).

In the papers [20], [5], [9], [10], [17], [26], and [31], the real parts of the phase
functions are radial functions. These can be used to probe the region with spherical
fronts, the so-called complex spherical waves. Even though these solutions are better
suited for the local data problem than the usual CGO solutions with linear phase
functions, they are still quite restrictive. Fortunately, in the two-dimensional case,
we have many more choices of phase functions. For example, let ϕ(x) be a harmonic
function with nonvanishing gradient in Ω; then ϕ + iψ can be the phase function of
the CGO solutions when ψ is a harmonic conjugate of ϕ. In other words, ρ(x) :=
ϕ(x) + iψ(x) is holomorphic in Ω. Our method in this paper is developed based on
this idea.

Using the CGO solutions, we can consider the problem of finding embedded in-
clusions in a known medium. This is the object identification problem. The method
developed here shares the same spirit as Ikehata’s enclosure method [11], [12]. For
the two-dimensional problem, we would like to mention a very interesting result by
Ikehata in [14], where he introduced the Mittag–Leffler function in the object identi-
fication problem. This has the property that its modulus grows exponentially in some
cone and decays to zero algebraically outside the same cone. Using the Mittag–Leffler
function and shrinking the opening angle of the cone, one can reconstruct precisely
the shapes of some embedded objects such as star-shaped objects. The numerical
implementation of the Mittag–Leffler functions was carried out by Ikehata and Sil-
tanen in [15]. The main restriction of the method using the Mittag–Leffler function
is that it can be applied only to scalar equations with a homogeneous background.
That is, they probe the region with harmonic functions. The novelty of our method
is its flexibility in treating scalar equations, or even two-dimensional systems, with
an inhomogeneous background. Furthermore, for the object identification problem in
such general systems, using our special CGO solutions, we are able to reconstruct
the precise information of some embedded objects including star-shaped regions by
boundary measurements. This identification result is similar to that in [14] and [15],
where only the Laplace equation is treated. So, in theory, our reconstruction method
with these CGO solutions is in greater generality. In this paper, we are developing
the foundational work to treat the case of an inhomogeneous background and also to
deal with the case of systems. Moreover, we give numerical evidence that the method
works in the homogeneous case.

Before going further, we also would like to compare our method with that in [10].
As we have pointed out above, the real parts of the phase functions of CGO solutions
in [10] are radially symmetric. So their probing fronts are circles or spheres. Moreover,
the construction of CGO solutions in [10] is based on the hyperbolic geometry. It has
not been developed for studying more general equations or systems. The advantage
of our method lies in the freedom of choosing the phase functions of CGO solutions.
One useful example is to take ρ(x) as a polynomial. By increasing the degree of the
polynomial, we can narrow our probing fronts. Consequently, we are able to determine
more information in the object identification problem in the two-dimensional case
than [10] does. On the other hand, since the real parts of the phase functions in
our CGO solutions are not necessarily radially symmetric, we can create different
probing fronts by simply rotating the phase functions. Like [10], we can also localize
the measurements in an arbitrarily small region on the boundary. Here the local data
means that the Dirichlet condition is nonzero only on a small part of the boundary.
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On the same region, we measure the Neumann condition. In theory, the nonzero part
of the Dirichlet data can be taken as small as we wish.

Our construction of CGO solutions with more general phases is rather elementary.
The main idea is to transform CGO solutions with linear phases by suitable conformal
mappings. The construction of CGO solutions with linear phases for (1.3) was first
given by Nakamura and Uhlmann in [21], [22], where they introduced the intertwining
technique in handling the first order terms (also see [7] for similar results). Here we
shall use Carleman’s technique to construct CGO solutions with linear phases for
(1.3).

This paper is organized a follows. In section 2, we give concrete examples of (1.3).
In section 3, we review of the construction of CGO solutions with linear phases for
(1.3). CGO solutions with more general phases will be discussed in section 4. For an
application of CGO solutions with general phases, we consider the problem of recon-
structing inclusions embedded into a domain with known conductivity by boundary
measurements. Numerical experiments of our method are presented in section 6.

2. Physical examples of (1.3).

2.1. Conductivity equation. Our first example is the well-known conductivity
equation already given in the previous section. Let γ(x) ∈ C2(Ω̄) and γ(x) > 0 for all
x ∈ Ω̄. We consider the equation

(2.1) ∇ · (γ∇u) = 0 in Ω.

Introducing the new variable v = γ1/2u, (2.1) is equivalent to

(2.2) (Δ + q)v = 0 in Ω

with q = −Δγ1/2/γ1/2 ∈ L∞(Ω). Equation (2.2) is a Schrödinger-type equation. We
can also consider a more general Schrödinger-type equation with a convection term:

(2.3) (Δ + a(x) · ∇ + q)v = 0 in Ω,

where a = (a1, a2).

2.2. Isotropic elasticity. The domain Ω is now modeled as an inhomogeneous,
isotropic, elastic medium characterized by the Lamé parameters λ(x) and μ(x). As-
sume that λ(x) ∈ C2(Ω), μ(x) ∈ C4(Ω), and the following inequalities hold:

(2.4) μ(x) > 0 and λ(x) + 2μ(x) > 0 ∀ x ∈ Ω (strong ellipticity).

We consider the static isotropic elasticity system without sources

(2.5) ∇ · (λ(∇ · u)I + 2μS(∇u)) = 0 in Ω.

Here and below, S(A) = (A + AT )/2 denotes the symmetric part of the matrix A ∈
C

2×2. Equivalently, if we denote σ(u) = λ(∇ · u)I + 2μS(∇u) the stress tensor, then
(2.5) becomes

∇ · σ = 0 in Ω.

On the other hand, since the Lamé parameters are differentiable, we can also write
(2.5) in the nondivergence form

(2.6) μΔu + (λ + μ)∇(∇ · u) + ∇λ∇ · u + 2S(∇u)∇μ = 0 in Ω.
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We will use the reduced system derived by Ikehata [13]. This reduction was also
mentioned in [29]. Let

(w
g

)
satisfy

(2.7) Δ

(
w
g

)
+ A(x)

(
∇g
∇ · w

)
+ Q(x)

(
w
g

)
= 0,

where

A(x) =

(
2μ−1/2(−∇2 + Δ)μ−1 −∇ logμ

0 λ+μ
λ+2μμ

1/2

)

and

Q(x) =

(
−μ−1/2(2∇2 + Δ)μ1/2 2μ−5/2(∇2 − Δ)μ ∇μ

− λ−μ
λ+2μ (∇μ1/2)T −μΔμ−1

)
.

Here ∇2f is the Hessian of the scalar function f . Then

u := μ−1/2w + μ−1∇g − g∇μ−1

satisfies (2.6). A similar form was also used in [7] for studying the inverse boundary
value problem for the isotropic elasticity system.

2.3. Stokes system. Let μ(x) ∈ C4(Ω̄) and μ(x) > 0 for all x ∈ Ω̄. Here μ
is called the viscosity function. Suppose that u = (u1, u2) and p satisfy the Stokes
system

(2.8)

{
∇ · (μS(∇u)) −∇p = 0 in Ω,

∇ · u = 0 in Ω.

Here u and p represent the velocity field and the pressure, respectively. Motivated by
the isotropic elasticity, we set u = μ−1/2w + μ−1∇g − (∇μ−1)g and

(2.9) p = ∇μ1/2 · w + μ1/2∇ · w + 2Δg = ∇ · (μ1/2w) + 2Δg;

then (u, p) is a solution of (2.8), provided
(w

g

)
satisfies

(2.10) Δ

(
w
g

)
+ A(x)

(
∇g
∇ · w

)
+ Q(x)

(
w
g

)
= 0

with

A(x) =

(
−2μ1/2∇2μ−1 −μ−1∇μ

0 μ1/2

)

and

Q =

(
−2μ−1/2∇2μ1/2 − μ−1/2Δμ1/2 −4∇2μ−1∇μ1/2 − 2μ1/2∇ · (∇μ−1)

μ(∇μ−1/2)T −μΔμ−1

)
.
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3. CGO solutions with linear phases. In this section we review the method of
constructing CGO solutions with linear phases using Carleman estimates. We consider
a slightly different system here. Let Ω̃ be an open bounded domain in R

2. Let V (y) =
V (y1, y2) satisfy

(3.1) ΔyV + Ã1∂y1V + Ã2∂y2V + Q̃V = 0 in Ω̃.

Assume that Ã1, Ã2 ∈ C2( ¯̃Ω) and Q̃ ∈ L∞(Ω̃). Given ω ∈ R
2 with |ω| = 1, we look

for V (y) of (3.1) having the form

(3.2) V (y) = ey·(ω+iω⊥)/h(L̃ + R̃),

where L̃ is independent of h and R̃ satisfies

(3.3) ‖∂αR̃‖L2(Ω̃) ≤ Ch1−α ∀ |α| ≤ 2.

To construct V having the form (3.2), (3.3), we follow the approach in [9] and [31],
which are based on [5] and [20]. Note that the real part of the phase function y · ω is
a limiting Carleman estimate. So if we define the semiclassical operator

Ph = h2Δ + hÃ1(h∂y1) + hÃ2(h∂y2) + h2Q̃,

then we can derive, by combining a Carleman estimate and the Hahn–Banach theorem,
the following.

Theorem 3.1 (see [9], [31]). For h sufficiently small, for any F ∈ L2(Ω̃), there
exists W ∈ H2

h(Ω̃) such that

e−y·ω/hPh(ey·ω/hW ) = F

and h‖W‖H2
h(Ω̃) ≤ C‖F‖L2(Ω̃), where ‖W‖2

H2
h(Ω̃)

=
∑

|α|≤2 ‖(h∂)αW‖2
L2(Ω̃)

is the

semiclassical H2 norm.
This theorem will be needed below. Finding V of the form (3.2) is equivalent to

solving

e−y·(ω+iω⊥)/hPh(ey·(ω+iω⊥)/h(L̃ + R̃)) = 0 in Ω̃.

We can compute that

e−y·(ω+iω⊥)/hPhe
y·(ω+iω⊥)/h = hTω + Ph,

where Tω = 2(ω+iω⊥)·∇+(ω+iω⊥)·(Ã1, Ã2). Hence we want to find L̃, independent
of h, so that

(3.4) TωL̃ = 0 in Ω̃.

Equation (3.4) is a system of Cauchy–Riemann type. In fact, introducing the new
variable z = (z1, z2) = (ω + iω⊥) · y and setting Ã(ω, z) = (ω + iω⊥) · (Ã1, Ã2), (3.4)
becomes

(3.5) (4∂z̄ + Ã)L̃ = 0,

where ∂z̄ = (∂z1
+ i∂z2

)/2. The existence of nontrivial L̃ can be found in, for example,
[6], [8], and [23]. Having found L̃, R̃ is required to satisfy

(3.6) e−y·ω/hPh(ey·(ω+iω⊥)/hR̃) = −eiy·ω
⊥/hPhL̃.
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Note that ‖eiy·ω⊥/hPhL̃‖L2(Ω̃) = O(h2). Thus Theorem 3.1 implies that

(3.7) ‖eiy·ω⊥/hR̃‖H2
h(Ω̃) ≤ Ch,

which leads to

(3.8) ‖∂αR̃‖L2(Ω̃) ≤ Ch1−|α| for |α| ≤ 2.

Remark 3.2. The leading term L̃ of the CGO solution (3.2) is obtained by solving
(3.5). It is possible to solve (3.5) by an iteration scheme, which is numerically feasible.
Theorem 3.1 is a general theorem to guarantee the existence of the remainder term R̃
in (3.2). It may be a nontrivial task to actually find R̃ for general systems. However,
since R̃ is O(h) for small h, it could be omitted in numerical computations.

4. CGO solutions with general phases. In this section we will construct
CGO solutions with more general phases for (1.3) from CGO solutions with linear
phases given in the previous section. Without loss of generality, we choose ω = (1, 0)
and ω⊥ = (0, 1), i.e., y · (ω + iω⊥) = y1 + iy2. Denote y = y1 + iy2 and x = x1 + ix2.
Let Ω0 be an open subdomain of Ω. Suppose that A1, A2 ∈ C2(Ω̄0) and Q ∈ L∞(Ω0).
Let y = ρ(x) = y1(x1, x2) + iy2(x1, x2) be a conformal map in Ω0, i.e., ρ′(x) �= 0 for
all x ∈ Ω0. Define U(x) = V (y(x)) and Ω̃ = ρ(Ω0). By straightforward computations,
we have (

∂x1

∂x2

)
U = J(x)

(
∂y1

∂y2

)
V
∣∣∣
y=ρ(x)

and ΔxU = ΔyV |ρ′(x)|2,

where

J(x) =

(
∂x1

y1 ∂x1y2

∂x2y1 ∂x2y2

)
.

Suppose that ρ−1 exists on Ω̃. Let Â1(y) = (A1∂x1y1+A2∂x2y1)◦ρ−1(y), Â2(y) =
(A1∂x1

y2 + A2∂x2
y2) ◦ ρ−1(y), and Q̂(y) = (Q ◦ ρ−1)(y) and g(y) = |(ρ′ ◦ ρ−1)(y)|2.

Now if we choose V (y) satisfying

(4.1) ΔyV + g(y)−1Â1(y)∂y1V + g(y)−1Â2(y)∂y2V + g(y)−1Q̂V = 0 in Ω̃,

then U(x) satisfies (1.3) in Ω0. According to the construction given previously, let
V (y) be a solution of (4.1) having the form

V (y) = e(y1+iy2)/h(L̃ + R̃),

where

‖∂αR̃‖L2(Ω̃) ≤ Ch1−α ∀ |α| ≤ 2.

Denote y1(x1, x2) = ϕ(x1, x2) and y2(x1, x2) = ψ(x1, x2). We then obtain CGO solu-
tions for (1.3) in Ω0:

U(x) = e(ϕ+iψ)/h(L + R)

with L = L̃ ◦ ρ, R = R̃ ◦ ρ, and

(4.2) ‖∂αR‖L2(Ω0) ≤ Ch1−α ∀ |α| ≤ 2.
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Due to the conformality of ρ, ϕ and ψ are harmonic functions in Ω0. Conversely,
given any ϕ harmonic in Ω0 with ∇ϕ �= 0 in Ω0, we can find a harmonic conjugate ψ
of ϕ in Ω0 so that ρ = ϕ + iψ is conformal in Ω0. The freedom of choosing ϕ plays a
key role in our reconstruction method for the object identification problem. Actually,
we will mainly focus on the level curves of ϕ. We give some concrete examples here.

Pick a point x0 /∈ Ω̄. It is no restriction to assume that x0 = 0. We now consider
ϕN = Re(cNxN ) for N ≥ 2, where cN ∈ C with |cN | = 1. In the polar coordinates,
ϕN (r, θ) = rN cosN(θ− θN ) for some θN determined by cN . We observe that ϕN > 0
in some open cone ΓN with an opening angle π/N . The freedom of choosing θN (or,
equivalently, cN ) allows us to “sweep” the domain Ω by ΓN without moving the point
x0. This is quite useful in practice. Now assume that ΓN∩Ω �= ∅. The complex function
ρN (x) = cNxN = ϕN + iψN is clearly conformal in Ω, where ψN = Im(cNxN ). In
order to apply to the inverse problem, we want to shrink the opening angle of ΓN by
taking N → ∞. However, there are two serious problems in doing so. On one hand,
ϕN is periodic in the angular variable, which means that it is positive in some other
cones with the same opening angle which also intersect Ω when N is large. Some level
curves of ϕN for different N ’s are shown in Figure 4.1. This property of ϕN prohibits
us from using corresponding CGO solutions with large N to the object identification
problem. On the other hand, the complex function ρN (x) fails to be injective in the
whole domain Ω when N is large. To overcome those difficulties and construct useful
CGO solutions in the whole domain Ω, we shall carry out the construction described
above in a suitable Ω0 and extend the constructed solutions to Ω by cut-off functions.

N=4 N=6 N=8

Fig. 4.1. Some level curves of φN .

We now set

Ω0 := ΓN ∩ Ω.

Then ρN is conformal in Ω0 and is bijective from Ω0 onto ρN (Ω0). Therefore, we can
find CGO solutions for (1.3) in Ω0,

UN,h(x) = e(ϕN+iψN )/h(L + R),

and the estimate (4.2) holds. So far we have constructed only special solutions for
(1.3) in some particular subdomain of Ω. To get solutions in the whole domain Ω, we
use a cut-off technique. For s > 0, let �s = {x ∈ ΓN : ϕN = s−1}. This is the level
curve of ϕN in ΓN . Let 0 < t < t0 such that(

∪
s∈(0,t)

�s

)
∩ Ω �= ∅
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and choose a small ε > 0. Define a cut-off function φN,t(x) ∈ C∞(R2) so that

φN,t(x) = 1 for x ∈ (∪s∈(0,t+ε/2)�s) ∩ Ω and is zero for x ∈ Ω̄ \ (∪s∈(0,t+ε)�s). We
now define

UN,t,h(x) = φN,te
−t−1/hUN = φN,te

(ϕN−t−1+iψN )/h(L + R)

for x ∈ (∪s∈(0,t+ε)�s) ∩ Ω. So UN,t,h can be regarded as a function in Ω which is zero
outside of Ω0. We now take fN,t,h = UN,t,h|∂Ω. We remark that fN,t,h can be used as
the boundary data in the inverse problem. An obvious reason for using fN,t,h is that
they are local.

Now we define a function W := WN,t,h satisfying

(4.3)

{
ΔW + A1(x)∂x1

W + A2(x)∂x2
W + Q(x)W = 0 in Ω,

W = fN,t,h on ∂Ω.

We would like to compare WN,t,h with UN,t,h. It turns out they differ only by an
exponentially small term under some minor condition. This property plays an essential
role in our method for the inverse problem.

Lemma 4.1. Assume that the boundary value problem

(4.4)

{
PU = 0 in Ω,

U = 0 on ∂Ω

has only a trivial solution. Then there exist C > 0 and ε′ > 0 such that

(4.5) ‖WN,t,h − UN,t,h‖H2(Ω) ≤ Ce−ε′/h

for h � 1.
Proof. By setting G := WN,t,h − UN,t,h, we get that

PG = P (WN,t,h − UN,t,h)

= −φN,te
−t−1/hPUN + [φN,t, P ]e−t−1/hUN

= [φN,t, P ]e−t−1/hUN

= [φN,t, P ]e(ϕN−t−1+iψN )/h(L + R)

since PUN = 0 in (∪s∈(0,t0)�s) ∩ Ω. Now we observe that [φN,t, P ], the commutator
of φN,t and P , is a first order differential operator with coefficients supported in

(
∪

s∈(t+ε/2,t+ε)
�s

)
∩ Ω.

So we have that

(4.6) ‖[φN,t, P ]e(ϕN−t−1+iψN )/h(L + R)‖L2(Ω) ≤ C ′e−ε′/h

for some C ′ > 0 and ε′ > 0. Note that G = 0 on ∂Ω. Combining the regularity
theorem, the triviality of (4.4), and (4.6) yields (4.5).

Even though the solutions WN,t,h of (1.3) are not exactly in the form of complex
geometrical optics, with the help of Lemma 4.1, they are exponentially close to UN,t,h.
Now we describe how to construct special solutions for some concrete systems given
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in section 2 from WN,t,h. For the conductivity equation (2.1), (1.3) is reduced to (2.2).
For (2.2), we denote the corresponding UN,t,h = uN,t,h and

uN,t,h = φN,te
(ϕN−t−1+iψN )/h(1 + r),

where r satisfies (4.2). With uN,t,h, we can solve for wN,t,h satisfying

(4.7)

{
(Δ + q)w = 0 in Ω,

w = uN,t,h on ∂Ω.

The problem (4.7) has a unique solution since the boundary value problem for the
corresponding conductivity equation has a unique solution. So Lemma 4.1 implies
that

(4.8) ‖wN,t,h − uN,t,h‖H1(Ω) ≤ Ce−ε′/h.

Returning to the conductivity equation, we see that γ−1/2wN,t,h are solutions of (2.1).
For the isotropic elasticity and the Stokes system, we have that n = 3 and (1.3)

become, respectively, (2.7) and (2.10). We discuss only the isotropic elasticity here.
The Stokes system can be treated similarly. Assume that the homogeneous boundary
value problem (4.4) associated with (2.7) has only the trivial solution. Thus Lemma 4.1
yields

‖WN,t,h − UN,t,h‖H2(Ω) ≤ Ce−ε′/h.

We now express UN,t,h =
( vN,t,h

bN,t,h

)
and WN,t,h =

(wN,t,h
gN,t,h

)
, where vN,t,h, wN,t,h are

two-dimensional vectors and bN,t,h, gN,t,h are scalars. Hence, we obtain that

uN,t,h = μ−1/2wN,t,h + μ−1∇gN,t,h − gN,t,h∇μ−1

are solutions of (2.6) or (2.5) and uN,t,h satisfies

‖uN,t,h − (μ−1/2vN,t,h + μ−1∇bN,t,h − bN,t,h∇μ−1)‖H1(Ω) ≤ Ce−ε′/h.

5. Inverse problems. In this section we demonstrate how to use CGO solutions
constructed previously in the object identification problem. To simplify our presenta-
tion, we will discuss only the case of identifying inclusions inside of the domain Ω filled
with known conductivity. This inverse problem has been extensively studied both the-
oretically and numerically. We refer the reader to [10] for related references. Using
our method, we can also treat the object identification problem for other systems. We
shall report the results elsewhere.

Let D be an open bounded domain with C1 boundary such that D̄ ⊂ Ω and Ω\D̄
is connected. Assume γ(x) ∈ C2(Ω̄) with γ(x) > 0 for all x ∈ Ω̄. The conductivity γ̃(x)
is a perturbation of γ described by γ̃(x) = γ + χDγ1, where χD is the characteristic
function of D and γ1 ∈ C(D̄). We suppose that

(5.1) γ1 ≥ 0 in D and γ1 > 0 on ∂D.

Then we have γ̃(x) ≥ c > 0 almost everywhere in Ω. Let v be the solution of

(5.2)

{
∇ · (γ̃∇v) = 0 in Ω,

v = f on ∂Ω.
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The meaning of the solution to (5.2) is understood in the following way. Define

[w]∂D = tr+w − tr−w,

the jump of the function across ∂D, where tr+ and tr− denote, respectively, the trace
of w on ∂D from inside and outside of D. For f ∈ H3/2(∂Ω), we define

Vf =

{
w ∈ H2(D) ⊕H2(Ω \ D̄) : w|∂Ω = f, [w]∂D = 0,

[
γ̃
∂w

∂ν

]
∂D

= 0

}
.

We say that v is the solution of (5.2) if v ∈ Vf and ∇ · (γ̃v) = 0 in D and Ω \ D̄. The
Dirichlet-to-Neumann map is given as

ΛD : f → γ̃
∂v

∂ν

∣∣∣
∂Ω

,

where ν is the unit outer normal of ∂Ω. The inverse problem is to determine the
inclusion D from ΛD. Here we are interested in the reconstruction question.

Since our method shares the same spirit as Ikehata’s enclosure method [11], [12],
we will briefly describe Ikehata’s ideas to motivate our method. Here we take γ ≡ 1,
i.e., γ̃ = 1 + χDγ1. Denote

fω(x, τ, t) = exp{τ(x · ω − t) + iτx · ω⊥}

and

Iω(τ, t) = 〈(ΛD − Λ0)fω(·, τ, t), fω(·, τ, t)〉,

where Λ0 is the Dirichlet-to-Neumann map associated with Δu = 0 in Ω. Let us define

hD(ω) = sup
x∈D

x · ω.

Then the following formulas hold:{
t ∈ R : lim

τ→0
Iω(τ, t) = 0

}
= (hD(ω),∞)

and

lim
τ→∞

log |τω(τ, t)|
2τ

= hD(ω) − t ∀ t ∈ R

(see [11], [12]).
To describe our method, we begin with the following integral inequalities given

in [19] (also see [10] for a proof).
Lemma 5.1. Assume that (5.6) holds. Let f ∈ H3/2(∂Ω) and u be the unique

solution of

(5.3)

{
∇ · (γ∇u) = 0 in Ω,

u = f on ∂Ω.

Define Λ0 : f → γ ∂u
∂ν |∂Ω. Then we have

(5.4)

∫
∂Ω

(ΛD − Λ0)f̄ · fds ≤
∫
D

γ1|∇u|2dx
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and

(5.5)

∫
∂Ω

(ΛD − Λ0)f̄ · fds ≥
∫
D

γ1γ

γ + γ1
|∇u|2dx.

It follows from (5.1) that for any p ∈ ∂D, there exists an ε > 0 such that

(5.6) γ1 ≥ ε ∀ x ∈ D ∩Bε(p).

Let x0 /∈ Ω̄ and define the open cone ΓN with ΓN ∩ Ω �= ∅ in terms of ϕN =
Re(cN (x− x0)

N ) (ρN = cN (x− x0)
N ) as in Figure 4.1. Likewise, we denote the level

curve �s = {x ∈ ΓN : ϕN = s−1} for s > 0. For ε > 0 and t > 0, we take

(5.7) f = fN,t,h = γ−1/2wN,t,h|∂Ω = γ−1/2uN,t,h|∂Ω,

where wN,t,h and uN,t,h are constructed previously. Note that γ−1/2wN,t,h is the
solution of (5.3). It should be noted that the Dirichlet condition f is localized in
ΓN ∩ ∂Ω and supp (f) becomes narrower as N gets bigger. This property is very
useful in actual applications.

To construct the inclusion D, we rely on the quantity

(5.8) E(N, t, h) :=

∫
∂Ω

(ΛD − Λ0)f̄N,t,h · fN,t,hds.

Clearly, this quantity is completely determined by the boundary data. From (5.1) and
(5.5) we see that

E(N, t, h) ≥
∫
D

γ1γ

γ + γ1
|∇(γ−1/2wN,t,h)|2dx ≥ 0

for all N, t, h. We now prove the following important behavior of E(N, t, h).
Theorem 5.2. Let t > 0 and Lt = {x ∈ ΓN : ϕN ≥ t−1}. Then we have the

following:
(i) if Lt ∩ D̄ = ∅, then there exist C1 > 0, ε1 > 0, and h1 > 0 such that

E(N, t, h) ≤ C1e
−ε1/h for all h ≤ h1;

(ii) if Lt ∩ D �= ∅, then there exist C2 > 0, ε2 > 0, and h2 > 0 such that
E(N, t, h) ≥ C2e

ε2/h for all h ≤ h2.
Proof. To prove (i), we use the inequality (5.4) to obtain

(5.9) E(N, t, h) ≤
∫
D

γ1|∇(γ−1/2wN,t,h)|2dx ≤ C‖wN,t,h‖2
H1(D).

With the help of (4.8), we can replace wN,t,h in (5.9) by uN,t,h with an error O(e−ε′/h).
Since Lt∩ D̄ = ∅, we have ϕN − t−1 < 0 for all x ∈ D̄∩ΓN . Also, note that uN,t,h ≡ 0
in Ω \ ΓN . Therefore, by the form of uN,t,h we immediately derive that

E(N, t, h) ≤ Ce−ε1/h

for h ≤ h1.
To establish (ii), in view of Lt ∩D �= ∅, there exist z ∈ ∂D and ε > 0 such that

the jump condition (5.6) holds and

(5.10) ϕN − t−1 ≥ ε ∀ Bε(z) ∩D.
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From (5.5) we get

E(N, t, h) ≥
∫
D

γ1γ

γ + γ1
|∇(γ−1/2wN,t,h)|2dx

≥ Cε

∫
D∩Bε(z)

(|∇wN,t,h|2 + |wN,t,h|2)dx

≥ C ′
∫
D∩Bε(z)

(|∇uN,t,h|2 + |uN,t,h|2)dx− C ′′e−ε′/h.(5.11)

Substituting the form of uN,t,h with the estimate (5.10) into (5.11) implies the state-
ment of (ii).

Theorem 5.3. With the same notation as in Theorem 5.2, if �t ∩ ∂D �= ∅ and
Lt ∩D = ∅, then

lim inf
h→0

E(N, t, h) > 0.

Recall that �t = {x ∈ ΓN : ϕN = t−1}.
Proof. In view of (5.6), we pick a sufficiently small ε > 0 such that (5.6) is satisfied

in Bε(p) ∩D and Bε(p) ∩D ⊂ (∪s∈(t,t+ε/2)�s) ∩D. So the cut-off function φN,t = 1
on Bε(p)∩D. We now introduce a new coordinate system Ψ(x) = (y1(x), y2(x)) near
p with y2(x) = ϕN − t−1 such that �t becomes y2 = 0 near p and D̃ε := Ψ(Bε(p)∩D)
lies in {y2 < 0}. We can choose a small cone Cp in D̃ε with vertex p and the length
of the axis being δ. Denote J(y) the Jacobian of Ψ−1(y). Therefore, using (5.11) we
can estimate

E(N, t, h)

≥ C ′
∫
D∩Bε(p)

(|∇uN,t,h|2 + |uN,t,h|2)dx− C ′′e−ε′/h

≥ C ′
∫
D∩Bε(p)

(|∇(e(ϕN−t−1+iψN )/h(1 + r))|2 + |e(ϕN−t−1+iψN )/h(1 + r)|2)dx

−C ′′e−ε′/h

≥ C̃

h2

∫
Cp

e2y2/h|J |dy1dy2 − C ′′e−ε′/h

≥ C̃ ′

h2

∫ 0

−δ

e2y2/hy2dy2 − C ′′e−ε′/h

> 0 as h → 0.

In view of Theorems 5.2 and 5.3, we are able to reconstruct some part of ∂D by
looking into the asymptotic behavior of E(N, t, h) for various t’s. More precisely, let

tD,N := sup

{
t ∈ (0,∞) : lim

h→0
E(N,h, t) = 0

}
;

then if tD,N = ∞, we have ΓN ∩D = ∅. On the other hand, if tD,N < ∞, then there
exists a pD,N ∈ �tD,N

∩ ∂D.
By taking N arbitrarily large (the opening angle of ΓN becomes arbitrarily small),

we can reconstruct even more information of ∂D. A point p on ∂D is said to be
detectable if there exists a half-line l starting from p such that l does not intersect ∂D
except at p. For example, if D is star-shaped, every point of ∂D is detectable.
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Corollary 5.4. Every detectable point of ∂D can be reconstructed from ΛD.

Proof. Let p be a detectable point and l be the corresponding half-line. We can
choose l which is not tangent to ∂D at p since if the chosen half-line, say l′, is tangent
to ∂D at p, we can always choose a desired l by perturbing l′ a little bit. Assume that
z0 ∈ l and z0 �= p. Let L be the straight line containing l. Pick a point x0 ∈ L with
x0−p
|x0−p| = − z0−p

|z0−p| and x0 /∈ Ω̄. Let ΓN be the cone with axis L and vertex x0 whose

opening angle is π/N . For any N ∈ N, we construct wN,t,h, uN,t,h, and fN,t,h as above.
So we can determine E(N, t, h) from the measurement ΛDfN,t,h. Applying Theorems
5.2 and 5.3, we can determine tD,N so that �tD,N

∩∂D �= ∅. Then there exists pN ∈ ΓN ,
and �tD,N

∩ ∂D = pN . By taking N → ∞, we can see that pN → p.

To end this section, we give an algorithm of our reconstruction method based on
Theorem 5.2.

Step 1. Pick a point x0 /∈ Ω̄ (but close to Ω̄). Given N ∈ N, choose the cone ΓN which
intersects Ω. [ΓN is defined in section 4]

Step 2. Start with t > 0 such that �t ∩ Ω �= ∅. Construct uN,t,h and determine the
Dirichlet data fN,t,h = γ−1/2uN,t,h|∂Ω. [(5.7)]

Step 3. Compute E(N, t, h) =
∫
supp (fN,t,h)

(ΛD − Λ0)f̄N,t,h · fN,t,hds. [(5.8)]

Step 4. If E(N, t, h) is arbitrarily small, then increase t and repeat Steps 2 and 3;
if E(N, t, h) is arbitrarily large, then decrease t and repeat Steps 2 and 3.
[Theorem 5.2]

Step 5. Repeat Step 4 to get a good approximation of ∂D in ΓN . [Theorem 5.2]
Step 6. Move the cone ΓN around x0 by taking a different cN in ϕN = Re(cNxN ).

Repeat Steps 2–5.
Step 7. Choose a larger N and a new cone ΓN . Repeat Steps 2–6.
Step 8. Pick a different x0 and repeat Steps 1–7.

6. Numerical results. We demonstrate some numerical results of our method
in this section. Assume that the domain Ω is given by

Ω = {(x1, x2) : −1 < x1 < 1,−1.01 < x2 < −0.1}.

We shall use the Dirichlet data localized on {(x1,−1.01) : −1 < x < 1}. To set up
ρN (x), we consider N = 4; i.e., the phase function of the CGO solution is ρ(x) :=
ρ4(x). In our numerical computations, we use two sweeping schemes. In the first
scheme, we fix the reference point x0 and rotate the “probing cone” (the cone with
the vertex at x0 and the opening angle π/4). For the second one, we do not rotate the
probing cone but move the reference points along the x-axis. More precisely, let the
reference point x0 = (x0,1, 0) for −1 < x0,1 < 1. In our first scheme, we fix x0 = (0, 0)
and rotate the probing cone determined by the shifted angle θ; in the second scheme,
we consider different x0’s and choose θ = 0. In other words, for both schemes, we have

ρ(x, x0, θ) := c(θ)(x1 − x0,1 + ix2)
4 = e−i4θ(x1 − x0,1 + ix2)

4.

Thus, the probing fronts are level curves of ϕ(x, x0, θ) := Re(ρ(x, x0, θ)). Figure 6.1
shows some probing fronts of ϕ(x, x0, θ) with three different θ’s and three x0’s, re-
spectively.

We take the background conductivity γ = 1, and the conductivity inside the
inclusion is 4, i.e, γ1 = 3. For numerical experiments, we ignore the cut-off function
and take
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Fig. 6.1. Probing fronts of our numerical method. In the first column, we consider the probing
cone in three different angles. In the second column, we move the probing cone by taking three
reference points. In our numerical method, we use 10 different probing cones.

gx0,h|∂Ω =

{
eρ(x,x0,θ)/h for (x1, x2) ∈ ∂Ωobs,

0, ∂Ω \ ∂Ωobs,

where ∂Ωobs is determined by x0 and θ. For example, for x0 = (0, 0) and θ = 0,

∂Ωobs =
{

(x1, x2) : −1.01 × tan
(π

8

)
< x1 < 1.01 × tan

(π
8

)
, x2 = −1.01

}
.

Then for t > 0 the required Dirichlet data is given by f = ft,h,x0
= e−t−1/hgx0,h. To

get the synthetic data Λ0f and ΛDf , we need to solve the boundary value problems
(5.2) and (5.3) with the Dirichlet condition f . To solve these forward problems, we
use the PDE Toolbox with the finite element method in MATLAB 7.0. Since we need
to collect data on the bottom boundary of Ω, we refine the mesh there; see Figure 6.2.

Fig. 6.2. Example of our finite element method meshes. The mesh has 2m +1 nodes on the top
boundary and 2n + 1 nodes on the lower boundary. This example is created with m = 4, n = 6. In
solving our forward problems, we choose m = 6, n = 12.

To show the effect of noise to our method, we add appropriate noise to the syn-
thetic data. We consider the form of noise given in [10]. To be precise, let η : [−1, 1] �→
C be a random function defined by

η(s) =
32∑

k=−32

(ak + ibk)e
iksπ/2,

where ak, bk ∼ N (0, 1) are normally distributed random numbers. The number 32 in
η is chosen to roughly model a collection of 32 electrodes on the bottom boundary of
Ω. Measurement noise is modeled by ΛDf by ΛDf + cη with

c =
A‖ΛDf‖∞

‖η‖∞
,

where A > 0.
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Our strategy of reconstructing the inclusion is described as follows. We first design
M probing cones which are forms by taking either M different vertex points or M
different rotating angles. Recall that each cone is congruent to the cone with its vertex
at the origin and opening angle π/4. We then take appropriate h1 and h2 with h1 > h2

and choose a suitable number of probing fronts determined by tj for j = 1, . . . , J with
tj < tj+1. In each probing cone Γm (m = 1, . . . ,M) given above, we construct the
Dirichlet data f supported in the intersection of Γm and the bottom boundary of ∂Ω
for every hk and tj , k = 1, 2, j = 1, . . . , J . We now evaluate Ej,k := E(N, tj , hk) and
determine tn such that

(6.1) En+1,2 > En+1,1.

Then the region Rm defined by

Rm = {x ∈ Γm : ϕ(x, x0, θ) ≤ t−1
n }

is the estimated largest region in Γm which does not contain the inclusion. So the
region R := ∪M

m=1Rm is the estimated largest region with the absence of the inclusion
with a given sweeping scheme. We would like to point out that condition (6.1) is our
rule of thumb in determining whether the level curve ϕ(x, x0, θ) = t−1 intersects the
inclusion in our numerical experiments. It is not equivalent to Theorem 5.2 but is based
on the reasoning that E(N, t, h) is exponentially decaying when ϕ(x, x0, θ) = t−1 stays
away from the inclusion and exponentially growing when ϕ(x, x0, θ) = t−1 intersects
the inclusion. A similar idea was also used in [10].

Our numerical results for each sweeping scheme are shown in Figures 6.3 and 6.4.
To save computational time, we show only numerical results obtained from probing

Fig. 6.3. Numerical results of the first sweeping scheme. All black regions have the conduc-
tivity 4, and all gray regions have conductivity 1. So the gray regions represent the inclusion-free
regions. The first column represents the actual location of inclusions. The second column is the the-
oretical reconstruction when we probe the region only from the bottom. The third column represents
the numerical reconstruction from noiseless synthetic data. The fourth column is the numerical re-
construction from data with 0.01% noise. To see the effectiveness of our method, we can compare
the images in the third column or in the fourth column with those in the second column.
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Fig. 6.4. Numerical results of the second sweeping scheme. All black regions have the conduc-
tivity 4, and all gray regions have conductivity 1. So the gray regions represent the inclusion-free
regions. The first column represents the actual location of inclusions. The second column is the the-
oretical reconstruction when we probe the region only from the bottom. The third column represents
the numerical reconstruction from noiseless synthetic data. The fourth column is the numerical re-
construction from data with 0.01% noise. To see the effectiveness of our method, we can compare
the images in the third column or in the fourth column with those in the second column.

the region from one side (the bottom part of the boundary). Therefore, the inclusion-
free region (with gray color) is near the bottom of the boundary. Since our domain is
a rectangle, we can expect to obtain similar results when we probe the region from
other sides. We believe that these numerical results are sufficient to demonstrate the
applicability of our method.

7. Conclusion. In this work we present a framework of constructing special
complex geometrical optics solutions for several systems of two variables that can be
reduced to a system with the Laplacian as the leading term. Here we choose complex
polynomials as phase functions. Using these special solutions, we design a novel al-
gorithm to identify embedded objects with boundary measurements. One distinctive
feature of our method is that we can probe the region using cones with as small an
opening angle as we wish. Theoretically, we are able to reconstruct the exact geom-
etry of the embedded object whose boundary points are all detectable. One typical
example is the star-shaped object.

In the numerical experiments, we consider the case of inclusion embedded into a
domain with homogeneous conductivity. The numerical results show that our method
detects the location of inclusion quite well and is stable under measurements with
(small) noise. For computational reasons, we consider only N = 4 and use two sweep-
ing schemes separately. It is quite natural to consider higher N ’s and also combine
two sweeping schemes into one. Of course, by doing so, we need to pay the price of
increasing computational time.

Our method can be applied to classes of equations or even systems in two dimen-
sions that can be reduced to the Laplacian on the top order part. Its flexibility and
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effectiveness gives us another technique that can potentially be used in real applica-
tions such as medical imaging or nondestructive evaluation.
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Brazil, 1980, pp. 65–73.

[4] M. Cheney, D. Isaacson, and J. C. Newell, Electrical impedance tomography, SIAM Rev.,
41 (1999), pp. 85–101.

[5] D. Dos Santos Ferreira, C. E. Kenig, J. Sjöstrand, and G. Uhlmann, Determining a
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BIFURCATION ANALYSIS OF A GENERAL CLASS OF
NONLINEAR INTEGRATE-AND-FIRE NEURONS∗

JONATHAN TOUBOUL†

Abstract. In this paper we define a class of formal neuron models being computationally efficient
and biologically plausible, i.e., able to reproduce a wide range of behaviors observed in in vivo or
in vitro recordings of cortical neurons. This class includes, for instance, two models widely used in
computational neuroscience, the Izhikevich and the Brette–Gerstner models. These models consist
of a 4-parameter dynamical system. We provide the full local bifurcation diagram of the members
of this class and show that they all present the same bifurcations: an Andronov–Hopf bifurcation
manifold, a saddle-node bifurcation manifold, a Bogdanov–Takens bifurcation, and possibly a Bautin
bifurcation, i.e., all codimension two local bifurcations in a two-dimensional phase space except the
cusp. Among other global bifurcations, this system shows a saddle homoclinic bifurcation curve. We
show how this bifurcation diagram generates the most prominent cortical neuron behaviors. This
study leads us to introduce a new neuron model, the quartic model, able to reproduce among all
the behaviors of the Izhikevich and Brette–Gerstner models self-sustained subthreshold oscillations,
which are of great interest in neuroscience.

Key words. neuron models, dynamical system analysis, nonlinear dynamics, Hopf bifurca-
tion, saddle-node bifurcation, Bogdanov–Takens bifurcation, Bautin bifurcation, saddle homoclinic
bifurcation, subthreshold neuron oscillations
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Introduction. During the past few years, in the neurocomputing community, the
problem of finding a computationally simple and biologically realistic model of neuron
has been widely studied, in order to be able to compare experimental recordings with
numerical simulations of large-scale brain models. The key problem is to find a model
of neuron realizing a compromise between its simulation efficiency and its ability to
reproduce what is observed at the cell level, often considering in-vitro experiments
[15, 18, 24].

Among the numerous neuron models, from the detailed Hodgkin–Huxley model
[11] still considered as the reference, but unfortunately computationally intractable
when considering neuronal networks, down to the simplest integrate-and-fire model [8]
very effective computationally, but unrealistically simple and unable to reproduce
many behaviors observed, two models seem to stand out [15]: the adaptive quadratic
(Izhikevich [14] and related models such as the theta model with adaptation [6, 10])
and exponential (Brette and Gerstner [5]) neuron models. These two models are com-
putationally almost as efficient as the integrate-and-fire model. The Brette–Gerstner
model involves an exponential function, which needs to be tabulated if we want the
algorithm to be efficient. They are also biologically plausible, and reproduce several
important neuronal regimes with a good adequacy with biological data, especially in
high-conductance states, typical of cortical in vivo activity. Nevertheless, they fail in
reproducing deterministic self-sustained subthreshold oscillations, a behavior of par-
ticular interest in cortical neurons for the precision and robustness of spike generation
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patterns, for instance in the inferior olive nucleus [4, 22, 23], in the stellate cells of the
entorhinal cortex [1, 2, 17], and in the dorsal root ganglia (DRG) [3, 20, 21]. Some
models have been introduced to study from a theoretical point of view the currents in-
volved in the generation of self-sustained subthreshold oscillations [25], but the model
failed in reproducing lots of other neuronal behaviors.

The aim of this paper is to define and study a general class of neuron models,
containing the Izhikevich and Brette–Gerstner models, from a dynamical systems
point of view. We characterize the local bifurcations of these models and show how
their bifurcations are linked with different biological behaviors observed in the cortex.
This formal study will lead us to define a new model of neuron, whose behaviors
include those of the Izhikevich–Brette–Gerstner (IBG) models but also self-sustained
subthreshold oscillations.

In the first section of this paper, we introduce a general class of nonlinear neuron
models which contains the IBG models. We study the fixed-point bifurcation diagram
of the elements of this class, and show that they present the same local bifurcation
diagram, with a saddle-node bifurcation curve, an Andronov–Hopf bifurcation curve,
a Bogdanov–Takens bifurcation point, and possibly a Bautin bifurcation, i.e., all codi-
mension two bifurcations in dimension two except the cusp. This analysis is applied in
the second section to the Izhikevich and the Brette–Gerstner models. We derive their
bifurcation diagrams and prove that none of them shows the Bautin bifurcation. In
the third section, we introduce a new simple model—the quartic model—presenting,
in addition to common properties of the dynamical system of this class, a Bautin
bifurcation, which can produce self-sustained oscillations. Last, the fourth section is
dedicated to numerical experiments. We show that the quartic model is able to repro-
duce some of the prominent features of biological spiking neurons. We give qualitative
interpretations of those different neuronal regimes from the dynamical systems point
of view, in order to give a grasp of how the bifurcations generate biologically plau-
sible behaviors. We also show that the new quartic model, presenting supercritical
Hopf bifurcations, is able to reproduce the oscillatory/spiking behavior presented,
for instance, in the DRG. Finally, we show that numerical simulation results of the
quartic model show a good agreement with biological intracellular recordings in the
DRG.

1. Bifurcation analysis of a class of nonlinear neuron models. In this
section we introduce a large class of formal neurons which are able to reproduce a
wide range of neuronal behaviors observed in cortical neurons. This class of models is
inspired by the review made by Izhikevich [15]. He found that the quadratic adaptive
integrate-and-fire model was able to simulate efficiently a lot of interesting behaviors.
Brette and Gerstner [5] defined a similar model of neuron which presented a good
adequacy between simulations and biological recordings.

We generalize these models, and define a new class of neuron models, wide but
specific enough to keep the diversity of behaviors of the IBG models.

1.1. The general class of nonlinear models. In this paper, we are interested
in neurons defined by a dynamical system of the type

{
dv
dt = F (v) − w + I,
dw
dt = a(bv − w),
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where a, b, and I are real parameters and F is a real function.1

In this equation, v represents the membrane potential of the neuron, w is the
adaptation variable, I represents the input intensity of the neuron, 1/a is the char-
acteristic time of the adaptation variable, and b accounts for the interaction between
the membrane potential and the adaptation variable.2

This equation is a very general model of neuron. For instance when F is a polyno-
mial of degree three, we obtain a FitzHugh–Nagumo model, when F is a polynomial
of degree two the Izhikevich neuron model [14], and when F is an exponential func-
tion the Brette–Gerstner model [5]. However, in contrast with continuous models like
the FitzHugh–Nagumo model [8], the two latter cases diverge when spiking, and an
external reset mechanism is used after a spike is emitted.

In this paper, we want this class of models to have common properties with the
IBG neuron models. To this purpose, let us make some assumptions on the function
F . The first assumption is a regularity assumption.

Assumption (A1). F is at least three times continuously differentiable.
A second assumption is necessary to ensure us that the system would have the

same number of fixed points as the IBG models.
Assumption (A2). The function F is strictly convex.
Definition 1.1 (convex neuron model). We consider the two-dimensional model

defined by the equations

(1.1)

{
dv
dt = F (v) − w + I,
dw
dt = a(bv − w),

where F satisfies Assumptions (A1) and (A2) and characterizes the passive properties
of the membrane potential.

Many neurons of this class blow up in finite time. These neurons are the ones we
are interested in.

Remark. Note that all the neurons of this class do not blow up in finite time. For
instance if F (v) = v log(v), it will not. For F functions such that F (v) = (v1+α)R(v)
for some α > 0, where limv→∞ R(v) > 0 (possibly ∞), the dynamical system will
possibly blow up in finite time.

If the solution blows up at time t∗, a spike is emitted, and subsequently we have
the following reset process:

(1.2)

{
v(t∗) = vr,

w(t∗) = w(t∗−) + d,

where vr is the reset membrane potential and d > 0 a real parameter. Equations
(1.1) and (1.2), together with initial conditions (v0, w0), give us the existence and
uniqueness of a solution on R

+.
The two parameters vr and d are important to understand the repetitive spiking

properties of the system. Nevertheless, the bifurcation study with respect to these

1The same study can be done for a parameter-dependent function. More precisely, let E ⊂ R
n

be a parameter space (for a given n) and F : E × R → R a parameter-dependent real function.
All the properties shown in this section are valid for any fixed value of the parameter p. Further p-
bifurcations studies can be done for specific F (p, ·). The first equation can be derived from the general
I-V relation in neuronal models: C dV

dt
= I − I0(V ) − g(V −EK), where I0(V ) is the instantaneous

I-V curve.
2See, for instance, section 2.2, where the parameters of the initial equation (2.2) are related to

biological constants and where we proceed to a dimensionless reduction.
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parameters is outside the scope of this paper, and we focus here on the bifurcations of
the system with respect to (a, b, I), in order to characterize the subthreshold behavior
of the neuron.

1.2. Fixed points of the system. To understand the qualitative behavior of
the dynamical system defined by (1.1) before the blow up (i.e., between two spikes),
we begin by studying the fixed points and analyze their stability. The linear stability
of a fixed point is governed by the Jacobian matrix of the system, which we define in
the following proposition.

Proposition 1.2. The Jacobian of the dynamical system (1.1) can be written

(1.3) L := v �→
(

F ′(v) −1
ab −a

)
.

The fixed points of the system satisfy the equations

(1.4)

{
F (v) − bv + I = 0,

bv = w.

Let Gb(v) := F (v) − bv. From (A1) and (A2), we know that the function Gb is
strictly convex and has the same regularity as F . To have the same behavior as the
IBG models, we want the system to have the same number of fixed points. To this
purpose, it is necessary that Gb has a minimum for all b > 0. Otherwise, the convex
function Gb would have no more than one fixed point, since a fixed point of the system
is the intersection of an horizontal curve and Gb.

This means for the function F that infx∈R F ′(x) ≤ 0 and supx∈R
F ′(x) = +∞.

Using the monotony property of F ′, we write Assumption (A3).
Assumption (A3). ⎧⎨

⎩
lim

x→−∞
F ′(x) ≤ 0,

lim
x→+∞

F ′(x) = +∞.

Assumptions (A1), (A2), and (A3) ensure us that for all b ∈ R
∗
+, Gb has a unique

minimum, denoted m(b), which is reached. Let v∗(b) be the point where this minimum
is reached.

This point is the solution of the equation

(1.5) F ′(v∗(b)) = b.

Proposition 1.3. The point v∗(b) and the value m(b) are continuously differen-
tiable with respect to b.

Proof. We know that F ′ is a bijection. The point v∗(b) is defined implicitly by
the equation H(b, v) = 0, where H(b, v) = F ′(v) − b. H is a C1-diffeomorphism
with respect to b, and the differential with respect to b never vanishes. The implicit
function theorem (see, for instance, [7, Annex C.6]) ensures us that v∗(b) solution of
H(b, v∗(b)) = 0 is continuously differentiable with respect to b, and so does m(b) =
G(v∗(b)) − bv∗(b).

Theorem 1.4. The parameter curve defined by {(I, b); I = −m(b)} separates
three behaviors of the system (see Figure 1.1):

(i) If I > −m(b), then the system has no fixed point.
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Fig. 1.1. Number of fixed points and their stability in the plane (I, b) for the exponential
adaptive model.

(ii) If I = −m(b), then the system has a unique fixed point, (v∗(b), w∗(b)), which
is nonhyperbolic. It is unstable if b > a.

(iii) If I < −m(b), then the dynamical system has two fixed points (v−(I, b),
v+(I, b)) such that

v−(I, b) < v∗(b) < v+(I, b).

The fixed point v+(I, b) is a saddle fixed point, and the stability of the fixed
point v−(I, b) depends on I and on the sign of (b− a):
(a) If b < a, the fixed point v−(I, b) is attractive.
(b) If b > a, there is a unique smooth curve I∗(a, b) defined by the implicit

equation F ′(v−(I∗(a, b), b)) = a. This curve reads I∗(a, b) = bva−F (va),
where va is the unique solution of F ′(va) = a.

(b.1) If I < I∗(a, b), the fixed point is attractive.
(b.2) If I > I∗(a, b), the fixed point is repulsive.

Proof.
(i) We have F (v) − bv ≥ m(b) by definition of m(b). If I > −m(b), then for all

v ∈ R we have F (v) − bv + I > 0 and the system has no fixed point.
(ii) Let I = −m(b). We have already seen that Gb is strictly convex and contin-

uously differentiable and for b > 0 reaches its unique minimum at the point
v∗(b). This point is such that Gb(v

∗(b)) = m(b), and so it is the only point
satisfying F (v∗(b)) − bv∗(b) −m(b) = 0.
Furthermore, this point satisfies F ′(v∗(b)) = b. The Jacobian of the system
at this point reads

L(v∗(b)) =

(
b −1
ab −a

)
.

Its determinant is 0, and so the fixed point is nonhyperbolic (0 is eigenvalue
of the Jacobian matrix). The trace of this matrix is b− a. So the fixed point
v∗(b) is attractive when b > a and repulsive when b > a. The case a = b,
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I = −m(b) is a degenerate case which we will study more precisely in section
1.3.3.

(iii) Let I < −m(b). By the strict convexity assumption, Assumption (A2), of the
function G together with Assumption (A3), we know that there are only two
intersections of the curve G to a level −I higher than its minimum. These
two intersections define our two fixed points. At the point v∗ the function
is strictly lower than −I, and so the two solutions satisfy v−(I, b) < v∗(b) <
v+(I, b).
Let us now study the stability of these two fixed points. To this end, we have
to characterize the eigenvalues of the Jacobian matrix of the system at these
points.
We can see from formula (1.3) and the convexity assumption, Assumption
(A2), that the Jacobian determinant, equal to −aF ′(v) + ab, is a decreasing
function of v and vanishes at v∗(b), and so det(L(v+(I, b))) < 0 and the fixed
point is a saddle point (the Jacobian matrix has a positive and a negative
eigenvalue).
For the other fixed point v−(I, b), the determinant of the Jacobian matrix is
strictly positive. So the stability of the fixed point depends on the trace of
the Jacobian. This trace reads F ′(v−(I, b)

)
− a.

(a) When b < a, we have a stable fixed point. Indeed, the function F ′ is
an increasing function equal to b at v∗(b), and so Trace

(
L(v−(I, b))

)
≤

F ′(v∗(b)) − a = b− a < 0 and the fixed point is attractive.
(b) If b > a, then the type of dynamics around the fixed point v− depends

on the input current (parameter I). Indeed, the trace reads

T (I, b, a) := F ′(v−(I, b)
)
− a,

which is continuous and continuously differentiable with respect to I and
b, and which is defined for I < −m(b). We have⎧⎨

⎩
lim

I→−m(b)
T (I, b, a) = b− a > 0,

lim
I→−∞

T (I, b, a) = lim
x→−∞

F ′(x) − a < 0.

So there exists a curve I∗(a, b) defined by T (I, b, a) = 0 and such that
• for I∗(b) < I < −m(b), the fixed point v−(I, b) is repulsive;
• for I < I∗(b), the fixed point v− is attractive.

To compute the equation of this curve, we use the fact that point
v−(I∗(b), b) is such that F ′(v−(I∗(b), b)) = a. We know from the prop-
erties of F that there is a unique point va satisfying this equation. Since
F ′(v∗(b)) = b, a < b, and F ′ is increasing, the condition a < b implies
that va < v∗(b).
The associated input current satisfies fixed points equation F (va)−bva+
I∗(a, b) = 0, or equivalently

I∗(a, b) = bva − F (va).

The point I = I∗(a, b) will be studied in detail in the next section, since
it is a bifurcation point of the system.

Figure 1.1 represents the different zones enumerated in Theorem 1.4 and their
stability in the parameter plane (I, b).
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Remark. In this proof, we used the fact that F ′ is invertible on [0,∞). As-
sumption (A3) ensures us that it will be the case and that F has a unique minimum.
Assumption (A3) is the weakest possible to have this property.

1.3. Bifurcations of the system. In the study of the fixed points and their
stability, we identified two bifurcation curves where the stability of the fixed points
changes. The first curve I = −m(b) corresponds to a saddle-node bifurcation and
the curve I = I∗(a, b) to an Andronov–Hopf bifurcation. These two curves meet in a
specific point, b = a and I = −m(a). This point has a double 0 eigenvalue, and we
show that it is a Bogdanov–Takens bifurcation point.

Let us show that the system undergoes these bifurcations with no other assump-
tion than (A1), (A2), and (A3) on F . We also prove that the system can undergo
only one other codimension two bifurcation, a Bautin bifurcation.

1.3.1. Saddle-node bifurcation curve. In this section we characterize the
behavior of the dynamical system along the curve of equation I = −m(b), and we
prove the following theorem.

Theorem 1.5. The dynamical system (1.1) undergoes a saddle-node bifurcation
along the parameter curve:

(1.6) (SN) : {(b, I) ; I = −m(b)} ,

when F ′′(v∗(b)) �= 0.
Proof. We derive the normal form of the system at this bifurcation point. Fol-

lowing the works of Guckenheimer and Holmes [9] and Kuznetsov [19], we check only
the transversality conditions to be sure that the normal form at the bifurcation point
will have the expected form.

Let b ∈ R
+ and I = −m(b). Let v∗(b) be the unique fixed point of the system

for these parameters. The point v∗(b) is the unique solution of F ′(v∗(b)) = b. At this
point, the Jacobian matrix (1.3) reads

L(v∗(b)) =

(
b −1
ab −a

)
.

This matrix has two eigenvalues 0 and b − a. The pairs of right eigenvalues and
right eigenvectors are

0, U :=

(
1/b

1

)
and b− a,

(
1/a

1

)
.

Its pairs of left eigenvalues and left eigenvectors are

0, V := (−a, 1) and b− a, (−b, 1) .

Let fb,I be the vector field

fb,I(v, w) =

(
F (v) − w + I

a(bv − w)

)
.

The vector field satisfies

V

(
∂

∂I
fb,I(v

∗(b), w∗(b))

)
= (−a, 1) ·

(
1

0

)
= −a < 0.
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So the coefficient of the normal form corresponding to the Taylor expansion along
the parameter I does not vanish.

Finally, let us show that the quadratic terms of the Taylor expansion in the normal
form does not vanish. With our notations, this condition reads

V
(
D2

xfb,−m(b)(v
∗(b), w∗(b))(U,U)

)
�= 0.

This property is satisfied in our framework. Indeed,

V
(
D2

xfb,−m(b)(v
∗(b), w∗(b))(U,U)

)
= V

⎛
⎜⎝
⎛
⎜⎝U2

1

∂2f1

∂v2
+ 2U1U2

∂2f1

∂v∂w
+ U2

2

∂2f1

∂w2

U2
1

∂2f2

∂v2
+ 2U1U2

∂2f2

∂v∂w
+ U2

2

∂2f2

∂w2

⎞
⎟⎠
⎞
⎟⎠

= V

(( 1
b2F

′′(v∗)

0

))

= (−a, 1) ·
( 1

b2F
′′(v∗)

0

)

= − a

b2
F ′′(v∗) < 0.

So the system undergoes a saddle-node bifurcation along the manifold I =
−m(b).

Remark. Note that F ′′(v∗(b)) can vanish only countably many times since F is
strictly convex.

1.3.2. Andronov–Hopf bifurcation curve. In this section we consider the
behavior of the dynamical system along the parameter curve I = I∗(b), and we
consider the fixed point v−.

Theorem 1.6. Let b > a, va be the unique point such that F ′(va) = a and A(a, b)
be defined by the formula

(1.7) A(a, b) := F ′′′(va) +
1

b− a
(F ′′(va))

2
.

If F ′′(va) �= 0 and A(a, b) �= 0, then the system undergoes an Andronov–Hopf
bifurcation at the point va, along the parameter line

(1.8) (AH) :=
{

(b, I) ; b > a and I = bva − F (va)
}
.

This bifurcation is subcritical if A(a, b) > 0 and supercritical if A(a, b) < 0.
Proof. The Jacobian matrix at the point va reads

L(va) =

(
a −1
ab −a

)
.

Its trace is 0 and its determinant is a(b− a) > 0, and so the matrix at this point
has a pair of pure imaginary eigenvalues (iω,−iω), where ω =

√
a(b− a). Along the

curve of equilibria when I varies, the eigenvalues are complex conjugates with real
part μ(I) = 1

2 Tr
(
L(v−(I, b))

)
which vanishes at I = I∗(a, b).

We recall that from Proposition 1.3, this trace varies smoothly with I. Indeed,
v−(b, I) satisfies F (v−(I, b)) − bv−(I, b) + I = 0 and is differentiable with respect to
I. We have

∂v−(I, b)

∂I
(F ′(v−(I, b)) − b) = −1.
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At the point v−(I∗(b), b) = va, we have F ′(va) = a < b, and so for I close to this
equilibrium point, we have

∂v−(I, b)

∂I
> 0.

Now let us check that the transversality condition of an Andronov–Hopf bifurca-
tion is satisfied (see [9, Theorem 3.4.2]). There are two conditions to be satisfied: the

transversality condition dμ(I)
dI �= 0 and the nondegeneracy condition l1 �= 0, where l1

is the first Lyapunov coefficient at the bifurcation point.
First of all, we prove that the transversality condition is satisfied:

μ(I) =
1

2
Tr(L(v−(I, b)))

=
1

2
(F ′(v−(I, b)) − a),

dμ(I)

dI
=

1

2
F ′′(v−(I, b))

dv−(I, b)

dI
> 0.

Let us now write the normal form at this point. To this purpose, we change
variables: {

v − va = x,

w − wa = ax + ωy.

The (x, y) equation reads

(1.9)

{
ẋ = −ωy + (F (x + va) − ax− wa) =: −ωy + f(x),

ẏ = ωx + a
ω (ax− F (x + va) + wa − I) =: ωx + g(x).

According to Guckenheimer in [9], we state that the Lyapunov coefficient of the
system at this point has the same sign as B, where B is defined by

B :=
1

16
[fxxx+fxyy+gxxy+gyyy]+

1

16ω
[fxy(fxx+fyy)−gxy(gxx+gyy)−fxxgxx+fyygyy].

Replacing f and g by the expressions found in (1.9), we obtain the expression
of A:

B =
1

16
F ′′′(va) +

a

16ω2
(F ′′(va))

2

=
1

16
F ′′′(va) +

1

16(b− a)
(F ′′(va))

2

=
1

16
A(a, b).

Hence when A(a, b) �= 0, the system undergoes an Andronov–Hopf bifurcation.
When A(a, b) > 0, the bifurcation is subcritical and the periodic orbits generated by
the Hopf bifurcation are repelling, and when A(a, b) < 0, the bifurcation is supercrit-
ical and the periodic orbits are attractive (the formula of A has also been introduced
by Izhikevich in [16, eq. (15), p. 213]).
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Remark. The case A(a, b) = 0 is not treated in the theorem and is a little bit
more intricate. We fully treat it in section 1.3.4 and show that a Bautin (generalized
Hopf) bifurcation can occur if the A-coefficient vanishes. Since the third derivative is
a priori unconstrained, this case can occur, and we prove in section 3 that this is the
case for a simple (quartic) model.

1.3.3. Bogdanov–Takens bifurcation. We have seen in the study that this
formal model presents an interesting point in the parameter space, corresponding to
the intersection of the saddle-node bifurcation curve and the Andronov–Hopf bifur-
cation curve. At this point, we show that the system undergoes a Bogdanov–Takens
bifurcation.

Theorem 1.7. Let F be a real function satisfying Assumptions (A1), (A2),
and (A3). Let a ∈ R

∗
+ and b = a, and let va be the only point such that F ′(va) = a.

Assume again that F ′′(va) �= 0.
Then at this point and with these parameters, the dynamical system (1.1) under-

goes a subcritical Bogdanov–Takens bifurcation of normal form:

(1.10)

⎧⎨
⎩
η̇1 = η2,

η̇2 =
(

8F ′′(va) a I1
(a+b1)3

)
−
(

2(2 b1 a+I1 F ′′(va))
(a+b1)2

)
η1 + η2

1 + η1η2 + O(‖η‖3),

where b1 := b− a and I1 = I + m(a).
Proof. The Jacobian matrix (1.3) at this point reads

L(va) =

(
a −1
a2 −a

)
.

This matrix is nonzero and has two 0 eigenvalues (its determinant and trace are 0).
The matrix Q :=

(
a 1
a2 −a

)
is the passage matrix to the Jordan form of the Jacobian

matrix:

Q−1 · L(va) ·Q =

(
0 1
0 0

)
.

To prove that the system undergoes a Bogdanov–Takens bifurcation, we show that
the normal form reads

(1.11)

{
η̇1 = η2,

η̇2 = β1 + β2η1 + η2
1 + ση1η2 + O(‖η‖3)

with σ = ±1. The proof of this theorem consists of (i) proving that the system
undergoes a Bogdanov–Takens bifurcation, (ii) finding a closed-form expression for
the variables β1 and β2, and (iii) proving that σ = 1.

First of all, let us prove that the normal form can be written in the form of (1.11).
This is equivalent to showing some transversality conditions on the system (see, for
instance, [19, Theorem 8.4]).

To this end, we center the equation at this point and write the system in the
coordinates given by the Jordan form of the matrix. Let

(
y1

y2

)
= Q−1

(
v−va

w−wa

)
at the

point b = a + b1, I = −m(a) + I1. We get

(1.12)

{
ẏ1 = y2 + b1

a (ay1 + y2),

ẏ2 = F (ay1 + y2 + va) − wa −m(a) + I1 − a2y1 − ay2 − b1(ay1 + y2).
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Let us denote v1 = ay1 + y2. The Taylor expansion on the second equation gives
us

ẏ2 = F (v1 + va) − wa −m(a) + I1 − a2y1 − ay2 − b1(ay1 + y2)

= F (va) + F ′(va)v1 +
1

2
F ′′(va)v

2
1 − wa −m(a)

+ I1 − a2y1 − ay2 − b1(ay1 + y2) + O(‖v1‖3)

= (F (va) − wa −m(a)) + I1 + (F ′(va) − a)v1 − b1v1 +
1

2
F ′′(va)v

2
1

+ O(‖v1‖3)

= I1 − b1(ay1 + y2) +
1

2
F ′′(va)(ay1 + y2)

2 + O(‖y‖3).(1.13)

Let us denote for the sake of clarity α = (b1, I1) and write (1.12) as
(1.14){
ẏ1 = y2 + a00(α) + a10(α)y1 + a01(α)y2,

ẏ2 = b00(α) + b10(α)y1 + b01(α)y2 + 1
2b20(α)y2

1 + b11(α)y1y2 + 1
2b02(α)y2

2 + O(‖y‖3).

From (1.12) and (1.13), it is straightforward to identify the expressions for the
coefficients aij(α) and bij(α).

Let us now use the change of variables:{
u1 = y1,

u2 = y2 + b1
a (ay1 + y2).

The dynamical system governing (u1, u2) reads{
u̇1 = u2,

u̇2 = (1 + b1
a ) − b1 a u1 + 1

2
a3F ′′(va)

a+b1
u2

1 + a2F ′′(va)
a+b1

u1 u2 + 1
2
aF ′′(va)
a+b1

u2
2.

The transversality conditions of a Bogdanov–Takens bifurcation [9, 19] can easily
be verified from this expression:

(BT.1) The Jacobian matrix is not 0.
(BT.2) With the notations of (1.14), we have a20 = 0 and b11(0) = aF ′′(va) > 0,

and so a20(0) + b11(0) = aF ′′(va) > 0.
(BT.3) b20 = a2F ′′(va) > 0.
(BT.4) We show that the map(

x :=

(
y1

y2

)
, α :=

(
I1
b1

))
�→
[
f(x, α),Tr

(
Dxf(x, α)

)
,Det

(
Dxf(x, α)

)]
is regular at the point of interest.
From the two first assumptions, we know that the system can be put in the
form of (1.11). Guckenheimer in [9] proves that this condition can be reduced
to the nondegeneracy of the differential with respect to (I1, b1) of the vector(
β1

β2

)
of (1.11).

In our case, we can compute these variables β1 and β2 following the calculation
steps of [19], and we get

(1.15)

{
β1 = 8F ′′(va) a I1

(a+b1)3
,

β2 = − 2(2 b1 a+I1 F ′′(va))
(a+b1)2

.
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Hence the differential of the vector
(
β1

β2

)
with respect to the parameters (I1, b1)

at the point (0, 0) reads

Dαβ|(0,0) =

(
8F ′′(va)

a2 0

−2F ′′(va)
a2 −4/a

)
.

This matrix has a nonzero determinant if and only if F ′′(va) �= 0.
Therefore we have proved the existence of a Bogdanov–Takens bifurcation under

the condition F ′′(va) �= 0.
Let us now show that σ = 1. Indeed, this coefficient is given by the sign of

b20(0)
(
a20(0) + b11(0)

)
which in our case is equal to a3F ′′(va)

2 > 0, and so the
bifurcation is always of the type (1.10) (generation of an unstable limit cycle) for all
the members of our class of models.

The existence of a Bogdanov–Takens bifurcation point implies the existence of a
smooth curve corresponding to a saddle homoclinic bifurcation in the system (see [19,
Lemma 8.7]).

Corollary 1.8. There is a unique smooth curve (P ) corresponding to a saddle
homoclinic bifurcation in the system (1.1) originating at the parameter point b = a
and I = −m(a) defined by the implicit equation:

(P ) :=

{
(I = −m(a) + I1, b = a + b1) ;

I1 =

(
− 25

6 a− 37
6 b1 + 5

6

√
25 a2 + 74 b1 a + 49 b1

2
)
a

F ′′(va)
+ o(| b1 | + | I1 |)(1.16)

and b1 > −I1F
′′(va)

2a

}
.

Moreover, for (b, I) in a neighborhood of (a,−m(a)), the system has a unique
and hyperbolic unstable cycle for parameter values inside the region bounded by the
Hopf bifurcation curve and the homoclinic bifurcation curve (P ), and it has no cycle
outside this region.

Proof. As noticed, from the Bogdanov–Takens bifurcation point, we have the
existence of this saddle homoclinic bifurcation curve. Let us now compute the equation
of this curve in the neighborhood of the Bogdanov–Takens point. To this purpose we
use the normal form we derived in Theorem 1.7 and use the local characterization
given, for instance, in [19, Lemma 8.7] for the saddle homoclinic curve:

(P ) :=

{
(β1, β2) ; β1 = − 6

25
β2

2 + o(β2
2), β2 < 0

}
.

Using the expressions (1.15) yields

(P ) :=

{
(I = −m(a) + I1, b = a + b1) ;

8F ′′(va)aI1
(a + b1)3

=
24

25

(2 b1 a + I1 F
′′(va))

2

(a + b1)4
+ o(| b1 | + | I1 |)

and b1 > −I1F
′′(va)

2a

}
.
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We can solve this equation. There are two solutions but only one satisfying I1 = 0
when b1 = 0. This solution is the curve of saddle homoclinic bifurcations.

1.3.4. Formal conditions for a Bautin bifurcation. In the study of the
Andronov–Hopf bifurcation, we showed that the sub- or supercritical type of bifurca-
tion depended on the variable A(a, b) defined by (1.7). If this variable changes sign
when b varies, then the stability of the limit cycle along Hopf bifurcation changes
stability. This can occur if the point va satisfies the following condition.

Assumption (A4). For va such that F ′(va) = a, we have

F ′′′(va) < 0.

Indeed, if this happens, the type of Andronov–Hopf bifurcation changes, since we
have ⎧⎨

⎩
lim

b→a−
A(a, b) = +∞,

lim
b→+∞

A(a, b) = F ′′′(va) < 0.

In this case the first Lyapunov exponent vanishes for

b = a− (F ′′(va))
2

F ′′′(va)
.

At this point, the system has the characteristics of a Bautin (generalized Hopf) bifur-
cation. Nevertheless, we still have to check two nondegeneracy conditions to ensure
that the system actually undergoes a Bautin bifurcation:

(BGH.1) The second Lyapunov coefficient of the dynamical system l2 does not
vanish at this equilibrium point.

(BGH.2) Let l1(I, b) be the first Lyapunov exponent of this system and μ(I, b)
the real part of the eigenvalues of the Jacobian matrix. The map

(I, b) �→ (μ(I, b), l1(I, b))

is regular at this point.
In this case the system would be locally topologically equivalent to the normal

form: {
ẏ1 = β1y1 − y2 + β2y1(y

2
1 + y2

2) + σy1(y
2
1 + y2

2)2,

ẏ2 = β1y2 − y1 + β2y2(y
2
1 + y2

2) + σy2(y
2
1 + y2

2)2.

We reduce the problem to the point that checking the two conditions of a BGH
bifurcation becomes straightforward.

Let (va, wa) be the point where the system undergoes the Bautin bifurcation
(when it exists). Since we already computed the eigenvalues and eigenvectors of the
Jacobian matrix along the Andronov–Hopf bifurcation curve, we can use it to reduce
the problem. The basis where we express the system is given by

⎧⎪⎨
⎪⎩
Q :=

(
1
b

ω
ab

1 0

)
,

(
x
y

)
:= Q−1

(
v−va

w−wa

)
.



1058 JONATHAN TOUBOUL

Let us write the dynamical equations satisfied by (x, y):{
ẋ = ωy,

ẏ = ab
ω

(
F
(
va + 1

bx + ω
aby
)
− wa − x + Ia − ay

)
.

To ensure that we have a Bautin bifurcation at this point we will need to per-
form a Taylor expansion up to the fifth order, and so we need to make the following
assumption.

Assumption (A5). The function F is six times continuously differentiable at
(va, wa).

First, let us denote v1(x, y) = 1
bx + ω

aby; the Taylor expansion reads

ẏ =
ab

ω

(
F (va) − wa + I

)
+

ab

ω
[F ′(va)v1(x, y) − ay] +

1

2

ab

ω

[
F ′′(va)v1(x, y)

2
]

+
1

6

ab

ω
F ′′′(va)v1(x, y)

3 +
1

4!

ab

ω
F (4)(va)v1(x, y)

4

+
1

5!

ab

ω
F (5)(va)v1(x, y)

5 + O
(∥∥∥∥
(
x

y

)∥∥∥∥
6
)
.

This expression, together with the complex left and right eigenvectors of the
Jacobian matrix, allows us to compute the first and second Lyapunov coefficients and
to check the existence of a Bautin bifurcation.

Nevertheless, we cannot push the computation any further at this level of gener-
ality, but, for a given function F presenting a change in the sign of A(a, b), this can
easily be done through the use of a symbolic computation package. The interested
reader is referred to Appendix A for checking the Bautin bifurcation transversality
conditions, where calculations are given for the quartic neuron model.

1.4. Conclusion: The full bifurcation diagram. We now summarize the
results obtained in this section in the two following theorems.

Theorem 1.9. Let us consider the formal dynamical system

(1.17)

{
v̇ = F (v) − w + I,

ẇ = a(bv − w),

where a is a fixed real, b and I bifurcation parameters, and F : R �→ R a real function.
If the function F satisfies the assumptions that

(A.1) the function F is three times continuously differentiable,
(A.2) F is strictly convex, and
(A.3) F ′ satisfies the conditions ⎧⎨

⎩
lim

x→−∞
F ′(x) ≤ 0,

lim
x→∞

F ′(x) = ∞,

then the dynamical system (1.17) shows the following bifurcations:
(B1) A saddle-node bifurcation curve:

(SN) : {(b, I) ; I = −m(b)} ,

where m(b) is the minimum of the function F (v)−bv (if the second derivative
of F does not vanish at this point).
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(B2) An Andronov–Hopf bifurcation line:

(AH) :=
{

(b, I) ; b > a and I = bva − F (va)
}
,

where va is the unique solution of F ′(va) = a (if F ′′(va) �= 0). This type of
Andronov–Hopf bifurcation is given by the sign of the variable

A(a, b) = F ′′′(va) +
1

b− a
F ′′(va)

2.

If A(a, b) > 0, then the bifurcation is subcritical, and if A(a, b) < 0, then the
bifurcation is supercritical.

(B3) A Bogdanov–Takens bifurcation point at the point b = a and I = −m(a) if
F ′′(va) �= 0.

(B4) A saddle homoclinic bifurcation curve characterized in the neighborhood of
the Bogdanov–Takens point by

(P ) :=

{
(I = −m(a) + I1, b = a + b1) ;

I1 =

(
− 25

6 a− 37
6 b1 + 5

6

√
25 a2 + 74 b1 a + 49 b1

2
)
a

F ′′(va)
+ o(| b1 | + | I1 |)

and b1 > −I1F
′′(va)

2a

}
.

Theorem 1.10. Consider the system (1.1), where a is a given real number, b
and I are real bifurcation parameters, and F : E ×R �→ R is a function satisfying the
following assumptions:

(A.5) The function F is six times continuously differentiable.
(A.2) F is strictly convex.
(A.3) F ′ satisfies the conditions ⎧⎨

⎩
lim

x→−∞
F ′(x) ≤ 0,

lim
x→∞

F ′(x) = ∞.

(A.4) Let va be the unique real such that F ′(va) = a. We have

F ′′′(va) < 0.

Furthermore, consider the following conditions:
(BGH.1) The second Lyapunov coefficient of the dynamical system l2(va) �= 0.
(BGH.2) Let l1(v) denote the first Lyapunov exponent and λ(I, b) = μ(I, b) ±

iω(I, b) the eigenvalues of the Jacobian matrix in the neighborhood of the
point of interest. The map (I, b) → (μ(I, b), l1(I, b)) is regular at this point.

Having these, the system undergoes a Bautin bifurcation at the point va for the

parameters b = a− F ′′(va)2

F ′′′(va) and I = bva − F (va).

Remark. Theorem 1.9 enumerates some of the bifurcations that any dynamical
system of the class (1.1) will always undergo. Together with Theorem 1.10, they
summarize all the local bifurcations the system can undergo, and no other fixed-point
bifurcation is possible. In section 3 we introduce a model actually showing all these
local bifurcations.
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2. Applications: Izhikevich and Brette–Gerstner models. In this section
we show that the neuron models proposed by Izhikevich in [14] and Brette and Gerst-
ner in [5] are part of the class studied in section 1. Using the results of the latter
section, we derive their bifurcation diagram and obtain that they show exactly the
same types of bifurcations.

2.1. Izhikevich quadratic adaptive model. We produce here a complete de-
scription of the bifurcation diagram of the adaptive quadratic integrate-and-fire model
proposed by Izhikevich in [14] and [16, Chapter 8]. We use here the dimensionless
equivalent version of this model with the fewest parameters:

(2.1)

{
v̇ = v2 − w + I,

ẇ = a(bv − w).

Equation (2.1) is clearly a particular case of (1.1) with

F (v) = v2.

F is clearly strictly convex and C∞. F ′(v) = 2v, and so it also satisfies Assump-
tion (A3). Furthermore, the second derivative never vanishes, and so the system
undergoes the three bifurcations stated in Theorem 1.9.

(Izh.B1) A saddle-node bifurcation curve defined by{
(b, I) ; I =

b2

4

}
.

For (I, b) ∈ R
2, the fixed point is given by (v∗(b) = 1

2b, w
∗(b) = 1

2b
2).

For I < b2

4 , the fixed point(s) are

v±(b, I) =
1

2

(
b±
√

b2 − 4I
)
.

(Izh.B2) An Andronov–Hopf bifurcation line:{
(I, b) ; b > a and I =

a

2

(
b− a

2

)}
,

whose type is given by the sign of the variable

A(a, b) =
4

b− a
.

This value is always strictly positive, and so the bifurcation is always sub-
critical.

(Izh.B3) A Bogdanov–Takens bifurcation point for b = a and I = a2

4 , va = a
2 .

(Izh.B4) A saddle homoclinic bifurcation curve satisfying the quadratic equation
near the Bogdanov–Takens point:

(P ) :=

{(
I =

a2

2
+ I1, b = a + b1

)
;

I1 =
a

2

(
−25

6
a− 37

6
b1 +

5

6

√
25 a2 + 74 b1 a + 49 b1

2

)
+ o(| b1 | + | I1 |)

and b1 > −I1
a

}
.

Figure 2.1 represents the fixed points of this dynamical system, and their stability,
together with the bifurcation curves.
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Fig. 2.1. Representation of the v fixed point with respect to the parameters I and b in the Izhike-
vich model. The reddish component is the surface of saddle fixed points, the purplish one corresponds
to the repulsive fixed points, and the greenish/bluish one corresponds to the attractive fixed points
The yellow curve corresponds to a saddle-node bifurcation and the red one to an Andronov–Hopf
bifurcation.

2.2. Brette–Gerstner exponential adaptative integrate-and-fire neuron.
In this section we study the bifurcation diagram of the adaptive exponential neuron.
This model has been introduced by Brette and Gerstner in [5]. This model, inspired
by the Izhikevich adaptive quadratic model, can be fitted to biological values, takes
into account the adaptation phenomenon, and is able to reproduce many behaviors
observed in cortical neurons. The bifurcation analysis we derived in section 1 allows
us to understand how the parameters of the model can affect the behavior of this
neuron. We show that this model is part of the general class studied in section 1, and
we obtain the fixed-point bifurcation diagram of the model.

2.2.1. Reduction of the original model. This original model is based on
biological constants and is expressed with a lot of parameters. We first reduce this
model to a simpler form with the fewest number of parameters.

The basic equations proposed in the original paper [5] read

(2.2)

⎧⎪⎪⎨
⎪⎪⎩
C dV

dt = −gL(V − EL) + gLΔT exp
(

V−VT

ΔT

)
−ge(t)(V − Ee) − gi(t)(V − Ei) −W + Im,

τW
dW
dt = κ(V − EL) −W.

First, we do not assume that the reversal potential of the w equation is the same
as the leakage potential EL, and we write the equation for the adaptation variable by

τW
dW

dt
= a(V − V̄ ) −W.

Next we assume that ge(·) and gi(·) are constant (in the original paper it was assumed
that the two conductances were null).
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After some straightforward algebra, we eventually get the following dimensionless
equation equivalent to (2.2):

(2.3)

{
v̇ = −v + ev − w + I,

ẇ = a(bv − w),

where we denoted

(2.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g̃ := gL + ge + gi,

τm := C
g̃ ,

B := κ
g̃

(
EL

ΔT
+ log( gLg̃ e−VT /ΔT )

)
,

v(τ) := V (ττm)
ΔT

+ log
(

gL
g̃ e−VT /ΔT

)
,

w(τ) := W (ττm)
g̃ΔT

+ B,

a := τm
τW

,

b := κ
g̃ ,

I := Im+gLEL+geEe+giEi

g̃ΔT
+ log( glg̃ e

−VT /ΔT ) + B

and where the dot denotes the derivative with respect to τ .
Remark. These expressions confirm the qualitative interpretation of the param-

eters a, b, and I of the model (1.1). Indeed, a = τm
τw

accounts for the time scale of
the adaptation (with the membrane time scale as reference), and the parameter b = κ

g̃
is proportional to the interaction between the membrane potential and the adaptation
variable and inversely proportional to the total conductivity of the membrane poten-
tial. Eventually, I is an affine function of the input current Im and models the input
current of the neurons.

2.2.2. Bifurcation diagram. From (2.3) we can clearly see that the Brette–
Gerstner model is included in the formal class studied in the paper with

F (v) = ev − v.

This function satisfies Assumptions (A1), (A2), and (A3). Furthermore, its second
order derivative never vanishes.

Theorem 1.9 shows that the system undergoes the following bifurcations:
(BG.B1) A saddle-node bifurcation curve defined by

{(b, I) ; I = (1 + b)(1 − log(1 + b))} .

So v∗(b) = log(1+ b). For I ≤ (1+ b)(1− log(1+ b)), the system has the fixed
points

(2.5)

⎧⎨
⎩
v−(I, b) := −W0

(
− 1

1+be
I

1+b

)
+ I

1+b ,

v+(I, b) := −W−1

(
− 1

1+be
I

1+b

)
+ I

1+b ,

where W0 is the principal branch of Lambert’s W function3 and W−1 the
real branch of Lambert’s W function such that W−1(x) ≤ −1, defined for
−e−1 ≤ x < 1.

3The Lambert W function is the inverse function of x �→ xex.
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Fig. 2.2. Representation of the v fixed point of the Brette–Gerstner model with respect to
the parameters I and b. The reddish/pinkish component is the surface of saddle fixed points, the
purplish one corresponds to the repulsive fixed points, and the bluish/greenish one corresponds to
the attractive fixed points The yellow curve corresponds to a saddle-node bifurcation and the red one
to an Andronov–Hopf bifurcation.

(BG.B2) An Andronov–Hopf bifurcation line for

{(b, I) ; b > a and I = I∗(a, b) = (1 + b) log(1 + a) − (1 + a)}

at the equilibrium point (va = log(1+a), wa = bva). This type of Andronov–
Hopf bifurcation is given by the sign of the variable

A(a, b) = F ′′′(va) +
1

b− a
F ′′(va)

2 = (1 + a) +
4

b− a
(1 + a)2 > 0.

So the bifurcation is always subcritical, and there is not any Bautin bifurca-
tion.

(BG.B3) A Bogdanov–Takens bifurcation point at the point b = a and I =
log(1 + a).

(BG.B4) A saddle homoclinic bifurcation curve satisfying, near the Bogdanov–
Takens point, the equation

(P ) :=

{
(I = (1 + a)(log(1 + a) − 1) + I1, b = a + b1) ;

I1 =

(
− 25

6 a− 37
6 b1 + 5

6

√
25 a2 + 74 b1 a + 49 b1

2
)
a

(1 + a)
+ o(| b1 | + | I1 |)

and b1 > −
(

1 +
1

a

)
I1

}
.

In Figure 2.2 we represent the fixed points of the exponential model and their
stability, together with the bifurcation curves, in the space (I, b, v).
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3. The richer quartic model. In this section, we introduce a new specific
model having a richer bifurcation diagram than the two models studied in section 2.
It is as simple as the two previous models from the mathematical and computational
points of view. To this end, we define a model which is part of the class studied in
section 1 by specifying the function F .

3.1. The quartic model: Definition and bifurcation map. Let a > 0 be a
fixed real and α > a. We instantiate the model (1.1) with the function F a quartic
polynomial:

F (v) = v4 + 2av.

Remark. The choice of the function F here is just an example where all the
formulas are rather simple. Exactly the same analysis can be done with any F function
satisfying F ′′′(va) < 0 and the transversality conditions given in Theorem 1.10. This
would be the case, for instance, for any quartic polynomial F (v) = v4 +αv for α > a.

The function F satisfies Assumptions (A1), (A2), and (A5). F ′(v) = 4v3 + 2a
satisfies Assumption (A3).

Nevertheless, we have to bear in mind that the second order derivative vanishes
at v = 0:

(3.1)

{
v̇ = v4 + 2av − w + I,

ẇ = a(bv − w).

Theorem 1.9 shows that the quartic model undergoes the following bifurcations:
(B1) A saddle-node bifurcation curve defined by

(SN) :=

{
(b, I) ; I = 3

(
b− 2a

4

)(4/3)
}
.

Proof. Indeed, the function G reads G(v) = v4 + (2a − b)v and reaches its
minimum at the point v = ( b−2a

4 )(1/3). So the minimum of G is m(b) =

−3 ( b−2a
4 )(4/3).

The point v∗(b) is ( b−2a
4 )(1/3), and we have closed-form expressions (but

rather complicated) for the two fixed points for I < 3 ( b−2a
4 )(4/3) since the

quartic equation is solvable in radicals. The closed form expression can be
obtained using a symbolic computation package like Maple using the com-
mand
S:=allvalues( solve( x^4 + (2*a - b) * x + I0 = 0,x));

(B2) An Andronov–Hopf bifurcation curve for b > a along the straight line

(AH) :=

{
(I, b) ; b > a and I = −

(a
4

)1/3

b−
(a

4

)4/3
}
.

The fixed point where the system undergoes this bifurcation is va = −(a4 )1/3.
The kind of Andronov–Hopf bifurcation we have is governed by the sign of

α = −24
(a

4

)1/3

+
144

b− a

(a
4

)4/3

.

Finally, the type of bifurcation changes when b varies.



BIFURCATION ANALYSIS OF NONLINEAR IF NEURONS 1065

–4
0

4
8

b
–3–2–10123

v*

–100

–80

–60

–40

–20

0

I

Fig. 3.1. v fixed points and their stability in function of I and b. The reddish/pinkish component
is the surface of saddle fixed points, the purplish one corresponds to the repulsive fixed points, and
the bluish/greenish one corresponds to the attractive fixed points. The yellow curve corresponds to
a saddle-node bifurcation, the red curve to a subcritical Andronov–Hopf bifurcation, and the greyish
one to the supercritical Andronov–Hopf bifurcation. The intersection point between the yellow and
the red curve is the Bogdanov–Takens bifurcation point, and the intersection point of the red and
greyish curves is the Bautin bifurcation point.

• When b < 5
2 a, then α > 0, hence l1 > 0, and the Andronov–Hopf

bifurcation is subcritical.
• When b > 5

2 a, then α < 0, hence l1 < 0, and the Andronov–Hopf
bifurcation is supercritical.

We prove below that the change in the type of Hopf bifurcation is obtained
via a Bautin bifurcation.

(B3) A Bogdanov–Takens bifurcation point is located at b = a and I = −3 (a4 )(4/3).
(B4) A saddle homoclinic bifurcation curve satisfying, near the Bogdanov–Takens

point, the equation

(P ) :=

{(
I = −3

(a
4

)(4/3)

+ I1, b = a + b1

)
;

I1 =
1

12

(
−25

6
a− 37

6
b1 +

5

6

√
25 a2 + 74 b1 a + 49 b1

2

)
a1/3

+ o(| b1 | + | I1 |)

and b1 > −6I1a
−1/3

}
.

(B5) A Bautin bifurcation at the point
(
b = 5

2a, I = −3(a4 )4/3 (2 a − 1)
)

and a
saddle node bifurcation of periodic orbits coming along (see section 3.2).

Figure 3.1 represents the bifurcation curves and the fixed point of the quartic
model in the space (I, b, v).
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3.2. The Bautin bifurcation. As we have seen in the last section, at the point

(3.2)

⎧⎪⎨
⎪⎩
va = −

(
a
4

)1/3
,

I = −3
(
a
4

)4/3
(2 a− 1) ,

b = 5
2a

the Jacobian matrix of the system has a pair of purely conjugate imaginary eigenvalues
and a vanishing first Lyapunov exponent.

To prove the existence of a Bautin bifurcation, we start our computations from
the point of section 1.3.4. In this case the calculations can be led until the end, but
the expressions are very intricate, and we do not reproduce it here. In Appendix A
we show the calculations to perform. We prove that the system actually undergoes a
Bautin bifurcation except for two particular values of the parameter a.4

With this method we obtain a closed-form expression for the second Lyapunov
exponent. We show that this second Lyapunov exponent vanishes for two values of a,
whose expressions are complicated. These calculations are rigorous, but nevertheless,
the interested reader can find numerical expressions of this exponent to get a grasp
on its behavior in the appendix (see (A.7)) and of the two numerical values of a such
that l2(a) vanishes.

Things are even more involved when we are interested in the regularity of the
map (I, b) �→ (μ(I, b), l1(I, b)). Nevertheless, we obtain that this determinant never
vanishes.

Eventually, for all a different from the critical values where the second Lyapunov
exponent vanishes, the system undergoes a Bautin bifurcation.

Note finally that the Bautin bifurcation point separates two branches of sub-
and supercritical Hopf bifurcations. For nearby parameter values, the system has
two coexisting limit cycles, an attractive one and a repelling one, which collide and
disappear via a saddle-node bifurcation of periodic orbits.

4. Numerical simulations. In the previous sections we emphasized the fact
that the class of models we defined in section 1 was able to reproduce the behaviors
observed by Izhikevich in [15]. In this section, first we show that the quartic model
indeed reproduces the behaviors observed by Izhikevich and which correspond to cor-
tical neuron behaviors observed experimentally. We also produce some simulations of
self-sustained subthreshold oscillations which occur only when the dynamical system
has attracting periodic orbits, which is not the case in the IBG models.

Izhikevich in [15] explains the main features we obtain in numerical simulations
from the neurocomputational point of view. In this paper, we comment on these
same features from the dynamical systems point of view. This analysis also gives
us a systematic way of finding the parameters associated with one of the possible
behaviors.

4.1. Simulation results. We now provide simulation results of the quartic
model introduced in section 3. In the simulated model, the spike is not represented
by the blow up of the potential membrane v, but we consider that the neuron emits
a spike when its membrane potential crosses a constant threshold.5

4All the computations have been performed using Maple, but the expressions are very involved
and are not reproduced here.

5Note that the numerical simulations are very robust with respect to the choice of the threshold,
if taken large enough, since the underlying equation blows up in finite time.
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Let θ be our threshold. The simulated model considered in this section is the
solution of the equations

(4.1)

{
v̇ = v4 + 2av − w + I,

ẇ = a(bv − w)

together with the spike-and-reset condition

(4.2) If v(t−) > θ ⇒
{
v(t) = vr,

w(t) = w(t−) + d.

Simulations have been done using an Euler numerical scheme, with a time step
ranging from 10−1 to 10−2 depending on the precision needed, and with time intervals
ranging from 10 to 500. This method is very efficient numerically and remains precise.
Other integration methods could be used, and the qualitative results we obtained do
not depend on the integration scheme, as soon as the time step is small enough.

Remark (on Figure 4.1). Note that we did not reproduce the last three behaviors
presented by Izhikevich in [15, Figs. 1.(R), 1.(S), and 1.(T)]. Indeed, these behaviors
are not in the scope of the present paper and do not correspond to the model we studied.

More precisely, in the study of the general model (1.1), we considered for phe-
nomenological reasons a > 0, modelling the leak of the adaptation variable: the adapta-
tion would converge to its rest value if it was not influenced by the membrane potential
v. If we considered a < 0, this adaptation variable would diverge exponentially from
this rest value if it was not controlled by the membrane potential v. The inhibition-
induced behaviors [15, Figs. 1.(S) and 1.(T)] require a to be strictly negative, and so
we will not comment on these behaviors any further.

Similarly, the accommodation behavior presented by Izhikevich in [15, Fig. 1.(R)]
is a limit case when w is very slow and the adaptation efficiency b very high. Mathe-
matically speaking, it corresponds to a case where a → 0 and ab → λ �= 0. This case
is not taken into account in our study and amounts to replacing (1.1) by an equation
of the type

(4.3)

{
dv
dt = F (v) − w + I,
dw
dt = ab(v − v0),

and the study of this equation is not in the scope of the present paper.
The simulated behaviors we obtained in Figure 4.1 have been obtained playing

with the bifurcation parameters in the phase plane. The way the parameters were set
was based on a qualitative reasoning on the phase plane and the bifurcation diagram
in a way we now describe.

4.2. Bifurcations and neuronal dynamics. In this section we link the neu-
ronal behaviors shown in Figure 4.1 with the bifurcations of the system.

• (i) Tonic spiking : This behavior corresponds to the saddle-node bifurcation.
The system starts from a (stable) equilibrium point near the saddle-node
bifurcation curve (see Figure 4.2). Then we apply a greater constant current
I, and the new dynamical system has no fixed point (we “cross” the saddle-
node bifurcation curve). So the neuron begins spiking. The stabilization
of the spiking frequency is linked with the existence of what we will call
a limit spiking cycle. Indeed, we can see that the phase plane trajectory
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(i) Tonic Spiking (ii) Phasic Spiking (iii) tonic bursting

(iv) phasic bursting (v) Mixed mode (vi) Spike freq. adaptation

(vii) Class 1 excitability (viii) Class 2 excitability (ix) Spike latency

(x) Damped subthr. oscill. (xi) resonator (xii) integrator

(xiii) rebound spike (xiv) rebound burst (xv) Threshold variability

(xvi) bistability .

(xix) Mixed chatter/C1 exc. (xx) Purely Oscill. mode

Fig. 4.1. Different remarkable neurocomputational interesting behaviors of the neuron model
(4.1) with the reset condition (4.2) for different choices of the parameters (a, b, I, vr, d). The higher
curve represents the membrane potential v and the lower one the input current I (see Appendix B
for the numerical values of each simulations).
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Fig. 4.2. Tonic spiking: phase plane trajectory. The dotted curve is the v nullcline at the initial
time. It is shifted to the dashed one when applying a constant input current. The new dynamical
system has no fixed point and spikes regularly. We can see the spiking cycle appearing.
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(a) Phase plane of the tonic spiking
(without the transient phase)
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(b) Controlling the number of spikes per burst

Fig. 4.3. Tonic bursting: phase plane trajectory. The dotted curve is the v nullcline at the
initial time. It is shifted to the dashed one when applying a constant input current. The new
dynamical system has no fixed point. We can see the multiple spike limit cycle here.

converges to a kind of cycle. This cycle includes a spike point (v = ∞,
or v = threshold in the numerical case), and so it is not a classical limit
cycle. The v is always reset to the same value, and we can see that the
adaptation variable w converges to an attracting stable value wspike. This
value satisfies ws(tspike)+ b = wspike, where ws(·) is solution of (4.1) with the
initial conditions {

v(0) = vr,

w(0) = wspike

and where tspike denotes the time of the spike.
• (ii) Phasic spiking : This behavior occurs on the stable fixed point portion

of the phase plane. The system starts at a fixed point. Then we apply a
constant current to the neuron greater than the initial current but lower than
the current associated with the saddle-node bifurcation. This stimulation
forces the neuron to spike. Nevertheless, the reset point falls in the attraction
basin of the new fixed point, and the trajectory converges to this point.

• (iii) Tonic bursting : This behavior is also linked to the saddle-node bifur-
cation. The system starts at a (stable) fixed point, and when we apply a
constant current, we cross this bifurcation. The new dynamical system has
no fixed point and is in a spiking behavior. The only difference with the tonic
spiking behavior is that the point (vr, wspike) is in the zone {(v, w); v̇ < 0}.
So the system emits quickly a precise number of spikes and then crosses the
v nullcline. At this point, the membrane potential decays before spiking.
We can see numerically that the system converges to a stable spiking cycle
(see Figure 4.3(a)) containing a given number of spikes, a decay, and then
the same sequence of spikes again. So the two-dimensional system is able
to reproduce the diagrams presented by Izhikevich in [13] in an (at least)
three-dimensional space. This is possible in two dimensions because of the
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(b) Class 2 excitability

Fig. 4.4. Spiking frequency vs. input current I for different choices of b. These curves have
been obtained running simulations for different values of the input current, computing the frequency
of the emitted spikes in a time range T = 10000.

singularity of the model (explosion or threshold/reinitialization). If the sys-
tem was regular, this behavior would not have been possible because it would
have contradicted the Cauchy–Lipschitz theorem of existence and uniqueness
of a solution.
Note that we can choose exactly the number of spikes per burst by changing
the adaptation parameter d and that the bursting can be of parabolic or
square-wave type as defined in Hoppensteadt and Izhikevich [12] (see Figure
4.3(b)).

• (iv) Phasic bursting : This behavior is linked with what we discussed in
(ii) and (iii): the system starts at a stable fixed point. When the input
current is turned on, the nullcline is shifted and the initial point is now in the
spiking zone, and so a spike is emitted. Nevertheless, in contrast with (ii),
the reset does not fall in the attraction basin of the new stable fixed point,
but the point (v0, wspike) is inside this attraction basin. So a certain number
of spikes are emitted before returning to the new fixed point. Here again we
are able to control the number of spikes in the initial burst.

• (v) Mixed mode: The dynamical system interpretation is mixed between the
phasic bursting and the tonic spiking. A certain number of spikes are neces-
sary to converge to the spiking cycle.

• (vi) Spike frequency adaptation: This behavior is a particular case of tonic
bursting where the convergence to the stable spiking cycle is slow.

• (vii)/(viii) Class one/two excitability : Figure 4.4(a) and (b) represents the
spiking frequency of the neurons as a function of the input current. We can
see that for the first choice of parameter, the frequency can be very small and
increases regularly, and for the second choice of parameter, we can see that
the system cannot spike in a given range of frequency (this frequency cannot
be lower than 1.2Hz). Those simulations show that, depending on the chosen
parameters, the system can be class 1 or class 2 excitable.

• (ix)/(xvii) Spike latency/DAP : It is a particular case of phasic spiking when
the equilibrium v∗ or the reset point vr is near a point such that F (v) =
F ′(v) = 0. The membrane potential dynamics is very slow around this point.
In the spike latency behavior, the initial point is close to this point, which
generates the observed latency. In our case, it is around the minimum of



BIFURCATION ANALYSIS OF NONLINEAR IF NEURONS 1071

−5 0 5 10

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

v

w

First impulse

Second impulse

(a) Bistability: return to equilibrium via the same
impulse
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(b) Bistability

Fig. 4.5. Bistability phenomenon: The first impulse induces a self-sustained tonic spiking
behavior while the system has a stable fixed point. The second impulse perturbs this regular spiking
behavior, and the system falls in the attraction basin of the stable fixed point.

the function F (see Figure 4.6(ix)). In the depolarized after-potential (DAP)
case, the reset occurs near this point, which is also in the attraction basin of
the stable fixed point.

• (x) Damped subthreshold oscillations: This behavior occurs in the neighbor-
hood of the stable fixed point: the stimulation evokes a spike, and the reset
falls in the attraction basin of the stable fixed point, which has complex
eigenvalues with negative real parts. This generates damped subthreshold
oscillations.

• (xi) Resonator : This behavior occurs at the stable fixed point when the
Jacobian matrix has complex eigenvalues. The first spike induces damped
subthreshold oscillations. The spike is emitted if the second spike is given at
the period of those oscillations, which is given by the argument of the complex
eigenvalue. If it occurs before or after, then no spike is emitted.

• (xii) Integrator : This behavior occurs when we stimulate the system from
the stable fixed point when the Jacobian matrix has real (negative) eigenval-
ues. If the first stimulation is not sufficient to make the neuron spike, then
the stimulation is damped. Nevertheless, the membrane potential returns to
equilibrium slowly, and if the same stimulation arrives to the “destabilized”
neuron, it can generate a spike. The closer the second stimulation is to the
first one, the more probable the omission of the spike.

• (xiii)/(xiv) Rebound spike or burst : The input impulse makes the neuron
spike, and the reset (or the second, third, nth reset) falls in the attraction
basin of the stable fixed point.

• (xv) Threshold variability : This phenomenon is exactly the same as the inte-
grator, but instead of destabilizing the variable v we play on the adaptation
variable.

• (xvi) Bistability : This behavior starts from the stable fixed point. The at-
tracting reset (vr, wspike) is outside the attraction basin of the fixed point
but still close to this zone. The first impulse generates a spike and initiates a
tonic spiking mode. Nevertheless, it is possible via a small perturbation of the
trajectory to fall into the attraction basin of the fixed point (see Figure 4.5).
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(i) Tonic Spiking (ii) Phasic Spiking (iii) tonic bursting

(iv) phasic bursting (v) Mixed mode (vi) Spike freq. adaptation

(vii) Class 1 excitability (viii) Class 2 excitability (ix) Spike latency

(x) Damped subthr. oscill. (xi) resonator (xii) integrator

(xiii) rebound spike (xiv) rebound burst (xv) Threshold variability

(xvi) bistability .

(xix) Mixed chatter/C1 exc. (xx) Purely Oscill. mode

Fig. 4.6. Phase diagrams corresponding to the behaviors presented in Figure 4.1.

• (xviii)/(xx) Self-sustained subthreshold oscillations and purely oscillating
mode: They are linked with the supercritical Hopf bifurcation and its stable
periodic orbit. These two behaviors cannot be obtained in the IBG models
since the Hopf bifurcations are always subcritical.

4.3. Self-sustained subthreshold oscillations in cortical neurons. In this
study we gave a set of sufficient conditions to obtain an IBG-like model of neuron.
In this framework we proposed a model that displays a Bautin bifurcation the IBG
neurons lack; as a consequence our model can produce subthreshold oscillations. In
this section, we explain from a biological point of view the origin and the role of those
oscillations and reproduce in vivo recordings.

In the IBG models, the Andronov–Hopf bifurcation is always subcritical. The only
oscillations created in these models are damped (see Figure 4.7(a)) and correspond
in the phase plane to the convergence to a fixed point where the Jacobian matrix
has complex eigenvalues. Our quartic model undergoes supercritical Andronov–Hopf
bifurcations, and so there are attracting periodic solutions. This means that the
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(c) Self-sustained oscillations
(stationary state)

Fig. 4.7. The quartic model shows damped subthreshold oscillations like the IBG models (Figure
4.7(a)): the trajectory collapses to a fixed point (parameters: a = 1, b = 1.5, I = 0.1, Tmax = 100,
dt = 0.01). The upper (blue) curve represents the solution in v, the middle (red) one w, and the lower
one (green) the trajectory in the plane (v, w). Self-sustained subthreshold oscillations of the quartic
model (Figures 4.7(b) and 4.7(c)): the trajectory is attracted towards a limit cycle (parameters:
a = 1, b = 5/2, I = −3(a/4)4/3(2a−1), Tmax = 150000, dt = 0.01, I = (−3(a/4)4/3(2a−1)+0.001).

neurons can show self-sustained subthreshold oscillations (Figures 4.7(b) and 4.7(c)),
which is of particular importance in neuroscience.

Most biological neurons show a sharp transition from silence to a spiking behavior,
which is reproduced in all the models of class (1.1). However, experimental studies
suggest that some neurons may experience a regime of small oscillations [21]. These
subthreshold oscillations can facilitate the generation of spike oscillations when the
membrane gets depolarized or hyperpolarized [22, 23]. They also play an important
role in shaping specific forms of rhythmic activity that are vulnerable to the noise in
the network dynamics.

For instance, the inferior olive nucleus, a part of the brain that sends sensory
information to the cerebellum, is composed of neurons able to support oscillations
around the rest potential. It has been shown by Llinás and Yarom [22, 23] that the
precision and robustness of these oscillations are important for the precision and the
robustness of spike generation patterns. The quartic model is able to reproduce the
main features of the inferior olive neuron dynamics:

i. autonomous subthreshold periodic and regular oscillations (see intracellular
recordings of inferior olive neurons in brain stem slices in [23]),

ii. rhythmic generation of action potentials.

The robust subthreshold oscillations shown by in vivo recordings [4, 21, 23] cor-
respond in our quartic model to the stable limit cycle coming from the supercritical
Hopf bifurcation. The oscillations generated by this cycle are stable, and they have
a definite amplitude and frequency. This oscillation occurs at the same time as the
rhythmic spike generation in the presence of noisy or varying input. Note that other
neuron models such as those studied above, even if they do not undergo a supercritical
Hopf bifurcation, can also exhibit oscillations in the presence of noise, for instance
near a subcritical Hopf bifurcation. Nevertheless, these oscillations do not have the
regularity in the amplitude and the frequency linked with the presence of an attract-
ing limit cycle. The results we obtain simulating the quartic model are very similar
to those obtained by in vivo recordings (see Figure 4.8).

But the inferior olive neurons are not the only neurons to present subthreshold
membrane potential oscillations. For instance, stellate cells in the enthorhinal cor-
tex demonstrate theta frequency subthreshold oscillations [1, 2, 17], linked with the
persistent Na+ current INaP.
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Fig. 4.8. Subthreshold membrane oscillations, qualitatively reproducing the recordings from [20]
in DRG neurons. Traces illustrate (4.8(a)) oscillations without spiking, (4.8(b)) oscillations with
intermittent spiking, and (4.8(c)) oscillations with intermittent bursting (in the figures, spikes are
truncated). The noisy input is an Ornstein–Ulhenbeck process. The biological recordings 4.8(d) are
reproduced from [20, Fig. 1] and used with permission.

We now conclude this section on the specific example of subthreshold self-sus-
tained oscillations given by the dorsal root ganglia (DRG) neuron. This neuron
presents subthreshold membrane potential oscillations coupled with repetitive spike
discharge or burst, for instance in the case of a nerve injury [20, 3]. Figure 4.8(d)
shows biological in vivo intracellular recordings performed by Liu et al. [20] from a
DRG neuron of an adult male rat. The recorded membrane potentials exhibit high
frequency subthreshold oscillation in the presence of noise, combined with a repetitive
spiking or bursting. These behaviors can be reproduced by the quartic model, as we
can see in Figure 4.8, around a point where the system undergoes a supercritical Hopf
bifurcation.6

Conclusion. In this paper we defined a general class of neuron models able to
reproduce a wide range of neuronal behaviors observed in experiments on cortical
neurons. This class includes the Izhikevich and the Brette–Gerstner models, which
are widely used. We derived the bifurcation diagram of the neurons of this class and
proved that they all undergo the same types of bifurcations: a saddle-node bifurcation
curve, an Andronov–Hopf bifurcation curve, and a codimension two Bogdanov–Takens

6The amplitude and frequency of the subthreshold oscillations can be controlled choosing a point
on the supercritical Hopf bifurcation curve.
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bifurcation. We proved that there was only one other possible fixed-point bifurcation,
a Bautin bifurcation. Then using those theoretical results we proved that the Izhike-
vich and the Brette–Gerstner models had the same bifurcation diagram.

This theoretical study allows us to search for interesting models in this class of
neurons. Indeed, Theorem 1.9 ensures us that the bifurcation diagram will present
at least the bifurcations stated. This information is of great interest if we want to
control the subthreshold behavior of the neuron of interest.

Following these ideas, we introduced a new neuron model of our global class
undergoing the Bautin bifurcation. This model, called the quartic model, is computa-
tionally and mathematically as simple as the IBG models and able to reproduce some
cortical neuron behaviors which the IBG models cannot reproduce.

This study focused on the subthreshold properties of this class of neurons. The
adaptative reset of the model is of great interest and is a key parameter in the repet-
itive spiking properties of the neuron. Its mathematical study is very rich and is still
an ongoing work.

Appendix A. Bautin bifurcation. In this appendix we prove that the quartic
model undergoes a Bautin bifurcation at the point

(A.1)

⎧⎪⎨
⎪⎩
b = 5

2 a,

I = −3
(
a
4

)4/3
(2 a− 1) ,

va = −
(
a
4

)1/3
.

A.1. The first Lyapunov exponent. Indeed, using a suitable affine change of
coordinates, the system at this point reads

(A.2)

⎧⎪⎨
⎪⎩
ẋ = ωy,

ẏ = ab
ω

(
6v2

av1(x, y)
2 + 4vav1(x, y)

3 + v1(x, y)
4
)

= 1
2F2

((
x
y

)
,
(
x
y

))
+ 1

6F3

((
x
y

)
,
(
x
y

)
,
(
x
y

))
+ 1

24F3

((
x
y

)
,
(
x
y

)
,
(
x
y

)
,
(
x
y

))
,

where v1(x, y) = 1
bx+ ω

aby. We also denote F2(X,Y ), F3(X,Y, Z), and F4(X,Y, Z, T )
the multilinear symmetric vector functions of (A.2) (X,Y, Z, T ∈ R

2):

{
F2

((
x
y

)
,
(
z
t

))
=
(

0
12 ab

ω v2
av1(x,y)v1(z,t)

)
,

. . .

To compute the two first Lyapunov exponents of the system, we follow Kuznet-
sov’s method [19]. In this method we need to compute some specific right and left
complex eigenvectors, which can be chosen in our case to be

(A.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

p =

(
1

−i
√
a b−a2+a

1

)
,

q =

⎛
⎜⎜⎝

1
2

(i
√

a(b−a)+a)b

b−a−i
√

a(b−a)

1/2
(i
√

a(b−a)+a)2

a (b−a−i
√

a(b−a))

⎞
⎟⎟⎠ .

We now put the system in a complex form letting z = x + iy.
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We can now compute the complex Taylor coefficients gij :

(A.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g20 = 〈p, F2(q, q)〉,
g11 = 〈p, F2(q, q̄)〉,
g02 = 〈p, F2(q̄, q̄)〉,

g30 = 〈p, F3(q, q, q)〉,
g21 = 〈p, F3(q, q, q̄)〉,
g12 = 〈p, F3(q̄, q̄, q̄)〉,
g03 = 〈p, F3(q̄, q̄, q̄)〉,
. . .

So the Taylor coefficients (A.4) read

(A.5)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

g20 = 12ab
ω v2

av1

(
1
2

(i
√

a(b−a)+a)b

b−a−i
√

a(b−a)
, 1

2

(i
√

a(b−a)+a)2

a (b−a−i
√

a(b−a))

)2

,

g11 = 12ab
ω v2

av1(q)v1(q̄),

g02 = 12ab
ω v2

av1(q̄)v1(q̄),

. . .

Now let S(I, b) := F ′(v−(I, b)) be the value of the derivative of the function F ,
defined around the bifurcation point we are interested in.

The Jacobian matrix in the neighborhood of the point (A.1) reads

L(v) =

(
S(I, b) 1
ab −a

)
.

Let us denote α =
(
I
b

)
the parameter vector and λ(α) = μ(α) ± iω(α) the eigen-

values of the Jacobian matrix. We have{
μ(α) = 1

2 (S(α) − a) ,

ω(α) = 1
2

√
−(S(α) − a)2 + 4ab.

With these notations, let c1(α) be the complex defined by

c1(α) =
g20g11(2λ + λ̄)

2|λ|2 +
|g11|2
λ

+
|g02|2

2(2λ− λ̄)
+

g21

2

(in this formula we omit the dependence in α of λ for the sake of clarity).

The first Lyapunov exponent l1(α) eventually reads

(A.6) l1(α) =
Re(c1(α))

ω(α)
− μ(α)

ω(α)2
Im(c1(α))
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A.2. The second Lyapunov exponent. The method to compute the second
Lyapunov exponent is the same as the one we described in the previous section. The
expression is given by the following formula:

2l2(0) =
1

ω(0)
Re[g32]

+
1

ω(0)2
Im

[
g20 ¯g31 − g11 (4 g31 + 3 ¯g22) −

1

3
g02 (g40 + ¯g13) − g30 g12

]

+
1

ω(0)3

{
Re

[
g20

(
¯g11(3 g12 − ¯g30) + g02 ( ¯g12 − 1/3 g30) +

1

3
¯g02g03

)

+ g11

(
¯g02

(
5

3
¯g30 + 3 g12

)
+

1

3
g02 ¯g03 − 4 g11 g30

)]

+ 3 Im[g20 g11] Im[g21]

}

+
1

ω(0)4
{
Im
[
g11 ¯g02

(
¯g20

2 − 3 ¯g20g11 − 4 g2
11

)]
+ Im[g20 g11]

(
3 Re(g20 g11) − 2 |g02|2

)}
.

This expression is quite intricate in our case. Nevertheless, we have a closed-form
expression depending on the parameter a, vanishing for two values of the parameter
a. We evaluate numerically this second Lyapunov exponent. We get the following
expression:

l2(a) ≈ −0.003165 a−
28
3 − 0.1898 a−

22
3 + 0.3194 a−16/3

− 0.05392 a−
25
3 + 0.1400 a−

19
3 − 0.3880 a−7/3 + 0.5530 a−10/3

+ 0.7450 a−13/3.

(A.7)

We can see that this numerical exponent vanishes only for two values of the
parameter a which are

{0.5304, 2.385}.

The expression of the determinant of the matrix DI,b (μ(I, b), l1(I, b)) is even more
involved, and so we do not reproduce it here (it would take pages to write down its
numerical expression!). Nevertheless, we proceed exactly as we did for the second
Lyapunov exponent and obtain again the rigorous result that this determinant never
vanishes for all a > 0.

Appendix B. Numerical values for the simulations. In this annex we give
the numerical values used to generate Figure 4.1.
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Remark. The δu(t) function is defined by

δu1,...,uN
(t) =

⎧⎪⎨
⎪⎩

1 if t ∈
⋃

k∈{1,...,N}
[uk, uk + 0.3],

0 else.
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METHODS FOR SOLVING ELLIPTIC PDEs IN SPHERICAL
COORDINATES∗
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Abstract. A new method for investigating boundary value problems in two dimensions has
recently been introduced by one of the authors. The main achievement of this method is that it
yields explicit integral (as oppose to series) representations for a variety of boundary value problems.
In addition, this method also provides an alternative, apparently simpler, approach for deriving
those solution representations that are traditionally constructed by the method of images and of
classical integral transforms. Here, we implement this latter approach to boundary value problems
formulated in spherical coordinates. In particular, we do the following: (a) We derive the classical
Poisson integral formula for the solutions of the Dirichlet problem for the Poisson equation in the
interior of a sphere, the analogous formula for the Neumann problem, and the generalizations of these
formulae in n dimensions. (b) We derive the solutions of various boundary value problems for the
inhomogeneous Helmholtz equation in the interior of a sphere. (c) We solve the Dirichlet problem
for the Laplace equation in the interior of a spherical sector.

Key words. elliptic partial differential equations, boundary value problems, spectral methods,
Fourier expansions
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1. Introduction. By using Green’s identity and the associated fundamental
solutions, it is straightforward to obtain integral representations for the solution of the
Poisson and the inhomogeneous Helmholtz equations in an arbitrary three dimensional
domain. These representations involve a volume integral of the forcing term as well as
surface integrals of the Dirichlet and of the Neumann boundary values. This classical
formulation provides the starting point for proving certain rigorous results and for
constructing efficient numerical approximations. However, it does not provide an
analytic representation of the solution, since depending on the given problem, either
the Dirichlet or the Neumann boundary values are unknown. For the Poisson equation
with simple boundary conditions (such as Dirichlet) formulated on simple domains
(such as spheres), this difficulty can be bypassed by employing the method of images.
More complicated boundary value problems can be solved by the method of integral
transforms.

A new method for solving boundary value problems for linear and for integrable
nonlinear PDEs in two dimensions has been introduced by one of the authors [7, 8]
and implemented for a large class of problems; see [9]. For linear PDEs this method
does the following: (i) It yields analytic solutions to a variety of boundary value
problems, for which classical techniques are apparently ineffective. (ii) It expresses the
solutions of classical problems in terms of integrals as opposed to the traditional series

∗Received by the editors January 4, 2007; accepted for publication (in revised form) November 19,
2007; published electronically March 19, 2008. This work was performed under the Marie Curie
Chair of Excellence Project BRAIN, granted to the authors by the European Commission under
code EXCL 023928.

http://www.siam.org/journals/siap/68-4/67922.html
†University of Patras and ICE-HT/FORTH, Patras, Greece. Current address: Department of Ap-

plied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, UK (G.Dassios@
damtp.cam.ac.uk).

‡Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cam-
bridge, UK (T.Fokas@damtp.cam.ac.uk).

1080



METHODS FOR SOLVING ELLIPTIC PDEs 1081

representations; these novel representations have analytical and numerical advantages.
(iii) It provides an alternative, apparently simpler, approach for solving those problems
that can be solved by the methods of images and of integral transforms.

The aim of this paper is to implement the approach (iii) above to boundary value
problems formulated in spherical coordinates. Although the approach (iii) is the least
novel among the approaches (i)–(iii), the implementation of the classical method of
integral transforms increases in complexity as the number of dimensions increases;
thus perhaps the approach (iii) becomes more useful as the number of dimensions
increases.

Notation.
• The symbol “ ˆ ” on the top of a vector indicates that this vector has unit

length.
• ds(ρ) and dv(ρ) denote surface and volume elements, respectively, at the

point ρ.
• n̂ denotes the outward unit normal on the boundary ∂Ω of a smooth do-

main Ω.
• ∂

∂n = n̂ · ∇ denotes the outward normal differentiation on ∂Ω.

1.1. An alternative to the method of images. Let the scalar valued function
u(r) satisfy a linear PDE in a smooth domain Ω. The alternative to the method of
images proposed here consists of the following three steps:

(a) Supplement the classical representation of the solution obtained by Green’s
identity and the relevant fundamental solution with an equation which is valid in the
complement of the domain Ω, which will be denoted by Ωc.

(b) Use an appropriate transformation to map the equation valid in Ωc to an
equation valid in Ω.

(c) Manipulate the two above equations valid in Ω to eliminate either the Neu-
mann or the Dirichlet boundary values.

Example 1.1. Let u(r) satisfy the Poisson equation in the interior of a sphere of
radius α,

(1) Δu(r) = f(r), |r| < α,

where the function f has sufficient smoothness. Then

(2) u(r) = up(r) + u0(r), |r| < α,

where up is defined by

(3) up(r) = − 1

4π

∫
|ρ|<α

f(ρ)

|ρ− r|dv(ρ), |r| < α,

and u0 is the following harmonic function:

(4) u0(r) =
1

4π

∮
|ρ|=α

[
1

|ρ− r|
∂

∂ρ
u0(ρ) − u0(ρ)

∂

∂ρ

1

|ρ− r|

]
ds(ρ), |r| < α.

We will now use steps (a)–(c) above to determine u0.
(a) Using

∂

∂ρ

1

|ρ− r| = − ρ̂ · (ρ− r)

|ρ− r|3
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(4) becomes

(5) u0(r) =
1

4π

∮
|ρ|=α

[
1

|ρ− r|
∂

∂ρ
u0(ρ) +

α2 − ρ · r
α|ρ− r|3 u0(ρ)

]
ds(ρ), |r| < α.

The left-hand side of (5) vanishes if |r| > α; thus we supplement (5) with the equation

(6) 0 =
1

4π

∮
|ρ|=α

[
1

|ρ− r|
∂

∂ρ
u0(ρ) +

α2 − ρ · r
α|ρ− r|3 u0(ρ)

]
ds(ρ), |r| > α.

(b) Kelvin’s inversion, i.e., the transformation

(7) r → α2

r2
r,

maps the exterior to the sphere of radius α to its interior, and vice versa [11]. Fur-
thermore, under this transformation, if |ρ| = α, then

(8) |ρ− r| =
√
α2 − 2αrρ̂ · r̂ + r2 →

√
α2 − 2α

α2

r
ρ̂ · r̂ +

α4

r2
=

α

r
|ρ− r|.

Consequently, using the transformation (7) and dropping the multiplicative factor
r/α, (6) becomes

(9) 0 =
1

4π

∮
|ρ|=α

[
1

|ρ− r|
∂

∂ρ
u0(ρ) +

r2 − ρ · r
α|ρ− r|3u0(ρ)

]
ds(ρ), |r| < α,

which now holds in the interior of the sphere.
(c) Equations (5) and (9) are both valid for |r| < α; thus by subtracting these

equations we can eliminate the Neumann boundary values ∂ρu0(ρ) and obtain

(10) u0(r) =
α2 − r2

4πα

∮
|ρ|=α

u0(ρ)

|ρ− r|3 ds(ρ), |r| < α.

Equation (10) is the well-known Poisson integral formula for the solution of the Dirich-
let problem [1, 2, 11, 16].

It is shown in section 2 that by further manipulating (5) and (9) we can eliminate
the Dirichlet boundary value u0(ρ) and obtain

(11) u0(r) =
1

4πα

∮
|ρ|=α

∂u0(ρ)

∂ρ

[
2α

|ρ− r| − ln

(
|ρ− r| + ρ · (ρ− r)

α

)]
ds(ρ).

Equation (2), with up(r) and u0(r) given by (3) and (9), respectively, provides the
analogue of the Poisson integral formula for the solution of the Neumann problem
[1, 2, 11, 16].

The extension of these formulae to n dimensions is given in section 2.

1.2. An alternative to the method of integral transforms. If u satisfies
either the Poisson or the inhomogeneous Helmholtz equations with a forcing term f
in a smooth domain Ω, then Green’s third identity implies the relation

(12)

∫
D

w(ρ)f(ρ)dv(ρ) =

∮
∂D

[
w(ρ)

∂

∂n
u(ρ) − u(ρ)

∂

∂n
w(ρ)

]
ds(ρ),

where D ⊂ Ω is any smooth subdomain of Ω and w is any solution of the Laplace
or the Helmholtz equation, respectively. We will refer to this well-known equation as
the global relation [9], since it connects the Dirichlet and the Neumann values on the
boundary in a global sense.
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1.2.1. The Dirichlet-to-Neumann map. The use of the global relation appar-
ently provides the most effective approach for constructing the Dirichlet-to-Neumann
map, i.e., computing the Neumann boundary values in terms of the Dirichlet data di-
rectly, without constructing the solution in the interior of the domain. This approach
consists of the following steps:

(a) Apply the global relation in the domain Ω for a suitable function w.
(b) Eliminate the unknown boundary values by choosing appropriately the pa-

rameters occurring in w. This procedure yields an integral transform for the Neumann
boundary values in terms of the Dirichlet data.

(c) Invert the above integral transform by using standard Sturm–Liouville tech-
niques.

Example 1.2. Let u satisfy the Laplace equation in the spherical sector Ω:

(13) Ω = {(ρ, θ, ϕ) | 0 < ρ < α, 0 � θ < θ0, 0 � ϕ < 2π}, 0 < θ0 < π.

It is shown in section 4 that steps (a) and (b) above yield the following integral
transform for the Neumann boundary values on the spherical cap {ρ = α, 0 � θ < θ0,
0 � ϕ < 2π}:

(14)

∫ 2π

0

∫ θ0

0

∂u(α, θ, ϕ)

∂r
Pm
ln (cos θ)eimϕ sin θ dθ dϕ = Mm

n (α, θ0),

where the constants Mm
n (α, θ0) are given in terms of the Dirichlet data in (66), Pm

ln
denote the usual Legendre functions, and {ln}∞n=0 is a sequence of nonnegative real
numbers defined by

(15) Pm
ln (cos θ0) = 0, n = 0, 1, 2, . . . , m ∈ Z.

1.2.2. A representation of the solution. The appropriate use of the global
relation also yields the solutions in the interior. However, step (a) above is now
replaced by the following:

(a′) By choosing appropriate subdomains D and appropriate solutions w, obtain
a set of global relations.

Example 1.3. For Example 1.2, it is shown in section 4 that steps (a′) and (b)
above yield the following integral transform for the solution of the Dirichlet problem
in Ω:
(16)∫ 2π

0

∫ θ0

0

u(r, θ, ϕ)Pm
ln (cos θ)eimϕ sin θ dθ dϕ = Km

n (r, θ0), n = 0, 1, 2, . . . , m ∈ Z,

where the functions Km
n (r, θ0) are defined in terms of the known Dirichlet data in (70).

It is emphasized that the derivation of (14) and (16) involves only algebraic ma-
nipulations. The only analysis needed is the inversion of the integrals on the left-hand
side of (14) and (16); see section 4.

1.2.3. A hybrid method using the fundamental solution and the global
relation. For very simple boundary value problems, it is possible to obtain the so-
lution in the interior of the domain by applying the global relation to the domain Ω
instead of using a set of subdomains. For such problems our approach consists of the
following three steps:

(a) Formulate the global relation in Ω.
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(b) Expand the fundamental solution in terms of the functions w appearing in
the global relation (12).

(c) Use the algebraic manipulation of the global relation and of the equation ob-
tain by replacing in the classical integral representation of u the fundamental solution
in terms of the expansion obtained in (b) to eliminate the unknown boundary values.

This approach has the disadvantage that it requires knowledge of the expansion
described in (b), but it has the advantage that the remaining steps are entirely alge-
braic.

Example 1.4. Let u satisfy the inhomogeneous Helmholtz equation in the interior
of a sphere of radius α,

(17) (Δ + λ2)u(r) = f(r), |r| < α,

where the function f has sufficient smoothness and λ is a positive constant. Then u
is given by (2), where up and u0 are defined by

(18) up(r) = − 1

4π

∫
|ρ|<α

f(ρ)
eiλ|ρ−r|

|ρ− r| dv(ρ), |r| < α,

and

(19) u0(r) =
1

4π

∮
|ρ|=α

[
eiλ|ρ−r|

|ρ− r|
∂

∂ρ
u0(ρ) − u0(ρ)

∂

∂ρ

eiλ|ρ−r|

|ρ− r|

]
ds(ρ), |r| < α.

We will now solve the Dirichlet boundary value problem using steps (a)–(c) above.

(a) Letting w(ρ) = jn(λρ)Pn(ρ̂ · k̂) in the global relation (12), where jn is the
spherical Bessel function of the first kind and Pn is the Legendre polynomial, we find
the following equation, which is valid for any unit vector k̂ and any n ∈ Z:∫

|ρ|<α

f(ρ)jn(λρ)Pn(ρ̂ · k̂)dv(ρ)

=

∮
|ρ|=α

[
jn(λρ)

∂

∂ρ
u(ρ) − u(ρ)

∂

∂ρ
jn(λρ)

]
Pn(ρ̂ · k̂)ds(ρ)

= jn(λα)

∮
|ρ|=α

∂u(ρ)

∂ρ
Pn(ρ̂ · k̂)ds(ρ) − λj′n(λα)

∮
|ρ|=α

u(ρ)Pn(ρ̂ · k̂)ds(ρ),(20)

where for the second equality we have used that on the boundary ρ = α.
(b) The fundamental solution for the Helmholtz equation admits the following

expansion [14, 15]:

(21)
1

4π

eiλ|ρ−r|

|ρ− r| =
iλ

4π

∞∑
n=0

(2n + 1)jn(λr)h(1)
n (λρ)Pn(ρ̂ · r̂), r < ρ,

where h
(1)
n is the spherical Hankel function of the first kind.

(c) Using the representation (21) and (2) in (19) we find that for r < α

u0(r) = − iλ

4π

∞∑
n=0

(2n + 1)jn(λr)

×
[
λh(1)

n

′
(λα)

∮
|ρ|=α

(u(ρ) − up(ρ))Pn(ρ̂ · r̂)ds(ρ)

− h(1)
n (λα)

∮
|ρ|=α

∂(u(ρ) − up(ρ))

∂ρ
Pn(ρ̂ · r̂)ds(ρ)

]
,(22)
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where up is given by (18).

In order to eliminate the Neumann boundary values ∂ρu(ρ) from (22) we let k̂ = r̂
in (20), we multiply the resulting equation by the expression

− iλ

4π
(2n + 1)

h
(1)
n (λα)

jn(λα)
jn(λr),

we use the Wronskian relation

(23) n′
n(x)jn(x) − nn(x)j′n(x) =

1

x2
,

we sum over n, and we add the resulting equation to (22). This yields

u0(r) =
iλ

4π

∞∑
n=0

(2n + 1)jn(λr)

[
−i

λα2jn(λα)

∮
|ρ|=α

u(ρ)Pn(ρ̂ · r̂)ds(ρ)

+ λh(1)
n

′
(λα)

∮
|ρ|=α

up(ρ)Pn(ρ̂ · r̂)ds(ρ)

− h(1)
n (λα)

∮
|ρ|=α

∂up(ρ)

∂ρ
Pn(ρ̂ · r̂)ds(ρ)

+
h

(1)
n (λα)

jn(λα)

∫
|ρ|<α

f(ρ)jn(λρ)Pn(ρ̂ · r̂)dv(ρ)

]
,(24)

where the right-hand side of (24) involves only known quantities. Equation (2), with
up and u0 given by (18) and (24), respectively, provides the solution of the Dirich-
let boundary value problem. The Neumann and the Robin problems are solved in
section 3.

2. The Poisson integral formula and its analogue for the Neumann
problem in n dimensions.

Proposition 2.1. Let u satisfy the Poisson equation in the interior of an n
dimensional sphere of radius α,

(25) Δu(r) = f(r), |r| < α, r ∈ R
n, n � 3,

with either Dirichlet

(26) u(r) = D(r), |r| < α,

or Neumann

(27)
∂u(r)

∂r
= N(r), |r| < α,

boundary conditions, where the functions f,D,N have sufficient smoothness. Then

u(r) = u0(r) − 1

(n− 2)ωn

∫
|ρ|<α

f(ρ)

|ρ− r|n−2
dv(ρ)(28)

= u0(r) − up(r),

where

(29) ωn =
2πn/2

Γ(n/2)
,
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Γ denotes the Euler Gamma function, and u0 is given by the following expressions:
For the Dirichlet problem,

(30) u0(r) =
α2 − r2

αωn

∮
|ρ|=α

D0(ρ)

|ρ− r|n ds(ρ), |r| < α,

where D0 = D − up on the boundary.
For the Neumann problem,

(31) r
∂u0(r)

∂r
=

α2 − r2

ωn

∮
|ρ|=α

N0(ρ)

|ρ− r|n ds(ρ), |r| < α,

where N0 = N − up on the boundary, or equivalently,

(32) u0(r) =
1

αωn

∮
|ρ|=α

I(ρ, r)N0(ρ)ds(ρ), |r| < α,

with

I(ρ, r) =

∫ r

α

α(α2 − t2)

t|ρ− tr̂|n dt

=
ln(ra)

αn−3
+

1

αn−3

∞∑
κ=0

[
1

κ

( r

α

)κ

− 1

κ + 2

( r

α

)κ+2
]
Cn/2

κ (ρ̂ · r̂),(33)

where C
n/2
κ is the Gegenbauer polynomial of degree κ and order n/2.

For n = 3, (28), (30), and (32) reduce to (2), (10), and (11), respectively.
Proof. We first concentrate on the particular case of n = 3. It is straightforward

to show that r∂ru0 is a harmonic function. Then (10) implies

(34) r
∂u0(r)

∂r
=

α2 − r2

4π

∮
|ρ|=α

1

|ρ− r|3
∂u0(ρ)

∂ρ
ds(ρ).

Alternatively, this equation can be obtained as follows: Adding (5) and (9) we find
that

(35) u0(r) =
1

4πα

∮
|ρ|=α

[
2α

∂u0(ρ)

∂ρ
+ u0(ρ)

]
1

|ρ− r|ds(ρ).

Differentiating this equation and using (9) we find (34). Integrating (34) with respect
to r we obtain

(36) u0(r) =
1

4πα

∮
|ρ|=α

I(ρ, r)
∂u0(ρ)

∂ρ
ds(ρ), |r| < α,

where the kernel I is given by

I(ρ, r) =

∫
α(α2 − r2)

r|ρ− r|3 dr

=
2α

|ρ− r| − ln
α− ρ · r̂ + |ρ− r|

2r
.(37)
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The Gauss theorem implies

(38)

∮
|ρ|=α

∂u0(ρ)

∂ρ
ds(ρ) = 0;

hence, we actually define the Neumann kernel as

(39) N(ρ, r) =
2ρ

|ρ− r| − ln

(
|ρ− r| + ρ · (ρ− r)

α

)
.

Therefore, the analogue of formula (10) for the Neumann problem is recovered.
The fundamental solution of the Laplace equation in n dimensions is given by

(40) G(ρ, r) = − 1

(n− 2)ωn

1

|ρ− r|n−2
, n � 3,

where ωn is given by (29). Using Green’s third identity,∫
|ρ|<α

[u(ρ)ΔρG(ρ, r) −G(ρ, r)Δρu(ρ)]dv(ρ)

=

∮
|ρ|=α

[u(ρ)∂ρG(ρ, r) −G(ρ, r)∂ρu(ρ)]ds(ρ),(41)

we find (28), where u0 satisfies Laplace’s equation. In view of the identity

(42)
∂

∂ρ

1

|ρ− r|n−2
= (2 − n)

ρ · (ρ− r)

ρ|ρ− r|n ,

(40) implies
(43)∮

|ρ|=α

[
u0(ρ)

ρ · (ρ− r)

α|ρ− r|n +
1

(n− 2)|ρ− r|n−2

∂u0(ρ)

∂ρ

]
ds(ρ) =

{
ωnu0(r), |r| < α,

0, |r| > α.

Applying Kelvin’s inversion (7), (8) to (43) we obtain

(44)

∮
|ρ|=α

[
u0(ρ)

r2 − ρ · r
α|ρ− r|n +

1

(n− 2)|ρ− r|n−2

∂u0(ρ)

∂ρ

]
ds(ρ) = 0, |r| < α.

Subtracting (44) from the first of (43) we obtain Poisson’s integral formula (30).
On the other hand, adding the first of (43) and (44) we obtain

(45) ωnu0(r) =

∮
|ρ|=α

[
2

n− 2

∂u0(ρ)

∂ρ
+

1

α
u0(ρ)

]
1

|ρ− r|n−2
ds(ρ).

Dividing (31) by r and integrating with respect to r we obtain

(46) u0(r) =
1

αωn

∮
|ρ|=α

I(ρ, r)N0(ρ)ds(ρ), |r| < α,

where

I(ρ, r)||ρ|=α =

∫
α(α2 − r2)

r|ρ− r|n dr

=

∫
α(α2 − r2)

r(α2 − 2αrρ̂ · r̂ + r2)n/2
dr.(47)
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The Gauss theorem

(48)

∮
|ρ|=α

N0(ρ)ds(ρ) = 0

implies that I(ρ, r) is well defined independent of the constant of integration. For
any specific value of n the integral in (47) can be evaluated explicitly. Alternatively,
it can be expanded in terms of Gegenbauer polynomials of order n/2 [12]. Indeed, the

Gegenbauer polynomials C
n/2
κ (γ), γ = ρ̂ · r̂, κ = 0, 1, 2, . . . , are generated as follows:

(49) (1 − 2γz + z2)−n/2 =

∞∑
κ=0

Cn/2
κ (γ)zκ, |z| < 1.

Hence

(50) |ρ− r|−n||ρ|=α =
1

αn

∞∑
κ=0

Cn/2
κ (γ)

( r

α

)κ

, |z| < α,

and

I(ρ, r)||ρ|=α =
1

αn−1

∞∑
κ=0

Cn/2
κ (γ)

1

ακ

∫
(α2 − r2)rκ−1dr

=
lnr

αn−3
+

1

αn−3

∞∑
κ=1

Cn/2
κ (γ)

1

κ

( r

α

)κ

− 1

αn−3

∞∑
κ=0

Cn/2
κ (γ)

1

κ + 2

( r

α

)κ+2

.(51)

This completes the proof of Proposition 2.1.
Remark 1. Equation (45) with n = 3 provides a new integral representation for

the solution of the Dirichlet problem involving only |ρ− r|, as opposed to |ρ− r|3.
Remark 2. For the corresponding exterior problems [5], one needs to impose the

far-field behavior

(52) u0(r) = O

(
1

rn−2

)
, r → ∞,

and to change the sign of every surface integral.

3. The inhomogeneous Helmholtz equation. We first recall the derivation
of the well-known global relation (12). Let u satisfy the inhomogeneous Helmholtz
equation (17) and let w satisfy the Helmholtz equation. Manipulating the two equa-
tions we find that

(53) ∇ · [w(r)∇u(r) − u(r)∇w(r)] = w(r)f(r)

and the Gauss theorem yields (12).
Proposition 3.1. Suppose that the function u satisfies the inhomogeneous equa-

tion (17) in R
3 together with any of the three boundary conditions

u(r) = D(r), |r| = α,(54)

∂u(r)

∂r
= N(r), |r| = α,(55)

∂u(r)

∂r
+ νu(r) = R(r), |r| = α,(56)
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where the given functions D,N,R have sufficient smoothness and ν is a constant such
that n + αν �= 0, n = 0, 1, 2, . . . . Then u is given by (2), where up is defined by (18),
and u0 for the Dirichlet, the Neumann, and the Robin conditions is given by the
following expressions:

uD
0 (r) =

iλ

4π

∞∑
n=0

(2n + 1)jn(λr)

[
T (r̂) +

h
(1)
n (λα)

jn(λα)
S(r̂)

− i

λα2jn(λα)

∮
|ρ|=α

D(ρ)Pn(ρ̂ · r̂)ds(ρ)

]
,(57)

uN
0 (r) =

iλ

4π

∞∑
n=0

(2n + 1)jn(λr)

[
T (r̂) − h

(1)
n

′
(λα)

j′n(λα)
S(r̂)

+
i

λ2α2j′n(λα)

∮
|ρ|=α

N(ρ)Pn(ρ̂ · r̂)ds(ρ)

]
,(58)

uR
0 (r) =

iλ

4π

∞∑
n=0

(2n + 1)jn(λr)

[
T (r̂) +

λh
(1)
n

′
(λα) + νh

(1)
n (λα)

λj′n(λα) + jn(λα)
S(r̂)

− i

λα2(λj′n(λα) + jn(λα))

∮
|ρ|=α

R(ρ)Pn(ρ̂ · r̂)ds(ρ)

]
,(59)

where the direction dependent functions T and S are defined by

T (r̂) = λh(1)
n

′
(λα)

∮
|ρ|=α

up(ρ)Pn(ρ̂ · r̂)ds(ρ)

− h(1)
n (λα)

∮
|ρ|=α

(∂ρup(ρ))Pn(ρ̂ · r̂)ds(ρ)(60)

and

(61) S(r̂) =

∫
|ρ|<α

f(ρ)jn(λρ)Pn(ρ̂ · r̂)dv(ρ).

In the formulae above we have used the notation

(62)

[
∂

∂ρ
jn(λρ)

]
ρ=α

= λj′n(λα)

and similarly for h
(1)
n .

Proof. The derivation of uD
0 was demonstrated in the introduction (Example 1.4).

For the derivation of uN
0 and uR

0 we follow similar arguments.
Remark 3. It is straightforward to solve the analogous problem in the exterior

of the sphere. In fact, for exterior problems the following modifications are required:
First, one needs to specify the appropriate asymptotic behavior of the solution at infin-
ity. For a compactly supported source function f , the solution of the inhomogeneous
Helmholtz equation has to satisfy the radiation condition [5]

(63) u(r) = g(r̂)
eiλr

r
+ O(r−2), r → ∞,
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where g is the far-field pattern.
Second, the terms in the surface integral representation involving the normal

differentiation on the boundary must change sign.
Third, one must choose an appropriate set of eigenfunctions. In particular, for

the sphere the interior eigenfunctions have to be replaced by the radiative functions

w(ρ) = h
(1)
n (λρ)Pn(ρ̂ · k̂), where n = 0, 1, 2, . . . and k̂ is a unit vector. We note that

the above choice of exterior eigenfunctions is dictated by the radiation condition (63).
If the radiation condition is taken in the form

(64) u(r) = g(r̂)
e−iλr

r
+ O(r−2), r → ∞,

then the proper choice of exterior eigenfunctions is w(ρ) = h
(2)
n (λρ)Pn(ρ̂ · k̂). For

scattering problems these choices will ensure that as we approach infinity, the solutions
tend to outgoing spherical waves having the appropriate geometrical attenuation [5].

4. Laplace’s equation in a spherical sector. Separation of variables, for the
Laplace equation in spherical coordinates, yields the following solutions:

(65) w±
1 (r) = rlP k

l (cos θ)e±ikϕ and w±
2 (r) = r−(l+1)P k

l (cos θ)e±ikϕ,

where l and k are arbitrary complex constants.

4.1. The Dirichlet-to-Neumann map.
Proposition 4.1. Let u satisfy Laplace’s equation in the spherical sector Ω

defined in (13). Then the Neumann boundary values on the spherical cap {ρ = α,
0 � θ < θ0, 0 � ϕ < 2π} can be expressed in terms of the Dirichlet boundary values
by (14), where ln is defined by (15) and Mm

n are given by

Mm
n (α, θ0) =

sin θ0

αln+2

∂Pm
ln

(cos θ0)

∂θ

∫ 2π

0

∫ α

0

u(r′, θ0, ϕ)(r′)ln+1eimϕ dr′ dϕ

− ln
α

∫ 2π

0

∫ θ0

0

u(α, θ, ϕ)Pm
ln (cos θ)eimϕ sin θ dθ dϕ.(66)

Proof. We will derive (14) by applying steps (a) and (b) of section 1.2.1. Applying
the global relation (12) in Ω (see Figure 1) with w = w+

1 defined in (65), we find that

∫ 2π

0

∫ α

0

∂u(ρ, θ0, ϕ)

∂θ
ρl+1P k

l (cos θ0)e
ikϕ sin θ0 dρdϕ

+

∫ 2π

0

∫ θ0

0

∂u(α, θ, ϕ)

∂r
αl+2P k

l (cos θ)eikϕ sin θdθ dϕ

+

∫ θ0

0

∫ α

0

(
iku(ρ, θ, 0) − ∂u(ρ, θ, 0)

∂ϕ

)
ρl−1P k

l (cos θ) dρdθ

=

∫ 2π

0

∫ α

0

u(ρ, θ0, ϕ)ρl+1 ∂P
k
l (cos θ0)

∂θ
eikϕ sin θ0 dρdϕ

+

∫ 2π

0

∫ θ0

0

u(α, θ, ϕ)lαl+1 sin θ P k
l (cos θ)eikϕ dθ dϕ

+

∫ θ0

0

∫ α

0

(
iku(ρ, θ, 2π) − ∂u(ρ, θ, 2π)

∂ϕ

)
ρl−1P k

l (cos θ)ei2kπ dρdθ,(67)
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Fig. 1.

where the angular normal derivatives are given by

(68) θ̂ · ∇ =
1

r

∂

∂θ
and ϕ̂ · ∇ =

1

r sin θ

∂

∂ϕ
.

The third integral on the left-hand side and the third integral on the right-hand
side of (67) cancel each other if we choose k = m ∈ Z. Then (67) becomes∫ 2π

0

∫ α

0

∂u(ρ, θ0, ϕ)

∂θ
ρl+1Pm

l (cos θ0)e
imϕ sin θ0 dρdϕ

+

∫ 2π

0

∫ θ0

0

∂u(α, θ, ϕ)

∂r
αl+2Pm

l (cos θ)eimϕ sin θ dθ dϕ

=

∫ 2π

0

∫ α

0

u(ρ, θ0, ϕ)ρl+1 ∂P
m
l (cos θ0)

∂θ
eimϕ sin θ0 dρdϕ

+

∫ 2π

0

∫ θ0

0

u(α, θ, ϕ)lαl+1Pm
l (cos θ)eimϕ sin θ dθ dϕ.(69)

By choosing l = ln, as defined by (15), (69) becomes (15) with Mm
n given

by (66).

4.2. The spherical sector problem. We will now derive (16) by applying
step (a′) of section 1.2.2 and step (b) of section 1.2.1.



1092 G. DASSIOS AND A. S. FOKAS

Proposition 4.2. Let u be as in Proposition 4.1. Then the solution u of the
Dirichlet problem satisfies (16), where ln are defined by (15) and Km

n are given in
terms of the known Dirichlet values by

Km
n (r, θ0) =

( r

α

)ln+1
∫ 2π

0

∫ θ0

0

u(α, θ, ϕ)Pm
ln (cos θ)eimϕ sin θ dθ dϕ

−
( r

α

)ln+1 sin θ0

2ln + 1

∂Pm
ln

(cos θ0)

∂θ

×
{∫ 2π

0

∫ r

0

u(ρ, θ0, ϕ)

[(α
r

)2ln+1

− 1

]( ρ

α

)ln+1

eimϕ dρdϕ

+

∫ 2π

0

∫ α

r

u(ρ, θ0, ϕ)

[(
α

ρ

)2ln+1

− 1

]( ρ

α

)ln+1

eimϕ dρdϕ

}
.(70)

Proof. We apply the global relation (12) (with f = 0) in the subdomain Ω1

defined by

(71) Ω1 = {(ρ, θ, ϕ) | 0 < ρ < r, 0 � θ < θ0, 0 � ϕ < 2π}, 0 < θ0 < π,

and depicted in Figure 2, with w = w+
1 defined in (65). This yields the following

equation, which is valid for k ∈ C and Re l � 0:∫ 2π

0

∫ r

0

[
∂u(ρ, θ0, ϕ)

∂θ
P k
l (cos θ0) − u(ρ, θ0, ϕ)

∂P k
l (cos θ0)

∂θ

]
ρl+1eikϕ sin θ0 dρdϕ(72)

+

∫ 2π

0

∫ θ0

0

[
r
∂u(r, θ, ϕ)

∂r
− lu(r, θ, ϕ)

]
rl+1P k

l (cos θ)eikϕ sin θ dθ dϕ

+

∫ θ0

0

∫ r

0

(
iku(ρ, θ, 0) − ∂u(ρ, θ, 0)

∂ϕ

)
ρl−1P k

l (cos θ) dρdθ

−
∫ θ0

0

∫ r

0

(
iku(ρ, θ, 2π) − ∂u(ρ, θ, 2π)

∂ϕ

)
ρl−1P k

l (cos θ)ei2kπ dρdθ

= 0.

The requirement Re l � 0 is needed in order for the integrals to make sense near
r = 0. The last two integrals in (72) involve the Neumann boundary values ∂ϕu(ρ, θ, 0)
and ∂ϕu(ρ, θ, 2π). However, these unknown functions can be eliminated by choosing
k = m ∈ Z.

We next apply the global relation (12) (with f = 0) in the domain Ω2 = Ω − Ω1

with w = w+
1 and with w = w+

2 defined in (65), where Re l � 0 and k = m ∈ Z. This
yields the following two equations, which are valid for Re l � 0 and m ∈ Z:

∫ 2π

0

∫ α

r

[
∂u(ρ, θ0, ϕ)

∂θ
Pm
l (cos θ0) − u(ρ, θ0, ϕ)

∂Pm
l (cos θ0)

∂θ

]
ρl+1eimϕ sin θ0 dρdϕ

(73)

+

∫ 2π

0

∫ θ0

0

[
α
∂u(α, θ, ϕ)

∂r
+ lu(α, θ, ϕ)

]
αl+1Pm

l (cos θ)eimϕ sin θ dθ dϕ

−
∫ 2π

0

∫ θ0

0

[
r
∂u(r, θ, ϕ)

∂r
− lu(r, θ, ϕ)

]
rl+1Pm

l (cos θ)eimϕ sin θ dθ dϕ

= 0
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Fig. 2.

and ∫ 2π

0

∫ α

r

[
∂u(ρ, θ0, ϕ)

∂θ
Pm
l (cos θ0) − u(ρ, θ0, ϕ)

∂Pm
l (cos θ0)

∂θ

]
1

ρl
eimϕ sin θ0 dρdϕ(74)

+

∫ 2π

0

∫ θ0

0

[
α
∂u(α, θ, ϕ)

∂r
+ (l + 1)u(α, θ, ϕ)

]
1

αl
Pm
l (cos θ)eimϕ sin θ dθ dϕ

−
∫ 2π

0

∫ θ0

0

[
r
∂u(r, θ, ϕ)

∂r
+ (l + 1)u(r, θ, ϕ)

]
1

rl
Pm
l (cos θ)eimϕ sin θ dθ dϕ

= 0.

Multiplying (74) by α2l+1 and subtracting the resulting equation from (73) we obtain
an equation that involves only the integral over the spherical cap of the unknown
function ∂ru(r, θ, ϕ). But this unknown integral can be eliminated with the use of (72).
These steps yield

Pm
l (cos θ0) sin θ0

∫ 2π

0

∫ r

0

∂u(ρ, θ0, ϕ)

∂θ

(
α2l+1

r2l+1
− 1

)
ρl+1eimϕ dρdϕ(75)

+ Pm
l (cos θ0) sin θ0

∫ 2π

0

∫ α

r

∂u(ρ, θ0, ϕ)

∂θ

(
α2l+1

ρ2l+1
− 1

)
ρl+1eimϕ dρdϕ

− ∂Pm
l (cos θ0)

∂θ
sin θ0

∫ 2π

0

∫ r

0

u(ρ, θ0, ϕ)

(
α2l+1

r2l+1
− 1

)
ρl+1eimϕ dρdϕ
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− ∂Pm
l (cos θ0)

∂θ
sin θ0

∫ 2π

0

∫ α

r

u(ρ, θ0, ϕ)

(
α2l+1

ρ2l+1
− 1

)
ρl+1eimϕ dρdϕ

+ (2l + 1)αl+1

∫ 2π

0

∫ θ0

0

(
u(α, θ, ϕ) − αl

rl
u(r, θ, ϕ)

)
Pm
l (cos θ)eimϕ sin θ dθ dϕ

= 0.

In order to eliminate the unknown boundary values ∂θu(ρ, θ0, ϕ) we choose l such that

(76) Pm
ln (cos θ0) = 0, n = 0, 1, 2, . . . , m ∈ Z.

It is known that, for every order m and every angle θ0 ∈ (0, π), there exists a sequence
{ln}∞n=0 of nonnegative real numbers such that (76) holds; see [10, page 408]. With
the above choice of k and l, (75) implies (16) with Km

n defined by (70).
Remark 4. The formal inversion of (16) yields

(77) u(r, θ, ϕ) =
1

2π

∞∑
n=0

∑
m∈Z

1

c2n
Km

n (r, θ0)P
m
ln (cos θ)e−imϕ.

Indeed, the inversion with respect to ϕ is elementary and gives

(78)

∫ θ0

0

u(r, θ, ϕ)Pm
ln (cos θ) sin θ dθ =

1

2π

∑
m∈Z

Km
n (r)e−imϕ.

In order to invert the left-hand side of (78) we use the following standard Sturm–
Liouville technique. We set x = cos θ and write the Legendre equation for ln and ln′ :

(79)
d

dx

[
(1 − x2)

d

dx
Pm
ln (x)

]
+

[
ln(ln + 1) − m2

1 − x2

]
Pm
ln (x) = 0

and

(80)
d

dx

[
(1 − x2)

d

dx
Pm
ln′ (x)

]
+

[
ln′(ln′ + 1) − m2

1 − x2

]
Pm
ln′ (x) = 0.

Multiplying (79) by Pm
ln′ (x), (80) by Pm

ln
(x), and subtracting the resulting equations

we obtain

d

dx

[
(1 − x2)Pm

ln′ (x)
d

dx
Pm
ln (x) − (1 − x2)Pm

ln (x)
d

dx
Pm
ln′ (x)

]
= (ln′ − ln)(ln′ + ln + 1)Pm

ln (x)Pm
ln′ (x).(81)

Integrating (81) from cos 0 = 1 to cos θ0 = x0 and using (76) we find that

(82)

∫ x0

1

Pm
ln (x)Pm

ln′ (x)dx =

{
0, n �= n′,
c2n, n = n′,

where the normalization constants c2n can be evaluated by using L’Hôpital’s rule,

c2n = lim
l→ln

1

(l − ln)(l + ln + 1)

[
(1 − x2)

(
Pm
l (x)

d

dx
Pm
ln (x) − Pm

ln (x)
d

dx
Pm
l (x)

)]∣∣∣∣
x=x0

x=1

=
1 − x2

0

2ln + 1

[
d

dl
Pm
l (x0)

]∣∣∣∣
l=ln

[
d

dx
Pm
ln (x)

]∣∣∣∣
x=x0

.

(83)
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We note that the series in (77) converges due to the factors (r/α)ln , with r < α
and Re ln >0, which enter the functions Km

n defined in (70). This result is valid,
provided that the set {Pm

ln
(x)} with ln defined by (76) forms a complete set. We

will not pursue further the question of completeness because in a future work we will
present an alternative derivation of this result which bypasses this difficulty (see the
discussion in section 5).

Remark 5. As with the previous cases, the extension of this result to the solution
of the Dirichlet problem in the exterior of the spherical sector

(84) Ωc = {(r, θ, ϕ) | α < r < ∞, 0 � θ < θ0, 0 � ϕ < 2π}

is straightforward.

5. Conclusions. We have presented alternative, apparently simpler, approaches
to the classical methods of images and integral transforms for boundary value prob-
lems formulated in spherical coordinates.

Regarding the alternative to the method of images presented here, we also note
that the formulae for the solution of the Neumann problem in the interior of an n
dimensional sphere, n � 3, presented in section 2, are to our knowledge new.

Regarding the alternative to the method of integral transforms presented here,
we note that the solution of certain PDEs depends on the global form of the boundary
values; namely, it depends on certain integrals of the boundary values. The advantage
of the global relation is that it yields directly these global forms, and in this sense the
term global relation is justified.

The employment of the global relation in the domain Ω provides the most efficient
way of constructing the Dirichlet-to-Neumann map [6]. For example, it is shown in
section 4.1 that it is possible, using only algebraic manipulations, to obtain a certain
integral of the Neumann boundary values on a spherical cap in terms of the given
Dirichlet data; see (14). Then it is straightforward to obtain the Dirichlet boundary
value itself by inverting this integral. It is well known that for a variety of physical
applications, one is interested only in the unknown Neumann values on the boundary
and not on the actual solution in the interior of the domain. For such problems, the
approach presented here provides, in our opinion, the most direct and simple way of
obtaining the unknown boundary values.

The analysis of the global relation, in addition to constructing the Dirichlet-to-
Neumann map, can also yield the solution in Ω. This requires formulating the global
relation in appropriate subdomains of Ω; see section 4.2.

The new, almost algebraic, alternative to the method of classical transforms
should be compared with the latter method, which involves the following steps: (a) De-
rive the proper transform. (b) Use integration by parts to obtain the PDE satisfied
by this transform. (c) Solve the resulting PDE by an integral transform, which in fact
involves (c1) deriving the proper transform, (c2) using integration by part to obtain
the ODE satisfied by this transform, and (c3) using Green’s function techniques to
solve this ODE.

It should be noted that integral representations obtained by Green’s identity and
the appropriate fundamental solution have been used extensively in the literature; see
[1, 2, 3, 4, 5, 11, 13, 14, 15]. In most of these approaches, one first characterizes the
unknown boundary values by evaluating the integral representation on the boundary
and solving the resulting integral equation, and then one inserts the density function
for the single or double potential in the integral representation. Our approach has
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certain conceptual similarities with the method of Waterman and with the null-field
method [13] used in scattering theory.

It was mentioned in the introduction that the most important achievement of the
method reviewed in [9] is the construction of integral, as opposed to series represen-
tations in the spectral domain. The problem of constructing such representations for
the problems solved in sections 3 and 4 is under investigation.
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Abstract. The factorization method is a tool for recovering inclusions inside a body when
the Neumann-to-Dirichlet operator, which maps applied currents to measured voltages, is known.
In practice this information is never at hand due to the discreteness and physical properties of
the measurement devices. The complete electrode model of impedance tomography includes these
physical characteristics but leads to a finite-dimensional data set, called the resistivity matrix. The
main result of this work is an approximation link relating the resistivity matrix to the Neumann-to-
Dirichlet operator in the L2-operator norm. This result allows us to extend the factorization method
to the framework of real-life electrode measurements using a regularized series criterion which is
easy to implement in practice. The truncation index of the sequence criterion, which represents the
stopping index of the regularization scheme, can be computed solely from the measured, perturbed,
and finite-dimensional data. The functionality of the method is demonstrated through numerical
experiments.

Key words. impedance tomography, complete electrode model, finite-dimensional approxima-
tion, boundary elements, factorization method, perturbation theory
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1. Introduction. Electrical impedance tomography (EIT) is an imaging tech-
nique which has attracted a vast amount of research during the last 20 years, starting
with the fundamental paper of Calderón [7]. The nonlinearity and ill-posedness of the
problem make it particularly challenging to tackle. The factorization method is one
of the rare tools for the inverse EIT problem that is both theoretically founded and
suitable for practical application. It stems from the linear sampling method for in-
verse scattering problems (see Colton and Kirsch [9] and Kirsch [19, 20]) and has been
applied to impedance tomography by Brühl and Hanke [3, 5, 4, 14] and by Hyvönen
[16, 15]. For an extension to more general inverse elliptic problems we refer the reader
to Kirsch [21] and Gebauer [11].

The impedance tomography problem consists of reconstruction of the admittance
tensor γ in the elliptic equation

∇.(γ∇u) = 0 in Ω

from boundary measurements of the electric potential u and the corresponding current
on the boundary of the bounded domain Ω ⊂ R

n, n = 2 or 3. Mathematically, this
information is given by the Neumann-to-Dirichlet operator that maps the used current
pattern on the measured potential. Various imaging problems of practical importance
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deal with locating embedded inhomogeneities in an object with known background
admittance. In [3] Brühl applied the factorization method to such a situation and
provided explicit characterization of the inclusions under suitable conditions on the
inhomogeneities and the background admittance. His results have been generalized
in [21, 16].

In [3, 21, 16] the physical characteristics of impedance tomography were modeled
using the continuum model [8]. This is in practice a poor choice because it does not
predict experimental results with satisfactory precision. Especially for medical appli-
cations the complete electrode model is a much better choice [27]. A main feature of
this model is the introduction of a contact impedance z on the boundary between the
discrete electrodes and the investigated object. From the viewpoint of the factoriza-
tion method, the complete model has the fundamental drawback that there are only a
limited number of feasible linearly independent electrode current and voltage patterns.
This results in a finite-dimensional boundary measurement map, called the resistivity
matrix, which makes characterization results like those in [3, 21, 16] unattainable.

Within the continuum model, let us denote by Λ the Neumann-to-Dirichlet map
corresponding to the admittance contaminated with inhomogeneities and by Λ0 the
map corresponding to the known background admittance. The main result of this
paper (see Theorem 7.1) is that Λ−Λ0 and the corresponding difference of the finite-
dimensional resistivity matrices related to the complete model are arbitrarily close to
each other if a large enough number of electrodes is used in the measuring process
and the gaps between the electrodes are small enough. This closeness is measured in
the operator norm of L2(∂Ω). We give explicit expressions for the rate of convergence
in terms of the geometry of the measurement configuration. Having obtained norm
estimates in L2(∂Ω), we can apply the perturbation analysis from [22] to construct a
factorization method for the complete model; see Theorem 8.2. We emphasize that the
difficult and technical norm estimates between the two electrode models are necessary
to be able to use results from [22]; compare these with Theorem 2.3. The factorization
method we obtain is easy to implement and numerical examples in the last section
underline the quality of its reconstructions. However, one has to pay the price that the
method requires the knowledge of the resistivity matrix with and without inclusions
and the contact impedance of the electrodes (which is for simplicity assumed to be
constant). Since we are doing asymptotic analysis in the number of electrodes, a
sufficiently large number of them is required to obtain reasonable results. However,
our numerical examples indicate that already 16 seems to be an adequate number.

An earlier result concerning the factorization method within the complete model
was obtained by Hyvönen in [15], where a Tikhonov regularization approach is used
to treat the finite-dimensional situation in the limit case when the electrode configu-
ration gets infinitesimally fine. However, [15] does not treat the numerically simpler
series criterion of [21], and it proves only pointwise convergence of the resistivity ma-
trices toward the Neumann-to-Dirichlet maps. It is the sharpness of our estimates
that permits us to work here with the series criterion in a manner which is attrac-
tive from the viewpoint of practical computations. Numerical experiments with the
method developed in [15] have recently been presented in [17], and reference [14] also
considers the numerics of the factorization method in the framework of certain simpli-
fied electrode models and, to some extent, with real-world data. However, [14] lacks
the asymptotic analysis as the number of electrodes is increased. Compared to [17],
our method has the advantage that the regularization parameter for regularization
by spectral cut-off of the series criterion can, in principle, be chosen in a systematic
way by looking at the measurement configuration; in our numerical experiments, we
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use a substantially simplified way of choosing the spectral cut-off, which results in
relatively good reconstructions.

We briefly outline the structure of this paper. In the next section we introduce the
factorization method within the continuum model of EIT and state a regularization
result [22] which is used as a basic ingredient in what follows. Section 3 recalls some
basics of boundary triangulations, used in sections 4 and 5 to introduce the complete
electrode model as a perturbation of the continuum model. In section 6 we prove
two technical lemmas before the main approximation result of the work is announced
in section 7. This result permits us to construct a factorization method using a
truncated sequence criterion for the complete electrode model in section 8. Numerical
experiments in section 9 confirm the validity of our theoretical findings.

2. Factorization method and its regularization. Let us consider the factor-
ization method in the framework of the continuum model of EIT, i.e., assuming that
there is no contact impedance, that the current can be applied, and that the potential
can be measured everywhere on the object boundary. We will follow the presentation
of [21]; in particular, we will assume, overly cautiously, that all boundaries are of the
class C2 if not stated otherwise.

Consider admittance tensors γ : Ω → C
n×n of the form

(2.1) γ =

{
γ0 + γ1 in Ωc � Ω,

γ0 in Ω � Ωc,

where Ω�Ωc is connected and the known background admittance tensor γ0 ∈ C2,α(Ω),
α ∈ (0, 1), is real, symmetric, and uniformly positive definite. The matrix γ1 ∈
L∞(Ωc) is symmetric with strictly positive definite and negative semidefinite real and
imaginary parts, respectively,

(2.2) Re (ξ∗γ1ξ) ≥ c0|ξ|2 and Im (ξ∗γ1ξ) ≤ 0 for ξ ∈ C
n and some c0 > 0.

Here and in what follows, we denote by ξ∗ = ξ
�

the transpose conjugate of a vector
or a matrix. Notice that for alternating currents with the harmonic time dependence
exp(−iω·), ω ≥ 0, the admittance γ can be considered to be of the form σ − iωε,
where σ is the electric conductivity, ε is the electric permittivity, and ω is the angular
frequency of the applied current; compare with [8]. As a consequence, if σ and ε are
real and symmetric and the angular frequency of the input is not zero, the condition
(2.2) is equivalent to saying that the conductivity inside the inclusion is strictly higher
than in the background (in the sense of positive definiteness) and the permittivity of
the inclusion is positive semidefinite. On the other hand, the conditions set on γ0 mean
that in the background the conductivity is positive and the permittivity vanishes. If
ω = 0, i.e., direct current is used, ε does not contribute to the measurements, and so
the conditions on the permittivity can be ignored. Also take note that the factorization
method retains its functionality also if the conductivity drops in Ωc [6].

The admittance tensor γ gives rise to a Neumann-to-Dirichlet operator Λ, de-

fined between the L2(∂Ω)-based Sobolev spaces H
±1/2
♦ (∂Ω) with differentiability in-

dex ±1/2; see [24, 21]. Here, H
±1/2
♦ (∂Ω) denotes the closed subspace of zero mean

functions in H±1/2(∂Ω), i.e.,
∫
∂Ω

f dS = 0 for f ∈ H
±1/2
♦ (∂Ω), and the integral is a

shorthand notation for the duality pairing between H
±1/2
♦ (∂Ω) in the Gelfand triple

H
1/2
♦ (∂Ω) ⊂ L2

♦(∂Ω) ⊂ H
−1/2
♦ (∂Ω). We define

Λ : H
−1/2
♦ (∂Ω) → H

1/2
♦ (∂Ω), f �→ u|∂Ω ,
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where u is the unique (weak) solution of

(2.3)

{
∇.(γ∇u) = 0 in Ω,

Bνu = f on ∂Ω,

in H1
♦(Ω) =

{
v ∈ H1(Ω)

∣∣ ∫
∂Ω

v dS = 0
}
. Here Bνu := (γ∇u).ν denotes the conormal

derivative with respect to the exterior unit normal field ν. Analogously, one defines

Λ0 using γ0 instead of γ in (2.3). Compactness of the embeddings H
1/2
♦ (∂Ω) ↪→

L2
♦(∂Ω) ↪→ H

−1/2
♦ (∂Ω) implies that Λ and Λ0 are compact when acting on L2

♦(∂Ω).
The inverse problem we consider is to locate Ωc from measurements of current and

voltage on the boundary ∂Ω. This information is within the continuum model given
by the Neumann-to-Dirichlet operator Λ. The factorization method solves the inverse
problem using the spectral data of the “square root” of the difference Λ − Λ0. In
its original formulation the method required Λ to be self-adjoint. However, Grinberg
and Kirsch [13, 21] showed that decomposition of a non–self-adjoint operator into its
real and imaginary parts allows us to set up factorization methods for some non–self-
adjoint Neumann-to-Dirichlet operators which arise, for instance, when alternating
current is used [2].

In brief, the factorization method for EIT works as follows. Let N be the Neu-
mann function of the differential operator ∇.(γ0∇·) in Ω, i.e., N satisfies the boundary
value problem

∇.(γ0∇N (·, y)) = δy in Ω, BνN (·, y) =
1

|∂Ω| on ∂Ω,

where δy is the Dirac distribution at y ∈ Ω and the ground level of potential is chosen
so that N (·, y) integrates to zero over ∂Ω. One constructs test functions ϕy ∈ L2

♦(∂Ω)
for each point y ∈ Ω by

(2.4) ϕy(x) = ϕy,a(x) = a�∇yN (x, y), x ∈ ∂Ω,

where a ∈ R
3 is the dipole moment. Notice that ϕy can be computed without

any information on the inclusion Ωc. Furthermore, we introduce the—physically
meaningless—positive self-adjoint operator

(2.5) (Λ − Λ0)� = |Re (Λ − Λ0)| + Im (Λ − Λ0) ∈ L(L2
♦(∂Ω)),

where the absolute value and the real and imaginary parts are defined as in [21].
Theorem 2.1 (characterization of the inclusion). Let (λj , ψj)j∈N be an eigen-

system of the compact self-adjoint operator (Λ − Λ0)�. Then the sequence

(2.6) M �→
M∑
j=1

|〈ϕy, ψj〉L2 |2

λj

is bounded if and only if y ∈ Ωc.
Let us next consider how the above characterization result can be regularized

in case we are given only a noisy incomplete version of Λ − Λ0. We first recall a
perturbation theorem concerning the spectrum of a self-adjoint operator [18, Theorem
V.4.10, section 4.3, p. 291], where we denote the spectrum of a linear operator A by
σ(A).
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Theorem 2.2 (continuity of the spectrum). Let A and B be bounded self-adjoint
operators on a Hilbert space H. Then dist(σ(A), σ(B)) ≤ ‖A−B‖; that is,

sup
λ∈σ(B)

dist(λ, σ(A)) ≤ ‖A−B‖ and sup
μ∈σ(A)

dist(μ, σ(B)) ≤ ‖A−B‖.

Hence, there is some hope that a measured approximation of the Neumann-to-
Dirichlet operator yields good approximations for the eigenvalues of Λ. Due to Rel-
lich’s lemma [24, Theorem 3.27], Λ and Λ0 are compact when acting on L2

♦(∂Ω),
and hence (Λ − Λ0)� is compact as well; in fact, (Λ − Λ0)� is smoothing if ∂Ω and
the admittances are smooth. Therefore, even a small perturbation of the eigenval-
ues λj of (Λ − Λ0)� might completely destroy the behavior of the sequence M �→∑M

j=1 |〈ϕy, ψj〉|2/λj , which characterizes Ωc � Ω in (2.6). Actually, if λ′
j ≈ λj , the

sequence M �→
∑M

j=1 |〈ϕy, ψj〉|2/λ′
j does not even need to be well defined. Here enters

the ill-posedness of the problem. It is quite natural to use a spectral cut-off as a regu-
larization technique or, equivalently, truncate the perturbed Picard series in (2.6). A
perturbation analysis of the problem has to deal not only with the perturbed eigen-
values of (Λ − Λ0)� but also with the perturbed eigenvectors which enter the series
criterion in (2.6), but above we have neglected this question for simplicity. Interested
readers are referred to [22].

For regularization of the Picard series (2.6) in the case of perturbed data, we define
a truncation index which depends on two arbitrary, but fixed, parameters ω ∈ (0, 1/2)
and C > 0. Assume that we have been given the operators BM , B0M ∈ L(L2

♦(∂Ω))
with the property

(2.7) ‖(Λ − Λ0)� − (BM −B0M )�‖L(L2
♦(∂Ω)) = εM → 0 as M → ∞.

For an eigenvalue λ(M)

j of the self-adjoint operator (BM −B0M )�, we define its cluster

to be the set of all eigenvalues closer to λ(M)

j than 2εM :

clu(λ(M)

j ) :=
{
λ(M)

l ∈ σ ((BM −B0M )�)
∣∣ ∣∣λ(M)

j − λ(M)

l

∣∣ ≤ 2εM
}
.

Roughly speaking, clu(λ(M)

j ) contains the eigenvalues of (BM − B0M )� that might

converge to limM→∞ λ(M)

j as M → ∞. Now we can define the cut-off index as

(2.8) R(M) := max{k ∈ N | λ(M)

k ≥ 3εωM , ρ(M)

k ≥ 8εωM , kε1−2ω
M ≤ C},

where ρ(M)

k = min
{∣∣λ(M)

k −λ(M)

j

∣∣ ∣∣ clu(λ(M)

k ) �= clu(λ(M)

j )
}
. The definition of R(M) has

no other motivation than cutting off as many terms in the series criterion as necessary
to be able to prove the theorem below. For this asymptotic result it is naturally crucial
that R(M) → ∞ as M → ∞. Note that the truncation index prevents, for instance,
eigenvalues too close to zero to be investigated in the regularized sequence criterion
and that (2.8) implies the more complicated condition (35) of [22].

Theorem 2.3. Let ω ∈ (0, 1/2) and C > 0 be arbitrary, but fixed, parameters,
and let the compact operators BM , B0M ∈ L(L2

♦(∂Ω)), M ∈ N, be the given data
and such that (2.7) holds. Let (λ(M)

j , ψ(M)

j )j∈N be an eigensystem of the compact self-
adjoint operator (BM −B0M )�. Then the sequence

M �→
R(M)∑
j=1

|〈ϕy, ψ
(M)

j 〉|2

λ(M)

j

, M ∈ N,

is bounded if and only if y ∈ Ωc.
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3. Boundary elements and local projections. Approximation of Neumann-
to-Dirichlet operators in a finite-dimensional space motivates us to subdivide the
boundary ∂Ω using a mesh and to consider piecewise polynomial functions on the
elements. Such techniques are well known in finite element theory. Our approach is
slightly different because we need triangulations (more precisely, quadrangulations) of
the boundary and thus curved elements or panels. The construction of such meshes is
standard in boundary element methods. For completeness we recall some basic results
following Sauter and Schwab [25, Kapitel 4]. To be able to reference to this text, we
need to make the additional assumption that the boundary ∂Ω is of the class C∞ and
introduce the reference element

Q̂ = (0, 1) × (0, 1) ⊂ R
2.

Moreover, we denote the Euclidean norm by | · |.
Definition 3.1 (triangulation of ∂Ω). A triangulation T of ∂Ω is a subdivision

of ∂Ω into relatively open disjoint elements such that the following hold:
1. T covers ∂Ω, i.e., ∂Ω =

⋃
T∈T T .

2. Each element T ∈ T is the image of the reference element Q̂ under a diffeo-
morphism χT and there exist constants Cmin and Cmax such that

0 < Cmin < inf
x∈Q̂

inf
v∈S1

|DχT (x)v|2 ≤ sup
x∈Q̂

sup
v∈S1

|DχT (x)v|2 < Cmax < ∞,

where DχT denotes the Jacobian of χT .
3. For each reference mapping χT : Q̂ → T there exists an affine mapping

χaf
T : R

2 → R
3 and a smooth map χ∂Ω : R

3 → R
3 independent of T such that

χT = χ∂Ω ◦ χaf
T and χ∂Ω : χaf

T (Q̂) → T is a diffeomorphism for all T ∈ T.
Finally, T is a regular triangulation if any two elements contact each other either

not at all or in exactly one point or on an entire side. The number of elements of the
triangulation is called the size of T.

Any initial mesh T of ∂Ω can be refined using a subdivision of the reference
element if this subdivision is transported to ∂Ω via the mapping χT . Consecutively
refined triangulations lead to a family of triangulations.

Definition 3.2 (family of triangulations). A set (TM )M∈N is called a family of
triangulations if each TM is a triangulation of ∂Ω of size M such that the mesh size
δM tends to zero:

(3.1) δM := max
T∈TM

sup
s,s′∈T

|s− s′| → 0 as M → ∞.

The family of triangulations (TM )M∈N is shape regular if the quotient of the diam-
eter and the in-circle diameter of T ∈ TM is bounded by some constant κ independent
of M [25, Kapitel 4.1] and quasiuniform if

sup
M∈N

[
maxT∈TM

sups,s′∈T |s− s′|
minT∈TM

sups,s′∈T |s− s′|

]
< ∞.

In what follows, all triangulations are assumed to be regular and all families of
triangulations shape regular. It appears later on that quasiuniformity of a family of
triangulations is a serious hindrance when dealing with the complete electrode model:
Our convergence proof of the finite-dimensional complete model toward the infinite-
dimensional continuum model requires the technical assumption that the gaps between
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the electrodes shrink faster than the electrodes and therefore nonquasiuniform meshes
arise naturally. The choice of discontinuous elements makes this special feature no
drawback; see [12, 25].

With the help of triangulations it is possible to approximate functions on ∂Ω in
finite-dimensional spaces. We consider polynomial spaces on the reference element
and transport them onto ∂Ω by χT = χ∂Ω ◦ χaf

T . Therefore, we define

P̂k := span{xμ |μ ∈ N
2
0, |μ1| + |μ2| ≤ k}

to be the space of polynomials of degree less than or equal to k in two variables.

Definition 3.3. Let T be a triangulation of ∂Ω. Then

Pk := {ψ : ∂Ω → C | for all T ∈ T : ψ ◦ χT ∈ P̂k}.

Observe that, in general, f ∈ Pk is a polynomial not on ∂Ω but on the reference
element Q̂ after backtransport with χT . Moreover, f does not need to be continuous
over the edges of the elements (discontinuous elements).

The local L2-projection is now constructed by lifting the orthogonal projection
from L2(Q̂) to P̂k to the boundary ∂Ω: For ψ ∈ L2(Q̂) one defines P̂ k via

P̂ kψ ∈ P̂k and (P̂ kψ − ψ) ⊥ v for all v ∈ P̂k,

where the orthogonality is in the sense of the inner product of L2(Q̂). Furthermore,
for ψ ∈ Hs(∂Ω), s ≥ 0, and a triangulation T of ∂Ω we set

(3.2) P kψ
∣∣
T

:= (P̂ k(ψ|T ◦ χT )) ◦ χ−1
T , T ∈ T.

The lifting of P̂ k to the curved boundary makes the L2-projector P k, in general,
nonorthogonal on L2(∂Ω). The approximation quality of P k depends in principal on
the magnitude of the Sobolev index of the space Hs(∂Ω) [25, Satz 4.3.18].

Theorem 3.4. Let (TM )M∈N be a shape regular family of triangulations of the
boundary of the smooth domain Ω ⊂ R

3, s > 0, and P k
M the L2-projection on TM .

Then

(3.3) ‖ψ − P k
Mψ‖L2(∂Ω) ≤ Cδ

min(k+1,s)
M ‖ψ‖Hs(∂Ω) for ψ ∈ Hs(∂Ω),

where C depends on the constant of shape regularity κ and on ∂Ω.

In this work we make use only of the case k = 0 (piecewise constant interpolation)
since this is the relevant case in impedance tomography when dealing with perfectly
conducting electrodes. Thus, we drop the index k in what follows.

4. The complete electrode model. In practice, the current is injected through
electrodes attached to the surface of the investigated body Ω. The complete electrode
model [8, 27] is now the standard model for this procedure. It takes into account the
following four properties of the setup.

First, the electrodes are a discrete set denoted by E1, . . . , Ep. Each Ej is consid-
ered to be a relatively open subset of the boundary ∂Ω with positive surface measure:
|Ej | > 0. We assume, furthermore, that the electrodes are connected and well sep-
arated, i.e., dist(Ek, Ej) > 0 for k �= j. The set {E1, . . . , Ep} is called an electrode
configuration.
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Second, the net current through Ej equals the total flux through the surface patch
underneath the electrode. Let Ij ∈ C be the mean current flux applied to Ej , i.e.,
Ij |Ej | is the net current, and define I = (I1, . . . , Ip)

�. It holds that

1

|Ej |

∫
Ej

Bνu dS = Ij for j = 1, . . . , p,

where Bν is defined as in (2.3). Due to the principle of conservation of charge, we
require that

∑
j Ij |Ej | = 0. The vector I is called a current pattern or a current

vector. For convenience, we denote the space of current patterns of length p by

(4.1) C
p
E =

{
I ∈ C

p
∣∣∣ ∑p

j=1
Ij |Ej | = 0

}
,

with the weighted norm | · |E defined through

(4.2) |I|2E :=

p∑
j=1

|Ej | |Ij |2 .

We remark that C
p
E can be identified as a subspace of L2

♦(∂Ω) via Cp
E � I �→ f , where

f(x) = Ij on Ej , j = 1, . . . , p, and 0 elsewhere.
Third, we model the electrodes as perfect conductors; that is, we assume that the

potential along an electrode is constant. This is the so-called shunting effect. The set
of electrode voltages is denoted by U = (U1, . . . , Up)

� and assumed to belong to C
p
E .

This condition can be seen as a grounding of potential.
Fourth, the complete electrode model includes the effect of contact impedance

at the electrodes: When EIT is used in a medical context, a thin layer with high
resistivity is formed at the boundary between the electrodes and the skin due to dermal
moisture. We incorporate this effect by introducing the surface impedance function
z ∈ C∞(∂Ω), which denotes the resistivity of the contact layer at the boundary. The
real part of z is assumed to be positive. According to Ohm’s law, the potential u at
Ej drops by zBνu|Ej

over the contact layer.

The complete electrode model gives rise to the following (weak) formulation of
the forward problem: Given a current vector I = (I1, . . . , Ip)

� ∈ C
p
E , an admittance

tensor γ, and a contact impedance z, find the potential u ∈ H1(Ω) and the set of
electrode voltages U ∈ C

p
E that satisfy

∇.
(
γ∇u

)
= 0 in Ω,(4.3)

u + zBνu = Uj on Ej for j = 1, . . . , p,(4.4)

1

|Ej |

∫
Ej

Bνu dS = Ij for j = 1, . . . , p,(4.5)

Bνu = 0 on ∂Ω � ∪p
j=1Ej .(4.6)

Notice that without the grounding of potential, i.e., the condition U ∈ C
p
E , the above

problem would not have a unique solution. According to [27], the accuracy of this
model corresponds to the measurement precision of the physical experiment.

The measurement map, i.e., the resistivity matrix, associated to the complete
electrode model is given by

Σ : C
p
E → C

p
E , I �→ U,
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where U is the second part of the solution to (4.3)–(4.6) corresponding to the current
pattern I. The resistivity matrix corresponding to the background admittance is
defined by this very same equation when γ is replaced by γ0 in (4.3).

The existence and uniqueness of the solution (u, U) ∈ H1(Ω)⊕C
p
E can be shown

using the Lax–Milgram lemma. One starts to look for the solution in the quotient
space (H1(Ω)⊕C

p)/C and chooses afterward the unique representative in H1(Ω)⊕C
p
E .

In [27, 15] it is shown that (u, U) ∈ (H1(Ω)⊕C
p)/C satisfies (4.3)–(4.6) if and only if

(4.7) b((u, U), (v, V )) = f(v, V ) for all (v, V ) ∈ (H1(Ω) ⊕ C
p)/C,

where the elliptic sesquilinear form b = bγ,z is defined by

b((u, U), (v, V )) :=

∫
Ω

∇v∗γ∇u dx +

p∑
j=1

∫
Ej

1

z
(u− Uj)(v − V j) dS,

and

f(v, V ) :=

p∑
j=1

|Ej |IjV j .

As in [15], we use the inner product

〈(u, U), (v, V )〉∗ =

∫
Ω

∇v∗∇u dx +

p∑
j=1

∫
Ej

(U − u)(V − v) dS

on (H1(Ω) ⊕ C
p)/C. The associated norm is equivalent to the quotient norm

‖(u, U)‖2
(H1(Ω)⊕Cp)/C

:= inf
c∈C

{
‖u + c‖2

H1(Ω) + |U + c|2E
}
,

independently of the number and size of the electrodes [15, Lemma 2.5, Corollary 2.6].
It follows from the conditions set on γ and z that there is a constant of ellipticity
c = c(z, γ) > 0 such that

(4.8) Re b((u, U), (u, U)) ≥ c‖(u, U)‖2
∗ for all (u, U) ∈ (H1(Ω) ⊕ C

p)/C

and for any electrode configuration {E1, . . . , Ep}, p ∈ N [15, Corollary 2.6]. Moreover,
there exists C independent of the geometry of the electrodes such that
(4.9)
|b((u, U), (v, V ))| ≤ C‖(u, U)‖∗‖(v, V )‖∗ for all (u, U), (v, V ) ∈ (H1(Ω) ⊕ C

p)/C.

Since the functional f : (H1(Ω) ⊕ C
p)/C → C is well defined, continuous, and an-

tilinear, the existence and uniqueness of the solution to (4.3)–(4.6) follow now by
combining (4.8) and (4.9) with the Lax–Milgram lemma.

5. Electrode configurations and discretization. Let T = (Tj) be a triangu-
lation of ∂Ω, as introduced in section 3. We choose a subset E = (Ej)

p
j=1 ⊂ T that we

call the electrodes and write E = ∪p
j=1Ej . The complementing elements G := T � E,

G := ∪Gj 
∈EGj , play the role of the gaps between the electrodes. For simplicity, we
denote

hT = sup
s,s′∈T

|s− s′|, hE = max
T∈E

hT , hG = max
T∈G

hT , hT = max
T∈T

hT .
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Motivated by the EIT experiment, we assume that between any two electrodes there
is a gap (the electrodes are separated)

dist(Ek, Ej) > 0 for all j, k = 1, . . . , p, j �= k.

The space of piecewise polynomials of degree 0 on the electrodes is denoted by PE ,

PE = {u : ∂Ω → C | for all Ej : u|Ej
≡ const. and u|G ≡ 0},

and we write PE for the local L2-projector on this space; i.e., PE acts on the electrodes
like a usual L2-projector (3.2) but vanishes on the gaps. In the same way we define
the space PG of piecewise constant functions vanishing on the electrodes and associate
the projector PG. Observe that PE+G := PE + PG = P 0

T is the piecewise constant
L2-projector on T. In particular, Theorem 3.4 holds for PE+G.

Since PE is finite-dimensional, the following vector notation is sometimes useful:

ψ = (ψj)
p
j=1, ψj := ψ|Ej

for ψ ∈ PE .

That is, we identify a function in PE with the associated vector of function values on
the electrodes. Likewise, we identify functions in PG and PE+G with their coordinate
representation. The L2(∂Ω) norm on PE can then be written as

‖ψ‖2
L2(∂Ω) = ‖ψ‖2

L2(E) =

p∑
j=1

|ψj |2|Ej | =
∣∣(ψj)

p
j=1

∣∣2
E

for ψ ∈ PE .

Let now f ∈ L2
♦(∂Ω) be the Neumann boundary data for the continuum model

problem (2.3). We try to approximate the solution of (2.3) by the solution of the
complete electrode model forward problem. Since PEf does not, in general, belong
to C

p
E , it cannot be used as an input of (4.5), and so we are forced to define yet

another projector:

(5.1) P̃Ef = PEf −Kf for f ∈ L2(∂Ω),

where

(5.2) Kf =

∑
j(P

Ef)j |Ej |∑
j |Ej |

.

It is easy to check that P̃E maps L2(∂Ω) to C
p
E . In the following two sections we will

investigate how well the mapping

(Σ − Σ0)P̃
E : L2

♦(∂Ω) → C
p
E ⊂ L2

♦(∂Ω)

approximates the difference Λ − Λ0 in the L2-operator norm.
The projection operator 1

|Ej |
∫
Ej

(·) dS which appears in the formulation of the

complete model (4.5), is abbreviated to
∫
E

(·), i.e.,

(5.3)

[∫
E

f

]
(s) =

{
1

|Ej |
∫
Ej

f dS if s ∈ Ej ∈ E,

0 else,
for f ∈ L2(∂Ω).

This projection is orthogonal in L2(∂Ω) and it plays a crucial role in our analysis, as
does its counterpart on the gaps, namely,[∫

G

f

]
(s) =

{
1

|Gj |
∫
Gj

f dS if s ∈ Gj ∈ G,

0 else,
for f ∈ L2(∂Ω).
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6. Two technical lemmas on projection operators. The aim of this work
is to prove that Σ−Σ0 is an approximation of Λ−Λ0. The key for this perturbation
lemma turns out to be the comparison of the two projection operators PE and

∫
(·)

in L2(∂Ω). The two projectors are close to each other if the mesh size is small, as the
following technical lemma shows. This statement is by no means surprising since for
a polyhedral surface the projectors agree.

Lemma 6.1. Let Ω be of class C∞ and T = E ∪ G a triangulation of ∂Ω. Then
there exists a constant C(Ω) such that∥∥∥∥

∫
E

u− PEu

∥∥∥∥
L2(E)

≤ C(Ω)h2
E‖u‖L2(∂Ω) for u ∈ L2(∂Ω).

For simplicity we restrict ourselves in this lemma to smooth domains, although
the proof shows that a domain of class C2 is sufficient.

Proof. 1. The projector PE has been defined as the L2-projector on the reference
element Q̂ = (0, 1)2, transported onto the electrodes Ej . Since PE projects onto
constant functions, for f ∈ L2(∂Ω), PEf has the form

PEf
∣∣
Ej

=
1

|Q̂|

∫
Q̂

f ◦ χEj dx =

∫
Q̂

f ◦ χEj dx, j = 1, . . . , p,

and PEf ≡ 0 between the electrodes. On the other hand, the transformation theorem
shows that∫

E

u

∣∣∣∣
Ej

=
1

|Ej |

∫
Q̂

f ◦ χEj

√
det

((
DχEj

)∗
DχEj

)
dx, j = 1, . . . , p.

Hence, we have to estimate an expression of the form

1

|Ej |

∫
Q̂

f ◦ χEj

√
det

((
DχEj

)∗
DχEj

)
dx−

∫
Q̂

f ◦ χEj dx.

Our strategy is to exploit the smoothness of ∂Ω.
2. Let us introduce auxiliary quadrilaterals Êj ⊂ R

3 such that Êj touches Ej in

some point ξj ⊂ Ej ; i.e., Êj lies in the tangential hyperplane Tξj (∂Ω) (compare with

Figure 6.1). In addition, the four corner points of Êj are orthogonal projections of
the four corner points of Ej onto Tξj (∂Ω). Without loss of generality we can assume

(using a rigid motion) that Tξj (∂Ω) = {x1 = x2 = 0} and denote the diameter of Êj

by

(6.1) hÊj
= sup

ξ,ξ′∈Êj

|ξ − ξ′| .

By choosing hE small enough we can assume that there exists a C∞ function ζj :

R
2 → R such that ζj “transports Êj onto Ej”; i.e.,

(6.2) χ̂Ej : Êj � ξ �→ (ξ, ζj(ξ)) ∈ R
3

is a C∞ diffeomorphism that maps Êj onto Ej . By the compactness of ∂Ω, our
smoothness assumption on ∂Ω implies that there exists C(Ω) such that

(6.3) ‖χ̂Ej‖C2(Êj)
≤ C(Ω) and ‖χ̂−1

Ej
‖C2(Ej) ≤ C(Ω) for all j = 1, . . . , p.
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Ej

Êj

ξj

Q̂

x1

x2

x3

χ̂EjχEj

χaf
Ej

Fig. 6.1. The quadrilaterals Ej and Êj . Ej is a C∞ surface in R
3 with diameter hEj

and

Êj ⊂ R
2 with diameter hÊj

. The diffeomorphism χ̂Ej
transports Êj onto Ej . The reference element

Q̂ is transported by χEj
onto Ej and by χaf

Ej
onto Êj . We have χEj

= χ̂Ej
◦ χaf

Ej
.

Finally, we denote by χaf
Ej

the affine mapping that transports Q̂ onto Êj .

3. As a side computation, we estimate the difference of the surface measures of
Ej and Êj . By the transformation theorem,

∣∣∣|Ej | − |Êj |
∣∣∣ =

∣∣∣∣∣
∫
Ej

dS −
∫
Êj

dξ

∣∣∣∣∣
≤
∫
Êj

∣∣∣∣∣
√

det
((

Dχ̂Ej

)∗
Dχ̂Ej

)
− 1

∣∣∣∣∣ dξ

=

∫
Êj

∣∣∣∣
√

1 + |∇ζj |2 − 1

∣∣∣∣ dξ =

∫
Êj

√
1 + |∇ζj |2 − 1 dξ.

Recall that we constructed Êj so that ∇ζj(ξj) = 0 since Êj is tangential to Ej at ξj .
Hence, by the mean value theorem,

(6.4) |∇ζj(ξ)| = |∇ζj(ξ) −∇ζj(ξj)| ≤ ‖χ̂Ej‖C2(Ω) sup
ξ∈Êj

|ξ − ξj | ≤ C(Ω)hÊj
,

where C(Ω) was defined in (6.3) and hÊj
in (6.1). As a consequence, the mean value

theorem for
√
· implies that

√
1 + |∇ζj |2 − 1 ≤ 1

2
|∇ζj |2 ≤ C(Ω)h2

Êj

and, in particular, that

(6.5)

∫
Êj

√
1 + |∇ζj |2 − 1 dξ ≤ C(Ω)h2

Êj

∣∣∣Êj

∣∣∣ .
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4. The preceding side computation enables us to estimate as follows:∣∣∣∣∣ 1

|Ej |

∫
Ej

f dS − (PEf)j

∣∣∣∣∣ =

∣∣∣∣∣ 1

|Ej |

∫
Êj

(
f ◦ χ̂Ej

)√
det

((
Dχ̂Ej

)∗
Dχ̂Ej

)
dξ − (PEf)j

∣∣∣∣∣
=

∣∣∣∣∣ 1

|Ej |

∫
Êj

(
f ◦ χ̂Ej

)√
1 + |∇ζj |2 dξ − 1

|Êj |

∫
Êj

f ◦ χ̂Ej
dξ

∣∣∣∣∣
≤ 1

|Ej |

∫
Êj

∣∣f ◦ χ̂Ej

∣∣ (√1 + |∇ζj |2 − 1

)
dξ +

∣∣∣|Êj | − |Ej |
∣∣∣

|Êj | |Ej |

∫
Êj

∣∣f ◦ χ̂Ej

∣∣ dξ

≤ 1

|Ej |

∫
Êj

∣∣f ◦ χ̂Ej

∣∣ (C(Ω)h2
Êj

)
dξ + C(Ω)

h2
Êj

|Ej |

∫
Êj

∣∣f ◦ χ̂Ej

∣∣ dξ

≤ C(Ω)

|Ej |
h2
Êj

√
|Êj | ‖f ◦ χ̂Ej‖L2(Êj)

,

where we used the Cauchy–Schwarz inequality. Note that

‖f ◦ χ̂Ej
‖L2(Êj)

≤ C(Ω)‖f‖L2(Ej), hÊj
≤ C(Ω)hEj , and |Êj | ≤ |Ej |,

where C(Ω) depends on the curvature of ∂Ω.
5. We are ready for the final estimate of this proof. The preceding parts and the

Cauchy–Schwarz inequality allow us to estimate as follows:

∥∥∥∥
∫
E

f dS − PEf

∥∥∥∥
2

L2(E)

=

p∑
j=1

∥∥∥∥∥ 1

|Ej |

∫
Ej

f dS − (PEf)j

∥∥∥∥∥
2

L2(Ej)

=

p∑
j=1

∣∣∣∣∣ 1

|Ej |

∫
Ej

f dS − (PEf)j

∣∣∣∣∣
2

|Ej |

≤ C(Ω)

p∑
j=1

[
1

|Ej |
h2
Êj

√
|Êj |‖f‖L2(Ej)

]2

|Ej |

≤ C(Ω)

p∑
j=1

h4
Êj

‖f‖2
L2(Ej)

≤ C(Ω)h4
E‖f‖2

L2(E).

(6.6)

By using the above lemma, we can extend the result of Theorem 3.4.
Corollary 6.2. Suppose that the assumptions of Theorem 3.4 hold. Then

‖ψ − PMψ‖H−1/2(∂Ω) ≤ Cδ
1/2
M ‖ψ‖L2(∂Ω) for ψ ∈ L2(∂Ω),

where C depends on the constant of shape regularity κ and on ∂Ω and PM = P 0
M .

Proof. Let us introduce the L2-orthogonal projectors∫
TM

: L2(∂Ω) → PM ⊂ L2(∂Ω), M ∈ N,

that are defined in accordance with (5.3) but on the whole triangulations TM , M ∈
N, respectively. Here PM denotes the space of piecewise constant functions on the
triangulation TM . In the rest of this proof, we will denote by ψ0

M ∈ PM the image of
ψ ∈ L2(∂Ω) under the Mth of the above-defined projections.
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Application of Lemma 6.1 to the whole triangulation TM instead of the subset E

shows that∣∣∣〈ψ0
M − PMψ, φ

〉
L2(∂Ω)

∣∣∣ ≤ Cδ2
M‖ψ‖L2(∂Ω)‖φ‖L2(∂Ω) for ψ, φ ∈ L2(∂Ω),

where we used the Cauchy–Schwarz inequality and the notation of Theorem 3.4. In
particular, it holds that

∣∣〈ψ, PMφ〉L2(∂Ω) − 〈PMψ, φ〉L2(∂Ω)

∣∣ =
∣∣∣〈ψ, PMφ− φ0

M

〉
L2(∂Ω)

−
〈
PMψ − ψ0

M , φ
〉
L2(∂Ω)

∣∣∣
≤ Cδ2

M‖ψ‖L2(∂Ω)‖φ‖L2(∂Ω).

As a consequence, it follows from the triangle and Cauchy–Schwarz inequalities and
Theorem 3.4 that

∣∣〈ψ − PMψ, φ〉L2(∂Ω)

∣∣ ≤ ∣∣〈ψ, φ− PMφ〉L2(∂Ω)

∣∣+ ∣∣〈ψ, PMφ〉L2(∂Ω) − 〈PMψ, φ〉L2(∂Ω)

∣∣
≤ Cδ

1/2
M ‖ψ‖L2(∂Ω)‖φ‖H1/2(∂Ω)

for all ψ ∈ L2(∂Ω) and φ ∈ H1/2(∂Ω). Now we can argue by duality as follows:

‖ψ − PMψ‖H−1/2(∂Ω) ≤ sup
φ∈H1/2(∂Ω),φ 
=0

∣∣〈ψ − PMψ, φ〉L2(∂Ω)

∣∣
‖φ‖H1/2(∂Ω)

≤ Cδ
1/2
M ‖ψ‖L2(∂Ω)

for all ψ ∈ L2(∂Ω). This completes the proof.

When we discretized the boundary current f ∈ L2
♦(∂Ω) of the continuum model to

obtain input data for the discrete complete model, we needed to introduce a constant
Kf ; see (5.2). This constant appeared since for the zero mean current f ∈ L2

♦(∂Ω)
the projection PEf fails to possess zero mean value in general. The following lemma
shows that Kf is small for thin gaps and small electrodes.

Lemma 6.3. Let f ∈ L2
♦(∂Ω), suppose that the assumptions of Lemma 6.1 hold,

and define Kf as in (5.2). Then there exists C(Ω) such that

(6.7) |Kf | ≤
[
|E|−1|G|1/2 + C(Ω)|E|−1/2

h2
E

]
‖f‖L2(∂Ω).

Since |E|+ |G| = |∂Ω| we observe that if the gaps are small, i.e., |G| is small, then
|E| ≈ |∂Ω|. If, moreover, the electrodes are thin, i.e., hE is small, then Kf is small
due to (6.7).

Proof. 1. Using techniques similar to those in the proof of Lemma 6.1, one
computes that

∣∣∣∣
∫
E

PEf − f dS

∣∣∣∣ =

∣∣∣∣∣∣
p∑

j=1

|Ej |
[
(PEf)j −

1

|Ej |

∫
Ej

f dS

]∣∣∣∣∣∣
≤
√
|E|

∥∥∥∥PEf −
∫
E

f

∥∥∥∥
L2(E)

(6.6)

≤ C(Ω)
√
|E|h2

E‖f‖L2(∂Ω).
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2. The definition of Kf and part 1 of the proof imply that

|Kf | =

∣∣∣∣∣
∑

j(P
Ef)j |Ej |∑
j |Ej |

∣∣∣∣∣ =
1

|E|

∣∣∣∣
∫
E

PEf dS

∣∣∣∣
≤ 1

|E|

∣∣∣∣
∫
E

f dS

∣∣∣∣+ 1

|E|

∣∣∣∣
∫
E

PEf − f dS

∣∣∣∣
≤ 1

|E|

∣∣∣∣
∫
G

f dS

∣∣∣∣+ C(Ω)|E|−1/2
h2

E‖f‖L2(∂Ω)

≤
[
|E|−1|G|1/2 + C(Ω)|E|−1/2

h2
E

]
‖f‖L2(∂Ω),

where we used the zero mean property of f in the second to last intermediate
phase.

7. Approximation of the continuum model by the complete electrode
model. We have now collected all tools we require to prove our main theorem. It
shows that the complete model approximates the continuum model in the operator
norm if the electrodes covering ∂Ω are fine enough. Moreover, the surface area of the
gaps needs to be small. All required geometric assumptions appear quite explicitly
in the estimates. Concerning notation, recall that Λ and Λ0 denote the Neumann-to-
Dirichlet operators associated to the admittances γ and γ0, respectively, whereas Σ
and Σ0 denote the corresponding resistivity matrices. The projection P̃E is defined
by (5.1). For simplicity, we assume that the contact impedance z is just a complex
constant with positive real part. This technical assumption is used to ease the proof
of Lemma 7.3.

Theorem 7.1. Let T be a triangulation of the boundary of the smooth bounded
domain Ω. We denote as usual by hE = maxj hEj

, hG = maxj hGj
, and hT =

max(hE, hG) the element size of the electrodes, the gaps, and the triangulation, re-
spectively. Then

‖(Λ − Λ0) − (Σ − Σ0) P̃
E‖L(L2

♦(∂Ω))

≤ C(Ω, γ, γ0, κT, z)

⎡
⎢⎣h1/2

T +

⎛
⎝∑

Gj∈G

|Gj |2/θ
∗−1

⎞
⎠

1/2

+ |E|−1/2h2
T + |E|−1|G|1/2

⎤
⎥⎦

(7.1)

for θ∗ ∈ (4/3, 2).

It is crucial that the constant in the above estimate does not depend on the
electrode configuration.

Proof. 1. Let us denote by u ∈ H1
♦(Ω) the unique solution of the Neumann

problem (2.3) for f ∈ L2
♦(∂Ω) and by (ũ, U) ∈ H1(Ω)⊕C

p
E the unique solution to the

complete model forward problem (4.3)–(4.6) with the input current P̃Ef = PEf−Kf ;
see (5.1). Analogously, we set u0 and ũ0 to be the solutions of the same problems for
the admittance γ0 and introduce the constant c =

∫
∂Ω

ũ dS such that ũ− c ∈ H1
♦(Ω).

We first observe that there exists a constant C(Ω, γ) such that

‖u− ũ + c‖L2(∂Ω) ≤ C(Ω)‖u− ũ + c‖H1/2(∂Ω) ≤ C(Ω)‖u− ũ + c‖H1(Ω)

≤ C(Ω, γ)‖Bνu− Bν ũ‖H−1/2(∂Ω).
(7.2)
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This inequality relies on well-posedness of the Neumann problem (2.3) in H1
♦(Ω):

The difference u − ũ + c solves (2.3) with the Neumann boundary values Bνu −
Bν ũ ∈ H−1/2(∂Ω). Hence, (7.2) follows from the trace theorem and the continuous
embedding H1/2(∂Ω) ⊂ L2(∂Ω). An analogous inequality holds of course for u0 − ũ0.

Since Λf = u|∂Ω, ΣP̃Ef = ũ|∂Ω + zBν ũ|∂Ω on the electrodes and ΣP̃Ef = 0 in
between the electrodes, the triangle inequality implies that

∥∥∥((Λ − Λ0) − (Σ − Σ0) P̃
E
)
f
∥∥∥2

L2(∂Ω)

= ‖u− u0 − ũ− zBν ũ + ũ0 + zBν ũ0‖2
L2(E) + ‖u− u0‖2

L2(G)

≤ 3‖u− ũ‖2
L2(E) + 3‖u0 − ũ0‖2

L2(E)

+ 3 ‖z‖2
∞‖Bν ũ− Bν ũ0‖2

L2(E) + ‖u− u0‖2
L2(G) .

(7.3)

The terms ‖u − ũ‖L2(E) and ‖u0 − ũ0‖L2(E) can be estimated in exactly the same
manner and we will treat only the first of the two in the following. We set again
c =

∫
∂Ω

ũ dS and estimate

(7.4) ‖u− ũ‖L2(E) ≤ ‖u− ũ + c‖L2(E) + |c||E|1/2

≤ C(Ω, γ, z)‖Bνu− Bν ũ‖H−1/2(∂Ω) + |c||E|1/2

≤ C(Ω, γ, z)

⎛
⎜⎝‖f − PEf‖H−1/2(∂Ω)︸ ︷︷ ︸

I

+ ‖PEf − Bν ũ‖L2(∂Ω)︸ ︷︷ ︸
II

⎞
⎟⎠+ |c||E|1/2.

The absolute value of c can be easily controlled, since

c =

∫
∂Ω

ũ dS =

∫
E

ũ dS +

∫
G

ũ dS

=
∑
Ej∈E

∫
Ej

(Uj − zBνu) dS +

∫
G

ũ dS

=
∑
Ej∈E

Uj |Ej | − z
∑
Ej∈E

Ij |Ej | +
∫
G

ũ dS =

∫
G

ũ dS

and hence |c| ≤ ‖ũ‖L2(∂Ω)|G|1/2 ≤ C(Ω, γ)‖f‖L2(∂Ω)|G|1/2. Note that

‖Bν ũ− Bν ũ0‖L2(E) ≤ ‖Bν ũ− PEf‖L2(Ω) + ‖PEf − Bν ũ0‖L2(Ω),

and both of the latter terms correspond to the term II of (7.4). Terms I and II
of (7.4) will be estimated in parts 2 and 3 of the proof. The only remaining term
‖u− u0‖L2(G), appearing at the end of (7.3), will be treated in the fourth part.

2. We bound term I using the approximation property of PE+G = P 0
T on L2(∂Ω);

see Theorem 3.4. For convenience, we formulate this result as a lemma.

Lemma 7.2. Under the assumptions of Theorem 7.1, it holds that

‖f − PEf‖H−1/2(∂Ω) ≤ C(Ω, κT)

⎛
⎝h

1/2
T +

√∑
Gj∈G

|Gj |2/θ∗−1

⎞
⎠ ‖f‖L2(∂Ω).
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We estimate as follows:

I = ‖f − (PE + PG)f + PGf‖H−1/2(∂Ω)

≤ ‖f − PE+Gf‖H−1/2(∂Ω) +
∥∥PGf −

∫
G
f dS

∥∥
H−1/2(∂Ω)

+
∥∥∫

G
f dS

∥∥
H−1/2(∂Ω)

≤ C(Ω, κT)h
1/2
T ‖f‖L2(∂Ω) + C(Ω)

∥∥PGf −
∫
G
f dS

∥∥
L2(G)

+
∥∥∫

G
f dS

∥∥
H−1/2(∂Ω)

≤ C(Ω, κT)h
1/2
T ‖f‖L2(∂Ω) + C(Ω)h2

G‖f‖L2(∂Ω) +
∥∥∫

G
f dS

∥∥
H−1/2(∂Ω)

,

where we used Corollary 6.2 and Lemma 6.1 for the gaps instead of the electrodes.
The constant C(Ω, κT) depends on the curvature of ∂Ω and the shape regularity of
the triangulation T.

The last term on the right will be estimated using a duality argument, and so we
start with the “dual” case φ ∈ H1/2(∂Ω). Due to a Sobolev embedding theorem, we
know that for v ∈ W 1,p(Ω), p < n, the trace v|∂Ω belongs to Lθ(∂Ω) for 1 ≤ θ <
(n− 1)p/(n− p); see [26, Abschnitt 117, Satz 4; Abschnitt 118] or [1, Theorem 7.43].
In our case, p = 2 and n = 3 and we find that H1/2(∂Ω) = H1(Ω)

∣∣
∂Ω

⊂ Lθ(∂Ω) for

1 ≤ θ < 4, with continuous embedding.1 We fix 2 < θ < 4 and define the conjugate
exponent θ∗ in (4/3, 2) by 1/θ + 1/θ∗ = 1. Then we estimate as follows:

∥∥∥∥
∫
G

φ

∥∥∥∥
2

L2(∂Ω)

≤
∑
Gj∈G

∣∣∣∣∣ 1

|Gj |

∫
Gj

φdS

∣∣∣∣∣
2

|Gj |

≤
∑
Gj∈G

1

|Gj |
‖1‖2

Lθ∗ (Gj)
‖φ‖2

Lθ(Gj)

≤ C(Ω)‖φ‖2
H1/2(∂Ω)

∑
Gj∈G

|Gj |2/θ
∗−1 for φ ∈ H1/2(∂Ω).

(7.5)

A duality argument is now used to bound the L2(∂Ω)-orthogonal mean value projec-
tion

∫
(·) on G in H−1/2(∂Ω):∥∥∥∥

∫
G

f

∥∥∥∥
H−1/2(∂Ω)

= sup
φ∈H1/2(∂Ω),φ 
=0

∣∣〈∫ f, φ〉L2(∂Ω)

∣∣
‖φ‖H1/2(∂Ω)

= sup
φ∈H1/2(∂Ω),φ 
=0

∣∣〈f, ∫ φ〉L2(∂Ω)

∣∣
‖φ‖H1/2(∂Ω)

≤ sup
φ∈H1/2(∂Ω),φ 
=0

‖f‖L2(∂Ω)‖
∫
φ‖L2(∂Ω)

‖φ‖H1/2(∂Ω)

(7.5)

≤ C(Ω)

√∑
Gj∈G

|Gj |2/θ∗−1‖f‖L2(∂Ω).

3. In this part of the proof we estimate term II of (7.4). Again, we announce the
bound in a lemma.

Lemma 7.3. Under the assumptions of Theorem 7.1, it holds that

‖PEf − Bν ũ‖L2(∂Ω) ≤ C(Ω, κT, z, c)
(
h

1/2
T + |E|−1/2h2

T + |E|−1|G|1/2
)
‖f‖L2(∂Ω).

1At this point, an extension to the two-dimensional case is not obvious without suitable modifi-
cation, but see Remark 7.7.
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We first observe that both Bν ũ and PEf are identically zero on G. Thus,

II2 = ‖PEf − Bν ũ‖2
L2(∂Ω)

(4.5),(5.1)
=

∑
Ej∈E

∥∥∥∥∥
(

1

|Ej |

∫
Ej

Bν ũ dS + Kf

)
− Bν ũ

∥∥∥∥∥
2

L2(Ej)

≤ 2
∑
Ej∈E

∥∥∥∥∥ 1

|Ej |

∫
Ej

Bν ũ dS − Bν ũ

∥∥∥∥∥
2

L2(Ej)︸ ︷︷ ︸
III2

+2|∂Ω| |Kf |2.

Lemma 6.3 gives a bound for the latter term on the right side of this inequality.
The term III can be bounded using the formulation of the complete electrode

model. The following estimate is very strong, since we start with Neumann boundary
values and end up with Dirichlet ones. Additionally, we obtain a factor

√
hE.

III2 =
∑
Ej∈E

∥∥∥∥∥ 1

|Ej |

∫
Ej

(
Uj − ũ

z

)
dS −

(
Uj − ũ|Ej

z

)∥∥∥∥∥
2

L2(Ej)

by (4.4)

≤ C(z)
∑
Ej∈E

∥∥∥∥∥ 1

|Ej |

∫
Ej

ũ dS − ũ

∥∥∥∥∥
2

L2(Ej)

since Uj/z constant

≤ 2C(z)

[∥∥∥∥
∫
E

ũ− PE ũ

∥∥∥∥
2

L2(E)

+
∥∥PE ũ− ũ

∥∥2

L2(E)

]

≤ 2C(Ω, κT, z)
[
h2

E‖ũ‖2
L2(E) + hE‖ũ‖2

H1/2(E)

]
due to Theorems 3.4, 6.1

≤ 2C(Ω, κT, z)hE‖ũ‖2
H1/2(∂Ω) ≤ 2C(Ω, κT, z)hE‖ũ‖2

H1(Ω)

for hE small enough, due to the boundedness of the trace mapping. The first inequality
in the above chain of estimates is the only reason why we assumed that z is a constant
in the beginning of this section. It is crucial to observe that this estimate remains valid
if ũ on the right-hand side is replaced by any ũ+ d, d ∈ C. This follows, for example,
by noticing that the value of the term following the first of the above inequalities is
not affected if we write ũ + d in the place of ũ. As a consequence, with the help of
Theorem 2.3 of [15] and (5.1), we see that

III ≤ C(Ω, κT, z)h
1/2
E inf

d∈C

‖ũ + d‖H1(Ω)

≤ C(Ω, κT, γ, z)h
1/2
E ‖P̃Ef‖L2(∂Ω)

≤ C(Ω, κT, γ, z)h
1/2
E

(
‖f‖L2(∂Ω) + ‖Kf‖L2(∂Ω)

)
,

the last step being valid because PE : L2(∂Ω) → L2(∂Ω) is bounded. Once again, we
can bound the latter term on the right-hand side of the last inequality with the help
of Lemma 6.3.

4. In order to complete the proof, we still need to estimate the term ‖u−u0‖L2(G)

in (7.3). By the triangle inequality, it is sufficient to bound ‖u‖L2(G) and ‖u0‖L2(G)

separately. Again, we restrict ourselves to the first of these two terms. Using the
approximation properties of different projections and the second part of this proof,
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we find that

‖u‖L2(G) ≤ ‖u− PGu‖L2(G) +
∥∥PGu−

∫
G
u
∥∥
L2(G)

+
∥∥∫

G
u
∥∥
L2(G)

≤ C(Ω, κT)
(
h

1/2
T + h2

T

)
‖u‖H1/2(∂Ω) + C(Ω)

√∑
Gj∈G

|Gj |2/θ∗−1‖u‖H1/2(∂Ω)

≤ C(Ω, κT, γ)

⎡
⎣h1/2

T +

√∑
Gj∈G

|Gj |2/θ∗−1

⎤
⎦ ‖f‖L2(∂Ω).

5. Now, the initial claim follows by combining part 4 and Lemmas 7.2 and 7.3
with the considerations in the beginning of this proof.

Remark 7.4. Theorem 7.1 provides an approximation result suitable for the
factorization method as the differences Λ − Λ0 and (Σ − Σ0)P̃

E are considered. If
one merely considers the difference between Λ and ΣP̃E, the analogous approximation
result fails. The reason for this is that the resistivity matrix does not approximate the
Neumann-to-Dirichlet operator but the Neumann-to-Robin operator, defined as

Υ : Hs
♦(∂Ω) → Hs

♦(∂Ω), f �→ u|∂Ω + zf for s ∈ [−1/2, 1/2],

with a suitable grounding of the potential. This operator “of the second kind” does
not share the smoothing properties of Λ. However, if one considers the difference
‖Υ − ΣPE‖L(L2

♦(∂Ω),Hs
♦(∂Ω)) in weaker norms, i.e., for s < 0, then a similar bound

as given in Theorem 7.1 holds.

Remark 7.5. By taking advantage of Lemma 6.1 and the continuity of the
mappings Σ,Σ0 : C

p
E → C

p
E, Theorem 7.1 could also be formulated using the projection

that is related to
∫
E

in the same way as P̃E is related to PE. This observation can be
useful in practical considerations since constructing

∫
E

does not necessarily require
construction of the diffeomorphisms (χT )T∈E.

Remark 7.6. Although we formulated Theorem 7.1 for the admittance γ, defined
by (2.1), and the background admittance γ0, the result holds true for any other two
smooth enough admittances as well. In particular, the two admittances do not need
to be related in the same way as the ones we used above.

Remark 7.7. The crucial point for extension of the last theorem to two dimen-
sions is the Sobolev embedding theorem used in the proof of Lemma 7.2. All other steps
are independent of dimension. As proven in [23, section 8.5], H1/2(R) ↪→ Lθ(R) for
any θ ∈ [2,∞). Using standard localization techniques this embedding can be trans-
ported to ∂Ω and serves, in two dimensions, as a replacement of the Sobolev embed-
dings used in (7.5).

Let us now consider a family of triangulations (TM )M∈N of ∂Ω and denote the
electrodes of TM by EM and the gaps by GM . The spaces of constant functions on the
electrodes and on the gaps are denoted PE

M and PG
M , respectively, and the local L2-

projection operators by PE
M and PG

M . Furthermore, the auxiliary projection operator
P̃E
M is defined in accordance with (5.1). By the definition of a family of triangulations

the mesh size of TM tends to zero as M tends to infinity. This implies that the mesh
size of the electrodes, as well as the mesh size of the gaps, tends to zero. In view of
our aim to prove that (ΣM −Σ0M )P̃E

M approximates Λ−Λ0, we need to require that
the surface measure of the gaps tends to zero as M tends to infinity. Such a condition
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can be set up as

(7.6)
∑

GM
j ∈GM

∣∣GM
j

∣∣ =

∣∣∣∣∣∣∂Ω �

⋃
EM

j ∈EM

EM
j

∣∣∣∣∣∣→ 0 as M → ∞

and is inspired by Hyvönen’s notion of a sequence of electrode configurations [15].
However, in view of (7.1), we are forced to set up a stronger assumption, namely,

(7.7)
∑

Gj∈GM

∣∣GM
j

∣∣2/θ∗−1 → 0 as M → ∞.

For θ∗ = 1 this condition is equivalent to (7.6), but the proof of Theorem 7.1 requires
that θ∗ ∈ (4/3, 2). Hence, fast shrinking of the gaps is assumed. If (7.7) is satisfied,
we have norm convergence of the difference of the two resistivity matrices toward the
difference of the corresponding Neumann-to-Dirichlet operators.

Theorem 7.8. Let (TM )M∈N be a family of triangulations of ∂Ω satisfying con-
dition (7.7). Then

‖(Λ − Λ0) − (ΣM − Σ0M )P̃E
M‖L(L2

♦(∂Ω)) =: δM → 0 as M → ∞.

Proof. Since (TM )M∈N is shape regular, we can bound κTM
by a common constant

κ. Hence, the constant in (7.1) is uniformly bounded for all M ∈ N. Condition (7.7)
implies, in particular, that the surface area of the gaps |G| =

∑
|Gj | tends to zero.

Consequently, |E| =
∑

|Ej | → |∂Ω|, and the claim follows from (7.1).

The rest of this work concentrates on using the above result in building a factor-
ization algorithm for the complete electrode model of EIT; thorough numerical testing
of the approximation link provided by Theorems 7.1 and 7.8 is left for future articles.

8. A factorization method for the complete electrode model. In this
section we combine the approximation result of Theorem 7.8 with the perturbation
result of Theorem 2.3. In view of the series criterion (2.6) of the factorization method,
we need to consider the self-adjoint operator (Λ−Λ0)� instead of Λ−Λ0. However, if

(ΣM−Σ0M )P̃E
M approaches Λ−Λ0 in L(L2

♦(∂Ω)), then ((ΣM−Σ0M )P̃E
M )� approaches

(Λ − Λ0)� in L(L2
♦(∂Ω)), as the following result shows.

Proposition 8.1. Under the assumptions and notation of Theorem 7.8,∥∥∥(Λ − Λ0)� −
(
(ΣM − Σ0M )PE

M

)
�

∥∥∥
L(L2

♦(∂Ω))
≤ C(2 + |ln δM |)δM → 0 as M → ∞.

Proof. The proof uses the following estimate of Vainikko [28]. If A,B ∈ L(H) are
bounded operators on a Hilbert space H and ‖A−B‖ ≤ ε, then

(8.1) ‖|A|p − |B|p‖ ≤ Cp(1 + |ln ε|)εmin(1,p) for any real p > 0.

We abbreviate A = Λ − Λ0 and BM = (ΣM − Σ0M )P̃E
M and observe that

‖ReA− ReBM‖L(L2
♦(∂Ω)) =

1

2
‖A + A∗ − (BM + B∗

M )‖L(L2
♦(∂Ω))

≤ ‖A−BM‖L(L2
♦(∂Ω)) ≤ δM ,
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and the same estimate also holds for ImA− ImBM . Therefore, we can use (8.1) with
p = 1 to estimate as follows:

‖A� −BM�‖L(L2
♦(∂Ω)) ≤ ‖|ReA| − |ReBM |‖L(L2

♦(∂Ω)) + ‖Im (A−BM )‖L(L2
♦(∂Ω))

≤ C1(1 + |ln(δM )|)δM + δM ≤ max(C1, 1) (2 + |ln(δM )|)δM .

It holds that |ln(δM )|δM → 0 as M → ∞ since δM is a zero sequence. Hence, BM�

approximates A� if BM approximates A.
The L2

♦(∂Ω) estimate of the preceding proposition enables to us to use the material
from section 2 to construct a factorization method for the complete electrode model.
The idea is to approximate the infinite series (2.6) using the eigenvalues λM

j and

eigenvectors ψM
j of ((ΣM − Σ0M )P̃E

M )�.
Theorem 8.2. Let ω ∈ (0, 1/2) and C > 0 be arbitrary, but fixed, parameters,

and consider the finite-dimensional operators (ΣM −Σ0M )P̃E
M ∈ L(L2

♦(∂Ω)), M ∈ N.

We denote by (λ(M)

j , ψ(M)

j )j∈N an eigensystem of ((ΣM − Σ0M )P̃E
M )� and define the

truncation index R(M) according to (2.8), with the noise level εM set as

εM := C(2 + |ln δM |)δM , M ∈ N,

where C is the constant from Proposition 8.1 and δM is defined as in Theorem 7.8.
Then the sequence

M �→
R(M)∑
j=1

|〈ϕy, ψ
(M)

j 〉|2

λ(M)

j

, M ∈ N,

is bounded if and only if y ∈ Ωc.
In the following section, we will demonstrate that Theorem 8.2 is not only of

theoretical interest; it can also lead to practical reconstruction algorithms.

9. Numerical experiments. In this section, we present numerical experiments
that implement a simplified version of the series criterion of Theorem 8.2 with sim-
ulated electrode data. Although the theoretical results of this paper have been for-
mulated in three spatial dimensions (but note Remark 7.7), the numerical tests are
carried out in two dimensions: Our object of interest Ω is an isotropic unit square
characterized by unit background admittance and unit contact impedance. Moreover,
there are sixteen electrodes that cover 44 percent of ∂Ω. We consider two different
inclusion geometries: Ω is contaminated in the first test by one kite-shaped inclusion
and, in the second test, by a kite-shaped inclusion and a circular inhomogeneity. The
admittance inside the inclusions is two. Our experimental settings are exactly the
ones used in the third and the fourth numerical tests of [17], where the reader can
find the precise details on the measurement geometry, the computation of the for-
ward data, and the simulation of the measurement noise. This arrangement also gives
the reader an opportunity to compare the series criterion and the factorization-type
algorithm of [17] in a straightforward manner. More extensive studies on numerical
implementation of factorization-type algorithms for different electrode models can be
found in [14, 17].

The test functions ϕy, defined on the boundary of the unit square, are computed
with the help of a suitable analytic map and the known functional form of the test
functions in the unit disk [3, 5, 17]. To be more precise, we introduce

(9.1) ϕ̃y(x) = ϕ̃y,b(x) :=
1

π

(y − x) · b
|y − x|2 , |x| = 1, |y| < 1, b ∈ R

2,



1118 ARMIN LECHLEITER, NUUTTI HYVÖNEN, AND HARRI HAKULA

and let η : Ω → {z ∈ R
2 | |z| < 1} be a bijective analytic function whose derivative

does not vanish anywhere on Ω. We set

ϕy = ϕ̃η(y) ◦ η + c,

where the constant c is chosen in such a way that ϕy integrates to zero over ∂Ω.
We compute the auxiliary test functions ϕ̃y,b, |y| < 1, with a fixed dipole moment
b, which results in ϕy = ϕy,a, where the dipole moment a ∈ R

2 (see (2.4)) depends
on the probe location y ∈ Ω through η (cf. [3, 17]). The analytic mapping η needed
above is provided by the Schwarz–Christoffel toolbox for MATLAB [10].

Using the notation of Theorem 8.2, we define a preliminary indicator function
through

(9.2) αR,b(y) =

R∑
j=1

|〈ϕy, ψj〉|2
λj

/ R∑
j=1

|〈ϕy, ψj〉|2, y ∈ Ω, 1 ≤ R ≤ 15,

where b is the dipole moment in the unit disk (see (9.1)) and we have left out the pa-
rameter M appearing in the formulae of Theorem 8.2 since the electrode configuration
is fixed. Take note that we have introduced the normalizing factor

∑R
j=1 |〈ϕy, ψj〉|2

in the denominator of (9.2) since one is ultimately interested in the shape of the test
function ϕy and not in its magnitude; it is easy to check that all above theoreti-
cal results remain valid if ϕy is replaced by ϕy/‖ϕy‖L2(∂Ω). In order to average out
artifacts, we take the mean of αR,b(y) over three dipole moments:

αR(y) =
1

3

2∑
k=0

αR,bk(y), y ∈ Ω,

where bk = (cos(2πk/3), sin(2πk/3)).
For visualization purposes, i.e., to obtain better contrast, we introduce one more

indicator function, namely,

ind(y) =
1

αR(y)
, y ∈ Ω.

The reconstructions of Figures 9.1 and 9.2 were obtained by plotting ind over Ω.
Theorem 8.2 suggests that αR(y) is probably larger when y ∈ Ω\D than when y ∈ D
if 1 ≤ R ≤ 15 is chosen suitably. Hence, ind(y) should be larger when y ∈ D than
when y ∈ Ω \D.

In both tests, we use three different noise levels: ε = 0, 2 × 10−4, and 2 × 10−3

(cf. [17]). For the noiseless cases the cut-off parameter is chosen to be R = 12.
When working with noisy resistivity matrices, we use a significantly simplified and
less conservative version of (2.8): Since the admittances are real and the inclusions
are more conductive than the background, the operator Σ − Σ0 is self-adjoint and
negative definite [15]. In particular, it holds that ((Σ − Σ0)P̃

E)� = (Σ0 − Σ)P̃E .
When noise is added to Σ (cf. [17]), some eigenvalues of Σ0−Σ may become negative.
We choose the cut-off parameter R and rearrange the eigenvalues if necessary, so that
the eigenvectors corresponding to the negative eigenvalues of the noisy Σ0 − Σ do
not contribute to (9.2). In the first experiment, this approach produced the cut-off
parameters R = 11 and 8 for the noise levels ε = 2× 10−4 and 2× 10−3, respectively.
In the second test, the corresponding values were R = 10 and 9. Notice that different
realizations of measurement noise produce different cut-off parameters.
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Fig. 9.1. The first experiment. The parameters ε and R represent the noise level and the
spectral cut-off, respectively. Top left: The inclusion support. Top right: ε = 0 and R = 12. Bottom
left: ε = 2 × 10−4 and R = 11. Bottom right: ε = 2 × 10−3 and R = 8.

Fig. 9.2. The second experiment. The parameters ε and R represent the noise level and the
spectral cut-off, respectively. Top left: The inclusion support. Top right: ε = 0 and R = 12. Bottom
left: ε = 2 × 10−4 and R = 10. Bottom right: ε = 2 × 10−3 and R = 9.

The findings of the first numerical experiment, where Ω contains one kite-shaped
inclusion, are presented in Figure 9.1, and the reconstructions of the second experi-
ment, where Ω is contaminated by a kite-shaped inclusion and a circular inhomogene-
ity, are shown in Figure 9.2. As the figures illustrate, the noiseless reconstructions
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capture the shapes and the locations of the inclusions quite well. When ε = 2× 10−4,
the function ind : Ω → R still provides information on the whereabouts of the inhomo-
geneities. Unfortunately, with the highest noise level ε = 2×10−3, the reconstructions
are badly blurred and their information content is rather low. We conclude that the
above-described simplified version of the method implicated by Theorem 8.2 provides
useful information on the inclusions if the signal to noise ratio of the measurements
is not too low.

The quality of our reconstructions is approximately the same as of those obtained
by a factorization-type algorithm in [17]. However, the above-introduced algorithm
has a slight advantage in the noisy case: Its regularization parameter, i.e., the spectral
cut-off R, is chosen in a systematic way by looking at the measurement data. The
algorithm used in [14], even more notably, has this advantageous property but lacks
the asymptotic analysis, which is provided for the series criterion by this work, and
it has not been properly studied within the complete electrode model.
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FINGERING FROM IONIZATION FRONTS IN PLASMAS∗
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Abstract. In this paper we describe the formation of fingers from ionization fronts for a hydro-
dynamic plasma model. The fingers result from a balance between the destabilizing effect of impact
ionization and the stabilizing effect of electron diffusion on ionization fronts. We show that electron
diffusion acts as an effective surface tension on moving fronts and we estimate analytically the size
of the fingers and its dependence on both the electric field and electron diffusion coefficient. We
perform direct numerical simulation of the model and compute finger-like traveling waves analogous
to structures such as Saffman–Taylor fingers and Ivantsov paraboloid in the context of Hele–Shaw
and Stefan problems, respectively.
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1. Introduction. Lightning is a stream of electrified air, known as plasma.
Charged particles are bound in the air by powerful electric forces to form electri-
cally neutral atoms and molecules. As a result, the air is an excellent insulator. This
means that if we apply an electric field to a volume filled with neutral particles, electric
currents will not flow. However, if a very strong electric field is applied to matter of
low conductivity and some electrons or ions are created, then the few mobile charges
can generate an avalanche of more charges by impact ionization. A low temperature
plasma is created, resulting in an electric discharge. The change in the properties of a
dielectric that causes it to become conductive is known as electric breakdown. Break-
down is a threshold process: no changes in the state of the medium are noticeable
while the electric field across a discharge gap is gradually increased but, suddenly, at
a certain value of the electric field, a current is detected.

Discharges can assume different appearances depending on the characteristics of
the electric field and the properties of the medium. Phenomenologically, discharges
can be classified into stationary ones, such as arc, glow, or dark discharges, and
transient ones, such as sparks and leaders [18].

At atmospheric pressure and at distances over 1 cm between anode and cathode,
the discharge channels are sharp and narrow, and we have a streamer discharge. A
streamer is a sharp ionization wave that propagates into a nonionized gas, leaving a
nonequilibrium plasma behind. Streamers have been also reported in early stages of
atmospheric discharges [15, 17]. They can split into branches spontaneously, but how
this branching is determined by the underlying physics is one of the greatest unsolved
problems in the physics of electric discharges. The pattern of this branching resembles
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the ones observed in the propagation of cracks, dendritic growth and viscous fingering.
Those phenomena are known to be governed by deterministic equations rather than
by stochastic events. In this paper, we extend and generalize the results announced
in [8] and implement direct numerical simulations of these deterministic models.

1.1. The minimal model for streamers. We consider a fluid description of a
low-ionized plasma. The electron density Nd

e varies in time as

(1.1)
∂Nd

e

∂τd
+ ∇d

R · Jd
e = Sd

e .

In this expression, the superscript d means that the quantity has physical dimensions
so that τd is the physical time, ∇d

R is the gradient operator, Sd
e is the source term,

i.e., the net creation rate of electrons per unit volume, and

Jd
e(R

d, τd) = Nd
e (Rd, τd)Ud

e(R
d, τd)

is the electron current density, with Ud
e being the average velocity of electrons. Similar

expressions can be obtained for positive Nd
p and negative Nd

n ion densities. On time-
scales of interest for the case of negative streamers, the ion currents can be neglected
because they are more than two orders of magnitude smaller than the electron one,
so we will take

∂Nd
p

∂τd
= Sd

p ,(1.2)

∂Nd
n

∂τd
= Sd

n,(1.3)

with Sd
p,n being source terms for positive and negative ions. Conservation of charge

has to be imposed in all processes so that the condition Sd
p = Sd

e + Sd
n holds.

A usual procedure is to approximate the electron current Jd
e as the sum of a drift

(electric force) and a diffusion term

(1.4) Jd
e = −μeEdNd

e −Dd
e∇d

RNd
e ,

where Ed is the total electric field (the sum of the external electric field applied to
initiate the propagation of a ionization wave and the electric field created by the
local point charges) and μd

e and Dd
e are the mobility and diffusion coefficients of the

electrons. Note that, as the initial charge density is low and there is no applied
magnetic field, the magnetic effects in (1.4) are neglected. In principle, the diffusion
coefficient is not completely determined but, in the case of equilibrium, diffusion is
linked to mobility through the Einstein relation Dd

e/μe = kT/e, with k being the
Boltzmann constant, T the temperature, and e the absolute value of the electron
charge.

Several physical processes can be considered to give rise to the source terms Sd
e,p,n.

The most important of them are impact ionization (an accelerated electron collides
with a neutral molecule and ionizes it), attachment (an electron may become attached
when it collides with a neutral gas atom or molecule, forming a negative ion), recom-
bination (of a free electron with a positive ion or a negative ion with a positive ion),
and photoionization (when photons created by recombination or scattering processes
interact with a neutral atom or molecule, producing a free electron and a positive ion;
see [7] and references therein).
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A model to describe streamers is obtained when explicit expressions for the source
terms, the electron mobility μe, and the diffusion coefficient Dd

e are provided. It is
also necessary to impose equations for the evolution of the electric field Ed. It is usual
to consider that this evolution is given by Poisson’s law,

(1.5) ∇d
R · Ed =

e

ε0

(
Nd

p −Nd
n −Nd

e

)
,

where ε0 is the permittivity of the gas and we are assuming that the absolute value
of the charge of positive and negative ions is e.

A simplification occurs when the streamer development out of a macroscopic ini-
tial ionization seed is considered in a nonattaching gas such as argon or nitrogen [12].
In this case, attachment, recombination, and photoionization processes can be ne-
glected. As a consequence, the negative ion density Nd

n can be considered constant.
The balance equations turn out to be

∂Nd
e

∂τd
= ∇d

R ·
(
μeEdNd

e + Dd
e∇d

RNd
e

)
+ νiN

d
e ,(1.6)

∂Nd
p

∂τd
= νiN

d
e .(1.7)

This is called the minimal streamer model for a nonattaching gas. In these equa-
tions, νiN

d
e is a model for the impact ionization source term, in which the ionization

coefficient νi is given by the phenomenological Townsend’s approximation,

(1.8) νi = μe|Ed|α0e
−E0/|Ed|,

where α0 is the inverse of ionization length. The ionization length is the distance,
on average, that a free electron travels before ionizing a molecule. The value of α0 is
proportional to the pressure of the ambient gas according to Townsend’s theory [9].
E0 is the characteristic impact ionization electric field.

Townsend’s approximation provides physical scales and intrinsic parameters for
the model as long as only impact ionization is present in the gas. It is then convenient
to reduce the equations to a dimensionless form. The natural units for nitrogen are
functions of the gas pressure p (in bars). These units are the ionization length

(1.9) R0 =
1

α0
= 2.3 × 10−6 m

( p

1 bar

)−1

,

as a length unit, the characteristic impact ionization field

(1.10) E0 = 2 × 107 V/m
( p

1 bar

)
,

as an electric field unit, and the electron mobility

(1.11) μe = 3.8 × 10−2 m2/(V · s)
( p

1 bar

)−1

,

as a unit of velocity divided by electric field. These natural units lead to the velocity
scale

(1.12) U0 = μeE0 = 7.6 × 105 m/s,
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the time scale

(1.13) τ0 =
R0

U0
= 3 × 10−12 s

( p

1 bar

)−1

,

the particle density scale

(1.14) N0 =
ε0E0

eR0
= 4.7 × 1020 m−3

( p

1 bar

)2

,

and the electron diffusion scale

(1.15) D0 = R0U0 = 1.8 m2/s
( p

1 bar

)−1

.

We introduce the dimensionless variables r = Rd/R0, τ = τd/τ0, the dimensionless
field E = Ed/E0, the dimensionless electron and positive ion particle densities Ne =
Nd

e /N0 and Np = Nd
p /N0, and the dimensionless diffusion constant De = Dd

e/D0.
The dimensionless minimal model reads

∂Ne

∂τ
= ∇ · (NeE + De ∇Ne) + Ne|E|e−1/|E|,(1.16)

∂Np

∂τ
= Ne|E|e−1/|E|,(1.17)

Np −Ne = ∇ · E.(1.18)

This model exhibits spontaneous branching of the streamers, as indicated by nu-
merical simulations [4], in agreement with experimental situations [17]. In order to
understand this branching, Arrayás and Ebert [5] derived the dispersion relation for
transversal Fourier-modes of planar negative shock fronts without diffusion (De). For
perturbations of small wave number k, the planar shock front becomes unstable with
a linear growth rate proportional to k. It has been also shown that all the modes with
large enough wave number k (small wave length perturbations) grow at the same rate
(the growth rate does not depend on k when k is large). However, it could be expected
from the physics of the problem that a particular mode would be selected. To address
this problem, we consider in this paper the effect of diffusion.

1.2. Outline of this paper. Our analysis will show that the electron density
Ne may develop sharp fronts of thickness O(

√
De). Moreover, it satisfies an equation

analogous to the Fisher equation, which is a well-known model in some biological
contexts (see [14]). A surprising fact established during the last 30 years is that the
combination of sharp interfaces with small diffusive effects may result in asymptotic
limits (for De � 1) in which the motion of the interface is described by equations
involving solely geometrical properties such as its mean curvature. A pioneer attempt
to achieve such a description is due to Allen and Cahn [2] and concerns a model,
today known as the Allen–Cahn equation, for the kinetics of melted Fe-Al alloys.
Subsequent work by Rubinstein, Sternberg, and Keller [19] showed that the points of
the interface separating both species move along the normal direction with a velocity
proportional to its mean curvature. This kind of dynamics is termed “mean curvature
flow.” Many mathematicians have contributed to providing a rigorous proof of the
convergence of the Allen–Cahn model to motion by mean curvature. These ideas
have also been extended to some other, rather different, contexts. An improvement
of the above model is the so-called Cahn–Hilliard model [10], described by a fourth
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order differential equation. This model leads to an asymptotic limit given by the
motion of sharp interfaces in the Hele–Shaw (or Mullins–Sekerka) problem for the
evolution of a fluid between two plates separated by a small distance [1]. A biological
model consisting of reaction-diffusion equations [11] for competing species separated
by a sharp interface gives rise to a limiting problem similar to the Stefan problem for
phase transformation (for example, ice solidifying water). Remarkably, some of these
limiting models have solutions that develop branch-like patterns, such as fingers in
Hele–Shaw or dendrites in the Stefan problem.

In this paper we exploit some of the ideas introduced in the references above
in order to study the motion of ionization fronts. We will show that a planar front
separating a partly ionized region from a region without charge is affected by two
opposing effects: electrostatic repulsion of electrons and electron diffusion. The first
effect tends to destabilize the front, while the second acts effectively as a mean cur-
vature contribution to the velocity of the front that stabilizes it. The net result is
the appearance of fingers with a characteristic thickness determined by the balance of
these two opposing actions. The common underlying mathematical structure among
the minimal streamer model and other pattern-forming systems such as the Hele–Shaw
and Stefan problems strongly suggests that the basic mechanisms governing impor-
tant phenomena such as the development of complex patterns through branching of
single “fingers” should be very similar.

2. Streamer evolution in strong electric fields. In order to study the evolu-
tion and branching of ionization fronts, we consider the following experimental situa-
tion. The space between two plates is filled with a nonattaching gas such as nitrogen.
A stationary potential difference is applied to these plates so that an electric field is
produced in the gas. The electric field is directed from the anode to the cathode. To
initiate the avalanche, an initial seed of ionization is set near the cathode. We study
the evolution of negative ionization fronts towards the anode.

We will assume that the distance between the cathode and the anode is much
larger than the space scale R0 (in experiments, this distance is more than one thousand
times larger than R0) so that we can consider the anode to be at an infinite distance
from the initial seed of ionization. Moreover, we will concentrate on the study of
the dynamics under the effect of strong external electric fields, which are larger than
the electric field unit E0. This means that the modulus of the dimensionless electric
field |E| is larger than 1. Strictly speaking, if we denote by E∞ the modulus of
the dimensionless electric field at large distance from the cathode, we will assume
that E∞ � 1. Under these circumstances, it is natural to rescale the dimensionless
quantities in the minimal model as

E = E∞ E,(2.1)

Ne = E∞ ne,(2.2)

Np = E∞ np,(2.3)

τ =
t

E∞
,(2.4)

so that we have

∂ne

∂t
−∇ · (neE + D∇ne) = ne|E|e−1/(E∞|E|),(2.5)

∂np

∂t
= ne|E|e−1/(E∞|E|),(2.6)

∇ · E = np − ne,(2.7)



FINGERING FROM IONIZATION FRONTS IN PLASMAS 1127

where

(2.8) D =
De

E∞
is, in general, a small parameter. For E∞ � 1, this system can be approximated by

∂ne

∂t
−∇ · (neE + D∇ne) = ne|E|,(2.9)

∂np

∂t
= ne|E|,(2.10)

∇ · E = np − ne.(2.11)

Our approximation will be valid in all regions where E∞|E| � 1. These are the regions
of interest in the situations studied in this paper since by (2.11) the intensity of the
electric field varies continuously as long as ne and np are bounded, and hence should
not vary much in the neighborhood of the ionization front. We will show that this
is indeed the case and it is in this region that the mechanisms leading to branching
occur.

3. Planar fronts. We will concentrate on the planar case. Experimentally, this
means that we have two large planar plates situated at x = 0 (cathode) and x = d
(anode), respectively (x is the horizontal axis and we suppose that d � 1). The space
between the plates is filled with a nonattaching gas such as nitrogen. A stationary
electric potential difference is applied to the plates so that an electric field is produced
in the gas. The initial electric field is directed from the anode to the cathode and is
uniform in the space between the plates with a value E∞ � 1. As in this section we
are interested in the evolution of the ionization wave along the x axis, the rescaled
electric field can be written as E = Eux, where E < 0 so that |E| = |E| = −E, and
ux is a unitary vector in the x direction. We are left then with the following system:

∂ne

∂t
=

∂

∂x

(
neE + D

∂ne

∂x

)
+ ne|E|,(3.1)

∂np

∂t
= ne|E|,(3.2)

∂E

∂x
= np − ne.(3.3)

3.1. The traveling waves with D = 0. It is very simple to compute traveling
wave solutions when D = 0. In this case, the equation for the evolution of the electron
density is

(3.4)
∂ne

∂t
=

∂(neE)

∂x
− neE.

Subtracting (3.1) from (3.2) with D = 0, and taking the time derivative of (3.3), we
obtain the equation

(3.5)
∂2E

∂x∂t
+

∂

∂x
(neE) = 0.

Integrating this expression once in x, one obtains

(3.6)
∂E

∂t
+ neE = C(t),
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where C(t) can be fixed by the boundary conditions at infinity, E → −1 and ne → 0.
This implies C(t) = 0 so that

(3.7)
∂E

∂t
= −neE.

In physical terms, the left-hand side of (3.6), due to Ampére’s law, is the curl of
the magnetic field which is zero because the magnetic effects are neglected in the
framework of the minimal model.

We look for traveling wave solutions of the system (3.4)–(3.7), introducing the
ansatz

(3.8) ne = f(x− ct), E = −g(x− ct)

into the above system. The minus sign in the electric field is due to the fact that the
electric field is negative, so g is a positive function. Introducing (3.8) into (3.4) and
(3.7), we obtain

−c
df

dξ
=

d

dξ
(fg) + fg,(3.9)

c
dg

dξ
= fg.(3.10)

Introducing dg/dξ given by (3.10) into (3.9), we obtain an equation for df/dξ, and
hence we obtain the following system of ODEs:

df

dξ
=

−fg + 1
cf

2g

c− g
,(3.11)

dg

dξ
=

1

c
fg,(3.12)

where ξ = x− ct. This system can be explicitly solved by noticing that

(3.13)
df

dg
= −c− f

c− g

so that

(3.14) (c− f)(c− g) = c(c− 1),

with the constant c(c − 1) being given by conditions at ξ → ∞, namely, that the
electron density vanishes and the electric field is equal to −1 there. Therefore,

(3.15)
dg

dξ
=

g(1 − g)

c− g
,

allowing direct integration to yield the implicit solution (up to translations in ξ),

(3.16) c log g + (1 − c) log (1 − g) = ξ.

This expression yields solutions for any c ≥ 1. We will be interested in the limit c → 1
since it is well known [6] that compactly supported initial data (representing a seed
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Fig. 1. The moving fronts with D = 0 and c = 1. The moving fronts when 0 < D � 1 and
c = 1 + 2

√
D.

of ionization located in some region) develop fronts traveling with this velocity. In
the case c = 1 the solution can be obtained straightforwardly, giving

(3.17) g(ξ) =

{
eξ, for ξ < 0,
1, for ξ ≥ 0,

f(ξ) =

{
1, for ξ < 0,
0, for ξ ≥ 0.

We can also find the solution for the positive ion density np in the case c = 1. Taking
np = h(x− t), we have

(3.18) h(ξ) =

{
1 − eξ for ξ < 0,

0 for ξ ≥ 0.

This solution for ne represents a shock front moving with velocity c = 1 (see Figure 1).

3.2. The traveling waves with D �= 0. We proceed now to investigate the
traveling waves for 0 < D � 1. As D is a small parameter, the traveling wave solutions
for the electron and positive ion densities and the electric field are expected to be
not very different to that corresponding to D = 0 found in the previous subsection.
Consequently, we look for solutions such that ne and np decay exponentially at infinity
and E is also an exponentially small correction of −1 at infinity. This means that we
can take

ne = Ae−λ(x−ct),(3.19)

np = Be−λ(x−ct),(3.20)

E = −1 + Ce−λ(x−ct)(3.21)
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asymptotically far behind the wave. If we introduce these expressions into (3.1) we
obtain, for x− ct → ∞, the relation

(3.22) −cλ + λ + Dλ2 = −1,

which has real solutions if and only if (c− 1)2 − 4D ≥ 0. Therefore,

(3.23) c ≥ 1 + 2
√
D.

All initial data decaying at infinity faster than Ae−λ∗x, with λ∗ = 1/
√
D, will develop

traveling waves [12] with velocity c = 1 + 2
√
D. If D � 1, the profiles for np and E

will vary very little from the profiles with D = 0. On the other hand, ne will develop
a boundary layer at the front, smoothing the jump from ne = 1 to ne = 0. If we write
the equation for the traveling wave ne = f(x− (1 + 2

√
D)t) into the expression

(3.24)
∂ne

∂t
− ne

∂E

∂x
− E

∂ne

∂x
−D

∂2ne

∂x2
= ne|E|,

and we take, from (3.3), ∂xE = np−ne, approximating at the boundary layer np = 0,
E = −1, we obtain the equation

(3.25) −2
√
D
∂f

∂ξ
−D

∂2f

∂ξ2
= f(1 − f),

where ξ = x − (1 + 2
√
D)t. Defining χ = ξ/

√
D, we obtain an equation for the

boundary layer,

(3.26) −2
∂f

∂χ
− ∂2f

∂χ2
= f(1 − f),

together with the matching conditions,

(3.27) f(−∞) = 1, f(+∞) = 0.

Expression (3.26) is the well-known equation for traveling waves of Fisher’s equation.
It appears in the context of mathematical biology [16] and is known to have solutions
subject to (3.27). This means that we have a boundary layer of width

√
D at ξ = 0 in

which (3.26) gives the solution for the electron density ne. Before this layer, we have
ne ≈ 1, and after the layer, ne ≈ 0. When D = 0, this is the shock front found in the
previous subsection. It will be useful to analyze the structure of np at the boundary
layer. Introducing

(3.28) np =
√
Dh(χ),

one obtains from (3.2) the following formula at zero order in D, with χ = [x −
(1 + 2

√
D)t]/

√
D:

(3.29)
dh(χ)

dχ
= f(χ)

so that

(3.30) h(χ) = −
∫ ∞

χ

f(z)dz.
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n  = 1e
n  = 0

δ

D

p
n  = 0en  > 0p

0<n <1e

x

y

Fig. 2. Schematic representation of the perturbed front.

Notice that we now have

(3.31)
∂np

∂x
= f(χ) = O(1) at the boundary layer.

Analogously, from Poisson’s equation ∂xE = np−ne, we can deduce E = −1+O(
√
D)

across the boundary layer. We will write this solution as

(3.32) E = −1 +
√
DEbl + O(D).

These solutions can be seen in Figure 1.

4. The dispersion relation. The planar front studied in the previous sections
may be unstable with respect to perturbations on the boundary layer, which then
forms “ripples” or “corrugations.” Consequently, we are interested in obtaining the
dispersion relation to find which transversal mode will grow faster and eventually
determine the characteristic shape of the streamer. So we let the planar front that
propagates in the x-direction receive a small perturbation with an initial arbitrary
dependence on the transversal coordinates.

Next we introduce a perturbation in the transversal direction y (see Figure 2).
We will do it by introducing a new system of coordinates in the form

t = t,(4.1)

y = y,(4.2)

x = x− δ ϕ(x, y, t)(4.3)

so that, at t = 0, n
(0)
e (x) and E(0)(x) correspond to the profiles of a traveling wave

computed in the previous section, and δ is a sufficiently small parameter compared to√
D. By doing this, we follow a strategy analogous to the one used in [19] to deduce

the asymptotic approximation of the Allen–Cahn equation by mean curvature flow.
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We can compute straightforwardly the relations between derivatives up to order δ2,

∂

∂x
=

∂

∂x
− δ

∂ϕ

∂x

∂

∂x
,(4.4)

∂

∂y
=

∂

∂y
− δ

∂ϕ

∂y

∂

∂x
,(4.5)

∂

∂t
=

∂

∂t
− δ

∂ϕ

∂t

∂

∂x
,(4.6)

∂2

∂x2
=

∂2

∂x2 − δ
∂2ϕ

∂x2

∂

∂x
− 2δ

∂ϕ

∂x

∂2

∂x2 + O(δ2),(4.7)

∂2

∂y2
=

∂2

∂y2 − δ
∂2ϕ

∂y2

∂

∂x
− 2δ

∂ϕ

∂y

∂2

∂x∂y
+ O(δ2).(4.8)

We introduce the perturbed electric field and electron density as

E = E(0) ux + δ
(
E(1)

x ux + E(1)
y uy

)
,(4.9)

ne = n(0)
e + δ n(1)

e ,(4.10)

np = n(0)
p + δ n(1)

p .(4.11)

For example, the perturbed electron density (4.10) reads

(4.12) ne = n(0)
e (x− δϕ(x, y, t)) + δ n(1)

e ,

where ϕ(x, y, t) is a purely geometrical perturbation and δ n
(1)
e is a perturbation of the

electron density behind the front. Note that, in this sense, the kind of perturbation
we are introducing is similar to the perturbations that are usually introduced in the
study of the stability of other pattern-forming systems. This is the case, for instance,
of the propagation of solidification fronts [13]. The difference here with respect to
those other systems is the fact that our interface is not sharp but a boundary layer
of thickness

√
D.

We shall assume here that ϕ(x, y, 0) is an initial perturbation independent of x.
Note, at this point, that an x-dependence of the perturbation to the electron density

is allowed in the term n
(1)
e .

4.1. Equations for the corrections at first order. Inserting these expres-
sions into (2.9), we obtain

∂n
(0)
e

∂t
− E(0) ∂n

(0)
e

∂x
= n(0)

e |E(0)| + n(0)
e

(
n(0)
p − n(0)

e

)

+ D

(
1 − 2δ

∂ϕ

∂x

)
∂2n

(0)
e

∂x2

+ δ

[
∂ϕ

∂t
+ E(1)

x − E(0) ∂ϕ

∂x
−DΔ(x,y)ϕ

]
∂n

(0)
e

∂x

+ δ
(
|E(1)

x | +
(
n(1)
p − n(1)

e

))
n(0)
e

+ δ

(
−∂n

(1)
e

∂t
+ n(1)

e

(
n(0)
p − n(0)

e

)
+ E(0) ∂n

(1)
e

∂x
+ n(1)

e |E(0)|
)

+ δ DΔ(x,y)n
(1)
e + O(δ2),(4.13)
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where Δ(x,y) = ∂2/∂x2 + ∂2/∂y2 and Δ(x,y) = ∂2/∂x2 + ∂2/∂y2. From (2.10) we
obtain

(4.14)
∂n

(0)
p

∂t
+ δ

∂n
(1)
p

∂t
= n(0)

e |E(0)|+ δ
∂ϕ

∂t

∂n
(0)
p

∂x
+ δ |E(1)

x |n(0)
e + δ |E(0)|n(1)

e +O(δ2),

and from (2.11),

(4.15)
∂E(0)

∂x
+δ

(
∂E

(1)
x

∂x
+
∂E

(1)
y

∂y

)
= n(0)

p −n(0)
e +δ

(
n(1)
p −n(1)

e

)
+δ

∂ϕ

∂x

∂E(0)

∂x
+O(δ2).

We can construct a solution up to O(δ2) by imposing that O(δ0) terms and O(δ1)
terms in (4.13), (4.14), and (4.15) vanish. The O(δ0) terms give

∂n
(0)
e

∂t
= E(0) ∂n

(0)
e

∂x
+ n(0)

e |E(0)| + n(0)
e

(
n(0)
p − n(0)

e

)
+ D

∂2n
(0)
e

∂x2 ,(4.16)

∂n
(0)
p

∂t
= n(0)

e |E(0)|,(4.17)

∂E(0)

∂x
= n(0)

p − n(0)
e ,(4.18)

and the O(δ1) terms give

0 =

[
∂ϕ

∂t
+ E(1)

x − E(0) ∂ϕ

∂x
−DΔ(x,y)ϕ

]
∂n

(0)
e

∂x

−2D
∂ϕ

∂x

∂2n
(0)
e

∂x2 +
(
|E(1)

x | + n(1)
p − n(1)

e

)
n(0)
e

−∂n
(1)
e

∂t
+ n(1)

e

(
n(0)
p − n(0)

e

)
+ E(0) ∂n

(1)
e

∂x
+ n(1)

e |E(0)|

+DΔ(x,y)n
(1)
e ,(4.19)

0 =
∂n

(1)
p

∂t
+

1

1 + 2
√
D

∂ϕ

∂t
n(0)
e − |E(1)

x |n(0)
e − |E(0)|n(1)

e ,(4.20)

0 =
∂E

(1)
x

∂x
+

∂E
(1)
y

∂y
−
(
n(1)
p − n(1)

e

)
− ∂ϕ

∂x

(
n(0)
p − n(0)

e

)
,(4.21)

in which we have replaced, at order δ, derivatives with respect to x by derivatives

with respect to x, used (4.18) to replace ∂E(0)/∂x by n
(0)
p − n

(0)
e , and used (4.17),

(3.29), and (3.30) to replace ∂n
(0)
p /∂x by

(4.22)
∂n

(0)
p

∂x
=

−1

1 + 2
√
D

∂n
(0)
p

∂t
=

−1

1 + 2
√
D
n(0)
e .

The solution of the system given by (4.16), (4.17), and (4.18) is the traveling wave
found in the previous section so that

(4.23) n(0)
e = f(ξ),

where ξ = x− ct.
In order to analyze the system (4.19)–(4.21), we introduce changes of coordinates

in two stages: first, we change coordinates into a frame in which the planar front
remains stationary and, second, we rescale coordinates in the boundary layer in order
to make it of O(1) size.
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The first change of coordinates is of the form

(4.24) x′ = x− ct, y′ = y, t′ = t,

where c = 1 + 2
√
D. Hence, the system (4.19)–(4.21) transforms into

0 =

[
∂ϕ

∂t′
+ E(1)

x −DΔ(x′,y′)ϕ

]
∂n

(0)
e

∂x′ − (E(0) + c)
∂ϕ

∂x′
∂n

(0)
e

∂x′

−2D
∂ϕ

∂x′
∂2n

(0)
e

∂x′2 +
(
|E(1)

x | + n(1)
p

)
n(0)
e − ∂n

(1)
e

∂t′
+ (E(0) + c)

∂n
(1)
e

∂x′

+
(
|E(0)| + n(0)

p − 2n(0)
e

)
n(1)
e + DΔ(x′,y′)n

(1)
e ,(4.25)

0 =

(
∂

∂t′
− c

∂

∂x′

)
n(1)
p +

1

1 + 2
√
D

[(
∂

∂t′
− c

∂

∂x′

)
ϕ

]
n(0)
e

−|E(1)
x |n(0)

e − |E(0)|n(1)
e ,(4.26)

0 =
∂E

(1)
x

∂x′ +
∂E

(1)
y

∂y′
−
(
n(1)
p − n(1)

e

)
− ∂ϕ

∂x′

(
n(0)
p − n(0)

e

)
.(4.27)

Second, noticing that x′ is of order
√
D at the boundary layer, as we saw in the

previous section, we write

(4.28) x′ =
√
D x̃, y′ =

√
D ỹ, t′ = t̃

to obtain the rescaled system

0 =

[
∂ϕ

∂t̃
+ E(1)

x − Δ(x̃,ỹ)ϕ

]
∂n

(0)
e

∂x̃
− 2

∂ϕ

∂x̃

∂2n
(0)
e

∂x̃2

−(Ebl + 2)
∂ϕ

∂x̃

∂n
(0)
e

∂x̃
+
√
D

(
|E(1)

x | + n(1)
p

)
n(0)
e

−
√
D
∂n

(1)
e

∂t̃
+
√
D(Ebl + 2)

∂n
(1)
e

∂x̃

+
√
D

(
|E(0)| + n(0)

p − 2n(0)
e

)
n(1)
e +

√
DΔ(x̃,ỹ)n

(1)
e ,(4.29)

0 =

(
∂

∂t̃
− c√

D

∂

∂x̃

)
n(1)
p

+
1

1 + 2
√
D

[(
∂

∂t̃
− c√

D

∂

∂x̃

)
ϕ

]
n(0)
e − |E(1)

x |n(0)
e − |E(0)|n(1)

e ,(4.30)

0 =
∂E

(1)
x

∂x̃
+

∂E
(1)
y

∂ỹ
−
√
D

(
n(1)
p − n(1)

e

)
− ∂ϕ

∂x̃

(
n(0)
p − n(0)

e

)
,(4.31)

where we have used that, at the boundary layer, by (3.32), (E(0) + c)/
√
D = Ebl +

2 + O(
√
D).

The terms in (4.29) involving n
(1)
e lead to a PDE for n

(1)
e . Namely,

(4.32)
∂n

(1)
e

∂t̃
− (Ebl + 2)

∂n
(1)
e

∂x̃
− Δ(x̃,ỹ)n

(1)
e =

(
|E(0)| + n(0)

p − 2n(0)
e

)
n(1)
e .

Notice that (4.32) is an advection-diffusion equation with a source term of the form

(|E(0)| + n
(0)
p − 2n

(0)
e )n

(1)
e . Since the source term is, from the expression for the
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traveling waves found in subsection 3.2, negative behind the front, n
(1)
e will decay

exponentially fast, provided it lays in the ionized region, which is a basic assumption
for our perturbation.

Hence, at leading order in (4.29), when D � 1, one obtains the equation

(4.33) 0 =

[
∂ϕ

∂t̃
+ E(1)

x − Δ(x̃,ỹ)ϕ

]
∂n

(0)
e

∂x̃
− 2

∂ϕ

∂x̃

∂2n
(0)
e

∂x̃2
− (Ebl + 2)

∂ϕ

∂x̃

∂n
(0)
e

∂x̃
.

Equation (4.31) is, at leading order in D,

(4.34) 0 =
∂E

(1)
x

∂x̃
+

∂E
(1)
y

∂ỹ
− ∂ϕ

∂x̃

(
n(0)
p − n(0)

e

)
,

so that (4.33) and (4.34) are independent of n
(1)
p , and we can describe the evolution

of the perturbed system as

0 =
∂ϕ

∂t̃
+ E(1)

x − Δ(x̃,ỹ)ϕ− 2
∂ϕ

∂x̃

∂2n
(0)
e /∂x̃2

∂n
(0)
e /∂x̃

− (Ebl + 2)
∂ϕ

∂x̃
,(4.35)

0 =
∂E

(1)
x

∂x̃
+

∂E
(1)
y

∂ỹ
− ∂ϕ

∂x̃

(
n(0)
p − n(0)

e

)
.(4.36)

It will be more convenient for us to formulate (4.36) in terms of the electric potential
in the next subsection.

4.2. The first order correction to the electric field. To establish conditions
for the behavior of the perturbation of the electric field, we first note that the total
electric field has to be irrotational since the magnetic field is negligible. So we will
write E = −∇V , where V is an electric potential. Then, (2.11) can be written as

(4.37) −Δ(x,y)V = n(0)
p − n(0)

e + δ n(1)
p + O(δ2).

Changing variables, we have

− Δ(x,y)V + δΔ(x,y)ϕ
∂V

∂x
+ 2δ

(
∂ϕ

∂y

∂2V

∂x∂y
+

∂ϕ

∂x

∂2V

∂x2

)
= n(0)

p − n(0)
e + δ n(1)

p + O(δ2).(4.38)

We write the electric potential as

(4.39) V (x, y) = V (0)(x) + δ V (1)(x, y),

so that (4.38) can be written, at the first two orders in δ, as

−∂2V (0)(x)

∂x2 = n(0)
p − n(0)

e ,(4.40)

−Δ(x,y)V
(1)(x, y) = −Δ(x,y)ϕ

∂V (0)(x)

∂x
− 2

∂ϕ

∂x

∂2V (0)(x)

∂x2 + n(1)
p .(4.41)

Expression (4.40) implies that V (0)(x) is an electric potential associated with the
electric field E(0)(x). The electric potential V (1) satisfies (4.41) with the condition of
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decaying at |x| → ∞. Using (4.40) and (4.41), and the relation E(0) = −∂V (0)/∂x,
we arrive at

(4.42) −Δ(x,y)V
(1)(x, y) = Δ(x,y)ϕE

(0) + 2
∂ϕ

∂x

(
n(0)
p − n(0)

e

)
+ n(1)

p .

Changing coordinates as in (4.24) and (4.28), in terms of (x̃, ỹ) coordinates that are
O(1) at the diffusion boundary layer, we obtain

− Δ(x̃,ỹ)V
(1) =

(
Δ(x̃,ỹ)ϕ

)
E(0)(

√
Dx̃)

+2
√
D

∂ϕ

∂x̃

(
n(0)
p (

√
Dx̃) − n(0)

e (
√
Dx̃)

)
+ Dn(1)

p .(4.43)

Neglecting O(
√
D) and O(D) terms, and using (4.35), we can finally describe the

evolution of the perturbed system as

0 =
∂ϕ

∂t̃
+ E(1)

x − Δ(x̃,ỹ)ϕ− 2
∂ϕ

∂x̃

∂2n
(0)
e /∂x̃2

∂n
(0)
e /∂x̃

− (Ebl + 2)
∂ϕ

∂x̃
,(4.44)

0 = Δ(x̃,ỹ)V
(1) +

(
Δ(x̃,ỹ)ϕ

)
E(0)(

√
Dx̃).(4.45)

In the following subsections we shall analyze the system (4.44)–(4.45).

4.3. Analysis of the perturbed system. It proves convenient, since the sys-
tem (4.44)–(4.45) is linear, to use Fourier transforms in the coordinate ỹ (associated

with the wave number k). Denoting the Fourier transform of function f as f̂ , we find

0 =
∂ϕ̂

∂t̃
+ Ê(1)

x −
(
∂2ϕ̂

∂x̃2
− k2ϕ̂

)
− 2

∂ϕ̂

∂x̃

∂2n
(0)
e /∂x̃2

∂n
(0)
e /∂x̃

− (Ebl + 2)
∂ϕ̂

∂x̃
,(4.46)

0 =
∂2V̂ (1)

∂x̃2
− k2V̂ (1) +

(
∂2ϕ̂

∂x̃2
− k2ϕ̂

)
E(0)(

√
Dx̃),(4.47)

a linear system that can be represented symbolically by

(4.48) L(ϕ̂, V̂ (1)) = 0.

In principle, once V̂ (1) has been calculated from (4.47), we can calculate Ê
(1)
x as

(4.49)
∂V̂ (1)

∂x
= −Ê(1)

x ,

insert it into (4.46), and obtain an equation for ϕ̂. Since ϕ̂ is initially independent of
x̃, we shall write

(4.50) ϕ̂ = ϕ̂0(k, t) + ϕ̂1(x, k, t),

with ϕ̂1(x, k, t = 0) = 0 and, accordingly,

(4.51) V̂ (1) = V̂
(1)
0 (x, k, t) + V̂

(1)
1 (x, k, t).

We will require the following equations to be fulfilled: (i) for ϕ̂0 and V̂
(1)
0 ,

0 =
∂ϕ̂0

∂t̃
+ Ê

(1)
0x (x̃ = 0) + k2ϕ̂0,(4.52)

0 =
∂2V̂

(1)
0

∂x̃2
− k2V̂

(1)
0 − k2ϕ̂0E

(0)(
√
Dx̃),(4.53)
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where

(4.54) Ê
(1)
0x = −∂V̂

(1)
0

∂x
;

and (ii)

(4.55) L(ϕ̂1, V̂
(1)
1 ) =

(
Ê

(1)
0x (x̃ = 0, k, t) − Ê

(1)
0x (x̃, k, t)

0

)

for ϕ̂1 and V̂
(1)
1 . We shall solve first (4.52)–(4.53) and proceed later to show that the

ϕ1 solution of (4.55) is merely a small perturbation of ϕ0.
If we take the derivative of (4.53) with respect to x, taking into account (4.49)

and the relation between E(0) = −∂V (0)/∂x and n
(0)
p − n

(0)
e given by (4.40), we find

(4.56)
∂2Ê

(1)
0x

∂x̃2
− k2Ê

(1)
0x = −k2ϕ̂0

(
n(0)
p (

√
Dx̃) − n(0)

e (
√
Dx̃)

)
.

Taking the Fourier transform in x̃ (associated with the wave number ω) and denoting

the double Fourier transform as
ˆ̂
f , one obtains

(4.57) (k2 + ω2)
ˆ̂
E

(1)
0x (ω, k) =

k2ϕ̂0(k)√
2π

∫ ∞

−∞
ds e−iωsq(

√
Ds),

where we have defined the net charge density as q(
√
Dx̃) = n

(0)
p (

√
Dx̃)− n

(0)
e (

√
Dx̃).

Taking the inverse Fourier transform in ω of (4.57), it follows that

Ê
(1)
0x (x̃, k) =

1

2π

∫ ∞

−∞
dω eiωx̃ k

2ϕ̂0(k)

k2 + ω2

∫ ∞

−∞
ds e−iωsq(

√
Ds)

=
1

2π
k2ϕ̂0(k)

∫ ∞

−∞
ds q(

√
Ds)

∫ ∞

−∞
dω

eiω(x̃−s)

k2 + ω2
.(4.58)

The integral in ω can be done by deforming the integration contour in the complex
plane. The result is

(4.59) Ê
(1)
0x (x̃, k) =

|k|ϕ̂0(k)

2

∫ ∞

−∞
ds q(

√
Ds)e−|k| |x̃−s|.

Since the value of q = n
(0)
p − n

(0)
e in the case D � 1 differs from the same quantity

in the case D = 0 only in the region of the boundary layer, that is, O(D1/2), we
can approximate the profile for the net charge density q(

√
Dx̃) by the profile for the

diffusionless traveling waves calculated in the previous section, i.e.,

(4.60) q(
√
Dx̃) =

{
−e

√
Dx̃ for x̃ < 0,

0 for x̃ > 0.

With this approximation, (4.59) reads

(4.61) Ê
(1)
0x (x̃, k) = −|k|ϕ̂0(k)

2

∫ 0

−∞
ds e

√
Dse−|k| |x̃−s|.
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The integral in (4.61) can be computed for both x̃ < 0 and x̃ > 0. The result is

(4.62) Ê
(1)
0x (x̃, k) = −|k|ϕ̂0(k)

2
√
D

×
{ 1

1+|k|/
√
D
e−|k|x̃ for x̃ ≥ 0,

−2|k|/
√
D

1−|k|2/D e
√
Dx̃ + 1

1−|k|/
√
D
e|k|x̃ for x̃ ≤ 0.

Therefore,

(4.63) Ê
(1)
0x (0, k) = − |k|ϕ̂0(k)

2(
√
D + |k|)

,

and

(4.64) R ≡ |Ê(1)
0x (x̃ = 0, k, t) − Ê

(1)
0x (x̃, k, t)| = O(e−|k|x̃ − 1)|ϕ̂0|.

Notice that

(4.65) R ≤ |kx̃||ϕ̂0|,

a fact that we shall use below.
Let us remark that considering the profile of q with diffusion would change the

integral in (4.61) by only an O(1) amount, which is negligible in comparison with
1/(

√
D + |k|), provided |k| � 1.

4.4. The dispersion relation. Inserting the result (4.63) into (4.52), we find

(4.66)
∂ϕ̂0(k)

∂t̃
− |k|ϕ̂0(k)

2(
√
D + |k|)

+ |k|2ϕ̂0(k) = 0.

Let us write the following ansatz for ϕ̂0:

(4.67) ϕ̂0(k, t̃) = emtφ̂(k).

Introducing this expression into (4.66), we obtain the relation

(4.68) m =
|k|

2(
√
D + |k|)

− |k|2,

that is, the dispersion relation of the perturbations of the fronts. Note that there
exists a maximum of m(|k|) that selects the wavelength of the perturbation. It is easy
to obtain the following expansion (in D) for the location of the maximum of m:

(4.69) kmax =
1

22/3
D1/6 − 2

3
D1/2 +

22/3

9
D5/6 +

27/3

81
D7/6 + O(D3/2).

When D is a small parameter, this maximum is approximately located at

(4.70) kmax ≈ D1/6

22/3
.

Notice that kmax is O(D1/6) so that in the front, and for the fastest growing mode,
where x̃ = O(1), we will have R defined in (4.64) of order O(D1/6)|ϕ̂0|.

Hence the solution to (4.55), with initial condition ϕ̂1(x̃, k, 0) = 0, will be such
that |ϕ̂1| = O(D1/6)t and will constitute merely a small perturbation of the leading
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order ϕ̂0. In fact, ϕ̂1 will be a small perturbation of ϕ̂0 whenever |k| � 1 and not
only in the neighborhood of the fastest growing mode.

The value of kmax in (4.70) corresponds to a typical spacing between fingers in
the coordinate y given by

(4.71) λmax =
2πD1/2

kmax
≈ 10D1/3.

In the original nondimensional quantities, this is

(4.72) λmax ≈ 10

(
De

E∞

)1/3

.

The typical spacing can be put into physical quantities for nitrogen using the relations
(1.9), (1.10), and (1.15). In this way, we can give the dependence of the physical
spacing λd between consecutive fingers in terms of the gas pressure p (in bars), the
physical external electric field Ed

∞, and the diffusion coefficient Dd
e . We obtain

λd
max ≈ 10R0

(
E0

D0

)1/3 (
Dd

e

Ed
∞

)1/3

≈ 2.3 × 10−5 m

(
2 × 107 V · bar/m

1.8 m2/s

)1/3 (
Dd

e

p Ed
∞

)1/3

(4.73)

so that the spacing decreases as the gas pressure or the external electric field in-
creases, and increases as the diffusion coefficient increases. This expression shows the
possibility of validating the main results of this work through experiments of electric
discharges in nitrogen.

5. Numerical studies of stability of planar fronts and nonplanar waves.
The theory developed in the previous sections applies solely to waves traveling at
velocity c = 1 in the nondiffusive case and c = 1 + 2

√
D when D �= 0. These

traveling waves appear only for a certain class of initial data, namely, those for which
ne is identically zero beyond a certain point in space. From the numerical point
of view, solutions tend to develop traveling waves which do not propagate exactly
with that velocity. Nevertheless, we will show in this numerical section that the
main stability/instability features of our theoretical results remain valid in general.
Specifically, we show the existence of traveling waves in the form of fingers when the
diffusion coefficient is small enough, and show that for a given diffusion coefficient,
stability of planar fronts depends critically on the wavelength of the perturbations.

We developed a numerical code to solve the initial value problem and study the
evolution of nonplanar traveling waves. We discretized the equations with finite dif-
ferences on a domain of size Lx × Ly with a uniform square grid of spacing h. For
the temporal integration we used an improved Euler scheme. We first compute an
approximation for the solution of the system (2.9)–(2.11) at t + δt/2 as

Δaφ
(k) = − (np − ne)

(k)
,(5.1)

n(k+1/2)
e = n(k)

e +
δt

2
(E · ∇une + ne(np − ne) + D + Δane + ne|E|)(k)

,(5.2)

n(k+1/2)
p = n(k)

p +
δt

2
(ne|E|)(k)

,(5.3)
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and then we obtain a second order approximation by using the derivatives at the
center of the interval (t, t + δt),

Δaφ
(k+1/2) = − (np − ne)

(k+1/2)
,(5.4)

n(k+1)
e = n(k)

e + δt (E · ∇cne + ne(np − ne) + DΔane + ne|E|)(k+1/2)
,(5.5)

n(k+1)
p = n(k)

p + δt (ne|E|)(k+1/2)
,(5.6)

where the superscript (k) denotes the time step at time kδt, E = −∇cφ, and

Δaφ =
1

6h2
[φi+1,j+1 + φi+1,j−1 + φi−1,j+1 + φi−1,j−1

+4(φi+1,jφi−1,j + φi,j+1 + φi,j−1) − 20φij ](5.7)

is the second order accurate approximation of the Laplacian that is symmetrical up to
third order. In (5.2) and (5.5), ∇u is the upwind gradient with respect to the electric
field, and ∇c is the centered second order accurate gradient. In order to solve the
Poisson equations (5.1) and (5.4), we used successive overrelaxations (SOR) [3], which
in our case is convenient because at each time step we have a good approximation of
the solution from the previous step.

We found empirically that the scheme is stable, provided we satisfy the following
CFL-like condition:

(5.8) δt < min(h/(2Em), h2/4D),

where Em is the maximum value of the absolute value of the electric field in the
domain of integration (which in our equations plays the role of velocity).

We enforce the following boundary conditions:

∂φ

∂x
(Lx, y) = 1, φ(0, y) = 0,

∂φ

∂y
(x, Ly) =

∂φ

∂y
(x, 0) = 0,(5.9)

ne(Lx, y) =
∂ne

∂x
(0, y) = 0,

∂ne

∂y
(x, Ly) =

∂ne

∂y
(x, 0) = 0,(5.10)

np(Lx, y) =
∂np

∂x
(0, y) = 0,

∂np

∂y
(x, Ly) =

∂np

∂y
(x, 0) = 0,(5.11)

which correspond to a constant electric field on the top end of the domain and zero-flux
conditions on the sides.

5.1. Validation with traveling waves. We validated the scheme by compar-
ing the numerical solution with the following exact solutions for the traveling waves
without diffusion:

nex
e (ζ) = 1 − eζ√

eζ(4 + eζ)
,(5.12)

nex
p (ζ) = 1 +

eζ

2
− eζ/2

√
4 + eζ

2
+

log 2

2

− log
(
eζ/2 +

√
4 + eζ

)
+

1

2
log

(
2 + eζ + eζ/2

√
4 + eζ

)
,(5.13)

where ζ = x− 2t. This solution is convenient for the validation because it is smooth,
and our numerical scheme is best suited to calculating differentiable solutions. We
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Fig. 3. Validation with an explicit solution for c = 2 and D = 0. The size of the domain
is Lx = 50 and we used 200 gridpoints. The curves on the left indicate the initial condition for
ne (upper line) and np (lower line), and the curves on the right show the comparison between the
numerical calculation and the exact solution at t = tq.

first set as an initial condition the exact solution at t = 0 and then we compute the
numerical solution at tq = 9.5. In Figure 3 we show the comparison between both
solutions. In Figure 4 we show the total error calculated as

(5.14) error =

∫ Lx

0

(ne(x, tq) − nex
e (x, tq))

2
dx.

This measure of error takes into account the accumulation of all arithmetic and trun-
cation errors on the time interval (0, tq). Figure 4 shows that the error is proportional
to the square of the interspacing h, indicating that the scheme is second order accu-
rate.

5.2. Computing two-dimensional traveling waves. One difficulty that arises
with a finite computational domain is that traveling waves eventually arrive at the
end of the domain of integration. This is a problem because, given an arbitrary initial
condition, sometimes it takes a long time for traveling waves to converge to a steady
state.

We solve this difficulty by making use of a displacement technique that keeps
the waves near the center of the domain at all times. Each time that the position
of the front of a wave (defined, for example, as the point where ne = 0.1) is beyond
the middle of the domain, we then translate the solution backwards by exactly one
gridpoint,

(5.15) nei,j ← nei+1,j , npi,j ← npi+1,j .

At the end of the domain (i = nx) we set zero values for the charge densities. Using
this procedure, we can compute two-dimensional traveling waves. In the following
calculations, we have λ = 10, Ly = 2λ, Lx = 3Ly and the domain is discretized by
300× 100 points. The initial condition has a plane front perturbed with a cosenoidal
perturbation of wavelength λ and amplitude λ/40.
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Fig. 4. Errors integrated along the domain of integration for D = 0 at time tq = 9.5. The size
of the domain is L = 50 and we used 200 gridpoints. The points indicate the resulting numerical
errors, and the line is a power with exponent 2, indicating that the scheme is second order accurate.
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Fig. 5. Two-dimensional contour plots for the electronic charge density for the traveling waves
with D = 0, 0.1, 0.2, and 0.3. The x-axis is in the vertical direction.
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Fig. 6. Level curves of the electron density ne with diffusion coefficient D = 0.1 and time
interval 2. The wavelength of the perturbation is, in each case, (a) λ = 6, (b) λ = 3, (c) λ = 5/6,
(d) λ = 10/6, and (e) λ = 20/6. These values correspond to wave numbers k = 2π/λ.

We observed that after the wave travels a distance equivalent to ten times the
length of the computational domain, the numerical solution reaches a steady state,
which is insensitive to the initial conditions. In Figure 5 we show traveling waves
with D = 0, 0.1, 0.2, and 0.3. Notice that the aspect of the traveling waves is very
sensitive to the value of the diffusion coefficient. In particular, when D is close to zero,
well-developed fingers do appear, while the fronts remain essentially planar when D
is large enough.

In Figure 6 we perturb a planar traveling wave, which was found with the displace-
ment procedure described above. The perturbation was introduced by translating all
the contour lines a distance cos(2πy/λ) on the x-direction. Then we evolved the
solution on a time interval of length 2. In all cases D = 0.1, and we take several
wavelengths λ. It is evident from the figures that there is a tendency to form fingers
when the wavelength is above some critical value while the perturbation decays and
disappears for small enough wavelengths. In Figure 7, the cases (b) and (c) of Fig-
ure 6 have been plotted in perspective. This confirms the results obtained in previous
sections concerning stability.

6. Conclusions. In this paper we have used a fluid approximation to describe
the process of electric breakdown in nonattaching gases such as nitrogen. We have
shown that a planar negative front separating an ionized region from a region without
charge may become unstable under the combined action of the external electric field
and the electron diffusion. The common underlying mathematical structure allows us
to exploit some of the ideas developed for other pattern-forming systems such as the
Hele–Shaw and Stefan problems.

We have calculated the dispersion relation for a perturbation in the transversal
direction of a planar traveling wave in the limit of small diffusion. An analytical
expression for the typical spacing between fingers is obtained.
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Fig. 7. Representations in perspective of the electron density in the cases (b) and (c) of
Figure 6, respectively.

In order to test the analytical results, we have developed a numerical code to study
the evolution of planar traveling waves. The traveling waves are then perturbed and
we follow the evolution after that. Under some circumstances the solutions converge to
traveling waves in the form of fingers that we have computed numerically for several
diffusion coefficients. Our numerical results clearly support the conclusions on the
branching and stability developed analytically.
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EFFECTIVE MOTION OF A VIRUS TRAFFICKING INSIDE A
BIOLOGICAL CELL∗

THIBAULT LAGACHE† AND DAVID HOLCMAN‡

Abstract. Virus trafficking is fundamental for infection success, and plasmid cytosolic trafficking
is a key step of gene delivery. Based on the main physical properties of the cellular transport
machinery such as microtubules and motor proteins, our goal here is to derive a mathematical model
to study cytoplasmic trafficking. Because experimental results reveal that both active and passive
movements are necessary for a virus to reach the cell nucleus, by taking into account the complex
interactions of the virus with the microtubules, we derive here an estimate of the mean time a virus
reaches the nucleus. In particular, we present a mathematical procedure in which the complex viral
movement, oscillating between pure diffusion and a deterministic movement along microtubules, can
be approximated by a steady state stochastic equation with a constant effective drift. An explicit
expression for the drift amplitude is given as a function of the real drift, the density of microtubules,
and other physical parameters. The present approach can be used to model viral trafficking inside
the cytoplasm, which is a fundamental step of viral infection, leading to viral replication and, in
some cases, to cell damage.

Key words. virus trafficking, cytoplasmic transport, mean first passage time, exit points dis-
tribution, stochastic processes, wedge geometry
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1. Introduction. Because cytosolic transport has been identified as a critical
barrier for synthetic gene delivery [1], the delivery of plasmids or viral DNAs from
the cell membrane to the nuclear pores has attracted the attention of many biologists.
The cell cytosol contains many types of organelles, actin filaments, microtubules, etc.,
so that to reach the nucleus, a viral DNA has to travel through a crowded and risky
environment. We are interested here in studying the efficiency of the delivery process
and we present a mathematical model of virus trafficking inside the cell cytoplasm.
We model the viral movement as a Brownian motion. However, the density of actin
filaments and microtubules inside the cell can hinder diffusion, as demonstrated ex-
perimentally [2]. In a crowded environment, we will model the virus as a material
point. This reduction is simplistic for several reasons: an actin filament network can
trap a diffusing object that is beyond a certain size, and, as observed experimentally,
a DNA fragment cannot find its way across the actin filaments [2]. Active directional
transport along microtubules or actin filaments seems then the only way to deliver
a plasmid to the nucleus. The active transport of the virus generally involves motor
proteins, such as kinesin (to travel in the direction of the cell membrane) or dynein (to
travel toward the nucleus). Once a virus is attached to a dynein protein, its movement
can be modeled as a deterministic drift toward the nucleus.

Recently, a macroscopic model has been developed to describe the dynamics of
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adenovirus concentration inside the cell cytoplasm [3]. This approach offers very in-
teresting results about the effect of microtubules, but neglects the complexity of the
geometry and cannot be used to describe the movement of a single virus, which might
be enough to cause cellular infection. Modeling virus trafficking requires the use of
a stochastic description. We model here the motion of a virus as that of a material
point, so the probability of it being trapped by actin filaments or microtubules is ne-
glected. In the present approximation, the viral movement has two main components:
a Brownian one, which accounts for its free movement, and a drift directed toward
the centrosome or MTOC (microtubules organization center), an organelle located
near the nucleus. The magnitude of the drift along microtubules depends on many
parameters such as the binding and unbinding rates and the velocity of the motor
proteins [4].

In the present approach, we present a method to approximate a time-dependent
dynamics of virus trafficking by an effective stochastic equation with a radial steady
state drift. The main difficulties we have to overcome arise from the time-dependent
nature of the trajectories which consists of intermittent epochs of drifts and free diffu-
sion. We propose to derive an explicit expression for the steady state drift amplitude.
In this approximation, the effective drift will gather the mean properties of the cyto-
plasmic organization such as the density of microtubules and its off binding rate.

Our method for finding the effective drift can be described as follows. First, we
approximate the cell geometry as a two-dimensional disk and use a pure Brownian
description to approximate the virus diffusion step. This geometrical approximation
is valid for any two-dimensional cell such as the in vitro flat skin fibroblast culture
cells [3]: indeed, due to their adhesion to the substrate, the thickness of these cells can
be neglected in first approximation. Second, when the distribution of the initial viral
position is uniform on the cell surface, we will estimate, during the diffusing period,
the hitting position on a microtubule. By solving a partial differential equation,
inside a sliced shape domain, delimited by two neighboring microtubules, we will
provide an estimate of the mean time to the most likely hitting point. Finally, the
amplitude of the radial steady state drift will be obtained by an iterative method
which assumes that, after a virus has moved a certain distance along a microtubule,
it is released at a point uniformly distributed on the final radial distance from the
nucleus, ready for a new random walk. This scenario repeats until the virus reaches
the nucleus surface. Finally, we will compute the mean time, the mean number of
steps before a virus reaches the nucleus, and the amplitude of the effective drift by
using the following criteria: The mean first passage time (MFPT) to the nucleus of
the iterative approximation is equal to the MFPT obtained by directly solving an
Ornstein–Uhlenbeck stochastic equation. The explicit computation of the effective
drift is a key result in the estimation of the probability and the mean time a single
virus or DNA molecule takes to reach a small nuclear pore [5].

2. Modeling stochastic viral movement inside a biological cell. We ap-
proximate the cell as a two-dimensional geometrical domain Ω, which is here a disk
of radius R, and the nucleus located inside is a concentric disk of much smaller radius
δ � R. We model the motion of an unattached DNA fragment as a material point so
that the probability of it being trapped by actin filaments or microtubules is neglected.
The motion of a (DNA) molecule of mass m is described by the overdamped limit of
the Langevin equation (Smoluchowski’s limit) [6] for the position X(t) of the molecule
at time t. When the particle is not bound to a microtubule filament, its movement
is described as pure Brownian with a diffusion constant D. When the particle hits
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Fig. 2.1. Cell geometry. (a) Cell’s microtubules network. All microtubules starting from the
cell membrane converge to the MTOC, located near the nucleus. (b) Simplified cell’s microtubules
network organization. The MTOC coincides with the nucleus.

a filament, it binds for a certain random time and moves along with a deterministic
drift. We take into account only the movement toward the nucleus, which coincides
here with the MTOC, an organelle in which all microtubules converge (see Figure 2.1).
For δ < |X(t)| < R, we describe the overall movement by the stochastic rule

(2.1) Ẋ =

{ √
2Dẇ for X (t) free,

V r
|r| for X (t) bound,

where V is a constant velocity, ẇ a δ-correlated standard white noise, and r the
X radial coordinate, the origin of which is the center of the cell. We assume that
all filaments starting from the cell surface end on the nuclear surface. The binding
time corresponds to a chemical reaction event; we assume that it is exponentially
distributed, and for simplicity we approximate it by a constant tm.

Once a virus enters the cell membrane, it moves according to the rule (2.1) until
it hits a nuclear pore. Although nuclear pores occupy a small portion of the nuclear
surface, we consider only the virus movement until it hits the nuclear surface D (δ).
In this article, our goal is to replace (2.1) by a steady state stochastic equation

(2.2) Ẋ = b(X) +
√

2Dẇ,

where the drift b is radially symmetric. In a first approximation, we consider a
constant radial drift b(X) = −B r

|r| and compute hereafter the value of the constant

amplitude B such that the MFPTs of the processes (2.2) and (2.1) to the nucleus are
equal.

2.1. Modeling viral dynamics in the cytoplasm. Inside the cytosol, micro-
tubules are distributed on the cell surface and converge radially to the MTOC. In
the present analysis, we do not take into account the effect of organelle crowding due
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(a) (b)

Fig. 2.2. Virus trafficking inside a cell. (a) Representation of the cell portion between two
microtubules. (b) Transport along microtubules: Two fundamental steps are represented. A funda-
mental step is made of the two intermediate steps which are first the diffusion inside the domain
and then the directed motion along the microtubule.

to the endoplasmic reticulum, the Golgi apparatus, etc. However, it is always possi-
ble to include them indirectly by using an apparent diffusion constant. We consider
the fundamental domain Ω̃ defined as the two-dimensional slice of angle Θ between
two neighboring microtubules. We consider here that microtubules are uniformly
distributed, and thus Θ = 2π

N , where N is the total number of microtubules.
Although a virus can drift along microtubules in both directions by using dynein

(resp., kinesin) motor proteins for the inward (resp., outward) movement, we only take
into account the drift toward the nucleus [7]. It is still unclear what is the precise
mechanism used by a virus to select a direction of motion. Attached to a dynein
molecule, the virus transport consists of several steps of few nanometers: the length
of each step depends on the load of the transported cargo and adenosine tryphosphate
(ATP) concentration [8]. We neglect here the complexity of this process, assuming
that ATP molecules are abundant, uniformly distributed over the cell, and not a
limiting factor. We thus assume the bound particle moves toward the nucleus with
the mean constant velocity V . When the particle is released from the microtubule,
inside the domain, the process can start afresh and the particle diffuses freely. Because
the Smoluchowski limit of the Langevin equation does not account for the change in
velocity, we release the particle at a certain distance away from the microtubule, but
at a fixed distance from the nucleus (at an angle chosen uniformly distributed); see
Figure 2.2.

Because microtubules are taken uniformly distributed, we can always release the
virus inside the slice Ω̃, between two neighboring microtubules. Thus the movement
of the virus will be studied in Ω̃: inside the cytosol, the viral movement is purely
Brownian until it hits a microtubule, which is now the lateral boundary of Ω̃ (see
Figure 2.2). We assume that once a virus hits a microtubule, with probability one, the
dynamics switches from diffusion to a deterministic motion with a constant drift. A
virus spends on a microtubule a time that we consider to be exponentially distributed,
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since this time is the sum of escape time from deep potential wells. We approximate
the total time on a microtubule by the mean time tm. Thus a virus moves at a
distance dm = V tm along a microtubule, which depends only on the characteristic of
the virus–microtubule interactions. To summarize, the virus trajectory is a succession
of diffusion steps mixed with some periods of attaching and detaching to microtubules.
This scenario repeats until the virus hits the nuclear surface (Figure 2.2).

2.2. Computing the MFPT to reach the nucleus. We define the mean
time to infection as the MFPT a virus reaches the surface of the disk D (δ) inside the
domain Ω̃ (see Figure 2.2).

To estimate the mean time to infection, we note that we can decompose the overall
motion as a repeated fundamental step. This step consists of the free diffusion of the
particle inside the domain followed by the motion along the microtubule. The total
time of infection τi is then the sum of times the particle spends in each step. Although
the time on a microtubule is deterministically equal to tm, the diffusing time is not
easy to compute and depends on the initial condition. Ultimately τi depends on the
number of times the fundamental step repeats before the particle reaches the nucleus.

Let us now describe each step. The first step starts when the virus enters the cell
at the periphery r = R = R0 (at a random angle θ ∈ [0; Θ]) and ends when the virus
hits either the lateral boundary or the nucleus. We now consider the first passage
time u (R0) to the absorbing boundary and denote by r(R0) the hitting position. To
account for the deterministic drift, during a deterministic time tm we move the virus
from a distance dm along the microtubule. In that case, the initial random position
for the next step is given by r = R1 = r(R0) − dm and the total time in step 1 is
u (R0) + tm.

We iterate the process as follows and consider in each step k the distance Rk =
r(Rk−1)−dm from which the particle starts and the time u (Rk)+ tm it spends inside
the step. If we denote by ns the random number of steps necessary to reach the
nucleus r = δ, the time to infection τi is given by

(2.3) τi =

ns−1∑
k=0

u(Rk) + nstm + tr,

where tr is a residual time, which is the time to reach the nucleus before a full step is
completed.

We are interested in estimating the MFPT τ of τi, given by

(2.4) τ = E(τi) = E

(
ns−1∑
k=0

u(Rk)

)
+ 〈ns〉tm + 〈tr〉,

where 〈ns〉 is the mean number of steps and 〈tr〉 is the mean residual time. If we in-
troduce the probability distribution pm = Pr{ns = m}, which states that the number
of steps is exactly equal to m, we can write

(2.5) τ = E(τi) =

∞∑
m=1

E

(
ns−1∑
k=0

u(Rk)|ns = m

)
pm + 〈ns〉tm + 〈tr〉.

To estimate the MFPT τ , we shall approximate the previous sum by using the MFPT
ū(Rk) in each step k. To estimate ū(Rk), we will solve (in the next paragraph) the
Dynkin’s equation with the following boundary conditions: Inside Ω̃, the particle is
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reflected at the periphery r = R and absorbed at the nucleus ∂Ω̃a and at θ = 0 and
θ = Θ. We will also estimate the mean distance d̄k covered during step k. For that
purpose we will estimate the mean exit position rm(Rk), conditioned on the initial
position r = Rk. Indeed, we will thus get d̄k = Rk − rm(Rk) − dm. The estimates
of the mean distances covered for each fundamental step will ultimately lead to an
approximation of the mean number of steps n = 〈ns〉: n will be computed such that
Rn ≥ δ and Rn+1 < δ (where Rn = rm(Rn−1) − dm is defined recursively). Finally,
we will obtain the following approximation for the infection time:

(2.6) τ ≈
n−1∑
k=0

ū(Rk) + ntm + 〈tr〉.

The mean residual time 〈tr〉 can be equal either to ū(Rn) + αtm, where 0 ≤ α < 1 if
the virus binds to a microtubule in the last step and travels a distance αdm on the
microtubule, or to the MFPT to the nuclear boundary if rm(Rn) < δ.

3. MFPT and exit point distribution. In a first approximation, under the
assumptions of a sufficiently small radius δ � R and an angle Θ � 1 for the compu-
tation of the MFPT and the distribution of exit points, we neglect the nuclear area.
We define the full pie wedge ΩR domain of angle Θ. Inside ΩR, we use the boundary
conditions described above. Consequently, the MFPT to a microtubule u = u (r, θ) of
a virus starting initially at position (r, θ) is a solution of the Dynkin’s equations [6]

DΔu (x) = −1 for x ∈ ΩR,(3.1)

u (x) = 0 for x ∈ ∂ΩR
a ,

∂u

∂n
= 0 for x ∈ ∂ΩR

r ,

where ∂ΩR
a = {θ = 0} ∪ {θ = Θ} and ΩR

r = {r = R}.
3.1. The general solution for the MFPT. In this paragraph only we repa-

rametrize the domain by −Θ/2 ≤ θ ≤ Θ/2. By writing (3.1) in polar coordinates and
using the separation of variables, the general solution of equation(

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2

)
(r, θ) = −1 for (r, θ) ∈ ΩR,(3.2)

u (r, θ) = 0 for (r, θ) ∈ ∂ΩR
a ,(3.3)

is given by [9],

(3.4) u (r, θ) =
r2

4D

(
cos (2θ)

cos (Θ)
− 1

)
+

∞∑
n=0

Anr
λn cos (λnθ) for

−Θ

2
≤ θ ≤ Θ

2
,

where the edge boundary is here located at position θ = ±Θ/2. The sum in the
right-hand side is the general solution of the homogeneous problem Δu = 0 in ΩR.
The boundary conditions on the sides of the wedge impose that

(3.5) λn = (2n + 1)
π

Θ
,

while the reflecting condition for r = R reads

(3.6)
∂u

∂r
(R, θ) = 0 for all θ ∈

[
−Θ

2
,
Θ

2

]
.
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Using the uniqueness of Fourier decomposition and the boundary condition (3.6), we
obtain that

(3.7) An =
(−1)

n+1
8R2−λn

DΘλ2
n (λ2

n − 4)
.

By averaging formula (3.4) over an initial uniform distribution, the MFPT to one of
the absorbing edges of the wedge is given by

(3.8) ū (r) =
1

Θ

∫ θ=Θ

θ=0

u (r, θ) dθ =
r2

4D

(
tan (Θ)

Θ
− 1

)
−

∞∑
n=0

16R2−λnrλn

DΘ2λ3
n (λ2

n − 4)
,

where λn = (2n + 1) π
Θ . For Θ small, (3.8) can be approximated by

(3.9) ū (r) =
r2

4D

(
tan (Θ)

Θ
− 1

)
− 16ΘR2 (r/R)

π/Θ

Dπ3
(
(π/Θ)

2 − 4
) .

3.2. Exit points distribution. To estimate the position at which a virus will
attach preferentially to the microtubule, we determine the distribution of exit points,
when the viral particle initially started at a certain radial distance from the nucleus.
We recall that the probability density function (pdf) p (r, t|r0) for finding a diffusing
particle in a volume element dr at time t inside the wedge Ω̃, conditioned on the initial
position r = r0, is a solution of the diffusion equation

∂p (r, t|r0)

∂t
= DΔp (r, t|r0) for r ∈ ΩR,

p (r, t|r0) = 0 for r ∈ ∂ΩR
a ,

∂p (r, t|r0)

∂n
= 0 for r ∈ ∂ΩR

r ,

where the initial condition is p (r, 0|r0) = δ (r − r0). The distribution of exit points
ε (y) is given by

(3.10) ε (y) =

∫ ∞

0

j (y, t) dt,

where the flux j is defined by

j (y, t) = −D
∂p (r, t)

∂n |r = y
.

If we denote C (r0, r) =
∫∞
0

p (r, t|r0) dt, then C is a solution of

(3.11) −DΔC (r0, r) = δ (r − r0) ,

and we have

(3.12) ε (y) = −D
∂C

∂n
(r0,y) for y ∈ ΩR

a .

Consequently, to obtain the pdf of exit points ε, we use the Green function in the wedge
domain ΩR. By using a conformal transformation, we hereafter solve a simplified case
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of an open wedge (i.e., without a reflecting boundary at r = R). This computation
could be compared with the general one that will be derived in the next section.

To compute the exit points distribution, we consider the solution of (3.11), ob-
tained by the image method and a conformal transformation from the open wedge to
the upper complex half-plane. The Green function, solution of (3.11) in the upper
complex half-plane, is given by

(3.13) C (z) =
1

2πD
ln

z − z0

z − z∗0
,

where z∗0 is the complex conjugate of z0. Using the conformal transformation ω =
f (z) = z

π
Θ [10] that maps the interior of the wedge of opening angle Θ to the upper

half-plane, the Green function in the wedge is given by

(3.14) C (z) =
1

2πD
ln

(
z

π
Θ − z

π
Θ
0

z
π
Θ − (z∗0)

π
Θ

)
.

The flux to the line θ is given by

εθ (r) = −D

r

∂C

∂θ

(
reiθ

)
=

1

2πr

iν
(
reiθ

)ν
. (k0 − k∗0)(

(reiθ)
ν − k0

) (
(reiθ)

ν − k∗0
)

=
1

2πr

−2ν
(
reiθ

)ν
rν0 sin (νθ0)

(reiθ)
2ν

+ r2ν
0 − 2 (reiθ)

ν
rν0 cos (νθ0)

,

where ν = π
Θ , k0 = zν0 =

(
r0e

iθ0
)ν

. Finally, the exit point distribution for θ = Θ is
given by

(3.15) εΘ (r) =
r0
Θ

(rr0)
(ν−1)

sin (νθ0)

r2ν + r2ν
0 + 2 (rr0)

ν
cos (νθ0)

,

while for θ = 0 it is given by

(3.16) ε0 (r) =
r0
Θ

(rr0)
(ν−1)

sin (νθ0)

r2ν + r2ν
0 − 2 (rr0)

ν
cos (νθ0)

.

A MATLAB check guarantees that

(3.17)

∫ ∞

0

{εΘ (r) + ε0 (r)}dr = 1.

This simple computation is instructive and shall be compared to the full one given in
section 3.3.

3.3. Exit pdf in a pie wedge. To compute the exit points distribution in a
pie wedge with a reflecting boundary at r = R, we search for an explicit solution of
the diffusion equation in polar coordinates inside the pie wedge. We first consider the
general diffusion equation

∂p

∂t
(x, t|y) = D

(
∂2p

∂r2
+

1

r

∂p

∂r
+

1

r2

∂2p

∂θ2

)
(x, t|y) ,(3.18)

p (x, 0|y) = δ (x− y) ,
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where the boundary conditions are given in (3.1). We may often use the change of
variable for all n ∈ N∗:

k =
nπ

Θ
.

The initial condition is given by

p (x, 0|y) = p (r, θ, 0|r0, θ0) =
2

Θr0
δ (r − r0)

∑
k

sin (kθ) sin (kθ0)

for θ < θ0 (if θ > θ0, θ0 must be replaced by Θ − θ0). To compute the solution of
(3.18), we consider the Laplace transform p̂ of the probability p,

sp̂ (r, θ, s|r0, θ0) −
2

Θr0
δ (r − r0)

∑
k

sin (kθ) sin (kθ0)

= D

(
∂2p̂

∂r2
+

1

r

∂p̂

∂r
+

1

r2

∂2p̂

∂θ2

)
(r, θ, s|r0, θ0) .

Using the separation of variables, we have

p̂ (r, θ, s|r0, θ0) =
∑
k

Rk (r, s) sin (kθ) sin (kθ0) .

Using the change of variable, x (s) = r
√

s
D and x0 (s) = r0

√
s
D , we get for all k that

R
′′

k (x (s) , s) +
1

x (s)
R

′

k (x (s) , s) −
(

1 +
k2

x (s)
2

)
Rk (x (s) , s)

= − 2

ΘDx0 (s)
δ (x (s) − x0 (s)) .

(3.19)

Rk (x (s) , s) is a superposition of modified Bessel functions of order k: Ik (x (s)) and
Kk (x (s)). Thus, for x (s) �= x0 (s) we obtain that

Rk (x (s) , s) = AkIk (x (s)) + BkKk (x (s)) ,

where Ak and Bk are real constants. Since Kk diverges as x (s) → 0, the interior
solution for (x (s) < x0 (s)) depends only on Ik. We denote by Dk the exterior
solution for (x (s) > x0 (s)). We use the general notation x ∧ y = min (x, y) and
x ∨ y = max (x, y); thus

Rk (x (s) , s) = AkIk (x (s) ∧ x0 (s))Dk (x (s) ∨ x0 (s)) .

To determine Dk = akIk + bkKk, we use the reflecting condition at x (s) = x+ (s) =
R
√

s
D and we get that

AkIk (x0 (s)) .
(
akI

′

k (x+ (s)) + bkK
′

k (x+ (s))
)

= 0.

We choose

ak = −K
′

k (x+ (s)) and bk = I
′

k (x+ (s)) .
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Thus

Rk (x (s) , s) = AkIk (x (s) ∧ x0 (s))
(
I

′

k (x+ (s))Kk −K
′

k (x+ (s)) Ik

)
(x (s) ∨ x0 (s)) .

The constants Ak are determined by integrating (3.19) over an infinitesimal interval
that includes r0. Using the continuity of Rk, we get

(Rk)
′

x(s)>x0(s)
|x(s)=x0(s) − (Rk)

′

x(s)<x0(s)
|x(s)=x0(s) = − 2

ΘDx0 (s)
,

that is,

Ak

(
Ik

(
I

′

k (x+ (s))K
′

k −K
′

k (x+ (s)) I
′

k

)
− I

′

k

(
I

′

k (x+ (s))Kk −K
′

k (x+ (s)) Ik

))
(x0 (s))

= − 2

ΘDx0 (s)
.

After some simplifications, we get

AkI
′

k (x+ (s))
(
IkK

′

k − I
′

kKk

)
(x0 (s)) = − 2

ΘDx0 (s)
.

Using the recurrent relation between modified Bessel functions (see [11] or [12, p. 489]),

I
′

k (x0 (s)) =

(
Ik−1−

k

x0 (s)
Ik

)
(x0 (s)) and K

′

k (x0 (s)) =

(
−Kk−1−

k

x0 (s)
Kk

)
(x0 (s)) ,

we get

AkI
′

k (x+ (s))

(
Ik

(
−Kk−1−

k

x0 (s)
Kk

)
−
(
Ik−1−

k

x0 (s)
Ik

)
Kk

)
(x0 (s)) = − 2

ΘDx0 (s)
,

that is

AkI
′

k (x+ (s)) (IkKk−1 + Ik−1Kk) (x0 (s)) =
2

ΘDx0 (s)
.

Finally, using this relation and the following Wronskian relation [12, p. 489]:

(IkKk−1 + Ik−1Kk) (x0 (s)) =
1

x0 (s)
,

we obtain that

Ak =
2

ΘDI
′
k (x+ (s))

.

Thus

Rk (x (s) , s)

=
2

ΘDI
′
k (x+ (s))

Ik (x (s) ∧ x0 (s))
(
I

′

k (x+ (s))Kk −K
′

k (x+ (s)) Ik

)
(x (s) ∨ x0 (s)) .

We can now express the solution p̂ for θ < θ0 by

p̂ (r, θ, s) =
2

ΘD

∑
k

Ik (x (s) ∧ x0 (s))
(
I
′
k (x+ (s))Kk −K

′
k (x+ (s)) Ik

)
(x (s) ∨ x0 (s))

I
′
k (x+ (s))

sin (kθ) sin (kθ0) .
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The exit point distribution ε0 (r) is given by

(3.20) ε0 (r) = −
(
D

r

∂

∂θ

(∫ ∞

0

p (r, θ, t) dt

))
(θ = 0) .

To obtain an analytical expression for expression (3.20), we use the Laplace relation

L
(∫ t

0

f (u) du

)
=

F (z)

z
,

where F = L (f) is the Laplace transform of the function f . We have∫ t

0
p (r, θ, u) du = L−1

(
p̂ (r, θ, s)

s

)

= L−1

(
2

ΘD

∑
k

sin (kθ) sin (kθ0)
Ik (x (s) ∧ x0 (s))

(
I
′
k (x+ (s))Kk −K

′
k (x+ (s)) Ik

)
(x (s) ∨ x0 (s))

sI
′
k (x+ (s))

)
.

The computation of the integral

I(r, θ, t)

=
1

ΘπDi

∑
k

sin(kθ) sin(kθ0)

∫ +i∞

−i∞

Ik(x(s) ∧ x0(s))(I
′
k(x+(s))Kk −K

′
k(x+(s))Ik)(x(s) ∨ x0(s))

sI
′
k(x+(s))

estds

(3.21)

uses the residue theorem, and the details are given in the appendix. We have

I (r, θ, t) =

∫ t

0

p (r, θ, u) du =
2

ΘD
(S1(r, θ, t) + S2(r, θ, t)) ,

where

S1(r, θ, t) =
∑
k

sin (kθ) sin (kθ0)
rk

(
r2k
0 + R2k

)
2kR2krk0

,

S2(r, θ, t) = −2
∑
k

sin (kθ) sin (kθ0)

∞∑
j=1

e−Dα2
j,kt

Jk (rαj,k)Jk (r0αj,k)(
R2α2

j,k − k2
)
J2
k (Rαj,k)

,

and Jk are the k-order Bessel functions and αj,k are the roots of the equation:

J ′
k (Rα) = 0.

Consequently, for r < r0, using (3.20), we get the following exit distribution (for
Θ = 0):

ε0 (r) =
2

Θ

∂

r∂θ

(
lim
t→∞

(S1(r, θ, t) + S2(r, θ, t))
)
θ=0

.

Because

lim
t→∞

S1(r, θ, t) = S1(r, θ) and lim
t→∞

S2(r, θ, t) = 0,

we finally obtain that

(3.22) ε0 (r) =
1

Θ

∑
k

sin (kθ0)
rk−1

(
r2k
0 + R2k

)
R2krk0

,
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and, for r > r0, a similar computation leads to

(3.23) ε0 (r) =
1

Θ

∑
k

sin (kθ0)
rk0

(
r2k + R2k

)
R2krk+1

.

These expressions can be further simplified. Indeed, we rewrite them as follows (for
r < r0):

ε0 (r) =
1

Θr

∑
k

sin (kθ0)

(
r

r0

)k (
1 +

(r0
R

)2k
)
.

Thus,

ε0 (r) =
1

Θr
�m

⎛
⎝∑

n≥1

einνθ0
(

r

r0

)nν (
1 +

(r0
R

)2nν
)⎞⎠ ,

where �m denotes the imaginary part of the expression. We obtain two geometrical
series that can be summed. We get

ε0 (r) =
1

Θr
�m

⎛
⎝ eiνθ0

(
r
r0

)ν

1 − eiνθ0
(

r
r0

)ν +
eiνθ0

(
r
r0

)ν (
r0
R

)2ν
1 − eiνθ0

(
r
r0

)ν (
r0
R

)2ν
⎞
⎠ ,

that is,

ε0 (r) =
1

Θr
�m

⎛
⎝eiνθ0

⎛
⎝

(
r
r0

)ν

1 − eiνθ0
(

r
r0

)ν +

(
rr0
R2

)ν
1 − eiνθ0

(
rr0
R2

)ν
⎞
⎠
⎞
⎠ .

After some rearrangements, we obtain the following exit point distribution on θ = 0,
conditioned on the initial position (r0, θ0):

ε0(r) = ε0 (r|r0, θ0)

=
1

Θr

(
(rr0)

ν
sin (νθ0)

r2ν + r2ν
0 − 2 (rr0)

ν
cos (νθ0)

+

(
rr0R

2
)ν

sin (νθ0)

(rr0)
2ν

+ R4ν − 2 (rr0R2)
ν

cos (νθ0)

)
,

(3.24)

for 0 ≤ r ≤ R. Similarly, for θ = Θ, we obtain

εΘ (r) = εΘ (r|r0, θ0)

=
1

Θr

(
(rr0)

ν
sin (νθ0)

r2ν + r2ν
0 + 2 (rr0)

ν
cos (νθ0)

+

(
rr0R

2
)ν

sin (νθ0)

(rr0)
2ν

+ R4ν + 2 (rr0R2)
ν

cos (νθ0)

)
.

(3.25)

We notice that by letting R tend to ∞, we recover the expressions computed in the
open wedge case ((3.15) and (3.16)).
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Fig. 3.1. Mean exit points distribution. The theoretical distribution (dashed line) is tested
against the empirical one (solid line) obtained by running a simulation of 20,000 Brownian particles,
starting on the wedge bisectrix (θ0 = Θ

2
at r0 = R = 100 for Θ = π

6
). Because the starting

point is located on the bisectrix, ε0 (x) = εΘ (x), and thus the analytical curve is given by ε (r) =

ε0 (r) + εΘ (r) = 2
Θr

( (rr0)(ν)

r2ν+r2ν0
+ (rr0R

2)(ν)

(rr0)2ν+R4ν

)
. In that case, the maximum of the function ε (r) is

achieved at r = r0e
1
2ν

ln
(
ν−1
ν+1

)
.

3.4. The mean exit radius. To determine the mean exit distribution radius
ε (r|r0) for a viral particle starting initially at position r0, θ0, where θ0 is uniformly
distributed between 0 and Θ, we consider ε (r|r0, θ0) = ε0 (r|r0, θ0) + εΘ (r|r0, θ0) and
estimate the integral

(3.26) ε (r|r0) =
1

Θ

∫ Θ

Θ0=0

ε (r|r0, θ0) dθ0.

Integrating expressions (3.24) and (3.25), we get

ε (r|r0) =
2

Θπr

(
ln

(
rν + rν0
|rν − rν0 |

)
+ ln

(
R2ν + (rr0)

ν

R2ν − (rr0)
ν

))
.

We define the mean exit point as rm (r0) = E (r|r0) conditioned on the initial radius
r0. Thus,

(3.27) rm (r0) = E (r|r0) =

∫ R

0

rε (r|r0) dr.

Using the expansion ln (1 + x) =
∑

n≥1 (−1)n+1 xn

n for x < 1, we obtain by a direct
integration that
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rm (r0) =
8

π2

⎛
⎝r0

⎛
⎝ ∞∑

n=0

1

(2n + 1)
2

⎛
⎝ 1

1 − 1

(2n+1)2( π
Θ )

2

⎞
⎠
⎞
⎠

−R

⎛
⎝ ∞∑

n=0

(
r0
R

)(2n+1) π
Θ π

Θ

(2n + 1)
((

(2n + 1) π
Θ

)2 − 1
)
⎞
⎠
⎞
⎠ .

(3.28)

Using the expansion in the first part,

(3.29)
1

1 − 1

(2n+1)2( π
Θ )

2

=

∞∑
p=0

(
Θ

(2n + 1)π

)2p

,

and the approximation Θ � 1, by using the value of the Riemann ζ-function, ζ (2) =
π2

6 and ζ (4) = π4

90 , we obtain that

(3.30) rm (r0) ≈ r0

(
1 +

Θ2

12

)
− 8R

π2

(r0
R

)π/Θ π/Θ

(π/Θ)
2 − 1

.

For Θ small, the second term in the right-hand side of (3.30) is exponentially small.

4. Approximation of a virus motion by an effective Markovian stochas-
tic equation. We replace the successive steps of viral dynamics with an effective
stochastic equation containing a constant steady state drift.

4.1. Methodology. Virus motion described in subsection 2.2 consists of a suc-
cession of drift and diffusing periods. We start with the stochastic equation

(4.1) Ẋ = −B
r

|r| +
√

2Dẇ,

where r is the radial component of X and B is the amplitude of the drift. The MFPT
of the process (4.1) to the nucleus, which is located at r = δ, when the initial position
is located on the cell surface r = R, is solution of

D

(
d2t

dr2
+

1

r

dt

dr

)
(r, θ) −B

dt

dr
(r, θ) = −1 for (r, θ) ∈ Ω,

t (r, θ) = 0 for r = δ,

dt

dr
(r, θ) = 0 for r = R.

A similar equation can be written in the domain Ω̃ with reflective boundary conditions
of the wedge. Both processes in the full domain or in Ω̃ lead to the same MFPT. The
solution t(B, r) is given by

(4.2) t (B, r) = C −
∫ R

r

(∫ R

v

ue−α(u−v)

Dv
du

)
dv,

where α = B
D and

(4.3) t (B,R) = C =

∫ R

δ

(∫ R

v

ue−α(u−v)

Dv
du

)
dv.
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For a fixed radius R, the derivative of the function t (B,R) with respect to B is
strictly negative, which shows that B → t (B,R) is strictly decreasing. To determine
the value of the amplitude B, we match the mean time t (B,R) with the MFPT to
reach the nucleus within the iterative procedure, as described in subsection 2.2: at
time zero, the virus starts at position r = R = R0 and reaches the edge boundary in
mean time ū (R0) and at mean position rm (R0). The viral particle is then transported
toward the nucleus over a distance dm during time tm. Either the particle reaches the
nucleus before time tm and then the algorithm is terminated, or in a second step it
starts at position R1 = rm (R0) − dm. The process iterates until the particle reaches
the nucleus. We consider the mean number of fundamental steps (diffusion step and
directed motion along a microtubule step) that the virus needs to reach the nucleus
to be equal to n ≥ 0. Thus the mean time to reach the nucleus computed by (4.2) has

to be equal to the mean time τ =
∑n−1

k=0 ū(Rk)+ntm + 〈tr〉 of the iterative trajectory.
In a first approximation, we neglect the mean residual time 〈tr〉 and we thus get the
equality

t (B,R) = τ =
n−1∑
k=0

ū (Rk) + ntm,(4.4)

Rk+1 = rm (Rk) − dm,(4.5)

R0 = R.(4.6)

For a fixed radius R, equation (4.4) has a unique solution B, which can be found in
practice by any standard numerical method.

Remark. The MFPT of a particle in which the trajectory consists of alternating
drift (traveling along microtubules) and diffusion periods can be either higher or
lower than the MFPT of a pure Brownian particle. Indeed, when B < 0, the drift
effect is less efficient than pure diffusion. For example, for Θ = π

6 , R = 100μm,

and δ = R
4 = 25μm, a large diffusion constant D = 10μm2s−1 with the dynamical

parameters tm = 1s and dm = 1μm leads to a negative mean drift

(4.7) B ≈ −0.14μms−1.

On the other hand, for a small diffusion constant D = 1μm2s−1, an efficient mi-
crotubule transport obtained for tm = 1s and dm = 5μm leads to a mean positive
drift

(4.8) B ≈ 0.13μms−1.

4.2. Explicit expression of the drift in the limit of Θ � 1. When the
number of microtubules is large enough, the condition Θ � 1 is satisfied. Moreover,
because a virus entering a cell surface has a deterministic motion, we can assume that
the initial position satisfies R0 < R so that we can neglect any boundary effects and
use the open wedge approximation, which consists of using formula (3.30) without the
boundary layer term. Actually, this approximation is not that restrictive because after
the first iteration process (movement along the microtubule followed by the particle
release), the boundary layer term is negligible compared to the other term.

To obtain an explicit expression for the amplitude B, we consider the successive
approximations

(4.9) rm (R0) ≈ R0

(
1 +

Θ2

12

)
and
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R0 = R0;

R1 � R0

(
1 +

Θ2

12

)
− dm;

R2 � R0

(
1 +

Θ2

12

)2

− dm

(
1 +

(
1 +

Θ2

12

))
;

...

Ri � R0

(
1 +

Θ2

12

)i

− dm

(
i−1∑
k=0

(
1 +

Θ2

12

)k
)

;

that is,

(4.10) Ri �
(
R0 −

12dm
Θ2

)(
1 +

Θ2

12

)i

+
12dm
Θ2

.

Thus the particle reaches the nucleus after n iteration steps which approximatively
satisfies Rn = δ,

(4.11) n �
ln

(
1− δΘ2

12dm

1−R0Θ2

12dm

)
ln
(
1 + Θ2

12

) ≈ R0 − δ

dm
+ o (1) .

If Tn denotes the mean time a viral particle takes to reach the nucleus, then using
formula (3.9), we obtain

(4.12) Tn � n.tm +

(
tan(Θ)

Θ − 1
)

4D

n−1∑
i=0

R2
i ,

that is,

t � n.tm +

(
tan(Θ)

Θ − 1
)

4D

×
n−1∑
i=0

((
12dm
Θ2

)2

+ 2

(
12dm
Θ2

)(
R0 −

12dm
Θ2

)(
1 +

Θ2

12

)i

+

(
R0 −

12dm
Θ2

)2 (
1 +

Θ2

12

)2i
)
,

Tn � ntm +

(
tan(Θ)

Θ − 1
)

4D

×

⎛
⎜⎝n

(
12dm
Θ2

)2

−
(

24dm
Θ2

)(
R0 −

12dm
Θ2

) 1 −
(
1 + Θ2

12

)n

Θ2

12

+

(
R0 −

12dm
Θ2

)2 1 −
(
1 + Θ2

12

)2n

1 −
(
1 + Θ2

12

)2
⎞
⎟⎠ .
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For Θ � 1, a Taylor expansion gives that

Tn �
(
R0 − δ

dm

)
tm +

tm (R0 − δ)

24dm

(
1 +

R0 + δ

dm

)
Θ2

+
(R0 − δ)

72D

(
dm + 3 (R0 + δ) +

2
(
R2

0 + R0δ + δ2
)

dm

)
Θ4 + o

(
Θ4

)
.

In small diffusion limit D � 1, Θ � 1, the velocity is B � R0−δ
Tn

, and consequently
we obtain for R0 ≈ R a second order approximation,

(4.13) B ≈
dm

tm

1 +
(
1 + R+δ

dm

)
Θ2

24 + O (Θ4)
,

where dm, tm are the mean distance and the mean time a virus stays on the micro-
tubule, R (resp., δ) is the radius of the cell (resp., nucleus) and Θ = 2π

N , where N is
the total number of microtubules.

4.3. Justification of the MFPT criteria. To justify the use of the MFPT cri-
teria to estimate the steady state drift, we run numerical simulations of 1,000 viruses
inside a two-dimensional domain Ω (δ < r < R) with intermittent dynamics, alter-
nating between epochs of free diffusion and directed motion along microtubules, and
compare the steady state distribution with the one obtained by solving the Fokker–
Planck equation for viruses whose trajectories are described by the effective stochastic
equation (2.2) with our computed constant drift

(4.14) b (X) = −
dm

tm

1 +
(
1 + R+δ

dm

)
Θ2

24

r

|r| = −B
r

|r| .

We imposed reflecting boundary conditions at the nuclear and the external membrane.
The theoretical normalized steady state distribution ρ satisfies

DΔρ−∇.[bρ] = 0 in Ω,

dρ

dr
(R) =

dρ

dr
(δ) = 0,

and the solution ρ is given by

(4.15) ρ(r) =
e−

Br
D∫ R

δ
e−

Br
D 2πrdr

=
e−

Br
D

2πD
B (δe−

Bδ
D −Re−

BR
D + D

B (e−
Bδ
D − e−

BR
D ))

.

The result of both distributions is presented in Figure 4.1, where we can observe that
both curves match very nicely. This result shows that the criteria we have used is at
least enough to recover the distribution. For the simulations, we consider that the
directed run of the virus along a microtubule (loaded by dynein) lasts tm = 1s and
covers a mean distance dm = 0.7μm [13]. The diffusion constant is D = 1.3μm2s−1,
as observed for the adeno-associated virus [14]. The two curves in Figure 4.1 fit very
nicely except at the neighborhood of the nuclear membrane, where the simulation of
the empirical distribution is plagued with a possible boundary layer. Another source
of discrepancy comes from the difference of behavior of viruses far from and close to
the nucleus: viruses far from the nucleus do not bind as often as those located in its
neighborhood. Consequently, a constant effective drift cannot account for the radial
geometry near the nucleus. A theory for radius-dependent effective drift has been
derived in [15].
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Fig. 4.1. Steady state distributions. We show the empirical steady state distribution for 1,000
viral trajectories with an intermittent dynamic (solid line). The theoretical distribution of viruses
whose trajectories are described by the stochastic equation (2.2) is shown by the dashed line. Geo-
metrical parameters are R = 20μm, δ = 5μm, and Θ = π

24
.

5. Conclusion. For the limit of a cell containing an excess of microtubules,
we have presented here a model to describe the motion of biological particles such as
viruses, vesicles, and many others moving inside the cell cytoplasm by a complex com-
bination of Brownian motion and deterministic drift. Our procedure consists mainly
of approximating an alternative switching mode between diffusion and deterministic
drift epochs by a steady state stochastic equation; it also consists of estimating the
amplitude of the effective drift and is based on the criteria that the MFPTs to the
nucleus computed in both cases are equal. In that case, this amplitude accounts
for the directed transport along microtubules, the cell geometry, and the binding
constants. The model has, however, several limitations. First, we do not take into
account directly the backward movement of the virus along the microtubules [16, 17],
which can affect the mean time and the amplitude of the drift. Second, the present
computations are given only for two-dimensional cell geometry. It can still be applied
to many in vitro culture cells; however, it is not clear how to generalize our approach
to a three-dimensional cell geometry. For example, to study the trafficking inside
cylindrical axons or dendrites of neuronal cells, a different approach should include
these geometrical features. However, despite these real difficulties, the present model
may be used to analyze plasmid transport in a host cell, at the molecular level, which
is one of the fundamental limitations of gene delivery [18, 19, 20, 21].

Appendix. In this appendix, we provide an explicit computation of integral
(3.21) using the method of the residues. This method was previously used in a similar
context in [12, p. 386]. We denote by

(
pkj
)
j≥0

the poles of the function

Φ : s →
Ik (x (s) ∧ x0 (s))

(
I

′

k (x+ (s))Kk −K
′

k (x+ (s)) Ik

)
(x (s) ∨ x0 (s))

sI
′
k (x+ (s))

est,
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where (x (s) = r
√

s
D , x0 (s) = r0

√
s
D , and x+ (s) = R

√
s
D ). The associated residues

are
(
rkj
)
j≥0

. We now compute the residues explicitly.

To identify the poles, we recall the relation between the k-order Bessel function
Jk (that is true for z such that −π < arg (z) < π

2 ) and the modified Bessel functions
Ik [11, p. 375]:

(5.1) Ik (z) = e−
1
2kπiJk

(
ze

1
2πi

)
.

All roots αj,k of the equations

J
′

k (Rα) = 0

are real, simple, and strictly positive [11, p. 370] because k is real and

k ≤ α1,k < α2,k . . . .

Thus,

I
′

k (−iRαj,k) = 0.

Finally, the poles of Φ are simple, given by pk0 = 0 and that for all j ≥ 1, pkj = −Dα2
j,k.

Consequently the associated residues are given for each k for all j ≥ 0 by

(5.2) rkj = lim
s→pk

j

(
s− pkj

)
Φ(s).

Then using the residues, integral (3.21) is given by

I (r, θ, t) =
1

ΘπDi

∑
k

sin (kθ) sin (kθ0) (2πi)
∑
j≥0

rkj =
2

ΘD

∑
k

sin (kθ) sin (kθ0)
∑
j≥0

rkj .

We now compute the residues rkj . The residue rk0 is associated with the pole pk0 = 0
and given by

rk0 = lim
s→0

sΦ(s).

Using the following identities on the modified Bessel functions [12, p. 489],

I
′

k (z) = Ik+1 (z) +
k

z
Ik (z) and K

′

k (z) = −Kk−1 (z) − k

z
Kk (z) ,

and substituting the derivatives I
′

k and K
′

k in the expression of Φ, we get

rk0 = lim
s→0

Ik (x (s) ∧ x0 (s))(
Ik+1 + k

x+(s)Ik

)
(x+ (s))

×
(((

Ik+1 +
k

x+ (s)
Ik

)
(x+ (s))Kk

)

+

((
Kk−1 +

k

x+ (s)
Kk

)
(x+ (s)) Ik

))
(x (s) ∨ x0 (s)) .
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Taking into account only the dominant terms, we get

rk0 = lim
s→0

Ik (x (s) ∧ x0 (s)) (Ik (x+ (s))Kk + Kk (x+ (s)) Ik) (x (s) ∨ x0 (s))

Ik (x+ (s))
.

To further compute this limit, we use the Taylor expansions of Ik and Kk [11, p. 375]
expressed in terms of the Γ function:

Ik (z) ≈
(

1
2z

)k
Γ (k + 1)

and Kk (z) ≈ 1

2
Γ (k)

(
1

2
z

)−k

.

For r < r0, we get

rk0 = lim
s→0

( 1
2
(x(s)))k

Γ(k+1)

(
( 1
2 (x+(s)))k

Γ(k+1)
1
2
Γ (k)

(
1
2

(x0 (s))
)−k

+ 1
2
Γ (k)

(
1
2

(x+ (s))
)−k ( 1

2
(x0(s)))k

Γ(k+1)

)
( 1
2 (x+(s)))k

Γ(k+1)

.

Finally, using the relation Γ (k + 1) = kΓ (k) and the expressions of x(s), x0(s), and
x+(s), we get

rk0 =
rk

(
r2k
0 + R2k

)
2kR2krk0

.

The computation of the other residues
(
rkj
)
j≥1

is slightly different,

rkj = lim
s→pk

j

(
s− pkj

)
Φ(s),

where pkj = −Dα2
j,k. Using the Wronskian relation [12, p. 489],

Ik (z)K ′
k (z) −Kk (z) I ′k (z) = −1

z
,

we now substitute

K
′

k (z) =
− 1

z + Kk (z) I
′

k (z)

Ik (z)
.

In the expression of Φ, we get

rkj = lim
s→pk

j

(
s− pkj

)
est

s

Ik (x (s))
(
I

′

k (x+ (s))Kk −
(− 1

x+(s)+KkI
′
k

Ik

)
(x+ (s)) Ik

)
(x0 (s))

I
′
k (x+ (s))

.

Because

lim
s→pk

j

I
′

k (x+ (s)) = I
′

k

(
x+

(
pkj
))

= 0,

we obtain the expression for the residues:

rkj =
ep

k
j t

pkj

Ik
(
x
(
pkj
))

Ik
(
x0

(
pkj
))

Ik
(
x+

(
pkj
))

x+

(
pkj
) lim

s→pk
j

(
s− pkj

)
I

′
k (x+ (s))

.
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Finally, since

lim
s→pk

j

(
s− pkj

)
I

′
k (x+ (s))

=
2
√
Dpkj

R
lim
s→pk

j

x+ (s) − x+

(
pkj
)

I
′
k (x+ (s)) − I

′
k

(
x+

(
pkj
)) =

2
√
Dpkj

RI
′′
k

(
x+

(
pkj
)) ,

we obtain

rkj =
ep

k
j t

pkj

Ik
(
x
(
pkj
))

Ik
(
x0

(
pkj
))

Ik
(
x+

(
pkj
))

x+

(
pkj
) 2

√
Dpkj

RI
′′
k

(
x+

(
pkj
)) .

To simplify this expression, we use that Ik satisfies the differential equation [11, p. 374]

I
′′

k (z) +
1

z
I

′

k (z) −
(

1 +
k2

z2

)
Ik (z) = 0.

Thus for z = x+

(
pkj
)
,

I
′′

k

(
x+

(
pkj
))

=
pkjR

2 + Dk2

pkjR
2

Ik
(
x+

(
pkj
))

.

We get

rkj =
2Dep

k
j t

R2pkj + Dk2

Ik
(
x
(
pkj
))

Ik
(
x0

(
pkj
))

I2
k

(
x+

(
pkj
)) ,

and finally, using (5.1), we get

rkj =
2e−Dα2

j,kt

−R2α2
j,k + k2

Jk (rαj,k)Jk (r0αj,k)

J2
k (Rαj,k)

.

Integral (3.21) is given by

(5.3) I(r, θ, t) =
2

ΘD

∑
k

sin (kθ) sin (kθ0)
∑
j≥0

rkj =
2

ΘD
(S1(r, θ, t) + S2(r, θ, t)) ,

where

S1(r, θ, t) =
∑
k

sin (kθ) sin (kθ0)
rk

(
r2k
0 + R2k

)
2kR2krk0

,

S2(r, θ, t) = −2
∑
k

sin (kθ) sin (kθ0)

∞∑
j=1

e−Dα2
j,kt

Jk (rαj,k)Jk (r0αj,k)(
R2α2

j,k − k2
)
J2
k (Rαj,k)

.
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Abstract. We develop a partial equilibrium model to investigate the problem of optimal liqui-
dation over a finite or infinite time horizon for an investor with large holdings in a risky asset. The
imperfect liquidity in the market for the asset leads to a nonlinear path dependent feedback on the
underlying asset price process due to the large investor’s trades and his holdings in the asset. We
use probabilistic techniques to prove verification and existence results for optimal liquidation poli-
cies for the utility-maximizing investor under broad assumptions. In particular, our results imply
the existence of optimal policies if the investor has power utility functions. We provide analytical
expressions for the optimal policy when the large investor has logarithmic preferences. We use these
results to characterize the “liquidity discount,” which is a measure of the liquidity risk of the large
investor’s position in the risky asset.
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1. Introduction. Traditional finance theory is based on the competitive market
paradigm which assumes that markets are perfectly elastic, that is, that all investors
are price-takers who can buy or sell as many shares of a security as they want without
affecting its price and purchases/sales have immediate execution. The absence of these
conditions is sometimes labeled liquidity risk. Liquidity risk is particularly important
for thinly traded securities or in scenarios in which investors with comparatively large
positions in a security wish to liquidate their holdings in a short period of time.
Examples of such investors are insurance firms who face regulatory minimum capital
requirements, financial institutions who face “value at risk” constraints, mutual or
hedge fund managers who must make large trades in a short period of time in the
face of redemptions by investors, and financially distressed firms who must liquidate
large asset holdings to meet contractual debt obligations.1

Motivated by the above considerations, several studies attempt to provide char-
acterizations of liquidity risk through the investigation of the optimal liquidation
problem for an investor in an illiquid underlying asset market (see, for example, Bert-
simas and Lo [3], Almgren and Chriss [1], Duffie and Ziegler [8], and Subramanian
and Jarrow [30]). These studies use different frameworks to examine the optimal liq-
uidation policy of a large investor with holdings in a single illiquid asset or a portfolio
of such assets where trades by the investor may affect the underlying asset price pro-
cesses. The liquidity risk is characterized in terms of the value (or utility) the investor
derives from liquidating her portfolio over a finite time horizon.

In this article, we contribute to this aspect of the literature by examining the
optimal liquidation problem over a finite or infinite time horizon for an investor with
large holdings in a single risky asset where the investor’s trades and holdings in the

∗Received by the editors October 28, 2005; accepted for publication (in revised form) September
27, 2007; published electronically March 28, 2008.
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†Department of Risk Management and Insurance, J. Mack Robinson College of Business, Georgia

State University, 35 Broad Street, University Plaza, Atlanta, GA 30303 (insasu@langate.gsu.edu).
1The importance of liquidity risk is highlighted by the turmoil in global capital markets in the

late 1990’s when Long Term Capital Management (LTCM) was forced to unwind its large positions
in several securities in a very short period of time in the aftermath of the Asian currency crisis.
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asset may have a nonlinear and path dependent feedback on the underlying asset price
process. We consider the situation where there are no execution lags for trade orders
and the investor trades continuously, as in the continuous auction models of Kyle
[21] and Back [2]. The investor’s liquidation policy is characterized by a liquidation
rate process, which is a mathematically tractable representation of the effect of insider
trading restrictions that prevent the investor from making large trades on a single date.
The absence of execution lags makes this a viable continuous time extension of a more
realistic model where investors trade only at discrete, but “closely spaced,” instants
of time. There could be a nonlinear path dependent feedback on the underlying asset
price process due to the investor’s holdings in the asset as well as her liquidation rate.
In particular, this general formulation allows for both permanent and temporary price
impacts. The underlying asset price process is continuous and, similar to the models
of Kyle [21], Back [2], and Cuoco and Cvitanic [5], the investor’s liquidation policy
affects only the expected return of the asset. As in these studies, the volatility of the
asset is due to the presence of “small” or “liquidity” traders.

We adopt a partial equilibrium approach where the impact of the large investor’s
trades on the asset price is exogenously specified as opposed to the general equilibrium
framework adopted in Kyle [21], where the impact is derived endogenously through
equilibrium considerations. This facilitates the investigation of a much broader class
of models of the effect of large investors on financial markets.

We use probabilistic “martingale” techniques to prove verification and existence
results for optimal liquidation policies for the investor. Our analysis leads to an ex-
plicit characterization of sufficient conditions on the investor’s preferences and the
feedback function describing the impact of the large investor’s trades on the asset
price, under which optimal liquidation policies exist. The identification of such con-
ditions that ensure the existence of an optimal policy and, therefore, a partial equi-
librium, is important from an economic standpoint since it establishes the viability of
the class of partial equilibrium models we propose as an appropriate description of
large investor behavior. We use the results of our analysis to derive explicit analytical
expressions for the investor’s optimal liquidation policy and his value function when
he has logarithmic preferences. We then characterize the liquidity discount, which is
a measure proposed by Subramanian and Jarrow [30] to quantify the liquidity risk
of a large investor’s position in a risky asset. As they discuss, the liquidity discount
could be used to modify value at risk measures to also incorporate liquidity risk.

From a mathematical standpoint, the probabilistic methodology we employ is sim-
ilar to that adopted in earlier papers that examine optimal consumption/investment
or pricing/hedging problems in incomplete markets within frameworks where dynamic
programming techniques may be difficult to apply.2 In particular, we show the exis-
tence of optimal liquidation policies by establishing the duality between the investor’s
liquidation problem and a dual control problem.

Apart from the fact that the problem we consider is different from those examined
by previous studies in this area, there are some important aspects of our framework
that make the application of the duality methodology significantly different from the
analyses in these studies. Since we examine the optimal liquidation problem of an
investor with holdings in a single risky asset, the only feasible trades are sales of

2See, for example, He and Pearson [14], Cvitanic and Karatzas [6], Cvitanic and Ma [7], Karatzas
and Kou [16], El Karoui, Peng, and Quenez [11], Buckdahn and Hu [4], Cuoco and Cvitanic [5],
El Karoui and Jeanblanc [10], Kramkov and Schachermayer [20], Ma and Yong [22], Follmer and
Leukert [12], and Mnif and Pham [25]. See Pritsker [27], He and Mamaysky [15], and Polimenis [26]
for frameworks with large traders where dynamic programming techniques are employed.
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the asset. As we will see later, this feature causes the set of feasible dual processes
to be unbounded. This leads to nontrivial complications in the demonstration of
verification and existence results for solutions to the dual control problem and hence
the primal one. Further, the investor derives utility from the periodic liquidation of
her holdings in the asset, but her liquidation rate affects the underlying asset price
process. Finally, the “wealth process” of the investor that is the market value of her
holdings in the asset is always nonnegative. Therefore, our study also contributes to
the existing literature from a mathematical standpoint by illustrating the application
of the convex duality methodology to a stochastic control problem where the typical
assumptions and features of the frameworks examined by prior studies do not hold.

We analyze the optimal liquidation problem of a large investor over a finite as well
as an infinite time horizon. The finite time horizon formulation is particularly relevant
in the context of the motivating examples discussed earlier in which large investors
such as insurance firms, financial institutions, mutual and hedge funds, and financially
distressed firms have to liquidate large asset holdings over short periods of time. Insur-
ance firms have to liquidate large holdings in risky assets to make liability payments
in the aftermath of catastrophic events such as the September 11th terrorist attack
and Hurricane Katrina. Given the time taken to file and process liability claims, the
liquidation horizon for such firms would be expected to be of the order of 6 months to
a year. For financial services firms who face minimum capital requirements or “value
at risk” constraints, the relevant liquidation horizon could be much shorter (10 days
to a month).3 Mutual funds and hedge funds that face redemptions by investors, es-
pecially in bear markets, typically have to liquidate large holdings over a period of one
to two months. Finally, financially distressed firms often have to liquidate large asset
holdings over short periods of time (3–6 months) to meet contractual debt obligations.

In the infinite time horizon version of the model, the investor does not self-impose
a possibly suboptimal liquidation horizon, but optimally liquidates his asset holdings
until they fall to zero. The theoretical advantages of the infinite time horizon formu-
lation are, however, mitigated to some extent by two important observations. First,
as discussed above, the choice of liquidation horizon may not always be at the discre-
tion of the investor and could be a consequence of regulatory requirements or market
considerations. Second, it follows from standard convergence arguments that one can
choose a sufficiently large finite liquidation horizon such that the investor’s optimal
value function in the finite time horizon model is arbitrarily close to the optimal
value function in the infinite time horizon model. In our view, therefore, the finite
time horizon and infinite time horizon analyses are complementary.

The plan for the paper is as follows. Section 2 presents the model in which a large
investor liquidates his holdings over a finite time horizon. In section 3, we formulate
the large investor’s dual control problem. In section 4, we prove verification and
existence theorems for optimal liquidation policies. In section 5, we explicitly derive
the optimal policies for an investor with logarithmic preferences and characterize the
liquidity discount. In section 6, we analyze two extensions of the model: the scenario
in which the investor could incur costs from holding nonzero wealth in the asset at
the terminal date, and the scenario in which the liquidation horizon is infinite and the
investor liquidates his shares until they fall to zero. Section 7 concludes the paper.
Detailed proofs are in the appendix.

2. The model. We consider a time horizon [0, T ] and a probability space
(Ω, F, P ) with a complete and augmented filtration {Ft} generated by a Brownian

3In fact, standard “value at risk” measures presume a liquidation horizon of ten days.



OPTIMAL LIQUIDATION BY A LARGE INVESTOR 1171

motion Bt with FT ≡ F . The number of shares of the asset that the large investor
holds at any date is represented by the nonnegative Ft-adapted process N(.). The
large investor’s intertemporal liquidation process is absolutely continuous; that is, the
large investor liquidates at the rate n(.) so that n(t) dt shares of the asset are liqui-
dated over the time interval [t, t + dt]. We examine the scenario where there are no
execution lags and transaction costs are insignificant (see Almgren and Chriss [1] or
Subramanian and Jarrow [30] for models that incorporate execution lags and transac-
tion costs). The process n(.) may be random but is assumed to be {Ft}-progressively
measurable, reflecting the assumption that the large investor’s choice trade at a certain
time depends on his information at that time and cannot anticipate the future. Thus,

N(t) = N(0) −
∫ t

0

n(s) ds.

The presence of insider trading restrictions and imperfect liquidity in financial
markets prevents investors from making large trades on a single date. The assump-
tion of an absolutely continuous liquidation process is a mathematically tractable
representation of the effect of such restrictions. Hence, the investor may only liqui-
date his large position in the risky asset over an extended time horizon. Further, the
fact that we examine the scenario where execution lags are insignificant implies that
this is a viable continuous time extension of a more realistic model where the investor
trades at discrete, but closely spaced, instants of time.

The asset price process S(.) satisfies the following stochastic differential equation:

(2.1) dS(t, ω) = S(t, ω)(μ(t, ω) + μ(W (t, ω), c(t, ω), t, ω)) dt + S(t, ω)σ(t, ω) dBt,

where W (t, ω) = N(t, ω)S(t, ω) represents the market value of the large investor’s
holdings in the asset and c(t, ω) = n(t, ω)S(t, ω) dt is the large investor’s cash flow
from liquidating n(t, ω) shares at time t. Equation (2.1) implies that the asset price
process S(.) may be affected by the large investor’s liquidation rate n(.) as well as
his wealth in the asset. The feedback function μ may depend explicitly on time
and the probability space parameter ω and is therefore, in general, path dependent.
Therefore, the large investor’s past liquidation policy may affect his present and future
cash flows from liquidation. This formulation allows us to incorporate both permanent
and transient price impacts of the large investor’s trades. The restrictions on μ, μ, σ
that ensure the existence of a unique strong solution to (2.1) are specified later. We
refer to the process c(.) as the liquidation rate process and the process W (.) as the
wealth process.

Assumption 1. We assume that μ(t, ω) is uniformly bounded and Ft-progressively
measurable and σ(.) and σ−1(.) are uniformly bounded and Ft-progressively measur-
able. In the following, we shall occasionally drop the explicit dependence on the prob-
ability space parameter ω wherever there is no danger of confusion. From (2.1), we
see that the process W (.) evolves as follows:

(2.2) dW (t) = W (t)[μ(t) + μ(W (t), c(t), t)] dt + W (t)σ(t) dB(t) − c(t) dt.

Assumption 2. A feasible liquidation strategy is a nonnegative process (W (.), c(.))
satisfying

(2.3)

∫ T

0

|W (t)(μ (t) + μ(W (t), c(t), t)) | dt +

∫ T

0

∣∣(W (t)σ(t))2 | dt < ∞ a.s.,

∫ T

0

c(t) dt < ∞ a.s.
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The conditions in (2.3) basically ensure that the process W (.) described by (2.2) is
well defined. Alternatively, we say that the terminal wealth-liquidation rate process
(W, c(.)) is feasible if W (T ) = W , where W (.) is the wealth process corresponding
to the liquidation rate process c(.) and (W (.), c(.)) is feasible. We denote the set of
feasible liquidation strategies (W (.), c(.)) by Θ.

Assumption 3. The large investor has a time-additive utility function for in-
tertemporal cash flows and a utility of terminal wealth defined by

(2.4) U(c,W ) = E

[∫ T

0

u1(c(t), t)) dt

]
+ E[u2(W,T )].

Remark 1. We allow for the possibility that the investor may derive nonzero
utility from terminal wealth for the sake of generality. As we discuss in Remark 4 in
section 4, all our results hold even when the investor derives no utility from remaining
holdings in the asset at date T so that he liquidates his entire position over the interval
[0, T ). The explicit time dependence of u1, u2 allows for the incorporation of costs
borne by the investor from delaying liquidation of his holdings. In section 6.2, we
analyze the scenario in which the time horizon T = ∞.

The objective function (2.4) is well defined for liquidation rate–terminal wealth
processes satisfying

(2.5) E

[∫ T

0

u1(c(t), t)
− dt

]
< ∞; E[u2(W,T )−] < ∞.

We assume that the large investor’s liquidation rate process and the terminal wealth
are admissible if they satisfy the above condition.

Note. If u1(c, t) ≥ 0, u2(W,T ) ≥ 0 for all (c, t) and W , then (2.5) is trivially
satisfied.

The investor’s objective function (2.4), which implies that he has a concave, Von
Neumann–Morgenstern utility function over his intertemporal liquidation rate c(.)
and terminal wealth W (.), is justified as follows.

First, recall that the investor’s cash flow from liquidating shares at date t is c(t) dt.
This cash flow could be used for current consumption as well as to finance future
consumption. If the cash flow is used for current consumption, then the investor’s
utility payoff is u1(c(t), t). If a portion of the cash flow is used to finance future
consumption (by possibly trading in other securities), then, like the terminal utility
functionu2(W,T ), the function u1(c(t), t) should be viewed as an “indirect” utility
function over cash flows as in Chapter 6 of Mas-Colell, Whinston, and Green [23].

Second, as discussed in Mas-Colell, Whinston, and Green [23], the objective func-
tion (2.4) could more generally be viewed as corresponding to the scenario in which
the investor has convex preferences over monetary lotteries; that is, the investor’s
preferences are directly defined over cash flow streams.

Third, the concavity of the function u1 also incorporates the possible presence of
“direct” liquidation/transaction costs that are convex in the size of the trade (recall
that the model incorporates “indirect” costs through the effects of trades on the asset
price process—see (2.1)). In the absence of friction due to illiquidity, the payoff to
a risk-neutral investor would be c(t) dt. In an illiquid market, the payoff would be
c(t) dt less liquidation/transaction costs that are convex in the size of the trade, which
implies that the net payoff to the investor is concave. Hence, even if the investor were
risk-neutral, his payoffs from liquidation would be concave.
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Fourth, the objective function (2.4) incorporates precautionary motives of the
investor to smooth liquidation proceeds over time and across states in order to lower
the direct and indirect costs he faces due to the illiquidity of the underlying asset.

A possible alternative objective function is one in which the investor maximizes
an increasing, concave function of his discounted “cumulative” liquidation proceeds;
that is, the investor maximizes

Eu

[∫ T

0

e−ltc(t) dt

]
,

where l is a discount rate and u is increasing and concave. The investor, therefore, de-
rives the same utility from liquidation proceeds that have the same discounted present
value; that is, the timing of intertemporal liquidation cash flows along a particular
sample path does not matter. Adapting the arguments in Fudenberg, Holmstrom,
and Milgrom [13] to our setting, such an objective function is, in general, justified
from a decision-theoretic standpoint when the investor has unlimited access to credit
markets from which he can borrow against future liquidation proceeds. As discussed
earlier, however, liquidity risk is particularly relevant precisely when the investor is
credit- or liquidity-constrained and does not have easy access to outside credit. Fur-
ther, in contrast with (2.4), the above objective function does not incorporate the fact
that the timing of intertemporal proceeds from liquidation often matters to liquidity-
constrained investors such as insurance firms faced with large liability claims, mutual
or hedge funds faced with rapid redemptions by investors, and financially distressed
firms who must meet contractual debt obligations. Finally, the objective function
above precludes the possibility of precautionary motives for the investor to smooth
liquidation proceeds over time that are potentially important, especially in highly
illiquid markets with large costs arising from the price impact of trades.

Assumption 4. In the following, the symbol u(.) generically refers to the utility
functions u1 and u2 above. The utility function u(., t) is increasing, strictly concave,
and continuously differentiable on (0,∞) for all t ∈ [0, T ]. It satisfies limc↑∞ u(c, t) =
∞ for all t ∈ [0, T ]. Moreover, it satisfies

(2.6) lim
c↓0

uc(c, t) = ∞ and lim
c↑∞

uc(c, t) = 0,

and there exist constants δ ∈ (0, 1) and γ ∈ (0,∞) such that

(2.7) δuc(c, t) ≥ uc(γc, t) ∀(c, t) ∈ (0,∞) × [0, T ].

Finally, u(c, .) is continuous and decreasing on [0, T ] for all c ≥ 0. The above condi-
tions ensure that the function uc(., t) has a continuous and strictly decreasing inverse
f(., t) mapping (0,∞) onto itself which also satisfies the property

∀δ ∈ (0,∞),∃ γ ∈ (0,∞)

such that

(2.8) f(δy, t) ≤ γf(y, t) ∀(y, t) ∈ (0,∞) × [0, T ].

Remark 2. In section 6, we analyze the scenario in which the investor could incur
costs from any remaining wealth in the asset at date T . In this case, the function
u2(., T ) could be a general, concave, possibly nonmonotonic function taking both
positive and negative values.
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We define the function

(2.9) h(W, c, t, ω) = Wμ(W, c, t, ω) for (W, c) ∈ R+ ×R+.

Assumption 5. We assume that h(.) is concave and upper semicontinuous in
(W, c) for each (t, ω)and uniformly bounded above. We also assume that h(W, ., t, ω)
is monotonically decreasing for each (W, t, ω) and h(0, 0, t, ω) = 0 so that there is no
feedback on the asset price process if the large investor’s asset holdings and liquidation
rate are zero.

From (2.2), we see that Assumption 5 implies that the expected increase in the
wealth process W (.) of the large investor decreases with the liquidation rate. The
concavity of the function h implies that liquidating at a higher rate relative to his
holdings has a disproportionately greater impact on the investor’s wealth process. For
mathematical reasons that will become clear later, we extend the definition of h(.) to
negative values of W . More precisely, we define h(W ′, c, t, ω) for W ′ < 0 to be any
nonpositive, concave, upper semicontinuous extension of h(W, c, t, ω) for W > 0 (such
an extension always exists by recalling that h(0, 0, t, ω) = 0). Therefore,

(2.10)
h(., ., t, ω) : R×R+ → R is concave and upper semicontinuous with

h(W, c, t, ω) ≤ 0 for W ≤ 0.

For convenience of notation, we also denote this extension by h(.).
We now introduce some additional notation that we will need subsequently and

some technical assumptions. For (μ1, ν) ∈ R2, define

(2.11)
−→
h (μ1, ν, t, ω) = sup

(W,c)∈R×R+

h(W, c, t, ω) − μ1W − νc.

Let

(2.12) Mt(ω) =
{

(μ1, ν) ∈ R2 :
−→
h (μ1, ν, t, ω) < ∞

}
.

Mt(ω) is the effective domain of
−→
h . It is well known that

−→
h is a nonnegative,

convex, lower semicontinuous function and Mt(ω) is a nonempty, closed convex set
with 0 ∈ Mt(ω) for all (t, ω) (see, e.g., Ekeland and Temam [9]). We assume that
h(., ., t, ω) is such that the sets Mt(ω) are uniformly bounded in the first coordinate
and uniformly bounded below in the second coordinate. A sufficient, but not necessary,
condition for this to hold is that h(W, c, t, ω) be uniformly Lipschitz in (W, c) (see,
for example, El Karoui, Peng and Quenez [11]). Denote by M the family of two-
dimensional progressively measurable processes (μ1(t, ω), ν(t, ω)) such that χ(t, ω) ∈
Mt(ω) for all (t, ω) ∈ [0, T ] × Ω, ν(.) is uniformly bounded, and

(2.13) E

[∫ T

0

‖χ(t, ω)‖2
dt

]
< ∞.

For later use, we define the sets

(2.14) Nt(ω) = R×Mt(ω)

and denote by N the family of three-dimensional progressively measurable processes
(μ0(t, ω), μ1(t, ω), ν(t, ω)) such that (μ0(t, ω), μ1(t, ω), ν(t, ω)) ∈ Nt(ω) for all (t, ω) ∈
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[0, T ] × Ω, ν(.) is uniformly bounded, and E[
∫ T

0
[‖μ0(t, ω)‖2 + ‖μ1(t, ω)‖2] dt] < ∞.

For subsequent notational convenience, we define the function −→g by

(2.15) −→g (μ0(t, ω), μ1(t, ω), ν(t, ω), t, ω) =
−→
h (μ1(t, ω), ν(t, ω), t, ω).

Assumption 6. The function
−→
h is continuous and bounded on its effective do-

main.
It follows from Theorem 12.2 in Rockafellar [28] that

(2.16) h(W, c, t, ω) = inf((μ1,ν)∈Mt(ω))

[−→
h (μ1, ν, t, ω) + Wμ1 + cν

]
.

In section 5, we present an example of a feedback function h that satisfies all the
assumptions above, and we explicitly solve the optimal liquidation problem for an
investor with logarithmic preferences. We now state an approximation lemma whose
proof we omit for the sake of brevity since it follows using standard arguments.

Lemma 2.1. For any (W, c) ∈ Θ, there exists a sequence {χn() ≡ (μ1(), ν
n()) ∈

M} and an Ft-progressively measurable processν∗(.) such that a.e.

(2.17)
h(W (t), c(t), t) = limn→∞

[−→
h (χn(t), t) + W (t)μ1(t) + c(t)νn(t)

]
,

ν∗(t, ω) = limn→∞ νn(t, ω),

and ∫ T

0

|ν∗(t, ω)c(t, ω)| dt < ∞ a.s.

3. Feasible liquidation policies. We now establish the duality between the
primal problem ((2.4) and (2.5)) of maximizing the large investor’s expected utility
with a dual problem for which it is easier to verify optimal policies and to show their
existence under broad assumptions. The space of dual processes χ(.) is

{χ(t) ≡ (μ0(t), μ1(t), ν(t)), χ ∈ N} ,

where N is defined in the paragraph following (2.14).
Remark 3. The space of dual processes is unbounded, unlike in Cuoco and Cvi-

tanic [5]. This makes our framework and analysis significantly different. Mathemati-
cally, this feature complicates the demonstration of verification and existence results
of solutions to the dual control problem.

For an arbitrary process χ ∈ N , define the exponential local martingale

(3.1) ξχ(t) = exp

(∫ t

0

κχ(s) dB(s) − 1

2

∫ t

0

|κχ(s)|2 ds
)

and the discount factor

(3.2) βχ(t) = exp

(
−
∫ t

0

μ0(s) ds

)
,

where

(3.3) κχ(t) = −σ(t)−1(μ(t) + μ1(t) − μ0(t)),
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and let

(3.4a) πχ(t) = βχ(t)ξχ(t).

Note. Although πχ(.) does not depend on ν(.), we retain the notation above to
simplify subsequent exposition. Throughout the paper, the notation πχ(.) should be
taken to represent π(μ0(.),μ1(.))(.) to indicate that it depends only on (μ0(.), μ1(.)).
From (3.4a), it follows that

(3.4b) πχ(t) = 1 −
∫ t

0

πχ(s)μ0(s) ds−
∫ t

0

πχ(s)σ(s)−1(μ(s) + μ1(s) − μ0(s)) dBs.

The following proposition establishes the fundamental relationship between fea-
sible liquidation policies and the space of dual processes.

Proposition 3.1. If (W (.), c(.)) is a feasible liquidation policy and W is the
terminal wealth, then

(3.5) E

[∫ T

0

πχ(t)(1 − ν(t))c(t) dt + πχ(T )W

]
≤ W0 + E

[∫ T

0

πχ(t)−→g (χ(t), t) dt

]

for all χ ∈ N with ν(.) ≤ 1.
Proof. The proof is in the appendix.
Equation (3.5) is a necessary condition for feasibility of the policy (c(.),W (.)) and

therefore represents a constraint on the arguments of the large investor’s optimization
problem (2.4).

4. Verification and existence of optimal liquidation policies. In this sec-
tion, we first prove a verification theorem for the optimal liquidation policy for the
large investor in terms of the solution to a dual optimization problem. We then prove
the existence of optimal liquidation policies for the large investor under fairly broad
assumptions by proving the existence of a solution to the dual problem satisfying the
conditions of the verification theorem. We thereby provide broad sufficient conditions
for the existence of optimal liquidation policies.

Suppose the large investor’s optimal liquidation/terminal wealth policy exists and
is denoted by (c∗,W ∗). By the result of Proposition 3.1, there should exist a Lagrange
multiplier λ∗ > 0 such that (c∗,W ∗, λ∗, χ∗) is a saddle point of the map

(4.1)
L(c,W, λ, χ) = U(c,W ) − λ

×
(
E

[∫ T

0

πχ(t)((1 − ν(t))c(t) −−→g (χ(t), t)) dt + πχ(T )W

]
−W0

)
,

where we maximize with respect to c,W and minimize with respect to (λ, χ). Let

(4.2)
u1(y, t) = supc≥0[u1(c, t) − yc] = u1(f1(y, t), t) − yf1(y, t),

u2(y, t) = supW≥0[u2(W,T ) − yW ] = u2(f2(y, T ), T ) − yf2(y, T ).

We have the following well-known lemma (see Karatzas et al. [17, p. 707]).
Lemma 4.1. The function u(., t) : (0,∞) → R is strictly decreasing and strictly

convex for all t ∈ [0, T ], with ∂
∂yu(y, t) = −f(y, t). Moreover, u(0+, t) = u(∞, t) and

u(∞, t) = u(0+, t), where the symbol u refers generically to the functions u1 and u2.
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If we maximize (4.1) with respect to c, we obtain

(4.3)
J(λ, χ)

= E

[∫ T

0

u1(λ(1 − ν(t))πχ(t), t) dt + λ

∫ T

0

πχ(t)−→g (χ(t), t) dt + u2(λπχ(T ), T )

]
+ λW0.

We see that the functional above is well defined for all χ ∈ N if and only if

E

[∫ T

0

u1(λ(1 − ν(t))πχ(t), t)−dt

]
< ∞ and E

[
u2(λπχ(T ), T )−

]
< ∞ for all χ ∈ N.

By Lemma 4.1 and the continuity of u1(0, t) for t ∈ [0, T ], which follows from Assump-
tion 4, u1(., t) is uniformly bounded below for all t ∈ [0, T ] and u2(., T ) is bounded
below. Therefore, both the inequalities above hold and J : (0,∞)×N → R ∪ {∞} is
well defined. We note that J(λ, χ) = ∞ if 1− ν(t) ≤ 0 on a set of positive measure in
[0, T ]×Ω (since u1(y, t) = ∞ for y ≤ 0). Therefore, it suffices to consider the problem

(4.4) inf
(λ,χ)∈(0,∞)×N ′

J(λ, χ),

where

N ′ = {χ(.) ∈ N : ν(t) ≤ 1 on [0, T ] × Ω} .

We can then prove the following verification theorem for the optimal liquidation policy.
Proposition 4.1. If (λ∗, χ∗) ∈ (0,∞) ×N ′ solves problem (4.4) and

(4.5)

E

[∫ T

0

πχ∗(t)f1(λ
∗(1 − ν∗(t))πχ∗(t), t) dt + πχ∗(T )f2(λ

∗πχ∗(T ), T )

]
< ∞,

E

[∫ T

0

πχ∗(t) dt

]
< ∞, E[πχ∗(T )] < ∞,

then the policy

(4.6)
cχ∗(t) = f1(λ

∗(1 − ν∗(t))πχ∗(t), t),

Wχ∗ = f2(λ
∗πχ∗(T ), T )

is optimal, and the optimal wealth process is given by

Wχ∗(t)(4.7)

= πχ∗(t)−1E

[∫ T

t

πχ∗(s)((1 − ν∗(s))cχ∗(s) −−→g (χ∗(s), s)) ds + πχ∗(T )Wχ∗ |Ft

]
.

Proof. The proof is in the appendix.
We now use the previous results to show that optimal liquidation policies for

the large investor exist under fairly broad assumptions on the large investor’s pref-
erences and the feedback function h(.). Before proceeding, we need to introduce
some notation. Let (μ0(.), μ1(.)) be a fixed, square integrable, progressively measur-
able process such that the set of processes ν(.) (denoted byD(μ0(.),μ1(.))), for which
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(μ0(.), μ1(.), ν(.)) ∈ N ′, is nonempty. The (t, ω)-section of the set D(μ0(.),μ1(.)) is
denoted by D(μ0(.),μ1(.))(t, ω), i.e.,

D(μ0(.),μ1(.))(t, ω) =
{
ν(t, ω) : ν(.) ∈D(μ0(.),μ1(.))

}
.

By Assumption 5, the set D(μ0(.),μ1(.))(t, ω) is closed, convex, uniformly bounded
below, and uniformly bounded above (by the definition of the set N ′).

Lemma 4.2. For a fixed, square integrable, progressively measurable process
(μ0(.), μ1(.)) and a fixed λ ∈ (0,∞), such that D(μ0(.),μ1(.)) is nonempty, if

inf
ν(.)∈D(μ0(.),μ1(.))

J(λ, μ0(.), μ1(.), ν(.))

exists, then it is uniquely attained. Moreover, infν(.)∈D(μ0(.),μ1(.))
J(λ, μ0(.), μ1(.), ν(.))

is a convex functional of πχ ≡ π(μ0(.),μ1(.)).
Proof. The proof is in the appendix.
Assumption 7. D(μ0(.),μ1(.))(t, ω) = [−Γ(t,ω), 1] for all square integrable, progres-

sively measurable (μ0(.), μ1(.)) for which D(μ0(.),μ1(.)) is nonempty. Here 0 ≤ Γ(t,ω) <
∞ is a fixed constant for each (t, ω).

It is easy to see that a sufficient, but not necessary, condition for this to hold is
that h(.) be separable, i.e., that it have the form

h(θ, c, t, ω) = g1(θ, t, ω) + g2(c, t, ω),

where g1(., t, ω) and g2(., t, ω) are concave, upper semicontinuous, and uniformly bounded
above.

Proposition 4.2. In the following, the symbol u generically refers to the func-
tions u1 and u2. An optimal liquidation policy for the large investor exists if, in
addition to Assumptions 1–7,

(a) u(∞, t) = ∞ for all t ∈ [0, T ] and 0 ≤ u(c, t) ≤ k(1 + c1−b) on (0,∞)× [0, T ]
for some k ≥ 0, 0 < b < 1;

(b) c → cu′(c, t) is increasing on (0,∞) for each t ∈ [0, T ] so that x → u(exp(x), t)
is convex on R;

(c) for all, there exists χ ∈ N ′ such that J(λ, χ) < ∞;
(d) the functions u(., t) : R+ → R and −→g (., t, ω) : Nt(ω) → R are strictly convex

and continuously differentiable on the interior of their domains for each (t, ω);
and

(e) cuc(c, t) ≤ a + (1 − b)u(c, t) on (0,∞) × [0, T ] for some a, b ≥ 0.
Note. Assumption (c) above actually follows from assumption (a). (see Remark

11.9 in Karatzas et al. [17]).
Proof. The proof is in the appendix.
It is easily checked that the assumptions of the above proposition hold if u(c, t) =

β(t)cγ , 0 < γ < 1, for some nonnegative uniformly bounded measurable function β(.),
where u(.) refers generically to the utility functions u1(.) and u2(.). Therefore, the
result of Proposition 4.2 implies that an optimal policy exists for a large investor with
power utility functions.

Remark 4. All our results hold if the investor derives no utility from wealth at
the terminal date, that is, u2 ≡ 0. Under the hypotheses of Proposition 4.2, the
investor’s optimal liquidation policy is given by (4.6) with the terminal wealth Wχ∗

equal to zero. Hence, the investor liquidates his entire position in the asset prior to
date T . In section 6, we analyze the scenario in which the terminal payoff function
u2 could be nonmonotonic and take on positive and negative values.
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5. Optimal liquidation with logarithmic utility and the liquidity dis-
count. We now use the results of the previous section to explicitly derive the optimal
liquidation policy for the large investor in the situation where his utility functions are
logarithmic. Specifically,

(5.1)
u1(c, t) = exp(−ρt) log(c),

u2(W,T ) = exp(−ρT ) log(W ).

From (4.2), we see that

(5.2)
u1(y, t) = − exp(−ρt)(1 + ρt + log(y)),

u2(y, T ) = − exp(−ρT )(1 + ρT + log(y)).

We also assume that

(5.3) h(W, c, t, ω) = −α(c, t, ω),

where α(., t, ω) is a differentiable (with a bounded derivative), nonnegative, convex
function with α(0) = 0 so that h(., ., t, ω) is concave, uniformly Lipschitz, and non-
positive. Therefore,

−→g (χ(t), t, ω) =
−→
h (χ(t), t, ω) = sup

c(t)≥0

[−α(c(t), t, ω) − ν(t)c(t)].

We assume that the function α(.) is such that −→g (χ(t), t) is zero on its effective domain.
It is easily seen that an example of such a function is the linear function α(c, t, ω) =
Γ(t, ω)c, where Γ(t, ω) > 0.

Equation (5.3) implies that μ1(t, ω) ≡ 0. We also note that ν(t, ω) ∈ [−Γ(t, ω),∞),
where Γ(t, ω) > 0. Therefore, the effective domain is given by

Nt(ω) = R× {0} × [−Γ(t, ω),∞).

The dual problem (4.4) can now be expressed as

inf
(λ,χ)∈(0,∞)×N ′

E

[
−
∫ T

0

exp(−ρt)(1 + ρt + log(1 − ν(t)) + log(λπχ(t))) dt

− exp(−ρT )(1 + ρT + log(λπχ(T )))

]
+ λW0

= (T (1 − ρ) − 1) exp(−ρT ) − 2
1 − exp(−ρt)

ρ

+ inf
λ>0

[
λW0 −

1 − (1 − ρ) exp(−ρT )

ρ
log(λ)

]

+ inf
ν
E

[
−
∫ T

0

exp(−ρt) log(1 − ν(t)) dt

]

+ inf
μ0,μ1

E

[∫ T

0

exp(−ρt)

(∫ t

0

(
μ0(s) +

1

2

∣∣κχ(s)2
∣∣) ds

)
dt

+ exp(−ρT )

(∫ T

0

(
μ0(s) +

1

2
|κχ(s)|2

)
ds

)]
.
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From the above, we obtain

(5.4) λ∗ =
1 − (1 − ρ)e−ρT

ρW0
,

(5.5) ν∗(t, ω) = −Γ(t, ω),

(5.6) μ∗
1(t, ω) = 0,

(5.7)
μ∗

0(t, ω) = arg min
μ0(t)∈R

(
μ0(t) +

1

2
σ(t, ω)−2(μ(t, ω) − μ0(t, ω))2

)

= μ(t, ω) − σ(t, ω)2.

Since σ(.) is uniformly bounded, we see that μ∗
0(.) is uniformly bounded, and

consequently we easily see that condition (4.5) of Proposition 4.1 is satisfied. By
Proposition 4.1, (4.7), and (5.4)–(5.7), the optimal liquidation rate and wealth pro-
cesses are given by

(5.8)

cχ∗(t) = W0
ρe−ρT

(1 + Γ(t, ω))(1 − (1 − ρ)e−ρT )
πχ∗(t)−1,

Wχ∗(t) = W0πχ∗(t)−1 ρe
−ρT (T + 1 − t)

(1 − (1 − ρ)e−ρT )
.

In the above, the process πχ∗(.) may be derived from (3.1)–(3.4). From (5.8), we see
that

(5.9)
cχ∗(t)

Wχ∗(t)
=

T + 1 − t

1 + Γ(t, ω)
.

Since Γ(t, ω) > 0 and is uniformly bounded, (5.9) implies that
cχ∗ (t)

Wχ∗ (t) is also uni-

formly bounded. Hence, the feedback on the stock price drift μ(Wχ∗ , cχ∗ , t, ω) =
h(Wχ∗ ,cχ∗ ,t,ω)

Wχ∗ = −Γ(t,ω)cχ∗

Wχ∗ is also uniformly bounded. If Γ(t, ω) is deterministic, then

(5.9) implies that the investor liquidates a deterministic proportion of his holdings at
each date; that is, the proportion liquidated does not depend on the stock price pro-
cess. Moreover, if Γ(t, ω) is a constant, then (5.9) implies that the investor liquidates
a decreasing proportion of his holdings in the risky asset over time.

We can use (5.4)–(5.8) to derive the optimal value function of the large investor,
which is

(5.10)

U = E

[∫ T

0

e−ρt log(cχ∗(t)) dt + e−ρT log(Wχ∗(T ))

]

= E

[∫ T

0

e−ρt

{
log(N(0)S(0)) +

∫ t

0

(
μ(s) − 1

2
σ(s)2

)
ds

+ log

(
ρe−ρT

(1 + Γ(t, ω))(1 − (1 − ρ)e−ρT )

)}
dt

+ e−ρT

{
log(S(0)) + log(N(0)) +

∫ T

0

(
μ(s) − 1

2
σ(s)2

)
ds

+ log

(
ρe−ρT

(1 − (1 − ρ)e−ρT )

)}]
.
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The liquidity discount. Subramanian and Jarrow [30] characterize the liquidity
risk of a large investor’s position in a risky asset in terms of the liquidity discount.
The liquidity discount is defined in terms of the value functions of the large investor’s
optimal liquidation problem, and an “equivalent” hypothetical price-taker’s optimal
liquidation problem. The “equivalent” hypothetical price-taker has the same prefer-
ences and holdings in the risky asset, but his trades have no effect on the stock price.
Specifically, the liquidity discount is defined as follows:

(5.11) liquidity discount = S(0) − S(0)′,

where

(5.12) U(S(0), N(0)) = Uprice-taker(S(0)′, N(0)).

As discussed in Subramanian and Jarrow [30], the liquidity discount is the difference
between the actual asset price and the asset price that would provide an equivalent
price-taker with the same optimal expected utility. In (5.12), we explicitly indicate the
dependence of the value functions on the initial stock price and holdings in the risky
asset. The equivalent price-taker’s value function is given by (5.10) with Γ(t, ω) ≡ 0.
Therefore, from (5.10) and (5.12), S(0)′ solves the equation

(5.13)

1 − (1 − ρ)e−ρT

ρ
log(S(0)) + E

[∫ T

0

e−ρt log

(
ρe−ρT

(1 + Γ(t, ω))(1 − (1 − ρ)e−ρT )

)
dt

]

=
1 − (1 − ρ)e−ρT

ρ
log(S(0)′) + E

[∫ T

0

e−ρt log

(
ρe−ρT

(1 − (1 − ρ)e−ρT )

)
dt

]
.

Hence,

(5.14) S(0) = S(0)′ exp

[
ρ

1 − (1 − ρ)e−ρT
E

[∫ T

0

e−ρt log(1 + Γ(t, ω)) dt

]]
.

Finally, from the definition (5.11), we have

(5.15)

liquidity discount

= S(0)

(
1 − exp

[
− ρ

1 − (1 − ρ)e−ρT
E

[∫ T

0

e−ρt log(1 + Γ(t, ω)) dt

]])
.

6. Extensions. In this section, we analyze two extensions of the model devel-
oped in the previous sections.4

6.1. Optimal liquidation with costs of residual terminal wealth. Thus
far, our analysis has focused on the case where the investor derives utility u2(W,T )
from wealth W at date T , where u2(., T ) is increasing and concave (all the results
presented thus far hold if u2 is identically equal to zero—see Remark 4). Given that
the investor wishes to liquidate his asset holdings, it is interesting to consider the
scenario in which the investor actually bears costs from retaining nonzero wealth in
the asset at the terminal date T . The interaction of these costs with the positive

4We thank an anonymous referee for suggesting these extensions.



1182 AJAY SUBRAMANIAN

(indirect) utility that the investor gains from the fact that residual wealth could be
used to finance future consumption could lead to nonmonotonicity in the function
u2(., T ). An example of such a function is

(6.1) u2(W,T ) = A(W ) −B(W ),

where A(.) is an increasing concave function and B(.) is a nonnegative, increasing,
and convex function.

We now modify our previous analysis by considering the class of functions u2(., T )
that are concave and possibly nonmonotonic and could take positive and negative val-
ues. It follows from the concavity of u2(., T ) that it is either monotonically decreasing
or strongly unimodal (hump-shaped) and has a single local (therefore, global) max-
imum in (0,∞). A general hump-shaped function u2(., T ) (see the functional form
(6.1)) has the economically intuitive features that, for low wealth levels, the bene-
fits outweigh the costs so that the function increases, while for wealth levels above a
threshold, the costs outweigh the benefits so that the function decreases. We make
the following additional technical assumptions on u2(., T ) that modify Assumption 4.

Assumption 4. The function u2(., T ) is strictly concave and continuously differ-
entiable on (0,∞). If it is nonmonotonic, it satisfies

(6.2) lim
c↓0

(u2)c(c, T ) = ∞.

Let ĉ be the point at which u2(c, T ) attains its unique local (therefore, global) maximum
for c ∈ [0,∞). There exist constants δ ∈ (0, 1) and γ ∈ (0,∞) such that

(6.3) δ(u2)c(c, T ) ≥ (u2)c(γc, T ) ∀c ∈ (0, ĉ).

The above conditions ensure that the function (u2)c(., T ) has a continuous and strictly
decreasing inverse f2(., T ), which also satisfies the property

(6.4) ∀δ ∈ (0,∞),∃γ ∈ (0,∞)

such that

f2(δy, T ) ≤ γf2(y, T ) ∀ y ∈ (0,∞).

The function u1 satisfies Assumption 4 and Assumptions 1–3, 5, and 6 remain unal-
tered.

Proposition 3.1, which characterizes the feasible liquidation policies of the in-
vestor, does not depend on the function u2 and, therefore, continues to hold. Since
u2(., T ) is concave, (4.1) defines the Lagrangian L(c,W, λ, χ) associated with the in-
vestor’s optimal liquidation problem. In particular, if (c∗,W ∗) is the investor’s op-
timal liquidation/terminal wealth policy, there exists a Lagrange multiplier λ∗ > 0
such that (c∗,W ∗, λ∗, χ∗) is a saddle point of the map L(c,W, λ, χ) defined in (4.1).

We define the conjugate function u2(y, T ) as in (4.2). The following lemma de-
scribes the properties of this function that we will need in what follows.

Lemma 6.1. We have

(6.5) u2(y, T ) = u2(l2(y, T ), T ) − yl2(y, T ) for y ∈ [0,∞),

where

(6.6) l2(y, T ) = 0 ∀y ∈ [0,∞)
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if u2(., T ) is monotonically decreasing, and

(6.7) l2(y, T ) = (u′
2)

−1(y, T ) = f2(y, T ) ∈ [0, ĉ] ∀y ∈ [0,∞)

if u2(., T ) is nonmonotonic. In the above, ĉ is as defined in Assumption 4.
Proof. The proof is in the appendix.
To simplify the notation in the subsequent discussion, we combine the scenario in

which u2(., T ) is strictly decreasing with the scenario in which it is nonmonotonic by
setting ĉ = 0 in the former case. We can now proceed as in section 4 to consider the
dual problem (4.4) and arrive at the following verification theorem for the optimal
liquidation policy of the investor.

Proposition 6.1. If (λ∗, χ∗) ∈ (0,∞) ×N ′ solves problem (4.4) and

(6.8)

E

[∫ T

0

πχ∗(t)f1(λ
∗(1 − ν∗(t))πχ∗(t), t) dt + πχ∗(T )l2(λ

∗πχ∗(T ), T )

]
< ∞,

E

[∫ T

0

πχ∗(t) dt

]
< ∞, E[πχ∗(T )] < ∞,

then the policy

(6.9)
cχ∗(t) = f1(λ

∗(1 − ν∗(t))πχ∗(t), t),

Wχ∗ = l2(λ
∗πχ∗(T ), T )

is optimal, and the optimal wealth process is given by

Wχ∗(t) =(6.10)

πχ∗(t)−1E

[∫ T

t

πχ∗(s)((1 − ν∗(s))cχ∗(s) −−→g (χ∗(s), s)) ds + πχ∗(T )Wχ∗ |Ft

]
.

Proof. The proof is in the appendix.
Lemma 6.1 and Proposition 6.1 ((6.6), (6.7), and (6.9)) lead to the following

result.
Corollary 6.1. (a) If the function u2(., T ) is decreasing, then the optimal

terminal wealth is zero; that is, it is optimal for the investor to liquidate his entire
holdings prior to the date T.

(b) If the function u2(., T ) is nonmonotonic, then the optimal terminal wealth
Wχ∗ ∈ [0, ĉ]; that is, the terminal wealth lies in the increasing region of the function
u2(., T ).

The above results follow from the duality between the investor’s primal problem
(2.4) and the dual problem (4.4). For a given pair of dual control parameters (λ, χ),
the liquidation rate process and the terminal wealth solve separate optimization prob-
lems. Proposition 4.1 (which depends on the martingale representation theorem for
Brownian motion) shows that there exist an optimal liquidation policy that gives rise
to the liquidation rate and terminal wealth that solve these two separate optimization
problems. Because of the separability of the investor’s problem of optimizing his ter-
minal wealth level, it is suboptimal for the investor to retain nonzero terminal wealth
in the region in which u2(., T ) is decreasing. It then follows that the optimal terminal
wealth is zero when the function u2(., T ) is decreasing and lies in the increasing region
of the function when it is nonmonotonic.

Corollary 6.1 immediately implies that the large investor’s optimal liquidation
policy is completely determined by the increasing part of the function u2(., T ). In
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other words, two concave terminal payoff functions with identical increasing parts are
associated with the same optimal liquidation policies. This result is not transparent
from an examination of the primal problem (2.4) but is immediately apparent from the
dual problem (4.4). The duality approach, therefore, facilitates the characterization
of optimal liquidation policies under more general terminal payoff functions.

Note. In the context of example (6.1), the increasing part of the function u2(., T )
is, in general, affected by both the “benefit” function A(.) and the “cost” function
B(.). Hence, the investor’s optimal liquidation policy is influenced by both these
functions.

We now derive an existence result for optimal liquidation policies. We define the
set D(μ0(.),μ1(.)) as in the discussion following Proposition 4.1. An examination of the
proof of Lemma 4.2 shows that it continues to hold.

Proposition 6.2. Suppose that conditions (a), (b), (d), and (e) of Proposi-
tion 4.2 hold for the functions u1 and u1. An optimal liquidation policy for the large
investor exists if the following conditions hold:

(a) 0 ≤ u2(W,T ) ≤ k(1 + W 1−b) for W ∈ [0, ĉ] for some k ≥ 0, 0 < b < 1.
(b) W → W (u2)

′(W,T ) is increasing for W ∈ [0, ĉ] so that x → u2(exp(x), T ) is
convex on R.

(c) For all λ ∈ (0,∞), there exists χ ∈ N ′ such that J(λ, χ) < ∞.
(d) The function u2(., T ) is strictly convex and continuously differentiable on R+,

and the function −→g (., t, ω) : Nt(ω) → R is strictly convex and continuously
differentiable on the interior of its domain for each (t, ω).

(e) W (u2)W (W,T ) ≤ a + (1 − b)u2(W,T ) for W ∈ [0, ĉ] and some a, b ≥ 0.
Proof. The proof is in the appendix.

6.2. Infinite liquidation horizon. In this section, we analyze the scenario in
which the investor’s liquidation horizon is [0,∞). Our presentation is brief because
it closely follows the discussion in sections 3 and 4. A feasible liquidation strategy is
a nonnegative process (W (.), c(.)) satisfying (2.3) with the time horizon T = ∞. A
liquidation rate process c(.) is admissible if it satisfies the first condition in (2.5) with
T = ∞. The investor’s objective is to choose an admissible liquidation strategy to
maximize

(6.11) U(c) = E

[∫ ∞

0

u1(c(t), t)) dt

]
.

The investor, therefore, optimally liquidates his holdings in the asset until they fall
to zero.

We impose Assumptions 1, 4, 5, and 6 as in section 2 with T = ∞ and define the
space of dual processes as in section 3. The following proposition is the analogue of
Proposition 3.1.

Proposition 6.3. If (W (.), c(.)) is a feasible liquidation policy, then

(6.12) E

[∫ ∞

0

πχ(t)(1 − ν(t))c(t) dt

]
≤ W0 + E

[∫ ∞

0

πχ(t)−→g (χ(t), t) dt

]

for all χ ∈ N with ν(.) ≤ 1.
Proof. The proof proceeds exactly as the proof of Proposition 3.1 with

T = ∞.
The Lagrangian for the investor’s optimal liquidation problem is

(6.13) L(c, λ, χ) = U(c) − λ

(
E

[∫ ∞

0

πχ(t)((1 − ν(t))c(t) −−→g (χ(t), t)) dt

]
−W0

)
.
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If an optimal liquidation policy c∗(.) exists, then there exists a Lagrange multiplier
λ∗ > 0 and a dual process χ∗ such that (c∗, λ∗, χ∗) is a saddle point of the above map
where we maximize with respect to c and minimize with respect to (λ, χ). We define
the conjugate function u1 as in (4.2). The investor’s dual problem is defined by (4.4),
where

(6.14)

J(λ, χ) = E

[∫ ∞

0

u1(λ(1 − ν(t))πχ(t), t) dt + λ

∫ ∞

0

πχ(t)−→g (χ(t), t) dt

]
+ λW0.

The following proposition is the analogue of the verification Proposition 4.1.
Proposition 6.4. If (λ∗, χ∗) ∈ (0,∞) ×N ′ solves the problem (4.4) and

(6.15) E

[∫ ∞

0

πχ∗(t)f1(λ
∗(1 − ν∗(t))πχ∗(t), t) dt < ∞, E

[∫ ∞

0

πχ∗(t) dt

]]
< ∞,

then the policy

(6.16) cχ∗(t) = f1(λ
∗(1 − ν∗(t))πχ∗(t), t)

is optimal, and the optimal wealth process is given by

(6.17) Wχ∗(t) = πχ∗(t)−1E

[∫ ∞

t

πχ∗(s)((1 − ν∗(s))cχ∗(s) −−→g (χ∗(s), s)) ds |Ft

]
.

Proof. The proof proceeds exactly as the proof of Proposition 4.1 setting T =
∞, u2 ≡ 0, f2 ≡ 0, and W ∗ = 0.

The analysis now proceeds along the lines of the analysis following Proposition 4.1.
Lemma 4.2 holds in this setting, and we impose Assumption 7. The existence result
Proposition 4.2 holds as stated in this setting with T = ∞, u2 ≡ 0, f2 ≡ 0, and
W ∗ = 0.

7. Conclusions. We study the optimal liquidation problem for an investor with
a large holding in a risky asset where there may be a nonlinear path dependent feed-
back on the asset price process due to his liquidation policy. Under broad and general
assumptions on the large investor’s preferences, and the parameters of the asset price
process, we establish the duality between the investor’s optimal liquidation problem
and a dual optimization problem. We prove verification and existence results for op-
timal liquidation policies for the large investor. In particular, our results imply the
existence of optimal policies if the investor has power utility functions. We explicitly
derive the optimal policy when the large investor’s utility functions are logarithmic.
We use our results to characterize the liquidity discount, which is a measure of the
liquidity risk of the investor’s position in the risky asset. The derivation of conditions
under which optimal liquidation policies for the large investor exist is important from
an economic standpoint since it identifies a class of viable partial equilibrium models
of large investor behavior. In future research, it would be interesting and important
to construct a general equilibrium model of large investor behavior.

Appendix.
Proof of Proposition 3.1. Recall that, by definition (2.15), −→g (χ(t), t) =

−→
h (μ1(t), ν(t), t). Using (2.2) and Itǒ’s lemma,

πχ(t)W (t) +

∫ t

0

πχ(s)c(s) ds−
∫ t

0

πχ(s)[W (s)σ(s) + W (s)κχ(s)] dB(s)

= W0 +

∫ t

0

πχ(s)(h(W (s), c(s), s) −W (s)μ1(s)) ds.
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Since ν(.) ≤ 1 by hypothesis,
∫ T

0
c(s) ds < ∞ by the definition of the feasibility of the

liquidation policy, and πχ(.) has continuous paths a.s., we see that
∫ t

0
πχ(s)ν(s)c(s) ds

exists a.s. for each t ∈ [0, T ]. Subtracting the term
∫ t

0
πχ(s)ν(s)c(s) ds from both sides,

we see that for all χ ∈ N ,

(A.1)

πχ(t)W (t) +

∫ t

0

πχ(s)(1 − ν(s))c(s) ds−
∫ t

0

πχ(s)[W (s)σ(s) + W (s)κχ(s)] dB(s)

= W0 +

∫ t

0

πχ(s)(h(W (s), c(s), s) −W (s)μ1(s) − c(s)ν(s)) ds

≤ W0 +

∫ t

0

πχ(s)
−→
h (χ(s), s) ds

from the definition (2.11) of
−→
h (.). For each positive integer n, let

τn = T ∧ inf

{
t ∈ [0, T ] :

∫ t

0

[|πχ(s)(W (s)σ(s) + W (s)κχ(s))|2

+ πχ(s)(1 − ν(s))c(s)] ds ≥ n

}
.

Since the stochastic integral in (A.1) is a martingale on [0, τn], taking expectations
gives

(A.2)

E[πχ(τn)W (τn)]+E

[∫ τn

0

πχ(t)(1 − ν(t))c(t) dt

]
≤ W0+E

[∫ τn

0

πχ(t)
−→
h (χ(t), t) dt

]
.

Since W (τn) ≥ 0 a.s. (by the definition of feasibility of the liquidation strategy),

τn ↑ T ,
−→
h (.) is nonnegative and bounded on its effective domain, and ν(.) ≤ 1, we

see from (A.2) and the monotone convergence theorem that

lim
n→∞

E

[∫ τn

0

πχ(t)(1 − ν(t))c(t) dt

]
= E

[∫ T

0

πχ(t)(1 − ν(t))c(t) dt

]
.

An application of the monotone convergence theorem and Fatou’s lemma implies that

E

[∫ T

0

πχ(t)(1 − ν(t))c(t) dt + πχ(T )W

]

≤ W0 + E

[∫ T

0

πχ(t)
−→
h (χ(t), t) dt

]
for all χ ∈ N with ν(.) ≤ 1.

This completes the proof.
Proof of Proposition 4.1. Let the liquidation process be defined by c∗ = cχ∗ and

the terminal wealth level by W ∗ = Wχ∗ .
Step 1. Optimality of (c∗(.),W ∗) given feasibility. We shall first show that the

policy (c∗(.),W ∗) is optimal provided it is feasible. Since u1(1, t)−y ≤ supc>0[u1(c, t)−
yc] = u1(f1(y, t), t) − yf1(y, t), we have

E

[∫ T

0

u1(c
∗(t), t)−dt

]
≤
∫ T

0

u1(1, t)
−dt + λ∗E

[∫ T

0

(1 − ν∗(t))πχ∗(t) dt

]
< ∞.
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The last inequality follows from the fact that E[
∫ T

0
(1 − ν∗(t))πχ∗(t) dt] < ∞ as ν∗(.)

is uniformly bounded and E[
∫ T

0
πχ∗(t) dt] < ∞ by assumption. Therefore, the pro-

cess c∗(.)(and similarly the random variable W ∗) satisfies (2.5). We shall now prove
that U(c∗,W ∗) ≥ U(c,W ) for all feasible liquidation and terminal wealth processes
(c(.),W ). By (2.7), we see that (4.5) implies that

(A.3) E

[∫ T

0

πχ∗(t)f1(λ(1 − ν∗(t))πχ∗(t), t) dt

]
+ E [πχ∗(T )f2(λπχ∗(T ), T )] < ∞

holds for all λ ∈ (0,∞). Since λ∗ is optimal by assumption, we have

0 = lim
ε→0

J(λ∗ + ε, χ∗) − J(λ∗, χ∗)

ε

= E

[∫ T

0

lim
ε→0

u1((λ
∗ + ε)(1 − ν∗(t))πχ∗(t), t) − u1(λ

∗(1 − ν∗(t))πχ∗(t), t)

ε

+

∫ T

0

πχ∗(t)−→g (χ∗(t), t) dt +
u2((λ

∗ + ε)πχ∗(T ), T ) − u2(λ
∗πχ∗(T ), T )

ε
+ W0

]

= W0 − E

[∫ T

0

πχ∗(t)[(1 − ν∗(t))c∗(t) −−→g (χ∗(t), t)] dt + πχ∗(T )W ∗

]
,

where the second and third equalities above follow from the dominated convergence
theorem and (A.3). It follows that

W0 = E

[∫ T

0

πχ∗(t)[(1 − ν∗(t))c∗(t) −−→g (χ∗(t), t)] dt + πχ∗(T )W ∗

]
.

Let (c(.),W ) be any feasible liquidation and terminal wealth process. Since

u1(f1(y, t), t) − u1(c, t) ≥ y[f1(y, t) − c] ∀c > 0, y > 0,

u2(f2(y, T ), T ) − u2(W,T ) ≥ y[f2(y, T ) −W ] ∀W > 0, y > 0,

(3.5) leads to

U(c∗,W ∗) − U(c,W ) = E

[∫ T

0

(u1(c
∗(t), t) − u1(c(t), t)) dt + u2(W

∗, T ) − u2(W,T )

]

≥ λ∗E

[∫ T

0

πχ∗(t)(1 − ν∗(t))(c∗(t) − c(t)) dt

]
+ λ∗E[πχ∗(T )(W ∗ −W )] ≥ 0.

Therefore, (c∗(.),W ∗) is optimal provided it is feasible.
Step 2: Feasibility of (c∗(.),W ∗). From (4.7), we see that

πχ∗(t)Wχ∗(t) +

∫ t

0

πχ∗(s)((1 − ν∗(s))c∗(s) −−→g (χ∗(s), s)) ds

is a P-martingale. By the martingale representation theorem, there exists a pre-

dictable process φ(.) with
∫ T

0
φ(t)2dt < ∞ a.s. such that

πχ∗(t)Wχ∗(t) +

∫ t

0

πχ∗(s)((1 − ν∗(s))c∗(s) −−→g (χ∗(s), s)) ds = W0 +

∫ t

0

φ(s) dB(s).
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Define the pair (α, θ) by

πχ∗(t)(σ(t)θ(t) + Wχ∗(t)κχ∗(t)) = φ(t),

α(t) = Wχ∗(t) − θ(t).

By Itǒ’s lemma, we easily see that

Wχ∗(t) = W0 +

∫ t

0

[α(s)μ∗
0(s) + θ(s)(μ(s) + μ∗

1(s)) + c∗(s)ν∗(s) + −→g (χ∗(s), s)] ds

+

∫ t

0

θ(s)σ(s) dB(s) −
∫ t

0

c∗(s) ds.

Therefore, in order to prove that (c∗(.),W ∗) is feasible, we need to show, from (2.2)
and the definition of the feedback function h(.), that

α(.) ≡ 0,

h(θ(t), c∗(t), t) = −→g (χ∗(t), t) + θ(t)μ∗
1(t) + c∗(t)ν∗(t),

and Wχ∗(t) ≥ 0 a.s. for t ∈ [0, T ] with Wχ∗(T ) = W ∗. We shall now prove these

assertions. By the result of Lemma 2.1, there exist processes (μ1(.), ν
n′

(.)) ∈ M such
that

(A.4) h(θ(t), c∗(t), t) = lim
n′→∞

[−→
h (μ1(t), ν

n′
(t), t) + θ(t)μ1(t) + c∗(t)νn

′
(t)
]

and a process ν(.) with
∫ T

0
ν(t)c∗(t) dt < ∞ a.s. such that νn

′
(.) ↑ ν(.) a.e. Define a

process μn
0 (.) by

(A.5) μn
0 (t) = (μ∗

0(t) − n)1α(t)>0 + (μ∗
0(t) + n)1α(t)<0.

Define the two-dimensional sequence of processes χn,n′
(.) by

(A.6) χn,n′
(t) = (μn

0 (t), μ1(t), ν
n′

(t)).

By Assumption 6 and (2.15), (2.16), (A.4), and (A.5), we easily see that

−∞1α(t) �=0 + h(θ(t), c∗(t), t)1α(t)=0 = lim
n,n′→∞

−→
h (μ1(t), ν

n′
(t), t) + α(t)μn

0 (t)

+ θ(t)μ1(t)+c∗(t)νn
′
(t) = lim

n,n′→∞
−→g (χn,n′

(t), t)+α(t)μn
0 (t)+θ(t)μ1(t) + c∗(t)νn

′
(t)

since
−→
h (μ1(t), ν

n′
(t), t) = −→g (χn,n′

(t), t) by (2.15). Define the processes

ζn(t) =

∫ t

0

(μn
0 (s) − μ∗

0(s)) ds

+

∫ t

0

σ(s)−1(μ1(s) − μ∗
1(s) − (μn

0 (s) − μ∗
0(s)))(dB(s) − κχ∗(s) ds)

and the sequence of stopping times (for each n)

τnm = T ∧ inf

⎧⎨
⎩

t ∈ [0, T ] : |ζn(t)| + |πχ∗(t)| + |Wχ∗(t)| ≥ m, or∫ t

0

[|σ(s)θ(s) + Wχ∗(s)κχ∗(s)|2 + | ν(s)c∗(s) |] ds ≥ m

⎫⎬
⎭ .
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Then τnm ↑ T a.s. for each n. Denoting

χn,n′

ε,m (t) = χ∗(t) + ε[χn,n′
(t) − χ∗(t)]1t≤τn

m

for ε ∈ (0, 1), we have χn,n′

ε,m ∈ N (since the sets Nt are convex). We now see that

(A.7)

lim
ε↓0

J(λ∗, χn,n′

ε,m ) − J(λ∗, χ∗)

ε

= lim
ε↓0

E

⎡
⎣∫ T

0

u1(λ
∗(1 − νn

′

ε,m(t))π
χn,n′
ε,m

(t), t) − u1(λ
∗(1 − ν∗(t))πχ∗(t), t)

ε
dt

⎤
⎦

−λ∗
∫ T

0

πχ∗(t)
−→g (χ∗(t), t)

ε

(
1 −

π
χn,n′
ε,m

(t)

πχ∗(t)

)
dt

+λ∗
∫ T

0

π
χn,n′
ε,m

(t)
−→g (χn,n′

ε,m (t), t) −−→g (χ∗(t), t)

ε
dt

+
u2(λ

∗π
χn,n′
ε,m

(T ), T ) − u2(λ
∗πχ∗(T ), T )

ε

≤ λ∗E

[∫ T

0

ζn(t ∧ τnm)πχ∗(t)((1 − ν∗(t))c∗(t) −−→g (χ∗(t), t)) dt

+

∫ τn
m

0

πχ∗(t)(νn
′
(t) − ν∗(t))c∗(t) dt

+

∫ τn
m

0

πχ∗(t)(−→g (χn,n′
(t), t) −−→g (χ∗(t), t)) dt

+ ζn(τnm)πχ∗(T )W ∗

]

= E

[∫ τn
m

0

ζn(t)πχ∗(t)((1 − ν∗(t))c∗(t) −−→g (χ∗(t), t)) dt + ζn(τnm)πχ∗(τnm)Wχ∗(τnm)

+

∫ τn
m

0

πχ∗(t)(
−→
g(χn,n′

(t), t) + νn
′
(t)c∗(t) −−→g (χ∗(t), t) − ν∗(t)c∗(t)) dt

]
,

where the first inequality above follows from the convexity of −→g and the dominated
convergence theorem and the last equality follows from the definition (4.7) of Wχ∗ .

The first term in the sequence of expressions above limε↓0
J(λ∗,χn,n′

ε,m )−J(λ∗,χ∗)

ε is non-

negative for all n, n′,m since J(λ∗, χn,n′

ε,m ) attains a minimum at ε = 0 as χ∗ is optimal
by hypothesis. By an application of Itǒ’s lemma, we can easily show that

E

[∫ τn
m

0

ζn(t)πχ∗(t)[(1 − ν∗(t))c∗(t) −−→g (χ∗(t), t)] dt + ζn(τnm)πχ∗(τnm)Wχ∗(τnm)

]

= E

[∫ τn
m

0

πχ∗(t)[α(t)(μn
0 (t) − μ∗

0(t)) + θ(t)(μ1(t) − μ∗
1(t))] dt

]
.
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Substituting the above into (A.7), we see that

(A.8)

lim
ε↓0

J(λ∗, χn,n′

ε,m ) − J(λ∗, χ∗)

ε

≤ E

[∫ τn
m

0

πχ∗(t)(α(t)(μn
0 (t) − μ∗

0(t)) + θ(t)(μ1(t) − μ∗
1(t)) + c∗(t)(νn

′
(t) − ν∗(t))

+ −→g (χn,n′
(t), t) −−→g (χ∗(t), t)) dt

]
.

The left-hand side of the equation above is nonnegative by hypothesis for all n, n′,m.
If Λ denotes Lebesgue measure on [0, T ], and if Λ × P ((t, ω) : α(t, ω) �= 0) > 0, then
(A.5) and (A.6) imply that

lim
n→∞

E

[∫ T

0

πχ∗(t)α(t)(μn
0 (t) − μ∗

0(t)) dt

]
= −∞.

Since −→g (χn,n′
(t), t) =

−→
h (μ1(t), ν

n′
(t), t) does not depend on μn

0 (), we easily see that
the right-hand side of (A.8) is strictly negative for sufficiently large n and m, which
contradicts the fact that the left-hand side of (A.8) is nonnegative by hypothesis for
every n, n′ and m. Hence, α(t) = 0, Λ × P a.s. on [0, T ] × Ω. Therefore, we have

(A.9)

lim
ε↓0

J(λ∗, χn,n′

ε,m ) − J(λ∗, χ∗)

ε

≤ E

[∫ τn
m

0

πχ∗(t)(θ(t)(μ1(t) − μ∗
1(t)) + c∗(t)(νn

′
(t) − ν∗(t))

+ −→g (χn,n′
(t), t) −−→g (χ∗(t), t)) dt

]

= E

[∫ τn
m

0

πχ∗(t)(θ(t)(μ1(t) − μ∗
1(t)) + c∗(t)(νn

′
(t) − ν∗(t))

+
−→
h (μ1(t), ν

n′
(t), t) −−→

h (μ∗
1(t), ν

∗(t), t)) dt

]

= E

[∫ τn
m

0

πχ∗(t)[(−θ(t)μ∗
1(t)) − c∗(t)(ν∗(t)) + h(θ(t), c∗(t), t) −−→

h (μ∗
1(t), ν

∗(t), t)

+
−→
h (μ1(t), ν

n′
(t), t) + θ(t)μ1(t) + c∗(t)νn

′
(t) − h(θ(t), c∗(t), t)] dt

]
.

Since

h(θ(t), c∗(t), t) = lim
n′→∞

[
−→
h (μ1(t), ν

n′
(t), t) + θ(t)μ1(t) + c∗(t)νn

′
(t)]

and

−→
h (μ∗

1(t), ν
∗(t), t) ≥ h(θ(t), c∗(t), t) − θ(t)μ∗

1(t) − c∗(t)ν∗(t)
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and the first expression in (A.9) is nonnegative by hypothesis, we see that equality
must in fact hold in the expression above by applying the dominated convergence

theorem and using the fact that h(., t, ω) is uniformly Lipschitz and
−→
h is uniformly

bounded by assumption. Since α(t) = 0, and −→g (χ∗(t), t) =
−→
h (μ∗

1(t), ν
∗(t), t) by

(2.15), we see that

h(θ(t), c∗(t), t) = −→g (χ∗(t), t) + θ(t)μ∗
1(t) + c∗(t)ν∗(t).

We have therefore shown that α(.) ≡ 0 and

h(θ(t), c∗(t), t) =
−→
h (μ∗

1(t), ν
∗(t), t) + θ(t)μ∗

1(t) + c∗(t)ν∗(t).

Clearly, Wχ∗(T ) = W by (4.7). Therefore, it remains only to show that Wχ∗(t) ≥ 0
a.s. for all t ∈ [0, T ]. We prove this by contradiction.

Since α(s) = Wχ∗(s) − θ(s) by definition, we see that α(s) = 0 implies that
θ(s) = Wχ∗(s). Therefore, we have

Wχ∗(t) = W0 +

∫ t

0

[Wχ∗(s)μ(s) + h(Wχ∗(s), c∗(s), s)] ds

+

∫ t

0

Wχ∗(s)σ(s) dB(s) −
∫ t

0

c∗(s) ds.

Suppose, to the contrary, that P (Wχ∗(t) < 0) > 0 for some t ∈ [0, T ]. Let τε = inf{t :
Wχ∗(t) < −ε} ∧ T . Clearly, P [τε < T ] > 0 for some ε > 0. Clearly, Wχ∗(τ) ≤ 0 on
τε < T . On [τε, T ], we have

Wχ∗(t) = Wχ∗(τε) +

∫ t

τε

[Wχ∗(s)μ(s) + h(Wχ∗(s), c∗(s), s)] ds

+

∫ t

0

Wχ∗(s)σ(s) dB(s) −
∫ t

0

c∗(s) ds.

Since h(W, c) ≤ 0 for W ≤ 0 from the definition (2.10) of h(.) and Assumption 5, we
can compare the above equation with the equation

�

W (t) = Wχ∗(τε) +

∫ t

τε

[
�

W (s)μ(s)] ds +

∫ t

τε

�

W (s)σ(s) dB(s).

By the comparison theorem for stochastic differential equations (see Proposition 2.18
in Karatzas and Shreve [19]), we see that on [τε, T ], P [Wχ∗(t) ≤

�

W (t)] = 1. Since
�

W (T ) < 0 on the set {τε < T} as Wχ∗(τ) ≤ 0 onτε < T , we have P [Wχ∗(T ) ≤
�

W (T ) <
0] > 0, which contradicts the fact that Wχ∗(T ) = W ≥ 0 a.s. This contradiction allows
us to conclude that Wχ∗(t) ≥ 0 a.s. This completes the proof.

Proof of Lemma 4.2. By Lemma 4.1 and Assumption 4, u1(., t), u2(., T ) are
both bounded below. For a fixed process (μ0(.), μ1(.)) and a fixed λ as in the statement
of the lemma, we note that

u1(λ(1 − η)πχ(t, ω), t) + λπχ(t, ω)−→g (μ0(t, ω), μ1(t, ω), η, t, ω)

is a strictly convex, lower semicontinuous function of η ∈ D(μ0(.),μ1(.))(t, ω) that is
uniformly bounded below. Since D(μ0(.),μ1(.))(t, ω) is closed, convex, and bounded for
each (t, ω), we see that

inf
η∈D(μ0(.),μ1(.))(t,ω)

u1(λ(1 − η)πχ(t, ω), t) + λπχ(t, ω)−→g (μ0(t, ω), μ1(t, ω), η, t, ω)
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exists and is uniquely attained by some η∗(t,ω). Moreover, by measurable selection

theorems of the Dubins–Savage type, the process ν∗(.) defined by ν∗(t, ω) = η∗(t,ω) is
bounded and progressively measurable. By an application of Fatou’s lemma, we see
that if

infν(.)∈D(μ0(.),μ1(.))
J(λ, μ0(.), μ1(.), ν(.))

= E

[∫ T

0

u1(λ(1 − ν(t))πχ(t), t) dt + λ

∫ T

0

πχ(t)−→g (χ(t), t) dt + u2(λπχ(T ), T )

]
+ λW0

exists, it is uniquely attained by the process ν∗(.). From (3.4b), it follows easily
that {(πχ, πχμ0, πχμ1) : χ ∈ N} is a convex set and that πχis uniquely determined
by (μ0(.), μ1(.)). It clearly suffices to consider the case where the infimum above is
attained. Let

infν(.)∈D
(μ1

0(.),μ1
1(.))

J(λ, μ1
0(.), μ

1
1(.), ν(.)) = J(λ, μ1

0(.), μ
1
1(.), ν

1(.)),

infν(.)∈D
(μ2

0(.),μ2
1(.))

J(λ, μ2
0(.), μ

2
1(.), ν(.)) = J(λ, μ2

0(.), μ
2
1(.), ν

2(.)).

By the convexity of u1(.), u2,
−→g (.), we have (with 0 < q < 1)

(1 − q)J(λ, μ1
0(.), μ

1
1(.), ν

1(.)) + qJ(λ, μ2
0(.), μ

2
1(.), ν

2(.))

> E

[∫ T

0

u1((1 − q)λ(1 − ν1(t))πχ1(t) + qλ(1 − ν2(t))πχ2(t), t) dt

+λ

∫ T

0

[(1 − q)πχ1(t)−→g (χ1(t), t) + qπχ2(t)−→g (χ2(t), t)] dt

+ u2(λ(1 − q)πχ1(T ) + λqπχ2(T ), T )

]
+ λW0.

If we define

πχ∗(t) = (1 − q)πχ1(t) + qπχ2(t),

(1 − ν∗(t)) =
(1 − q)πχ1(t)(1 − ν1(t)) + qπχ2(t)(1 − ν2(t))

πχ∗(t)
,

μ∗
0(t) =

(1 − q)πχ1(t)μ1
0(t) + qπχ2(t)μ2

0(t)

πχ∗(t)
,

μ∗
1(t) =

(1 − q)πχ1(t)μ1
1(t) + qπχ2(t)μ2

1(t)

πχ∗(t)
,

we see that

(1 − q)J(λ, μ1
0(.), μ

1
1(.), ν

1(.)) + qJ(λ, μ2
0(.), μ

2
1(.), ν

2(.))

> E

[∫ T

0

u1(λ(1 − ν∗(t))πχ∗(t), t) +

∫ T

0

λπχ∗(t)−→g (χ∗(t), t) dt + u2(λπχ∗(T ), T )

+ λW0

]
≥ infν(.) J(λ, μ∗

0(.), μ
∗
1(.), ν(.)).
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Note. In the inequalities above, we have used the fact that the set {(πχ, πχμ0, πχμ1):
χ ∈ N ′} is a convex set, which follows from relation (3.4b), and that u1(.), u2(.),

−→g (.)
are convex functions of their arguments. It follows that infν(.)∈D(μ0(.),μ1(.))

J(λ, μ0(.),

μ1(.), ν(.)) is a convex functional of πχ.
This completes the proof.
Proof of Proposition 4.2. Since the proof of this proposition is rather involved,

we will split it into several steps. We shall first prove that for each λ ∈ (0,∞), the
problem

(A.10) V (λ) = inf
χ∈N ′

J(λ, χ)

has a solution. By hypothesis (c) of the proposition, V (λ) exists for each λ.
Step 1. By the result of Lemma 4.2, if

inf
ν(.)∈D(μ0(.),μ1(.))

J(λ, χ)

exists, it is attained uniquely by some bounded, progressively measurable process ν∗()
for each fixed λ and square-integrable, progressively measurable process (μ0(.), μ1(.))
for which the set D(μ0(.),μ1(.)) is nonempty.

Step 2. The problem (A.10) can be rewritten as

V (λ) = inf
(μ0(.),μ1(.))

inf
ν(.)∈Dμ0(.),μ1(.)

J(λ, μ0(.), μ1(.), ν(.)).

Since V (λ) exists by hypothesis (c) of the proposition, infν(.)∈Dμ0(.),μ1(.)
J(λ, πχ, ν(.))

exists and is attained uniquely by some bounded, progressively measurable pro-
cess ν∗() for each fixed λ and square integrable, progressively measurable process
(μ0(.), μ1(.)) for which the set D(μ0(.),μ1(.)) is nonempty. By arguments analogous to
those used in the proof of Theorem 3 in Cuoco and Cvitanic [5], the problem above
can be rewritten as

V (λ) = inf
(πχ:χ∈N ′)

inf
ν(.)∈Dμ0(.),μ1(.)

J(λ, πχ, ν(.)),

where J(λ, πχ, ν(.)) = J(λ, μ0(.), μ1(.), ν(.)).
Note. In the above, we have used the fact that πχ (defined in (3.4a)) does not

depend on ν(.).
Moreover, by arguments identical to those in the proof of Theorem 3 in Cuoco

and Cvitanic [5], the set Π = (πχ : χ ∈ N ′) is a convex subset of L2([0, T ] × Ω) and
the functional J(λ, ., ν(.)) is convex on Π. By the result of Lemma 4.2, the functional

T (λ, .) = inf
ν(.)

J(λ, . . . , ν(.)) is also convex on Π.

We can now write

(A.11) V (λ) = inf
(πχ:χ∈N ′)

T (λ, πχ),

where T (λ, .) is convex on Π.
Step 3. We shall now prove that in the problem (A.11) above, it is enough to

consider the set of processes πχ defined by processes (μ0(.), μ1(.)) for which ‖μ0‖2 is
uniformly bounded by some constant Λ. By Assumption 4 and Lemma 4.1, u1(c, t)
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is uniformly bounded below for all (c, t) ∈ [0,∞) × [0, T ]. By hypothesis (c) of the
proposition, for each λ ∈ (0,∞), there exists χ∗ ∈ N ′ such that J(λ, χ∗) = A(λ) < ∞.
We have

(A.12)

T (λ, πχ) = inf
ν(.)∈Dμ0(.),μ1(.)

E

[∫ T

0

u1(λ(1 − ν(t))πχ(t), t) dt

+ λ

∫ T

0

πχ(t)−→g (χ(t), t) dt + u2(λπχ(T ), T )

]
+ λW0

≥ Ψ + u2

(
λ

([
exp

(
−E

∫ T

0

μ0(s) ds−
1

2
E

∫ T

0

κχ(s)2 ds

)])
, T

)
+ λW0

= Ψ + u2

(
λ

([
exp

(
−E

∫ T

0

μ0(s) ds−
1

2
E

×
∫ T

0

(σ(s)−1(μ(s) + μ1(s) − μ0(s)))
2 ds

)])
, T

)
+λW0

= Ψ + u2

(
λ

([
exp

(
−1

2
E

∫ T

0

σ(s)−2μ0(s)
2 ds− E

∫ T

0

[
σ(s)−1μ0(s)(μ(s) + μ1(s) + σ(s))

− 1

2
σ(s)−2(μ(s) + μ1(s))

2

]
ds

)])
, T

)
+ λW0

≥ Ψ + u2

(
λ

(
exp

(
−1

2
E

∫ T

0

σ(s)−2μ0(s)
2 ds + ME

∫ T

0

|μ0(s)| ds
))

, T

)
,

where Ψ is a lower bound on the integral
∫ T

0
u1(λ(1 − ν(t))πχ(t), t) dt. The first

inequality in (A.12) follows from Jensen’s inequality, condition (b) of the proposition,
and the fact that −→g (.) is nonnegative and independent of μ0(.) by (2.16). The last
inequality follows from the fact that u2(.) is decreasing. The constant M in the last
inequality above is the uniform bound on |σ(s)−1(μ(s) + μ1(s)) + 1| which exists by
Assumption 1.

Since J(λ, χ∗) = A(λ) < ∞ for some χ∗ ∈ N ′, it is clearly enough in problem
(A.11) to consider χ ∈ N ′ for which

u2

(
λ

(
exp

(
−1

2
E

∫ T

0

σ(s)−2μ0(s)
2 ds + ME

∫ T

0

|μ0(s)| ds
))

, T

)
≤ A(λ) or

exp

(
−1

2
E

∫ T

0

σ(s)−2μ0(s)
2 ds + ME

∫ T

0

|μ0(s)| ds
)

≥ 1

λ
u2

−1(A(λ), T )

(since u2 is decreasing), or

E

∫ T

0

σ(s)−2μ0(s)
2 ds−ME

∫ T

0

|μ0(s)| ds
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is uniformly bounded above, which in turn implies that ‖μ0‖2 is uniformly bounded
by some constant Λ since σ(.) and σ−1(.) are uniformly bounded by assumption. Let
us denote ΠΛ = {πχ : χ ∈ N ′; ‖μ0‖2 ≤ Λ}. Then, we can rewrite problem (A.11) as

(A.13) V (λ) = inf
(πχ:πχ∈ΠΛ)

T (λ, πχ).

Step 4. Let Πl
Λ = ΠΛ ∩{πχ : χ ∈ N ′; ‖μ0‖∞ ≤ l} for each l ∈ Z++; i.e., Πl

Λ is the
subset of ΠΛ consisting of those processes πχ for which |μ0| is uniformly bounded by
l. Clearly, for each πχ ∈ ΠΛ, there exists a sequence πχn ∈ Πn

Λ such that

(A.14) lim
n→∞

πχn(t, ω) = πχ(t, ω) a.e. on [0, T ] × Ω.

In this step, we prove that the problem

V l(λ) = inf
(πχ:πχ∈Πl

Λ)
T (λ, πχ)

has a solution; i.e., the minimum above exists and is attained. Since χ ∈ N ′ ⇒ |μ1|
is uniformly bounded (Assumption 6) , we can use arguments identical to those used
in the proof of Theorem 3 in Cuoco and Cvitanic [5] to show that Πl

Λ is convex,
uniformly bounded, and closed in L2([0, T ] × Ω).

We now prove that T (λ, .) is lower semicontinuous on Πl
Λ. Suppose this is not the

case. Then, there is an α > 0, πχ ∈ Πl
Λ, and a sequence {πχn} converging to πχ in

L2([0, T ] × Ω) such that T (λ, πχn) ≤ α < T (λ, πχ). Since Πl
Λ is convex, uniformly

bounded, and closed in L2([0, T ]×Ω), there exists a subsequence {πχn} ⊂ co({πχn})
such that (πχn , μn

0 , μ
n
1 ) → (πχ, μ0, μ1) a.e. and it follows from the convexity of T (λ, .)

that T (λ, πχn) ≤ α for all n. By the result of Step 1, there exist processes νn and ν

such that (μn
0 , μ

n
1 , ν

n) ∈ N ′ and (μ0, μ1, ν) ∈ N ′ satisfying

T (λ, πχn) = J(λ, πχn , νn),

T (λ, πχ) = J(λ, πχ, ν).

Moreover, it is proved in Lemma A.1 following this proposition that νn → ν a.e. Due
to the continuity of u1(., t), u2, and −→g (.) and the fact that they are uniformly bounded
below, we can apply Fatou’s lemma to conclude that

α < T (λ, πχ) = J(λ, πχ, ν) ≤ lim inf
n→∞

J(λ, πχn , νn) = lim inf
n→∞

T (λ, πχn) ≤ α,

which is a contradiction. Therefore, T (λ, .) is lower semicontinuous on Πl
Λ. We have

therefore shown that Πl
Λ is convex, uniformly bounded, and closed in L2([0, T ] × Ω)

and that T (λ, .) is convex and lower semicontinuous on Πl
Λ. We can now apply the

results of Proposition 2.1.2 in Ekeland and Temam [9] to conclude that

(A.15) V l(λ) = inf
(πχ:πχ∈Πl

Λ)
T (λ, πχ)

exists and is attained. Moreover, by (A.13), (A.14), Lemma A.1, and Fatou’s lemma,

lim
l→∞

V l(λ) = V (λ) and V l(λ) decreases with l.

Step 5. We now show that the minimum in the definition (A.10) of V (λ) is
attained. By the results of the previous steps, we have for each l V l(λ) = J(λ, μl

0(.),
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μl
1(.), ν

l(.)) for some sequence of processes {(μl
0(.), μ

l
1(.), ν

l(.))} which is uniformly
bounded in L2

3([0, T ]×Ω); i.e., {‖μl
0‖2 + ‖μl

1‖2 + ‖νl‖2} is uniformly bounded (using
the result of Step 3).

Since the space L2
3([0, T ] × Ω) is locally convex and meterizable, it follows that

there is a subsequence, again denoted by {(μl
0(.), μ

l
1(.), ν

l(.))} for notational simplicity,
converging weakly to some process (μ0(.), μ1(.), ν(.)) ∈ N ′. Therefore, there exists a
further sequence {(μl′

0 (.), μl′

1 (.), νl
′
(.))} ⊂ co{(μl

0(.), μ
l
1(.), ν

l(.))} that converges a.e.
to (μ0(.), μ1(.), ν(.)). By the continuity and convexity of u1(., t), u2(., t) and −→g (., t, ω)
and the fact that they are uniformly bounded below, we can use Fatou’s lemma to
see that

J(λ, μ0(.), μ1(.), ν(.)) ≤ lim inf
l→∞

J(λ, μl
0(.), μ

l
1(.), ν

l(.)) = lim inf
l→∞

V l(λ) = V (λ).

Therefore, J(λ, μ0(.), μ1(.), ν(.)) = V (λ) and (μ0(.), μ1(.), ν(.)) is an optimal solution.
Step 6. We now prove that the function V (λ) is strictly convex and coercive for

ε(0,∞), which would imply that

inf
λ∈(0,∞)

V (λ)

exists and is attained. Let χ1
, χ

2 be the optimal solutions derived in Step 5 corre-
sponding to λ1, λ2, respectively, and let λ = (1 − q)λ1 + qλ2, where 0 < q < 1.
Therefore,

V (λi) = J(λi, χ
i) = E

[∫ T

0

u1(λi(1 − νi(t))πχi(t), t) dt

+λi

∫ T

0

πχi(t)−→g (χi(t), t) dt + u2(λiπχi(T ), T )

]
+λiW0; i = 1, 2.

By the strict convexity of u1, u2 and the convexity of −→g , we have

(1 − q)V (λ1) + qV (λ2)

> E

[∫ T

0

u1((1 − q)λ1(1 − ν1(t))πχ1(t) + qλ2(1 − ν2(t))πχ2(t), t)

+ (1 − q)λ1

∫ T

0

πχ1(t)−→g (χ1(t), t) dt + qλ2

∫ T

0

πχ2(t)−→g (χ2(t), t) dt

+ u2((1 − q)λ1πχ1(T ) + qλ2πχ2(T ), T ) + λW0

]
.

If we define

πχ∗(t) =
(1 − q)λ1πχ1(t) + qλ2πχ2(t)

λ
,

(1 − ν∗(t)) =
(1 − q)λ1πχ1(t)(1 − ν1(t)) + qλ2πχ2(t)(1 − ν2(t))

λπχ∗(t)
,

μ∗
0(t) =

(1 − q)λ1πχ1(t)μ1
0(t) + qλ2πχ2(t)μ2

0(t)

λπχ∗(t)
,

μ∗
1(t) =

(1 − q)λ1πχ1(t)μ1
1(t) + qλ2πχ2(t)μ2

1(t)

λπχ∗(t)
,
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we easily see that

(1 − q)V (λ1) + qV (λ2)

> E

[∫ T

0

u1(λ(1 − ν∗(t))πχ∗(t), t)

+

∫ T

0

λπχ∗(t)−→g (χ∗(t), t) dt + u2(λπχ∗(T ), T ) + λW0

]
≥ V (λ).

Note. In the inequalities above, we have used the fact that the set {(πχ, πχμ0, πχμ1) :
χ ∈ N ′} is a convex set, which follows from relation (3.4b).

This proves the strict convexity of V (.). Since W0 > 0 by assumption and
u1, u2,

−→g are uniformly bounded below,

lim
λ→∞

J(λ, χ) = ∞ uniformly in χ(.).

From (A.12),

J(λ, χ) ≥ u2

(
λ

(
exp

(
−1

2
E

∫ T

0

σ(s)−2μ0(s)
2 ds + ME

∫ T

0

|μ0(s)| ds
))

, T

)

≥ u2

(
λ exp

(
1

2
E

∫ T

0

M2σ(s)2 ds

)
, T

)
≥ u2

(
λ exp

(
1

2
M2K2T

)
, T

)
,

where K is the uniform upper bound on σ(.). By Lemma 4.1, we therefore have

lim
λ→0

J(λ, χ) = ∞ uniformly in χ(.).

Therefore, limλ→0 V (λ) = limλ→∞ V (λ) = ∞. Hence, V (.) is strictly convex and
coercive on (0,∞). This completes the proof of the existence of an optimal solution
to the dual problem. Let the optimal solution be denoted by (λ∗, μ∗

0(.), μ
∗
1(.), ν

∗(.)).
Step 7. It remains only to verify that condition (4.5) of the verification Proposi-

tion 4.1 is satisfied. By condition (e) of the proposition, we have

yf1(y, t) ≤ a + (1 − b)u1(f1(y, t), t),

yf2(y, T ) ≤ a + (1 − b)u2(f2(y, T ), T ).

Therefore,

E

[∫ T

0

πχ∗(t)f1(λ
∗(1 − ν∗(t))πχ∗(t), t) dt + πχ∗(T )f2(λ

∗πχ∗(T ), T )

]

≤ 2a

bλ∗ +
1 − b

bλ∗ E

[∫ T

0

u1(λ
∗(1 − ν∗(t))πχ∗(t), t) dt + u2(λ

∗πχ∗(T ), T )

]
< ∞

since |J(λ∗, χ∗)| < ∞ from assumption (c) of the proposition. By an examination

of the proof of Proposition 4.1, we see that the conditions E[
∫ T

0
πχ∗(t) dt] < ∞ and

E[πχ∗(T )] < ∞ are required only to ensure that E[
∫ T

0
u1(c

∗(t), t)−dt] < ∞ and
E[u2(W

∗, T )−] < ∞, which are trivially satisfied since u1(.) and u2(.) are assumed
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to be nonnegative by hypothesis (a) of the proposition. Therefore, by the result of
Proposition 4.1, an optimal liquidation policy for the large investor exists.

Lemma A.1. Assume the conditions of Proposition 4.2. In the notation of the
proof of Proposition 4.2, if

T (λ, πχn) = inf
ν∈D(μn

0 (.),μn
1 (.))

J(λ, πχn , ν) = inf
ν∈D(μn

0 (.),μn
1 (.))

J(λ, μn
0 (.), μn

1 (.), ν(.))

and

= J(λ, μn
0 (.), μn

1 (.), νn(.)) < ∞
T (λ, πχ) = inf

ν∈D(μ0(.),μ1(.))

J(λ, πχ, ν) = inf
ν∈Dμ0(.),μ1(.)

J(λ, μ0(.), μ1(.), ν(.))

= J(λ, μ0(.), μ1(.), ν
∗(.)) < ∞

and μn
0 (.) → μ0(.) a.e., μn

1 (.) → μ1(.) a.e., and πχn(.) → πχ(.) a.e., then νn(.) → ν∗(.)
a.e.

Proof. By the arguments in the proof of Lemma 4.2 we have

νn(t, ω) = arg minη∈Dμn
0 (.),μn

1 (.)(t,ω)[u1(λ(1 − η)πχn(t, ω), t)

+λπχn(t, ω)−→g (μn
0 (t, ω), μn

1 (t, ω), η, t, ω)]

and

ν∗(t, ω) = arg minη∈Dμ0(.),μ1(.)(t,ω)[u1(λ(1 − η)πχ(t, ω), t)

+λπχ(t, ω)−→g (μ0(t, ω), μ1(t, ω), η, t, ω)].

By condition (a) of Proposition 4.2, the functions being minimized in both equations
above are strictly convex functions of η. It follows that νn(t, ω) and ν∗(t, ω) are
uniquely defined. By Assumption 7, the sets Dμn

0 (.),μn
1 (.)(t, ω) and Dμ0(.),μ1(.)(t, ω)

are equal and have the form [−Γ(t,ω), 1], where 0 ≤ Γ(t,ω) < ∞. Since we cannot have
ν∗(t, ω) = 1 (as u1(0, t) = ∞), we can distinguish two cases.

Case 1. −Γ(t,ω) < ν∗(t, ω) < 1; i.e., ν∗(t, ω) is an interior minimum.
Since u1(.) and −→g (.) are continuously differentiable functions by hypothesis (d)

of Proposition 4.2,

∂

∂η
[u1(λ(1 − η)πχ(t, ω), t) + λπχ(t, ω)−→g (μ0(t, ω), μ1(t, ω), η, t, ω)]|η=ν∗(t,ω) = 0.

Since the function inside the parentheses above is a strictly convex function of η, the
first partial derivative above is strictly increasing as a function of η. Therefore, for
νl < ν∗(t, ω) < νh, we have

∂

∂η
[u1(λ(1 − η)πχ(t, ω), t) + λπχ(t, ω)−→g (μ0(t, ω), μ1(t, ω), η, t, ω)]|η=νl

< 0

<
∂

∂η
[u1(λ(1 − η)πχ(t, ω), t) + λπχ(t, ω)−→g (μ0(t, ω), μ1(t, ω), η, t, ω)]|η=νh

.

Since μn
0 (t, ω) → μ0(t, ω), μn

1 (t, ω) → μ1(t, ω), πχn(t, ω) → πχ(t, ω), and the first
partial derivatives above are continuous functions of their arguments, it is easy to see
that for n sufficiently large

∂

∂η
[u1(λ(1 − η)πχn(t, ω), t) + λπχn(t, ω)−→g (μn

0 (t, ω), μn
1 (t, ω), η, t, ω)] |η=νl

< 0

<
∂

∂η
[u1(λ(1 − η)πχn(t, ω), t) + λπχn(t, ω)−→g (μn

0 (t, ω), μn
1 (t, ω), η, t, ω)] |η=νh

.
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It follows that

νl < νn(t, ω) = arg minη∈Dμn
0 (.),μn

1 (.)(t,ω)[u1(λ(1 − η)πχn(t, ω), t)

+λπχn(t, ω)−→g (μn
0 (t, ω), μn

1 (t, ω), η, t, ω)] < νh.

Since νh − νl can be chosen to be arbitrarily small, we easily see that νn(t, ω) →
ν∗(t, ω).

Case 2. ν∗(t, ω) = −Γ(t,ω); i.e., ν∗(t, ω) is an extreme point.
In this case, we have

∂

∂η
[u1(λ(1 − η)πχ(t, ω), t) + λπχ(t, ω)−→g (μ0(t, ω), μ1(t, ω), η, t, ω)] |η=ν∗(t,ω) ≥ 0.

Since the first partial derivative above is strictly increasing as a function of η, we have

∂

∂η
[u1(λ(1 − η)πχ(t, ω), t) + λπχ(t, ω)−→g (μ0(t, ω), μ1(t, ω), η, t, ω)] |η=ηh

> 0

for ηh > ν∗(t, ω) = −Γ∗(t, ω). It follows that for n sufficiently large

∂

∂η
[u1(λ(1 − η)πχn(t, ω), t) + λπχn(t, ω)−→g (μn

0 (t, ω), μn
1 (t, ω), η, t, ω)] |η=ηh

> 0.

It follows that

−Γ(t, ω) ≤ νn(t, ω) = arg minη∈Dμn
0 (.),μn

1 (.)(t,ω)[u1(λ(1 − η)πχn(t, ω), t)

+λπχn(t, ω)−→g (μn
0 (t, ω), μn

1 (t, ω), η, t, ω)] < ηh.

Since ηh can be chosen arbitrarily close to −Γ(t, ω), it follows that

νn(t, ω) → −Γ(t, ω) = ν∗(t, ω).

This completes the proof of the lemma.
Proof of Lemma 6.1. If u2(., T ) is monotonically decreasing, then the maximiza-

tion problem on the right-hand side of the definition (4.2) of the function u2 is solved
by W = 0 if y ≥ 0. This implies (6.6). If u2(., T ) is nonmonotonic, Assumption 4
implies that, for y ∈ [0,∞), f2(y, T ) must satisfy u′

2(f2(y, T ), T ) = y. Since u2(., T )
is strictly increasing on [0, ĉ], attains a maximum at ĉ (so that its derivative is zero),
and satisfies (6.2), it follows that (6.7) holds.

Proof of Proposition 6.1. The proof proceeds along the lines of the proof of
Proposition 4.1. Let the liquidation process be defined by c∗ = cχ∗ and the terminal
wealth level by W ∗ = Wχ∗ . The consumption process c∗ satisfies (2.5) using exactly
the same arguments used in Step 1 of the proof of Proposition 4.1. By (6.6), (6.7),
and (6.9), the terminal wealth W ∗ is uniformly bounded so that it satisfies (2.5). The
rest of the proof follows the proof of Proposition 4.1.

Proof of Proposition 6.2. The proof proceeds exactly as the proof of Proposi-
tion 4.2 until Step 7, which establishes that condition (6.8) of the verification Propo-
sition 6.1 is satisfied. By condition (e) of the proposition,

yl2(y, T ) ≤ a + (1 − b)u2(l2(y, T ), T ) for y ≥ 0.

Since λ∗πχ∗(T ) > 0, we have

E

[∫ T

0

πχ∗(t)f1(λ
∗(1 − ν∗(t))πχ∗(t), t) dt + πχ∗(T )l2(λ

∗πχ∗(T ), T )

]

≤ 2a

bλ∗ +
1 − b

bλ∗ E

[∫ T

0

u1(λ
∗(1 − ν∗(t))πχ∗(t), t) dt + u2(λ

∗πχ∗(T ), T )

]
< ∞,
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since |J(λ∗, χ∗)| < ∞ from assumption (c) of the proposition. The conditions

E[
∫ T

0
πχ∗(t) dt] < ∞ and E[πχ∗(T )] < ∞ are required only to ensure that E[

∫ T

0
u1(c

∗(t),
t)−dt] < ∞ and E[u2(W

∗, T )−] < ∞. These conditions are trivially satisfied since, by
hypothesis (a) of the proposition and Lemma 6.1, u1(.) is nonnegative, u2(.) is non-
negative for W ∈ [0, ĉ], and W ∗ ∈ [0, ĉ]. Therefore, by the result of Proposition 6.1,
an optimal liquidation policy for the large investor exists.

Acknowledgments. I thank Bill Morokoff (the associate editor), two anony-
mous referees, Robert Jarrow, and seminar participants at the 2001 INFORMS Ap-
plied Probability Society Conference (New York City) for valuable comments and
suggestions.

REFERENCES

[1] R. Almgren and N. Chriss, Optimal execution of portfolio transactions, J. Risk, 3 (2000),
pp. 5–39.

[2] K. Back, Insider trading in continuous time, Review of Financial Studies, 5 (1992), pp. 387–
409.

[3] D. Bertsimas and A. Lo, Optimal control of execution costs, J. Financial Markets, 1 (1998),
pp. 1–50.

[4] R. Buckdahn and Y. Hu, Hedging contingent claims for a large investor in an incomplete
market, Adv. in Appl. Probab., 30 (1998), pp. 239–255.

[5] D. Cuoco and J. Cvitanic, Optimal consumption choices for a large investor, J. Econom.
Dynam. Control, 22 (1998), pp. 401–436.

[6] J. Cvitanic and I. Karatzas, Convex duality in constrained portfolio optimization, Ann.
Appl. Probab., 2 (1992), pp. 767–818.

[7] J. Cvitanic and J. Ma, Hedging options for a large investor and forward-backward SDE’s,
Ann. Appl. Probab., 3 (1996), pp. 652–681.

[8] D. Duffie and A. Ziegler, Liquidation Risk, Financial Analysts J., 59 (2003), pp. 42–51.
[9] I. Ekeland and R. Temam, Convex Analysis and Variational Problems, North–Holland, Am-

sterdam, 1976.
[10] N. El Karoui and M. Jeanblanc, Optimization of consumption with labor income, Finance

Stoch., 4 (1998), pp. 409–440.
[11] N. El Karoui, S. Peng, and M. C. Quenez, Backward stochastic differential equations in

finance, Math. Finance, 7 (1997), pp. 1–72.
[12] H. Follmer and P. Leukert, Efficient hedging: Cost versus shortfall risk, Finance Stoch., 4

(2000), pp. 117–146.
[13] D. Fudenberg, B. Holmstrom, and P. Milgrom, Short-term contracts and long-term agency

relationships, J. Econom. Theory, 51 (1990), pp. 1–31.
[14] H. He and N. Pearson, Consumption and portfolio policies with incomplete markets and

short-selling constraints: The infinite-dimensional case, J. Econom. Theory, 54 (1991),
pp. 259–304.

[15] H. He and H. Mamaysky, Dynamic trading policies with price impact, J. Econom. Dynam.
Control, 29 (2005), pp. 891–930.

[16] I. Karatzas and S. Kou, On the pricing of contingent claims under constraints, Ann. Appl.
Probab., 6 (1996), pp. 321–369.

[17] I. Karatzas, J. P. Lehoczky, S. E. Shreve, and G.-L. Xu, Martingale and duality methods
for utility maximization in an incomplete market, SIAM J. Control Optim., 29 (1991),
pp. 702–730.

[18] I. Karatzas and S. E. Shreve, Methods of Mathematical Finance, Springer-Verlag, New York,
1998.

[19] I. Karatzas and S. E. Shreve, Brownian Motion and Stochastic Calculus, Springer-Verlag,
New York, 1998.

[20] D. Kramkov and W. Schachermayer, The asymptotic elasticity of utility functions and
optimal investment in incomplete markets, Ann. Appl. Probab., 9 (1999), pp. 904–950.

[21] A. Kyle, Continuous auctions and insider trading, Econometrica, 53 (1985), pp. 1315–1335.
[22] J. Ma and J. Yong, Forward-Backward Stochastic Differential Equations and Their Applica-

tions, Lecture Notes in Math. 1702, Springer-Verlag, Berlin, 1999.
[23] A. Mas-Colell, M. Whinston, and J. Green, Microeconomic Theory, Oxford University

Press, Oxford, UK, 1995.



OPTIMAL LIQUIDATION BY A LARGE INVESTOR 1201

[24] R. Merton, Optimal consumption and portfolio rules in a continuous time model, J. Econom.
Theory, 3 (1971), pp. 373–413.

[25] M. Mnif and H. Pham, Stochastic optimization under constraints, Stochastic Process. Appl.,
93 (2001), pp. 149–180.

[26] V. Polimenis, A realistic model of market liquidity and depth, J. Futures Markets, 25 (2005),
pp. 443–464.

[27] M. Pritsker, Large Investors: Implications for Equilibrium Asset Returns, Shock Absorp-
tion, and Liquidity, working paper, Board of Governors of the Federal Reserve System,
Washington, D.C., 2005.

[28] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, NJ, 1997.
[29] M. Schael, A selection theorem for optimization problems, Arch. Math., 25 (1974), pp. 219–

224.
[30] A. Subramanian and R. Jarrow, The liquidity discount, Math. Finance, 11 (2001), pp. 447–

474.



SIAM J. APPL. MATH. c© 2008 Society for Industrial and Applied Mathematics
Vol. 68, No. 4, pp. 1202

CORRIGENDUM: SUPPRESSION OF THE DIRICHLET
EIGENVALUES OF A COATED BODY∗

STEVE ROSENCRANS† AND XUEFENG WANG†

Abstract. In our paper [SIAM J. Appl. Math., 66 (2006), pp. 1895–1916] there are several
mistakes in signs in the statements of Theorems 3 and 6.

Key words. nanocomposite, Dirichlet eigenvalue, anisotropic heat conduction, thermal tensor,
thermal management, insulation, reinforcement

AMS subject classifications. 35J05, 35J20, 80A20, 80M30, 80M40

DOI. 10.1137/070705404

In the upper bounds on λ1(Ω) stated in Theorems 3 and 6, there should be “−”
signs in front of π and H.

On page 1905 all “−” signs in front of the principal curvatures k1 and k2 should
be changed to “+” signs. This leads to some obvious minor changes in the rest of
the proof of Theorem 3 and the statement and proof of Lemma 5. The speed of the
curves of principal curvature are 1 only at q, and so the six equations following “speed
equal to 1” hold only at q.

These corrections necessitate only the above-mentioned changes in the statements
of Theorems 3 and 6. The statements of all the other theorems remain unchanged.
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SOLUTE TRANSPORT IN POROUS MEDIA. MEDIA WITH
CAPILLARIES AS VOIDS∗

GUILLERMO H. GOLDSZTEIN†

Abstract. We study solute transport in porous media with periodic microstructures consisting of
interconnected thin channels. We discuss a local physical mechanism that occurs at the intersections
of channels and promotes mixing of the solute with the solvent (i.e., the host liquid). We identify
the parameter regime, where this mechanism is the dominant cause of dispersion, and obtain the
effective or macroscopic transport equation that the concentration of solute satisfies when the medium
is subjected to a time periodic applied pressure gradient. We conclude with illustrative examples.

Key words. porous media, solute transport, hydrodynamic dispersion, network approximation,
macroscopic behavior, homogenization

AMS subject classifications. 76S05, 76M45, 76M50, 76R05, 76R50

DOI. 10.1137/070695228

1. Introduction. A porous medium is a material that contains relatively small
spaces filled with fluid (such as a gas, a liquid, or a mixture of different fluids) em-
bedded in a solid matrix. These fluid filled spaces are called pores or voids. With the
exception of metals, some dense rocks, and some plastics, virtually all solid materials
are porous to varying degrees.

Solutes are materials that dissolve in liquids forming solutions. An example is
salt (not at very large concentrations) in water. The host liquid, such as water in
the mentioned example, is called the solvent. The transport of a solute in porous
media depends on several factors, including the solvent and solute properties, the
fluid velocity field within the porous medium, and the microgeometry, i.e., shape,
size, and location of the solid part of the medium and the voids. The objective of this
paper is to provide new tools for the study of the influence of these factors on solute
transport.

Solute transport in liquid filled porous media plays a significant role in several
phenomena of scientific and technological importance including the transport of con-
taminants in soils [17, 32], the transport of nutrients in bones [50, 45, 43, 44, 65, 39],
the intrusion of salt in fresh water in soils near ocean coasts, movement of minerals
(e.g., fertilizers) in soils, secondary recovery techniques in oil reservoirs (where the
injected fluid dissolves the reservoir’s oil), the use of tracers in petroleum engineering
and hydrology research projects, etc. (see more about these and other examples in
[14, 6, 9, 19, 30, 58]).

Several theoretical methods are used to study solute transport in porous me-
dia [23]. These include the use of numerical experiments on networks of channels
with varying widths forming regular grids [2, 15, 16, 20, 27, 58, 59], percolation
methods [2, 7, 8, 10, 47, 55, 56, 57, 59, 62], numerical experiments on media with
fractal geometry [2, 16, 59, 64], assuming periodic media and calculating the effec-
tive transport equation by means of the method of moments [2, 11, 12, 13, 14, 31]

∗Received by the editors June 25, 2007; accepted for publication (in revised form) December 11,
2007; published electronically April 2, 2008. This research was supported by the NSF.
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(c)

(d) (e)

channel 1

channel 2
channel 3

(b)(a)

�

δ

Fig. 1.1. (a) Direction of the fluid velocity. (b) Initial distribution of solute concentration. (c)
Solute concentration at the time when solute first reaches the intersection. (d) Solute concentration
after solute reaches channel 1 if diffusion does not homogenize the solute concentration in slices
perpendicular to the channels. (e) Solute concentration after solute reaches channel 1 if the channels
are thin enough that diffusion homogenizes the solute concentration in slices perpendicular to the
channels. We work in the regime of (e).

or homogenization techniques [42, 48, 49, 51], and the calculation of effective trans-
port equations by means of the method of moments on periodic networks of channels
[2, 1, 29] (see also [38] for a study of diffusion in periodic networks with no flow).
The most well-known early theoretical works are studies of solute transport in single
straight tubes [63, 3]. We also mention the work on random networks of thin channels
[52, 53, 54], the work on media with trapped fluid in dead-end pores [21], the early
work using the method of moments [41], and the work on solute transport in a dilute
suspension of spheres [46] and in parallel channels [18]. Further discussions can be
found in [10, 36, 60, 5, 24, 25, 9, 26]. Experimentally, these phenomena have also
been extensively studied (see summaries in [37, 30, 22]; see also [40, 28]).

The local phenomenon that motivates our work is simple and described next.
Consider the three interconnected channels of Figure 1.1(a). We labeled the channels
1, 2, and 3. The arrows indicate the direction of the fluid velocity field within each
channel. The channels are thin. More precisely, assume that the lengths of the
channels are O(�), their diameters are O(δ), the fluid velocities within the channels
are O(v), and these parameters satisfy δ2/D � �/v � �2/D, where D is the diffusion
coefficient of the solute in the solvent under consideration. In this parameter regime,
the concentration of solute in each channel is homogeneous in slices perpendicular to
the channel and is convected with the average fluid velocity within the channel (see
[63, 3] and our section 2.1).

In Figure 1.1(b) we display the initial solute concentration, i.e., at time t = 0.
The darker the regions, the larger the solute concentration. Only channel 2 has solute
at t = 0. Let t1 be the time when solute first reaches the intersection of the channels.
The solute concentration at time t = t1 is shown in Figure 1.1(c). Let t2 > t1. In
the absence of diffusion, fluid from channel 2 with solute and fluid from channel 3
without solute would be convected next to each other along channel 1 during the
time interval (t1, t2), and the distribution of solute concentration at t = t2 would
look as displayed in Figure 1.1(d). This is in contradiction with the fact that solute
concentration is homogeneous in slices perpendicular to the channels. In fact, as
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discussed in section 2.1, diffusion homogenizes the concentration of solute in slices
perpendicular to the channels, and thus the distribution of solute at t = t2 is as
illustrated in Figure 1.1(e). During the time interval (t1, t2), liquid with solute from
channel 2 enters channel 1 and mixes with liquid without solute that enters channel 1
from channel 3.

In this paper we consider porous media with periodic microstructures and void
spaces consisting of interconnected thin channels. The local effect described in the
above paragraph (that corresponds to Figure 1.1(e)) occurs throughout the porous
media and promotes solute transport. In this paper we study this phenomenon.

In section 2 we describe our mathematical model. This model is the asymptotic
limit of the Navier–Stokes equations within the void with nonslip boundary condition
coupled with the convection-diffusion equation for the transport of solute. In section 3
we obtain the macroscopic transport equation which the solute concentration satisfies.
We assume that the medium is subjected to a time periodic applied pressure gradient
and obtain, by means of homogenization techniques on the model of section 2, that
the solute concentration satisfies a macroscopic convection-diffusion equation. As
expected, it is convected with the average fluid velocity. We obtain a relatively simple
mean to compute the diffusion tensor, known in the literature as the dispersion tensor.
In section 4 we provide some examples and in section 5 conclude with some discussions.

As previously mentioned, there are several methods for studying solute transport
in porous media. Each method has its strengths and weaknesses. The most compu-
tational economical methods are those that compute the macroscopic properties with
the use of periodic networks. This class of methods is essentially limited to [1] and its
generalizations [2, 29]. The authors of [1, 2, 29] use the method of moments instead
of homogenization or asymptotic techniques, as we do here. However, this is not the
essential difference between those methods and the technique developed in this paper.
The models in [1, 2, 29] use ad hoc rules that correspond to assuming that the volume
of the channels is much smaller than the volume of the intersections, and some ad hoc
mixing rules are given at the intersections. As a consequence, the physical effect that
motivated our work (that of Figure 1.1(e)) is not captured well by the existing models
[1, 2, 29] (see also our section 4). We believe our method is an ideal tool for studying
the dependence of the dispersion tensor on the microgeometry and will prove to be
very useful.

2. Mathematical model.

2.1. Preliminaries. Fluid flow and solute transport in channels. Fig-
ure 2.1 shows a two-dimensional channel with length � and width δ filled with a
Newtonian incompressible fluid that is subjected to pressures p = pa and p = pb at
the ends of the channel. Let ê be the vector of unit length parallel to the channel
displayed in Figure 2.1. Let y be the coordinate in the direction perpendicular to the
channel. At low Reynolds numbers (low velocities), the fluid velocity of the steady
state flow is of the form u(y)ê with u satisfying (pb − pa)/� = μu′′, where μ is the
fluid viscosity and u′′ is the second derivative of u. In addition, the fluid velocity
satisfies nonslip boundary conditions at the channel walls, i.e., u = 0 at the walls.
Simple calculations show that the velocity has a parabolic profile (see Figure 2.1) and
its spatial average across the channel is

(2.1) v =
δ2

12μ�
(pa − pb)ê

(see [4]). This type of flow is known as Poiseuille flow.
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�

ê

δp = pa p = pb

Fig. 2.1. Velocity profile of a Poseuille flow within a straight channel (indicated by arrows).

(b)(a)

Fig. 2.2. (a) Example of a periodic network of interconnected channels. The period cell is
shown by dashed lines. (b) Associated graph. The lines are the edges and the solid circles the nodes.

Taylor studied solute transport in channels at low Reynolds numbers [63]; see
also Aris [3]. The result relevant to us is the following. Let D be the coefficient of
diffusion of the solute in the host liquid, � the length of the channel, δ its diameter,
and v the spatial average of the norm of the fluid velocity. If

(2.2)
δ2

D
� �

v
� �2

D
,

the evolution of solute concentration is described by these two rules:

(2.3)

Rule 1: The concentration of solute is homogeneous in slices (of
infinitesimal thickness) perpendicular to the channel.

Rule 2: The solute concentration is convected (or advected) with the
average fluid velocity within the channel.

The validity of these two rules can be easily understood as follows. The time
required by diffusion to homogenize the solute concentration in slices perpendicular
to the channel is of order O(δ2/D). Since the time required for solute to be convected
from one end to the opposite end of the channel is O(�/v), the validity of Rule 1
results from δ2/D � �/v. On the other hand, Taylor showed that, in the direction
of the tube, the time for solute to disperse distances of O(�) is O(�2/D�), where
D� = O(D + v2δ2/D). Thus, the validity of Rule 2 results if �/v � �2/D�. Simple
algebra shows that, in fact, the two conditions δ2/D � �/v and �/v � �2/D� are
equivalent to (2.2).

2.2. Microgeometry. We consider two-dimensional porous media with periodic
microstructures. We denote the void or pore space (i.e., the space filled by fluid) by
Ωp. Note that Ωp ⊆ R

2. Since the microstructures are periodic, there exist two
linearly independent vectors w and q such that

(2.4) Ωp = Ωp + nw + mq

for all pairs of integers n and m. We assume that Ωp is a collection interconnected thin
channels (see Figure 2.2(a)). We assume that exactly three channels merge at each
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intersection. We associate a periodic graph with the microstructure of the medium
in a natural way, as illustrated in Figure 2.2(b); the edges are the channels and the
nodes the intersection of channels. We denote by N the set of nodes. We identify the
nodes with their location, and thus N ⊂ R

2. We denote by E the set of edges. Given
an edge e, its width (i.e., the width of the channel that corresponds to e) is denoted by
δe and its length by �e. We assume that the widths of the channels are much smaller
than their lengths. We also assume that the void space Ωp is a connected set.

2.3. Fluid flow. Microscopic description. The fluid that fills Ωp is an in-
compressible Newtonian fluid with constant density ρ and constant viscosity μ and
satisfies nonslip boundary conditions, i.e., the fluid velocity vanishes at the channels
walls (i.e., at the boundary of Ωp).

For each node a ∈ N , we denote by pa the pressure at a. Note that pa = pa(t) is
a function of time t. We assume that the medium is subjected to an applied pressure
gradient G = G(t) that is periodic in t with period t0. Thus, the pressures at the
nodes satisfy the condition

(2.5) pa+nw+mq = pa + G · (nw + mq)

for all integers n and m and all nodes a, where, as described above, w and q are the
vectors that determine the periodicity of the microgeometry, and we use the notation
r · s = r1s1 + r2s2 for all vectors r, s, and ri is the ith component of the vector r.

If e is an edge, we denote by ve the average of the velocity field within the
channel e. We assume that the variation of G(t) in time is slow enough that the
pressure difference between the two ends of a channel creates a Poiseuille flow within
that channel, and thus, for each edge e, according to our review (equation (2.1)), we
have

(2.6) ve = − δ2
e

12μ�e
(pb − pa)

b − a

‖b − a‖ , where a and b are the endpoints of e,

and we use the standard notation for the Euclidean norm ‖r‖ =
√

r2
1 + r2

2.
The rate at which the volume of fluid enters an intersection is equal to the rate

at which it leaves the intersection, i.e., conservation of mass. This implies that, for
each node a, we have

∑
{e∈E:a is an endpoint of e}

δeve ·
b − a

‖b − a‖ = 0, where b is the endpoint of e not equal to a.

(2.7)

The velocities within all the channels are uniquely determined by the system (2.5)–
(2.7). This well-known system (similar models were used as early as [33, 34, 35]; see
also [61, 30]) is the asymptotics of the Navier–Stokes equations within the void with
nonslip boundary conditions in the limit when the widths of the channels are much
smaller than their lengths, and the time variations of the applied pressure gradient
G(t) are slow enough. Note that the resultant velocity field is periodic in space with
the same period as the microstructure.

In practice, we first solve for the pressure at the nodes and then for the velocities
within the channels. More precisely, using the expression for the velocities in (2.6),
we reduce (2.7) into

(2.8)
∑

{b∈N :b is connected to a by an edge}

δ3
e

12μ�e
(pb − pa) = 0 for all a ∈ N ,
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which together with condition (2.5) reduce, for each fixed t, to a system of linear
equations, where the number of unknowns is equal to the number of nodes in a single
period cell minus one. Once the pressure at the nodes is obtained, the velocities in
the edges are easily computed with (2.6).

2.4. Solute transport. Microscopic description. For each e ∈ E we use the
notation ve = ‖ve‖. We assume that

(2.9) ve = O(v), �e = O(�), δe = O(δ) for all e ∈ E ,

where v, �, and δ are parameters that satisfy (2.2), and thus the transport of solute
concentration within each channel is given by Rules 1 and 2 (see (2.3)).

Given an edge e, its endpoint with smallest pressure will be called its head and
will be denoted by h(e). Analogously, k(e), the tail of the edge e, is the endpoint of
e with largest pressure. Thus, fluid within an edge e (or channel) flows from its tail
k(e) to its head h(e). Note that, since the fluid flow is time dependent, an endpoint
of an edge may be its head for some period of time and its tail for other times.

We parametrize each edge e (more precisely, the segment joining the tail and head
of e) by

(2.10) xe(s) = k(e) + s
h(e) − k(e)

‖h(e) − k(e)‖

and we denote by ue(s, t) the solute concentration in the channel e at the point xe(s)
and time t. Note that xe(0) = k(e) and xe(�e) = h(e) because �e = ‖h(e) − k(e)‖.
Thus, the channel is parametrized by xe(s) with 0 ≤ s ≤ �e. The fact that solute
concentration in a channel is convected with the average fluid velocity within the
channel translates into

(2.11)
∂ue

∂t
+ ve

∂ue

∂s
= 0 for 0 ≤ s ≤ �e, t ≥ 0, and all e ∈ E .

Let e be an edge and k(e) its tail (at a fixed time t). One of two cases is possible:
k(e) is the head of two other edges, or k(e) is the head of only one other edge. Assume
first that k(e) is the head of two other edges, say, β1 and β2, i.e., h(β1) = h(β2) = k(e).
Conservation of solute implies that solute enters k(e) at the same rate that it leaves
k(e), and thus δeveue(0, t) = δβ1vβ1uβ1(�β1 , t) + δβ2vβ2uβ2(�β2 , t). This condition can
be written as

(2.12) ue(0, t) =

∑
{β:h(β)=k(e)} δβvβuβ(�β , t)∑

{β:h(β)=k(e)} δβvβ

once we note that (2.7) at k(e) is δeve = δβ1
vβ1

+ δβ2
vβ2

. We have just shown that
(2.12) is valid for edges e for which its tail k(e) is the head of two other edges. We
next show that, in fact, (2.12) is valid for all edges e. To that end, assume now that
k(e) is the head of only one edge, say β. In other words, fluid flows into k(e) from
only channel β. Thus, the concentration of solute going into e should be equal to the
concentration of solute entering k(e) from β, i.e., ue(0, t) = uβ(�β , t). This condition
is, in fact, (2.12) in this case, i.e., when k(e) is the head of only one edge.

The system (2.11)–(2.12) uniquely determines the time evolution of the solute
concentration within the channels once initial conditions and appropriate boundary
conditions are given. We mention that the system (2.11)–(2.12) is not ad hoc; it is
the asymptotic limit of the convection-diffusion equation for the transport of solute
within the network in the parameter regime in which we work (i.e., (2.9) and (2.2)).
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3. Macroscopic transport equation. We say that two edges are equivalent if
one is the translation of the other by a vector of the form nw + mq, where w and q
are the vectors that determine the periodicity of the microstructure (see (2.4)) and n
and m are integers. Thus, two edges e1 and e2 are equivalent if there exist n and m
integers such that h(e2) = h(e1) +nw +mq and k(e2) = k(e1) +nw +mq (we recall
that h(e) denotes the head of the edge e and k(e) denotes its tail). This defines an
equivalence relation in the set of edges. Note that the widths, lengths, and velocities
of equivalent edges are equal, i.e., δe1 = δe2 , �e1 = �e2 , and ve1 = ve2 if e1 and e2 are
equivalent. In what follows we will take spatial average of quantities. Thus, we need
to be able to select exactly one edge per equivalence class. We denote by F a set of
edges that contains exactly one edge per equivalent class. For example, F could be
all the edges whose heads are in the period cell

(3.1) Q = {sw + rq : 0 ≤ s, r < 1}

at a certain time.
We first observe that the area occupied by fluid within the period cell Q (i.e., the

area of Ωp ∩Q) is

(3.2) |Ωp ∩Q| =
∑
e∈F

δe�e.

We denote by V the spatial average fluid velocity, i.e.,

(3.3) V =

∑
e∈F δe�eve∑
e∈F δe�e

=

∑
e∈F δe�eve

|Ωp ∩Q| .

Note that assumption (2.9) implies that ‖V‖ = O(v). Assume that t0, the period of
the applied pressure gradient G, satisfies

(3.4) t0 
 �

v
(more precisely t0 
 max �e/ve most of the time);

i.e., the time required for solute concentration to be convected across a channel is
much smaller than the period of the applied pressure gradient. In Appendix A we
show that, macroscopically, the solute concentration is convected with the average
fluid velocity V and dispersed with dispersion tensor

(3.5) Deff
ij =

1

t0

∫ t0

0

D�
ij(t)dt,

where

D�
ij =

1

2|Ωp ∩Q|

{∑
e∈F

δe�e

(
�e
ve

[ve − V]i [ve − V]j(3.6)

+ [V − ve]i
[
fk(e)

]
j
+ [V − ve]j

[
fk(e)

]
i

)}
,

[y]i denotes the ith component of the vector y, and the family of vectors (fa)a∈N is
a solution periodic in space and time (i.e., fa(t) = fa+nw+mq(t + pt0) for all integers
n, m, and p) of the following system:

(3.7)
∑

{e:h(e)=a}
δeve(fk(e) − fa) =

∑
{e:h(e)=a}

δe�e (ve − V) for all a ∈ N .
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More precisely, for each a ∈ N , let ua(t) be the solute concentration that leaves the
intersection a at time t, i.e.,

(3.8) ua(t) = ue(0, t) if a = k(e) at time t.

Note that ua(t) is well defined because ue1(0, t) = ue2(0, t) if e1 and e2 are two edges
that have the same tail at time t, i.e., k(e1) = k(e2). In Appendix A we show that

(3.9) ua(t) � u (a, t) for t = O
(
t20
v

�

)
,

where u(x, t) satisfies

(3.10)
∂u

∂t
+ V · ∇u =

∑
i,j

Deff
ij

∂2u

∂xi∂xj
,

where ∇u is the gradient of u with respect to x and u is subjected to appropriate
boundary and initial conditions that depend on the particular problem under consid-
eration. We note that Deff is usually referred to as the dispersion tensor.

4. Examples and observations.

4.1. Constant applied pressure gradient. As a first general example, we
consider the case when the applied pressure gradient G is time independent. In this
case, the system for the pressure at the nodes (2.5) and (2.8) is time independent and
so are the velocities within the channels (see (2.6)). The spatially periodic family of
vectors (fa)a∈N , solution of system (3.7), is also time independent, and the expression
for the dispersion tensor simplifies to

Deff
ij = D�

ij =
1

2
∑

e∈F δe�e

∑
e∈F

δe�e

(
�e
ve

[ve − V]i [ve − V]j(4.1)

+ [V − Ve]i
[
fk(e)

]
j
+ [V − ve]j

[
fk(e)

]
i

)
.

4.2. Applied pressure gradient of the form G(t) = g(t)E with E con-
stant. As a second general example, we consider the case when the applied pressure
gradient G is of the form G(t) = g(t)E with E constant and g(t) a real valued peri-
odic function with period t0. The evaluation of the dispersion tensor is also simple in
this case. Let Deff

E be the dispersion tensor that corresponds to the applied pressure
gradient E. Then, the dispersion tensor that corresponds to the applied pressure
gradient G(t) = g(t)E is

(4.2) Deff = Deff
E

1

t0

∫ t0

0

|g(t)|dt.

The validity of the above equation results from simple calculation. Briefly, we first
note that, if vE

e are the velocities within the channels when the applied pressure
gradient is E, then ve = g(t)vE

e are the velocities within the channels when the
applied pressure gradient is g(t)E. As a consequence, if the vectors fEa solve system
(3.7) when the applied pressure gradient is E, then fa = g(t)fEa is a solution of system
(3.7) when the applied pressure gradient is g(t)E. Thus, if D�

E is the tensor of (3.6)
when the applied pressure gradient is E, then D� = |g(t)|D�

E is the tensor of (3.6)
when the applied pressure gradient is g(t)E. Note that D�

E is time independent, and
thus Deff

E = D�
E (see (3.6)). Finally, (4.2) results from (3.6).
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δ1 δ2

δ3(0, 1)

Fig. 4.1. Graph corresponding to the microgeometry of our example. The period cell is enclosed
by dashed lines. The widths of the channels are δ1, δ2, and δ3.

4.3. A concrete example. The graph that corresponds to the microgeometry
of our example is shown in Figure 4.1. All the channels have the same length � and
form regular hexagons. The period cell is enclosed by dashed lines. The width of the
channels in the period cell are, as displayed in the figure, δ1, δ2, and δ3. We assume
the applied pressure gradient to be of the form

(4.3) G(t) =

(
0,

g(t)

�

)
,

where g is a periodic function with period t0 and (0, 1) is the unit vector that points
in the vertical direction (see Figure 4.1). Some algebra shows that, in this example,
the use of our method leads to

(4.4) V2(t) = − 3

16μ�

δ3
3(δ3

1 + δ3
2)

(δ3
1 + δ3

2 + δ3
3)(δ1 + δ2 + δ3)

g(t)

and

(4.5) Deff
22 =

9

64μ

δ3
3(δ3

1 + δ3
2)(δ1 + δ2)

2(δ1 − δ2)
2

δ1δ2(δ3
1 + δ3

2 + δ3
3)(δ1 + δ2 + δ3)3

1

t0

∫ t0

0

|g(t)|dt.

To discuss the above formulas in a more concrete context, assume that the ma-
terial occupies the region x2 > 0. Also assume that the material is attached to a
reservoir of solute located at x2 < 0 and that initially there is no solute within the
material (for x2 > 0). Due to symmetry, the solute concentration u, solution of (3.10),
in this example depends only on x2. Thus, we need only V2 and Deff

22 , which are given
by (4.4) and (4.5), respectively.

As a first observation, note that Deff
22 = 0 if δ1 = δ2. Thus, after each period,

solute is convected a distance
∫ t0
0

V(t) dt but is not dispersed in our asymptotic limit;
there is a smaller order effective dispersion that results from an effect known as Taylor
dispersion inside the channels [63, 3]. Note that this is in accordance with the physical
effect described in the introduction as shown in Figure 1.1(e). The mixing of solute
with the host liquid occurs when solute from two different channels and at different
concentrations flows into the same intersection (in Figure 1.1(e) one of the channels
had zero solute concentration). Due to symmetry in our example when δ1 = δ2,
whenever solute from two channels flows into the same intersection, the concentration
in both channels is the same. This is illustrated in Figure 4.2(a), where we show that
solute reaches the upper ends of all the channels attached to the reservoir at the same
time if δ1 = δ2.
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(a) (b)

Fig. 4.2. Microgeometry that corresponds to the graph of Figure 4.1. In (a), δ1 = δ2. In (b),
δ1 < δ2. The shaded areas represent the solute concentration. The darker the shade, the larger the
solute concentration.

On the other hand, in Figure 4.2(b) we display an example where δ1 < δ2. As
illustrated in that figure, the time required for solute from the reservoir to travel
through the thinner channels is longer than the travel time through the thicker chan-
nels. Thus, the effect illustrated in Figure 1.1(e) does occur and, as (4.5) implies,

we have that Deff
22 = 0. Note in particular that, in the case

∫ t0
0

g(t) dt = 0, there is
no convection after a complete period. Thus, there will be much more transport of
solute in our second example, where Deff

22 = 0, than in the example of the previous
paragraph, where Deff

22 = 0.

At first glance, (4.5) seems to lead to the following contradiction. On one hand,
(4.5) shows that Deff

22 → ∞ as δ1 → 0 while keeping δ2 and δ3 fixed. However, δ1 = 0
means not having the channels with width δ1, and thus not having intersection of
three channels. According to our discussions, we would expect Deff

22 = 0 in this case.
This apparent contradiction is resolved by (3.4) and (3.9) which state that (4.5) is
valid for t = O(t20v/�) and t0 
 �/v1, and thus we need t 
 �/v1. Finally, we note
that, since v1 → 0 as δ1 → 0, this is a singular limit, which resolves this apparent
contradiction. In other words, the smaller δ1, the longer we have to wait for dispersion
to occur and for our asymptotics to be valid. As δ1 → 0, we would have to wait an
infinitely long time.

5. Discussion. As mentioned in the introduction, there are several methods for
studying solute transport in porous media. For their computational efficiency and
their flexibility in modeling microstructures, methods that compute the macroscopic
properties with the use of periodic networks are very useful. So far, this class of
methods is essentially limited to [1] and its generalizations [2, 29]. Moreover, as
mentioned in the introduction, the models in [1, 2, 29] use ad hoc rules that prevent
them from accurately modeling the physical effect that motivated the present work,
i.e., that of Figure 1.1(e).

Thus, while a large body of work exists in solute transport in porous media,
the work introduced here is new and, we believe, will prove powerful in providing
new understanding of the dependence of solute transport on the microgeometry. The
strengths of our method include the following: (1) This method is exact to first
order, i.e., has a small error. More precisely, it is the asymptotic limit of the well-
established Navier–Stokes system for fluid flow and the convection-diffusion equation
for solute transport (there are no ad hoc rules imposed). (2) The asymptotic limit
used results from considering the simple but, we believe, fundamental effect of Figure
1.1(e). While this local effect has been identified and appears in standard texts on
porous media [30], its global consequence (i.e., the combined effect of this phenomenon
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at all intersections) has not been well studied. This method is an ideal tool for those
studies. (3) This method is relatively computationally inexpensive, essentially solving
a linear system whose number of variables is equal to two times the number of nodes
in a period cell. We mention that the extension of our method to three dimension is
immediate.

Appendix A. Asymptotic approximation.

A.1. Dimensionless variables, parameters, and equations. We first define
the small dimensionless parameter ε as

(A.1) ε =
�

vt0
� 1

for each edge e, the dimensionless parameters as

(A.2) �̄e =
�e
�

and δ̄e =
δe
δ
,

the dimensionless velocities and their norms as

(A.3) v̄e =
ve

v
and v̄e = ‖v̄e‖,

and the dimensionless average velocity as

(A.4) V̄ =
V

v
.

The velocities will be periodic with the same period t0 as the applied pressure
gradient. This motivates the choice of the dimensionless time

(A.5) t̄ =
t

t0
.

We regard the dimensionless velocities as 1-periodic functions of the dimensionless
time; i.e., v̄e = v̄e(t̄) and V̄ = V̄(t̄) are periodic with period 1.

Since the velocities are of order v, distances traveled by convection in periods
of times of order t0 are of order vt0. This motivates the use of the following space
dimensionless variable:

(A.6) x̄ =
x

vt0
.

Accordingly, the dimensionless nodes are the set

(A.7) N̄ =
N
vt0

,

the dimensionless head and tail of each edge e are

(A.8) h̄(e) =
h(e)

vt0
and k̄(e) =

k(e)

vt0
,

respectively, and the dimensionless vectors that determine the periodicity of the mi-
crostructure are

(A.9) w̄ =
w

vt0
and q̄ =

q

vt0
.
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Thus, parametrizing the segment joining k̄(e) and h̄(e) by

(A.10) x̄e(s̄) = k̄(e) + s̄
h̄(e) − k̄(e)

‖h̄(e) − k̄(e)‖
,

we have that (2.11) becomes

(A.11)
∂ūe

∂t̄
+ v̄e

∂ūe

∂s̄
= 0 for 0 ≤ s̄ ≤ ε�̄e, t̄ ≥ 0, and all e ∈ E ,

where ūe(s̄, t̄) is the solute concentration in the channel e at the point vt0x̄e(s̄) and
time t0t̄. Note that k̄(e) = x̄e(0) and h̄(e) = x̄e(ε�̄e).

On the other hand, (2.12) becomes

(A.12) ūe(0, t̄) =

∑
{β:h̄(β)=k̄(e)} δ̄β v̄β ūβ(ε�̄β , t̄)∑

{β:h̄(β)=k̄(e)} δ̄β v̄β
.

A.2. Solute transport within each channel. Let e be an edge. Solute is
convected from k̄(e), the tail of e, to h̄(e), the head of e. Thus, the solute concentration
at h̄(e) at time t̄ is equal to the solute concentration at k̄(e) at an earlier time t̄−Δt̄e,
i.e.,

(A.13) ūe(0, t̄− Δt̄e) = ūe(ε�̄e, t̄).

We next compute Δt̄e.
Let S(τ) be the solution of

(A.14) S′(τ) = v̄e(τ) and S(t̄) = ε�̄e,

where S′ is the derivative of S. We claim that Δt̄e is the solution of

(A.15) S(t̄− Δt̄e) = 0.

This is due to the fact that ūe(S(τ), τ) is independent of τ , and thus ūe(0, t̄−Δt̄e) =
ūe(S(t̄− Δt̄e), t̄− Δt̄e) = ūe(S(t̄), t̄) = ūe(ε�̄e, t̄).

From (A.14) and (A.15), we note that Δt̄e = O(ε). Thus, we Taylor expand
(A.15) to get

(A.16) 0 = S(t̄− Δt̄e) � S(t̄) − S′(t̄)Δt̄e +
S′′(t̄)

2
(Δt̄e)

2.

Next we note that S(t̄) = ε�̄e and S′(t̄) = v̄e(t̄) (see (A.14)). Thus, S′′(t̄) = v̄′e(t̄),
and we conclude from (A.16) that

(A.17) 0 � ε�̄e − v̄e(t̄)Δt̄e +
v̄′e(t̄)

2
(Δt̄e)

2.

We now set Δt̄e = εΔt̄1 + ε2Δt̄2, plug this expression into (A.17), collect powers of ε
to obtain equations for Δt̄1 and Δt̄2, and finally get

(A.18) Δt̄e � ε
�̄e
v̄e

+ ε2 �̄
2
e

2

v̄′e
v̄3
e

,

where v̄e and v̄′e are evaluated at t̄. Note that Δt̄e is a function of t̄.
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A.3. Continuum approximation. Using (A.13), (A.12) becomes

(A.19) ūe(0, t̄) =

∑
{β:h̄(β)=k̄(e)} δ̄β v̄β ūβ(0, t̄− Δt̄β)∑

{β:h̄(β)=k̄(e)} δ̄β v̄β
,

where Δt̄β is given by (A.18).
For each dimensionless node ā ∈ N̄ , let ūā(t̄) be the solute concentration that

leaves the intersection ā, i.e.,

(A.20) ūā(t̄) = ūe(0, t̄) if ā = k̄(e) at time t̄.

With the notation introduced in (A.20), (A.19) becomes

(A.21) ūā(t̄) =

∑
{β:h̄(β)=ā} δ̄β v̄β ūk̄(β)(t̄− Δt̄β)∑

{β:h̄(β)=ā} δ̄β v̄β
.

A.3.1. Ansatz and expansions. We now use standard asymptotic techniques
to obtain the macroscopic transport equation for the solute concentration. We propose
the ansatz

(A.22) ūā(t̄) = ρ(ā, t̄, εt̄) + εfâ(ā, t̄, εt̄) + ε2gâ(ā, t̄, εt̄), where â =
ā

ε
,

ρ(x̄, t̄, τ) is a smooth function of its variables periodic in t̄ with period 1, and for
each â ∈ N̄/ε = N/� the functions fâ(x̄, t̄, τ) and gâ(x̄, t̄, τ) are smooth functions
of x̄, t̄, and τ and are also periodic in t̄ with period 1. The family of functions
fâ and gâ are periodic in â in the sense that fâ+(nw̄+mq̄)/ε(x̄, t̄, τ) = fâ(x̄, t̄, τ) and
gâ+(nw̄+mq̄)/ε(x̄, t̄, τ) = gâ(x̄, t̄, τ) for all integers n and m and â ∈ N̄/ε.

Let x̄ be a point that we hold fixed for the moment. Let ā be a dimensionless
node ā ∈ N̄ such that ‖x̄ − ā‖ = O(ε). We write

(A.23) ā = x̄ + ε(â − x̂), where â =
ā

ε
and x̂ =

x̄

ε
.

We now plug this expression for ā into the right-hand side of (A.22) to get

ūā(t̄) = ρ(x̄ + ε(â − x̂), t̄, εt̄) + εfâ(x̄ + ε(â − x̂), t̄, εt̄)(A.24)

+ε2gâ(x̄ + ε(â − x̂), t̄, εt̄).

We now Taylor expand the right-hand side of the above equality around the point
(x̄, t̄, εt̄) to get

ūā(t̄) � ρ + ε

{∑
i

∂ρ

∂x̄i
[â − x̂]i + fâ

}
(A.25)

+ε2

⎧⎨
⎩1

2

∑
i,j

∂2ρ

∂x̄i∂x̄j
[â − x̂]i[â − x̂]j +

∑
i

∂fâ
∂x̄i

[â − x̂]i + gâ

⎫⎬
⎭ ,

where ρ, fâ, gâ and their derivatives are evaluated at (x̄, t̄, εt̄). In the above equation
we neglected terms of order ε3.
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Now let β be an edge whose dimensionless head is ā, i.e., h̄(β) = ā. Note that
‖k̄(β)− ā‖ = ε�̄β . Thus, since ‖x̄− ā‖ = O(ε), we have ‖x̄− k̄(β)‖ = O(ε). We write

(A.26) k̄(β) = x̄ + ε(k̂(β) − x̂), where k̂(β) =
k̄(β)

ε
and x̂ =

x̄

ε
.

From (A.24), but replacing ā by k̄(β) and t̄ by t̄− Δt̄β , we get

ūk̄(β)(t̄− Δt̄β) =ρ(x̄ + ε(k̂(β) − x̂), t̄− Δt̄β , εt̄− εΔt̄β)(A.27)

+εfk̂(β)(x̄ + ε(k̂(β) − x̂), t̄− Δt̄β , εt̄− εΔt̄β)

+ε2gk̂(β)(x̄ + ε(k̂(β) − x̂), t̄− Δt̄β , εt̄− εΔt̄β).

We now Taylor expand the right-hand side of the above equation around the point
(x̄, t̄, εt̄) and make use of the expression (A.18) (with e replaced by β) to get

ūk̄(β)(t̄− Δt̄β) � ρ + ε

{∑
i

∂ρ

∂x̄i
[k̂(β) − x̂]i −

∂ρ

∂t̄

�̄β
v̄β

+ fk̂(β)

}
(A.28)

+ε2

⎧⎨
⎩1

2

∑
i,j

∂2ρ

∂x̄i∂x̄j
[k̂(β) − x̂]i[k̂(β) − x̂]j −

∑
i

∂2ρ

∂t̄∂x̄i
[k̂(β) − x̂]i

�̄β
v̄β

+
1

2

∂2ρ

∂t̄2
�̄2β
v̄2
β

− ∂ρ

∂t̄

�̄2β
2

v̄′β
v̄3
β

− ∂ρ

∂τ

�̄β
v̄β

+
∑
i

∂fk̂(β)

∂x̄i
[k̂(β) − x̂]i −

∂fk̂(β)

∂t̄

�̄β
v̄β

+ gk̂(β)

}
,

where ρ, fk̂(β), gk̂(β) and their derivatives are evaluated in (x̄, t̄, εt̄), and v̄β and its

derivative are evaluated at t̄. In the above equation we neglected terms of order ε3.
Now we plug the expressions for ūâ(t̄) and ūk̄(β)(t̄ − Δt̄β) given in (A.25) and

(A.28) into (A.21), neglect terms of ε2, and make simple algebraic manipulations
(which include dividing by ε) to obtain

(A.29)
∑

β:h̄(β)=ā

δ̄β v̄β(fk̂(β) − fâ) =

⎛
⎝ ∑

β:h̄(β)=ā

δ̄β �̄β

⎞
⎠ ∂ρ

∂t̄
+

⎛
⎝ ∑

β:h̄(β)=ā

δ̄β �̄βv̄β

⎞
⎠ · ∇̄ρ.

We require the above equation to be valid for all (x̄, t̄, τ), not just at τ = εt̄.

A.3.2. Fredholm alternative. First equation for ρ. Convection with
average velocity. We recall that two edges are equivalent if one is the translation
of the other by a vector of the form nw + mq, where n and m are integers, and
we denote by F a set of edges that contains exactly one edge per equivalent class
(see section 3). Analogously, we also say that two dimensionless nodes ā and b̄ are
equivalent if b̄ = ā+nw̄+mq̄ for some n and m integers, and we denote by M̄ a set of
dimensionless nodes that contains exactly one dimensionless node per equivalent class.
For example, M̄ could be all the dimensionless nodes included in the dimensionless
period cell Q̄ = {sw̄ + rq̄ : 0 ≤ s, r < 1}, i.e., M̄ = N̄ ∩ Q̄.

Let yâ be defined for all â ∈ N̄/ε and have the same periodicity as fâ, i.e.,
yâ+(nw̄+mq̄)/ε = yâ for all integers n and m and all â ∈ N̄/ε. Note that

(A.30)
∑
ā∈M̄

yâ
∑

β:h̄(β)=ā

δ̄β v̄βfk̂(β) =
∑
β∈F

δ̄β v̄βyĥ(β)fk̂(β) =
∑
ā∈M̄

fâ
∑

β:k̄(β)=ā

δ̄β v̄βyĥ(β).
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Thus,

(A.31)
∑
ā∈M̄

yâ
∑

β:h̄(β)=ā

δ̄β v̄β(fk̂(β) − fâ) =
∑
ā∈M̄

fâ
∑

β:k̄(β)=ā

δ̄β v̄β(yĥ(β) − yâ).

The above expression is equal to 0 for all periodic fâ if and only if

(A.32)
∑

β:k̄(β)=ā

δ̄β v̄β(yĥ(β) − yâ) = 0 for all ā ∈ N̄ .

A simple calculation shows that yb̂ = yâ for all â, b̂ ∈ N̄/ε (if v̄e = 0 for all edges e.
This is a generic condition that we assume is satisfied).

If we multiply the left-hand side of (A.29) by yâ and add over all a ∈ M̄, we
obtain the expression in (A.31). Thus, the above discussion, the Fredholm alternative
theory, and simple manipulations imply that there exists a solution fâ (of (A.29))
that satisfies fâ+(nw̄+mz̄)/ε = fâ for all integers n and m if and only if

(A.33)
∂ρ

∂t̄
+ V̄ · ∇̄ρ = 0,

where ∇̄ρ is the gradient of ρ with respect to x̄.

A.3.3. Further expansions. Next we take derivatives of (A.33) with respect
to x̄i to obtain

(A.34)
∂2ρ

∂t̄∂x̄i
= −

∑
j

[V̄]j
∂2ρ

∂x̄i∂x̄j
.

Analogously, taking derivatives of (A.33) with respect to t̄ and using (A.34), we obtain

(A.35)
∂2ρ

∂t̄2
= −

∑
i

[V̄′]i
∂ρ

∂x̄i
−
∑
i

[V̄]i
∂2ρ

∂x̄i∂t̄
= −

∑
i

[V̄′]i
∂ρ

∂x̄i
+
∑
i,j

[V̄]i[V̄]j
∂2ρ

∂x̄i∂x̄j
.

Using the last three identities, (A.28) becomes

ūk̄(β)(t̄− Δt̄β) = ρ + ε

{∑
i

∂ρ

∂x̄i

[
k̂(β) − x̂ +

�̄β
v̄β

V̄

]
i

+ fk̂(β)

}

+ε2

⎧⎨
⎩1

2

∑
i,j

∂2ρ

∂x̄i∂x̄j

[
k̂(β) − x̂ +

�̄β
v̄β

V̄

]
i

[
k̂(β) − x̂ +

�̄β
v̄β

V̄

]
j

(A.36)

−1

2

�̄β
v̄β

∑
i

(
�̄β
v̄β

[V̄]i

)′
∂ρ

∂x̄i
− ∂ρ

∂τ

�̄β
v̄β

+
∑
i

∂fk̂(β)

∂x̄i
[k̂(β) − x̂]i −

∂fk̂(β)

∂t̄

�̄β
v̄β

+ gk̂(β)

}
.

We now plug into (A.21) the expressions for ūk̂(β)(t̄ − Δt̄β) and ūa(t̄) given by

(A.36) and (A.25), respectively, to obtain, after some algebraic manipulations and
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making use of (A.29), that

(A.37)⎛
⎝ ∑

{β:h̄(β)=ā}

δ̄β �̄β

⎞
⎠ ∂ρ

∂τ
+

∑
{β:h̄(β)=ā}

[
δ̄β v̄β

(
∇̄fâ · (â − x̂) − ∇̄fk̂(β) ·

(
k̂(β) − x̂

))

+
δ̄β
2
�̄2β

(
V̄

v̄β

)′
· ∇̄ρ + δ̄β �̄β

∂fk̂(β)

∂t̄

]

=
1

2

∑
{β:h̄(β)=ā}

δ̄β v̄β
∑
i,j

∂2ρ

∂x̄i∂x̄j

([
k̂(β) − â +

�̄β
v̄β

V̄

]
i

[
k̂(β) − â +

�̄β
v̄β

V̄

]
j

2 + [â − x̂]i

[
k̂(β) − â +

�̄β
v̄β

V̄

]
j

)
+

∑
{β:h̄(β)=ā}

δ̄β v̄β

(
gk̂(β) − gâ

)
.

Taking the gradient of (A.29), taking the dot product of the result with (â −
x̂), making use of previous equations, performing some algebraic manipulations, and

noting that v̄β(â − k̂(β)) = �̄βv̄β , (A.37) can be reduced to

(A.38)⎛
⎝ ∑

{β:h̄(β)=ā}

δ̄β �̄β

⎞
⎠ ∂ρ

∂τ
+

∑
{β:h̄(β)=ā}

δ̄β �̄β

[
∇̄fk̂(β) · v̄β +

�̄β
2

(
V̄

v̄β

)′
· ∇̄ρ +

∂fk̂(β)

∂t̄

]

=
∑

{β:h̄(β)=ā}

δ̄β v̄β

(
gk̂(β) − gâ

)
+

1

2

∑
i,j

∂2ρ

∂x̄i∂x̄j

∑
{β:h̄(β)=ā}

δ̄β �̄
2
β

v̄β

[
v̄β − V̄

]
i

[
v̄β − V̄

]
j
.

A.4. Fredholm alternative. Long time equation for ρ. Dispersion ten-
sor. Following the same arguments to obtain (A.33), we have that there exists a
solution gâ of (A.38) that is periodic in â if and only if

∑
ā∈M̄

⎧⎨
⎩
⎛
⎝ ∑

{β:k̄(β)=ā}

δ̄β �̄β

⎞
⎠ ∂fâ

∂t̄
+

⎛
⎝ ∑

{β:k̄(β)=ā}

δ̄β �̄βv̄β

⎞
⎠ · ∇̄fâ

⎫⎬
⎭

+
∑
ā∈M̄

⎧⎨
⎩
⎛
⎝ ∑

{β:k̄(β)=ā}

δ̄β �̄β

⎞
⎠ ∂ρ

∂τ
+

⎛
⎝ ∑

{β:k̄(β)=ā}

δ̄β
2
�̄2β

(
V̄

v̄β

)′
⎞
⎠ · ∇̄ρ

⎫⎬
⎭(A.39)

=
1

2

∑
i,j

∂2ρ

∂x̄i∂x̄j

∑
ā∈M̄

∑
{β:k̄(β)=ā}

δ̄β �̄
2
β

v̄β

[
v̄β − V̄

]
i

[
v̄β − V̄

]
j
.

Let Fâ = Fâ(t̄) be a solution of

(A.40)
∑

{β:h̄(β)=ā}

δ̄β v̄β

(
Fk̂(β) − Fâ

)
=

∑
{β:h̄(β)=ā}

δ̄β �̄β
(
v̄β − V̄

)

that is periodic in t̄ and â, i.e., Fâ+(nw̄+mq̄)/ε(t̄ + p) = Fâ(t̄) for all integers n,m, p.
A simple calculation shows that fâ is a periodic (in â and t̄) solution of (A.29) if and
only if

(A.41) fâ(x̄, t̄, τ) = Fâ(t̄) · ∇̄ρ(x̄, t̄, τ) + ψ(x̄, t̄, τ),
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where ψ is an arbitrary function that is periodic on t̄.

Note that {β : k̄(β) = ā and ā ∈ M̄} is a set that contains exactly one edge
per equivalent class. Thus, the sums in equation (A.39) are spatial averages, i.e.,∑

ā∈M̄
∑

{β:k̄(β)=ā} =
∑

β∈F , where we recall that F is any set of edges that contains

exactly one edge per equivalent class. Using this observation, (A.41), and some simple
algebraic manipulations, we transform (A.39) in

(A.42)⎛
⎝∑

β∈F
δ̄β �̄β

⎞
⎠(

∂ρ

∂τ
+

∂ψ

∂t̄
+ V̄ · ∇̄ψ

)
+

⎛
⎝∑

β∈F
δ̄β �̄βF

′
k̂(β)

+
δ̄β
2
�̄2β

(
V̄

v̄β

)′
⎞
⎠ · ∇̄ρ

=
1

2

∑
i,j

∂2ρ

∂x̄i∂x̄j

∑
β∈F

δ̄β �̄β

(
�̄β
v̄β

[
v̄β − V̄

]
i

[
v̄β − V̄

]
j
+ 2

[
Fk̂(β)

]
i

[
V̄ − v̄β

]
j

)
.

We now make the change of variables

(A.43) ȳ = x̄ −
∫ t̄

0

V̄(s) ds.

To avoid confusion, we denote ρ by ρ̄ when the new independent variables (ȳ, t̄, τ) are
used. In these new variables, (A.33) becomes ∂ρ̄/(∂t̄) = 0, from which we get that ρ̄
is a function that depends only on ȳ and τ , i.e., ρ̄ = ρ̄(ȳ, τ).

Analogously, ψ̄ is simply ψ, but only when the new independent variables (ȳ, t̄, τ)
are used. The changes that occur in (A.42) when the new variables are used are the
following: (1) The term V̄ · ∇̄ψ is removed; (2) derivatives with respect to x̄ are
replaced by derivatives with respect to ȳ; and (3) ρ is replaced by ρ̄ and ψ by ψ̄.
After making this change of variables, we integrate the resulting equation (A.42) with
respect to t̄ over a period, from t̄ = t̄0 to t̄ = t̄0 + 1, and divide by

∑
β∈F δ̄β �̄β to

obtain

(A.44)
∂ρ̄

∂τ
(ȳ, τ) + ψ̄(ȳ, t̄0 + 1, τ) − ψ̄(ȳ, t̄0, τ) =

∑
i,j

D̄ij
∂2ρ̄

∂yi∂yj
(ȳ, τ),

where

D̄ij =
1

2
∑

β∈F δ̄β �̄β

∑
β∈F

δ̄β �̄β

∫ 1

0

(
�̄β
v̄β

[
v̄β − V̄

]
i

[
v̄β − V̄

]
j

+
[
Fk̂(β)

]
i

[
V̄ − v̄β

]
j
+

[
Fk̂(β)

]
j

[
V̄ − v̄β

]
i

)
dt̄.(A.45)

Finally, the dependence of ρ̄ in τ is obtained by requiring ψ̄ to be bounded. Given
(A.44), we note that this occurs only if

(A.46)
∂ρ̄

∂τ
(y, τ) =

∑
i,j

D̄ij
∂2ρ̄

∂yi∂yj
(y, τ).

The result stated in section 3 is obtain by going back to the original dimensional
variables.
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DIFFUSION OF PROTEIN RECEPTORS ON A CYLINDRICAL
DENDRITIC MEMBRANE WITH PARTIALLY ABSORBING TRAPS∗

PAUL C. BRESSLOFF† , BERTON A. EARNSHAW† , AND MICHAEL J. WARD‡

Abstract. We present a model of protein receptor trafficking within the membrane of a cylin-
drical dendrite containing small protrusions called spines. Spines are the locus of most excitatory
synapses in the central nervous system and act as localized traps for receptors diffusing within the
dendritic membrane. We treat the transverse intersection of a spine and dendrite as a spatially
extended, partially absorbing boundary and use singular perturbation theory to analyze the steady-
state distribution of receptors. We compare the singular perturbation solutions with numerical
solutions of the full model and with solutions of a reduced one-dimensional model and find good
agreement between them all. We also derive a system of Fokker–Planck equations from our model
and use it to exactly solve a mean first passage time (MFPT) problem for a single receptor traveling a
fixed axial distance along the dendrite. This is then used to calculate an effective diffusion coefficient
for receptors when spines are uniformly distributed along the length of the cable and to show how a
nonuniform distribution of spines gives rise to anomalous subdiffusion.

Key words. protein receptor trafficking, diffusion-trapping, matched asymptotics, singular
perturbation theory
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DOI. 10.1137/070698373

1. Introduction. Neurons are amongst the largest and most complex cells in
biology. Their intricate geometry presents many challenges for cell function, in par-
ticular with regard to the efficient delivery of newly synthesized proteins from the
cell body or soma to distant locations on the axon or dendrites. The axon con-
tains ion channels for action potential propagation and presynaptic active zones for
neurotransmitter release, whereas each dendrite contains postsynaptic domains (or
densities) where receptors that bind neurotransmitter tend to cluster. At most exci-
tatory synapses in the brain, the postsynaptic density is located within a dendritic
spine, which is a small, submicrometer membranous extrusion that protrudes from
a dendrite. Typically spines have a bulbous head which is connected to the parent
dendrite through a thin spine neck. Given that hundreds or thousands of synapses
and their associated spines are distributed along the entire length of a dendrite, it
follows that neurons must traffic receptors and other postsynaptic proteins over long
distances (several 100μm) from the soma. This can occur by two distinct mechanisms:
either by lateral diffusion in the plasma membrane [8, 26, 1, 7] or by motor-driven
intracellular transport along microtubules followed by local insertion into the surface
membrane (exocytosis) [17, 20, 29]. It is likely that both forms of transport occur
in dendrites, depending on the type of receptor and the developmental stage of the
organism.
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Recently, we constructed a one-dimensional diffusion-trapping model for the sur-
face transport of AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid) re-
ceptors along a dendrite [6]. AMPA receptors respond to the neurotransmitter gluta-
mate and mediate the majority of fast excitatory synaptic transmission in the central
nervous system. Moreover, there is a large body of experimental evidence suggest-
ing that the fast trafficking of AMPA receptors into and out of spines contributes to
activity-dependent, long-lasting changes in synaptic strength [21, 22, 4, 8, 9, 16].
Single-particle tracking experiments suggest that surface AMPA receptors diffuse
freely within the dendritic membrane until they encounter a spine [13, 26]. If a
receptor flows into a spine, then it is temporarily confined by the geometry of the
spine and through interactions with scaffolding proteins and cytoskeletal elements
[4, 8]. A surface receptor may also be internalized via endocytosis and stored within
an intracellular pool, where it is either recycled to the surface via exocytosis or de-
graded [11]. Motivated by these experimental observations, we modeled the surface
transport of receptors along a dendrite as a process of diffusion in the presence of
spatially localized, partially absorbing traps [6]. One of the major simplifications of
our model was to reduce the cylindrical like surface of a dendrite to a one-dimensional
domain by neglecting variations in receptor concentration around the circumference
of the cable relative to those along the cable. We also neglected the spatial extent
of each spine by treating it as a homogeneous compartment that acts as a point-like
source/sink for receptors on the dendrite. This was motivated by the observation that
the spine neck, which forms the junction between a synapse and its parent dendrite,
varies in radius from 0.02–0.2μm [23]. This is typically an order of magnitude smaller
than the spacing between neighboring spines and the radius of the dendritic cable
(around 1μm). In the one-dimensional case, the introduction of point-like spines does
not lead to any singularities since the associated one-dimensional Green’s function for
diffusion is a pointwise bounded function. We were thus able to calculate explicitly
the steady-state distribution of receptors along the dendrite and spines, as well as
to determine the mean first passage time (MFPT) for a receptor to reach a certain
distance from the soma. This allowed us to investigate the efficacy of diffusive trans-
port as a function of various biophysical parameters such as surface diffusivity and
the rates of exo/endocytosis within each spine.

In this paper we extend our diffusion-trapping model to the more realistic case
of a two-dimensional cylindrical surface. However, since the two-dimensional Green’s
function has logarithmic singularities, we can no longer neglect the spatial extent of
a spine. Therefore, we proceed by solving the steady-state diffusion equation on a
finite cylindrical surface containing a set of small, partially absorbing holes, which
represent the transverse intersections of the spines with the dendrite. The solution
is constructed by matching appropriate “inner” and “outer” asymptotic expansions
[27, 25, 28, 24]. This leads to a system of linear equations that determines the den-
dritic receptor concentration on the boundary between the dendrite and each spine.
We numerically solve these equations and use this to construct the steady-state dis-
tribution of receptors along the dendrite. We compare our results with numerical
solutions of the full model and with a reduced one-dimensional model.

A brief outline of this paper is as follows: In section 2 we formulate our diffusion-
trapping model for receptor trafficking on the boundary of a cylindrical dendritic
cable. In section 3 we construct the steady-state solution to this model using singular
perturbation techniques in the limit of small spine radii. In section 4 we present
some numerical experiments for realistic physiological parameter values that compare
our asymptotic solution of section 3 with both full numerical solutions and with the
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solution of a one-dimensional approximation valid for a large aspect ratio dendritic
cable. Finally, in section 5 we asymptotically calculate the MFPT for the diffusion of
a single tagged receptor.

2. Diffusion-trapping model on a cylinder. Consider a population of N
dendritic spines distributed along a cylindrical dendritic cable of length L and radius
l as shown in Figure 2.1(A). Since protein receptors are much smaller than the length
and circumference of the cylinder, we can neglect the extrinsic curvature of the mem-
brane. Therefore, as shown in Figure 2.1(B), we represent the cylindrical surface of
the dendrite as a long rectangular domain Ω0 of width 2πl and length L so that

Ω0 ≡ {(x, y) : 0 < x < L , |y| < πl}.

The cylindrical topology is preserved by imposing periodic boundary conditions along
the circumference of the cylinder, that is, at y = ±πl. At one end of the cylinder
(x = 0) we impose a nonzero flux boundary condition, which represents a constant
source of newly synthesized receptors from the soma, and at the other end (x = L)
we impose a no-flux boundary condition. Each spine neck is assumed to intersect
the dendritic surface transversely such that the intersection is a circle of radius ερ
centered about the point rj = (xj , yj) ∈ Ω0, where j = 1, . . . , N labels the jth
spine. For simplicity, we take all spines to have the same radius. Since a dendrite is
usually several hundred μm in length, we will assume the separation of length scales
ερ � 2πl � L. We then fix the units of length by setting ρ = 1 such that 2πl = O(1)
and treat ε as a small dimensionless parameter. Finally, we denote the surface of the
cylinder excluding the small discs arising from the spines by Ωε so that

Ωε = Ω0 \
N⋃
j=1

Ωj , Ωj = {r : |r − rj | ≤ ε}.

Let U(r, t) denote the concentration of surface receptors within the dendritic
membrane at position r ∈ Ωε at time t ∈ R+. As a result of the small area of each
spine, we assume that the receptor concentrations within each spine are spatially
homogeneous. We let Rj(t) denote the concentration of surface receptors in the jth
spine. The dendritic surface receptor concentration evolves according to the diffusion
equation

(2.1)
∂U

∂t
= D∇2U, (r, t) ∈ Ωε × R+

for a homogeneous surface diffusivity D, with periodic boundary conditions at the
ends y = ±πl,

(2.2) U(x, πl, t) = U(x,−πl, t), ∂yU(x, πl, t) = ∂yU(x,−πl, t),

and nonzero or zero flux conditions at the ends x = 0, L,

(2.3) ∂xU(0, y, t) = −σ ≡ − σ0

2πlD
, ∂xU(L, y, t) = 0.

Here σ0 denotes the number of receptors per unit time entering the surface of the
cylinder from the soma. At each interior boundary ∂Ωj we impose the mixed boundary
condition

(2.4) ε∂nU(r, t) = − ωj

2πD
(U(r, t) −Rj), r ∈ ∂Ωj , j = 1, . . . , N,
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Fig. 2.1. Diffusion-trapping model of receptor trafficking on a cylindrical dendritic cable (dia-
gram not to scale). (A) A population of dendritic spines is distributed on the surface of a cylinder
of length L and radius l. Each receptor diffuses freely until it encounters a spine where it may be-
come trapped. Within a spine receptors may be internalized via endocytosis (END) and then either
recycled to the surface via exocytosis (EXO) or degraded (DEG); see the inset. Synthesis of new
receptors at the soma and insertion into the plasma membrane generates a surface flux σ0 at one end
of the cable. (B) Topologically equivalent rectangular domain with opposite sides y = ±πl identified.
(C) State transition diagram for a simplified one-compartment model of a dendritic spine. Here Rj

denotes the concentration of surface receptors inside the jth spine, Uj is the mean dendritic receptor
concentration on the boundary between the spine neck and dendrite, and Sj is the number of re-
ceptors within the corresponding intracellular pool. Freely diffusing surface receptors can enter/exit
the spine at a hopping rate ωj , be endocytosed at a rate kj , be exocytosed at a rate σrec

j , and be

degraded at a rate σdeg
j . New intracellular receptors are produced at a rate δj .

where ∂nU is the outward normal derivative to Ωε. The flux of receptors across the
boundary between the dendrite and jth spine is taken to depend on the difference in
concentrations on either side of the boundary with ωj an effective hopping rate. (This
rate is determined by the detailed geometry of the spine [2].) It follows that the total
number of receptors crossing the boundary per unit time is ωj [Uj(t) − Rj(t)], where
Uj(t) is the mean dendritic receptor concentration on the boundary ∂Ωj of the jth
spine of length 2πε:

(2.5) Uj =
1

2πε

∫
∂Ωj

U(r, t) dr.

Surface receptors within the jth spine can be endocytosed at a rate kj and stored
in an intracellular pool. Intracellular receptors are either reinserted into the surface
via exocytosis at a rate σrec

j or degraded at a rate σdeg
j . We also allow for a local

source of intracellular receptors with a production rate δj . Denoting the number of



DIFFUSION OF PROTEIN RECEPTORS IN DENDRITES 1227

receptors in the jth intracellular pool by Sj(t), we then have the pair of equations

dRj

dt
=

ωj

Aj
[Uj −Rj ] −

kj
Aj

Rj +
σrec
j Sj

Aj
,(2.6)

dSj

dt
= −σrec

j Sj − σdeg
j Sj + kjRj + δj .(2.7)

The first term on the right-hand side of (2.6) represents the exchange of surface
receptors between the spine and parent dendrite. Since ωj [Uj −Rj ] is the number of
receptors per unit time flowing across the junction between the dendritic cable and
the spine, it is necessary to divide through by the surface area Aj of the spine in order
to properly conserve receptor numbers. Note that in our previous one-dimensional
model [6] we absorbed the factor of Aj into our definition of the rate of endocytosis kj .
(The precise variation of endocytic rate with spine area Aj will depend upon whether
or not endocytosis is localized to certain hotspots within the spine [4].) The various
processes described by (2.6) and (2.7) are summarized in Figure 2.1(C).

3. Steady-state analysis using asymptotic matching. In steady-state one
can solve (2.6) and (2.7) for Rj in terms of the mean concentration Uj to get

(3.1) Rj =
ωjUj

ωj + kj(1 − λj)
+

λjδj
ωj + kj(1 − λj)

,

where

(3.2) λj ≡
σrec
j

σrec
j + σdeg

j

, Sj =
λj

σrec
j

(kjRj + δj) .

Then Uj is determined from (2.5) and the steady-state version of (2.1):

(3.3) ∇2U = 0 , r ∈ Ωε,

with boundary conditions

(3.4) U(x, πl) = U(x,−πl) , ∂yU(x, πl) = ∂yU(x,−πl),

(3.5) ∂xU(0, y) = −σ, ∂xU(L, y) = 0,

where σ = σ0/(2πlD) from (2.3) and

(3.6) ε∂nU(r) = − ωj

2πD
(U(r) −Rj), r ∈ ∂Ωj , j = 1, . . . , N.

Since the radius of each spine is asymptotically small, we can make the simplification
that U(r) = Uj on ∂Ωj . The substitution of (3.1) into (3.6) then yields the following
reduced condition on the boundary of each spine:

(3.7) ε∂nU(r) = − ω̂j

2πD
(Uj − R̂j) , r ∈ ∂Ωj , j = 1, . . . , N,
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where ω̂j and R̂j are defined by

(3.8) ω̂j ≡
ωjkj(1 − λj)

ωj + kj(1 − λj)
, R̂j ≡

σrec
j

kj

δj

σdeg
j

.

Under steady-state conditions, one can view ω̂j as an effective spine-neck hopping

rate and R̂j as an effective receptor concentration within the spine.
Upon integrating the diffusion equation (3.3) over the domain Ωε and imposing

the boundary conditions (3.4), (3.5), and (3.7), we obtain the solvability condition

(3.9) σ0 =

N∑
j=1

ω̂j

[
Uj − R̂j

]
.

This expresses the condition that the rate at which receptors enter the dendrite from
the soma is equal to the effective rate at which receptors exit the dendrite into spines
and are degraded. Note that in the limit of negligible degradation of receptors in
the intracellular pools so that σdeg

j → 0, it follows from (3.2) and (3.8) that λj → 1,

ω̂j → 0, R̂j → ∞ with ω̂jR̂j → −δj . Consequently, in the limit σdeg
j → 0, (3.9)

reduces to σ0 → −
∑

j=1 δj , which has no solution for σ0 > 0 and positive production

rates δj > 0. This shows that there is no steady-state solution when σdeg
j = 0, as

the number of receptors in the dendrite would grow without bound as time increases.
A similar argument shows that there is also no steady-state solution in the limit of
infinite spine-neck resistances such that ωj → 0 for j = 1, . . . , N . In this limit, newly
synthesized receptors at the soma would not be able to diffuse from the dendrite to a
spine and be degraded.

Our method of solution for the boundary value problem given by (3.3), (3.4),
(3.5), and (3.7), which we denote by BVPI, proceeds in two steps. First, we solve a
related problem, denoted by BVPII, in which the mixed boundary conditions (3.7)
are replaced by the inhomogeneous Dirichlet conditions

(3.10) U(r) = Uj , r ∈ ∂Ωj , j = 1, . . . , N,

under the assumption that the Uj are known. In the singularly perturbed limit ε → 0,
the approximate solution for U valid away from each of the spines is shown below to
be determined up to an arbitrary constant χ. Then, by substituting our asymptotic
solution to BVPII into the N mixed boundary conditions (3.7) and upon satisfying
the conservation equation (3.9), we obtain N + 1 linear equations for the N + 1
unknowns χ and Uj , j = 1, . . . , N . This closed linear system of equations can be
solved numerically to generate the full solution to the original boundary value problem
BVPI. In order to solve BVPII asymptotically in the limit of small spine radii ε → 0,
we match appropriate “inner” and “outer” asymptotic expansions, following along
similar lines to previous studies of boundary value problems in domains with small
holes [27, 25, 28, 24].

3.1. Matching inner and outer solutions. Around each small circle ∂Ωj we
expect the solution of BVPII to develop a boundary layer where it changes rapidly
from its value Uj on ∂Ωj to another value that is required by the solution to the
steady-state diffusion equation in the bulk of the domain. Therefore, Ωε may be
decomposed into a set of j = 1, . . . , N “inner” regions, where |r− rj | = O(ε), and an
“outer” region, where |r−rj | 	 O(ε) for all j = 1, . . . , N . In the jth inner region, we
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introduce the stretched local variable s = ε−1(r − rj) and set V (s; ε) = U(rj + εs; ε)
so that to leading order (omitting far-field boundary conditions)

∇2
sV = 0 , |s| > 1,(3.11)

V = Uj , |s| = 1.

This has an exact solution of the form V = Uj + Bj log |s| with the unknown ampli-
tude Bj determined by matching inner and outer solutions. This leads to an infinite
logarithmic expansion of Bj in terms of the small parameter [27, 25, 28, 24]

(3.12) ν = − 1

log(ε)
.

Since the outer solution is O(1) as ν → 0 and V grows logarithmically at infinity,
we write Bj = νAj(ν), where the function Aj(ν) is to be found. The inner solution
becomes

(3.13) V = Uj + νAj(ν) log |s|.

In terms of the outer variable |r− rj |, we then obtain the following far-field behavior
of the inner solution:

(3.14) V ∼ Uj + Aj(ν) + νAj(ν) log |r − rj |.

This far-field behavior must then match with the near-field behavior of the asymp-
totic expansion of the solution in the outer region away from the N traps. The
corresponding outer problem is given by

∇2U = 0, r ∈ Ω0\{r1, . . . , rN},(3.15)

with boundary conditions

U(x, πl) = U(x,−πl) , ∂yU(x, πl) = ∂yU(x,−πl),

∂xU(0, y) = −σ, ∂xU(L, y) = 0,

together with the asymptotic singularity conditions

(3.16) U ∼ Uj + Aj(ν) + νAj(ν) log |r − rj | as r → rj , j = 1, . . . , N.

Equations (3.15) and (3.16) can be reformulated in terms of an outer problem with
homogeneous boundary conditions and a constant forcing term by decomposing

(3.17) U(r) = U(r) + u(r) , u(x, y) ≡ σ

2L
(x− L)2.

Then (3.15) becomes

∇2U = −σ

L
, r ∈ Ω0\{r1, . . . , rN} ,(3.18)

with boundary conditions

U(x, πl) = U(x,−πl) , ∂yU(x, πl) = ∂yU(x,−πl),

∂xU(0, y) = 0, ∂xU(L, y) = 0 ,
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and the asymptotic singularity conditions

(3.19) U ∼ −u(rj) + Uj + Aj(ν) + νAj(ν) log |r − rj | as r → rj , j = 1, . . . , N.

In order to treat the logarithmic behavior of the outer solution at rj , we introduce
the Neumann Green’s function G(r; r′), defined as the unique solution to

∇2G =
1

|Ω0|
− δ(r − r′) , r ∈ Ω0 ,(3.20)

G(x, πl; r′) = G(x,−πl; r′) , ∂yG(x, πl; r′) = ∂yG(x,−πl; r′),

∂xG(0, y; r′) = 0 , ∂xG(L, y; r′) = 0 ,∫
Ω0

G(r; r′) dr = 0.

Here |Ω0| = 2πLl is the area of the rectangular domain Ω0. This Green’s function
has a logarithmic singularity as r → r′ so that we can decompose G as

(3.21) G(r; r′) = − 1

2π
log |r − r′| + G(r; r′),

where G is the regular part of G. We will calculate G explicitly in section 3.3. This
property of G suggests that we replace (3.18) and (3.19) by the following single equa-
tion in Ω0:

(3.22) ∇2U = −σ

L
+

N∑
j=1

2πνAj(ν)δ(r − rj) , r ∈ Ω0.

Then, upon using the divergence theorem together with the homogeneous boundary
conditions for U , we obtain the solvability condition

(3.23)
σ

L
|Ω0| =

N∑
j=1

2πνAj(ν).

It readily follows that (3.22) has the solution

(3.24) U(r) = −
N∑
j=1

2πνAj(ν)G(r; rj) + χ,

where χ is a constant to be found. Since
∫
Ω0

Gdr = 0, it follows that χ can be

interpreted as the spatial average of U , defined by χ = |Ω0|−1
∫
Ω0

U dr. Then, as

r → rj , the outer solution for U given in (3.24) has the near-field behavior

(3.25) U ∼ −2πνAj(ν)

[
− 1

2π
log |r − rj | + G(rj ; rj)

]
−

N∑
i �=j

2πνAi(ν)G(rj ; ri) + χ

for each j = 1, . . . , N . Upon comparing the nonsingular terms in this expression and
that of (3.19), we obtain the following system of equations:

(3.26) (1 + 2πνGjj)Aj +

N∑
i �=j

2πνGjiAi = uj − Uj + χ , j = 1 , . . . , N ,

where uj ≡ u(rj), Gji ≡ G(rj ; ri), and Gjj ≡ G(rj ; rj).
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3.2. Calculation of boundary concentrations Uj. Equations (3.13) and
(3.24) are the inner and outer solutions of BVPII, respectively, where the N + 1
coefficients χ and Aj for j = 1, . . . , N are determined from the N linear equations
(3.26) together with the solvability condition (3.23). We can now generate the solu-
tion to the original problem BVPI by substituting the inner solution (3.13) into the
mixed boundary conditions (3.7). This gives

(3.27) 2πνAj(ν) =
ω̂j

D
[Uj − R̂j ] ≡ Vj .

Substituting (3.27) into the solvability condition (3.23) shows that the latter is equiv-
alent to the conservation equation (3.9). Furthermore, upon substituting (3.27) into
(3.26) we obtain the system of linear equations

(3.28)
[
(2πν)−1 + Gjj

] ω̂j

D
[Uj−R̂j ]+

N∑
i �=j

Gji
ω̂i

D
[Ui−R̂i] = uj−Uj+χ , j = 1, . . . , N.

This system, together with the conservation equation (3.9), gives N + 1 equations for
the N + 1 unknowns χ and Uj , j = 1, . . . , N . This system depends on the flux σ0 of
receptors from the soma, the number and the locations of the dendritic spines, and
the aspect ratio of Ω0. Upon solving this system for Uj and χ, the dendritic receptor
concentration in the bulk of the dendritic membrane, obtained from (3.17), (3.24),
and (3.27), is given by

(3.29) U(r) = u(r) −
N∑
j=1

ω̂j

D
[Uj − R̂j ]G(r; rj) + χ.

This approximate solution for U is valid for distances larger than O(ε) away from the
centers rj , for j = 1, . . . , N , of the spines. Moreover, the distribution Rj of receptors
within the spines is given in terms of Uj by (3.1).

There are two important remarks. First, we emphasize that the system (3.26)
together with (3.23) contains all of the logarithmic correction terms in the asymptotic
solution to BVPI. The error made in this approximation is transcendentally small of
order O(ε), which is asymptotically smaller than any power of ν. A precise estimate
of such transcendentally small terms for a related problem is given in Appendix A
of [25]. Second, we remark that in [6] we have previously derived one-dimensional
versions of (3.9), (3.28), and (3.29). In contrast to the two-dimensional case, the
one-dimensional Neumann Green’s function is nonsingular so that one can represent
the spines as point sources/sinks on the dendrite, and singular perturbation theory is
not needed.

It is convenient to introduce a matrix solution to (3.28). We first introduce the
matrix B with elements

(3.30) Bjj = 2π

(
D

ω̂j
+ Gjj

)
, Bji = 2πGji , j �= i.

Then (3.28) can be written in the compact form

N∑
i=1

(δi,j + νBji)Vi = 2πν[uj − R̂j + χ] ,
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where Vi is defined in (3.27). Defining M = (I+νB)−1, where I is the N×N identity
matrix, we have

(3.31) Vj = 2πν

N∑
i=1

Mji(ui − R̂i + χ).

The constant χ is then determined by substituting (3.31) into the solvability condition
(3.9). This yields

σ0

D
=

N∑
j=1

Vj = 2πν

N∑
i=1

N∑
j=1

Mji(ui − R̂i + χ).

Upon solving this equation for χ we get

(3.32) χ =
σ0

2πνD −
∑N

i=1

∑N
j=1 Mji(ui − R̂i)∑N

i=1

∑N
j=1 Mji

.

Since Mji = δi,j + O(ν), it follows that to leading order in ν

(3.33) χ =
σ0

2πNDν
+ O(1), Uj = R̂j +

σ0

Nω̂j
+ O(ν).

The singular nature of the constant χ as ν → 0, and hence the solution U(r), reflects
the fact that for fixed somatic flux σ0, the flux in the neighborhood of each spine
boundary ∂Ωj diverges as ε → 0. This is necessary in order to maintain the solvability

condition (3.9). Note, in particular, that ω̂j [Uj − R̂j ] gives the number of receptors
flowing across the boundary per unit time, and its size essentially remains fixed as
ε decreases. Thus, in this limit, the flux through the boundary increases, resulting
in a steeper concentration gradient in a neighborhood of the spine boundary. If the
hopping rate ω̂j decreases as ε decreases, then the boundary concentration Uj will
also diverge in order to maintain (3.9).

3.3. Evaluation of Green’s function. To evaluate the Green’s function G
satisfying (3.20), we begin by writing its Fourier series representation,

(3.34) G(r; r′) =
2

|Ω0|

∞∑
n=1

cos
(
πnx
L

)
cos

(
πnx′

L

)
(
πn
L

)2 +
2

|Ω0|

∞∑
m=1

cos
(

m(y−y′)
l

)
(
m
l

)2
+

4

|Ω0|

∞∑
m=1

∞∑
n=1

cos
(
πnx
L

)
cos

(
πnx′

L

)
cos

(
m(y−y′)

l

)
(
πn
L

)2
+
(
m
l

)2 .

Upon recalling the formula (cf. p. 46 of [12])

(3.35)
∞∑
k=1

cos(kθ)

k2 + b2
=

π

2b

cosh(b(π − |θ|))
sinh(πb)

− 1

2b2
, |θ| ≤ 2π ,
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we can sum the third term of (3.34) over the index n to obtain

(3.36)
1

2π

∞∑
m=1

cos
(

m(y−y′)
l

) [
cosh

(
m(L−|x−x′|)

l

)
+ cosh

(
m(L−|x+x′|)

l

)]
m sinh

(
Lm
l

)

− 2

|Ω0|

∞∑
m=1

cos
(

m(y−y′)
l

)
(
m
l

)2 .

Notice that the second sum of (3.36) cancels the second sum of (3.34). Then, using the
angle addition formula for hyperbolic cosine and the relation cosh(x)−sinh(x) = e−x,
we derive the following key identity for any constants a, b, and c:

(3.37)
cosh(a− b) + cosh(a− c)

sinh a
=

1

1 − e−2a

[
e−b + e−c + eb−2a + ec−2a

]
.

We use this identity to rewrite the first sum in (3.36) and then substitute the resulting
expression into (3.34). This yields
(3.38)

G(r; r′) =
H(x;x′)

2πl
+

∞∑
m=1

(
zm+ + z+

m + zm− + z−
m + ζm+ + ζ+

m
+ ζm− + ζ−

m
)

4πm(1 − qm)
,

where q ≡ e−2L/l. Here z± and ζ± are defined by z± ≡ er±/l and ζ± ≡ eρ±/l, where

r+ ≡ −|x + x′| + i(y − y′) , r− ≡ −|x− x′| + i(y − y′) ,(3.39)

ρ+ ≡ |x + x′| − 2L + i(y − y′) , ρ− ≡ |x− x′| − 2L + i(y − y′) ,(3.40)

and · denotes complex conjugate. Moreover, in (3.38), H(x;x′) is defined by

(3.41) H(x;x′) ≡ 2

L

∞∑
n=1

cos
(
πnx
L

)
cos

(
πnx′

L

)
(
πn
L

)2
=

L

12

[
h

(
x− x′

L

)
+ h

(
x + x′

L

)]
, h(θ) ≡ 3θ2 − 6|θ| + 2.

The function H(x;x′) is the one-dimensional Green’s function in the x-direction.
Since q = e−2L/l < 1, we can write (1 − qm)−1 =

∑∞
n=0(q

m)n for all m ≥ 1. In
this way, the sum in (3.38) can be written as

(3.42)

∞∑
m=1

∞∑
n=0

(qn)m

(
zm+ + z+

m + zm− + z−
m + ζm+ + ζ+

m
+ ζm− + ζ−

m
)

4πm
.

Notice that when z± �= 1 and ζ± �= 1 (i.e., when r± �= 0 and ρ± �= 0) this double sum
is absolutely convergent, so we can interchange the order of summation in (3.42) and
then perform the sum over the index m, yielding

(3.43) − 1

4π

∞∑
n=0

(
ln |1 − qnz+|2 + ln |1 − qnz−|2 + ln |1 − qnζ+|2 + ln |1 − qnζ−|2

)

= − 1

2π
ln |1 − z+||1 − z−||1 − ζ+||1 − ζ−| + O(q).
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The only singularity exhibited by (3.43) in Ω0 is at (x, y) = (x′, y′), in which case
z− = 1 and ln |1 − z−| diverges. Writing ln |1 − z−| = ln |r−| + ln(|1 − z−|/|r−|) and
noting that ln |r−| = ln |r − r′| and ln(|1 − z−|/|r−|) is regular, we find that

(3.44) G(r; r′) = − 1

2π
ln |r − r′| + G(r; r′) ,

where the regular part G of G is given explicitly by

(3.45) G(r; r′) =
H(x;x′)

2πl
− 1

2π
ln

|1 − z+||1 − z−||1 − ζ+||1 − ζ−|
|r−|

+ O(q).

This expression for G is valid in the large aspect ratio limit L/l 	 1 for which q � 1.

4. Numerics. In this section we compare the asymptotic solution U of (3.29)
and (3.31) with the full solution obtained by numerically solving (3.3)–(3.6). In
order to implement the boundary conditions (3.6) we use the steady-state solution
of Rj given by (3.1), with the mean boundary concentration Uj identified with the
corresponding solution of the singular perturbation problem as determined by (3.27)
and (3.1). We then check that the resulting numerical solution is self-consistent; that
is, the mean receptor concentration around the boundary is well approximated by
the assumed value for Uj . The two-dimensional numerical solutions are generated by
using the Partial Differential Equation Toolbox of MATLAB [30]. In Figure 4.1(A) we
plot the steady-state concentration U given by (3.29) and (3.31) for a cable of length
L = 100μm and radius l = (2π)−1μm having 99 identical spines spaced 1μm apart
along a single horizontal line (y = 0μm). In Figure 4.1(B) we plot the corresponding
values of Uj , Rj , and Sj , with Rj , Sj given by (3.1) and (3.2). Here the diffusivity
is D = 0.1μm2s−1 [13, 2], the somatic flux is σ0 = 0.1μm−1 s−1, and all spines are
identical with radius ερ = 0.1μm, A = 1μm, ω = 10−3μm2s−1, k = 10−3μm2s−1,
σrec = 10−3s−1, σdeg = 10−4s−1, and δ = 10−3s−1. We set ρ = 2πl = 1μm so that
ε = 0.1. While U decays significantly along the length of the cable, it varies very
little around the circumference of the cable. In Figure 4.1(C) we show the results of
numerically solving the original steady-state system for U described in (3.3)–(3.6).
This numerical solution agrees almost perfectly with the perturbation solution shown
in Figure 4.1(A).

We consider the parameter regime of Figure 4.1 physiological in the sense that pa-
rameter values were chosen from experimental data [2, 11, 13, 23] in conjunction with
previous modeling studies [5, 6]. Our results suggest that in this parameter regime
the dendrite can be treated as a quasi-one-dimensional system in which variations in
receptor concentration around the circumference of the cable can be neglected. This is
further reinforced by the observation that the solutions of the two-dimensional model
shown in Figure 4.1(A)–(C) are virtually indistinguishable from the corresponding so-
lution of the reduced one-dimensional model previously introduced in [6] (see Figure
4.1(D)). In the one-dimensional model, (2.1)–(2.4) are replaced by the inhomogeneous
diffusion equation

(4.1)
∂U

∂t
= D

∂2U

∂x2
−

N∑
j=1

ωj

2πl
[Uj −Rj ]δ(x− xj) ,

with boundary conditions Uj(t) = U(xj , t) and

(4.2) D
∂U

∂x

∣∣∣∣
x=0

= − σ0

2πlD
, D

∂U

∂x

∣∣∣∣
x=L

= 0.
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Fig. 4.1. Plot of receptor concentration profiles along a dendritic cable with a uniform collinear
distribution of dendritic spines. Cable and spine parameter values are given in the text. (A) Plot
of bulk dendritic concentration U given by the outer solution (3.29) of the matched asymptotic
expansion. Boundaries of spines are indicated by white lines. The dendritic cable is not drawn to
scale. (B) Corresponding plots of Uj , Rj , and Sj obtained from (3.27), (3.31), (3.1), and (3.2).
(Note that Sj is converted to a concentration by dividing through by the area Aj of a spine, which
is taken to be 1μm.) (C) Numerical solution of (3.3)–(3.6). (D) Plots of Uj , Rj , and Sj obtained
by solving the corresponding one-dimensional model [6].

As in the two-dimensional model, Rj evolves according to (2.6) and (2.7). The steady-
state solution of (4.1) can be obtained using the one-dimensional Green’s function H
such that

(4.3) U(x) = χ−
N∑
j=1

ω̂j [Uj − R̂j ]

2πlD
H(x, xj) +

σ

2πlD
H(x, 0) ,

where the constant χ is determined from the self-consistency condition (3.9). The
set of concentrations Uj can then be determined self-consistently by setting x = xi in
(4.3) and solving the resulting matrix equation along analogous lines to (3.28) (cf. [6]).
It is important to note that the excellent agreement between the two-dimensional and
one-dimensional models is not a consequence of taking the spines to all lie along a
one-dimensional line. This is illustrated in Figure 4.2 for a configuration of three
staggered rows of 33 spines. The receptor concentrations are indistinguishable from
the configuration consisting of a single row of 99 spines.

There is a simple heuristic argument to show why our original two-dimensional
diffusion problem can be reduced to a corresponding one-dimensional problem, at
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Fig. 4.2. Plot of receptor concentration profiles along a dendritic cable with three staggered
rows of spines. All other parameters are as in Figure 4.1. Left: Plot of bulk dendritic concentration
U given by the outer solution (3.29) of the matched asymptotic expansion. Boundaries of spines are
indicated by white lines. The dendritic cable is not drawn to scale. Right: Corresponding plots of Uj ,
Rj , and Sj obtained from (3.27), (3.31), (3.1), and (3.2). Concentration plots are indistinguishable
from Figure 4.1.

least in the parameter regime of Figure 4.1. Given a somatic flux σ0 = 0.1μm−1s−1,
a cable circumference of 1μm, and N = 100 spines, it follows that the mean num-
ber of receptors flowing through each spine boundary per second is 10−3. Thus a
rough estimate of the mean flux through each spine boundary of circumference 2πε
is J̄ = 10−3/(2πε)s−1m−1. Let ΔU represent the typical size of changes in receptor
concentration needed to generate such a flux over a length scale Δx comparable to
that of the dendritic circumference. Taking J̄ ∼ DΔU/Δx with Δx = 2πl = 1μm
and D = 0.1μm2s−1 then gives ΔU ∼ 10−2l/ε ≈ 1.6 × 10−3μm−2. Such a variation
is negligible compared to the variation in receptor concentration along the length of
the cable due to the source at the soma (see Figure 4.1), thus justifying a reduction
to a one-dimensional model.

The above argument shows that the relatively small variation of receptor con-
centration around the circumference of the cable is a consequence of two factors: the
large number of spines and the large aspect ratio (l � L) of the dendritic geometry;
the length scales L, l put upper bounds on the maximum variation of the concen-
tration in the x- and y-directions, respectively, for fixed σ0. Thus we expect the
two-dimensional nature of the spine’s surface to become significant in the case of a
few spines distributed on a short dendritic cable; such a situation could be relevant
in the case of immature neurons. The solution for the receptor concentration will
then be sensitive to the size of the spine radius ε. We illustrate this in Figure 4.3
in the case of a single spine centered at (x, y) = (1, 0) on the surface of a dendrite
of length L = 2μm. With this smaller value of L, the aspect ratio of the cable is
now L/l = 4π. We also choose ω = k = 1μm2s−1. In Figure 4.3(A)–(C) we show
the singular perturbation solution for U when ε = 0.01, 0.1, and 0.4, respectively. In
Figure 4.3(D)–(F) we show corresponding plots for the numerical solutions of U . It
can be seen that the effect of the logarithmic singularity in the vicinity of the spine
becomes prominent as ε decreases. Finally, in Figure 4.3(G) we plot the solution from
the one-dimensional model. Although this model contains no information about the
radius of the spine neck, and the aspect ratio of the system is now only moderately
large, it still provides an approximate solution that agrees quite well with the full
two-dimensional solutions.
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Fig. 4.3. Effect of spine radius ε on the solution U for a single spine centered at x = 1μm, y = 0
on a short dendritic cable of length L = 2μm. (A)–(C) Plots of bulk dendritic receptor concentration
U along the dendrite given by the outer solution (3.29) of the matched asymptotic expansion for
parameter values as specified in the text and ε = 0.01, 0.1, and 0.4μm, respectively. The shaded
region shows the range of values taken by the receptor concentration around the circumference of the
cable as a function of distance x from the soma. (D)–(F) Corresponding plots of numerical solutions
for U . (G) Plot of the one-dimensional solution [6].
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5. Mean first passage time (MFPT) for a single receptor. In this section
we calculate the MFPT for a single tagged receptor to travel an axial distance X from
the soma, X < L, assuming that the receptor does not undergo degradation. We then
use this to determine an effective diffusivity, which takes into account the effects of
trapping at spines. We proceed by reinterpreting the dendritic receptor concentration
as a probability density and the diffusion equation (2.1) as a Fokker–Planck (FP)
equation. The FP equation is defined on a spatial domain ΩX

ε , where

ΩX
ε = ΩX \

NX⋃
j=1

Ωj , Ωj = {r : |r − rj | ≤ ε}.

Here ΩX = {(x, y); 0 < x < X, |y| < πl} and NX is the number of spines within
the rectangular domain ΩX . We impose an absorbing boundary condition at x = X
so that the receptor is immediately removed once it reaches this boundary; i.e., we
are interested only in the time it takes for a receptor to first reach x = X from the
soma. Let u(r, t|r0, 0) denote the probability density that at time t ≥ 0 the receptor
is located at r ∈ ΩX

ε , given that it started at the point r0 = (0, y0). The probability
density u evolves according to the FP equation

(5.1)
∂u

∂t
= D∇2u, (r, t) ∈ ΩX

ε × R+ ,

with periodic boundary conditions at the ends y = ±πl,

(5.2) u(x, πl, t|r0, 0) = u(x,−πl, t|r0, 0), ∂yu(x, πl, t|r0, 0) = ∂yu(x,−πl, t|r0, 0) ,

and with

(5.3) ∂xu(0, y, t|r0, 0) = 0 , u(X, y, t|r0, 0) = 0.

At each interior boundary ∂Ωj we impose the mixed boundary condition
(5.4)

ε∂nu(r, t|r0, 0) = − ωj

2Dπ
(u(r, t|r0, 0) − rj(t|r0, t)), r ∈ ∂Ωj , j = 1, . . . , NX .

Here Ajrj(t|r0, t) denotes the probability that the receptor is located within the jth
spine at time t. Defining sj(t|r0, t) to be the corresponding probability that the
receptor is located within the jth intracellular pool, we have

Aj
drj
dt

= ωj [uj − rj ] − kjrj + σrec
j sj ,(5.5)

dsj
dt

= −σrec
j sj + kjrj .(5.6)

Since we are assuming that the tagged receptor has not been degraded over the time
interval of interest, we have set σdeg

j = 0 for all j. We also assume no production of
intracellular receptors so that δj = 0. The initial conditions are u(r, 0|r0, 0) = δ(r−r0)
and rj(0|r0, 0) = sj(0|r0, 0) = 0 for all j.
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5.1. MFPT. Let τ(X|r0) denote the time it takes for a receptor starting at
r0 = (0, y0) to first reach the boundary x = X. The function

(5.7) F (X, t|r0) ≡
∫

ΩX
ε

u(r, t|r0, 0) dr +

NX∑
j=1

[Ajrj(t|r0, 0) + sj(t|r0, 0)]

is the probability that t < τ(X|r0); i.e., the probability that a receptor which was
initially at the origin has not yet reached x = X in a time t. Notice that 1−F is the
cumulative density function for τ , and hence

(5.8)
∂(1 − F )

∂t
= −∂F

∂t

is its probability density function. Thus the MFPT, denoted by T , is

(5.9) T = −
∫ ∞

0

t
∂F

∂t
dt =

∫ ∞

0

F dt.

The last equality in (5.9) follows by integrating the first integral by parts and recalling
that F , being an L1 function in time, decays more rapidly to zero than t−1 as t
becomes large. Therefore, integrating (5.7) over time gives us the following expression
for T (X|r0):

(5.10) T (X|r0) = lim
z→0

⎛
⎝∫

ΩX
ε

û(r, z|r0, 0)dr +

NX∑
j=1

[Aj r̂j(z|r0, 0) + ŝj(z|r0, 0)]

⎞
⎠ ,

where ·̂ denotes the Laplace transform,

(5.11) f̂(z) ≡
∫ ∞

0

e−ztf(t)dt.

Upon Laplace transforming (5.1)–(5.6) and using the initial conditions, we can take
the limit z → 0 to obtain

(5.12) ûj(r0) = r̂j(0|r0, 0) =
σrec
j

kj
ŝj(0|r0, 0),

where

(5.13) ûj(r0) =
1

2πε

∫
∂Ωj

û(r; r0) dr.

Here we have set û(r; r0) = limz→0 û(r, z|r0, 0). Hence, we obtain the boundary value
problem

(5.14) D∇2û(r; r0) = −δ(r − r0), r ∈ ΩX
ε ,

with

(5.15) û(x, πl; r0) = û(x,−πl; r0) , ∂yû(x, πl; r0) = ∂yû(x,−πl; r0),

(5.16) ∂xû(0, y; r0) = 0, û(X, y; r0) = 0 ,
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and the mixed boundary condition

(5.17) ε∂nû(r; r0) = −βj

(
û− 1

2πε

∫
∂Ωj

û dr

)
, j = 1, . . . , NX ,

where βj is defined in terms of the hopping rate by βj ≡ ωj/(2Dπ).
As in section 3, we have a singularly perturbed boundary value problem, although

in a weaker sense than the previous case. Carrying out a matched asymptotic expan-
sion, the details of which are presented in the appendix, we find that there are no
logarithmic singularities and the dependence on the spine size is O(ε2). More specif-
ically, the outer solution has the asymptotic expansion

(5.18) û ∼ GX(r; r0)

D
+ 2πε2

NX∑
j=1

(
βj − 1

βj + 1

)
aj · ∇jGX(r; rj) ,

where ∇j denotes differentiation with respect to the source variable rj , and aj is
defined by

(5.19) aj ≡
∇GX(rj ; r0)

D
.

Here GX is the Green’s function on the rectangular domain ΩX with periodic bound-
ary conditions at the ends y = ±πl, a reflecting boundary at x = 0, and an absorbing
boundary at x = X. Thus,

(5.20) GX(r; r′) =
2

|ΩX |

∞∑
m=−∞

∞∑
n=0

cos
(

π(2n+1)x
2X

)
cos

(
π(2n+1)x′

2X

)
eim(y−y′)/l

(
π(2n+1)

2X

)2

+
(
m
l

)2 .

Since GX has a logarithmic singularity, it follows that

(5.21) ∇jGX(r; rj) ∼ − 1

2π

(r − rj)

|r − rj |2
+ ∇jGX as r → rj ,

where GX is the regular part of GX . The average concentration ûj around the bound-
ary of the jth spine is obtained from the corresponding inner solution given in the
appendix; see (A.6) and (A.8). Thus

ûj =
GX(rj ; r0)

D
+

ε

2π

NX∑
k=1

(
2

βj + 1

)∫ 2π

0

aj · eρ dθ ,(5.22)

where eρ is the unit normal to the circular boundary ∂Ωj . Since aj is a constant vector,
it follows that

∫
aj · eρdθ = 0, and so the O(ε) term vanishes. Finally, substituting

(5.12), (5.18), and (5.22) into (5.10) shows that

(5.23) T (X|r0) =

∫
ΩX

GX(r; r0)

D
dr +

NX∑
j=1

ηj
GX(rj ; r0)

D
+ ε2J + · · · ,

where ηj = Aj + kj/σ
rec
j and

J = −π

NX∑
j=1

GX(rj ; r0)

D
+ 2π

NX∑
j=1

(
βj − 1

βj + 1

)
aj · ∇j

∫
ΩX

GX(r; rj) dr.(5.24)

In the following we will determine the zeroth-order expression for the MFPT by
dropping the O(ε2) terms.
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5.2. Evaluation of Green’s function. We wish to evaluate the Green’s func-
tion GX in (5.20). We begin by expressing the double sum as

(5.25) GX(r; r′) =
2

|ΩX |

∞∑
n=0

cos
(

π(2n+1)x
2X

)
cos

(
π(2n+1)x′

2X

)
(

π(2n+1)
2X

)2

+
4

|ΩX |

∞∑
m=1

∞∑
n=0

cos
(

π(2n+1)x
2X

)
cos

(
π(2n+1)x′

2X

)
cos

(
m(y−y′)

l

)
(

π(2n+1)
2X

)2

+
(
m
l

)2 .

Upon using the identity (derived from p. 46 of [12])

(5.26)

∞∑
k=0

cos((2k + 1)θ)

(2k + 1)2 + b2
=

π

4b

[
cosh(b(π − |θ|))

sinh(πb)
− cosh(b|θ|)

sinh(πb)

]
, |θ| ≤ π,

we can perform the sum over the index n in (5.25), yielding

(5.27)
1

2π

∞∑
m=1

cos
(

m(y−y′)
l

) [
cosh

(
m(2X−|x−x′|)

l

)
+ cosh

(
m(2X−|x+x′|)

l

)]
m sinh

(
2Xm

l

) + E ,

where E is defined by

(5.28) E ≡ − 1

2π

∞∑
m=1

cos
(

m(y−y′)
l

) [
cosh

(
m|x−x′|

l

)
+ cosh

(
m|x+x′|

l

)]
m sinh

(
2Xm

l

) .

Following arguments similar to those used in section 3.3, together with the identity
(3.37), the infinite sums in (5.27) and (5.28) can be represented as infinite sums of
logarithmic terms. Our calculations are greatly simplified if X is not too small (e.g.,
by assuming that X 	 l/2). In this large aspect ratio limit, the identity (3.37) yields
that

(5.29)
cosh

(
m(2X−|x−x′|)

l

)
+ cosh

(
m(2X−|x+x′|)

l

)
sinh

(
2Xm

l

)
≈ e−m|x−x′|/l + e−m|x+x′|/l + O(qX) ,

where qX ≡ e−2X/l. In addition, E = O(qX) � 1 and can be neglected to a first
approximation. Using these approximations for the large aspect ratio limit, we readily
derive that

(5.30) GX(r; r′) =
HX(x;x′)

2πl
− 1

2π
ln |1 − z+||1 − z−| + O(qX) ,

where (cf. p. 46 of [12])

(5.31) HX(x;x′) =
2

X

∞∑
n=0

cos
(

π(2n+1)x
2X

)
cos

(
π(2n+1)x′

2X

)
(

π(2n+1)
2X

)2

=
X

2

[
hX

(
x− x′

X

)
+ hX

(
x + x′

X

)]
, hX(θ) = 1 − |θ| ,
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is the one-dimensional Green’s function in the x-direction, and z± is as defined in
(3.39).

Suppose that r′ = r0 = (0, y0). Since x0 = 0,

(5.32) GX(r; r0) =
X − x

2πl
− 1

2π
ln
∣∣∣1 − e−x/lei(y−y0)/l

∣∣∣2 + O(qX).

If x is sufficiently large (e.g., x ≥ l), then the contribution of the logarithmic term in
(5.32) is of order qx = e−2x/l, and hence

(5.33) GX(r; r0) =
X − x

2πl
+ O(qx).

Since O(qx) is exponentially small, this term can be dropped from (5.33), yielding the
one-dimensional Green’s function used in [6]. The fact that these results are effectively
one-dimensional is again due to the large aspect ratio of our system.

5.3. Effective diffusivity and anomalous diffusion. Let us now evaluate
the zeroth-order contributions to the MFPT T (X|r0) given in (5.23). First, it follows
from integrating (5.20) that

∫
ΩX

GX(r; r0)dr = X2/2. Following the discussion of the

previous paragraph, we will assume that all xj are sufficiently large so that GX(rj ; r0)
is well approximated by the one-dimensional Green’s function (X−xj)/(2πl). Since we
are dropping any explicit dependence on y, y0, we simply denote the MFPT T (X|r0)
by T . In the case of a large number of identical spines uniformly distributed along
the length of the cable with spacing d (i.e., NX = X/d 	 1 and xj = jd for all j), we
can compute an effective diffusivity Deff . That is, substituting our one-dimensional
approximation for GX into (5.23) and dropping O(ε2) terms gives

(5.34) T ≈ X2

2D
+

η

2πlD

NX∑
j=1

(X − jd) =
X2

2D
+

η

2πlD

(
NXX − (NX + 1)NXd

2

)

≈ X2

2D
+

η

2πlD

(
NXX − N2

Xd

2

)
=

X2

2D

(
1 +

η

2πld

)
=

X2

2Deff
,

where η ≡ A + k/σrec. In (5.34), the effective diffusivity Deff is

(5.35) Deff = D
(
1 +

η

2πld

)−1

= D

(
1 +

A + k/σrec

2πld

)−1

.

As one would expect, the presence of traps reduces the effective diffusivity of a re-
ceptor. In particular, the diffusivity is reduced by increasing the ratio k/σrec of the
rates of endocytosis and exocytosis, by increasing the surface area A of a spine, or by
decreasing the spine spacing d. Interestingly, Deff does not depend on the hopping
rate ω, at least to lowest order in the spine size ε. At first sight this might seem
counterintuitive, since a smaller ω implies that a receptor finds it more difficult to
exit a spine. However, this is compensated by the fact that it is also more difficult
for a receptor to enter a spine in the first place. (For a more detailed analysis of
entry/exit times of receptors with respect to spines see [14, 15]).

In (5.34) the MFPT T is proportional to X2. This relationship is the hallmark
of Brownian diffusion, and here it is due to the fact that the spacing between spines
is independent of the index j. Now suppose that the spacing varies with j according
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to xj = d(ln(j) + 1). In this case NX = eX/d−1, and hence NX grows exponentially
with X [19]. Therefore, upon summing the series and using Stirling’s formula, we get

(5.36)

T ≈ X2

2D
+

η

2πlD

NX∑
j=1

(X − d(ln(j) + 1)) =
X2

2D
+

η

2πlD
(NXX − d(ln(NX !) + NX))

≈ X2

2D
+

η

2πlD
(NXX − dNX ln(NX)) =

X2

2D
+

ηd

2πlD
eX/d−1 =

X2

2Deff (X)
,

where the effective diffusivity is

(5.37) Deff (X) = D

(
1 +

A + k/σrec

2πld

eX/d−1

(X/d)2

2

)−1

.

The fact that the effective diffusivity is a function of X indicates anomalous diffusion,
which is to say that the relationship T ∝ X2 does not hold. Moreover, because eX/d−1

grows faster than (X/d)2, the anomalous behavior is subdiffusive.
Note that the above analysis reproduces results obtained previously for a simpli-

fied one-dimensional model [6]. However, our asymptotic analysis shows that there
are O(ε2) corrections to the one-dimensional results given by (5.24). In particular,
these higher-order corrections introduce a weak dependence of the MFPT on the size
of the spines and the hopping rates ωj via the parameters βj .

6. Discussion. In this paper we have used singular perturbation theory to deter-
mine the steady-state receptor concentration on the cylindrical surface of a dendritic
cable in the presence of small dendritic spines, which act as partially absorbing traps.
In the case of long, thin dendrites we have shown that the variation of the receptor
concentration around the circumference of the cable is negligible so that the concen-
tration profile along the cable can be determined using a simpler one-dimensional
model [6]. We have also shown that the MFPT for a single tagged receptor to travel
a certain distance along the cable is well approximated by considering a random walk
along a one-dimensional cable. In both cases, our perturbation analysis provides de-
tails regarding corrections to the one-dimensional results that depend on the size ε of
spines. Such corrections would be significant in the case of short dendrites with few
spines, which may occur in immature neurons. An important extension of our work
would be to consider a much more detailed model of receptor trafficking within each
spine [10]. This would take into account the fact that the spine is not a homogeneous
medium but contains a protein rich subregion known as the postsynaptic density
where receptors can bind and unbind to various scaffolding proteins [4]. Interestingly,
the coupling between the spine and the dendritic cable would not be affected by such
details so that our solutions for the dendritic receptor concentration within the cable
would carry over to more complex models.

The analysis presented in this paper provides a general mathematical framework
for taking into account the effects of the size of spines on the surface diffusion of
receptors (and other proteins) within the cell membrane. In the particular case of
spiny dendrites it allows us to establish rigorously the validity of a one-dimensional
reduction. This is important from a biological modeling perspective since the reduced
model provides a relatively simple system in which to explore the role of diffusion in
protein receptor trafficking along a dendrite. For example, one important biological
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issue is whether or not diffusion is sufficient as a mechanism for delivering protein
receptors to distal parts of the dendrite [1]. If one ignores the effects of trapping in
spines, then an estimate for the mean time a receptor takes to travel a distance X from
the soma via surface diffusion along a uniform cable is T = X2/2D. Even for a rela-
tively large diffusivity D = 0.45μm2s−1, the mean time to reach a proximal synapse
at 100μm from the soma is approximately 3 hrs., whereas the time to reach a distal
synapse at 1mm from the soma is around 300 hrs. The latter is much longer than the
average lifetime of a receptor, which is around 1 day. The one-dimensional formulae
for the MFPT in the presence of traps (see section 5) establishes that trapping within
spines increases the delivery time of receptors to synapses even further due to an
effective reduction in the diffusivity. Indeed, if the density of spines grows sufficiently
fast towards distal ends of the dendrite, then this increase in the MFPT could be
significant due to the emergence of anomalous subdiffusive behavior. Interestingly,
there is experimental evidence for an enhanced spine density at distal locations [18].

Finally, it would be interesting to consider protein receptor trafficking across a
population of synapses with other geometric configurations. In this study we focused
on synapses located within dendritic spines that are distributed along a dendritic
cable, since most excitatory neurons in the central nervous system have such struc-
tures. However, there are some classes of neurons that have synapses located directly
on the cell body or soma. One striking example is the chick ciliary ganglion, which
supplies motor input to the iris of the eye; the ganglion has nicotinic receptors that
are distributed across the surface of the cell body within somatic spines [3]. Thus the
basic mathematical approach presented here could be extended to other biologically
relevant examples of surface diffusion in the presence of partially absorbing traps,
including diffusion on the surface of a spherical cell body, where a reduction to a
one-dimensional problem would not be possible.

Appendix. In this appendix we present the singular perturbation analysis used
to obtain the outer solution (5.18). First, let û0 be the solution to the boundary value
problem without traps given by (5.14), (5.15), and (5.16). Then

(A.1) û0(r) =
GX(r; r0)

D
,

where GX is the Green’s function of (5.20). For the problem with traps, we write the
outer expansion as

(A.2) û =
GX(r; r0)

D
+ σ(ε)û1 + · · · ,

where σ(ε) is to be found. In order to determine the inner solution near the jth hole,
we introduce the scaled coordinates s = ε−1(r− rj) and set V (s) = û(rj + εs). Then
V satisfies (omitting the far-field condition)

∇2
sV = 0 , s ≡ |s| ≥ 1 ,(A.3)

∂sV = βj

(
V − 1

2π

∫ 2π

0

V dθ

)
on s ≡ |s| = 1.(A.4)

Notice that any constant V0 satisfies this problem. We therefore write V = V0 +
μ(ε)V1 + · · · . The inner and outer solutions must satisfy the matching condition

(A.5)
1

D
[GX(rj ; r0) + ∇GX(rj ; r0) · (rj − r) + · · · ] + σ(ε)û1 ∼ V0 + μ(ε)V1 + · · · .
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This implies that μ(ε) = ε and that the constant V0 is given by

(A.6) V0 =
GX(rj ; r0)

D
.

In addition, V1 is the solution to the inner problem (A.3) and (A.4) with the far-field
behavior

(A.7) V1 ∼ aj · s , aj ≡
∇GX(rj ; r0)

D
.

A simple separation of variables calculation gives the exact solution

(A.8) V1 = aj · s −
(
βj − 1

βj + 1

)
aj ·

s

|s|2 .

Substituting this into the matching condition (A.5) gives σ(ε) = ε2 and that û1

satisfies the asymptotic singularity conditions

(A.9) û1 ∼ −
(
βj − 1

βj + 1

)
aj ·

(r − rj)

|r − rj |2
as r → rj .

The function û1 is to satisfy Laplace’s equation, the boundary conditions (5.15) and
(5.16), and the singularity conditions (A.9) for j = 1, . . . , N .

Since the two-dimensional Green’s function GX has the logarithmic singularity
1
2π log |r − rj | for r → rj , it follows that ∇GX(r; rj) has the dipole singularity

(A.10)
1

2π

(r − rj)

|r − rj |2
as r → rj .

Unfortunately, ∇GX(r; rj) does not satisfy the boundary conditions (5.15) and (5.16),
so it cannot be used to construct an outer solution with the correct near-field behavior.
On the other hand, we can construct a solution using ∇jGX(r; rj), where ∇j is the
gradient operator with respect to the singular point rj . That is, −∇jGX(r; rj) has the
same singular behavior as ∇GX(r; rj) and also satisfies the boundary conditions (5.15)
and (5.16). The latter follows from the observation that the boundary conditions for
GX do not involve rj so that the boundary and Laplace operators commute with ∇j .
Finally, using linearity and superposition over the NX holes, we readily obtain that
the outer approximation is given explicitly by

(A.11) û ∼ GX(r; r0)

D
+ 2πε2

NX∑
j=1

(
βj − 1

βj + 1

)
aj · ∇jGX(r; rj).
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Abstract. We study the issue of convergence of user rates and resource prices under a family of
rate control schemes called dual algorithms with arbitrary communication delays. We first consider
a case where a single resource is shared by many users. Then we study a general network shared by
heterogeneous users and derive sufficient conditions for convergence. We show that in the case of a
single user utilizing a single resource, our condition is also necessary. Using our results we derive a
sufficient condition for convergence with a family of popular utility and resource price functions. We
present numerical examples to validate our analysis.
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1. Introduction. A communication network, e.g., the Internet or a telephone
network, comprises networking equipment that enables exchange of information be-
tween multiple parties or end user equipment (e.g., personal computers or laptops).
Networking equipment includes switches, routers, and links (e.g., fiber optics or
twisted copper wires) that connect switches and routers and have finite bandwidth or
capacity, i.e., the number of bits that can be transmitted by a link per unit time. This
networking equipment, which we call network elements in this paper, communicates
using a set of rules called network protocols.

Since the links in the Internet have finite capacity, excessive demands brought on
by the users can cause severe congestion or even a collapse of the Internet (e.g., the
congestion collapse of 1986). Hence, in order to prevent any unexpected collapse of the
Internet from severe congestion, it is imperative to control the congestion level inside
the network by regulating the rates at which packets are injected into the network by
the users, called the packet transmission rates or simply rates of the users. With the
increasing size and complexity of the Internet, the problem of computing a fair share of
network bandwidth for every user and allocating their rates is becoming a challenging
task. To this end, in his seminal work [13] Kelly suggested that the problem of
allocating fair shares of available network bandwidth to elastic traffic users,1 which
we call a rate allocation problem, can be posed as an optimization problem.

Under the proposed optimization framework each user receives a utility as a func-
tion of its rate, i.e., its share of bandwidth. The utility of a user can represent either
the true utility or benefit the user receives or a utility function enforced by the end
user protocol that adjusts the packet transmission rate on behalf of the user. An
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1A user or a connection created by the user for information exchange is said to be elastic if its

packet transmission rate can be adjusted based on feedback from the network (e.g., packet losses).
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example of such a protocol is transmission control protocol (TCP), which is the most
popular congestion or rate control protocol in the Internet today. In the latter case the
selection of the utility function determines the behavior of the end user protocol and
the desired rate allocation [14, 18, 20]. The objective of the optimization problem is
to maximize the aggregate utility, i.e., the sum of the utilities of the users, subject to
the link capacity constraints. Using the proposed framework Kelly and his colleagues
proposed two classes of distributed rate control algorithms—primal and dual algo-
rithms [14] (described in subsections 2.1 and 2.2)—and established their convergence
to the desired rate allocation in the absence of delays.

In reality signals take time to travel from one end of a link connecting two net-
work elements to the other end. This introduces a communication delay, which equals
the length of the link divided by the speed at which the signal travels the medium,
when a signal is transmitted over a link. Modeling communication delays over links
between network elements is important when the delays are nonnegligible (e.g., inter-
continental links) or widely varying with uncertainty; i.e., the delays are not known in
advance. An example of such an environment is multihop wireless networks, which are
wireless networks formed and maintained by (mobile) users without any infrastructure
including physical links [27].

Recently, the convergence of user rates to the desired allocation under the pri-
mal algorithm in the presence of communication delays has been studied extensively
[4, 12, 24, 30, 33]. The authors of [4, 12, 24] provided sufficient conditions on the
gain parameters of the users2 and communication delays for convergence, whereas
Ranjan, La, and Abed [30] studied the case with arbitrary communication delays and
provided sufficient conditions on user utility functions and resource price functions
for convergence. Throughout this paper a resource refers to a link that connects two
network elements. In addition, the authors of [30, 33] provided sufficient conditions
for convergence with popular utility and resource price functions [2].

The convergence of user rates and resource prices under the dual algorithm
in the presence of communication delays, however, has not been studied as much.
Maulloo [23] studied the local convergence of the dual algorithm using a linearized
model and provided sufficient conditions on the delay and resource gain parameters for
local convergence. Low et al. introduced a family of dual algorithms, which are vari-
ants of those proposed by Kelly, Maulloo, and Tan [14], and studied the convergence
in the presence of communication delays [1, 26].

In this paper we study the convergence property of the dual algorithm proposed by
Kelly, Maulloo, and Tan [14] and derive sufficient conditions for convergence with ar-
bitrary communication delays. We use the same technique we employed in [30] for the
primal algorithm and demonstrate that the same framework can be used to investigate
both the primal algorithm and the dual algorithm. We first consider a simpler sce-
nario where a single resource is shared by a large number of users with heterogeneous
round-trip delays. We model the dispersion or spread of heterogeneous round-trip
delays of many users utilizing the resource using a family of probability distributions
known as gamma kernels. This family of distributions has been used to model delay
dispersion in other disciplines (see, e.g., [3, 32]). Then, using MacDonald’s linear chain
technique [21] we write the system dynamics as higher-order differential equations [7].
We derive a sufficient condition for convergence of user rates and resource prices. We
also study the case where the users have the same round-trip delay (i.e., a discrete

2The gain parameter of a user or a resource determines how fast the user changes its rate or the
resource updates its price in response to a change in network congestion level and is explained in
subsections 2.1 and 2.2.
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delay). We show that when the derived sufficient condition is violated, the system
becomes unstable for sufficiently large delays and exhibits oscillatory behavior. Using
a linear analysis we provide an upper bound on the delay for local convergence.

We extend the above results to general network cases where a set of resources is
shared by heterogeneous users and derive sufficient conditions for convergence in the
presence of arbitrary communication delays. These sufficient conditions are derived
based on a simple discrete time map that emerges from the intrinsic market struc-
ture that underlies the rate control system and captures the interaction between the
demands of the users and supplies of the network resources. We note that a similar
approach has been used [10, 11, 22] in the past to study the behavior of delay differ-
ential systems. We apply our results to derive (necessary and) sufficient conditions
with the same utility and resource price functions studied in [30, 33]. We show that
the derived conditions for the dual algorithm are less restrictive than those for the
primal algorithm in [30, 33]. In other words, for some choices of users’ utility and
resource price functions the dual algorithm converges irrespective of the communica-
tion delays, while the convergence of the primal algorithm with the same utility and
resource price functions can be ensured only for small delays.

The main contributions of this paper can be briefly summarized as follows:
• We provide sufficient conditions for convergence of the dual algorithm, which

are robust against the variations in the communication delays and resource
gain parameters. This result can be used to provide a guideline and to sim-
plify the design of the rate control system for a communication network that
constantly evolves and changes (e.g., the Internet).

• We demonstrate that when the dispersion of round-trip delays can be modeled
by a gamma kernel, the effects of the heterogeneous delays can be studied
using the model of Hale and Ivanov [7] and are similar to those of introducing
low pass filters in the feedback control loop [19].

This paper is organized as follows: Section 2 describes the optimization framework
for rate allocation and the primal and dual algorithms proposed by Kelly [13] and
Kelly, Maulloo, and Tan [14]. We study the simpler case of a single resource in
section 3. This is followed by a study of general network cases in section 4. We apply
our results to example utility and resource price functions and derive (necessary and)
sufficient conditions for convergence with arbitrary communication delays in section 5.
Simulation results are provided in section 6. We conclude in section 7.

2. Background. In this section we briefly describe the rate allocation problem
in the proposed optimization framework. Consider a network with a set L of resources
and a set I of users. Let Cl denote the finite capacity of resource l ∈ L. Each user
i ∈ I has a fixed route ri, which is a set of resources traversed by user i’s packets. We
define a zero-one matrix A, where Ai,l = 1 if l ∈ ri and Ai,l = 0 otherwise. When its
rate is xi, user i receives utility Ui(xi). We take the view that the utility functions of
the users are used to select the desired rate allocation among the users. The utility
Ui(xi) is an increasing, strictly concave, and continuously differentiable function of xi

over the range xi ≥ 0. Under this setting, the rate allocation problem of interest can
be formulated as the following optimization problem [13]:
SYSTEM(U,A,C):

maximize
∑
i∈I

Ui(xi)(2.1)

subject to ATx ≤ C, x ≥ 0,
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where C = (Cl, l ∈ L).3 The first constraint is the capacity constraint, which states
that the sum of the rates of all users utilizing resource l should not exceed its capac-
ity Cl.

With the goal of solving this optimization problem in a distributed manner, Kelly,
Maulloo, and Tan proposed two classes of rate-based algorithms [14]: Suppose that
every user adopts rate-based congestion control in that it adjusts its rate based on the
feedback from the network in the form of resource prices. Let wi(t) and xi(t) denote
the amount user i is willing to pay, which we call its willingness to pay, per unit time
and its rate at time t, respectively.4 At time t each resource l ∈ L charges a price per
unit flow of μl(t).

2.1. Primal algorithm. In a primal algorithm the end users adjust their rates
based on the (shadow) prices per unit time of the resources given by

(2.2) μl(t) = pl

( ∑
i:l∈ri

xi(t)
)
, l ∈ L,

where pl(·) is an increasing function of the aggregate rate of the users going through
it. Based on the resource prices, each user i adjusts its rate according to the following
differential equation:

(2.3)
d

dt
xi(t) = κi

(
wi(t) − xi(t)

∑
l∈ri

μl(t)
)
, i ∈ I,

where wi(t) = xi(t) · U ′
i(xi(t)) and the user gain parameter κi > 0. The basic idea

in (2.3) is to provide a market-based rate control mechanism; each user i constantly
attempts to reach a market equilibrium where its willingness to pay wi(t) equals its
total price per unit time charged by the resources given by xi(t)

∑
l∈ri

μl(t). Note
that the prices charged by the resources in (2.2) depend on the rates of the users,
which can be viewed as users’ current demands.

Under (2.3) one can see that both users’ utility functions and resource price
functions can be utilized to decide a desired allocation of network bandwidth to the
end users. Therefore, the design of rate control algorithms is equivalent to selecting
users’ utility functions and the price functions of the resources that appear in (2.2)
and (2.3).

Kelly, Maulloo, and Tan [14] have shown that, under some conditions on pl(·),
l ∈ L, the user rates x(t) = (xi(t), i ∈ I) converge to a rate vector that maximizes
the following expression:

(2.4) U(x) =
∑
i

Ui(xi) −
∑
l

∫ ∑
i:l∈ri

xi

0

pl(y) dy.

The first term in (2.4) is the aggregate utility of the users in our SYSTEM(U,A,C)
problem in (2.1) which we want to maximize. Thus, the primal algorithm pro-
posed by Kelly, Maulloo, and Tan in (2.3) solves a variation of the SYSTEM(U,A,C)
problem in that it maximizes (2.4) instead of the aggregate utility in the original
SYSTEM(U,A,C) problem.

3All vectors are assumed to be column vectors.
4Throughout the rest of the paper we refer to the willingness to pay per unit time as simply

willingness to pay.
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2.2. Dual algorithm. In a dual algorithm each resource l ∈ L updates its price,
μl(t), based on the difference between the observed aggregate rate of the users and
its expected rate ql(μl(t)) according to

(2.5)
d

dt
μl(t) = κl

( ∑
j:l∈rj

xj(t) − ql(μl(t))
)
,

where the resource gain parameter κl > 0. The user rates are set to

(2.6) xj(t) =
wj(t)∑
l∈rj

μl(t)
=: Dj

(∑
l∈rj

μl(t)
)
,

where Dj(λ) is the solution to λ = U ′
j(x) with Dj(λ) = 0 if λ ≥ U ′

j(0) and Dj(λ) = ∞
if λ ≤ U ′

j(∞).5 In other words, Dj(λ) denotes the demand of user j as a function
of the price per unit flow λ, which is the solution to the user optimization problem
maxx≥0 Uj(x)− x · λ (called the USER(Uj ;λ) problem [13]). We call Dj the demand
function of user j throughout the paper. It is easy to see that if (U ′

j)
−1 exists, then

Dj(λ) = (U ′
j)

−1(λ).
Here the function ql can be viewed as the inverse function of the resource price

function pl in the primal algorithm. Hence, ql(μl(t)) gives the expected rate of resource
l, given its current price μl(t). From (2.5)–(2.6) one can see that each resource adjusts
its price according to the difference between the user demand (given by aggregate rate∑

j:l∈rj
xj(t)) and its desired supply at the current price (given by ql(μl(t))) [14, 31].

Kelly, Maulloo, and Tan [14] have proved that under mild technical conditions on
the functions ql, l ∈ L, the expression

(2.7) V(μ) =
∑
i∈I

∫ ∑
l∈ri

μl

0

Di(ξ) dξ −
∑
l∈L

∫ μl

0

ql(η) dη

provides a Lyapunov function for the system of differential equations (2.5)–(2.6). We
call a resource price vector μ that maximizes (2.7) a solution to (2.7) in the rest of
the paper. Similarly, we call a rate vector x that maximizes (2.4) a solution to (2.4).

It is a simple exercise to show that if ql(·) = p−1
l (·), at the solution to (2.7)

denoted by μ� = (μ�
l , l ∈ L), (i) the solutions to USER(Ui;

∑
l∈ri

μ�
l ) problems are

the solution to (2.4), x� = (x�
i , i ∈ L), and (ii) pl(

∑
i:l∈ri

x�
i ) = μ�

l for all l ∈ L. In
other words, the user rates and resource prices at the equilibrium are the same under
both the dual algorithm and the primal algorithm.

3. Single resource case. In this section we first study a simpler case where a
single resource is shared by users with the same utility function. This is similar to
the model used in [9] for studying the interaction of TCP connections with a random
early detection (RED) gateway.6 However, unlike in [9] we do not assume that the
round-trip delays of the users are the same. General network cases will be studied in
the following section.

5One should interpret U ′
j(∞) to be limx→∞ U ′

j(x).
6A RED gateway is a queue management scheme that attempts to regulate the rates of the

users by either dropping or marking packets with some probability to signal to the users impending
congestion. The drop or mark probability is a function of the average number of packets queued at
the gateway over a period.
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T

Resource

μ  (t)x(t)

no forward path delay

reverse path delay

Sender i iReceiver

i

Fig. 3.1. Network model for a single resource case.

We assume that there is no forward delay from senders to the resource, and all
of user i’s round-trip delay, denoted by Ti, lies in the reverse path from the resource
back to the sender. This is shown in Figure 3.1. Under this assumption the resource
price update rule in (2.5) is given by

(3.1)
d

dt
μ(t) = κ

(∑
i∈I

wi(t)

μ(t− Ti)
− q(μ(t))

)
.

We first focus on the case where users’ willingness to pay is fixed, i.e., wi(t) = w,
w > 0, for all i ∈ I. The case with user adaptation is discussed in subsection 3.3.

Here we are interested in the case where the resource is shared by a large number
of users, e.g., an intercontinental link. In order to facilitate the analysis we assume
that we can model the dispersion of heterogeneous round-trip delays of the users using
some distribution function K̄ as follows: Suppose T ≥ 0 is the minimum round-trip
delay of the users. For every u ∈ [0,∞), let K̄(u) be the fraction of users whose
round-trip delays are less than or equal to u + T . We assume K̄ is differentiable and
yields a density function K, i.e., K(u) = K̄(1)(u). This is reasonable when the number
of users is large. Under this assumption, we can approximate the average rate of the
users seen at the resource at time t using

(3.2)
1

|I|
∑
i∈I

w

μ(t− Ti)
≈

∫ ∞

0

w

μ(t− T − s)
K(s) ds,

where |I| is the cardinality of I.

In the rest of this section we normalize both the aggregate rate of the users at
the resource and the expected rate of the resource in (3.1) by the number of users |I|,
and we replace these terms with (3.2) and the expected rate per user of the resource,
respectively:

d

dt
μ(t) = κ

(∫ ∞

0

w

μ(t− T − s)
K(s) ds− qN (μ(t))

)

= κ

(∫ ∞

0

f(μ(t− T − s))K(s) ds− qN (μ(t))

)
,(3.3)

where κ = κ · |I|, qN (μ) = q(μ)/|I|, and f(μ) = w
μ . Hence, the resource adjusts its

price based on the average rate of the users and its expected (average) user rate based
on the current price μ(t).
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In this paper we consider the case where the delay density function K can be
modeled by a family of generic delay kernels also known as gamma kernels, which
have the following form:

(3.4) K(u) =

{
αr+1ur

r! exp(−αu) if u ≥ 0,
0 otherwise,

where α > 0 is a constant, and r ∈ {0, 1, 2, . . .}. The kernel K with different param-
eters is plotted in Figure 3.2.

0 1 2 3 4 5
0

0.5

1

1.5

2

2.5

3

3.5

u

K
(u

)

Plot of gamma kernels

α = 1, r = 0
α = 1, r = 1
α = 1, r = 3
α = 1, r = 5
α = 5, r = 0
α = 5, r = 1
α = 5, r = 3
α = 5, r = 5

Fig. 3.2. Gamma kernels for different parameters.

The parameter r is called the order of gamma kernel K [21], and the mean of K
for fixed (α, r) is given by

E [K] =

∫ ∞

0

u
αr+1ur

r!
exp(−αu) du =

r + 1

α
.

The kernel K with r = 0 and r = 1 is called the weak and strong kernel, respectively,
and is frequently used to model distributed delay in different disciplines including
population biology [3, 32]. These gamma kernels can be used to model a whole class
of delay distributions (see, e.g., Figure 3.2), including an exponential distribution (i.e.,
the weak kernel). The case of discrete delay can be realized by letting r and α go to
infinity simultaneously while keeping the mean delay r+1

α fixed.
In the remainder of this section we study the asymptotic behavior of the system

in (3.3) under a set of reasonable assumptions on function q. In particular, we adopt
the gamma kernels in (3.4) and apply MacDonald’s linear chain technique to derive
sufficient conditions for convergence of the dual algorithm [21].

Define R+ := (0,∞) and R+ := [0,∞). The resource price function p is a strictly
increasing function that maps R+ to R+. We first introduce the following assumption.

Assumption 1. (i) The function q : R+ → R+ is strictly increasing with q(0) = 0.
(ii) The function q is Lipschitz continuous on any bounded interval [μmin, μmax] ⊂

R+.
(iii) There exists a unique point μ� ∈ R+ such that f(μ�) = q(μ�)/|I| = qN (μ�).
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It is clear from (3.3) that μ� is the unique equilibrium of the dual algorithm in
(2.5), at which the total demand of the users equals the expected rate of the resource
given by q(μ�). Note that under Assumption 1, if the initial function is nonnegative,
i.e., μ(s) ≥ 0 for all s ∈ (−∞, 0), the resource price μ(t) remains nonnegative because
when μ(t) = 0, the right-hand side of (3.3) is nonnegative if μ(t′) ≥ 0 for all t′ < t.

The existence of a unique solution of (3.3) is guaranteed by Theorem 2.3 in [8,
p. 44] under Assumption 1 if there exist bounds μmin and μmax, where 0 < μmin <
μmax < ∞, such that μ(t) remains in [μmin, μmax] for all t ≥ 0, starting with an
appropriate initial function that lies in [μmin, μmax]. In the following section we
assume the existence of a unique positive solution of (3.3) and the bounds μmin and
μmax such that μmin ≤ μ(t) ≤ μmax for all t ≥ 0. We will provide an assumption
under which this is true in subsection 3.2.

3.1. MacDonald’s linear chain technique. Let μ(t) be a positive solution of
(3.3) with some positive initial function μ(s) for all s < 0. We define

ωi(t) =

∫ ∞

0

w

μ(t− T − s)
Gi(s) ds

=

∫ t

−∞
f(μ(θ − T ))Gi(t− θ) dθ, i = 0, 1, . . . , r,(3.5)

where θ = t − s, dθ = −ds, and Gi(u) = αi+1ui

i! exp(−αu), u ≥ 0. Note that for any
i ∈ {1, 2, . . .},

(3.6)
d

du
Gi(u) = −αGi(u) + αGi−1(u) and

d

du
G0(u) = −αG0(u).

Suppose that the delay kernel K is given by Gr for some α > 0 and r ∈ {0, 1, . . .}.
From (3.6) we see that (μ(t), ωr(t), ωr−1(t), . . . , ω0(t)) satisfies

d

dt
μ(t) = κ (ωr(t) − qN (μ(t))) ,(3.7)

d

dt
ωi(t) = −α (ωi(t) − ωi−1(t)) , i = 1, . . . , r,(3.8)

d

dt
ω0(t) = −α (ω0(t) − f(μ(t− T ))) .(3.9)

Define η(t) := qN (μ(t)). We have

d

dt
η(t) = q′N (q−1

N (η(t)))
d

dt
μ(t) and, hence,

d

dt
μ(t) =

1

q′N (q−1
N (η(t)))

d

dt
η(t),

where the inverse q−1
N exists from Assumption 1. Note that, from Assumption 1, if

μ(t) is positive for all t ≥ 0, so is η(t).
We can rewrite (3.7) in terms of η(t) and ωr(t) defined in (3.5):

(3.10)
1

κ · q′N (q−1
N (η(t)))

d

dt
η(t) = ωr(t) − η(t).

Using the definition of η(t), we can rewrite (3.9) as

d

dt
ω0(t) = −αω0(t) + α f(q−1

N (η(t− T )))

= −αω0(t) + α F̌ (η(t− T )),
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where the map F̌ : R+ → R+ ∪ {∞} is defined by

(3.11) F̌ (η) := f(q−1
N (η)) =

w

q−1
N (η)

∀ η ∈ R+.

Therefore, we have the following set of differential equations for describing the dy-
namics of the rate control system:

1

κ · q′N (q−1
N (η(t)))

d

dt
η(t) = −η(t) + ωr(t),

d

dt
ωi(t) = −αωi(t) + αωi−1(t), i = 1, . . . , r,(3.12)

d

dt
ω0(t) = −αω0(t) + α F̌ (η(t− T )).

We note that the delay differential system in (3.12) is similar to that in [19]
for a variant of the primal algorithm where the price charged by a resource is a
function of the averaged or low pass filtered version of the aggregate rate of the users
through the resource, as opposed to the users’ instantaneous rates in the original
primal algorithm. Hence, this suggests that the dynamical effect of heterogeneous
delays in the dual algorithm, summarized by the averaging in (3.2), is similar to that
of low pass filtering (or averaging) of the rate seen by the resource in the primal
algorithm [19].

In the rest of this section we will show that, similarly as in the primal algorithm
case [30], the convergence of the dual algorithm in (3.3) (or in (3.12)) can be studied
using the map F̌ defined in (3.11).

3.2. Convergence. We denote by C([−T, 0], A) the set of continuous functions
from the interval [−T, 0] to some interval A ⊂ R+ with topology of uniform conver-
gence [8]. Suppose that there exists an interval J := [a, b] ⊂ R+, which is invariant
under the map F̌ , i.e., F̌ (J) ⊂ J . Let YJ := C([−T, 0], J), and the initial function of
η(s), s ∈ [−T, 0], is given by φ.

Theorem 3.1. If the initial function φ ∈ YJ and ω0(0), . . . , ωr(0) ∈ J , then for
all t ≥ 0 we have (η(t;φ), ω0(t), . . . , ωr(t)) ∈ Jr+2.

Proof. A proof is provided in Appendix A.

Theorem 3.1 implies that, under the assumption stated in the theorem, since
η(t;φ) remains in J , from the definition of η(t) and Assumption 1 the resource price
μ(t) lies in a compact interval not including zero and, hence, stays away from zero for
all t ≥ 0. Therefore, the existence of a unique solution is guaranteed by Theorem 2.3
in [8, p. 44] under the assumption, as mentioned earlier.

For any interval A let int(A) denote its interior. We establish the convergence of
(3.12) under the following assumption.

Assumption 2. There is a sequence of closed intervals Jk ⊂ R+, k = 0, 1, . . . , such
that (i) F̌ (Jk) ⊂ int(Jk+1) ⊂ Jk+1 ⊂ int(Jk) for all k = 0, 1, . . . , and (ii) ∩k≥0 Jk =
{qN (μ�)}, where μ� is the unique point that satisfies f(μ�) = qN (μ�) in Assumption 1.

An example of utility and resource price functions that satisfy this assumption
will be given in section 5.

Theorem 3.2. Suppose that Assumption 2 holds. If φ ∈ YJ0 and ωi(0) ∈ J0 for
all i = 0, 1, . . . , r, then (η(t;φ), ω0(t), . . . , ωr(t)) → (qN (μ�), . . . , qN (μ�)) as t → ∞.

Proof. A proof is given in Appendix B.



1256 RICHARD J. LA AND PRIYA RANJAN

3.3. User adaptation. In the previous subsection we have assumed that the
willingness of the users to pay is fixed at w. This describes a case where the users’
utility function is given by w ·log(x) [12, 14]. Suppose that the users’ utility function is
not of the form w · log(x). If the user can accurately track the price per unit flow μ(t)
and solve the USER(U ;μ(t)) problem, it should select a rate x�(μ(t)) that satisfies
U ′(x) = μ(t) and set its willingness to pay to w(t) = μ(t) ·x�(μ(t)). This rate x�(μ(t))
is given by the demand function D of the user defined in subsection 2.2.

We assume that the demand function D is (i) strictly decreasing in μ on the
interval [U ′(∞), U ′(0)), (ii) differentiable on (U ′(∞), U ′(0)), and (iii) Lipschitz con-
tinuous on every bounded interval [U ′(μmax), U ′(μmin)], where [μmin, μmax] ⊂ R+.
An example of utility functions that satisfy these assumptions is provided in sec-
tion 5. Under these assumptions one can show that if there exists a unique μ� such
that D(μ�) = qN (μ�) and the map F̌ (η) := D(q−1

N (η)) satisfies Assumption 2, then
the theorems in subsection 3.2 hold with the same proofs [17]. Note that the function
f(μ) = w/μ plays the role of the demand function D when the willingness to pay w
is constant.

3.4. Local stability with a homogeneous delay. In this subsection we con-
sider the case where the resource is utilized by a single user with a fixed delay T . This
user can be viewed as the aggregate of many users with the same round-trip delay
T [9]. Recall that the case of discrete delay T can be modeled by gamma kernels by
letting r and α go to ∞ simultaneously with a fixed mean delay r+1

α = T . Using a
linear analysis, we study the local stability of the system around the equilibrium μ�.

When a single user utilizes the resource, the resource price is updated according
to

(3.13)
d

dt
μ(t) = κ (x(t) − q(μ(t))) = κ (D(μ(t− T )) − q(μ(t))) .

We rewrite (3.13) in terms of η(t) = q(μ(t)) as

d

dt
η(t) = κ · q′(q−1(η(t)))

(
D(q−1(η(t− T ))) − η(t)

)
= ζ(η(t))

(
F̌ (η(t− T )) − η(t)

)
,(3.14)

where ζ(η(t)) := κ · q′(q−1(η(t))) and F̌ (η) = D(q−1(η)). Note that ζ(η(t)) > 0 from
the assumptions on function q. Following the similar steps in the proof of Theorem 3.2
one can show that the resource price generated by (3.14) converges if Assumption 2
holds and φ ∈ YJ0

.
Assuming that the map F̌ is locally smooth around η� = q(μ�), one can find the

conditions for local stability of the fixed point η� for the delay differential equation
in (3.14). Proposition 4 in [25, p. 17] tells us that the linearized system

d

dt
Z(t) = ζ(η(t))F̌ ′(η(t− T ))

∣∣∣
η=η�

Z(t− T )

+
(
ζ ′(η(t))

[
F̌ (η(t− T )) − η(t)

]
− ζ(η(t))

)∣∣∣
η=η�

Z(t)

= ζ(η�)F̌ ′(η�)Z(t− T ) − ζ(η�)Z(t)

:= −B · Z(t− T ) −A · Z(t),(3.15)

where A = ζ(η�) and B = −ζ(η�)F̌ ′(η�),7 is stable if and only if

7This is because η� is a fixed point of the map F̌ , i.e., F̌ (η�) = η�.
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(i) A + B > 0 and A ≥ |B|, or
(ii) B > |A| and T ≤ T � := cos−1 (−A/B) /

√
B2 −A2.

Note that in our problem the above conditions tell us that the linearized system
in (3.15) is stable if and only if (i) the map F̌ is locally stable, i.e., |F̌ ′(η�)| < 1, or
(ii) F̌ ′(η�) < −1 and

T ≤
cos−1

(
(F̌ ′(η�))−1

)
ζ(η�)

√(
F̌ ′(η�)

)2 − 1
.

Since local stability is required for global stability, these conditions tell us that the
local stability of the map F̌ is both necessary and sufficient for convergence of the dual
algorithm in (3.13) with an arbitrary delay in the neighborhood of the equilibrium
point μ�. We use these conditions to establish a necessary and sufficient condition
for convergence with example utility and resource price functions in section 5.

4. General network cases. In the previous section we studied the case where
a single resource is shared by many users. Using MacDonald’s linear chain technique
we demonstrated that the effects of heterogeneous delays of the users are similar to
introducing low pass filters in the feedback loop (see (3.12)). Then we showed that
the asymptotic stability of the discrete time map F̌ is sufficient for convergence of the
dual algorithm. In this section we extend these results to the case of a general network
shared by multiple heterogeneous users with different delays. We first describe the
model used for our analysis and then derive sufficient conditions for convergence of
the resource prices and user rates with a general network topology.

4.1. General network model with delays. In this subsection we describe the
network model that captures the communication delays between network elements and
end users under the assumption that the delays are constant. Recall from section 2
that I = {1, . . . , N} is the set of users sharing a network consisting of a set L =
{1, . . . , L} of resources. Define Il = {i ∈ I | l ∈ ri} to be the set of users utilizing

resource l ∈ L. For all i ∈ I and l ∈ ri let T r
i,l and T f

i,l denote the delay of the feedback
signal from resource l to sender i and the delay from sender i to resource l, respectively.
This is shown in Figure 4.1. If user i packets do not traverse resource l, i.e., l /∈ ri,
we assume that T r

i,l = T f
i,l = 0. Suppose that the resources in ri = {li,1, . . . , li,Ri} are

arranged in the order user i packets visit, where Ri = |ri|. Define Ti = T f
i,li,k

+T r
i,li,k

,
k = 1, . . . , Ri, to be the round-trip delay of user i.

Similarly as in the single resource case, we introduce the following assumptions
on the demand functions Di(·) and ql(·).

Assumption 3. (i) The demand functions Di(μ) are strictly decreasing in price
per unit flow μ on the interval [U ′

i(∞), U ′
i(0)) and differentiable on (U ′

i(∞), U ′
i(0)). In

addition, they are Lipschitz continuous on any bounded interval A ⊂ (U ′
i(∞), U ′

i(0)).
(ii) The function ql : [0,∞) → [0,∞) is strictly increasing with ql(0) = 0 for all

l ∈ L. Moreover, the function ql is Lipschitz continuous on any bounded interval
[μl,min, μl,max] ⊂ R+.

Assumption 3(ii) simply says that the equilibrium price of a resource increases
with the aggregate rate traversing the resource, i.e., the total demand from the users.
Note that Assumption 3(ii) also ensures that the inverse functions q−1

l exist.
With the communication delays defined above, under Assumption 3, the differ-

ential equations in (2.5) and (2.6) become8

8As explained in the single resource case, under Assumption 3, the resource prices μl(t) remain
nonnegative if the initial functions are nonnegative.
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Fig. 4.1. Network model with delays.

(4.1)
d

dt
μl(t) = κl

(∑
i∈Il

Di

(∑
j∈ri

μj(t− (T r
i,j + T f

i,l))
)
− ql(μl(t))

)
∀ l ∈ L.

We can show that a unique solution of (4.1) exists under an assumption to be stated
shortly (i.e., Assumption 4) together with Assumption 3. We will revisit this issue
after stating the assumption in subsection 4.2.

Similarly as in the previous section we define ηl(t) := ql(μl(t)). Recall that ηl(t)
denotes the expected rate of resource l at time t as a function of its price μl(t). We
rewrite (4.1) in terms of ηl(t) as

(4.2)
d

dt
ηl(t) = κlq

′
l(q

−1
l (ηl(t)))

(∑
i∈Il

Di

(∑
j∈ri

q−1
j (ηj(t− T r

i,j − T f
i,l))

)
− ηl(t)

)
.

This can be put in the following matrix form:

(4.3)
d

dt
η(t) = ζ(t) [F (η̃(t)) − η(t)] ,

where η(t) = (ηl(t); l ∈ L), ζ(t) = diag(κl · q′l(q−1
l (ηl(t))); l ∈ L), η̃(t) = (η(i,l)(t);

l ∈ L, i ∈ Il), and η(i,l)(t) = (ηj(t − T r
i,j − T f

i,l); j ∈ L). The lth element of the

multidimensional map F : R
L·Ξ
+ → −→

R
L

+, where Ξ :=
∑

l∈L |Il| and
−→
R+ = R+ ∪ {∞},

is defined by

(4.4) Fl(η̃(t)) =
∑
i∈Il

Di

(∑
j∈ri

q−1
j (ηj(t− T r

i,j − T f
i,l))

)
, l ∈ L.

Note that Assumption 3 guarantees that the gain matrix ζ(t) is positive definite.

4.2. Convergence. In this subsection we investigate the convergence of resource
prices and aggregate rates at the resources generated by (4.3). More specifically, we

will provide sufficient conditions for their convergence regardless of the delays T f
i,j

and T r
i,j .

Definition 1. A set D ⊂ R
L
+ is said to be invariant under the map F if F (η̃) ∈ D

for all η̃ ∈ DΞ, i.e., η̃ = (η(i,l); l ∈ L, i ∈ Il) and η(i,l) ∈ D for all l ∈ L and i ∈ Il.
A vector η� ∈ R

L
+ is said to be a fixed point of F if F (η�, . . . , η�) = η�.
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The invariance of the map F can be interpreted as follows. Suppose that expected
rates η(t) of the resources based on their current prices at time t as well as time delayed
values η(i,l)(t), l ∈ L and i ∈ Il, belong to the set D. Then the invariance of the set
D implies that F (η̃(t)) lies in the set D. Similarly, a fixed point η� means that if
η(t) = η�, η(i,l)(t) = η� for all l ∈ L and i ∈ Il, then F (η̃(t)) = η�. In other words,
η(t) and hence resource prices μ(t) remain constant. One can verify that if η� is a
fixed point of F , then q−1(η�) = (q−1

1 (η�1), . . . , q−1
L (η�L)) is a solution to (2.7) from

(4.3), i.e., η� = q(μ�), where μ� is a solution to (2.7).
We now state the assumption under which the convergence of (4.3) is established.
Assumption 4. Suppose that η� ∈ R

L
+ is a fixed point of the multidimensional

map F . There is a sequence of compact, convex sets Ek = ×l∈L Ek,l ⊂ R
L
+, k ≥ 0,

such that F (EΞ
k ) ⊂ int(Ek+1) ⊂ Ek+1 ⊂ int(Ek) and ∩k≥0 Ek = {η�}.

Define Tmax = maxl∈L, i∈Il(maxj∈ri(T
r
i,j + T f

i,l)). We denote by C([−Tmax, 0], E)
the set of continuous functions mapping the interval [−Tmax, 0] into E with topology of
uniform convergence [8]. Let YE0 = C([−Tmax, 0], E0) be a subset of initial functions.
When the initial function φ lies in YE0 , Theorem 2.3 in [8, p. 44] guarantees the
existence of a unique solution of (4.3) under Assumptions 3 and 4. Denote by η(t;φ)
the solution of (4.3) constructed using an initial function φ ∈ YE0 .

Theorem 4.1. All solutions η(t;φ) starting with an initial function φ ∈ YE0

remain in E0 for all t ≥ 0 and converge to η� as t → ∞ for all T r
i,j , T

f
i,j ∈ R+.

Proof. The basic idea of the proof of the theorem is similar to that of Theorem 4
in [30], and a proof is provided in [17], which is omitted in this paper due to a space
constraint.

Theorem 4.1 tells us that the attracting fixed point of the map F is stable in the
set E0. Since μ(t) = q−1(η(t)), this tells us that μ(t) → μ� as t → ∞.

4.3. Comparison with a homogeneous delay system. In this subsection
we investigate how the convergence of the resource prices under the general delay
differential system in (4.3) is related to that of a much simpler system where (i) there
are no forward delays from the senders to the resources, and (ii) all users have the

same homogeneous round-trip delay. In other words, T f
i,l = 0 and T r

i,l = T for all
i ∈ I and l ∈ ri, where T is some positive constant. Under this assumption the delay
differential equations in (4.2) simplify to

(4.5)
d

dt
ηl(t) = κlq

′
l(q

−1
l (ηl(t)))

(∑
i∈Il

Di

(∑
j∈ri

q−1
j (ηj(t− T ))

)
− ηl(t)

)
∀ l ∈ L,

and the matrix form is given by

d

dt
η(t) = ζ(t)

[
F̂ (η(t− T )) − η(t)

]
,

where the map F̂ : R
L

+ → −→
R

L

+ is defined by

(4.6) F̂l(η) =
∑
i∈Il

Di

(∑
j∈ri

q−1
j (ηj)

)
, l ∈ L.

Assumption 5. The multidimensional map F̂ has a fixed point η� ∈ R
L
+. In

addition, there is a sequence of compact, convex sets Ěk = ×l∈L Ěk,l ⊂ R
L
+, k ≥ 0,
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such that F̂ (Ěk) ⊂ int(Ěk+1) ⊂ Ěk+1 ⊂ int(Ěk) and ∩k≥0 Ěk = {η�}; i.e., the map

F̂ is stable with a domain of attraction Ě0.
We state the following theorem. The proof is provided in [17] due to a space

constraint. The basic idea of the proof is essentially identical to that of Theorem 4.1
and is a modification of the proof of Theorem 4 in [30].

Theorem 4.2. All solutions η(t;φ) of (4.5) starting with initial function φ ∈ YĚ0

converge to η� as t → ∞ for all T > 0.
Theorem 4.2 tells us that if Ě0 is a region of attraction of the map F̂ in (4.6), then

the resource prices under the delay differential system in (4.5) with a homogeneous
delay converge, provided that the initial function lies in Ě0. It is easy to show that
the same sequence of closed, convex sets Ěk, k ≥ 0, in Assumption 5 also satisfies
Assumption 4. This follows from the assumed monotonicity properties of the functions
ql and Di stated in Assumption 3. This in turn implies that the resource prices under
the delay differential system in (4.3) converge if the initial function lies in Ě0. Hence,
the stability of the map F̂ is a sufficient condition for convergence of resource prices
under (4.3) with arbitrary communication delays.

5. Example utility and resource price functions. In this section we adopt
a family of well-known users’ utility functions and resource price functions studied
in [30, 33] and derive a condition for convergence with arbitrary gains κl and delays,
making use of our results in sections 3 and 4. Users’ utility functions are of the
following form:

(5.1) Ua(x) =

{
1
ax

a, −∞ < a < 1, a = 0,
log(x), a = 0.

In particular, a = −1 has been found useful for modeling the utility function of
TCP-like algorithms [15]. With the utility functions of the form in (5.1), user i’s
price elasticity of demand9 is given by −1/(1 − a). Thus, one can see that users
become more elastic or responsive with increasing value of a [30]; i.e., the sensitivity
of user demand, 1/(1−a), increases with a. Since the utility function Ua(x) is strictly
concave with limx↓0 U

′
a(x) = ∞ and limx↑∞ U ′

a(x) = 0, the demand function Da(μ) is
well defined for all μ ∈ R+ and is given by

(5.2) Da(μ) = μ−1/(1−a).

The class of resource price functions that we are interested in has the form

(5.3) p(x) = q−1(x) = c ·
( x

C

)b

, x ∈ R+,

where b > 0, c is some positive constant, and C is the capacity of the resource.
However, C can be replaced by a virtual capacity, typically smaller than the real
capacity. The use of virtual capacity was first proposed in [6] to reduce packet losses
due to buffer overflow at highly utilized resources, at the expense of slightly reduced
utilization. Kunniyur and Srikant in [16] proposed dynamically adjusting the virtual
capacity and consequently the resource price function, based on the current aggregate
rate seen at the resource. The value of c does not affect our convergence results and
is assumed to be one unless stated otherwise. From (5.3), the function q is given by

(5.4) q(μ) = C · μ1/b, μ ∈ R+.

9Price elasticity of demand measures the sensitivity of a user’s demand to price changes and is

defined to be μ
D(μ)

dD(μ)
dμ

, where D(μ) is the demand of the user at the price μ.
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The parameter b is used to change the shape of the price function. The larger b is,
the more convex and responsive the price function is. It is easy to verify that user
demand function Da in (5.2) and resource expected rate function q in (5.4) satisfy the
assumptions in sections 3 and 4.

5.1. A single user, single resource case. Suppose that the utility function of
the user is given by Ua(x), a < 1, and q(μ) is of the form in (5.4) for some parameter
b > 0.

Assumption 6. Suppose that a + b < 1.
Let σ be a constant that satisfies b

1−a < σ < 1. Since a + b < 1, it is easy to see

that one can find such an σ. Fix α > 1 and choose β < 1 that satisfies

(5.5) α− (1−a)
b < β < α− b

1−a .

Again, the existence of such a β is guaranteed from the assumption that α > 1 and
b

1−a < 1.
Define a sequence of compact intervals Ik, k ≥ 0, given by

(5.6) Ik =

{ [
β
σk

μ�, ασk

μ�
]

if k is even,[
α−σk

μ�, β
−σk

μ�
]

if k is odd,

where μ� is the unique solution to (2.7) and is given by C−b(1−a)/(1+b−a). Note that
since 0 < σ < 1, σk → 0 and the interval Ik decreases to {μ�} as k → ∞.

We define a map F : R+ → R+ ∪ {∞}, where F (μ) = q−1(Da(μ)).
Lemma 5.1. If Assumption 6 holds, then we have

F (Ik) ⊂ int(Ik+1) ⊂ Ik+1 ⊂ int(Ik) ∀ k ≥ 0.

Proof. A proof is provided in Appendix C.
Theorem 5.2. Suppose that a + b < 1 and the initial function φ ∈ C([−T, 0],

I0 = [βμ�, αμ�]) with any α > 1 and β < 1 satisfying (5.5). Then the solution μ(t;φ)
of (3.13) converges to μ� as t → ∞.

Proof. The theorem follows directly from Theorem 3.2 and Lemma 5.1.
Note that as α ↑ ∞, β ↓ 0. Since the above is true for any arbitrary α > 1 and β

that satisfies (5.5), the resource price μ(t) converges to μ� starting from any arbitrary
positive value because I0 can be made large enough to contain the initial function.

We now show that if a + b > 1, then the system is unstable for sufficiently large
T . Note that the map F̌ is given by

F̌ (η) = Da(q
−1(η)) = Cb/(1−a)η−b/(1−a).

Hence,

F̌ ′(η)
∣∣∣
η=η�

=
−b · Cb/(1−a)

1 − a
(η�)

−(1+ b
1−a )

.

Here the fixed or equilibrium point η� is given by Cb/(1+b−a). Substituting this for
η� we obtain

F̌ ′(η)
∣∣∣
η=η�

=
−b

1 − a
.

Therefore, if a + b > 1, then F̌ ′(η�) < −1 and the system is unstable for sufficiently
large T from the linear stability analysis in subsection 3.4. A numerical example
illustrating this is provided in subsection 6.2.
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5.2. General network with multiple heterogeneous users case. Suppose
that the utility functions of the users are of the form given by (5.1) and the resource
price functions are of the type described by (5.3). The utility function of user i is
parametrized by ai ∈ (−∞, 1), and the price function of resource l has parameter
bl > 0. Making use of the fact stated in subsection 4.3 that the stability of the map
F̂ defined in (4.6) is sufficient for convergence with both a homogeneous delay and
heterogeneous delays, we consider only the case described in subsection 4.3 with a
homogeneous delay T in the reverse path only. In this case the map F̂ is given by

(5.7) F̂l(η) =
∑
i∈Il

(∑
j∈ri

( ηj
Cj

)bj

)− 1
1−ai

, l ∈ L.

Note that F̂l(η) is strictly decreasing in each of ηj , j ∈ ∪i∈Il ri.
We define bimax = maxl∈ri bl for all i ∈ I. Fix some finite positive constant α

larger than one. Suppose that E0 = ×l∈L El
0, where El

0 = [βη�l , αη
�
l ], with β being a

positive constant that satisfies the following componentwise inequalities:

(5.8) F̂ (β · η�) < α · η� and β · η� < F̂ (α · η�).

Lemma 5.3. Suppose that ai+bimax < 1 for all i ∈ I. Define σ = −maxi∈I
{ bimax

1−ai

}
− ε, where 0 < ε < 1 − maxi∈I

bimax

1−ai
. Then any β such that α1/σ < β < ασ satisfies

(5.8).
Proof. The proof is given in Appendix D of [17] due to a space constraint.
We assume that β satisfies the condition in Lemma 5.3. Now, for k = 1, 2, . . . ,

we define

Ek =

{ ∏
l∈L [ασk

η�l , β
σk

η�l ], k odd,∏
l∈L [β

σk

η�i , ασk

η�l ], k even.

Lemma 5.4. Suppose that ai+bimax < 1 for all i ∈ I. Then F̂ (Ek−1) ⊂ int(Ek) ⊂
Ek ⊂ int(Ek−1), and ∩∞

k=0 Ek = {η�}.
Proof. The proof is provided in Appendix E of [17] due to a space constraint.
Theorem 5.5. Suppose that ai + bimax < 1 for all i ∈ I. If the initial function φ

lies in C([−T, 0], E0), then η(t;φ) produced by (4.5) converges to η� as t → ∞ for all
T > 0 and κl > 0, l ∈ L.

Proof. The theorem follows from Lemma 5.4 and Theorem 4.2.
Now note that as α ↑ ∞, F̂ (α · η�) → 0 = [0, . . . , 0]T . Hence, we can see that

starting from any positive continuous initial function, the resource prices converge to
μ� as t → ∞ from the above results because we can select a sufficiently large E0 ⊂ R

L
+

that contains the initial function.

5.3. Comparison with the primal algorithm. In this subsection we com-
ment on the difference in the conditions for convergence under the primal algorithm
[29, 30] and the dual algorithm studied in this paper. The convergence condition of
the primal algorithm with a single user and a single resource is first studied in [29],
and a necessary and sufficient condition for convergence with an arbitrary delay using
the utility and resource price functions of (5.1) and (5.3) is provided. The derived
convergence condition states that the user rate converges if and only if a+ b < −1.10

10In [29] we considered only the utility functions with a < 0 because when a ≥ 0 the system is
unstable for sufficiently large delays.
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Since b > 0, this implies that the parameter of the utility function needs to be strictly
smaller than −1. Clearly, this is a more restrictive condition than the one provided
for the dual algorithm in this paper (i.e., (a + b < 1), which allows positive values of
a for b < 1).

Similarly, in a general network case the sufficient conditions for convergence under
the primal algorithm are given by ai + bimax < −1 for all i ∈ I [30, 33], whereas the
conditions that ai + bimax < 1 for all i ∈ I suffice in the dual algorithm. Hence, the
derived sufficient conditions for the primal algorithm in [30, 33] are more restrictive
than those for the dual algorithm.

6. Numerical result. In this section we present a numerical example to validate
our results in the previous sections. We consider a single user, single resource case with
the utility and resource price functions given in section 5 with a = 0.5. The capacity
of the resource is set to C = 5. We vary the resource price function parameter b to
create both a stable scenario and an unstable scenario according to our condition in
Theorem 5.2.

6.1. Stable system. In the first case we set b = 0.49. Since a + b = 0.99 < 1,
Theorem 5.2 tells us that the resource price and user rate converge irrespective of the
gain κ and the delay T . For the numerical example the delay is set to T = 200 and
the gain is set to κ = 1. The initial value μ(t) is set to 1.2 for all t ∈ [−T, 0]. The
evolution of μ(t) and x(t) is plotted in Figure 6.1. As one can see both μ(t) and x(t)
converge to their equilibrium values of 0.6715 and 2.218, respectively.
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Fig. 6.1. Evolution of μ(t) and x(t) (a = 0.5, b = 0.49, T = 200). (a) μ(t), (b) x(t).

6.2. Unstable system. In the second example we have increased the resource
price function parameter b to 0.501. Since a + b = 1.001 > 1, the system loses
its stability for sufficiently large delay T . The linear stability analysis provided in
subsection 3.4 tells us that the linearized system in (3.14) is stable if and only if

T ≤
cos−1

(
(F̌ ′(η�))−1

)
ζ(η�)

√
(F̌ ′(η�))2 − 1

= 7.28.

Figures 6.2 and 6.3 plot the evolution of μ(t) and x(t) for T = 6 and T = 10,
respectively, sampled at every 20 unit times. As one can easily see, the system with
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Fig. 6.2. Evolution of μ(t) and x(t) (a = 0.5, b = 0.501, T = 6). (a) μ(t), (b) x(t).
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Fig. 6.3. Evolution of μ(t) and x(t) (a = 0.5, b = 0.501, T = 10). (a) μ(t), (b) x(t).

T = 6 is stable, and μ(t) and x(t) converge to the equilibrium points of 0.6685 and
2.2379, respectively. However, when the delay T is increased to 10, the system loses
stability and exhibits oscillatory behavior, as shown in Figure 6.3.

7. Conclusions. We studied the issue of convergence of user rates and resource
prices under a dual algorithm in the presence of communication delays. Using the
same framework first employed in [30] for the primal algorithm, we derived sufficient
conditions for convergence with arbitrary delays. In addition, we showed that these
sufficient conditions can be obtained from a simple underlying discrete time system.
We applied our result to an example of popular utility and resource price functions
and derived sufficient conditions for convergence. In the simpler case of a single user
utilizing a resource, we derived the necessary and sufficient condition for convergence.
In addition, we studied the case when the convergence condition is violated and, us-
ing a linear stability analysis, provided an upper bound on the delay for convergence.
Numerical examples are presented to validate our analysis. We believe that the frame-
work used in this paper as well as in [30] is quite general and will prove to be useful
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for studying the convergence property of a variety of distributed control systems, in
particular in the context of networking and networked control systems.

Appendix A. Proof of Theorem 3.1. The proof of the theorem is based on
the following lemma.

Lemma A.1 (see [7, p. 507]). Suppose that I� = [a�, b�] ⊂ R, where a� < b�, is
a compact interval and ξ : R+ → I� is a continuous function. If σ : R+ → R+ is a
bounded, continuous, strictly positive function and u(t) is a solution of equation

(A.1) σ(t)u̇(t) + u(t) = ξ(t),

with u(0) ∈ I�, then u(t) ∈ I� for all t ≥ 0.
Proof. The existence of a unique solution of (A.1) is guaranteed by the theorem

in [28, p. 74]. We will prove this lemma by contradiction. Suppose that the lemma is
not true. Define

t0 = inf{t ≥ 0 | u(t) /∈ I�}.

First, suppose that u(t0) = b�. Then every interval (t0, t0 + δ), δ > 0, contains a
point τ such that u(τ) > b� and u̇(τ) > 0 under the assumption a� < b� stated in the
lemma. However, if u(τ) > b�, (A.1) tells us that u̇(τ) < 0 because ξ(t) ≤ b�, which is
a contradiction. The case u(t0) = a� can be shown to lead to a similar contradiction.
This completes the proof.

We proceed with the proof of Theorem 3.1. Apply Lemma A.1 to d
dtω0(t) =

−αω0(t) + αF̌ (η(t − T )). Clearly, if ω0(0) ∈ J and initial function φ ∈ YJ , then
ω0(t) ∈ J for all 0 ≤ t ≤ T . By applying Lemma A.1 to d

dtω1(t) = −αω1(t) + αω0(t),
we can argue that ω1(t) ∈ J for all 0 ≤ t ≤ T . Following this recursive argument, we
can show that ωi(t) ∈ J for i = 0, . . . , r and η(t) ∈ J for all 0 ≤ t ≤ T . Now by an
induction argument on time (called the method of steps [5]) the same can be argued
for all t ≥ 0.

Appendix B. Proof of Theorem 3.2. The proof of the theorem is a simple
application of the following lemma.

Lemma B.1. Consider the same setup in Lemma A.1. Assume that Ī = [ā, b̄]
is a compact interval whose interior contains I�, i.e., I� ⊂ int(Ī). Then, for any
u(0) = u0 ∈ R+, there exists finite t0 := t0(u0, Ī) such that u(t) ∈ Ī for all t ≥ t0.

Proof. First, note that if u(t∗) ∈ Ī for some t∗ ≥ 0, then from Lemma A.1
u(t) ∈ Ī for all t ≥ t∗. Thus, we need only show that there exists some finite t0 such
that u(t0) ∈ Ī. Suppose that this is not true. First, assume that u(t) > b̄ for all

t ≥ 0. Then from (A.1) we have u̇(t) = ξ(t)−u(t)
σ(t) ≤ b�−b̄

σ(t) . Since σ(t) is bounded, we

can find a positive ε such that u̇(t) ≤ −ε for all t ≥ 0. However, this implies that
u(t) ↓ −∞, which contradicts the assumption that u(t) > b̄ for all t ≥ 0. The other
case, u(t) < ā for all t ≥ 0, can be shown to lead to a similar contradiction, and the
lemma follows.

We now proceed with the proof of the theorem. First, since F̌ (J0) ⊂ int(J1), we
can find a set of compact intervals {Li

1, i = 0, . . . , r} such that

(B.1) F̌ (J0) ⊂ int(L0
1) ⊂ L0

1 ⊂ int(L1
1) ⊂ · · · ⊂ int(Lr

1) ⊂ Lr
1 ⊂ int(J1).

Using the property in (B.1), we can repeatedly apply Lemma B.1, starting with the
third equation in (3.12) for ω0(t) and then the second equation with ωi(t), i = 1, . . . , r,
to find finite ti1, i = 0, . . . , r, where 0 ≤ t01 ≤ t11 ≤ · · · ≤ tr1, such that ωi(t) ∈ Li

1 for all
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t ≥ ti1. Finally, applying Lemma B.1 to the first equation in (3.12) we can find finite
t�1 ≥ tr1 such that η(t) ∈ J1 for all t ≥ t�1.

Now, by an induction argument for each k = 2, 3, . . . , one can find an increasing
sequence t�k, k = 1, 2, . . . , such that, for all t ≥ t�k, η(t) ∈ Jk and ωi(t) ∈ Jk, i =
0, 1, . . . , r. Now the theorem follows from the assumption that diam(Jk) → 0 as
k → ∞ and ∩k≥1 Jk = {qN (μ�)}.

Appendix C. Proof of Lemma 5.1. In this proof we consider only the case
of even k. Proof for the case with odd k follows in a similar manner. From the

monotonicity of the map F (μ) = C−bμ−b/(1−a), it suffices to show that F (β
σk

μ�) ∈
Ik+1 and F (ασk

μ�) ∈ Ik+1.
First,

F (ασk

μ�) = C−b(ασk

μ�)−b/(1−a) = C−bμ�−b/(1−a)ασk(−b/(1−a))

= μ�ασk(−b/(1−a)) > μ�α−σk+1

,

where the last equality follows from the fact that μ� is a fixed point of the map F ,
and the inequality follows from the assumption that 0 < b

1−a < σ < 1 and α > 1.

Clearly, μ�ασk(−b/(1−a)) < μ� < μ�β
−σk+1

because β < 1 < α.
Similarly,

F (β
σk

μ�) = C−b(β
σk

μ�)−b/(1−a) = C−bμ�−b/(1−a)β
σk(−b/(1−a))

= μ�β
σk(−b/(1−a))

< μ�β
−σk+1

.

Therefore, F (Ik) ⊂ int(Ik+1), and the lemma follows.
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Abstract. Many problems in science and engineering require the solution of the steady-state
diffusion equation with a highly oscillatory coefficient. In this paper, we propose an analytical ap-
proximation ũ(x) ∈ Lp(Ω), 1 ≤ p ≤ ∞, for the generalized Laplace equation ∇ · (K (x)∇u(x)) = 0
in Ω ⊂ Rn, with prescribed boundary conditions and the coefficient function K(x) ∈ Lp(Ω) de-
fined as a step function, not necessarily periodic. The proposed solution can be regarded as an
approximation to the weak solution belonging to W 1,p(Ω), the Sobolev space. When the coeffi-
cient function describes inclusions in a main matrix, then K(x) is a periodic function, and such
formulation leads to an approximation, in Lp(Ω), to the solution of the periodic cell-problem,
∇ · (K(ε−1x)∇w(ε−1x)) = ∇ · (K(ε−1x)1). The solution to the cell-problem is the key infor-
mation needed to obtain the upscaled coefficient and therefore the zeroth-order approximation for
a generalized elliptic equation with highly oscillating coefficient in Ω ⊂ Rn. Our numerical compu-
tation of the error between the proposed analytical approximation for the cell-problem, w̃(ε−1x) in
Lp(Ω), and the solution w(ε−1x) in W 1,2(Ω), demonstrates to converge in the L2-norm, when the
scale parameter ε approaches zero. The proposed approximation leads to the lower bound of the
generalized Voigt–Reiss inequality, which is a more accurate two-sided estimate than the classical
Voigt–Reiss inequality. As an application, we compute our approximate value for the homogenized
coefficient when the heterogeneous coefficients are inclusions such as squares, circles, and lozenges,
and we demonstrate that the results underestimate the effective coefficient with an error of 10% on
average, when compared with published numerical results.

Key words. Laplace’s equation, Lp-approximation, homogenization, cell-problem, generalized
Voigt–Reiss inequality
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1. Introduction. A major problem in natural porous media is providing an ac-
curate description of the flow’s behavior, given the intrinsic heterogeneity of geological
formations. By specifying the flow over the boundary of the given domain Ω, one way
of quantifying the steady-state flow behavior in such a medium is by computing the
solution u(x) ∈ W 1,p(Ω) of the generalized Laplace equation:

(1.1) ∇ · (K (x)∇u) = 0 in Ω,

where the coefficient function K (x) describes the heterogeneity of the medium over
Ω. In this paper, we study the case when the coefficient belongs to Lp(Ω), 1 ≤ p ≤ ∞,
and can be described as the step function

(1.2) K (x) =

{
ξ1 if x ∈ Ωc,
ξ2 if x ∈ Ω\Ωc

and when (1.1) has some particular prescribed boundary conditions, depending on
whether Ωc is defined such that K(x) is either a nonperiodic or a periodic function.

∗Received by the editors February 22, 2007; accepted for publication (in revised form) July 19,
2007; published electronically April 9, 2008.

http://www.siam.org/journals/siap/68-5/68346.html
†Los Alamos National Laboratory, Los Alamos, NM 87545 (rsvier@lanl.gov). This author’s re-

search was supported by LANL-IGPP.
‡NCAR, Boulder, CO 80305 (lwinter@ucar.edu).
§SWES and Program in Applied Mathematics, University of Arizona, Tucson, AZ 85721 (aww@

ag.arizona.edu).

1268



APPROXIMATION TO A GENERALIZED LAPLACE’S EQUATION 1269

The first goal of this paper is to develop an analytical approximation ũ(x) ∈
Lp(Ω), 1 ≤ p ≤ ∞, to the weak solution u(x) ∈ W 1,p(Ω) of the boundary value
problem (BVP) (1.1), when the coefficient K(x) is given as (1.2). By considering
(1.2) an ε-periodic function, K

(
ε−1x

)
, and using ũ(ε−1x) ∈ Lp(Ω), satisfying (1.1)

almost everywhere (a.e.), the second goal is to propose an analytical approximate
value for the homogenized coefficient, K̃0, and therefore an approximation as ε → 0,
for the zeroth-order solution of the generalized BVP:

(1.3)

{
∇ ·

(
K

(
ε−1x

)
∇u

(
ε−1x

))
= f(x) in Ω,

u
(
ε−1x

)
= g(x), x ∈ ∂Ω.

We present an approximation and its properties without discussing its uniqueness, as
this is a subject that requires mathematical tools beyond the scope of this paper.

It is expected that a solution to (1.1) will depend on the type and smoothness of
the coefficient function. In the n-dimensions, for particular types of coefficient and
boundary conditions, analytical solutions for this problem are known. The solutions
follow for the cases when K(x) is a separable function K(x) =

∏n
i=1 ki (xi) and when

K(x) describes a layered medium in one of the directions. By allowing the coefficient
(1.2), it may happen that the solution and its gradient are not differentiable. Then
one needs the definition of a weak solution, where (1.1) is replaced by its variational
formulation, namely

(1.4)

{
Find u ∈ W 1,p such that∫

Ω
K(x)∇u∇vdx = 0 ∀ v ∈ W 1,q,

where W 1,p is the appropriate Sobolev space taking into account the boundary con-
ditions, and such that 1/p+ 1/q = 1. Existence and uniqueness of the weak solution,
under the condition that K(x) is an elliptic and bounded operator, follow from the
Lax–Milgram theorem (see [6], for example).

Equations (1.1)–(1.4) have a wide application in mathematics, physics, and engi-
neering. For example, in water flow systems, u(x) is the hydraulic head, K(x) is the
hydraulic conductivity, and the flux is defined from Darcy’s law q = −K(x)∇u(x);
for solute diffusion, Fick’s law follows the same formulation with u(x) a concentra-
tion and K(x) the diffusion coefficient. Other analogous systems can be found, for
example, in Warrick [18]. The reader can further refer to Gilbarg and Trudinger [6]
for the mathematical formalism and the respective historical contributions. For the
applications of (1.1)–(1.4) to flow and transport in porous media, one can consult
references such as Bear [2] and Warrick [18].

The approximation to (1.3) is, on its own, a major problem in the subject of
multiscale analysis and therefore in many areas of applied mathematics. In particular,
this is so in porous media when Kε (x) characterizes a periodic inclusion, with size
l, in a main matrix with size L and ε = l/L defining the period. In such a case, the
analysis follows by considering the coefficient defined in Ω =

⋃
Ωε so that over each

Ωε one has the step function

(1.5) K
(
ε−1x

)
=

{
ξ1 if x ∈ Ωε

c,
ξ2 if x ∈ Ωε\Ωε

c.

In such a context, one proposes that the solution to (1.3) can be approximated by the
two-scale asymptotic expansion

(1.6) u
(
ε−1x

)
= u0

(
x, ε−1x

)
+ εu1

(
x, ε−1x

)
+ ε2u2

(
x, ε−1x

)
+ · · · .
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The question becomes how to obtain the terms in such an expansion and, in particular,
the zeroth-order approximation u0

(
x, ε−1x

)
. The zeroth-order term describes the

averaged or macroscopic behavior of the flow, whereas the other terms add microscopic
features to the approximation. This is the main scope of homogenization theory. To
find u0(x, ε−1x) one needs to obtain the homogenized or effective coefficient K0, which
can be accomplished by solving, say for a given ε, the cell-problem

(1.7)

{
∇ · (K (x)∇w (x)) = −∇ · (K (x)∇x) in Ω = (0, 1)n,

w(x) =
∑n

i=1 wi(x), x ∈ ∂Ω,

where x =
∑n

i=1 xi and xi = x · ei, with x = (x1, x2, . . . , xn).
Note that (1.7) is a particular case of (1.1), by setting u = w + x.
Historical works in homogenization theory include Tartar [17], Keller [8], [9], Ben-

soussan, Lions, and Papanicolau [3], and Sanchez-Palencia [13]. A complete review of
homogenization theory and its application, including the cases of random coefficients,
has been compiled in Jikov, Kozlov, and Oleinik [7]. There is also a vast literature on
obtaining the effective coefficient by other methods; for example, in Milton [10] one
can follow a thorough review and application to a variety of phenomena in composite
media. The work by Renard and De Marsily [12] contains a review specifically for
upscaling Darcy’s law.

We follow the convention that the analytical approximations to (1.1) and (1.7)
have the symbol ũ, in contrast to the true solution. In addition, an analytical ap-
proximation in Lp means that it solves the respective equation a.e. The results are
constrained neither to the periodicity of the coefficient nor to Ω = [0, 1]n, as can be
verified shortly.

The presentation is outlined as follows: In section 2, we first look for the approx-
imation w̃(x) ∈ Lp(Ω) to the BVP (1.7), which is obtained by the superposition of
w̃i(x) ∈ Lp(Ω) for each i = 1, . . . , n and ∂Ω =

⋃n
i=1 Γi, the approximate solution of

the BVP

(1.8)

{
∇ · (K (x)∇wi (x)) = −∇ · (K (x) ei) in Ω,

wi (x) = 0, x ∈ Γi.

In section 3, we consider the case when K(x) is periodic, leading (1.7) and (1.8) to be
periodic BVPs. In this case, some properties of interest in homogenization theory are
obtained. In section 4, we apply the results to the homogenization and analyze the
numerical convergence between our solution in L2 and the numerical solution in H1

0

for particular shapes of interest in porous media applications. We also compute the
approximate value for the effective coefficient and compare it with some numerical
values reported in the literature for inclusions such as squares, circles, and lozenges.
This comparison demonstrates an error of about 10% on average.

2. Approximate solutions. Throughout this section, we consider the two-
dimensional version of BVP (1.8), without loss of generality.

Theorem 2.1. Let K(x) be defined as in (1.2) with e1 the unit vector in
R2. If w̃1(x1, x2) ∈ Lp(Ω), i = 1, 2, can be written as the product w̃1(x1, x2) =
f1(x1, x2)f2(x2) for f1(x), a linear function on x1, and some f2(x2), then the expres-
sion

(2.1) w̃1 (x) =

∫ x1

0

dτ

K (τ, x2)

(∫ 1

0

dτ

K (τ, x2)

)−1

− x1
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satisfies the BVP

(2.2)

{
∇ · (K (x)∇w̃1 (x)) = −∇ · (K (x) e1) in Ω = (0, 1)2,

w̃1(x) = 0, x ∈ Γ1,

a.e. in Ω.
Proof. (⇒) Suppose that w̃1(x) can be written as w̃1 (x) = f1 (x1, x2) f2 (x2).

The boundary conditions on f1 and f2 on the x1 = 0 and x1 = 1 faces of Ω will be
such that

w̃1 (0, x2) = f1 (0, x2) f2 (x2) = w̃1 (1, x2) = f1 (1, x2) f2 (x2) = 0

⇔ f1 (0, x2) = f1 (1, x2) = 0

for all f2(x2) 
= 0. Now, we make the substitution of w̃1(x), and the equality

∇ ·
(
K (x)

(
∂f1

∂x1
f2 (x2) ,

∂w̃1

∂x2

))
= −∇ · (K (x) e1)

must be satisfied a.e. in Ω. The last relationship can be rearranged to give

(2.3)
∂

∂x1

(
K (x) f2 (x2)

(
∂f1

∂x1
+

1

f2 (x2)

))
+

∂

∂x2

(
K(x)

∂w̃1

∂x2

)
= 0.

Setting the first term everywhere in Ω to zero, i.e.,

(2.4)
∂

∂x1

(
K (x) f2 (x2)

(
∂f1

∂x1
+

1

f2 (x2)

))
= 0,

and letting v (x) = ∂f1

∂x1
+ 1

f2(x2)
, we have

∂

∂x1
(K (x) v (x)) = 0 ⇒ v (x) =

h1 (x2)

K (x)
.

This implies the following:

(2.5)
∂f1

∂x1
=

h1 (x2)

K (x)
− 1

f2 (x2)
.

Furthermore, integrating this last equation over x1 gives

f1 (x1, x2) =

∫ x1

0

h1 (x2) dτ

K (τ, x2)
− x1

f2 (x2)
+ d.

In order to have f1 (0, x2) = 0, d must be zero. Therefore

(2.6) f1 (x1, x2) =

∫ x1

0

h1 (x2) dτ

K (τ, x2)
− x1

f2 (x2)
.

The condition f1 (1, x2) = 0 will be satisfied if

(2.7) h1 (x2) =
1

f2 (x2)
∫ 1

0
1

K(τ,x2)
dτ

.
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Now, going back to the expression for f1 (x1, x2) above, one ends up with

(2.8) f1 (x1, x2) =

∫ x1

0
dτ

K(τ,x2)

f2 (x2)
∫ 1

0
1

K(τ,x2)
dτ

− x1

f2 (x2)
=

1

f2(x2)

⎡
⎣

∫ x1

0
dτ

K1(τ,x2)∫ 1

0
1

K1(τ,x2)
dτ

− x1

⎤
⎦ .

The multiplication by f2(x2), just now defined to be f2(x2) =
(∫ 1

0
1

K1(τ,x2)
dτ

)−1
,

leads to w̃1(x1, x2) in (2.1), which can then be written as

(2.9) w̃1(x1, x2) =

(∫ x1

0

dτ

K (τ, x2)
− x1

∫ 1

0

1

K1 (τ, x2)
dτ

)(∫ 1

0

1

K1 (τ, x2)
dτ

)−1

.

Note also that f1 (x1, x2) =
(∫ x1

0
dτ

K(τ,x2)
− x1

∫ 1

0
1

K1(τ,x2)
dτ

)
is indeed a linear

function of x1. To finalize, we look back at the sum (2.3), and since the first term is
zero and the sum is zero a.e., it follows that the second term is zero a.e.

(⇐) Let w̃1(x) as in (2.1) be given as

(2.10) w̃1 (x) =

∫ x1

0
dτ

K(τ,x2)∫ 1

0
dτ

K(τ,x2)

− x1 = ũ1(x) − x1.

We make the substitution into (2.2) to get

∇ · (K(x)∇w̃1(x)) = ∇ · (K(x)∇ũ1(x)) −∇ · (K(x)e1) = −∇ · (K(x)e1) a.e.

This is true since the equation in the middle can be written as

(2.11)
∂

∂x1

(
K(x)

∂ũ1

∂x1

)
+

∂

∂x2

(
K(x)

∂ũ1

∂x2

)
− ∂

∂x1
(K(x)e1) = − ∂

∂x1
(K(x)e1) .

On the left-hand side, the first term is zero, and the second term may be extended
continuously as zero, even though it is not zero at the discontinuity points of K(x) in
the x2-direction, say x∗

2. The extension can be formalized as follows:

(2.12) lim
x2→x∗

2
−

∂ũ1

∂x2
(x) = lim

x2→x∗
2
+

∂ũ1

∂x2
(x) = 0.

Moreover, this is true since K(x) is defined as in (1.2).
The same procedure applies to obtaining w̃2 (x) = ũ2(x)− x2, which corresponds

to (2.2) in the e2-direction. In two dimensions, one can think of w̃2(x) as the transpose
of w̃1(x).

A natural question regards the estimate of the error of this approximation, which
requires us to analyze the properties of ∂ũ1

∂x2
, such as boundedness, and how it relates

to ∂u1

∂x2
. One possible way to address this problem is to identify a mollifier or Green’s

function ρ(x) = ρ(K(x)) ∈ C∞(Ω) such that
∫
Ω
ρ(x)dx = 1 and the convolution

(2.13) wh
i (x) = h−n

∫
Ω

ρh(K(x− ζ))w̃i(ζ)dζ

with h < dist(x, ∂Ω). Then w̃i converges to wh
i ∈ W 1,p(Ω) in the sense of Lp(Ω),

p < ∞ (see Lemma 7.2 of [6]).
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However, finding ρ(x) and proving (2.13) is a problem related to the uniqueness
of the approximation and would require a deeper analysis beyond the present work.
Instead, we present some interesting and relevant results that may be of help when
addressing the problem in the future.

Illustrations of the approximation w̃1(x), comparing it with the numerical solution
in H1

0 (Ω), are shown in Figures 1 and 2 by using K(x) with square inclusions. Also,
an illustration of the functions ∂ũ1

∂x2
and ∂ũ2

∂x1
is given in Figure 3 for the respective

functions. Observe also that ρ(x), from (2.13), would smooth out the sharp edges
presented in the figures.

The generalization to [0, 1]n ⊂ Rn follows by solving each subproblem as in (2.2).
In such a case, the product form for the ith subproblem is given as w̃i(x) = fi(x)fj(xj),
where fi(x) is a function linear in xi and fj(xj) is a function of all the variables but
xi. Applying Theorem 2.1, we find that

w̃i (x) =

∫ xi

0

dτ

K (x1, . . . , τ, . . . , xn)

(∫ 1

0

dτ

K (x1, . . . , τ, . . . , xn)

)−1

− xi = ũi(x) − xi

=

[∫ xi

0

dτ

K (x1, . . . , τ, . . . , xn)
− xi

∫ 1

0

dτ

K (x1, . . . , τ, . . . , xn)

]

·
(∫ 1

0

dτ

K (x1, . . . , τ, . . . , xn)

)−1

= fi(x)fj(xj)

(2.14)

is the approximate solution in Lp(Ω) for wi(x), the solution to (1.8). Moreover, we
have the following consequences relating the solutions of (1.8) to those of (1.7) and
(1.1), for particular cases of prescribed boundary conditions.

Corollary 2.2. Let w̃i(x) be given as (2.14); then ũi(x) ∈ Lp(Ω) approximates
the solution of the BVP

(2.15)

{
∇ · (K (x)∇ui (x)) = 0 in Ω = (0, 1)n,

ui(x) = xi, x ∈ ∂Ω.

The next results are derived by using the superposition principle.
Corollary 2.3. Let w̃i(x) be given as (2.14); then w̃(x) =

∑n
i=1 w̃i(x) ∈ Lp(Ω)

approximates the solution to the BVP (1.7).
Corollary 2.4. Let w̃i(x) be given as (2.14); then ũ(x) =

∑n
i=1 ũi(x) ∈ Lp(Ω)

approximates the solution of the BVP

(2.16)

{
∇ · (K (x)∇u (x)) = 0 in Ω = (0, 1)n,

u(x) =
∑n

i=1 xi, x ∈ ∂Ω.

The integration procedure used to obtain (2.14) can be applied to general bounded
rectangular domains. In particular, consider Ωε = [0, ε]n; then h1(xj), j 
= i, in (2.7)
becomes

(2.17) h1 (xj) =
ε

fj (xj)
∫ ε

0
1

K(τ,xj)
dτ

,

leading to

(2.18) w̃i (x) = ε

∫ xi

0

dτ

K (x1, . . . , τ, . . . , xn)

(∫ ε

0

dτ

K (x1, . . . , τ, . . . , xn)

)−1

− xi.
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The x variable can be normalized to Ω = [0, 1]n. The last equation then becomes

(2.19) w̃ε
i (x) = ε

[∫ ε−1xi

0
dξ

K(ε−1x1,...,ξ,...,ε−1xn)∫ 1

0
dξ

K(ε−1x1,...,ξ,...,ε−1xn)

− ε−1xi

]
,

where ε may represent the period of Ωε in the i-direction of Ω. One has the following
result.

Corollary 2.5. Let w̃ε
i (x) be as defined above; then

(2.20) lim
ε→0

w̃ε
i (x) = 0 in Lp(Ω).

Proof. The proof follows by the definition of w̃ε
i (x) and by noting that the ratio

in brackets is a bounded function for all ε, since xi ≤ ε.
This result is also in agreement with the numerical wi(ε

−1x), as will be illustrated
in section 4.1 (Tables 1 and 2) for particular cases of periodic inclusion.

The additional condition on the geometry of a periodic coefficient, outlined in the
next corollary, allows one to obtain results that are relevant in homogenization theory
presented in section 4.

3. Periodic coefficients. By considering K(x) a periodic function, it can be
verified that the solutions to (1.7)–(1.8) are periodic. Moreover, if K(x) is constant
throughout the boundary, then the approximation to (1.8) leads to wi(x) = 0, x ∈ ∂Ω,
and w(x) = 0, x ∈ ∂Ω, in (1.7). However, some additional properties are presented
for the particular case when K(x) has its center of mass at half of the period of the
unit cell. This symmetry leads to properties of the functions fi(x) and fj(x) defined
in (2.14).

Corollary 3.1. Let Ω = [0, 1]n. If K (x) is periodic and has its center of mass
at x =

(
1
2 ,

1
2 , . . . ,

1
2

)
, then the following relationships are true:

(i)
∫
Ω
w̃i (x) dx = 0.

(ii)
∫
Ω
w̃iw̃jdx = 0 for j 
= i, where w̃j(x) is the respective approximation to (1.8)

in the jth direction.
(iii)

∫
Ω
K (x) ∂w̃i

∂xj
dx = 0 for j 
= i.

Proof. (i) There are two proofs (a) and (b) of this result. (a) First, this is
true by defining an appropriate constant of integration c in (2.1). Moreover, if
N(x) = 1

K(x) has its center of mass at xi = 1
2 , then c is zero. Indeed, w̃i(x) in

(2.14) becomes
(3.1)

w̃i (x) =

∫ xi

0
dτ

K(x1,...,τ,...,xn) − xi

∫ 1

0
dτ

K(x1,...,τ,...,xn)∫ 1

0
dτ

K(x1,...,τ,...,xn)

=

∫ xi

0
N(τ)dτ − xi

∫ 1

0
N(τ)dτ∫ 1

0
N(τ)dτ

.

By exploiting the triangular domain of integration, recall that

∫ 1

0

∫ xi

0

N(τ)dτdxi =

∫ 1

0

(1 − ξ)N(ξ)dξ.

In particular,
∫ 1

0
xidxi =

∫ 1

0

∫ xi

0
dτdxi =

∫ 1

0
(1− ξ)dξ. Therefore, computing the aver-

age of w̃i(x) and performing iterated integration in the numerator of (3.1), we solve
the ith integral to give
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∫ 1

0

w̃i (x) dxi =

∫ 1

0

(1 − ξ)N(τ)dτ −
∫ 1

0

(1 − ξ)

∫ 1

0

N(ξ)dξdξ(3.2)

=

∫ 1

0

[
(1 − ξ)N(ξ) − (1 − ξ)

∫ 1

0

N(τ)dτ

]
dξ

= −
∫ 1

0

ξN(ξ)dξ +

∫ 1

0

ξdξ

∫ 1

0

N(τ)dτ,

and (3.2) is zero if and only if ∫ 1

0
ξN(ξ)dξ∫ 1

0
N(τ)dτ

=
1

2
.

Thus, in order for w̃i(x) to have zero mean, we need N(x) to have its center of mass
at half of the period in the xi variable. Equivalently, N(x) has its first moment at
half of the period.

(b) Note that w̃i (x) is an odd function w.r.t. xi and an even function w.r.t. the
xj variables. Indeed, considering w̃i (x) = fi(x)fj(xj) in (2.14), we observe that fi(x)
is odd and symmetric w.r.t. xi = 1/2, and fj(xj) is an even function because K(x) is
an even function.

(ii) By having K(x) with its center of mass at x = 1
2 , it follows that K(x) is an even

function w.r.t. x = 1
2 . By using the argument from (b) applied to w̃j(x) = gj(x)gi(xi),

the approximation to the jth problem, w̃j(x) is an even function w.r.t. xi. Thus w̃i(x)
is orthogonal to w̃j(x).

(iii) The proof of (iii) follows since ∂w̃i

∂xj
is an odd function and K(x) is an even

function.
Figures 1, 2, and 3 illustrate the properties (i)–(iii) proved in Corollary 3.1. It

also illustrates that they are common properties between w̃1(x) and the numerical
solution w1(x) ∈ H1

0 (Ω). Another common property is discussed in section 4.2.

Fig. 1. w̃1 (x) (left) and numerical w1 (x) (right), using K(x) as in (1.2), with ξ1 = 10 and
ξ2 = 1 and one square inclusion, centered at (0.5, 0.5) with an area equal to 1

4
.

4. Application to homogenization theory. For the purpose of this section we
constrain the analysis to L2 and H1 spaces and the properties and results obtained
from Corollary 3.1 above. In order to illustrate the homogenization procedure, we
consider composite materials as media with microstructures on a scale much smaller
than the macroscopic scale of interest. The macroscopic length scale, L, is the dimen-
sion of a reservoir or a typical wavelength. The characteristic length of the medium
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Fig. 2. w̃1 (x) (left) and numerical w1 (x) (right), using K(x) as in (1.2), with ξ1 = 10 and
ξ2 = 1 and four square inclusions, centered at (0.25, 0.25), (0.75, 0.25), (0.25, 0.75), and (0.75, 0.75),
respectively, with total area equal to 1

4
.

Fig. 3. ∂w̃1
∂x2

and its transpose, i.e., ∂w̃2
∂x1

from w̃1(x) in Figure 1.

configuration is denoted by l, and the ratio between l and L is denoted by ε = l
L . In

the study of physical processes in media with microstructure, known and unknown
quantities are dependent on ε, and an asymptotic analysis is used to determine the
unknown field quantities. To make precise the fact that the medium varies rapidly
on the small scale l and may also vary slowly on the large scale L, we assume that
the coefficient is of the form Kε (x) = K

(
ε−1x

)
= K(y). One looks for a solution

u (x, y) = uε(x) given by the two-scale asymptotic expansion

(4.1) uε (x) = u0 (x, y) + εu1 (x, y) + ε2u2 (x, y) + · · · ,

where x = (x1, x2, . . . , xn) is a vector in Rn called the global variable and y = ε−1x =
(y1, y2, . . . , yn) is the local variable. The two-scale differentiation, ∇ = ∇x + ε−1∇y,
used in the substitution of uε(x) into the BVP,

(4.2)

{
∇ · (Kε (x)∇uε (x)) = f(x), x ∈ Ω,

u (x) = g(x), x ∈ ∂Ω,

leads to a rigorous deductive procedure for obtaining the macroscopic equations (in
x) based upon solutions of local equations (in y) (examples are given in [3], [5], [7],
among others). The equations in y are solvable if the microstructure is locally periodic
and the terms ui (x, y) in the expansion are periodic in the y variable with the same
period as the structure. By doing so, homogenization has two objectives:
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(i) Determine what equation u0(x) satisfies, where u0(x) is

u0(x) = lim
ε→0

uε(x).

(ii) Determine in what sense the last limit needs to be considered.
To address these questions one has the following definition (from [7]).

Definition 4.1 (H-convergence). A constant matrix K0 is said to be the ho-
mogenized limit of Kε if and only if for any bounded domain Ω ⊂ Rn and for any
f ∈ H−1 (Ω) the solutions uε ∈ H1 (Ω) of the BVP (4.2) possess the properties

uε ⇀ u0 in H1 (Ω) ,(4.3)

Kε (x)∇uε (x) ⇀ K0∇u0 (x) in L2 (Ω)(4.4)

as ε → 0, where u0 ∈ H1 (Ω) is the solution of the BVP

(4.5) ∇ ·
(
K0∇u0 (x)

)
+ f (x) = 0.

Using the Kronecker delta δij , the homogenized coefficient K0 is defined by

(4.6) K0
ij =

∫
Y

K (y) (δij + ∂yiwi (y)) dy,

where wi(y) ∈ H1(Ω) is the solution of the periodic cell-problem

(4.7) ∇ · (K (y)∇ywi (y)) = −∇ · (K (y) ei) for y ∈ Y

and ei is the unit vector in the i-direction. By using the approximation w̃i(y) from
(2.1) in (4.7) and (iii) from Corollary 3.1, one computes an approximation to (4.6):

(4.8) K̃0 = diag

∫
Y

(R1, R2, . . . , Ri, . . . , Rn) dY,

where Ri =
(∫ 1

0
dτ

K(y1,...,τ,...,yn)

)−1
is the harmonic average in the ei-direction. There-

fore, K̃0 is the arithmetic average of the harmonic average. One important observation
is that (4.8) reduces to three well-known results in the literature: the harmonic aver-
age in one dimension, the arithmetic and harmonic averages for layered media, and
the arithmetic average of the harmonic average for the case when K(y) is a separable
function. Moreover, one has the following result.

Corollary 4.2. K̃0 is the lower bound of the generalized Voigt–Reiss inequality:

(4.9) K̃0 ≤ K0 ≤ Ku,

where Ku =
(∫

Y
dyj∫

Y
K(y)dyi

)−1
, with j 
= i.

Proof. The same expression for K̃0 was obtained in Jikov, Kozlov, and Oleinik
[7, eq. (1.74)]; however, they had used a variational principle argument instead of the
approximation (2.1).

This shows how the proposed approximate solution fits into the classical frame-
work of homogenization theory. Inequality (4.9) is a more accurate estimate than the
classical Voigt–Reiss inequality, which states that K0 lies between the harmonic and
arithmetic averages of K(y). As will be seen in the next section, K̃0 indeed always
underestimates the numerical values for K0, and for completeness we also computed
Ku. What is surprising, though, is that the error is about 10% on average (see [14]
and section 4.2). A corrector is needed in order to obtain K0, which may arise by
finding the mollifier on (2.13) or other analytical means that can take advantage of
the proposed approximation. This was proposed in Sviercoski, Travis, and Hyman
[15], [16].
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4.1. Convergence properties. We have proved in Corollary 2.5 that w̃ε
1(x) →

0 linearly. Tables 1 and 2 illustrate that this is another common property of w̃ε
1(x) ∈

L2(Ω), the approximation to the periodic cell-problem (1.8), and the numerical so-
lution wε

1(x) ∈ H1(Ω), in addition to the symmetries illustrated in Figures 1 and 2.
The fact that each of them is going to zero implies that their difference is going to
zero in the L2-norm. The functions w̃ε

1(x) in the tables were obtained by setting up
the cell-problem (1.8) considering the Kε(x) function as in (1.5) and constructing the
sequence by taking its value as (0.5)

n
, where n = 1, 2, 3, 4, 5, 6 and Ω =

⋃
Ωε so that

over each Ωε, Ωε
c are taken to be either square or circular inclusions. Furthermore,

K0.5(x) refers to having one inclusion over the unit domain with a resulting area of
(0.25); K0.25(x) has four inclusions, 2 × 2, in the unit domain with the same total

area of (0.25), up to K(0.5)6(x) with 64× 64 inclusions and the same total area of the
inclusions. The same is done to obtain the respective numerical solution wε

1(x).

Table 1

Square inclusions with ξ1 = 100 and ξ2 = 1.

ε ||w̃ε
1(x)||2 ||wε

1(x)||2 ||w̃ε
1(x) − wε

1(x)||2
(0.5)1 9.8455e-2 1.0563-1 4.5214e-2
(0.5)2 5.5729e-2 5.4217e-2 2.5796e-2
(0.5)3 2.4305e-2 2.7473e-2 1.3249e-2
(0.5)4 1.1814e-2 1.3904e-2 7.0251e-3
(0.5)5 5.2731e-3 7.2277e-3 4.2687e-3
(0.5)6 2.1386e-3 3.6724e-3 2.4792e-3

Table 2

Circular inclusions with ξ1 = 10 and ξ2 = 1.

ε ||w̃ε
1(x)||2 ||wε

1(x)||2 ||w̃ε
1(x) − wε

1(x)||2
(0.5)1 8.0369e-2 7.8305e-2 2.2019e-2
(0.5)2 4.0110e-2 3.9828e-2 1.2707e-2
(0.5)3 2.0405e-2 2.0200e-2 6.9455e-3
(0.5)4 1.0203e-2 1.0161e-2 3.7447e-3
(0.5)5 5.1821e-3 5.0776e-3 2.2066e-3

4.2. Comparison between numerical results and K̃0. We compute the ap-
proximate value (4.8) and compare it with some published numerical results. The nu-
merical values have been taken from Bourgat [4], Amaziane, Bourgeat, and Koebbe [1],
and Moulton, Dendy, and Hyman [11]. Note that in [1], the homogenization proce-
dure has been applied to a nonlinear two-phase flow equation. For some particular
cases of nonlinearity, the value of the effective coefficient can be computed as in the
linear case.

4.2.1. Case 1. In [1], each function Kε(x) is defined as in (1.5), with values of
ξ1 being in the inclusion and ξ2 in the main matrix. (Note that this is the opposite
of the definition used elsewhere in this paper). The effective value K# was obtained
by numerically solving (1.3) for four tests:

Test 1. Kε(x) with ξ1 = 1 and ξ2 = 10.
Test 2. The same Kε(x) as in Test 1. However, a two-phase analysis was used

with a change in the viscosity ratios.
Test 3. Kε(x) with ξ1 = 1 and ξ2 = 100.
Test 4. Kε(x) with ξ1 = 1 and ξ2 = 10, as illustrated in Figure 4 (right).
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Fig. 4. Left: Function K(y) used in Tests 1, 2, and 3, respectively. Right: K(y) used in Test 4.

The results are presented in Table 3, where Kh is the harmonic average, K# is
numerical from [1], K̃0 results from (4.8), and Ka is the arithmetic average. RD is

the relative difference, RD = |K#−K̃0|
K̃0

. The difference between the numerical and

analytical results is about 10%, on average. Observe that in Test 4, the error is
smaller compared to the others. This coincides with the fact that the medium is
“less heterogeneous” than the others. An analogous argument applies for the “highly
heterogeneous” Test 3, where the error is the largest.

Table 3

Comparison between (4.8) and numerical values from [1].

Kh K̃0 K# Ku Ka RD

Test 1 3.09 5.91 6.52 7.09 7.75 10.3 %
Test 2 3.09 5.91 6.52 7.09 7.75 10.3 %
Test 3 3.89 51.0 59.2 67 75.2 16 %
Test 4 1.48 2.98 3.106 3.271 4.24 4 %

4.2.2. Case 2. Table 4 shows the comparison between values of the effective co-
efficient, Kbb, obtained by the black box multigrid algorithm, from [11], the numerical
asymptotic value, Knum, computed in [4], and the analytical form (4.8). The idea
is also to show the dependence of the results on the shape of the inclusions. Three
different inclusions are presented with an area equal to 1

4 , as in Figure 5 with ξ1 = 10
and ξ2 = 1, where RD is computed with Knum as it is more closely related to our
procedure. Table 4 also indicates that K̃0 is consistent with the others w.r.t. the
correspondence between the order of the values and their respective shapes. Indeed,
the circular shape renders the smallest effective value, whereas the lozenge gives the
largest.

Table 4

Comparison between (4.8) and numerical values from [4] and [11].

Shape Kh K̃0 Knum Kbb Ku Ka RD

Square 1.292 1.409 1.548 1.598 1.695 3.26 9 %
Circle 1.291 1.403 1.516 1.563 1.791 3.251 8 %

Lozenge 1.288 1.417 1.573 1.608 1.936 3.236 11 %

5. Discussions. The results presented in this paper are one step towards obtain-
ing the solution of a generalized Laplace equation not only for the coefficient functions
presented here but also for more general multiscaled geometries. They also provide
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Fig. 5. Different shape of inclusion.

insight on deriving, by analytical means, the effective coefficient for the generalized
flow equation with a rapidly oscillating coefficient. Other simulations, not presented
here, indicate that when using (4.8) and the approximation in Definition 4.1, one gets
the boundedness of the sequence,

∣∣∣∣uε − u0
∣∣∣∣

2
≤ C, that is, a strong convergence up

to a subsequence of uε. It is possible that, by defining a mollifier in order to smooth
out the various approximations presented, the numerical and analytical values for
the effective coefficient will be closer. In this sense, we are proposing in Sviercoski,
Travis, and Hyman [15], [16] an analytical corrector to (2.14) and (4.8) to overcome
the demonstrated difference.
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Abstract. We present a new local tomographic algorithm applicable to electron microscope
tomography. Our algorithm applies to the standard data acquisition method, single-axis tilting, as
well as to more arbitrary acquisition methods including double axis and conical tilt. Using microlocal
analysis we put the reconstructions in a mathematical context, explaining which singularities are
stably visible from the limited data given by the data collection protocol in the electron microscope.
Finally, we provide reconstructions of real specimens from electron tomography data.
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1. Introduction. Our goal is to show how singularity detection algorithms can
be useful in electron (microscope) tomography (ET). Briefly, given transmission elec-
tron microscope (TEM) data and using principles of tomography, the goal in ET is to
reconstruct the scattering potential of the individual molecules in an in situ (in the
cellular environment) or in vitro (in aqueous environment) specimen, each of which
can be fairly arbitrary. Because the specimen extends far beyond the area exposed
to the electrons, the exposed region covers only a small subregion, which is usually
referred to as the region of interest. Again, because of the size of the whole specimen,
one can rotate it only in a limited range of angles, so the reconstruction problem
is a limited angle problem. These imply that one has nonuniqueness and severe
ill-posedness. Nonuniqueness, as illustrated in Example 3.1, means that one cannot
exactly reconstruct the scattering potential of the specimen even in cases when one
assumes exact data (no measurement errors) and disregards the discretization of the
set of lines (i.e., one deals with the corresponding continuous problem where data are
given over a continuous set of lines). Furthermore, as discussed in section 2.2, the
data are very noisy, in particular because of the dose problem—the dose needed to
get low-noise data destroys the specimen. Since the limited angle problem leads to
severe ill-posedness, the reconstruction problem is unstable and the noise in the data
is amplified.

These issues, namely nonuniqueness and ill-posedness, point to using a recon-
struction method that regularizes by reconstructing only some information about the
specimen that can be stably retrieved, in our case the shape of the boundaries of the
molecules in the specimen. Our method is a generalization of Lambda tomography
[6, 28].

The article is organized as follows. In section 2, we give the background from
physics and state the inverse problem. To provide perspective, we briefly describe
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planar Lambda tomography in section 3. Next, we provide our general algorithm
for arbitrary data sets in section 4. Then, in section 5 we give the specifics for
single-axis tilt ET. In section 6, we describe which singularities of the specimen are
stably recoverable from the limited data in ET. We put our results in the context
of microlocal analysis as done by [20] for planar CT. This is based on the theory of
Fourier integral operators, and the specific results are based on very general theorems
in [8] or [2]. Finally, in section 7, we give reconstructions from real data to illustrate the
efficiency of our algorithm and demonstrate our characterization of stably recoverable
singularities. The appendix includes proofs of our technical theorems.

2. Electron (microscope) tomography (ET). In what follows we will pro-
vide a very brief overview of ET, where our aim is to properly state the inverse problem
and show how integral geometry can be used to solve it. The reader is referred to [4]
and the references therein for a more detailed account.

2.1. Scientific application and experimental setting. The problem of re-
covering the three-dimensional structure of an individual molecule (e.g., a protein or
a macromolecular assembly) at the highest possible resolution in situ or in vitro plays
a central role in understanding biological processes in time and space. Established
approaches, such as X-ray crystallography and nuclear magnetic resonance (NMR),
for dealing with this problem cannot recover the structure of an individual molecule
in a sample. The publication of [3, 29, 11] in 1968 marked the beginning of ET, where
the idea of recovering the structure of a sample from TEM data using principles of
tomography was first outlined. ET is currently the only approach that allows one to
reconstruct the three-dimensional structure of individual molecules in in situ/in vitro
samples. The main drawback of ET when compared to NMR/X-ray crystallography,
mentioned earlier, is that it provides only a low-resolution structure due to reasons
explained in section 2.2. However, since the ability to study individual molecules is
important in order to address many biological problems, ET is nowadays enjoying an
increasing interest within life sciences as a technique for low- or medium-resolution
structure determination of individual molecules.

A specimen that is to be imaged in a TEM must first be physically immobilized
since it is imaged in a vacuum. It also needs to be thin (about 70–100 nm) if enough
electrons are to pass through to form an image. The purpose of sample preparation is
to achieve this without interfering with the structure of the specimen. Data collection
in ET is done by mounting the specimen on a holder (goniometer) that allows one to
change its positioning relative to the optical axis of the TEM. For a fixed position,
the specimen is radiated with an electron beam, and the resulting data, referred to
as a micrograph, is recorded by a detector. Hence, each fixed orientation of the spec-
imen yields one micrograph, and the procedure is then repeated for a set of different
positions. The most common data acquisition geometry is single-axis tilting, where
the specimen plane is allowed only to rotate around a fixed single axis, called the tilt
axis, which is orthogonal to the optical axis of the TEM. The rotation angle is called
the tilt angle, and its angular range is usually contained in a subset of [−60◦, 60◦].

2.2. Difficulties. Limitations in instrumentation combined with the unfortu-
nate combination of very noisy data and the severe ill-posedness of the inverse prob-
lem have been (and still are) responsible for the slow dissemination of ET as a reliable
structure determination technique in life sciences. The former issue is partly addressed
by the rapid technological development, so we focus on the latter, which is due to the
following reasons.
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The dose problem. This is the single most important problem in ET. It limits
the total number of images that can be taken and arises due to specimen damage
during electron exposure. A typical range of dose that can be tolerated by a bio-
logical specimen is about 2000–7000 e−/nm2, which translates into about a total of
500–1250 e−/pixel (at 25000× magnification with pixel size of 14 μm) distributed over
60 or 120 micrographs, so each micrograph is very noisy, and the Poisson randomness
of the data (shot noise) has to be accounted for.

Limited range of the tilt angle. Restrictions in the data acquisition geometry for
ET, especially the restriction on the range of the tilt angle in single-axis tilting, lead
to limited angle data and therefore imply that the conditions for stable reconstruction
are not fulfilled.

Region of interest problem. For a given positioning of the specimen, only a subre-
gion of it is subject to electron exposure. Thus, the region of interest then equals (or
is a subset of) the intersection of all the exposed parts of the specimen from different
positions. Since we have contribution from outside the region of interest,1 we are
dealing with the region of interest problem (local tomography), somewhat similar to
the well-known “long object problem” in three-dimensional CT.

2.3. The inverse problem in ET. We therefore confine ourselves to presenting
a very brief outline for how one arrives at the expression for the forward operator
that occurs in the standard phase contrast model used by the ET community. The
interested reader is referred to [4, 10, 23] for a more detailed exposition.

The starting point is to assume that we have perfect coherent imaging; i.e., the
incoming electron wave is a monochromatic plane wave (coherent illumination), and
electrons scatter only elastically. The scattering properties of the specimen are in
this case given by the electrostatic potential, and the electron-specimen interaction
is modeled by the scalar Schrödinger equation. The picture is completed by adding
a description of the effects of the optics and the detector of the TEM, both modeled
as convolution operators. However, inelastic scattering and incoherent illumination
introduce partial incoherence, so the basic assumption of perfect coherent imaging
must be relaxed. The incoherence that stems from inelastic scattering is accounted
for within the coherent framework by introducing an imaginary part to the scattering
potential, called the absorption potential. The incoherence that stems from inco-
herent illumination is modeled by modifying the convolution kernel that describes
the effect of the optics. Next, as shown in [4, Theorem 9.5], taking the first order
Born approximation and linearizing the intensity enables one to explicitly express the
measured intensity in terms of the propagation operator (well known from diffraction
tomography [18, p. 48]) acting on the scattering potential of the specimen convolved
with point spread functions describing the optics and detector. The standard phase
contrast model used by the ET community for the image formation in TEM is based
on replacing the propagation operator by its high energy limit as the wave number
tends to infinity. This yields a model for the image formation that is based on the
parallel beam transform (see (2.3) for a definition).

The structure of the specimen is assumed to be fully described by the scattering
potential f : R

3 → C, which is defined as

(2.1) f(x) := −2m

�2

(
V (x) + iVabs(x)

)
,

1The exposed part of the specimen is larger than the region of interest.
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where m denotes the electron mass at rest, V : R
3 → R

− is the potential energy2

that models elastic interaction, and Vabs : R
3 → R

− is the absorption potential that
models the decrease in the flux, due to inelastic scattering, of the nonscattered and
elastically scattered electrons. Under the assumptions and approximations outlined in
the previous paragraph, the expression for the intensity generated by a single electron
is given as

I(f)(z,ω) :=
1

M2

(
1 − (2π)−2

[{
PSFre(·,ω) �

ω⊥
P(f re)(·,ω)

}( z

M

)
(2.2)

+
{

PSFim(·,ω) �
ω⊥

P(f im)(·,ω)
}( z

M

)]
k−1

)

for a unit vector ω ∈ S2 and z ∈ ω⊥, where ω⊥ :=
{
x ∈ R

n
∣∣ x · ω = 0

}
. In the

above expression, f re, f im : R
3 → R

+ denotes the real and imaginary parts of f in
(2.1) and P denotes the parallel beam transform (X-ray transform), which is defined
as the operator taking the line integral of a function, i.e.,

(2.3) P(f)(y,ω) :=

∫ ∞

t=−∞
f(y + tω) dt for ω ∈ S2 and y ∈ ω⊥.

Moreover, �ω⊥ denotes the two-dimensional convolution in the ω⊥-plane, and the
point spread functions PSFre and PSFim in (2.2) model the effect of the optics and
incoherent illumination of the TEM. A precise expression for these can be found, e.g.,
in [4, section 9.1], [10, Chapter 65], or [23, section 3.3]. Finally, k is the particle wave
number3 w.r.t. the homogeneous background medium (which in our case is a vacuum)
and M denotes the magnification.

As already mentioned, (2.2) yields the expression for the intensity generated by a
single electron. The expression for the actual data measured on a micrograph needs
to account for the detector point spread function (usually a slow-scan CCD camera)
as well as the stochasticity in the data. Following [4, section 6.3], the stochasticity in
the data is captured by assuming that the actual data delivered by the detector from
a pixel should be modeled as a sample of a random variable, which in turn implies
that the inverse problem in ET must be defined in a probabilistic setting.

Definition 2.1. We have a fixed finite set S0 of directions on a smooth curve
S ⊂ S2 that defines our parallel beam data collection geometry. The scattering proper-
ties of the specimen are assumed to be fully described by the complex valued scattering
potential f defined in (2.1). For each direction ω ∈ S0, the specimen is probed by a
monochromatic wave, and the resulting data on the micrograph at pixel (i, j) is de-
noted by data[f ](ω)i,j. The forward operator in ET, denoted by T , is defined as the
expected value of data[f ](ω)i,j, i.e.,

T (f)(ω)i,j := E
[
data[f ](ω)i,j

]
for ω ∈ S2 and pixel (i, j).

The inverse problem is to determine f when a sample of data[f ](ω)i,j is known for
ω ∈ S0 and finitely many pixels (i, j).

2The potential energy is related to the electrostatic potential U : R
3 → R

+ by V = −eU , where
e is the charge of the electron.

3We use the convention that the relation between the wave number k and the wavelength λ is
given by k = 2π/λ.
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The full expression for data[f ](ω)i,j (and the corresponding forward operator T )
is given in [4, equation (29)]. We will settle for a simplified version, also given in [4,
equation (30)], which yields the following expression for the forward operator:

(2.4) T (f)(ω)i,j = gaini,j |�i,j |Dose(ω)
{

PSFdet �
ω⊥

I(f)(·,ω)
}

(zi,j) + εi,j .

In the above expression, gaini,j is a detector constant, |�i,j | is the area of the (i, j)th
pixel, Dose(ω) is the incoming dose which gives the number of electrons hitting the
specimen per area unit, PSFdet is the detector point spread function, and εi,j is the
mean value of the stochastic variable representing the additive noise introduced by the
detector.

2.4. Integral geometric approaches for solving the inverse problem.
There are two main assumptions underlying all current integral geometric approaches
for solving the inverse problem given in Definition 2.1. The first is to assume that the
forward operator yields the actual measured data; i.e., the data in pixel (i, j) in the
micrograph with tilt ω equals the expected value of the random variable data[f ](ω)i,j .
The second is to assume that the forward operator is given by (2.4). Next, we shall
see that appropriate postprocessing of the measured data allows us to obtain an ex-
pression for the values of the parallel beam transform on (zi,j ,ω) with ω ∈ S0 and
zi,j ∈ Σ ⊂ ω⊥, where Σ is a fixed finite set defined by the pixels in the detector. We
have in this way recast the inverse problem in ET (given by Definition 2.1) as the
problem of inverting the parallel beam transform.

2.4.1. Generate single electron intensity data. The first step is to generate
single electron intensity data from the actual measured data. This can be done by
deconvolving the effects of the detector point spread function PSFdet and rescaling the
measured data so that it corresponds to the intensity generated by a single electron.
Let I(ω)i,j correspond to the intensity generated by a single electron at pixel (i, j). If
the rescaling and deconvolution are appropriately4 done, then we get

I(ω)i,j ≈ I(f)(zi,j ,ω) for ω ∈ S0 and zi,j ∈ Σ.

By (2.2), for zi,j ∈ Σ we then get that{
PSFre(·,ω) �

ω⊥
P(f re)(·,ω)

}(zi,j

M

)
(2.5)

+
{

PSFim(·,ω) �
ω⊥

P(f im)(·,ω)
}(zi,j

M

)
≈ (2π)2k

(
1 −M2 I(ω)i,j

)
.

One can now proceed in a number of different ways in order to recast the inverse
problem in Definition 2.1 as the problem of inverting the parallel beam transform.

2.4.2. Amplitude contrast only. The easiest approach is to assume that we
have perfect optics (no defocus and no spherical or chromatic aberration) and ignore
all apertures. These assumptions imply that PSFre ≡ 0 and PSFim = δω⊥ (see, e.g.,
[4, section 9.3]), so (2.5) reduces to

(2.6) P(f im)
(zi,j

M
,ω

)
≈ (2π)2k

(
1 −M2 I(ω)i,j

)
for zi,j ∈ Σ.

4The deconvolution of the detector point spread function PSFdet needed to create I(ω) is an
ill-posed operation, and therefore it needs to be performed using a regularization scheme. However,
the ill-posedness is not severe since the Fourier transform of PSFdet is positive [4, Remark 6.3], so it
should be fairly straightforward to perform this regularization as exemplified in [32].
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The inverse problem in Definition 2.1 can now be reformulated as the problem of
inverting the parallel beam transform of f im when the data is given by the right-hand
side of (2.6).

Note that the real part f re of the scattering potential is absent in (2.6) and thus
cannot be recovered. This is to be expected since the phase contrast is visible only due
to the imperfections in the optics (with nonzero defocus and/or nonzero aberration).
The inability to recover f re is a serious deficiency with this approach since f re is the
part of the scattering potential that has a straightforward physical interpretation in
terms of the molecular structure of the specimen, whereas f im is a phenomenological
construction that accounts for the decrease in the flux, due to inelastic scattering,
of the nonscattered and elastically scattered electrons. Assuming only amplitude
contrast therefore works well only with strongly scattering specimens where most of
the contrast in the micrographs is from amplitude contrast.

2.4.3. Constant amplitude contrast ratio. This is the most common ap-
proach in ET. It is based on introducing an additional assumption, namely, that
f im(x) = Qf re(x), where the constant Q is called the amplitude contrast ratio. Un-
der this assumption (2.5) reduces to

(2.7)
{

PSF(·,ω) �
ω⊥

P(f re)(·,ω)
}(zi,j

M

)
≈ (2π)2k

(
1 −M2 I(ω)i,j

)
for zi,j ∈ Σ,

where

PSF(z,ω) :=
{

PSFre(·,ω) + QPSFim(·,ω)
}

(z).

An expression for P(f re)
(zi,j

M ,ω
)

can now be obtained by deconvolving the point
spread function PSF in the expression (2.7).

There are several problems with this above approach. The first is that it requires
a priori knowledge of Q. Second, deconvolving PSF is an ill-posed operation. This
ill-posedness is especially pronounced since the Fourier transform of the kernel PSF
has multiple zeroes (see, e.g., [4, section 9.1]). Thus, if one wants to use (2.7) in
order to retrieve f re (and f im with knowledge of Q), then one needs to regularize the
deconvolution operation involved in the right-hand side of (2.7). The most common
approach is to again assume perfect optics and ignore all apertures. However, in such
a case the criticism raised against the amplitude contrast model (2.6) also applies to
this case, and not much is gained.

2.4.4. Phase contrast model with low-resolution amplitude contrast.
We now propose a novel approach that does circumvent some of the difficulties raised
above. The idea is to recover f re by a hybrid approach. Begin by assuming perfect
optics (no defocus and no spherical or chromatic aberration) and ignore all apertures.
Under these assumptions we know that (2.6) is valid, which gives an expression for
P(f im)

(zi,j

M ,ω
)

with zi,j ∈ Σ. Inserting this expression into (2.5) yields an expression
for {

PSFre(·,ω) �
ω⊥

P(f re)(·,ω)
}(zi,j

M

)
.

Finally, by deconvolving the point spread function PSFre, we obtain the expression
for P(f re)

(zi,j

M ,ω
)

with zi,j ∈ Σ. This deconvolution operation is, however, ill-
posed since the Fourier transform of the corresponding kernel PSFre has multiple
zeroes. Hence, in order to use this approach, one needs to regularize this deconvolution
operation.
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2.4.5. Phase contrast model with higher order terms. The troublesome
deconvolutions with the optics point spread functions can be avoided altogether if one
makes an approximation based on the asymptotic expansion of the forward operator
that includes higher order terms. More precisely, in [4, equation (40)] it is shown that

I(f)(z,ω) =
1

M2

(
1 − (2π)−2P(f im)

( z

M
,ω

)
k−1

+ (2π)−2

{(
�z

2
+ q

)
�ω⊥

[
P(f re)(·,ω)

]( z

M

)

+ �ω⊥

[∫
R

sf re(sω + ·) ds
]( z

M

)}
k−2

)
+ O(k−3),

where �ω⊥ is the two-dimensional Laplacian in the ω⊥-plane, �z is the defocus,
and q is the shortest distance (considering all the tilts) between the specimen and
the objective lens in the idealized optical system (the value of q is determined by the
magnification M and focal length of the objective lens [4, section 8.5]). Now, note
that ∫

R

sf re(sω + z) ds ≈ qP(f re)(z,ω),

which holds simply because q is much larger than the specimen thickness (where f re

has its support). Moreover, �ω⊥
[
P(f re)(z,ω)

]
= P(�f re)(z,ω), where � is the

Laplacian in R
3, so we therefore end up with the following replacement of (2.5):

P(f im)
(zi,j

M
,ω

)
+

(
�z

2
+ 2q

)
k−1P(�f re)

(zi,j

M
,ω

)
(2.8)

≈ (2π)2k
(
1 −M2 I(ω)i,j

)
for zi,j ∈ Σ. One can now repeat the postprocessing approaches described in sections
2.4.3 and 2.4.4 but this time based on (2.8) instead of (2.5). This would yield post-
processing operations of data where one does not have to go through the ill-posed
operation of deconvolving the optics.

2.4.6. Summary. As we have seen in the previous sections, performing a num-
ber of approximations allows us to recast the inverse problem in ET (given as in
Definition 2.1) as the problem of solving (2.5) for f re and f im. This problem can then
by additional assumptions be reduced to the problem of inverting the X-ray trans-
form. Finally, bearing in mind the data collection scheme outlined in Definition 2.1,
we are reduced to inverting the parallel beam transform since the line complex where
the X-ray transform is sampled consists of lines parallel to a direction (which in turn
varies on a curve in S2).

3. Limited data local tomography. To help the reader understand our three-
dimensional local reconstruction methods, we will first outline planar Lambda tomog-
raphy and then recall the parameterization of lines for the ET data set in R

3.
Lambda tomography [6, 5, 28] is a very clever algorithm for parallel beam or fan

beam tomography in the plane. It allows one to image a function f(x) using only
line integrals of f for lines near x. It is a variant of the standard filtered backprojec-
tion inversion algorithm that replaces the standard filter (that has infinite support)
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(a) Plot of the convolution kernel
we use in place of −D2

σ (see (5.8)).
The kernel is local because it is zero
off of the interval [−0.1, 0.1].
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(b) Plot of the standard filtered
backprojection kernel with a com-
parable width.

Fig. 1. Plot of kernels in Lambda tomography and in filtered backprojection. We see that the
Lambda kernel illustrated in Figure 1(a) is local, whereas the standard filtered backprojection kernel
shown in Figure 1(b) has infinite support.

with a filter that takes a second derivative in the detector variable. Because the nu-
merical derivative filter has small support, just near the line being evaluated, this
reconstruction becomes local; see Figure 1.

The formula reads as follows:

(3.1) Λμ(f) =
1

4π
P∗(μ−D2

ω⊥

)
P(f).

In the above formula, P∗ is the standard dual parallel beam transform integrating
over all lines in the plane through the given point and D2

ω⊥ is the second derivative
in the ω⊥ direction, i.e.,

D2
ω⊥(g)(y,ω) :=

d2

ds2
g
(
y + sω⊥,ω

)∣∣∣∣
s=0

for y ∈ R
2

with ω := (sin θ, cos θ) and ω⊥ := (cos θ,− sin θ). In this section, ω⊥ is a vector, and
for the three-dimensional parallel beam transform, ω⊥ is a plane. Note that ω is the
unit vector π/2 radians counterclockwise from ω⊥.

We subtract D2
ω⊥ in (3.1) so that the Fourier transform of the kernel of Λμ

is positive. The result is a reconstruction not of f but of a function Λμ(f) that has
singularities at the same places as f but with the singularities accentuated. As has been
shown in numerous articles (e.g., [6, 16, 21]) and as we will try to show here, Lambda
reconstructions can be as useful as reconstructions from filtered backprojection if one
does not need actual density values or if one has only local data from which density
values cannot be obtained. The constant μ ≥ 0 is included in (3.1), as suggested by
Smith and coauthors [26, 6], to provide some contour to the reconstruction. That is,
the backprojected second derivative

−ΔP∗P(f) = P∗(−D2
ω⊥P

)
(f) = Λ0(f),

or “pure” Lambda, emphasizes density changes or boundaries. The μ factor provides
“contours” from the smoothed version of the original function since it results in the
convolution

μP∗P(f) = f ∗ 2μ

‖ · ‖ ,
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where ∗ denotes the convolution in R
3. The sum, (3.1), provides a reconstruction

including both contours of f and the boundaries. A more complete rationale and
analysis are given in [6, 5].

We now recall the three-dimensional parallel beam complex for ET. Let S ⊂ S2

be a smooth curve on the sphere, and for ω ∈ S let ω⊥ be the plane through the origin
perpendicular5 to ω. Then, following any of the approaches outlined in section 2.4,
the inverse problem in ET as stated in Definition 2.1 can be recast as the problem
of recovering f given values P(f)(y,ω), where P is given as in (2.3), ω ∈ S, and
y ∈ ω⊥ (or for the local problem, y is in a proper subset of ω⊥). The example below
shows that this is an intrinsically ill-posed problem in the single-axis tilting case since
the local transform is not injective even in the absence of noise. Thus, singularity
detection algorithms such as Lambda tomography are natural methods since they
regularize the problem by reconstructing only features that are stably visible (see,
e.g., [20, 16, 21]).

Example 3.1. Assume f(x) = g(x3), where the specimen is parallel to the
(x1, x2)-plane. Then, only

∫∞
−∞ g(x3) dx3 can be determined from single-axis tilt ET

data with tilt angle less than π/2. This also is a counterexample for any set of lines,
as in ET, without horizontal directions.

4. The algorithm in general. In this section, we describe our Lambda to-
mography algorithm for directions (or angles) on an arbitrary smooth curve S ⊂ S2.
Note that we follow an ET convention when we use the word “angle” to describe a
point on S2. This general setup will provide a general framework for the single-axis
tilt geometry we use in ET, which will be described in section 5. The algorithm is
general enough to take care of other tilting geometries such as dual-axis and conical
tilting, which some of the newest electron microscopes can provide. A generalization
of algorithm to slant-hole SPECT (with the same geometry as conical tilt) will be
given in [22].

The planar Lambda tomography we described in section 3 has two important ad-
vantages: it solves the region of interest problem—it is local—and it is easily adaptable
to other limited data sets in the plane [16, 21]. As noted in section 1, the inverse prob-
lem in ET (as given in Definition 2.1) can be rephrased as a three-dimensional limited
angle region of interest reconstruction problem. It is therefore natural to consider a
type of singularity detection algorithm related to Lambda tomography. Furthermore,
as shown by Example 3.1, inversion is not possible, so recovering singularities is an
appropriate goal. It also turns out that, despite the severe ill-posedness of the inverse
problem, those singularities that can be recovered are recovered stably at least in range
of Sobolev spaces.6 Such an algorithm includes two pieces, a backprojection operator
and a derivative along the lines.

Let S be a curve on the sphere. The backprojection operator is the dual parallel
beam transform for directions on the curve S,

(4.1) P∗
S(g)(x) :=

∫
ω∈S

g
(
x − (x · ω)ω,ω

)
dω for x ∈ R

3,

where the measure dω is the arc length measure on the curve S and the point
x − (x · ω)ω is the projection of x onto the plane ω⊥.

5Note that ω⊥ was a direction in S1 perpendicular to ω in the planar (two-dimensional) setting,
whereas in the three-dimensional setting it is a plane perpendicular to ω.

6A stronger type of stability would be a microlocal inverse continuity estimate, and the authors
are not aware of such a direct estimate for these operators.
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The derivative along lines is defined as follows. Assume the curve S is parame-
terized by the differentiable function ω(θ) with derivative ω′(θ) �= 0, and let

(4.2) σ(θ) :=
ω′(θ)

‖ω′(θ)‖

be a unit tangent to the curve S at ω(θ). Then, we denote the second derivative in
direction σ by

(4.3) D2
σg

(
y,ω(θ)

)
:=

d2

ds2
g
(
y + sσ(θ),ω(θ)

)∣∣∣∣
s=0

.

Our basic reconstruction operator is

(4.4) L(f) := P∗
S

(
(μ−D2

σ)P(f)
)
.

This is a natural generalization of the two-dimensional Lambda operator (3.1) since
it includes a second derivative along lines, a smoothing term, and a backprojection.
We include the factor of μ, as is done for standard Lambda tomography, to provide
contour to the reconstruction.

How L detects singularities can be understood using microlocal analysis, as we do
in section 6. We will show that L is a pseudodifferential operator (PDO) with a mildly
singular symbol (Theorem A.1). Moreover, ET data are very noisy, as discussed in
section 2.2, so to cope with that we smooth in two ways. First, we evaluate the
derivative D2

σ using a kernel that is a smoothed version of the second derivative.
Second, we smooth by averaging nearby slices; that is, we also convolve in the ω⊥-
plane in the direction perpendicular to σ. We will describe this smoothing explicitly
in the case of single-axis tilting in the next section.

5. Single-axis tilt ET. In this section, we will describe our algorithm for single-
axis tilt ET. In single-axis tilt ET, one restricts the directions to a single tilt axis.
We use a coordinate system where the electrons come in along the z-axis when ω =
(0, 0, 1), and we assume the tilt axis is the x-axis. Let us now write (4.4) in these
coordinates.

Expression for S. Because the specimen cannot be fully rotated, this means that
the curve of directions, S, is an arc of a circle in the (y, z)-plane and there is a limited
angular range of ±θmax, where θmax ≈ π/3 radians. One appropriate parameterization
for the curve S in this setting is

(5.1) ω(θ) := (0, sin θ, cos θ), θ ∈ ]−θmax, θmax[ ,

and by (4.2) we get

(5.2) σ(θ) = (0, cos θ,− sin θ).

Expression for P. Now, e1 := (1, 0, 0) and σ(θ) form an orthonormal basis of the
plane ω(θ)⊥ and thereby provide orthonormal coordinates on ω(θ)⊥:

(5.3) y = (y1, yσ) �→ y1e1 + yσσ(θ) ∈ ω(θ)⊥.

In these coordinates the set of lines is parameterized by

(5.4)
Y :=

{
(y, θ)

∣∣ y = (y1, yσ) ∈ R
2, θ ∈ ]−θmax, θmax[

}
,

(y, θ) �→ �(y, θ) :=
{
y1e1 + yσσ(θ) + tω(θ)

∣∣ t ∈ R

}
,
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and functions on lines will be written g(y, θ) = g
(
(y1, yσ), θ

)
, so in particular P has

parameterization

(5.5) P(f)(y, θ) := P(f)
(
y1e1 + yσσ(θ),ω(θ)

)
.

Expression for P∗
S . Before expressing the dual operator P∗

S in (4.1) in these
coordinates, we smooth it slightly in order to make it a classical Fourier integral
operator (FIO) and in order to increase the accuracy in the numerical integration.
This is done by choosing 0.9 θmax < θcut < θmax and defining the smooth function

(5.6) ϕ : [−π/2, π/2] → [0, 1], suppϕ = [−θcut, θcut],

where ϕ is nonzero on ]−θcut, θcut[ and equal to one on most of this interval. ϕ is then
extended R by making it π-periodic. The smoothed limited angle dual parallel beam
transform, which is the version of P∗

S that we will be using, is

(5.7) P∗
θcut

(g)(x) :=

∫ θcut

−θcut

g
(
x −

(
x · ω(θ)

)
ω(θ),ω(θ)

)
ϕ(θ) dθ for x ∈ R

3.

A simple trapezoidal rule integration, which corresponds to a specific choice of ϕ,
works well in (5.7).

Expression for D2
σ. In our coordinates (y, θ), D2

σ becomes

(5.8) D2
σ(g)(y, θ) :=

d2

ds2
g
(
(y1, s), θ

)∣∣∣∣
s=0

.

Expression for (4.4). Our expression for the Lambda operator L in (4.4) becomes

(5.9) L(f) = P∗
θcut

(
(μ−D2

σ)P(f)
)
.

This operator is a two-dimensional limited angle Lambda operator in each fixed plane
x = constant (compare with (3.1)).

Further smoothing. We actually use a smoothed version of the derivative D2
σ in

the σ direction, and we also smooth between slices in the e1 direction. This can
be understood as either a convolution/smoothing of the data in the data plane, ω⊥,
or as a convolution/smoothing of the final reconstruction, as we now explain. Let
φ1 ∈ C ∞

c (R) be even with
∫

R
φ1 = 1 and φ2 ∈ C ∞

c (R2) be radial with
∫

R2 φ2 = 1.

Moreover, let φ̃2 be the two-dimensional parallel beam transform of φ2, and note that
φ̃2 is radial and independent of direction. Let (φ1⊗φ̃2)(x1, x2, x3) = φ1(x1)φ̃2(x2, x3).
Then, for (y, θ) ∈ Y and data f with compact support,

(5.10) (φ1 ⊗ φ̃2) �
ω⊥

P(f)(y, θ) = P
(
(φ1 ⊗ φ2) ∗ f

)
(y, θ),

where ∗ denotes the convolution in R
3 and �ω⊥ is the convolution in the detector

plane, ω(θ)⊥. Equation (5.10) is valid since P integrates only over lines perpendicular
to e1 and φ1 is a function only of x1. Because L is a convolution operator (see
Theorem A.1), it commutes with the convolution with φ1 ⊗ φ2. This means that

(
φ1 ⊗ φ2

)
∗ L(f) = P∗

θcut

[
(μ−D2

σ)
(
(φ1 ⊗ φ̃2) �

ω⊥
P(f)

)]
(5.11)

= P∗
θcut

[
φ1 �

e1

(
(μφ̃2 −D2

σφ̃2) �
σ
P(f)

)]
,(5.12)



LOCAL TOMOGRAPHY IN ELECTRON MICROSCOPY 1293

where �e1
and �σ are one-dimensional convolutions in the ω⊥-plane in the respective

directions e1 and σ(θ). So, our algorithm can be viewed as a smoothed version of
L(f) (left-hand side of (5.11)), a smoothing of the data before applying L (right-hand
side of (5.11)), or averaging over slices (the �e1 convolution in (5.12)) of a smoothed
derivative (the �σ convolution in (5.12)).

6. Microlocal analysis applied to ET. We will now use microlocal analysis
to analyze which singularities of a specimen are stably visible from single-axis tilt ET
data.

Microlocal analysis allows one to rigorously define singularities of functions such
as object boundaries. This is made precise by the wavefront set whose definition is
our first task. Next, the theory of FIOs describes which singularities of a function
are visible from its ET data. This correspondence follows from general theorems of
Greenleaf and Uhlmann [8] about geodesic Radon transforms on admissible complexes,
and the microlocal properties of this specific transform were examined by Boman and
Quinto [2]. Here we will give a basic version of the microlocal regularity theorem
which will allow us to characterize visible singularities. The complete version of the
theorem will be presented in the appendix along with characterizations of L as a
convolution PDO. In the appendix, we also introduce a generalization, L	 (A.14), of
an operator of Louis and Maaß. Our characterization will show the trade-offs between
the operators; L	 can add stronger singularities than L. At the end of the section,
we give an example that illustrates the predictions.

Before stating the formal definition of the wavefront set we need to deal with a
technicality.

Remark 6.1. The wavefront set is typically defined as a subset of the cotangent
bundle, because in this way it is invariant under diffeomorphisms. Furthermore, this
is a natural way to describe wavefronts in general. Here is the identification for R

3.
For x ∈ R

3, the cotangent space T ∗
x(Rn) is the set of linear functionals on the tangent

space Tx(R3), and dxj is the dual covector to ∂
∂xj

(j = 1, 2, 3). This gives a canonical
representation,

ξ � R
3 → ξdx := ξ1dx1 + ξ2dx2 + ξ3dx3.

The cotangent bundle, T ∗(R3), is the set T ∗(R3) :=
{
(x, ξdx)

∣∣ x ∈ R
3, ξ ∈ R

3
}
,

where (x; ξdx) = (x1, x2, x3; ξ1dx1 + ξ2dx2 + ξ3dx3).
Recall that D ′(R3) is the set of all distributions, S ′(R3) is the set of tempered

distributions (dual space of S (R3)), and E ′(R3) is the space of compactly supported
distributions. We are now ready to define the concept of a wavefront set.

Definition 6.2 (see [19, p. 259]). Let f be a distribution, x0 ∈ R
n, and ξ0 ∈

R
n \ {0}. We then define the following:

1. f is in C ∞ microlocally near (x0, ξ0dx) if and only if there is a cut-off
function ψ ∈ C ∞

c (Rn) with ψ(x0) �= 0 and a function u homogeneous of
degree zero that is smooth on R

n \ {0} with u(ξ0) �= 0 such that the product

u(·)ψ̂f(·) is rapidly decreasing at ∞.7 The C ∞ wavefront set of f , WF(f), is
the complement of the set of (x0; ξ0dx) near which f is microlocally smooth.

2. f is in H α microlocally near (x0; ξ0dx) if and only if there is a cut-off
function ψ ∈ C ∞

c (Rn) with ψ(x0) �= 0 and a function u homogeneous of

7In our context, a function h is rapidly decreasing at ∞ if for each k ∈ N there is a C > 0 such

that for all x ∈ R
n,

∣∣h(x)
∣∣ ≤ C

(
1 + ‖x‖

)−k
. Sometimes one replaces the function u by an open cone

U containing ξ0 on which ψ̂f is rapidly decreasing at ∞.
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degree zero and smooth on R
n \ {0} and with u(ξ0) �= 0 such that the product

u(·)ψ̂f(·) ∈ L 2
(
R

n,
(
1 + |ξ|2

)α)
. The H α wavefront set of f , WFα(f), is

the complement of the set of (x0, ξ0dx) near which f is microlocally in H α.
For example, if f is one inside the unit disk and zero outside, then WF(f) =

WF1(f) and they both consist of the covectors conormal to the boundary of the disk.
In general, if f : R

3 → R is C ∞ except for jump singularities along smooth surfaces,
then the C ∞ wavefront set of f consists of all the conormals to these surfaces of
discontinuity.

Having defined the necessary concept of a wavefront set, we now turn our attention
to our main theorem, which characterizes the singularities that are visible from single-
axis tilt ET data.

Theorem 6.3 (microlocal regularity theorem). Let f ∈ E ′(R3), (y1, yσ, θ0) =
y ∈ Y , and let ξ0 ∈ ω(θ)⊥ be a nonzero vector where we write ξ0 = ξ1e1 + ξσσ(θ).
Finally, let x0 ∈ �(y1, yσ, θ). If ξσ �= 0, then there is a corresponding covector in
T ∗

y (Y ) such that (x0, ξ0dx) ∈ WF(f) if and only if this covector is in WF
(
P(f)

)
(this correspondence is given in Theorem A.6). If we also assume that P(f) is C ∞

near y, then (x0, ξ0dx) /∈ WF(f).
Note that dx1 is conormal to ω(θ) (and thus conormal to the line �(y, θ) for all θ

since ω(θ) is in the (y, z)-plane). So, the restriction ξσ �= 0 just means ξ0dx defined
in the theorem above is not a multiple of dx1 (ξ0 is not parallel to e1).

In general, Radon transforms (such as the parallel beam transform in this article)
detect only singularities perpendicular to the sets of integration, so it is not surprising
that the theorem provides information only about singularities of f conormal to ω(θ)
since these are conormal to the corresponding lines in the data set. However, for this
transform, there are two conormal directions that are excluded, ξ0 = ±e1; these are
“bad” cotangent directions because they “should” be visible (they are conormal to
lines in the data set), but they cause problems. We will examine these problems in
the appendix, and in particular we will show that L can add singularities in these
directions.

Example 6.4. We now illustrate the implications of Theorem 6.3 for ET. Let
D be the unit disk in space, and let f be one inside D and zero outside. Assume
the region of interest contains D, and assume that ϕ satisfies (5.6). If x ∈ bdD,
then x is normal to bdD at x, so (x; xdx) ∈ WF(f). No matter what θcut is, the
wavefront ±e1dx is problematic. This is a conormal at the points (±1, 0, 0) on the
boundary. Singularities in other conormal directions are visible from the data as long
as the direction is perpendicular to a line in the data set. Let x = (x1, x2, x3) ∈
bdD. Because of the geometry of the single-axis tilt (5.1), this means that |x3/x2| <
tan(θcut) in order for the wavefront at x to be visible. The part of the sphere that
should be visible is illustrated in Figure 2. One would expect for numerical reasons
that the boundary would get gradually less well defined near the edge of the visible
part.

7. Applications to real data. We have tested the limited angle Lambda algo-
rithm based on the Lambda operator (5.9) on both in vitro and in situ ET data. The
Lambda reconstruction is obtained by applying the limited angle Lambda algorithm
directly on the region of interest. This reconstruction is compared to a filtered back-
projection (FBP) reconstruction that has been regularized by an additional low-pass
filtering (low-pass FBP). This latter filtering, which in our case reduces the resolution
to 10 nm, is necessary in order to gain stability, and the value for the low-pass filtering
represents the best trade-off between stability and resolution if FBP is to be used on
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Fig. 2. Part of sphere with normal vectors normal to lines in the data set with θcut = 60◦.
The x1-axis is facing out of the page.

these particular examples. The low-pass FBP is applied to the entire reconstruction
region, and the region of interest is then extracted for comparison against the limited
angle Lambda reconstruction.

The first case, shown in Figure 3, is the reconstruction of in vitro monoclonal
immunoglobulin G (IgG) molecules with a molecular weight of 150 kDa. The ET
data was collected from single-axis tilting (see section 2.1) with a uniform sampling of
the tilt angle in [−60◦, 60◦] at 1◦ step. The pixel size is 0.5241 nm and the total dose is
1820 e−/nm2. A detailed account on the background for the study, the experimental
setting, and the study objective is given in [24]. The reconstruction region is 256 ×
256× 256 pixels in size, and the local region of interest is centered in the midpoint of
the reconstruction region with a size of 128 × 128 × 128 pixels.

Figure 3 shows how the limited angle Lambda reconstruction emphasizes bound-
aries better. It also seems to somewhat suppress the background noise outside the
molecule, and the IgG molecule (which is in the center) is more visible than in the
low-pass FBP reconstruction.

The next case, shown in Figure 4, is the reconstruction of an in situ tissue sample
(could be a human, rat, or mouse kidney). The ET data was collected from single-
axis tilting (see section 2.1) with a uniform sampling of the tilt angle in [−60◦, 60◦]
at 2◦ step. The pixel size is 0.5241 nm and the total dose is 1520 e−/nm2. A detailed
account on the background for the study, the experimental setting, and the study
objective is given in [30, 27]. The reconstruction region is 300 × 300 × 150 pixels in
size, and the local region of interest is centered in the midpoint of the reconstruction
region and is of 200 × 200 × 140 pixels size.

Since the object in Figure 4 is in situ, parts of the object outside the region of
interest will affect the FBP reconstruction in the region of interest but not the Lambda
reconstruction (since it does not require data from outside the region of interest). The
reconstructions in Figure 4 clearly show that the limited angle Lambda reconstruction
defines boundaries better since the “V” shaped region containing the slit diaphragm
(in the upper right side of the object) is more clearly defined than in the low-pass
FBP reconstruction. This also illustrates the microlocal principles of section 6 since
the slabs are tangent to lines in the data set.

Appendix. The microlocal properties of P and L. In this section, we will
describe the microlocal properties of our transform P and the reconstruction operator
L (5.9). We will use this information to explain how the transform detects singularities
and show the relevance to ET. The properties of the more general operator (4.4) are
similar, and the details will be given in a subsequent article [22].

The convolution operator in R
n is denoted by ∗. For the Fourier transform on
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(a) Lambda reconstruction. (b) Low-pass FBP reconstruction.

Fig. 3. The boundaries are better defined in the Lambda reconstruction when compared to the
low-pass (10 nm-resolution) FBP reconstruction. The background noise is also suppressed. This
makes the analysis of the IgG molecule easier.

(a) Lambda reconstruction. (b) Low-pass FBP reconstruction.

Fig. 4. The “V” shaped region containing the slit diaphragm is more clearly defined in the
Lambda reconstruction than the low-pass (10 nm-resolution) FBP reconstruction.

R
n, we use the normalization

F(f)(ξ) = f̂(ξ) :=

∫
x∈Rn

e−ix·ξf(x) dx.

The two-dimensional Fourier transform on the plane ω⊥ is defined in a similar way,
and in the coordinates we chose for single axis tilt (see section 5), it is

Fω⊥(g)(η, θ) :=

∫
(y1,yσ)∈R2

e−i(y1,yσ)·(η1,ησ)g(y, θ) dy for η ∈ R
2.

Our next theorem characterizes the reconstruction operator as a convolution PDO
with a symbol that is singular all along the ξ1-axis. This has specific implications for
reconstructions based on L, as we explain in Theorem A.2 and Example A.5.

Theorem A.1. Let P∗
θcut

be defined by (5.7), where the smooth function ϕ
satisfies the assumptions given in (5.6), P is defined by (5.5), and μ ≥ 0. For
ξ = (ξ1, ξ2, ξ3) ∈ R

3, let ξ′ = (ξ2, ξ3), and for ξ′ �= 0, let arg(ξ′) be one of the
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angles in the plane from the ξ2-axis to ξ′.8 Then, for μ �= 0 the operator L is de-
fined for distributions of compact support. For μ = 0, L is a continuous map from
H α+1(R3) to H α(R3) for all α ∈ R. Moreover, in the coordinates defined above,
L(f) = f ∗ k, and its symbol is the Fourier transform of k,

(A.1) σ(x, ξ) = k̂(ξ) :=

(
ϕ
(
arg(ξ′) + π/2

)
(2π)2‖ξ′‖

)(
μ + ‖ξ′‖2

)
.

Proof. To prove Theorem A.1, we need to show that

L(f)(x) =
1

(2π)2

∫
ξ∈R3

eixξ k̂(ξ)F(f)(ξ) dξ, where k̂ is given by (A.1).

Initially, we assume f is a smooth function of compact support, but by continuity in
distribution space, the end results will be true for distributions of compact support,
as we will explain when needed. We use the convention that if x = (x1, x2, x3) ∈ R

3,
then x′ = (x2, x3), and we begin the calculations in the plane x1 = constant. It is
straightforward to show using polar coordinates in this plane that

(A.2) P∗
θcut

P(f)(x) =

∫
y′∈R2

ϕ
(
arg(y′)

)
‖y′‖ f

(
x + (0,y′)

)
dy′.

To write (A.2) as a PDO, we first fix x1 and take the Fourier transform of (A.2) in
x′. Then, we use the fact about Fourier transforms of homogeneous functions [25,
sect. 4, equation (7), p. 61] that the Fourier transform of ϕ

(
arg(y′)

)/
‖y′‖ is given by

the first expression in parentheses in (A.1). To finish the proof, we take the inverse
Fourier transform in x′ and then the Fourier transform and inverse transform in x1.
This shows that

(A.3) P∗
θcut

P(f)(x) =
1

(2π)2

∫
ξ∈R3

eixξ

(
ϕ
(
arg(ξ′) + π/2

)
‖ξ′‖

)
F(f)(ξ) dξ.

Note that P∗
θcut

: E ′(Y ) → D ′(R3) is continuous, and a cutoff 9 applied to P is
continuous from E ′(R3) to E ′(Y ) by duality. These observations explain why P∗

θcut
P

and L are defined and continuous from E ′(R3) to D ′(R3).
To write L as a PDO, we first observe that, by an integration by parts, D2

σP(f) =

P
(
Δx′f

)
, where Δx′ = ∂2

∂x2
2

+ ∂2

∂x2
3
. This is clearly true for functions and true on E ′

by continuity. Then, we note that

(A.4) L(f) = P∗
θcut

P
(
(μ− Δx′)f

)
,

so using (A.3) on (μ− Δx′)f gives (A.1).
Finally, let L0 be defined as L with μ = 0. The Sobolev continuity of L0 follows

immediately from the calculation of its symbol above since the symbol of L0 is bounded
above by (1+‖ξ‖2)1/2 since ‖ξ′‖ ≤ ‖ξ‖ and |ϕ| is bounded above by 1. This proves the
Sobolev continuity of L0. Note that L is not defined on H α because of the singularity
of 1/‖ξ′‖ at ξ′ = 0. This concludes the proof of Theorem A.1.

8Note that ϕ
(
arg(ξ′)

)
is well defined since ϕ is π-periodic.

9Let ψ be a smooth function that is one on [−θcut, θcut] and supported in (−θmax, θmax); then
ψP : E ′(R3) → E ′(Y ) is continuous, and P∗

θcut
ψP = P∗

θcut
P.
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We describe what L does to wavefront sets in our next theorem and in Exam-
ple A.5.

Theorem A.2. Let L be as in Theorem A.1, and f is a distribution of compact
support in the unit disk D. Finally, define

V :=
{(

x, ξdx
)
∈ T ∗(R3) \ 0

∣∣ ξ2 �= 0, |ξ3/ξ2| < tan θcut

}
,(A.5)

A :=
{
(x, ξ1dx1)

∣∣ x1 ∈ [−1, 1], x′ ∈ R
2, ξ1 ∈ R \ 0

}
.(A.6)

Then,

WFα
(
L(f)

)
∩ V = WFα+1(f) ∩ V,(A.7)

WFα
(
L(f)

)
⊂

(
WFα+1(f) ∩ cl(V)

)
∪ A.(A.8)

The set V in (A.5) is the set of “reliably visible” singularities. Equation (A.7)
implies that singularities of f in those codirections are visible in the reconstruction
L(f), and they are one order less smooth in Sobolev scale in the reconstruction than
the corresponding singularities of f . Recall that visible covectors have to be conormal
to lines in the data set by Theorem 6.3, and directions in V are all such covectors
except for the “bad” cotangent directions, those in the ±dx1 codirection.

Inclusion (A.8) and Example A.5 demonstrate that L can give additional singular-
ities in the set A (in the ±dx1 codirection). Therefore they do not affect singularities
in the visible directions, namely those in V. In Remark A.4, we prove that these
added singularities are really a smearing of singularities of f in planes conormal the
bad codirections, that is, planes x1 = a.

Proof. In the proof of Theorem A.2 we will follow the conventions in [13, Chap-
ter 8] and allow wavefront directions to be in R

n \ 0 rather than in the cotangent
space. Let us now give an outline of the proof. If L were a standard PDO, then the
proof would follow from standard results. Our case is complicated by the fact that L
is not a standard PDO since its symbol,

σ(x, ξ) =

(
ϕ
(
arg(ξ′) + π/2

)
‖ξ′‖

)(
μ + ‖ξ′‖2

)
,

does not satisfy the decay conditions on the derivatives in the ξ1 direction. We
introduce an operator M (A.10) that cuts off in the ξ1 direction and show that M
and L can be composed to become a standard PDO that detects singularities of f
essentially in V. Next, we show that (1 −M)L contributes to the wavefront set only
near the ξ1 direction. Finally, we put this together to show that the wavefront in
directions in V are visible and that the only added directions are in A. Theorem
8.2.9 and other results in [13, section 8.2] can be used to prove parts of this theorem
without introducing the operator M. We include that operator in order to provide
an elementary proof of the other properties of L. We begin with a useful lemma.

Lemma A.3. Let f ∈ S ′(Rn), and let U ⊂ R
n be a nonempty open cone con-

taining the vector ξ0. Assume the Fourier transform F(f) is zero on U except for a
compact set (which could be empty). Then, for all x0 ∈ R

n, (x0, ξ0) /∈ WF(f), where
WF(f) denotes the C ∞ wavefront set of f .

The proof follows from [13]. In particular, ξ0 is not in the limit cone at infinity
of suppFf , and so, by [13, Lemma 8.1.7, p. 258], for any point x0, (x0, ξ0) /∈ WF(f).

We now define the operator M such that ML is a standard PDO that detects
most singularities in V. Denote the set of second coordinates in V by

(A.9) W :=
{
ξ ∈ R

3 \ 0
∣∣ ξ2 �= 0, |ξ3/ξ2| < tan θcut

}
.
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Let U be a small conic open neighborhood of ±e1, and let U ′ be a conic open subset
of U such that ±e1 ∈ U ′ and cl(U ′) ⊂

(
U ∪ {0}

)
. Now let m(ξ) be a function that

is homogeneous of degree zero in R
3, smooth away from the origin, zero in U ′, and

equal to one off of U . Define

(A.10) M(f)(x) = F−1
(
m(·)F(f)(·)

)
(x).

Then, M is a classical PDO of order zero in Sobolev scale.
It is a straightforward justification using Fourier transforms that one can compose

L with M (or (1−M)) for distributions of compact support, and we will assume this.
ML is a classical PDO because its symbol,

m(ξ)

(
ϕ
(
arg(ξ′) + π/2

)
‖ξ′‖

)(
μ + ‖ξ′‖2

)
,

is the sum of a term homogeneous of degree (−1) and one homogeneous of degree 1.
Since the terms are smooth away from the origin (m(ξ) cuts off the near the nonsmooth
ξ1 direction), ML is a classical PDO of order one. Since its symbol is elliptic on the
open set R

3 ×
(
W \ cl(U ′)

)
, L is elliptic on that set. Furthermore, by local Sobolev

continuity, the H α+1 wavefront of f in R
3 ×

(
W \ cl(U)

)
corresponds to the H α

wavefront of ML(f) on that set,

(A.11) WFα
(
ML(f)

)
∩
(
R

3 ×
(
W \ cl(U)

))
= WFα+1(f) ∩

(
R

3 ×
(
W \ cl(U)

))
.

Because supp
(
1 − m(ξ)

)
⊂ cl(U), F

(
(1 − M)L(f)

)
has support contained in

cl(U). So, by Lemma A.3,

(A.12) WF
(
(1 −M)L(f)

)
⊂ R

3 × cl(U).

In addition, since L = ML + (1 − M)L, the H α+1 wavefront set of L(f) off of
R

3 × cl(U) is the same as that of ML(f). Using (A.11), we see that

WFα
(
L(f)

)
∩
(
R

3 ×
(
W \ cl(U)

))
= WFα+1(f) ∩

(
R

3 ×
(
W \ cl(U)

))
.

By making U arbitrarily close to e1, we establish (A.7).
To prove the containment (A.8), we fix U , U ′, and M as above. We will now

prove

(A.13) WFα
(
ML(f)

)
⊂

(
WFα+1(f) ∩

(
R

3 ×
(
cl(W) \ cl(U)

)))
∪
(
R

3 × cl(U)
)
.

First, because the symbol of ML is supported on the closed set R
3 ×

(
cl(W) \ U ′),

WFα
(
ML(f)

)
⊂ R

3 ×
(
cl(W) \ U ′).

Because of (A.11), we need only consider ξ ∈ bd(W) \ cl(U) and x0 ∈ R
3 such

that (x0, ξ) /∈ WFα+1(f). Since ML is a standard PDO of order one, (x0, ξ) /∈
WFα

(
ML(f)

)
. This shows (A.13).

Next, the wavefront set of a sum is contained in the union of the wavefront set of
the terms. Combining this fact with (A.12) and (A.13) yields

WF
(
L(f)

)
⊂

(
WFα+1(f) ∩

(
R

3 ×
(
cl(W) \ cl(U)

)))
∪
(
R

3 × cl(U)
)
.
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The inclusion in (A.8) now follows when we let U shrink to ±e1.
We claim that if f is supported in B, then suppL(f) ⊂ [−1, 1]×R

2. This is true
by a global version of the argument at the end of Remark A.4. This concludes the
proof of Theorem A.2.

Remark A.4. Note that if f ∈ E ′(R3) is smooth in the ±dx1 codirection at all
points, then, for sufficiently small U , (1 −M)(f) is smooth, and so

L(f) = ML(f) + L(1 −M)(f)

has no wavefront in the ±dξ1 codirection. In other words, for this f there are no
added singularities.

A local version of this statement is true: if a ∈ R and f is smooth in the ±dx1

codirection at all points in the plane x1 = a, i.e.,
(
(a,x′);±dx1

)
/∈ WF(f) for all

x′ ∈ R
2), then L(f) is smooth in the ±dx1 codirection above all points on the plane

x1 = a. To see this we observe that because supp f is compact and wavefront sets are
conical and closed, one can find a function g ∈ C ∞

c (R) is not zero near x1 = a and a
sufficiently small neighborhood U of e1 such that g(x1)(1 −M)(f) is smooth, and so
gL(f) is smooth in the ±dx1 codirection at all points. Thus, L(f) is smooth in this
direction at all points in the plane x1 = a.

That is, wavefront is not added if f is smooth in this codirection at all points on
the plane x1 = a. However, Example A.5 demonstrates that wavefront can be spread
in the plane x1 = a if f has wavefront in the ±dx1 direction at points in this plane.

We now introduce a new operator, L	, which is related to an operator of Louis
and Maaß for cone beam CT. Louis and Maaß adapted Lambda tomography to cone
beam tomography in a very clever way [17] by taking a Laplacian in the detector
plane before taking cone-beam backprojection. This adds extra singularities to the
reconstruction as proven in general in [8] and for the cone beam transform in R

3 in
[7, 14]. The natural generalization of the Louis–Maaß operator to our setting is

(A.14) L	(f) := P∗
θcut

(
(μ− Δω⊥)P(f)

)
,

where Δω⊥ is the Laplacian operator in the detector plane and μ ≥ 0. In Example A.5
we will show that L	 adds stronger singularities than L.

Anastasio et al. [1], Katsevich [15], and Ye, Yu, and Wang [31] have developed
refinements of Louis and Maaß’s operator for cone beam CT. They decrease the
added singularities by taking a derivative in only one direction rather than taking the
Laplacian in the detector plane. This is analogous to our operator L, in which the
derivative is D2

σ. Although these results are related, they do not apply to parallel
beam data, as our methods do.

The arguments in our proof of Theorem A.1 can be used to show that L	 is a
PDO with a singular symbol(

ϕ(arg(ξ′) + π/2)

‖ξ′‖

)(
μ + ‖ξ‖2

)
and (A.7) and (A.8) hold for L	. For fixed ξ′, the symbol of L	 is of order 2 as
ξ1 → ∞, although it is of order 1 in other directions. The symbol of L is more mildly
singular since, although it is not differentiable when ξ′ = 0 (on the ξ1-axis), it is of
order zero as ξ1 → ∞ when ξ′ is fixed.

Our next example justifies the addition of the set A in (A.8), a set on which
wavefront can be added by L and L	. The example also shows how L	 adds stronger
singularities than L.
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Example A.5. Let α ∈ R, and let ε > 0 be arbitrary. We construct a function
f ∈ H α+1(R3) supported in S := [−1/2, 1/2]3 with the following properties:

1. L	(f) /∈ H α
loc(R

3), and L	(f) has H α wavefront set in the ±dx1 direction
even though f is in H α+1 everywhere. This is true even for points outside
supp f , points at which f is smooth.

2. L(f) is in H α+1
loc (R3) but has H α+1+ε wavefront set in the ±dx1 codirection

outside of supp f . Therefore, L also spreads singularities, but, for this case,
the singularities are weaker. This weakening is suggested by the fact that L0,
which is defined as L with μ = 0, is continuous of order one in Sobolev scale.

The actual construction of f goes as follows: Let ε′ = min{ε, 1/2}, and let φ1 ∈
H α+1(R) with suppφ1 = [−1/2, 1/2] such that

(A.15) WFα+1+ε′(φ1) =
{
(x1, tdx1)

∣∣ x1 ∈ [−1/2, 1/2], t �= 0
}
.

Also, let φ2 be a nonnegative smooth function in R
2 with suppφ2 = [−1/2, 1/2]2.

For x1 ∈ R and x′ ∈ R
2 define f(x1,x

′) = φ1(x1)φ2(x
′). For g ∈ C ∞

c (R2) define

(A.16) H(g)(x′) :=

∫
y′∈R2

ϕ
(
arg(y′)

)
‖y′‖ g(x′ + y′) dy′;

then H is really P∗
θcut

P restricted to a fixed plane (compare with (A.2)). Since H is
a classical PDO, H is continuous from domain C ∞

c (S) to C ∞(R2).
It is straightforward to show that L	(f) = −φ′′

1H(φ2)+φ1H
(
(μ−Δx′)φ2

)
, where

φ′′
1 is the second derivative of φ1. Since φ1 is chosen to be in H α+1 and not H α+1+ε′ ,

the first term in the expression for L	(f) is not in H α
loc, although the other terms

are. Thus, L	(f) is not in H α
loc. Because of (A.15),

(A.17) WFα
(
L	(f)

)
=

{
(x1,x

′, tdx1)
∣∣ x1 ∈ [−1/2, 1/2], x′ ∈ suppH(φ2), t �= 0

}
.

Furthermore, since ϕ2 is nonnegative and not the zero function, H(ϕ2) has unbounded
support. Thus L	 adds Sobolev wavefront both inside and outside supp f even though
f ∈ H α+1

c (R3).
In a similar way, one shows that L(f) = φ1H

(
(μ − Δx′)φ2

)
, and so Lf is in

H α+1
loc (because φ1 is in H α+1 and the other term is smooth), but

WFα+1+ε′
(
L(f)

)
=

{
(x1,x

′, tdx1)
∣∣ x1 ∈ [−1/2, 1/2], x′ ∈ suppH

(
(μ− Δx′)φ2

)
, t �= 0

}
.

Note that suppH
(
(μ−Δx′)φ2

)
must be unbounded,10 so L spreads singularities of f ,

but they are weaker than those for L	(f).
To state Theorem 6.3, we need a little more notation. Covectors in T ∗(Y ) will

be denoted by
(
(y1, yσ, θ); ν1dy1 + ν2dyσ + ν3dθ

)
, where (ν1, νσ, νθ) ∈ R

3 and dy1 is
the covector dual to the tangent vector ∂/∂y1, dyσ is dual to ∂/∂yσ, and dθ is dual
to ∂/∂θ. Using these conventions we can state the following theorem that gives the
basic microlocal analysis of P with the limited data given in our ET problem.

Theorem A.6. Let f be a distribution of compact support on R
3, θmax ∈ ]0, π/2[ ,

and assume P(f)(y, θ) is given on an open set U ⊂ Y . Moreover, let (y1, yσ, θ0) ∈ U ,

10The two-dimensional version of the proof of (A.3) shows that the two-dimensional Fourier
transform FH(φ2) is a product including ϕ

(
arg(ξ′) + π/2

)
and so is zero on an open set. If H(φ2)

had compact support, then φ2 = 0 since FH(φ2) would be real-analytic.
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let ξ0 be a nonzero vector perpendicular to ω(θ0) written as ξ0 = ξ1e1 + ξσσ(θ0), and
assume ξσ �= 0 (i.e., ξ0 is not parallel to e1). Finally, let x0 ∈ �(y1, yσ, θ0). Then,
(x0; ξ0dx) ∈ WFα(f) if and only if

(A.18)
(
(y1, yσ, θ0); ξ1dy1 + ξσdya +

(
ξσx · ω(θ0)

)
dθ

)
∈ WFα+1/2

(
P(f)

)
.

The proof follows from the fundamental results in [9] that show that Radon trans-
forms are FIOs and also from the analysis of the general X-ray transform in [8] (see
also [2]). The proof involves first calculating the canonical relation of P, next noting
that P is elliptic, and finally using the calculus of FIOs [12] to tell what Pf does to
the wavefront set. A proof of this result is given for more general curves of directions
in S2 given in [22].
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BOUNDARY CONDITIONS FOR THE MICROSCOPIC FENE
MODELS∗

CHUN LIU† AND HAILIANG LIU‡

Abstract. We consider the microscopic equation of finite extensible nonlinear elasticity (FENE)
models for polymeric fluids under a steady flow field. It is shown that for the underlying Fokker–
Planck type of equations, any preassigned distribution on the boundary will become redundant once
the nondimensional number Li := Hb

kBT
≥ 2, where H is the elasticity constant,

√
b is the maximum

dumbbell extension, T is the temperature, and kB is the usual Boltzmann constant. Moreover, if the
probability density function is regular enough for its trace to be defined on the sphere |m| =

√
b, then

the trace is necessarily zero when Li > 2. These results are consistent with our numerical simulations
as well as some recent well-posedness results by preassuming a zero boundary distribution.

Key words. microscopic finite extensible nonlinear elasticity models, boundary condition,
polymer fluids, Fokker–Planck equation, Fichera function

AMS subject classifications. 34F05, 35K65, 35K20, 65C30

DOI. 10.1137/060667700

1. Introduction. The two-scale macro-micro models have been proven success-
ful in describing the dynamics of many polymeric fluids. The systems usually consist
of a macroscopic momentum equation (the force balance equation) and a microscopic
evolution of the probability distribution functions (PDFs) through Fokker–Planck
equations [4, 5]. The coupling of the micro-macro interaction is through the trans-
port of the PDF in the microscopic equations and the induced elastic stress in the
macroscopic equations. It is through this interaction, the competition between the
kinetic energy and the (multiscale) elastic energies, that all different hydrodynamical
and rheological properties of these materials arise [5, 14]. Let y be the macroscopic
Eulerian (observer’s) coordinate and m the microscopic molecule configurational vari-
able. The distinguished representation of the variables represents the nature of the
scale separation of these models. Let u = u(y, t) be the macroscopic velocity field of
the flow and y(X, t) be the induced flow map (trajectory) with macroscopic material
coordinate X. f = f(t,m, y), (m, y) ∈ R

2d is the PDF of the molecule separation.
The dependence of the macroscopic coordinate of f is attributed to the macroscopic
anisotropy of the materials. Moreover, the models assume that the microscopic defor-
mation is the same as the macroscopic deformation through the macroscopic covariant
(or anticovariant) deformation of m. In the case of m = Fm̃, with F = ∂y

∂X the (macro-
scopic) deformation tensor induced by the flow map y(X, t), and m̃ the undeformed
configuration, we have the following microscopic evolution equation [17]:

(1.1) ∂tf + u · ∇yf + ∇m · (κmf) =
2

γ
[(∇m · (∇mUf) + kBTΔmf)] ,
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where κ = ∇yu is the strain rate tensor; U denotes the spring potential; γ is the
friction coefficient; T is the absolute temperature; and kB is the Boltzmann con-
stant. Equation (1.1) models both the convection and stretching of the polymers by
the macroscopic flow and the microscopic convection diffusion evolution. The latter
mechanism can be interpreted with its corresponding SDE [11, 16]:

dm =

(
− 2

γ
∇mU

)
dt +

√
4kBT

γ
dWt,

where Wt is a standard Brownian motion, which in turn gives the Fokker–Planck
dynamic to the PDF. Much of the material properties can be attributed to dif-
ferent microscopic energies. The simplest spring potential is given by the Hookean
law U(m) = H|m|2/2, where H is the elasticity constant. This potential has the
distinguished feature that the system is closed under second moment closure, which
yields the usual Oldroyd models [3, 5, 17]. A more commonly used model is with the
following finite extensible nonlinear elasticity (FENE) potential:

U(m) = −Hb

2
log

(
1 − |m|2

b

)
,

which takes into account a finite-extensibility constraint by assigning infinite energy
when the molecule length approaches

√
b, the maximum dumbbell extension [3]. In

this case, the convective spring force becomes

(1.2) ∇mU =
Hm

1 − |m|2/b ,

which also becomes infinity on the boundary of B√
b. Intuitively, this should mean

that the Fokker–Planck equation (1.1) is defined only on the open ball Ω = {m ∈ R
d :

|m|2 < b}, where d = 2, 3, disregarding the boundary condition preimposed on the
solution of (1.1). On the other hand, the diffusion due to the thermofluctuation
does have infinite propagation speed. Also, the Brownian motion is unbounded in
the L∞ norm. The main complexity with the FENE potential lies mainly with the
singularity of the equation at the boundary. In this paper, we will discuss boundary
conditions for the Fokker–Planck equation alone, with the fluid velocity being steady
and homogeneous. The velocity gradient will be treated as a constant matrix. Observe
that since (1.1) experiences singularity on the sphere |m| =

√
b, the data may not

necessarily be well defined. The main issues of our interest in this work are the
following:

• Are the boundary conditions necessary or redundant?
• If the PDF solution is regular enough to have a trace on the boundary, what

is its trace, regardless of whether or not the data is preimposed?
These issues for the underlying FENE models are fundamental and attracted much
attention in the study of the well-posedness in certain weighted Sobolev spaces (see,
e.g., [15]) as well as in the two-dimensional SDE framework [13]. However, the whole
issue remained open. Our key observation in this paper is that the answer to the
above questions hinges on whether the nondimensional quantity

(1.3) Li :=
Hb

kBT

crosses a critical value 2. The main goals of this paper are to show two new results:
(i) for the underlying Fokker–Planck equation (1.1), any boundary condition will
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become redundant once the nondimensional number Li ≥ 2; (ii) if the PDF f is
regular enough for its trace to be defined on the sphere |m| =

√
b, then the trace is

necessarily zero when Li > 2. Physically speaking, no boundary condition is necessary
for the case with the given spring at low temperature or the case at fixed temperature
with the large product of H and b. To put our work in a proper perspective we recall
that well-posedness of the coupled micro-macro system or Fokker–Planck equation
alone has attracted much attention recently [2, 6, 7, 12]. In particular, the local
existence results of [23] in the weighted Sobolev space will also force the zero boundary
condition. Up to now, most works have been with prescribed boundary conditions.
On the other hand, numerical simulations seemed to indicate that the solutions are
not sensible to such boundary conditions. We also refer the reader to [15] for the study
of large-time behavior of the coupled micro-macro system and a rigorous formulation
of the no-flux boundary condition. We now proceed to identify the key quantity Li
defined in (1.3) by making the following scaling:

(y, u, t,m, b) →
(

y

L0
,
u

U0
,
t

Tc
,
m

l
,
b

l2

)
,

where Tc := L0/U0 is the macroscopic convective time scale and l :=
√

kBT
H serves as

the mesoscopic length scale of the spring. We further introduce the nondimensional
parameter De = Tr

Tc
, where Tr = γ

4H characterizes the mesoscopic relaxation time
scale of the spring, and De is often called the Deborah number, which is a unique
parameter in non-Newtonian fluids. Putting all of the above together and still using
(y, u, t,m, b) for the scaled quantities, (1.1) thus reduces to

(1.4) ∂tf(t,m) + ∇m · (κmf) =
1

2De
(∇m · (∇mUf) + Δmf),

where κ = ∇yu is the steady homogeneous velocity gradient. Tr(κ) = ∇y · u = 0
for the incompressible flow. Note that the corresponding square of radius for the
nondimensional configuration variable m is exactly the key parameter Li = b/l2 =
Hb
kBT as given in (1.3) (though still denoted by b in what follows). The potential in
nondimensional form thus reads

(1.5) ∇mU =
m

1 − |m|2/b .

In order to simplify the notation, we simply take De = 1 and obtain

(1.6) ∂tf(t,m) + ∇m · (κmf) =
1

2
(∇m · (∇mUf) + Δmf).

For (1.6) with scaled potential (1.5) our first result is that b = 2 is a critical extension
parameter for deciding whether boundary conditions are necessary for a well-defined
problem (in the sense that the well-posedness results are expected to be obtained in
standard Sobolev spaces).

Theorem 1.1. Consider (1.6) in {m | |m| <
√
b} for t > 0 subject to certain

initial data. The extension parameter b = 2 is a critical value in the sense that the
Dirichlet boundary condition leads to a well-defined problem, provided that (i) when
b < 2, the distribution f on boundary |m|2 = b must be imposed; and (ii) when b ≥ 2,
any preassigned distribution on boundary |m|2 = b will become redundant.
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It is known that the parameter range of physical interest is b > 2 [3]. Therefore, in
this regime for b, the original problem can be formulated as follows: find a distribution
function f(t,m) such that (1.6) holds for t > 0 and

(1.7) f(0,m) = f0(m), |m| <
√
b,

where f0 ≥ 0 is a given bounded measurable function.
Here we would like to make several remarks:
(1) The statement in this theorem is justified based on the use of Fichera’s crite-

rion [8], which is sketched in the appendix.
(2) The well-posedness for the case b < 2 with imposed distribution on |m| =

√
b

follows from Theorem 4.2 in the appendix, with an extra constraint on the nontrivial
shear rate k. The proof of the well-posedness for the case b ≥ 2 is more delicate. In
this work the redundancy of boundary conditions is stated in the sense of trace for
weak solutions. We note that boundary conditions can also be discussed in terms of
trajectories of the stochastic process; see, e.g., Stroock and Varadhan [20]. The second
order linear equations with nonnegative characteristic form attracted much interest
in the 1960’s and 1970’s [18, 21]. The existence results are customarily in Sobolev
spaces with certain disjointness assumptions on the relevant boundary parts with the
irrelevant parts and the non(negative) characteristic parts. Regularity of solutions
with continuity up to the boundary can be further discussed [18]. As for the FENE
models considered in this paper, we will present a description of the existence of the
full system (coupled with the flow field) in a separate paper.

(3) The corresponding analogue of this statement in the SDE framework is known
[13], where for the two-dimensional case the authors show that if b ≥ 2, then the
trajectories of the stochastic process representing the evolution of the end-to-end
vector does not touch the boundary of radius

√
b, which means the polymer does not

reach its maximal extensibility. Our second result determines the trace of the PDF
on the sphere |m|2 = b.

Theorem 1.2. Consider the initial value problem (1.6)–(1.7) in |m| <
√
b. Let

f0(m) be a bounded measurable function with supp(f0(m)) ⊂ {m, |m| ≤
√
b∗, b∗ < b}.

Then for b > 2 the solution f(t,m) of (1.6) remains bounded and satisfies

|f | ≤ |f0|
(
b− |m|2
b− b∗

)b/2−α

eKt,

where α and K satisfy

0 < α <
b

2
− 1, K > K∗ :=

β2

16bα(b− 2 − 2α)
− ρ(b− 2α)

with β = ρ(b− α)r2 + 2α(d + b− 2 − 2α) and ρ =
√

Tr(κ�κ).
In comparison we mention that the solution to the SDE associated with (1.6) is

shown to exist and has trajectorial uniqueness if and only if b ≥ 2 [12]. We also refer
the reader to [2] for an existence result with prescribed zero boundary data. Our
results also show that for b ≥ 2 well-posedness requires no prescribed boundary value
on |m|2 = b, and for b > 2 the distribution function, if regular enough to have a trace,
must have zero trace:

(1.8) f(t,m)||m|=
√
b = 0.



1308 CHUN LIU AND HAILIANG LIU

In other words, one is not allowed to prescribe boundary data on the sphere |m| =
√
b

other than (unnecessary) f = 0 or a natural no-flux boundary condition. The difficulty
of the problem lies in the singularity of the equation occurring at the boundary. The
key to our approach is to rewrite the equation into a second order equation having
standard nonnegative characteristic form, for which we apply the Fichera function
criterion to check when boundary conditions are unnecessary [8, 18, 21]. We further
investigate the trace of the PDF on the sphere |m| =

√
b where no data is preimposed.

Our approach is to convert the equation by a delicate transformation in such a way
that the resulting equation supports a maximum principle. This paper is organized
as follows: in section 2, we use the Fichera function criterion to prove Theorem 1.1.
Section 3 is devoted to the trace analysis of the PDF on the sphere |m| =

√
b. The

presentation is split into two parts, without and with homogeneous flow involved.

2. Critical parameter b = 2 and boundary conditions. In this section we
shall show that b = 2 is a critical value in the sense that for b < 2 a boundary condi-
tion is necessary and when b ≥ 2 the boundary distribution becomes redundant. Note
that (1.6) has a singular lower order term on boundary |m| =

√
b; our approach is to

first transform this equation into a second equation degenerating near the boundary.
We then employ the method of the Fichera function [1, 8, 18, 21] to study the cor-
responding relevant boundary value points on the boundary [18], as sketched in the
appendix. We now introduce the following transformation:

(2.1) f(t,m) = g(t,m) exp(−U(m)),

which gives

(2.2) ∂tg + ∇m · (κmg) −∇mU · (κmg) =
1

2
[Δmg −∇mU · ∇mg].

The right-hand side of the equation becomes the dual form of the original Fokker–
Planck equation [9, 19]. We note a different transformation in [6, 10, 22], f(t,m) =
g(t,m) exp(−U(m)/2), which was used to remove the singularity at the boundary in
the resulting equation. Applying further rescaling,

(2.3) x =
√

2m, r2 = 2b, v(t, x) = g(t,m),

we obtain

(2.4) ∂tv + ∇x · (κxv) + a(x) · (∇xv − κxv) = Δxv,

where

a(x) :=
bx

r2 − |x|2 .

Note that ∇x · (κx) = Tr(κ) = 0; the above equation reduces to

(2.5) ∂tv + (a(x) + κx) · ∇xv − a(x) · κxv = Δxv.

Once v is determined, the PDF f can be recovered through

(2.6) f(t,m) = v(t,
√

2m)(1 − |m|2/b)b/2.

Rewrite (2.5) as

(2.7) L(v) = 0, x ∈ R
d,
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where

L(v) := (r2 − |x|2)Δxv − (r2 − |x|2)vt
− (bx + (r2 − |x|2)κx) · ∇xv + bx�κxv

has a standard form:

L(v) :≡ akj(ξ)Dkjv + bk(ξ)Dkv + c(ξ)v = 0, k, j = 0 · · · d.

Here the repeated indices are summed from 1 to d, ξ = (t, x):

a00 = 0, b0 = −(r2 − |x|2), c(ξ) = bx�κx

and

akk(ξ) = (r2 − |x|2), bk = −[bxk + (r2 − |x|2)κkjxj ], k = 1 · · · d.

Note that the new equation is degenerate at boundary |x| = r. This second order equa-
tion has nonnegative characteristic form in domain Ω = {(t, x), 0 < t < T ∗, |x| < r}
for any T ∗ > 0, since

akj(ξ)ykyj ≥ 0

for any real vector y and any point ξ ∈ Ω. Hence there are no negative characteristic
points on the boundary.

Next we check the sign of Fichera’s function

F = (bk − akjξj )nk

at points on ∂Ω. At boundary |x| = r, 0 < t < T ∗, one has n0 = 0, nk = −xk/r,
k = 1 · · · d; thus

F(t, x) =

d∑
k=1

(bk − akkxk
)nk

=

d∑
k=1

(−bxk + 2xk) · (−xk/r)

= (b− 2)r.

If F ≥ 0, that is, b ≥ 2, all boundary points are irrelevant and no boundary condition
is needed. Otherwise, in the case b < 2, all boundary points are relevant and an
appropriate boundary condition has to be imposed. We now examine the boundary
t = T ∗ and |x| < r, on which one has n0 = −1, nk = 0; thus

F(t, x) = (bk − akjξj )nk = b0n0

= r2 − |x|2 > 0.

No condition needs to be imposed at t = T ∗ either. Similarly at t = 0, |x| < r, one
obtains F(t, x) = |x|2 − r2 < 0; thereby a condition at t = 0, the initial condition, has
to be imposed. This completes the proof of Theorem 1.1.

Remark. For the transformed equation L[v] = 0 with κ = 0, we have

1

2
Dib

i − 1

2
Dija

ij − c = d

(
1 − b

2

)
> 0

for b < 2. Hence the existence theorem (Theorem 4.2) in the appendix applies only
to the case b < 2.
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3. The trace of the distribution function on the sphere |m| =
√

b for
b > 2. We now restrict ourselves to the case of b > 2. The proof in the above
section shows that the presence of the fluid velocity does not affect the relevancy of
the boundary points with respect to the equation. In this section, we will show, if the
solution exists and assumes a trace on the boundary, that the trace of the resulting
PDF has to be zero.

3.1. No-flow case. We will start from the case κ = 0. Equation (2.4) becomes

(3.1) ∂tv + a(x) · ∇xv = Δxv, a(x) :=
bx

r2 − |x|2 ,

with the initial condition

v(0, x) = v0(x) = f0

(
x√
2

)(
1 − |x|2

r2

)−b/2

, supp(v0) ⊂ [−r, r];

we are going to show that there exists an α satisfying 0 < α < b/2 and a K > 0 such
that

|v(t, x)| ≤ MeKt(r2 − x2)−α ∀t > 0.

Combining with the original transformation (2.1) and (2.3), which yield

f(t,m) = v(t, x)(1 − |x|2/r2)b/2,

we arrive at

(3.2) |f(t,m)| ≤ C(r2 − x2)b/2−αeKt.

This leads to the zero trace for the PDF:

f(t,m)||m|2=b = 0 ∀t > 0.

The main difficulty of Theorem 1.2 lies in the singularity at the boundary. Equation
(2.7) for v solves L(v) = 0 with

L(v) := (r2 − |x|2)Δxv − bx · ∇xv − (r2 − |x|2)∂tv.

We now introduce the transformation

v(t, x) := w(t, x)(r2 − |x|2)−αeKt,

with α and K to be determined. A simple calculation gives

∂tv = (wt + Kw)(r2 − |x|2)−αeKt,

∇xv = [∇xw(r2 − |x|2)−α + 2αwx(r2 − |x|2)−α−1]eKt,

Δxv = [Δxw(r2 − |x|2)−α + 4αx · ∇xw(r2 − |x|2)−α−1

+ 4α(α + 1)w|x|2(r2 − |x|2)−α−2]eKt

+ 2αdw(r2 − |x|2)−(α+1)eKt.

Substitution of these terms into the equation L(v) = 0 multiplied by (r2−|x|2)α+1e−Kt

gives

A(w) = 0,
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where the operator A(w) is defined as

A(w) := (r2 − |x|2)2Δxw + (4α− b)(r2 − |x|2)x · ∇xw

− (r2 − |x|2)2∂tw + c(x)w,

in which the coefficient

c(x) = −K(r2 − |x|2)2 + 2α[dr2 + (2α + 2 − d− b)|x|2].

In order to apply a maximum principle to A(w) = 0, we need to choose α and K such
that c < 0 in Ω(T ∗). Setting |x|2 = θr2, we have

c = −Kr4(1 − θ)2 + 2αdr2 + 2α(2α + 2 − d− b)θr2

= −r2
{
Kr2θ2 − 2((2α + 2 − d− b)α + Kr2)θ + Kr2 − 2dα

}
.

Thus as a function of θ, c achieves its maximum

c = K−1α
{
2Kr2(2α + 2 − b) + α(2α + 2 − d− b)2

}
at

θ∗ = 1 +
α

Kr2
(2 − d− b + 2α).

The coefficient c can be made negative if its maximum value is negative, which is true
provided that

α <
b

2
− 1

and

Kr2 >
α(d + b− 2 − 2α)2

2(b− 2 − 2α)
> 0.

With these choices we apply the maximum principle [18] to the equation A(w) = 0
and find that w achieves a positive maximum only at initial time, i.e., in the region
{(0, x), |x| < r2}. Therefore we have

0 ≤ w(t, x) ≤ ‖w(0, ·)‖L∞ .

Note that

w0(x) = v0(x)(r2 − |x|2)α = f0(m)rh(r2 − |x|2)α−b/2.

Assume that f0(m) �= 0 for |m|2 ≤ b∗ < b. Then

‖w0‖∞ ≤ ‖f0‖∞rb(r2 − 2b∗)α−b/2.

Thus from

f(t,m) = v(t, x)(1 − |x|2/r2)b/2 = w(t, x)r−b(r2 − |x|2)b/2−αeKt,

it follows that

|f(t,m) ≤ ‖f0‖∞ ≤
(
r2 − |x|2
r2 − 2b∗

)b/2−α

eKt.

Replacing r2 = 2b and |x|2 = 2|m|2 we have obtained the desired estimate stated in
Theorem 1.2. Therefore the trace of f on the sphere |m| =

√
b must be null.
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3.2. Coupled with flow κ �= 0. We now show the null trace when flow is
involved. In this case (2.7) has the form L(v) = 0 with

L(v) := (r2 − |x|2)Δxv − (bx + (r2 − |x|2)κx) · ∇xv

− (r2 − |x|2)∂tv + (bx�κx)v.

We again apply the transformation

v(t, x) := w(t, x)(r2 − |x|2)−αeKt,

with α and K to be determined. This transformation applied to L(v)(r2−|x|2)α+1e−Kt

leads to the following equation:

B(w) = 0,

with the operator B(w) being

B(w) = (r2 − |x|2)2Δxw + (r2 − |x|2)[(4α− b)x

− (r2 − |x|2)κx] · ∇xw − (r2 − |x|2)2∂tw + c(x)w,

and the coefficient of the last term being

c(x) = −K(r2 − |x|2)2 + 2α[dr2 + (2α + 2 − d− b)|x|2]
+ (b− 2α)x�κx(r2 − |x|2).

Using a similar argument as in the no-flow case, we proceed to determine α and K
so that c stays negative in Ω(T ). Let ρ be the largest eigenvalues of the deformation
tensor

S = (κ + κ�)/2;

one has

x�κx ≤ ρ|x|2.

We first choose α in such a way that α < b/2− 1, which implies h− 2α > 0. Thus we
obtain

c(x) ≤ c̄ = −K(r2 − |x|2)2 + 2α[dr2 + (2α + 2 − d− b)|x|2]
+ ρ(b− 2α)|x|2(r2 − |x|2)

= −[K + ρ(b− 2α)]|x|4 + [2Kr2 + ρ(h− 2α)r2

+ 2α(2α + 2 − d− b)]|x|2 + 2αdr2 −Kr4

≤ 2αdr2 −Kr4

+
[2Kr2 + ρ(b− 2α)r2 + 2α(2α + 2 − d− b)]2

4[K + ρ(h− 2α)]

≤ 2αr2(2α + 2 − b) +
β2

4[K + ρ(b− 2α)]
,

where

β := ρ(b− 2α)r2 − 2α(2α + 2 − d− b).
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Therefore we can choose K such that

K >
β2

8αr2(b− 2 − 2α)
− ρ(b− α),

and the following is always true:

c(x) ≤ c̄ < 0, |x| ≤ r2.

We thus can apply the maximum principle [18] to the equation

B(w) = 0

and obtain that u achieves its positive maximum only at initial time, i.e., in the region
{(0, x), |x| < r2}. This will give the result that

0 ≤ w(t, x) ≤ ‖w(0, ·)‖L∞ .

Converting back to f we prove the results stated in Theorem 1.2.

4. Appendix. In this appendix, we recall some basic facts concerning the Fichera
function which we used in section 2. Consider the second order equation

L[u] := ajkDjku + biDiu + cu = f in Ω

with the condition

aij(x)ξiξj ≥ 0

for any ξ ∈ R
d and x ∈ Ω. This class of equations with noncharacteristic form

includes equations of elliptic and parabolic types, first order equations, the equations
of Brownian motion, and others. The first boundary value problem in its general form
was set up by Fichera [8]. We assume that aij ∈ C2(Ω), bi ∈ C1(Ω), and c ∈ C0(Ω).
Let n denote the unit outward normal vector to Γ = ∂Ω at x ∈ Γ. The Fichera
function is defined as

F = (bk −Dja
kj)nk(x) : Γ → R.

Thus the boundary is classified into several parts based on the sign of Fichera func-
tion F:

Γ = Γe ∪ Γh,

where Γe := {x ∈ Γ, aijninj > 0} is the noncharacteristic (positive characteristic)
part, and Γh := {x ∈ Γ, aijninj = 0}, in which there are two subsets (irrelevant and
relevant parts):

Γ+ = {x, F(x) ≥ 0}, Γ− = {x, F(x) < 0}.

The classical theory of Fichera [8] says that the Dirichlet boundary condition leads
to a well-posed problem: find a function u in Ω ∪ Γ such that

(4.1) L(u) = f in Ω, u = g on Γe ∪ Γ−.

In other words, no Dirichlet boundary data is necessarily imposed on Γ−, where F ≥ 0.
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It was shown that the sign of the Fichera function at points on Γh does not
change under smooth nondegenerate changes of independent variables in the equation.
Consequently, we have the following theorem.

Theorem 4.1 (see [18]). The subsets Γe,Γ+,Γ− of the boundary Γ, defined for
the operator L, remain invariant under smooth nonsingular changes of independent
variables in the equation.

To define the weak solution for the underlying problem, we introduce an adjoint
operator as

L∗[v] = −Dij(a
ijv) −Di(b

iv) + cv.

Then for v ∈ C2(Ω̄) and v = 0 on Γe ∪ Γ− the weak formulation of the equation
becomes ∫

Ω

uL∗[v]dx =

∫
Ω

vL[u]dx.

Weak solution in L2(Ω). A bounded measurable function u(x) will be called a
weak solution of the above problem with u ∈ {L2(Ω), u = 0, x ∈ Γe ∪ Γ−} if∫

Ω

uL∗[v]dx = (f, v)

for all v ∈ {C2(Ω̄), v = 0, x ∈ Γe ∪ Γ−}, where (·, ·) denotes the inner product in
L2. Weak solution in other spaces such as the Lp space or general Hilbert space can
be defined; and solution smoothness can be further studied once existence of a weak
solution is established. Existence results have been proven under various assumptions,
e.g., the following theorem.

Theorem 4.2. Suppose the inequality

1

2
Dib

i − 1

2
Dija

ij − c ≥ c0 > 0

is satisfied in Ω̄, and let f ∈ L2(Ω). Then there exists a function u ∈ L2(Ω) which is
a weak solution of (4.1) in the sense stated above.
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Abstract. We consider traveling wave phenomena for a viscoelastic generalization of Burgers’
equation. For asymptotically constant velocity profiles we find three classes of solutions corresponding
to smooth traveling waves, piecewise smooth waves, and piecewise constant (shock) solutions. Each
solution type is possible for a given pair of asymptotic limits, and we characterize the dynamics in
terms of the relaxation time and viscosity.
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1. Introduction. Burgers’ equation

(1.1) ut + uux = εuxx

is perhaps the simplest model that couples the nonlinear convective behavior of flu-
ids with the dissipative viscous behavior. Introduced by Burgers [5] as a model for
turbulence, (1.1) and its inviscid counterpart,

(1.2) ut + uux = 0,

are essential for their role in modeling a wide array of physical systems such as traffic
flow, shallow water waves, and gas dynamics [17, 18, 19, 23]. The equations also
provide fundamental pedagogical examples for many important topics in nonlinear
PDEs such as traveling waves, shock formation, similarity solutions, singular per-
turbation, and numerical methods for parabolic and hyperbolic equations (see, e.g.,
[9, 14, 20, 23]).

The parabolic equation (1.1) has the property that smooth initial data yield
smooth solutions for all t > 0. In contrast, smooth initial data for the hyperbolic
equation (1.2) can develop jump discontinuities in finite time (shock formation). One
technique for studying shock wave solutions of (1.2) is to study smooth traveling wave
solutions of (1.1) in the limit as ε → 0.

In this paper we consider how the addition of viscoelasticity affects traveling wave
solutions of Burgers’ equation. The equations we consider are

ut + uux = σx,(1.3)

σt + uσx − σux = αux − βσ.(1.4)
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The constitutive law (1.4) resembles a one-dimensional version of the upper convected
Maxwell model [11]. The relaxation time is λ = β−1, and α = μλ−1 could be inter-
preted as the elastic modulus of the material if there were no relaxation of stress
(β = 0). In the other limit of instantaneous relaxation of stress (λ → 0), (1.4) reduces
to σ = μux, and the system (1.3)–(1.4) is equivalent to Burgers’ equation (1.1) with
fluid viscosity μ = ε.

The remainder of the paper is organized as follows. In section 2 we give a brief
introduction to viscoelastic fluids and explain the reduction and constitutive law for
our model. We show in section 3 that traveling wave solutions to (1.3)–(1.4) exist
only when the viscosity (or elastic modulus) is above a certain threshold. As the vis-
cosity approaches this threshold, singularities in the derivative appear, and numerical
experiments suggest that shocks develop when the viscosity is below threshold. The
system (1.3)–(1.4) is nonconservative, and therefore the classical theory for systems
of conservation laws (cf. [9, 23]) cannot be used to analyze singular solutions. A gen-
eralized theory of weak solutions to nonconservative hyperbolic equations has been
developed for such problems [2, 7, 8].

We take a different approach and analyze the shock solutions by introducing an
additional viscosity to regularize the problem. Using singular perturbation theory,
we show in section 4 that traveling waves exist for all parameters in the regularized
problem, and the waves limit to shock solutions as the additional viscosity goes to
zero. This method of vanishing viscosity is a well-known technique for analyzing
weak solutions of nonconservative hyperbolic equations such as the Hamilton–Jacobi
equations [9]. Finally, in section 5 we discuss the effect of different parameters on the
solution structure, how the results depend on the choice of one-dimensional reduction,
and a possible application of the results to numerical methods for viscoelastic flows.

2. Viscoelastic fluids. In this section we discuss how the constitutive law
in (1.4) is related to a standard constitutive law for viscoelastic fluids. The dis-
cussion here is not meant to be extensive. For more comprehensive treatments of
viscoelastic fluids, see [3, 4, 11, 12].

The incompressible Navier–Stokes equations are

ρ (ut + u · ∇u) = −∇p + μΔu,(2.1)

∇ · u = 0.(2.2)

The momentum equation (2.1) can be expressed as

(2.3) ρ (ut + u · ∇u) = −∇p + ∇ · σv,

where the (Newtonian) viscous stress σv is defined by

(2.4) σv = 2μD = μ
(
∇u + ∇uT

)
.

This Newtonian constitutive law means that the fluid stress is proportional to the
deformation rate tensor. In contrast, the stress in viscoelastic fluids includes some
time history of the deformation.

One of the simplest constitutive laws for viscoelastic materials is the Maxwell
model. Consider a linear spring and dashpot in series, with spring constant k and
damping coefficient μ. The stress, σ, in the element is

(2.5) λσ̇ + σ = με̇,
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where ε is the strain in the element, and λ = k/μ is the relaxation time. The linear
Maxwell model for a continuum is

(2.6) λσt + σ = 2μD.

However, this is not a valid constitutive law because it is not frame invariant [11].
That is, the stress depends on the reference frame. Frame invariance is achieved
by choosing an appropriate time derivative, akin to the material derivative for the
velocity field. One frame invariant time derivative is the upper convected derivative,
defined by

(2.7)
�
S = St + u · ∇S −∇u S − S ∇uT.

Replacing the partial time derivative in (2.6) with the upper convected derivative
gives the upper convected Maxwell (UCM) equation

(2.8) λ
�
σ + σ = 2μD.

The ij component in (2.8) satisfies

(2.9) λ

(
∂σij

∂t
+ uk

∂σij

∂xk
− ∂ui

∂xk
σkj − σik

∂uj

∂xk

)
+ σij = μ

(
∂ui

∂xj
+

∂uj

∂xi

)
,

where summation is over the repeated index k. Although there are many other frame
invariant derivatives, in this paper we consider a one-dimensional reduction, in which
case they yield identical reductions.

A one-dimensional version of the UCM equation is

(2.10) λ (σt + uσx − σux) + σ = μux.

However, there are other reasonable choices for a one-dimensional UCM equation. For
example, the equation for σ11 when u = (u1, 0, 0) is

(2.11) λ (σt + uσx − 2σux) + σ = 2μux,

where we have dropped the subscripts on the stress and velocity. The upper convected
derivative must be used in (2.8) because this is the time derivative of a tensor in a
moving continuum. In one dimension, the stress is a scalar, so it would also be
reasonable to simply use the material derivative for the time derivative. In this case
the constitutive law is

(2.12) λ (σt + uσx) + σ = μux.

In this paper we analyze the first UCM equation (2.10). While all three models
have similar results, (2.10) is more robust, in that all of the phenomena that occur in
(2.11) and (2.12) also occur in (2.10). In section 5 we discuss how the results change
if (2.11) or (2.12) is used instead.

Equation (2.10) is equivalent to (1.4). This is seen by dividing through by the
relaxation time λ to get

(2.13) σt + uσx − σux = αux − βσ,
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where

α = μλ−1,(2.14)

β = λ−1.(2.15)

The parameter α could be interpreted as the elastic modulus of the material if there
were no relaxation of stress (β = 0). It is somewhat arbitrary whether the constitutive
law is expressed in terms of the relaxation time (λ) and viscosity (μ) or elastic modulus
(α) and decay rate (β). In this paper we primarily use the latter, but sometimes we
express results using both sets of parameters for additional insight.

In section 4 we consider a modification to the Maxwell constitutive law (1.4). We
include a second viscous term, one without memory, so that the system becomes

ut + uux = σx + εuxx ,(2.16)

σt + uσx − σux = αux − βσ.(2.17)

The addition of the second viscous term can be considered as a one-dimensional
version of the Oldroyd-B constitutive law [12].

We note that the one-dimensional constitutive law studied in this paper is not
a physical reduction from the three-dimensional UCM. It is a reduction in the same
sense that Burgers’ equation is a reduction. One may wonder what, if any, physical sig-
nificance there is to the problem that we analyze in this paper. Using high-resolution
Godunov schemes for the advection terms in the Navier–Stokes equations requires
solving Burgers’ equation [1]. Analogously, systems of the form (2.10) and (2.11)
arise in the application of wave propagation schemes to viscoelastic fluids [10, 22].
This was the original inspiration for this study but not the sole motivation. It is in-
teresting to explore what happens to traveling waves in Burgers’ equation (1.1) if the
viscous term is replaced by a viscoelastic term, and the most natural starting point
is the Maxwell model. Thus the one-dimensional constitutive laws considered were
chosen to resemble the UCM equation.

3. Traveling waves. To find traveling wave solutions to (1.3)–(1.4) we consider
solutions of the form u(x, t) = U(ξ) and σ(x, t) = S(ξ), where ξ = x − ct for some
constant c. In traveling wave coordinates, the system is

−cU ′ + UU ′ = S′,(3.1)

−cS′ + US′ − SU ′ = αU ′ − βS.(3.2)

We consider traveling waves that correspond to heteroclinic connections between two
equilibrium points with given velocity values at infinity. The equilibrium points of
the system correspond to all states with S = 0, and thus we assume the following
asymptotic boundary conditions:

U(−∞) = u�, S(−∞) = 0,(3.3)

U(∞) = ur, S(∞) = 0.(3.4)

In the next section we examine for which values of u�, ur, α, and β do solutions of
this problem exist.

3.1. Existence. Integrating (3.1) gives the stress in terms of the velocity as

(3.5) S =
U2

2
− cU + A,
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where A is the integration constant. Applying the boundary conditions, the wave
speed and integration constant are

A =
u�ur

2
,(3.6)

c =
u� + ur

2
.(3.7)

Note that if a traveling wave exists, then it moves with the same speed as travel-
ing waves in Burgers’ equation (1.1) and shock waves in the inviscid Burgers equa-
tion (1.2).

We obtain the equation for the velocity profile, U , by using (3.1) and (3.5) to
eliminate S and S′ in (3.2) to get

(3.8) U ′ =
−β

(
U (U/2 − c) + A

)
U (U/2 − c) + c2 −A− α

.

Using (3.6) and (3.7), this simplifies to

(3.9) U ′ =
−β(U − u�)(U − ur)

(U − u�)(U − ur) + 2
((

u�−ur

2

)2 − α
) .

From the dynamics of this equation we extract conditions for the existence of traveling
waves. The two equilibrium points are clearly U = u� and U = ur, and a traveling
wave corresponds to a one-dimensional flow from one equilibrium point to the other.
There are two cases to consider: u� > ur and u� < ur.

First we suppose that u� > ur. For a traveling wave to exist, we need that U ′ < 0
for U ∈ (ur, u�). The numerator of (3.9) is positive in this interval. The maximum
value of (U − u�)(U − ur) is 0, and so the denominator is always negative, provided

((u� − ur)/2)
2 − α < 0, in which case U ′ < 0 for U ∈ (ur, u�).

Next, consider the case u� < ur. A traveling wave exists if U ′ > 0 for U ∈ (u�, ur).
As before, the numerator of (3.9) is positive for U ∈ (u�, ur), and thus we examine the

sign of the denominator. The minimum value of (U −u�)(U −ur) is − ((u� − ur)/2)
2
,

in which case it follows that U ′ > 0, provided ((u� − ur)/2)
2 − 2α > 0.

Combining these two cases, we have the following result: a traveling wave solution
to (1.3)–(1.4) with boundary conditions (3.3)–(3.4) exists if and only if

(3.10) u� > ur and α >

(
u� − ur

2

)2

or

(3.11) u� < ur and 2α <

(
u� − ur

2

)2

.

Equivalently, no traveling wave solutions exist if

(3.12)
(u� − ur)

2

8
≤ α ≤ (u� − ur)

2

4
.

Using (2.14) to express this condition in terms of the relaxation time and viscosity,
we see that no traveling wave solution exists if

(3.13)
(u� − ur)

2

8
≤ μ

λ
≤ (u� − ur)

2

4
.
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In comparison, for the viscous Burgers equation (1.1), traveling waves with u� > ur

exist for any positive viscosity. By adding elasticity we see that, for a fixed relaxation
time λ, there is now a minimal viscosity required for such waves to exist. In the
following sections we explore what happens to these wave solutions when the viscosity
is reduced beyond this minimal viscosity.

3.2. Wave profile. The shape of the wave is found by integrating (3.9). The
solution is

(3.14) β (ξ − ξ0) =
2
((

u�−ur

2

)2

− α
)

u� − ur
log

∣∣∣∣U(ξ) − ur

U(ξ) − u�

∣∣∣∣− U(ξ).

When a traveling wave exists, the profile is defined implicitly by (3.14). However,
when a traveling wave fails to exist, we can still plot the implicit solutions of (3.14).
In Figure 3.1 we plot the curve defined by (3.14) for four different values of α, while
keeping the other parameter values fixed at u� = 2, ur = 0, and β = 1. For these
parameter values, a traveling wave exists when α > 1. In Figure 3.1(a) the wave
profile is shown for α = 1.2. As α approaches 1, the wave profile approaches the
piecewise linear function shown in Figure 3.1(b). As α is decreased further, the curve
becomes multivalued and the asymptotic values are no longer satisfied. Figure 3.1(c)
shows the solution for α = 0.9. As α decreases even further, the solution of (3.14)
returns to being single-valued but no longer yields a traveling wave solution with the

given asymptotic limits. This transition occurs at α = 1
2

(
u�−ur

2

)2
, which corresponds

to when U ′ returns to being one-signed (now positive), corresponding to the lower
limit of (3.13). Figure 3.1(d) shows the solution for α = 0.25.

3.3. Numerical simulations. In this section we consider numerical simulations
of the full PDE system (1.3)–(1.4). According to (3.10), when u� > ur there is a
minimal viscosity in order for traveling waves to exist. In numerical simulations of
this case, these traveling wave solutions appear to be stable and travel with the speed
c = (u� + ur)/2, as in (3.7). We found that for any initial data, as long as the
asymptotic limits were maintained, the solution approached the traveling wave profile
given by (3.14). On the other hand, according to (3.11), when u� < ur, traveling
waves exist as long as the viscosity is below a certain threshold. In simulations of
the PDE system for this case, these waves did not appear to be stable; rather the
solutions always rarefy. Accordingly, from this point on we consider only the stable
case of u� > ur.

We next consider what happens when the viscosity is below the minimal value,
corresponding to the implicit plots shown in Figure 3.1(c)–(d). We solve the full
system (1.3)–(1.4) numerically by splitting the update at each time step into three
substeps. First we take a step including only the advection terms

ut + uux = 0,(3.15)

σt + uσx = 0(3.16)

and use an upwinding method. Next we take a step including the elastic terms

ut = σx,(3.17)

σt − σux = αux.(3.18)

We linearize the σux term in each grid cell by treating this term as σn
j ux through

the time step, where σn
j is the value of the stress at time step n at grid cell j. This
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Fig. 3.1. Plots of the solution curves to (3.14). The parameters are u� = 2, ur = 0, β = 1.
Four different values of α are plotted: (a) α = 1.2, (b) α = 1, (c) α = 0.9, (d) α = 0.25. For these
values of u� and ur, no wave exists for α < 1.

linearized system is a variable coefficient wave equation, which we update by a wave
propagation method as described in [16]. Finally, we update the stress by taking a
step of

(3.19) σt = −βσ.

For the initial condition we set the velocity equal to the traveling wave profile corre-
sponding to the viscous Burgers equation with a given viscosity and set the stress to
zero.

As suggested by Figure 3.1(c)–(d), we find two distinct cases, corresponding to
whether

(3.20)
1

2

(
u� − ur

2

)2

< α <

(
u� − ur

2

)2

or

(3.21) 0 < α <
1

2

(
u� − ur

2

)2

.

In both cases we find that the solutions develop into traveling waves, now, however,
with jump discontinuities in the wave profile. These numerical solutions propagate
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with the wave speed c = (u� + ur)/2, the same wave speed as smooth traveling wave
solutions. When α satisfies (3.20) the profile is piecewise smooth, with two shocks, as
indicated in Figure 3.2(a). We refer to this solution as the double-shock solution. As
α ranges between the limiting values of (3.20) the height of each jump discontinuity

ranges from 0 when α =
(
u�−ur

2

)2
to 1 when α = 1

2

(
u�−ur

2

)2
, which yields a piecewise

constant solution. This piecewise constant solution persists when α satisfies (3.21),
as indicated in Figure 3.2(b). This resembles a classic shock solution of the Riemann
problem for the inviscid Burgers equation.

Fig. 3.2. Plots of the wave profile found by solving (1.3)–(1.4) with smooth traveling wave initial
data. The simulations were run until the profile stabilized. The smooth waves develop apparent
jump discontinuities, whose type depends on whether α satisfies (3.20) or (3.21), and travel with
fixed speed. The parameter values are u� = 2, ur = 0, β = 1, and (a) α = 0.8; (b) α = 0.25.

When solving equations with discontinuities care must be taken in order to cap-
ture the correct solution. These numerical solutions may not be the correct solutions,
but they raise several questions that warrant further investigation. For example, as
the PDE is not given by a system of conservation laws, what is the “correct” weak
solution? In the case of the double-shock solution, what determines the shock height?
What determines the shape of the solution between the two shocks? Why is it that
we see a double-shock solution? In the next section we answer these questions by in-
troducing a second viscous term to regularize the equations and analyzing the system
in the limit of small viscosity.

4. Vanishing viscosity solution. In this section we add a viscous regulariza-
tion term on the velocity:

ut + uux = σx + εuxx ,(4.1)

σt + uσx − σux = αux − βσ(4.2)

for ε > 0. With the extra viscous term, this system can be viewed as a one-dimensional
version of the Oldroyd-B constitutive law [12]. To study the double-shock and shock
solutions of (1.3)–(1.4) we consider traveling wave solutions of this extended system
in the limit ε → 0.

In traveling wave coordinates, the system becomes

−cU ′ + UU ′ = S′ + εU ′′,(4.3)

−cS′ + US ′ − SU ′ = αU ′ − βS.(4.4)
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Integrating (4.3), applying the asymptotic boundary conditions, and eliminating U ′

in (4.4) yields the system

εU ′ =
1

2
(U − u�)(U − ur) − S,(4.5)

ε(U − c)S′ = (S + α)

(
1

2
(U − u�)(U − ur) − S

)
− εβS.(4.6)

This system has precisely two equilibrium points: (u�, 0) and (ur, 0). A traveling wave
solution of the PDE system (4.1)–(4.2) corresponds to a heteroclinic orbit connecting
these two equilibrium points, as in Figure 4.1 (recall that we are assuming u� > ur).

Note that if a traveling wave of the original system (1.3)–(1.4) exists (i.e., when
α > (u� − ur)

2/4), then the wave corresponds to the trajectory in the phase plane
defined by (3.5), or, equivalently,

(4.7) S =
1

2
(U − u�)(U − ur).

This is the U -nullcline from (4.5) (for all ε).

Fig. 4.1. Heteroclinic orbit corresponding to traveling wave solution of system (4.1)–(4.2).

The system (4.5)–(4.6) exhibits symmetric behavior about the line U = c, where
c = (u� + ur)/2 is the wave speed for the inviscid case (ε = 0). In particular, if

(Û(ξ), Ŝ(ξ)) solves (4.5)–(4.6) with Û > c for ξ ∈ (−b, ξ0) and Û(ξ0) = c, then

(U(ξ), S(ξ)) = (2c− Û(−ξ + 2ξ0), Ŝ(−ξ + 2ξ0)) solves (4.5)–(4.6) for ξ ∈ (ξ0, b+ 2ξ0),
with U < c and U(ξ0) = c. This corresponds to the reflection of the trajectory
through the line U = c.

The Jacobian of the system at the equilibrium point (u�, 0) is

(4.8) J = J(u�, 0) =

[ d
2ε − 1

ε
α
ε − 2(α+βε)

εd

]
,

where d = u� − ur. Since det(J) = −β
ε < 0, it follows that (u�, 0) is a saddle point

for all ε > 0. Thus the reflection through U = c maps the unstable manifold of
(u�, 0) to the stable manifold of (ur, 0). For this reason, to establish the existence
of a heteroclinic orbit connecting the two, it suffices to establish that the unstable
manifold of (u�, 0) crosses the line U = c.

The positive eigenvalue of J(u�, 0) is

(4.9) λ� =
1

4εd

(
d2 − 4(α + βε) +

√
(d2 − 4(α + βε))2 + 16d2βε

)
,
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with an associated eigenvector

(4.10) v� =

[
1,

d2 + 4α + 4βε−
√

(d2 + 4α + 4βε)2 − 16αd2

4d

]
.

The expansion of λ� for small ε is

(4.11) λ� =
1

4εd

(
(d2 − 4α) + |d2 − 4α|

)
+ O(1).

Thus,

(4.12) α >
d2

4
implies λ� = O(1) as ε → 0,

and

(4.13) α <
d2

4
implies λ� =

1

ε

(
d2 − 4α

2d

)
+ O(1) as ε → 0.

This transition occurs precisely at the critical α value in (3.10), which determines
the existence of traveling waves of the original system (ε = 0). Thus the onset of the
solutions containing shocks corresponds to the introduction of a fast dynamic along
the unstable manifold of (u�, 0) as ε → 0. Our motivation for introducing the viscous
regularization was to understand the behavior of the wave solutions in the limit of
ε → 0. Accordingly, we now focus on the case 0 < α < d2/4, the range for which
classical traveling waves of the original system (ε = 0) fail to exist. There are two
cases, depending on whether 0 < α < d2/8 or d2/8 < α < d2/4.

4.1. Case 1: d2/8 < α < d2/4. The U -nullcline is the parabola given by (4.7).
There are two distinct nullclines for S which correspond to the solutions of

(4.14) (S + α)

(
1

2
(U − u�) (U − ur) − S

)
− εβS = 0.

To plot the S-nullclines, we arrange (4.14) to

(4.15) (U − c)
2

= 2S +
d2

4
+

2βS

α + S
ε.

When ε = 0, the curve

(4.16) (U − c)
2

= 2S +
d2

4

is identical to the U -nullcline given by (4.7).
One S-nullcline is located above (in the U -S plane) the horizontal line S = −α

and the other below this line. For −α < S < 0, the last term in (4.15), 2βS/(α + S),
is always negative. This decreases U2, meaning that there is an S-nullcline just above
the U -nullcline (just below for S > 0). As ε → 0, this S-nullcline converges to the
U -nullcline.

On the second S-nullcline, S < −α. In this region, the last term in (4.15) is
always positive, and for S close to −α it dominates the linear term. The minimum
value of S on the U -nullcline is −d2/8. Since α > d2/8, this second S-nullcline is
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Fig. 4.2. Typical nullclines for system (4.5)–(4.6) with d2/8 < α < d2/4. Here the parameter
values are u� = 2, ur = 0, β = 1, α = 0.6, ε = 0.1.

below the U -nullcline and bounded away from it as ε → 0. A sample plot of all three
nullclines is shown in Figure 4.2.

To find a traveling wave solution, we show that the unstable manifold of (u�, 0)
flows to the line U = c. The eigenvector v� from (4.10) is tangent to the unstable
manifold at (u�, 0). Expanding this eigenvector for small ε yields

(4.17) v� =

[
1,

2α

d

]
+ ε

[
0,

−8αβ

d(d2 − 4α)

]
+ O(ε2).

Thus, in the limit as ε → 0 the eigenpair (λ�,v�) → (∞, [1, 2α/d]). The slope of the
U -nullcline at (u�, 0) is d/2 (independent of ε), and the slope of the S-nullcline at
(u�, 0) is d/2(1 + βε/α)−1 = d/2(1 − βε/α) + O(ε2). Thus, for ε < α/β, the unstable
manifold enters the region above both the S- and U -nullclines whenever α < d2/4.
Moreover, as ε → 0 the speed with which it enters the region approaches infinity.

The trajectories of the system (4.5)–(4.6) satisfy

(4.18)
dS

dU
=

(S + α)F (U, S) − εβS

(U − c)F (U, S)
,

where F (U, S) = 1
2 (U−u�)(U−ur)−S. Note that F (U, S) = 0 defines the U -nullcline

and is the leading order approximation of the S-nullcline above it. The unstable
manifold quickly flows away from these nullclines into the region where F (U, S) =
O(1). In this case, the curves defined by (4.18) are approximated by

(4.19)
dS

dU
=

(S + α)

(U − c)
.

The solutions of (4.19) are lines of the form |S +α| = A(U − c). The solution passing
through the equilibrium (u�, 0) has slope A = 2α/d, which is precisely the slope of
the unstable manifold as ε → 0. Therefore the leading order approximation to the
unstable manifold is

(4.20) S =
2α

d
(U − c) − α,

which is a valid approximation as long as this trajectory remains away from the
nullclines. The line (4.20) eventually intersects the S-nullcline. To leading order, this
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intersection occurs at

U∗ =
4α

d
+ ur,(4.21)

S∗ =
2α

d2

(
4α− d2

)
.(4.22)

Since α > d2/8, it follows that U∗ > c at the point of intersection. Near the null-
clines, the solution to the system (4.5)–(4.6) can be approximated by the quasi-steady
solution

(4.23) S =
1

2
(U − u�)(U − ur) + O(ε).

This trajectory intersects the line U = c. Thus, by the symmetry of the system, this
solution is part of a heteroclinic orbit connecting the points (u�, 0) and (ur, 0) and
corresponds to a traveling wave solution of (4.1)–(4.2).

The above analysis explains the double-shock solution. When α < d2/4, the
dynamics near the point (u�, 0) on the unstable manifold are very fast (O

(
ε−1

)
).

Leaving the equilibrium point, the unstable manifold moves away from the nullclines,
but eventually this trajectory approaches the nullclines near the point (U∗, S∗) away
from the equilibrium point. This path in phase space (in the limit ε → 0) corresponds
to the shock. Once near the nullclines, the solution flows along the nullclines to the line
U = c. The flow between the point (U∗, S∗) and its reflected point (2c−U∗, S∗) cor-
responds to the smooth portion of the double-shock solution between the two shocks.
Figure 4.3(a) shows the path of the heteroclinic orbit in phase space corresponding
to a double-shock solution. The path shown was generated by integrating (4.5)–(4.6)
for ε = 10−3. The trajectory is very close to our asymptotic solution, which is not
shown because it is indistinguishable from the numerical solution on this scale. In
Figure 4.3(b) we show the wave profile for decreasing values of ε. The solutions were
generated by integrating (4.5)–(4.6) for U > c and using the symmetry condition
for U < c. For finite ε the wave is smooth, but, as the figure indicates, the profile
approaches the double-shock solution as ε → 0.

Fig. 4.3. (a) Path of the heteroclinic orbit for the double-shock traveling wave. The double
arrows indicate that the dynamics are much faster along these paths, which correspond to the shocks
in the limit ε → 0. The trajectory shown is for ε = 10−3, generated by integrating (4.5)–(4.6). The
solution is indistinguishable from the asymptotic solution on the scale shown. (b) For finite ε, the
wave profile is smooth, but as ε → 0 the solution approaches the double-shock wave. The parameter
values are u� = 2, ur = 0, β = 1, α = 0.65.
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The height of each of the shocks in the double-shock solution is given by

(4.24) [u] = u� − U∗ =
d2 − 4α

d
.

Below α = d2/4 smooth traveling waves no longer exist, and at this value of α the
shock height is zero. As α decreases from this value, the height of the shocks increases.
When α = d2/8, the height of each shock is d/2 so that the two shocks come together,
and the double-shock solution as analyzed in this section no longer exists. What
happens below this value of α is considered in the next section.

4.2. Case 2: 0 < α < d2/8. Much of the analysis from the previous section
applies to this case. However, one exception is that the S-nullcline above the U -
nullcline no longer converges to the U -nullcline as ε → 0. As before, one of the
S-nullclines is located above the line S = −α and the other below. Recall that the
U -nullcline is the parabola (4.7), and the minimum value of S on this nullcline is
−d2/8. When α < d2/8, the line S = −α intersects the U -nullcline, so that as ε → 0
the S-nullcline above the U -nullcline remains bounded away from the U -nullcline for
a range of U values. This S-nullcline limits to

(4.25) S =

{
1
2 (U − u�)(U − ur) (U − c)2 > d2−4α

8 ,

−α (U − c)2 ≤ d2−4α
8 .

A sample plot of the nullclines is shown in Figure 4.4 for small ε.

Fig. 4.4. Typical nullclines for system (4.5)–(4.6) with 0 < α < d2/8. Here the parameter
values are u� = 2, ur = 0, β = 1, α = 0.25, ε = 0.05.

As before, the unstable manifold of (u�, 0) flows into the region above the S-
nullcline, and once the trajectory is O(ε) away from the equilibrium point the dynam-
ics are fast (O(ε−1)). This unstable manifold is again approximated by the line (4.20).
The unstable manifold eventually brings the flow back to the S-nullcline (4.25). These
two curves intersect at the point (U, S) = (c,−α), and by symmetry the stable man-
ifold of (ur, 0) also flows from this point. Thus the solution does not travel along
the S-nullcline at all because the region of fast dynamics leaving (u�, 0) connects
with the region of fast dynamics entering (ur, 0). Figure 4.5(a) shows the path of
the heteroclinic orbit connecting (u�, 0) and (ur, 0) corresponding to the single-shock
traveling wave. This solution was generated by integrating (4.5)–(4.6) for ε = 0.02.
The asymptotic solution is indistinguishable from the numerical solution on this scale.
Figure 4.5(b) shows the wave profile for decreasing values of ε. For finite ε the wave
profile is smooth, but it approaches a single shock as ε → 0.
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The numerical simulations from section 3.3 suggested that for α < d2/8 the
traveling wave solution was the shock solution from the inviscid Burgers equation.
This analysis confirms this but provides more information on the structure of this
shock for small viscosity. This shock is really a degenerate double-shock solution, in
that the two shocks meet in the middle of the wave profile.

Fig. 4.5. (a) Path of the heteroclinic orbit for the single-shock traveling wave that occurs when
α < d2/8. The double arrows indicate the fast dynamics along these paths which correspond to the
shocks in the limit ε → 0. This solution was generated by integrating (4.5)–(4.6) for ε = 0.02. On
this scale the asymptotic solution is indistinguishable from the numerical solution. (b) For finite
ε the wave profile is smooth, but as ε → 0 the solution approaches the single-shock wave. The
parameter values in both plots are u� = 2, ur = 0, β = 1, α = 0.25.

5. Discussion. For given asymptotic values of the velocity, u� and ur with u� >
ur, the viscoelastic Burgers model (1.3)–(1.4) has three different types of traveling
wave solutions, depending on the value of the elastic modulus α. For α > d2/4,
smooth traveling waves exist, where d = u� − ur. When d2/8 < α < d2/4, the profile
of the traveling wave is piecewise smooth with two jump discontinuities, and when
α < d2/8 the wave solution is a single shock. In all three cases the wave travels with
unique speed c = (u� + ur)/2.

We address the physical significance of the threshold in the elastic modulus α
for traveling waves to exist. For simplicity, consider the case in which u� = −ur, so
that the speed of the traveling wave is 0. The condition α > d2/4 for a wave to exist
reduces to α > u2

� , or
√
α > u�. The system linearized about u = u�, σ = 0 is

ut + u�ux = σx,(5.1)

σt + u�σx = αux − βσ,(5.2)

which can be written in the form

(5.3) qt + Aqx = Bq,

where q = (u, σ)T. The wave speeds of this linearized system are u� ±
√
α. The wave

speeds are the sum of the advective speed u� and the elastic wave speeds ±
√
α. The

advection terms tend to steepen the wave, which generates elastic forces that oppose
this steepening. As long as the elastic wave speed is faster than the advective wave
speed, smooth traveling waves exist. In the viscous Burgers equation (σ = εux), the
viscous stresses propagate instantaneously, but in the viscoelastic model the elastic
stresses propagate at a finite speed. Thus, the smooth traveling wave breaks down
when the advective speed surpasses the elastic speed.
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Recall that α = μ/λ, where μ and λ are the viscosity and relaxation time, re-
spectively. For a fixed relaxation time, each of the three types of wave solutions is
possible, depending on the size of the viscosity. For large enough viscosity, the smooth
traveling wave results, and as the viscosity is decreased the solution transitions to the
double-shock wave and then to the single-shock wave. Equivalently, for a fixed viscos-
ity, the type of wave depends on the size of the relaxation time. The progression from
the smooth wave to the double-shock wave to the single-shock wave occurs as the
relaxation time increases. The regions of parameter space where the different wave
solutions occur are illustrated in Figure 5.1.

Fig. 5.1. The values of the relaxation time λ and the viscosity μ determine the type of traveling
wave solution. In parameter space the line μ = d2λ/4 is the boundary between smooth waves and
double-shock solutions, and the line μ = d2λ/8 is the boundary between double shocks and single
shocks.

For λ = 0, only the smooth traveling wave is possible. In the limit that λ → 0
for fixed μ, the constitutive law reduces σ = μux, and the model becomes Burgers’
equation (1.1). This limit corresponds to the constitutive law for a viscous fluid.
Taking the limit β → 0 for a fixed value of α, the constitutive law limits to that of an
elastic solid. The transitions between the different wave types are independent of the
value of β. If we nondimensionalize the problem, the value of β−1 = λ determines the
time scale of the problem, which is related to the steepness of the wave profiles. As
β gets smaller, the wave profiles steepen, meaning that as β → 0 all wave solutions
tend to shocks.

In section 2, we presented several different one-dimensional reductions of the UCM
equation and in the remainder of the paper presented an analysis based on (2.10).
However, the techniques employed apply to all three constitutive laws. Repeating the
analysis for (2.11), we find that again there are smooth traveling waves for α > d2/4,
but, for α < d2/4, only the single-shock solutions occur. For (2.12) there is a transition
from a smooth traveling wave to a double-shock solution at α = c2, and the single-
shock solution is approached as α → 0. Because (2.10) exhibits all three behaviors,
we chose to present this case.

There are many different constitutive laws for viscoelastic fluids. In this paper
we used the UCM model (Oldroyd-B when ε �= 0) because it is perhaps the simplest
differential constitutive law and has been extensively studied in the past. Others
have studied viscoelastic generalization of Burgers’ equation [13, 21], and it would be
interesting to explore how the behavior of the wave solutions analyzed in this paper
is affected by different constitutive laws.
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The problem in this paper is interesting in part because of its classical nature,
but the analysis of one-dimensional waves in viscoelastic generalizations of Burgers’
equations could also be used to develop numerical schemes for viscoelastic fluids.
High-resolution finite volume methods have been used successfully in simulating high
Reynolds number flows [1]. The algorithm for discretizing the convection terms in [1] is
based on numerical methods for conservation laws [6]. These methods require solving
one-dimensional Riemann problems, and it is not clear how to adapt this approach to
nonconservative systems. Wave propagation algorithms [15] are more easily adapted
to nonconservative problems, but these methods also require being able to solve one-
dimensional Riemann problems. Recently finite volume methods for viscoelastic flows
have been proposed [10, 22]. The techniques from this paper could be adapted to
solve the Riemann problems that arise in these methods.

Acknowledgments. The authors would like to thank Andy Bernoff and Jim
Keener for helpful discussions while writing this paper. We also thank the referees for
their insightful comments.
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THE CHAPMAN–JOUGUET CLOSURE FOR THE RIEMANN
PROBLEM WITH VAPORIZATION∗

VINCENT PERRIER†

Abstract. This work is devoted to the modeling of phase transition. The thermodynamic model
for phase transition chosen is a model with two equations of state, each of them modeling one phase
of a given fluid. The mixture equation of state is obtained by an entropy optimization criterion.
Both equations of state are supposed to be convex, and a necessary condition is found to ensure the
convexity of the mixture equation of state. Then we investigate the Riemann problem for the Euler
system with these equations of state. More precisely, we propose to take into account metastable
states, which may occur as noted in [J. R. Simões-Moreira and J. E. Shepherd, J. Fluid Mech., 382
(1999), pp. 63–86]. We check whether the Chapman–Jouguet theory can be applied in our context,
and that it is consistent with the entropy growth criterion. As the characteristic Lax criterion does
not hold for this solution, an additional relation, the kinetic closure, is necessary. The common
closure, i.e., the Chapman–Jouguet closure, is proved to be incorrect in general in that context.

Key words. fluid mechanics, phase transition, nonconvex equation of state, Riemann problem,
Chapman–Jouguet theory

AMS subject classifications. 76N99, 80A22, 80A20, 76T10, 82B26, 35L65
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Introduction. We are interested in the study of some problems arising in the
modeling of phase transition in compressible fluids. A widely used model for phase
transition [2, 1, 14, 5] is the van der Waals model. Nevertheless, the very physical
meaning of this model is questionable, because the resulting system of partial differ-
ential equations is not hyperbolic. Moreover, according to [16], the shock structure
found in [14] does not seem to match with what experiments show. Another approach
consists in modeling each phase by an equation of state, and in coupling them by
optimizing the entropy [7, 9] to get a mixture equation of state. As explained in
[12], the convexity of internal energy is necessary to ensure the local thermodynamic
equilibrium. Whether the mixture equation of state is convex or not will be discussed
in section 1.

We will then concentrate on the Euler system of partial differential equations,
which models flow dynamics with neither viscosity nor thermal conduction. A funda-
mental step to approximate the solutions of the Euler system with a Godunov method
is to solve the Riemann problem, i.e., the Cauchy problem where the initial condition
is composed of two different constant states. If the solution of the Riemann problem
for the Euler system is easy to solve for a convex equation of state, it becomes much
harder when the equation of state suffers from loss of derivative and from local non-
convexity [19, 12, 20, 21, 16, 17, 18, 11], because the common entropy growth criterion
fails to ensure the existence and uniqueness of the solution. Based on the experiments
of [13], we propose to take into account out-of-thermodynamic-equilibrium states, or
metastable states. The Chapman–Jouguet (CJ) theory will be used [4, 6], and the
compatibility between the model of equation of state and this theory will be discussed.
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Table 1

Thermodynamic notation.

T temperature
τ specific volume
ρ density
s specific entropy
μ chemical potential
h specific enthalpy

f specific free energy
P pressure
ε specific internal energy
y mass fraction
α volume fraction

The entropy growth criterion will be shown to hold. Finally, we will show that the
closure usually used to close the problem [10], i.e., the CJ closure, leads to a solution
that does not in general continuously depend on its initial data, and this solution will
therefore be rejected.

1. Thermodynamic preliminaries.

1.1. Thermodynamic with phase transition. We suppose that we have two
phases of the same fluid. For the sake of simplicity, we will consider that one phase is
liquid (subscript l) and the other one is the vapor (subscript v). For each phase, we
will take the notation of Table 1. If we consider that we have a mixture of the two
phases, then the total specific quantities are defined by

τtot = ylτl + yvτv,(1.1a)

εtot = ylεl + yvεv,(1.1b)

stot = ylsl + yvsv.(1.1c)

To find the thermodynamic equilibrium, the total entropy (1.1c) must be optimized.
Of course, the optimization must be consistent with the following constraints:

conservation of total energy ylεl + yvεv = cste,(1.2a)

conservation of mass yl + yv = 1.(1.2b)

Moreover, we suppose that the two phases are locally nonmiscible, which means that

(1.2c) ylτl + yvτv = cste.

We choose to optimize (1.1c) with the variables τ, ε, y for each phase. The first and
second principles of thermodynamics impose that for each phase

ds =
dε

T
+

P

T
dτ.

Then the differential of stot must belong to the set spanned by the gradients of the
constraints; if we denote by λ1, λ2, λ3 the Lagrange multipliers associated to the
constraints (1.2a), (1.2b), (1.2c), we find (with the notation of Table 1)

sl = λ1εl + λ2 + λ3τl,(1.3a)
yl
Tl

= λ1yl,(1.3b)

ylPl

Tl
= λ3yl,(1.3c)

sv = λ1εv + λ2 + λ3τv,(1.3d)
yv
Tv

= λ1yv,(1.3e)

yvPv

Tv
= λ3yv.(1.3f)
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If we suppose that both phases coexist, then (1.3b) and (1.3e) give

Tl = Tv =: T,

(1.3c) and (1.3f) give

Pl = Pv =: P,

and, finally, (1.3a) and (1.3d) lead to

(1.4) μl(P, T ) = μv(P, T ).

It is well known that there exist a temperature Tc and a pressure Pc such that there is
no longer any difference between the liquid and the gas phases above this temperature
and pressure (the fluid is said to be supercritical). If we suppose that under these
values we have

τl(P, T ) �= τv(P, T ),

then we can apply the implicit function theorem to (1.4) to prove that P is locally a
function of T :

P = Psat(T ).

The limit of thermodynamic stability of the mixture is given, in the (τ, P ) plane, by the
functions τv(Psat(T ), T ) and τl(Psat(T ), T ). The set of all the physical states lying
between these curves is called the saturation dome. When there is no ambiguity,
we will also denote by τv the function T �→ τv(Psat(T ), T ) and by τl the function
T �→ τl(Psat(T ), T ). Thus, the thermodynamic plane can be divided into four parts
(see Figure 1): two parts in which one of the two pure phases is stable, one part where a
mixture of saturated liquid and vapor is stable and where the specific thermodynamic
variables are defined as in (1.1), and one part with the supercritical fluid.

0
Specific Volume

Pr
es

su
re

mixture

supercritical fluid

phase 2

phase 1

Fig. 1. The thermodynamic plane (P, τ) is divided into four parts: two parts where the single
phases are stable, one part where the mixture is stable, and one part where the fluid is supercritical.
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Moreover, if we differentiate the equality μv(P, T ) = μl(P, T ) with respect to
(P, T ), we find the Clausius–Clapeyron relation

(1.5)
dPsat

dT
(T ) =

sv(T ) − sl(T )

τv(T ) − τl(T )
.

For most of the solid-liquid phase transition (except for special cases such as bismuth
or water) and for all of the liquid-gas phase transition, we have for all T < Tc

τv(T ) − τl(T ) > 0.

This means that in Figure 1, phase 1 is the liquid, and phase 2 is a gas.
For any phase transition, the entropy of the most compact constituent is lower

than the entropy of the other constituent. Thus, in our case we have for all T < Tc

sv(T ) − sl(T ) > 0,

which induces dPsat

dT > 0.

1.2. Adimensioned thermodynamic coefficients. We adopted the notation
of Table 1. As in [12], we define three adimensioned parameters as

(1.6) Γ = − τ

T

(
∂T

∂τ

)
s

, γ = − τ

P

(
∂P

∂τ

)
s

, g =
Pτ

T 2

(
∂T

∂s

)
τ

.

γ is the adiabatic coefficient, and Γ is the Grüneisen coefficient. As in [12], we pro-
pose using these three thermodynamic coefficients to express all the thermodynamic
quantities. One can then show that the following identities hold:

ds =
Pτ

T 2

1

g
dT +

P

T

Γ

g
dτ,(1.7a)

ds = − τ

T

Γ

γg − Γ2
dP +

Pτ

T 2

γ

γg − Γ2
dT,(1.7b)

ds =
τ

T

1

Γ
dP +

P

T

γ

Γ
dτ,(1.7c)

dτ = − τ

P

g

γg − Γ2
dP +

τ

T

Γ

γg − Γ2
dT,(1.7d)

dh = τ
Γ + 1

Γ
dP + P

γ

Γ
dτ,(1.7e)

dε = τ
1

Γ
dP + P

(γ − Γ)

Γ
dτ.(1.7f)

Thermodynamic stability requires that ε be convex as a function of τ and s, which
leads to

(1.8) g ≥ 0, γ ≥ 0, γg − Γ2 ≥ 0.

1.3. The fundamental derivative. In [15], the fundamental derivative was
defined as

G = −τ

2

(
∂3ε
∂τ3

)
s(

∂2ε
∂τ2

)
s

.

The sign of G determines whether the Hugoniot curve and the isentropes are convex
or not in the (τ, P ) plane. We will suppose in the following that G is positive, so that
no undercompressive discontinuity or expansion fans can exist (see [15, 20, 21]).
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1.4. Mixture equation of state.

1.4.1. Parameterization of the mixture equation of state. In the follo-
wing, we will denote with a subscript m all the variables relative to the mixture
equation of state. The mixture equation of state is naturally parameterized by y,
the mass fraction of the gas, and T , the temperature. Nevertheless, in the next
sections, the parameters that will intervene are mostly τ and s. They are linked by
the transformation

(1.9) Φ :

(
y
T

)
�→

(
yτv(T ) + (1 − y)τl(T )
ysv(T ) + (1 − y)sl(T )

)
=

(
τ
s

)
.

Theorem 1. For all points in the saturation dome, Φ is a local diffeomorphism
provided that the equations of state of the liquid and of the gas are both convex.

Proof. To show that Φ is a local diffeomorphism, it is sufficient to show that its
Jacobian does not vanish. Differentiation of (1.9) and using the Clausius–Clapeyron
relation lead to

(1.10) det(DΦ) = (τv − τl)

(
y

(
dsv
dT

− dPsat

dT

dτv
dT

)
+ (1 − y)

(
dsl
dT

− dPsat

dT

dτl
dT

))
.

We supposed that τv− τl > 0 (except at the critical point), so it remains to show that

(1.11) y

(
dsv
dT

− dPsat

dT

dτv
dT

)
+ (1 − y)

(
dsl
dT

− dPsat

dT

dτl
dT

)

never vanishes. The term (1.11) is a convex combination of

(1.12)
dsv
dT

− dPsat

dT

dτv
dT

and
dsl
dT

− dPsat

dT

dτl
dT

.

Using (1.3a), (1.3b) for P = Psat(T ) leads to

(1.13)
dsb
dT

− dPsat

dT

dτb
dT

=
γg − Γ2

g

P

τ

(
dτb
dT

)2

+
Pτ

T 2

1

g
> 0

for b = g or l, which is positive provided that each pure phase equation of state is
convex.

Therefore (1.11) is positive, because it is a convex combination of two terms as is
(1.13). As a consequence, det (DΦ) > 0.

Thanks to the parameterization (1.9), we can calculate the adimensioned coef-
ficients defined by (1.6), to show that the following theorem holds.

Theorem 2. If both equations of state are convex, and if dPsat

dT > 0, then the
mixture equation of state is convex, too; i.e., inequalities (1.8) hold.

Proof. We denote by a subscript m the thermodynamic parameters relative to
the mixture equation of state.

• Calculation of Γm. To calculate Γm, we first use the chain rule(
∂τ

∂T

)
s

=

(
∂y

∂T

)
s

(
∂τ

∂y

)
T

+

(
∂τ

∂T

)
y

.

Then the differentiation of the definition of mixture entropy shows that(
∂y

∂T

)
s

=
y dsv

dT + (1 − y)dsl
dT

sl − sv
,
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which leads to(
∂τ

∂T

)
s

= −
y dsv

dT + (1 − y)dsl
dT

sl − sv
(τl − τv) + y

dτv
dT

+ (1 − y)
dτl
dT

.

Thanks to the Clausius–Clapeyron relation, we find(
∂τ

∂T

)
s

= y

(
dτv
dT

− dT

dP

dsv
dT

)
+ (1 − y)

(
dτv
dT

− dT

dP

dsl
dT

)
,

which is negative according to what we did for the Jacobian of Φ. Therefore

Γm = −T

τ

(
∂τ

∂T

)
s

≥ 0.

• Calculation of γm. As P = Psat(T ) in the saturation area, we have(
∂τ

∂P

)
s

=
dTsat

dP

(
∂τ

∂T

)
s

.

Thus γm = Γm
T
P (dP

dT )sat ≥ 0.
• Calculation of gm. By using the identity(

∂T

∂s

)
τ

(
∂s

∂τ

)
T

(
∂τ

∂T

)
s

= −1,

we have (
∂T

∂s

)
τ

= − 1

( ∂s
∂τ )T ( ∂τ

∂T )s
.

Along an isotherm we have ds = (sv − sl)dy and dτ = (τv − τl)dy, so that(
∂s

∂τ

)
T

=

(
dP

dT

)
sat

.

Therefore, we find (
∂T

∂s

)
τ

=

(
dT

dP

)
sat

ΓmT

τ
,

which induces γmgm = Γ2
m. As γm ≥ 0, this means that gm ≥ 0.

Therefore, we proved that gm ≥ 0, γ ≥ 0, and that γmgm − Γ2
m = 0, so that the

convexity of energy is ensured.

1.5. Adimensioned coefficients near a phase transition boundary. In
this section, we continue denoting by the subscript m the thermodynamic coefficients
of the mixture equation of state, while the coefficients with no subscript are of the
pure phase.

In [12, p. 121], the following identity is proved:

γ − γm
γm

= (γg − Γ2)

(
T

τ

(
dsb
dP

)
sat

)2

> 0,
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with b = g or l. This identity proves that isentropes are stiffer in the pure phases
than in the mixture. In the same manner it is proved that

(1.14)
Γm

Γ
=

γm − ξ

γ − ξ
,

with ξ = − τ
P (dP

dτ )sat. As in [12], we suppose that the isentropes can be parameterized
by τ , so that

(1.15)
γm − ξ

γ − ξ
> 0,

and so that Γ is positive too, because Γm > 0.

1.6. Retrograde and regular behavior. In [16], the retrogradicity r was in-
troduced to study the behavior of isentropes near a phase transition boundary

r =

(
∂T

∂τ

)
P

(
dsb
dP

)
.

Thanks to (1.7d) and as Γ is positive near a phase transition boundary, (∂T∂τ )P is

positive, so that the sign of r is the same as the sign of dsb
dP .

We suppose now that a fluid undergoes a rarefaction isentrope: this is the only
regular transformation that a fluid can undergo. In the (S, T ) plane, this transfor-
mation is drawn as a vertical line. As the transformation is undercompressive, the
temperature decreases (at least near the phase transition boundary, because Γ > 0
and Γm > 0). If r > 0, then the isentrope crosses the saturation curve from the pure
phase to the mixture phase (as on both sides of the left-hand part of Figure 2 and
the liquid side of the right-hand part of Figure 2). In this case, the fluid is said to
be regular. If r is negative, then the isentrope crosses the saturation curve from the
mixture to the pure phase, as on the gas side of the right-hand part of Figure 2.

In [12, p. 121], other expressions of r are given:

r =
Γm

Γ

γg − Γ2

γm

dsb
dT

=
γ − γm
γm

ξ

ξ − γ
.

Experiments show that the liquid saturation curve is always regular. The gas satura-
tion curve can be either regular or retrograde.

S

T

Liquid GasMixture

S

T

Liquid

Gas
Mixture

Regular Retrograde

Fig. 2. The saturation dome in the (S, T ) plane. On the left, the fluid is regular: all the
isentropes (drawn as arrows) cross the saturation dome from the pure phase to the mixture. On the
right, the fluid is retrograde: the isentropes are crossing the liquid saturation curve from the pure
phase to the mixture, whereas it is the contrary on the gas side.
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1.7. Validity domain of a model. To quickly compute a solution of the Rie-
mann problem for fluid flows, simplified equations of state (perfect gas or stiffened
gas, for example) are often preferred to tabulated ones. Nevertheless such equations
of state often have only a narrow range of validity, outside of which they do not have
a physical behavior (negative energy, nonconvexity).

If we want to use a simplified equation of state for both liquid and gas, we have
to care not only about the physical behavior of the two equations of state but also
about the mixture equation of state computed. If we look at the properties needed
in section 1, we see that the property dPsat

dT > 0 is fundamental to ensuring the local
convexity of energy. Nevertheless, it is not always true, as we show now with examples.

1.7.1. The two perfect gas model. This model was proposed by [8, 7]. The
two phases are modeled with a perfect gas equation of state. To complete the equation
of state, we suppose, moreover, that Cv = 1 for each fluid. We denote by Γi the
Grüneisen coefficient of the phase i. Then we have

εi(P, τ) =
Pτ

Γi

,(1.16a)

si(P, T ) = log

⎛
⎝T

(
ΓiT

P

)Γi

⎞
⎠ ,(1.16b)

μi(P, T ) = (Γi + 1)T − T log

⎛
⎝T

(
ΓiT

P

)Γi

⎞
⎠ .(1.16c)

The equation μ1(P, T ) = μ2(P, T ) can be explicitly solved to get P = βT , with

β = exp(1)(
Γ

Γ2
2

Γ
Γ1
1

)
1

Γ1−Γ2 . We see here that the condition dPsat

dT > 0 always holds. The

limits of the saturation dome are given by the equations

T = ε =
Psat(T )τi(T )

Γi
,

which gives τi(T ) = Γi

β . Thus, T �→ τi(T ) is a constant function. In particular, the
critical point does not exist. If we decide, for example, that Γ1 < Γ2, then we get the
projections of the phase diagram in the (P, τ) plane and in the (S, T ) plane that are
drawn in Figure 3. The mixture equation of state can be explicitly calculated:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

P (τ, ε) = Γ2
ε

τ
if τ ≤ τ2,

P (τ, ε) = Γ2
ε

τ2
= Γ1

ε

τ1
if τ2 ≤ τ ≤ τ1,

P (τ, ε) = Γ1
ε

τ
if τ1 ≤ τ.

Nevertheless, we remark that the heaviest phase is described by the lowest adiabatic
coefficient, which is in contradiction to what is described, for example, in [22, Chap-
ter XI]. Thus, the two perfect gas model is a good mathematical model because the
mixture equation of state can be explicitly calculated, but it cannot give a good
account for the physical behavior.
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S

T

Mixt.

phase 2

phase 1

τ

Phase 1 Phase 2

P

Mixt.

τ1 τ2

Fig. 3. Shape of the saturation dome for the two perfect gas model. We note that the fluid is
always retrograde.

1.7.2. The two stiffened gas model. We model the two phases of a fluid with
the stiffened gas equation of state, for which we have (see [9])

ε(P, τ) =
P + γP∞

γ − 1
τ + q,(1.17a)

s(P, T ) = Cv log

(
T γ

(P + P∞)γ−1

)
+ q′,(1.17b)

G(P, T ) = (γCv − q′)T − CvT log

(
T γ

(P + P∞)γ−1

)
+ q.(1.17c)

For this equation of state, the adimensioned coefficients are given by

γ = γ

(
1 +

P∞

P

)
, Γ = γ − 1, g =

(γ − 1)P

P + P∞ .

The conditions γ > 0 and g > 0 are ensured if γ > 1. In [9], the coefficients
q, q′, Cv, γ, P

∞ were calculated for the gaseous and liquid phases to fit with the satu-
ration curves near T = 298K. These coefficients are given in Table 2. The resulting
function Psat(T ) was drawn in Figure 4. For the two stiffened gas model, we cannot
be sure that the functions T �→ sv(T ) − sl(T ) and T �→ τv(T ) − τl(T ) simultaneously
vanish. Therefore, the critical point does not really exist. As we saw in section 1.4,
we need dPsat

dT > 0 to ensure the convexity of the mixture equation of state. Thus,
the model is valid only when τv(T ) − τl(T ) and sv(T ) − sl(T ) are both positive. In
our example, with the coefficients of Table 2, the function T �→ Psat(T ) is drawn in
Figure 4. We can see that the limit is near T = 970 K, for which dPsat

dT vanishes.

1.8. Positivity of the fundamental derivative. In section 1.4, we found
some criteria to ensure the convexity of the mixture equation of state. Neverthe-
less, we did not manage to find a simple criterion that can also ensure the positivity
of the fundamental derivative of the mixture equation of state. Actually, as shown

Table 2

Thermodynamic coefficients for the liquid and gaseous phase of dodecane.

Phase γ P∞ Cv q q′

Gas 1.025 0 1956.45 −237547 -24485

Liquid 2.35 4.108 Pa 1077.7 −755269 0
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Fig. 4. Numerical computation of the behavior of Psat(T ) for two phases of the stiffened gas
model with the coefficients of Table 2. For temperatures below 970K, T �→ Psat(T ) increases. For
T ≈ 970K, the function T �→ sv(T ) − sl(T ) vanishes and its sign changes, whereas the function
T �→ τv(T ) − τl(T ) does not vanish. As a consequence, T �→ Psat(T ) does not increase anymore,
and the equation of state is no longer valid.

numerically in Figure 5 for the thermodynamic coefficients of Table 2, the fundamental
derivative of the mixture equation of state can be either positive or negative, even if
both equations of state have a positive fundamental derivative. In that example, the
equation of state can be considered as valid if T ≤ 715K, where G > 0.

-4e+07

-3e+07

-2e+07

-1e+07

 0

 1e+07

 2e+07

 100  200  300  400  500  600  700  800  900  1000

Fig. 5. In this figure, we draw all the T �→ G for y ∈ [0; 1]. The equation of state is the one
of Table 2. For low temperatures (T ≤ 715K), the fundamental derivative is positive, whereas for
715 ≤ T ≤ 970K the fundamental derivative is negative.
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2. Recollections of the Chapman–Jouguet theory (see [6, pp. 142–160]).
Based on the experiments of [13, 16, 17], we propose to take into account out-of-
thermodynamic-equilibrium states for solving the Riemann problem. By “out-of-
equilibrium states” we mean metastable states, or overheated states, i.e., pure fluids
that have a pressure P and a specific volume τ that lie in the saturation dome.
Existence of such states is due to some phenomena such as capillarity, for example.
In [13, 16, 17] it was observed that phase transition waves were self-similar waves, so
that Rankine–Hugoniot relations hold across them:

[
F (U)− σU

]
= 0, where σ is the

velocity of the discontinuity. These relations can be put in the following form (see [6],
for example):

Ṁ =
u1 − u0

τ1 − τ0
,(2.1a)

Ṁ2 = −P1 − P0

τ1 − τ0
,(2.1b)

ε1 − ε0 +
1

2
(P1 + P0)(τ1 − τ0) = 0,(2.1c)

where Ṁ is the flow rate across the wave: Ṁ = ρ(u − σ). The interest of writing
the Rankine–Hugoniot relations as in (2.1) is that the last two equations are purely
thermodynamic. Equation (2.1b) describes the Rayleigh line in the (τ, P ) plane.
Equation (2.1c) describes the Crussard curve. The very difference with classical shock
relations is that the set of the downstream states is not described with the same
equation of state as that of the upstream one. For that sort of wave, we can use the
CJ theory. Let us recall the main points of that theory (see [6] or [4] for the details
and the proofs).

Property 1 (position of the initial state and the Crussard curve). Suppose that
the equation of state (τ, s) �→ P (τ, s) has the properties

(2.2a)

(
∂P

∂τ

)
s

< 0 and

(
∂P

∂s

)
τ

> 0,

and the reaction is exothermic:

(2.2b) ε1(τ0, p0) < ε0(τ0, p0).

Then the point A0 corresponding to the upstream state is under the Crussard curve.

In the first property, note that (2.2a) is always true provided that γ and Γ are
both positive (thanks to (1.7c)). We will find in section 3.1 a condition to ensure the
exothermic property (2.2b).

Property 2. Suppose, moreover, that

(
∂2P

∂τ2

)
s

> 0;

then the Crussard curve is convex. Hence, the Rayleigh line (2.1b) and the Crussard
curve are crossing in zero or two points.

Note that the Property 2 supposes that the pressure can be differentiated twice,
which is not the case in our application, because of the local loss of derivative due
to phase transition. Nevertheless, if Properties 1 and 2 hold for the equation of state
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detonations

deflagrations

τ0

P0

P

τ

A0

Fig. 6. The Crussard curve related to an initial point (τ0, P0). The curve is cut into three
parts: the upper one is the detonation branch, the lower one is the deflagration branch, and the
middle part does not match the negative slope of the Rayleigh line.

of the downstream states, then the Crussard curve can be schematically drawn as
in Figure 6. The Crussard curve is cut into two parts: the upper part is called the
detonation branch, and the lower one is the deflagration branch. In the middle part
of the curve, P1−P0

τ1−τ0
> 0. This does not match the negative slope of the Rayleigh line

(2.1b).

Each part of the Crussard curve is itself cut into two parts, separated by the
tangential point of the Rayleigh line with the Crussard curve (the existence of such
a tangential point can be shown under some assumption on the asymptotic behavior
of equation of state). Both branches are schematically drawn in Figure 7.

P

τ

P0

τCJ

PCJ

strong detonations

τ0

P

P0

PCJ

τ0 τCJ τ

weak deflagrations

strong deflagrations

weak detonations

Fig. 7. Zoom on the Crussard curve; on the left side, the detonation branch (P ≥ P0) is cut
into two parts by the CJ point. The upper part is the part of the strong detonations, and the lower
part is called the part of the weak detonations. On the right side, the deflagration branch (P ≤ P0)
is cut into two parts by the CJ point. The upper part is the part of the weak deflagrations, and the
lower part is called the part of the strong deflagrations.
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state 0�

vaporization
state �

contact surface

sonic wave

state 0

Fig. 8. Structure of the half-Riemann problem: the state 0 is linked with the state 0� by a
forerunner sonic wave (rarefaction wave or shock). Then the state 0� and the state � are linked
with a deflagration wave. Eventually, there is a contact discontinuity.

Property 3. Along the Crussard curve, the velocity |v| = |u − σ| has a local
minimum on the CJ-detonation point and a local maximum on the CJ-deflagration
point. More precisely, we have the following properties:

for a strong detonation : |v0| > c0, |v1| < c1,
for a weak detonation : |v0| > c0, |v1| > c1,
for a weak deflagration : |v0| < c0, |v1| < c1,
for a strong deflagration : |v0| < c0, |v1| > c1.

This last property is very important because it can allow us to know the structure
of the half-Riemann problem with a combustion wave provided that we know which
“family” the combustion wave belongs to. In our case, we are interested in waves
which transform a heavy phase into a lighter one. Therefore, we expect that τ will
increase, so that we will concentrate only on the deflagration branch of the Crussard
curve.

Thanks to Property 3, we can give the structure of the Riemann problem in the
case of strong and weak deflagrations. In both cases, from Property 2, the deflagration
wave is always subsonic relative to the liquid; for example, if the liquid is on the left,
we have Ṁ > 0, and u0 − c0 < σ < u0. For the position of the wave relative to the
fields of 1, we have that

• if the wave is a strong deflagration, then σ < u1 − c1;
• if the wave is a weak deflagration, then u1 − c1 < σ < u1.

In [4, p. 230], it is shown that under the assumption that a wave is a deflagration
and that across that wave, the mass fraction of gas always increases, the reaction is a
weak deflagration. We will suppose that we are always in that case in the following.

The structure of the Riemann problem with weak deflagrations is drawn in Figure
8. The problem for deflagrations is that the Lax characteristic criterion is not satisfied
(see [6, p. 154]), and the Riemann problem cannot be solved with only the classical
relations across the sonic wave and the Rankine–Hugoniot relations across the subsonic
wave. There remains one indeterminate. The supplementary relation needed is often
called “the kinetic closure.”

3. Application to the solution of the Riemann problem with vapor-
ization.

3.1. Useful verifications for the use of CJ theory. In this section, we check
whether the inequalities needed for applying the CJ theory hold.
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Theorem 3.

1. If both equations of state are convex and if dPsat

dT > 0, then inequalities (2.2a)
hold.

2. If (P, τ) lie in the saturation dome and under the condition

(3.1)
γ

Γ
− T

P

dPsat

dT
> 0,

then the inequality (2.2b) holds.
Proof. According to the identity (1.7c), it is sufficient to have γ and Γ > 0. This

is supposed for pure fluids, and this is ensured for the mixture equation of state if
dPsat

dT > 0, and thus (2.2a) holds.
Let us now check if the inequality (2.2b) is ensured. We suppose that (P, τ) lie

in the saturation dome, so that the corresponding equilibrium downstream state is a
mixture,

ε1(τ, P ) = εm(τ, P ) = ylεl(P, τl(P )) + (1 − yl)εv(P, τv(P )),

and we want to know if ε1(P, τ)− ε0(P, τ) < 0, the state 0 being, of course, described
by the liquid equation of state. For this, we denote

δε(yl) = ylεl(P, τl(P )) + (1 − yl)εv(P, τv(P )) − εl(P, ylτl(P ) + (1 − yl)τv(P )),

and we immediately see that δε(1) = 0. It remains to show that δε is an increasing
function:

dδε

dyl
(yl) = εl(P, τl(P )) − εv(P, τv(P ))

−(τl(P ) − τv(P ))

(
∂εl
∂τ

)
P

(P, ylτl(P ) + (1 − yl)τv(P )).

Integration of the identity dε + Pdτ = Tds across the saturation dome leads to

εl(P, τl(P )) − εv(P, τv(P )) + P (τl(P ) − τv(P )) = T (sl(P ) − sv(P )),

so that

dδε

dyl
(yl) =−P (τl(P ) − τv(P )) + T (sl(P ) − sv(P ))

−(τl(P ) − τv(P ))

(
∂εl
∂τ

)
P

(P, ylτl(P ) + (1 − yl)τv(P )),

which can be cast into the following form, thanks to (1.5) and (1.7f):

dδε

dyl
(yl) = P (τv − τl)

(
γ

Γ
− T

P

dPsat

dT

)
.

As P > 0, τv − τl > 0, and as (3.1), δε increases, so that δε ≤ δε(1) = 0. Thus, (2.2b)
holds.

Remark 1. Supposing that (τ, P ) is always in the saturation dome is not a strong
assumption. Indeed, as the upstream state is slightly compressible, its specific volume
cannot increase a lot across a sonic wave, and it is likely that a metastable liquid with
a specific volume equal to that of a gas at equilibrium cannot exist, except just near
the critical point.
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Remark 2. The condition (3.1) holds at least in the following two frameworks:
1. The terms γ

Γ and T
P

dPsat

dT can easily be compared near the saturation curve.
Indeed, if we use (1.7b) with saturated variables, we find

(3.2)
T 2(γg − Γ2)

Pτ

dsl
dT

=
γ

Γ
− T

P

dPsat

dT
,

so that we have dδε
dT (1) = (τv − τl)

T 2

τ
γg−Γ2

Γ
dsl
dT .

Thus, if the liquid saturation curve is regular (which is always the case), then
dsl
dT > 0, so that condition (3.1) is ensured.

2. For a simple model, such as perfect gas or stiffened gas, we have

γ

Γ
=

γ̄
(
1 + P∞

P

)
γ̄ − 1

,

so that γ
Γ does not depend on the specific volume. Thus, equality (3.2) holds

for any τ , so that condition (3.1) always holds.
Remark 3. The same calculations can be made for liquefaction. Then we find

that, near the vapor saturation curve,

dδε

dT
(1) = (τl − τv)

T 2

τ

γg − Γ2

Γ

dsv
dT

.

Thus, if the fluid is regular, then dsv
dT < 0, and as τl − τv < 0, then dδε

dT (1) > 0, so
that locally we have εm − εv < 0 and the CJ theory can be used. If the fluid is
retrograde, then we find that locally εm − εv > 0 and the CJ theory may be used,
but by exchanging the upstream and the downstream states. Note that the Hugoniot
curves can enter the saturation dome only in the retrograde case.

The CJ theory also relies heavily on the convexity properties of the Crussard
curve (see Property 2 of section 2), which are ensured if the fundamental derivative
G is positive. Nevertheless, even if we suppose that the liquid and the gas equations
of state have a positive fundamental derivative, the mixture equation of state can
have a negative fundamental derivative, as was shown numerically in section 1.8.
This nonpositivity of the fundamental derivative can lead to a wrong behavior of
the Crussard curve as shown in Figure 9: the CJ points do not exist anymore, and
all the undercompressive downstream states are strong deflagrations. If the sign of
the fundamental derivative changed many times along the Crussard curve, we could
expect to observe several CJ points. From now, we suppose that G > 0.

3.2. Entropy growth criterion. As the particles are crossing the front from
the liquid area to a mixture or pure phase area, we have to check whether the entropy
growth criterion is ensured, i.e., if the entropy of the downstream state (gas or mix-
ture) is greater than the entropy of the upstream state (liquid). We first prove the
following theorem.

Theorem 4. Let s = s0 be a liquid isentrope that crosses the liquid saturation
curve. To any metastable point (τ0, P0) on that isentrope, we map the point (τP , P0),
point of constant pressure deflagration (see Figure 10). If we suppose that

(3.3) ∀(τ0, P0) γ(τ0, P0) > γ(τP , P0),

then s(τP , P0) > s0.
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0 0.01 0.02 0.03

Specific volume (kg.m-3)
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1.4e+06

1.45e+06

1.5e+06

1.55e+06

Pressure (Pa)
saturated liquid
saturated gas
Crussard curve
Chordinitial point

Fig. 9. Wrong behavior of the mixture Crussard curve if the condition G > 0 is violated. We
notice that the Crussard curve is concave, which induces no existence of any CJ point. For a more
complicated pair of equations of state, we could expect to observe two or three tangential points if
the sign of G changed two or three times along the Crussard curve.

s = s0P

τ

P0

τ0 τP

C (τ0, P0)

τinf

Fig. 10. Entropy growth criterion. To any point (τ0, P0) on a given isentrope s = s0, we
associate the point on the Crussard curve (τP , P0). The liquid saturation curve is drawn with
dashed lines. When τ0 is on the liquid saturation curve, we have τP = τ0 so that sP = s0. Thus,
to show that sP ≥ s0, we only have to prove that entropy of the point P grows when τ0 increases.
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Proof. To any point (τ0, P0) on this isentrope, we associate the point (τP , P0),
the point of constant pressure deflagration (see Figure 10). For greater convenience
in notation, we suppose that (τP , P0) is a mixture state (i.e., all the linked quantities
have m). τP is defined by the implicit equation

(3.4) εm(τP , P0) − εl(τ0, P0) + P0(τP − τ0) = 0.

Differentiation of (3.4) with respect to τP is equal to γm

Γm
, which never vanishes, so

that according to the implicit function theorem, τP is a C 1 function of τ0 and P0.
Moreover, we can calculate its derivative with respect to τ0 and P0:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(
∂τP
∂τ0

)
P0

=
γl
γm

Γm

Γl
,

(
∂τP
∂P0

)
τ0

=
τ0

γmP0

(
Γm(Γl + 1)

Γl
− τP

τ0
(Γm + 1)

)
.

Besides, as we supposed that the points (P0, τ0) belong to the same isentrope, P0

is actually a function of τ0 with dP0

dτ0
= −γlP0

τ0
, so that τP is a function of the only

variable τ0 and

dτP
dτ0

=

(
∂τP
∂τ0

)
P0

+
dP0

dτ0

(
∂τP
∂P0

)
τ0

=
γl
γm

(
−Γm +

τP
τ0

(Γm + 1)

)
.

Now, we calculate the entropy variation of the point τP when the point (P0, τ0) follows
the isentrope s = s0:

ds

dτ0
=

dτP
dτ0

(
∂s

∂τ

)
P

+
dP0

dτ0

(
∂s

∂P

)
τ

=
γmP0

TΓm

(
γlΓm

γm

(
τP
τ0

− 1

)
+

τP
τ0

(
γl
γm

− 1

))
.

According to the hypothesis (3.3), γl > γm. Moreover, as we have τP − τ0 > 0, s is
an increasing function of τ0. Furthermore, in the limit of no overheating, we have

lim
τ0→τinf

τP (τ0, P0) = τinf ,

where τinf is the crossing point of the isentrope s = s0 with the saturation curve.
Thus lim

τ0→τinf

s(τP , P0) = s0. As a conclusion,

∀τ0 ≥ τinf s(τP , P0) ≥ s0,

which ends the proof.
Remark (about the hypothesis (3.3)).
1. We know that near the saturation curve, we have γl > γm. For actual data,

we have γl � γm. Thus we can suppose that any γ is greater than any γm.
2. γl > γv just means that the liquid phase is very much less compressible than

the gas phase (see, e.g., [22, Chapter XI]).
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Given an initial point, we know that the entropy grows from the constant pressure
point to the CJ point, so that if the entropy growth criterion holds for the constant
pressure deflagration point, it holds for all the downstream states between the constant
pressure deflagration point and the CJ point; i.e., we have the following corollary.

Corollary 1. Under the same hypothesis as in Theorem 4, the entropy growth
criterion holds for all the weak deflagration points.

3.3. Behavior of the Crussard curve near the gas saturation curve. In
section 1.5, the behavior of the isentropes near the saturation curves was studied. The
difference of the differential behavior of the pure phase and the mixture equation of
state induced kinks in isentropes. Now we want to study the behavior of the Crussard
curve when it crosses the vapor saturation curve. It is more difficult than the study
of the isentrope, because the Crussard curve depends not only on the local variables,
but also on the starting point (τ0, P0).

3.3.1. General study. We denote by C the point at which the Crussard curve
crosses the saturation curve, and by

ζ = − τ

P

dP

dτ |C

the adimensioned slope of the Crussard curve.
The first thing we will prove for the behavior of the Crussard curve near the

saturation curve is that it can be parameterized by τ under some conditions.
Theorem 5. If all the equations of state are convex and if Γ > 0, then ζ > 0.

With the same hypothesis, the Crussard curve can be parameterized by τ , even near
the saturation curve.

Proof. As proved in [12, p. 101], we have

(3.5) ζ =
γ
Γ − ΔP

2P
1
Γ + Δτ

2τ

.

Across a deflagration wave, we have Δτ > 0 and ΔP < 0. Moreover, we proved that
Γm > 0, and we suppose that Γ > 0. The conditions γ > 0 and γm > 0 were already
supposed to ensure the convexity of the specific energy. Then ζ > 0. If we combine
(3.5) with the identities near the saturation boundary of section 1.5, we get

(3.6)
ξ − ζ

Γ

(
1 + Γ

Δτ

2τ

)
=

ξ − ζm
Γm

(
1 + Γm

Δτ

2τ

)
.

Across a deflagration, we have Δτ > 0. Then

ξ − ζ

ξ − ζm
> 0,

which means that the Crussard curve, near a boundary, can be parameterized by τ .
As ζ > 0, the Crussard curve is a diffeomorphism of τ in each side of the saturation
curve. As the Crussard curve can locally parameterize the Crussard curve near a
boundary, we conclude that the Crussard curve is a homeomorphism of τ .

Remark. As the Crussard curve is a decreasing homeomorphism in τ , the point
of constant pressure deflagration is uniquely defined.

To be more precise on the relative behavior of the isentropes, the Crussard curve,
and the saturation curve, we will prove that the following theorem holds.
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Theorem 6. The relative behavior of the isentropes and the Crussard curves,
which gives the nature of the deflagration on each side of the saturation curve, follows
the alternative

• if γ > ξ, then
– either ξ ≥ ζ (Case 1), and the deflagration is weak on both sides of the

saturation curve,
– or ξ < ζ (Case 2), and point C cannot be a weak deflagration simulta-

neously on both sides of the saturation curve;
• if γ < ξ, then

– either ξ ≤ ζ (Case 3), and the deflagration is strong on both of the sides
of the saturation curve,

– or ξ > ζ (Case 4), and the deflagration cannot be simultaneously strong
on the mixture side and weak on the pure phase side.

Proof. Equation (3.6) can be rewritten as

ξ − ζ

ξ − ζm
=

1
Γm

+ Δτ
2τ

1
Γ + Δτ

2τ

so that the discontinuity in the slope of the Crussard curve is directly linked with the
sign of Γm − Γ (we recall that Γm > 0 and that Γ has the same sign as Γm near the
saturation curves). Equation (1.14) induces a separation into the following cases:

• γ > ξ.
If γ > ξ then we also have γm > ξ. As γm < γ, we have γm−ξ

γ−ξ ≤ 1, so that
Γm ≤ Γ. Therefore

ξ − ζ

ξ − ζm
≥ 1.

Suppose first that ξ−ζ ≥ 0 (Case 1). Then ξ−ζ ≥ ξ−ζm so that ζ ≤ ζm ≤ ξ.
In that case, as shown in Figure 11, the relative behavior of the isentrope and
the Crussard curve shows that on both sides of the saturation curve, the
downstream state is a weak deflagration (see Figure 11). In that case, we
have ζ ≤ ζm ≤ ξ ≤ γm ≤ γ.
Suppose now that ξ − ζ ≤ 0 (Case 2). Then we have ξ ≤ ζm ≤ ζ. The
nature of the deflagration is given by the relative position of the slope of the
Crussard curve and the Rayleigh line, so that on the point saturation curve,
there are three subcases (see Figure 12):

– If the Rayleigh line has a lower slope than both of the slopes of the
Crussard curve, then the two parts match with strong deflagrations.
Thus, we have γm ≤ ζm and γ ≤ ζ (see Figure 12(a)).

– If the slope of the Rayleigh line is between the slopes of the Crussard
curve, then the mixture Crussard curve matches with strong deflagra-
tions, whereas the pure phase Crussard curve matches with weak defla-
grations. In that case, we have γm ≤ ζm and γ ≥ ζ (see Figure 12(b)).
In that case we have ξ ≤ ζm ≤ γm ≤ γ ≤ ζ.

– If the Rayleigh line has a greater slope than both of the slopes of the
Crussard curve, then point C is a weak deflagration with respect to the
pure and the mixture Crussard curves. Therefore, we have γm ≥ ζm and
γ ≥ ζ (see Figure 12(c)).
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ζ

γm

ζm

P

τ

C

Fig. 11. Qualitative relative behavior of the isentrope and of the Crussard curve when they
cross the vapor saturation curve in the Case 1. Arrows represent the half-tangent of the Crussard
curve (ζ) and of the isentrope (γ).

P

τ

γ ζ

P P

τ

τ

γm

ζm

ζm

γm

ζγ

(b)(a)

(c)

ζ γ

ζm

γm

C C

C

Fig. 12. Qualitative relative behavior of the isentrope and of the Crussard curve when they
cross the vapor saturation curve, Case 2. Arrows represent the half-tangent of the Crussard curve
(ζ) and of the isentrope (γ).
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P

τ

ζ

ζm

γm

γ

C

Fig. 13. Qualitative relative behavior of the isentrope and of the Crussard curve when they
cross the vapor saturation curve, Case 3. Arrows represent the half-tangent of the Crussard curve
(ζ) and of the isentrope (γ).

• γ < ξ.
If γ < ξ, then we also have γm < ξ. As we know that γm ≤ γ, we have
γm−ξ
γ−ξ ≥ 1, so that Γm ≥ Γ (thanks to (1.14)). Therefore

ξ − ζ

ξ − ζm
≤ 1.

We suppose first that ξ− ζ ≤ 0 (Case 3). Then we immediately have ζ ≤ ζm.
Thus, we have γm ≤ ζm and γ ≤ ζ, so that point C matches on both sides
of the Crussard curve with strong deflagrations (see Figure 13). In that case
we have ζm ≤ ζ ≤ ξ ≤ γ ≤ γm.
We suppose now that ξ − ζ ≥ 0 (Case 4). Then we have ζm ≤ ζ ≤ ξ. The
nature of the deflagration is given by the relative position of the slope of the
Crussard curve and the Rayleigh line, so that three subcases may happen (see
Figure 14):

– If the Rayleigh line has a lower slope than the slopes on both sides of the
Crussard curve in C, then point C is a weak deflagration with respect
to the mixture and the pure phase Crussard curve. We then have γ ≤ ζ
and γm ≤ ζm (see Figure 14(a)).

– If the slope of the Rayleigh line is between the slopes on each side of the
Crussard curve, then point C is a strong deflagration for the mixture
Crussard curve and a weak deflagration for the pure phase Crussard
curve (see Figure 14(b)). In that case we have γm ≤ ζm ≤ ζ ≤ γ ≤ ξ.

– If the Rayleigh line has a lower slope than both of the slopes of the
Crussard curve, then point C is a strong deflagration with respect to
the pure and the mixture Crussard curve. Therefore, we have γm ≥ ζm
and γ ≥ ζ (see Figure 14(c)).

This ends the proof.

3.3.2. Ill-posedness of the CJ closure. The following result comes immedi-
ately from Theorem 6.
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Fig. 14. Qualitative relative behavior of the isentrope and of the Crussard curve when they
cross the vapor saturation curve, Case 4. Arrows represent the half-tangent of the Crussard curve
(ζ) and of the isentrope (γ).

Corollary 2. Let (P0, τ0, u0) be an initial state of liquid at thermodynamic
equilibrium, such that the isentrope Cs coming from this point enters the saturation
dome. If (P �

0 , τ
�
0 ) is a point in Cs, we build (P �, τ�) in the following way:

• if (P �
0 , τ

�
0 ) is not in the saturation dome, then P � = P �

0 and τ� = τ�0 ;
• if (P �

0 , τ
�
0 ) is in the saturation dome, then it is linked with (P �, τ�) with a CJ

deflagration.
If (P �, τ�) can reach the pure gas phase, then the curve (P �, τ�) is discontinuous.

Proof. We suppose that the set described is continuous. As (P �, τ�) can reach the
saturation dome, it crosses the gas saturation curve at a point (Pc, τc). As it is a CJ
point, we have γm = ζm, so that we are in Case 4 in Figure 14. The third subcase of
Case 4 is excluded because the Rayleigh line is tangential with the Crussard curve, so
that the slope of the Rayleigh line is greater than the slope of the Crussard curve in
the pure phase side. Thus, the point � matches with a weak deflagration with respect
to the pure phase Crussard curve. As a consequence, the Crussard curve has another
CJ point that lies in the pure phase area (see Figure 15), so that the curve CCJ even
has a branch in the pure gas area.

Eventually, we can state the following theorem.
Theorem 7. With the same hypothesis of Corollary 2, if we model the vaporiz-

ation wave by a CJ deflagration, then the resulting solution of the Riemann problem
is ill-posed in the L1 sense: the solution does not depend continuously on the initial
state.

Proof. We fix a point for x < 0 in the liquid area for which the conditions of
Corollary 2 hold, and we suppose that on the right, there is some gas. The Riemann
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τ

P

τ�0

�

P �
0

Fig. 15. Qualitative behavior of the Rayleigh line and the Crussard curve when the Crussard
curve crosses the saturation curve on a mixture CJ point. As ζm ≤ ζ, and as the Rayleigh line
is tangential to the mixture Crussard curve, we are in the third subcase of Case 4 of the proof of
Theorem 6. As a consequence, the pure phase side matches with a weak deflagration, too, so that
there exists another CJ point.

problem is composed (from left to right) of a sonic wave, a vaporization wave (if the
intermediate state is metastable), a contact discontinuity (across which P and u are
constant), and a sonic wave on the gas side. As is usually done [6], to solve the
Riemann problem, we intersect the wave curve of the downstream state (sonic wave
and maybe followed by a CJ vaporization) of the left side with the wave curve of the
sonic wave of the right side, in the plane (P, u). Corollary 2 says that the wave curve
of the left side is composed of (at least) two branches (see Figure 16). So that the gas
wave curve intersects the liquid wave curve either in one mixture point (case (I)), or
in two points (case (II)), or in one pure gas point (case (III)). Existence of case (I)
and case (III) implies that we must jump from the mixture to the gas branch of the

P

u

(III)

(II)

(I)

Fig. 16. Dashed lines: the wave curve of the liquid side. Solid lines: different wave curves
for the gas side, depending on the initial state. In case (I), the gas wave curve intersects the liquid
one in one mixture point. In case (II), the gas wave curve intersects the liquid curve in the two
branches: one mixture and one pure gas point. In case (III), the gas wave curve intersects the liquid
curve only on the pure phase branch.
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liquid wave curve. However, jumping from one branch to the other means that we
significantly change the vaporized state (thus the L1

loc norm, too) but hardly change
the initial state.

We finish this paper by drawing the curve CCJ described in Corollary 2 for models
we dealt with in section 1.

Example 1: The two perfect gas model.
As an example, we take the two perfect gas model. As we said before, this model

enables us to make all the calculations, because the mixture equation of state is
explicit.

• Mixture CJ point.
In the case when the downstream state is a mixture, the equation of the
Crussard curve is the following:

Pτ2
Γ2

− P0τ0
Γ2

+
1

2
(P + P0)(τ − τ0) = 0,

which gives an expression of τ as a function of P : τ = τ0 − 2(Pτ2−P0τ0)
Γ2(P+P0)

. The

CJ point is such that dτ
dP (PCJ) = τ−τ0

P−P0
, so that we find the following equation

for PCJ :

(
P

P0

)2

− 2
τ

τ0

P

P0
+ 1 = 0,

whose undercompressive solution is

PCJ = P0

⎛
⎝τ0
τ2

−

√(
τ0
τ2

)2

− 1

⎞
⎠ .

τCJ is then given by

τCJ = τ2

⎛
⎜⎜⎜⎜⎝
τ0
τ2

+
2
√

τ0
τ2

− 1

Γ2

(
τ0
τ2

+ 1 −
√(

τ0
τ2

)2

− 1

)
⎞
⎟⎟⎟⎟⎠ .

Of course, this point can be chosen only when the mixture is stable, that
means, when τCJ ≤ τ1.

• Vapor CJ point.
The equation of the Crussard curve is then

τP

Γ1
− τ0P0

Γ2
+

1

2
(P + P0)(τ − τ0) = 0.

As in [10], we first calculate the point of constant specific volume detonation,
i.e., the downstream state such as τ = τ0: Pτ = Γ1

Γ2
P0. If we take the

calculations of [10], we get

PCJ =
Γ1P0

Γ2

(
1 −

√(
1 − Γ2

Γ1

)(
1 +

Γ2

Γ1
+

2Γ2

Γ1 (γ1 + 1)

))
.
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τ1

τ0
τ2

τ2

τCJ

Fig. 17. Qualitative behavior of the mixture and the vapor CJ points for the two perfect gas
model. The horizontal dashed line represents the vapor saturation curve. The increasing line (dashed
line, then solid line) is the set of the CJ points for the vapor equation of state. The other function
(solid line, then dashed line) is the set of the mixture CJ points. The solid lines of the curves
correspond to the part in which they match with the equation of state used.

We remark that PCJ is a linear function of P0. If we use the equation of the
Crussard curve, we get the following expression for τCJ :

τCJ = τ0

γ2+1
γ2−1P0 + PCJ

γ1+1
γ1−1PCJ + P0

.

As PCJ is a linear function of P0, we see that τCJ is a linear function of τ0.
The CJ point of pure vapor can be chosen only when τCJ ≥ τ1.

The two functions τCJ , for the vapor and mixture equations of state, are drawn in
Figure 17, highlighting the fact that they cannot be linked continuously.

Example 2: The two stiffened gas model.
As already mentioned, the mixture equation of state cannot be computed when

we deal with the two stiffened gas model. Therefore we can show only a numerical
computation as an illustration. We chose the model of dodecane for which coefficients
lie in Table 2. We begin on the point P0 = 900000 Pa with a specific volume of
τ0 = 0.0025 kg.m−3. We compute all the states 0� that can be linked with that initial
point via an isentrope. If the state 0� is overheated (i.e., lies in the saturation dome),
then we compute the CJ point(s) corresponding to a mixture downstream state and/or
to a pure vapor downstream state. Numerical results are in Figure 18.

4. Conclusion. In section 1 we studied the model with two convex equations of
state. In particular, we gave a necessary and sufficient condition for the convexity of
the mixture equation of state resulting from an entropy optimization:

dPsat

dT
> 0.

Then we proposed to take into account metastable states in the solution of the Rie-
mann problem. For that, we used the CJ theory. We first proved that this theory
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Fig. 18. Set of all the CJ points that can be reached from a given point. The isentrope is
drawn in green and is nearly vertical. In blue, the set of all the CJ points is drawn, showing a jump
between the mixture CJ points and the pure vapor CJ point.

can be applied. We emphasized the link between whether the metastable states are
overheated or overcooled and the retrograde or regular behavior of the fluid. In one
particular case, when γ/Γ does not depend on τ , the condition of regular behavior of
the fluid is necessary and sufficient to ensure that the energy of a metastable liquid
is lower than the energy of a mixture at thermodynamic equilibrium with the same
pressure and specific volume.

For the entropy growth condition, we proved that it is ensured provided that
γl > γm and γl > γv.

The problem with the deflagration waves is that the Lax characteristic criterion
is not ensured, so that the problem is underdeterminated. The only thing that we can
state with no further hypothesis is that the set of all the downstream states lies in
an area limited on the top by the set of all the constant pressure deflagrations, which
is continuous, and limited below by the set of all the CJ points, which was proved
to be discontinuous thanks to a detailed study of the behavior of the Crussard curve
near the saturation curve. As the set of all the CJ points is discontinuous, the use
of the CJ closure as in [10] for solving the Riemann problem leads to a solution that
does not depend continuously on its initial data in general. A first step in finding a
right kinetic closure would be, for example, to study traveling waves for a relaxation
model as given in [3]. As we know that liquid-vapor phase transition is governed by
a competition between relaxation phenomena and thermal conduction, it would be
more relevant (but much harder) to study traveling waves with a relaxation model
and thermal conductivity.
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sa vapeur pour les modèles d’écoulements diphasiques, Int. J. Thermal Sci., 43 (2003),
pp. 265–276.

[10] O. Le Métayer, J. Massoni, and R. Saurel, Modelling evaporation fronts with reactive
Riemann solvers, J. Comput. Phys., 205 (2005), pp. 567–610.

[11] T. P. Liu, The Riemann problem for general systems of conservation laws, J. Differential
Equations, 18 (1975), pp. 218–234.

[12] R. Menikoff and B. J. Plohr, The Riemann problem for fluid flow of real materials, Rev.
Modern Phys., 61 (1989), pp. 75–130.

[13] J. R. Simões-Moreira and J. E. Shepherd, Evaporation waves in superheated dodecane, J.
Fluid Mech., 382 (1999), pp. 63–86.

[14] M. Slemrod, Dynamic phase transitions in a van der Waals fluid, J. Differential Equations,
52 (1984), pp. 1–23.

[15] P. A. Thompson, A fundamental derivative in gasdynamics, Phys. Fluids, 14 (1971), pp. 1843–
1849.

[16] P. A. Thompson, G. C. Carofano, and Y.-G. Kim, Shock waves and phase changes in a
large heat capacity fluid emerging from a tube, J. Fluid. Mech., 166 (1986), pp. 57–92.

[17] P. A. Thompson, H. Chaves, G. E. A. Meier, Y.-G. Kim, and H. D. Speckman, Wave
splitting in a fluid of large heat capacity, J. Fluid. Mech., 185 (1987), pp. 385–414.

[18] P. A. Thompson and K. Lambrakis, Negative shock waves, J. Fluid Mech., 60 (1973), pp. 187–
208.

[19] A. Voss, Exact Riemann Solution for the Euler Equations with Nonconvex and Nonsmooth
Equation of State, Ph.D. thesis, Rheinisch-Westfälischen Technischen Hochschule Aachen,
Aachen, Germany, 2005; available online at http://www.it-voss.com/papers/thesis-voss-
030205-128-final.pdf.

[20] B. Wendroff, The Riemann problem for materials with nonconvex equations of state. I.
Isentropic flow, J. Math. Anal. Appl., 38 (1972), pp. 454–466.

[21] B. Wendroff, The Riemann problem for materials with nonconvex equations of state. II.
General flow, J. Math. Anal. Appl., 38 (1972), pp. 640–658.

[22] Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High Temperature Hydro-
dynamic Phenomena, Vol. II, Academic Press, New York, London, 1967.



SIAM J. APPL. MATH. c© 2008 Society for Industrial and Applied Mathematics
Vol. 68, No. 5, pp. 1360–1377

SELF-SIMILAR SOLUTIONS FOR THE TRIPLE POINT PARADOX
IN GASDYNAMICS∗
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Abstract. We present numerical solutions of a two-dimensional Riemann problem for the com-
pressible Euler equations that describes the Mach reflection of weak shock waves. High resolution
finite volume schemes are used to solve the equations formulated in self-similar variables. We use
extreme local grid refinement to resolve the solution in the neighborhood of an apparent but math-
ematically inadmissible shock triple point. The solutions contain a complex structure: instead of
three shocks meeting in a single standard triple point, there is a sequence of triple points and tiny
supersonic patches behind the leading triple point, formed by the reflection of weak shocks and ex-
pansion waves between the sonic line and the Mach shock. An expansion fan originates at each triple
point, resolving the von Neumann triple point paradox.
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1. Introduction. Consider a plane normal shock in an inviscid, compressible,
perfect gas which hits a fixed wedge with half angle θw, as depicted in Figure 1. For
a given upstream state with density ρ = ρr, velocity u = (u, v) = (0, 0), and pressure
p = pr, the fluid properties downstream of a fast (i.e., u + c) shock are given by

ρl
ρr

=
(γ + 1)M2

2 + (γ − 1)M2
,

ul

cr
=

2

γ + 1

(
M − 1

M

)
,(1.1)

pl
pr

=
2γ

γ + 1
M2 − γ − 1

γ + 1
,

where γ is the ratio of specific heats and M > 1 is the shock Mach number, defined
as the shock speed given by the Rankine–Hugoniot relations divided by the upstream
sound speed cr =

√
γpr/ρr. Following interaction of the shock with the wedge wall,

a number of self-similar reflection patterns are possible, depending on the values of
M and θw. The simplest pattern is regular reflection, in which there is a single
reflected shock, depicted in Figure 1(a). For small wedge angles or strong shocks,
regular reflection is replaced by Mach reflection. The simplest type of Mach reflection
is called single Mach reflection, in which the incident and reflected shocks move off
the wedge and a single shock called the Mach stem extends down to the wall; see
Figure 1(b). The point where the three shocks meet is called the triple point, and a
contact discontinuity also originates there.
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Fig. 1. A planar shock moving from left to right impinges on a wedge. After contact, I indicates
the incident shock and R indicates the reflected shock. Regular reflection is depicted in (a) and Mach
reflection in (b). In (b), the dotted line S indicates a contact discontinuity and M is the Mach stem.
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Fig. 2. An enlargement of the incident and reflected shock intersections in Figure 1. Regular
reflection is depicted in (a) and Mach reflection in (b). The constant states upstream and down-
stream of the incident shock are denoted by Ur and Ul. Whether or not constant states indicated by
the question marks in (b) exist depends on the strength of I.

The basic equations that describe regular and Mach reflection were formulated
by von Neumann in 1943 [10] and are known as two-shock and three-shock theory,
respectively. His analysis is based on the assumption that Mach reflection solutions
can be locally approximated by constant states separated by plane discontinuities (this
is also true, in a finite neighborhood, for flows that are supersonic at the reflection
point; see Figure 2 for an illustration of this assumption). The oblique shock relations
of gasdynamics connect the constant states. To explain transition between regular and
Mach reflection, von Neumann suggested several criteria. For weak incident shocks he
proposed that transition occurs at the detachment angle, which is a function of M . For
a shock with a given M impinging on a wedge, when the wedge angle is larger than the
detachment angle there are two regular reflection solutions, one with a strong reflected
shock and one with a weak reflected shock (only the weak reflected shock solution is
observed experimentally). At the detachment angle the two solutions coalesce, and
for smaller wedge angles there is no regularly reflected solution. This is a possible
condition for transition but has not been definitively established. Several criteria for
transition can be obtained using von Neumann’s approach; see Henderson [7] for a
detailed discussion.

Good agreement between the von Neumann theory and experiment is obtained
for regular and Mach reflection for a wide range of conditions. For sufficiently weak
shocks, however, application of the three-shock theory indicates that triple point so-
lutions such as those depicted in Figure 2(b) do not exist. Transition from regular
to Mach reflection is impossible, and the theory is unable to predict what kind of
reflection does occur for weak shocks reflecting off thin wedges. However, experi-
ments in which a very weak shock reflects off a thin wedge appear to show a pattern
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of reflection containing three shocks meeting at a triple point. This discrepancy is
referred to as the von Neumann, or triple point, paradox.

Over the years, a number of ways to resolve the paradox have been proposed. A
singularity could occur in the solution behind the triple point [15] or in the reflected
shock curvature at the triple point [14], so that a local approximation of the solution
by plane waves separated by constant states is invalid; there could be an unobserved
fourth shock at the triple point [6]; or the reflected shock could decay into a continuous
wave before hitting the incident shock, so that there is no triple point [4]. In 1947
Guderley [5] proposed the existence of an expansion fan and a supersonic region
behind the triple point in a steady weak shock Mach reflection (the same triple point
paradox occurs in the case of steady flow as in unsteady reflection off a wedge).
He demonstrated that one could construct local solutions consisting of three plane
shocks, an expansion fan, and a contact discontinuity meeting at a point. However,
despite intensive study, no evidence of an expansion fan or a supersonic patch was
seen either in experiments (see, for example, [1, 11, 14]) or in numerical solutions
(see [4, 2, 15]).

The first indication that Guderley’s proposed resolution might be essentially cor-
rect was contained in numerical solutions of shock reflection problems for the un-
steady transonic small disturbance equations (UTSDE) in [8] and the compressible
Euler equations in [18]. Solutions containing a supersonic patch embedded in the
subsonic flow directly behind the triple point in a weak shock Mach reflection were
presented there. Subsequently, Zakharian et al. [19] found a supersonic region in a
numerical solution of the compressible Euler equations. The supersonic region in all of
these solutions is extremely small, explaining why it had never been observed before,
experimentally or numerically.

The supersonic patches obtained in the solutions in [8, 18, 19] appeared to confirm
Guderley’s four wave solution. The patch indicates that it is plausible for an expansion
fan to be an unobserved part of the observed three-shock confluence, since the flow
must be supersonic for an expansion wave to occur. However, these solutions are
not sufficiently well resolved to show the structure of the flow inside the supersonic
region. In [16] numerical solutions were obtained of a problem for the UTSDE that
describes the reflection of weak shocks off thin wedges, with the equations formulated
in special self-similar variables. The advantage of using self-similar coordinates is that
the point of interest remains fixed on the computational grid, and a steady self-similar
solution is obtained by letting a pseudotime t → ∞. In a parameter range for which
regular reflection is impossible, the solutions contain a remarkably complex structure:
there is a sequence of triple points and tiny supersonic patches immediately behind
the leading triple point, formed by the reflection of weak shocks and expansion fans
between the sonic line and the Mach shock. A centered expansion fan originates at
each triple point. It was shown that the triple points with expansion fans observed
numerically are consistent with theory and resolve the paradox. The term Guderley
Mach reflection was chosen in [9] to name this new reflection pattern.

Following the detection of Guderley Mach reflection in [16], a problem for the
nonlinear wave system that is analogous to the reflection of weak shocks off thin wedges
was studied numerically in [17]. The nonlinear wave system is a simple 3×3 hyperbolic
system which resembles the Euler equations, but is not obtained from them via a
limit, and which has no known physical relevance. It is obtained from the isentropic
Euler equations by dropping the momentum transport terms from the momentum
equations, and it has a characteristic structure similar to that of the compressible
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Euler equations: nonlinear acoustic waves coupled (weakly) with linearly degenerate
waves. In a parameter range where regular reflection is not possible, a numerical
solution of this system formulated in self-similar variables was obtained which again
contains a sequence of triple points in a tiny region behind the leading triple point,
with a centered expansion fan originating at each triple point. This solution is very
similar in pattern to those obtained for the UTSDE. The discovery of Guderley Mach
reflection in a solution of this system leads one to expect that a sequence of supersonic
patches and triple points is a generic feature of two-dimensional Riemann problems
for some class of hyperbolic conservation laws. This class is possibly characterized by
“acoustic waves,” as defined in [3]. The compressible Euler system for gasdynamics
is another member of this class, suggesting that weak shock solutions of the Euler
equations—the subject of the present work—would contain Guderley Mach reflection
solutions as well.

The numerical solutions in [8, 18, 19] were obtained by solving an initial value
problem for the unsteady equations. The problem of inviscid shock reflection at a
wedge is self-similar, and there are advantages to solving the problem in self-similar,
rather than unsteady, variables. In the unsteady formulation local grid refinement
near the triple point is difficult, because any waves which are present initially move
through the numerical domain, requiring the refined region to move as well. Solutions
of the self-similar equations are stationary, making local grid refinement easier to
implement. Also, in self-similar variables a global grid continuation procedure can
be used in which a partially converged solution on a coarse grid is interpolated onto
a fine grid and then driven to convergence on the fine grid. Procedures for solving
the UTSDE in self-similar variables were developed in [16] and extended to apply to
the nonlinear wave system in [17]. The procedures used to solve the nonlinear wave
system have been applied, with only slight modification, in the present work to obtain
solutions of the full Euler system.

In this paper we present high resolution numerical solutions of the shock reflec-
tion problem for the full Euler equations computed in self-similar coordinates. Our
most highly resolved solution shows that Guderley Mach reflection occurs at a set
of parameter values where Mach reflection is impossible: there is a sequence of tiny
supersonic patches and triple points behind the leading triple point in a weak shock
Mach reflection. This numerical solution is remarkably similar to those obtained for
the UTSDE in [16] and for the nonlinear wave system in [17].

Experimental confirmation of these results is challenging simply because the com-
puted structure is so small and weak. Nevertheless, recent experimental evidence
appears to confirm that Guderley Mach reflection occurs when a weak shock reflects
off a thin wedge. Skews and Ashworth in [12] modified an existing shock tube in or-
der to obtain Mach stem lengths more than an order of magnitude larger than those
possible with conventional shock tubes. They present photographic images of shock
reflection experiments that clearly show an expansion wave behind the triple point
in a weak shock Mach reflection, a terminating shocklet, and evidence of a second
terminating shocklet. The supersonic region is extremely small, as predicted by the
computations in [16, 17] and the present work. Further experimental improvements
and data acquisition are underway.

This paper is organized as follows. In section 2 we describe the shock reflection
problem for the full Euler equations. In section 3 we discuss our approach to solving
this problem numerically. The numerical results obtained are presented in section 4.
In section 5 we discuss questions raised by our results. Finally, we summarize our
findings in section 6.
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2. The shock reflection problem for the Euler equations. We consider a
problem for the full Euler equations that describes the reflection of a shock wave off
a wedge. The shock reflection problem consists of the compressible Euler equations,

ρt + (ρu)x + (ρv)y = 0,(2.1)

(ρu)t + (ρu2 + p)x + (ρuv)y = 0,

(ρv)t + (ρuv)x + (ρv2 + p)y = 0,

(ρe)t + ((ρe + p)u)x + ((ρe + p)v)y = 0,

with piecewise constant Riemann data consisting of two states separated by a discon-
tinuity located at x = 0. Here, ρ is the density, u and v are the x and y components
of velocity, respectively, p is the pressure, and e is the energy. We use an ideal gas
equation of state,

p = (γ − 1)ρ

(
e− 1

2
(u2 + v2)

)
,

where the ratio of specific heats γ is taken to be 1.4. The initial data correspond to
a vertical plane shock hitting the corner of a wedge at t = 0. Letting U(x, y, t) =
(ρ, u, v, p),

(2.2) U(x, y, 0) =

{
UR ≡ (ρR, 0, 0, pR) if x > 0,

UL ≡ (ρL, uL, 0, pL) if x < 0,

where the left- and right-hand states are connected by the Rankine–Hugoniot jump
conditions for a shock with Mach number M . The boundary condition on the wedge
wall is

(2.3) u · n = 0,

where u = (u, v) and n is the unit normal vector at the wall. The shock propagates
to the right into stationary gas with speed Mc, where c is the sound speed in the fluid
ahead of the shock at state UR. The location of the incident shock is given by

(2.4) x = (Mc)t.

For a gas with a given equation of state, there are two parameters in the shock
reflection problem: the wedge angle θ and the strength of the incident shock, which
we parameterize by the shock Mach number M . For sufficiently small Mach numbers
and small wedge angles, neither Mach reflection nor regular reflection solutions exist
(see [7, 10]).

3. The numerical method. The problem (2.1)–(2.3) is self-similar, so the so-
lution depends only on the similarity variables

ξ =
x

t
, η =

y

t
.

We write (2.1) in the form

(3.1) Ut + Fx + Gy = 0,

where

U = (ρ, ρu, ρv, ρe), F = (ρu, ρu2 + p, ρuv, ρue + up),

and G = (ρv, ρuv, ρv2 + p, ρve + vp).
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Writing (3.1) in terms of ξ, η, and a pseudotime variable τ = log t, we obtain

(3.2) Uτ − ξUξ − ηUη + Fξ + Gη = 0.

As τ → +∞, solutions of (3.2) converge to a pseudosteady, self-similar solution that
satisfies

(3.3) −ξUξ − ηUη + Fξ + Gη = 0.

Equation (3.3) is hyperbolic when c2 < ū2 + v̄2, corresponding to supersonic flow in a
self-similar coordinate frame, and of mixed type when c2 > ū2 + v̄2, corresponding to
subsonic flow, where ū = u− ξ, v̄ = v− η. Here, c =

√
γp/ρ is the local sound speed.

The sonic line is given by

ū2 + v̄2 = c2.(3.4)

By abuse of notation, we have referred to the locus of transition points between
c2 < ū2 + v̄2 and c2 > ū2 + v̄2 as the sonic line, whether the flow is continuous there

or not. We define a local self-similar Mach number M̄2 = ū2+v̄2

c2 . When M̄ > 1, the
flow is supersonic, and when M̄ < 1, the flow is subsonic.

In order to solve (3.2) numerically, we write it in conservative form as

(3.5) Uτ + (F − ξU)ξ + (G− ηU)η + 2U = 0.

In these self-similar variables, the full Euler system has the form of the unsteady
equations (3.1) with modified flux functions and a lower-order source term.

An essential feature of our numerical method is the use of local grid refinement in
the area of the apparent triple point. We designed a sequence of successively refined,
nonuniform, logically rectangular finite volume grids. See Figure 3 for a diagram of
the computational domain. We use grid continuation, in which partially converged
coarse grid solutions are interpolated onto more refined grids and converged on the
refined grids. For each grid, inside a given box surrounding the triple point, uniform
grid spacing is used. Outside of this box, the grid is exponentially stretched in both
grid directions.

The basic finite volume scheme is quite standard. Each grid cell, Ω, is a quadri-
lateral, and using �ν = (νξ, νη) to denote the normal vector to a typical side of Ω,
numerical fluxes are designed to be consistent with

F̃ (U) = (F (U)− ξU) νξ + (G(U)− ηU) νη =

⎛
⎜⎜⎝

νξρu + νηρv − ξ̄ ρ
νξ(ρu

2 + p) + νηρuv − ξ̄ ρu
νξρuv + νη(ρv

2 + p) − ξ̄ ρv
νξ(ρue + up) + νη(ρve + vp) − ξ̄ ρe

⎞
⎟⎟⎠ ,

where ξ̄ = (�ξ ·�ν) and �ξ = (ξ, η). Since �ξ varies, our numerical flux formulae evaluate �ξ
frozen at the midpoint of each cell side. We use essentially the same numerical scheme
as in [17], a high-order scheme based on the Roe numerical flux. High-order accu-
racy is achieved by using piecewise quadratic reconstruction limited in characteristic
variables, together with the Roe flux

HRoe =
1

2
(F̃ (Ul) + F̃ (Ur) −RΛL (Ur − Ul)),

where Λ = diag(| − ξ̄− c|, | − ξ̄|, | − ξ̄ + c|), and R and L are the matrices of right and

left eigenvectors to the Jacobian of F̃ . As in [17], we simplify the Roe approach by
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Fig. 3. A schematic diagram of the computational domain. ABC is the wall; BC is the wedge,
with angle θ. CDEA is the far field numerical boundary. The incident shock is perpendicular to
AB. The incident (above T ), reflected (left of T ), and Mach (below T ) shocks meet at the triple
point T .

evaluating R and L at the midpoint URoe = 1
2 (Ul +Ur), which for the Euler equations

is only an approximation to the Roe average. To avoid spurious expansion shocks,
artificial dissipation on the order of |Ur −Ul| is appended to the diagonal part of the
Roe dissipation matrix in a field-by-field manner.

Time integration is accomplished using Heun’s method, which can be written in
two step predictor-corrector form (using overbars to denote predicted values) as

Un+1 − Un

Δτ
+

1

|Ω|

∫
∂Ω

Hn
Roe ds + 2Un = 0,

2Un+1 − Un+1 − Un

Δτ
+

1

|Ω|

∫
∂Ω

Hn+1
Roe ds + 2Un+1 = 0.

3.1. The grid and boundary conditions. We computed solutions of the prob-
lem (2.1)–(2.3) in the finite computational domain shown schematically in Figure 3.
We use a nonuniform grid with a locally refined area of uniformly spaced grid very
close to the triple point, as illustrated in Figure 4. The grid is defined by a conformal
map of the form z = wα, so it is orthogonal with a singularity at the ramp apex
x = y = 0. The refined uniform grid area is so small that it is obscured in the main
plot shown in Figure 4. The inset plots show enlargements of the grid in the indi-
cated rectangular regions, and the smaller inset plot contains a small superimposed
box which delineates the refined uniform grid region. The grid is stretched exponen-
tially from the edge of the uniform grid region to the outer numerical boundaries and
the wall, with a stretching factor of 1%.

We use a sequence of such grids, with each grid corresponding to a level of grid
refinement. The uniform grid region of each grid is refined by a factor of two in both
x/t and y/t in relation to the uniform grid region of the previous grid. We obtain
solutions on coarse grids, interpolate these onto more refined grids, and converge
the solutions on the refined grids. We repeat this process until no further change is
observed in the solution near the apparent triple point and grid continue to a steady
state. This process is illustrated in Figure 5, which shows a coarse grid (dashed lines)
overlaid with a refined grid (solid lines) in the uniform grid region of both grids. A
solution is obtained on the coarse grid, and the computation on the coarse grid is
stopped. This solution is interpolated onto the refined grid, and the computation
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Fig. 4. The grid structure, illustrating the region of uniform local refinement, which is outlined
by the small box superimposed on the grid in the inset plot at the upper right. Outside of this small
box, the grid is stretched. The main plot shows the entire grid. The locally refined region in this
very coarse grid contains 10 × 10 grid cells, with Δξ = Δη = 0.002. The locally refined region in
our most refined grid is shown in Figure 7(a).

is resumed on the refined grid. We found that bilinear interpolation gave the best
results, while higher-order methods such as biquadratic interpolation resulted in large
overshoots at the shocks.

Every grid in the sequence is designed so that the refined uniform grid region
surrounds the apparent triple point as it appears in the currently available solution
(the solution obtained with the previous grid). As the grids are refined and the shocks
become better resolved, the triple point location can be determined more precisely,
and the refined grid area can be repositioned and reduced in size. In fact, the refined
uniform grid region depicted in the coarse grid shown in Figure 4 is more than 1000
times as large as the refined uniform grid region in our finest grid. The total number of
grid cells in our finest grid is approximately six million, of which 300×1000 = 3×105

(Δξ = Δη = 1 × 10−6) are devoted to the local refinement.
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Fig. 5. A solution on a coarse grid such as the one depicted in Figure 4 is interpolated onto a
refined grid and converged on the refined grid. The locally refined region of the coarse grid (dashed
lines) in this example has Δξ = Δη = 0.00025, and the fine grid (solid lines) has Δξ = Δη =
0.000125. The region shown in the plot is in the locally refined region of both grids.

On the wall boundary ABC in Figure 3 we impose reflecting boundary conditions,
equivalent to the physical no-flow condition (2.3). In addition, we require numerical
boundary conditions on the outer computational boundaries, which we determine as
follows.

The incident shock location (2.4) in self-similar variables is

ξ = Mc,

where c is the sound speed ahead of the shock. Boundary data on the left, right, and
top are given to exactly agree with this shock, so that

(3.6) U(ξ, η) =

{
UR, ξ > Mc,

UL, ξ < Mc,

where the fluid properties UL behind the shock are obtained from the Rankine–
Hugoniot conditions. We use (3.6) as a boundary condition for (3.5) on CDEA.

4. Numerical results. We computed numerical solutions of (2.1)–(2.3) for a
shock Mach number M equal to 1.075 and a wedge angle θ equal to 15 degrees.
These data correspond to parameter a ≈ 1/2 in the UTSDE model used in [16]. This
problem is well outside the range for which regular reflection can occur. However,
Mach reflection is also not possible for shocks this weak, and so this example illustrates
a classic triple point paradox. In our computations we used ρR = 1.4 and pR = 1
in (2.2) and determined the values UL behind the shock from the Rankine–Hugoniot
conditions. Table 4.1 gives the initial values of the fluid variables. We give our finest
grid results in the plots which follow. Figure 6(a)–(b) shows a numerical solution
that gives an overall picture of the shock reflection. The plots in (a) and (b) show
Mach number and pressure contours, respectively, as functions of (x/t, y/t). Here, we
refer to the local Mach number of the solution, not to the shock Mach number M .
The numerical solution appears to show a simple Mach reflection, with three shocks
meeting at a triple point. Ahead of the incident shock, the pressure is equal to 1 and
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Table 4.1

Left and right states for an incident shock with Mach number M = 1.075 and γ = 1.4.

ρ u v p
Right 1.4 0 0 1
Left 1.57697 0.12064 0 1.18156
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(b) Pressure

Fig. 6. Contour plots over the full numerical domain, showing what appears to be a Mach
reflection—three shocks and a contact discontinuity (visible as a jump in the Mach contours in (a))
meeting in a point. The Mach contour spacing in (a) and the pressure contour spacing in (b) are
both 0.002. The full grid contains 2250 × 2710 finite volume cells.

the Mach number is 0. As the shock moves it induces a flow in the fluid behind it and
a corresponding increase in pressure. The reflected shock is much weaker than the
incident shock and decreases in strength as it moves away from the apparent triple
point. The Mach shock increases in strength as it moves away from the triple point,
reaching a maximum at the wall where it becomes a normal shock. Here, the pressure
and the induced flow velocity are largest. A very weak contact discontinuity can be
seen in the Mach contours in Figure 6(a). This is not visible in the plot in (b) because
pressure does not jump across a contact discontinuity.
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Fig. 7. The solution near the triple point for M = 1.075 and θ = 15 degrees. The Mach contour
spacing is 0.001 in (a) and 0.0005 in (b). The dashed line in both plots is the sonic line. The refined
uniform grid is contained within the box shown in (a) and has 300×1000 cells (Δξ = Δη = 1×10−6).
Two reflected shock/expansion wave pairs are clearly visible, with indications of a third. A contact
discontinuity appears as a very weak jump in Mach number.

In Figure 7(a), we show Mach number contours in the most refined region near
the apparent triple point. The refined uniform grid, as indicated, is approximately
aligned with the reflected shock. The dashed line in the figure is the numerically
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Table 4.2

Approximate values of the reflected shock strengths for the three reflected shocks visible in Fig-
ure 7, beginning with the leading reflected shock, from the numerical data. For each shock, ρ1 and
ρ0 denote the approximate values of ρ ahead of and behind the shock, respectively.

Shock ρ1 ρ0 [ρ]

1 1.577 1.596 0.019
2 1.592 1.596 0.004
3 1.594 1.596 0.002

computed location of the sonic line, (3.4). (This sonic line is displayed more clearly
in Figure 8(a).) Flow to the right of this line is supersonic, and the figure shows that
the solution contains a small region of supersonic flow behind the triple point. There
is an expansion fan centered at the leading triple point, but it cannot be seen clearly
at this level of magnification. To show this expansion fan more clearly, in Figure 7(b)
we show an enlargement of the solution, using more closely spaced contours, in a tiny
region near the confluence of the incident, reflected, and Mach shocks. Behind the
leading triple point, there is a sequence of very weak shocks that intersect the Mach
shock, forming a sequence of triple points, with a very weak expansion fan centered
at each triple point. Each shock-expansion wave pair in the sequence is smaller and
weaker than the one preceding it. Three reflected shocks appear to be visible in the
plots in Figure 7(a)–(b). Their approximate strengths, beginning with the leading
reflected shock, are given in Table 4.2. The jump [ρ] in ρ across a reflected shock is
measured near the point where the flow behind the shock is sonic. This point is very
close to the corresponding triple point on the Mach shock, as shown in Figure 7. In
principle, a contact discontinuity originates at each triple point. However, the only
contact discontinuity that is strong enough to be resolved numerically is the one at
the leading triple point.

To depict the regions of supersonic and subsonic flow in a Guderley Mach reflec-
tion, we plot widely spaced Mach contours and the sonic line near the triple point
in Figure 8(a). In the plot in (b), we give a cross section of Mach number M̄ taken
vertically through the region shown in the plot in (a), at a location slightly to the
left of the Mach shock. The height Δ(y/t) of the supersonic region behind the triple
point is approximately 0.00075, and the width Δ(x/t) is approximately 0.0001. Here,
the height Δ(y/t) is a numerical estimate of the difference between the maximum
value of y/t on the sonic line and the minimum value of y/t at the rear sonic point
on the Mach shock. The width Δ(x/t) is an estimate of the width of the supersonic
region at the value of y/t corresponding to the leading triple point. The height of the
supersonic region is approximately 0.6% of the length of the Mach shock.

We found that a certain minimum grid resolution was necessary to resolve the
supersonic region behind the triple point. As we refined the grid beyond this mini-
mum resolution, a detailed flowfield structure became visible in the supersonic region.
Figure 9 shows Mach number contours for a sequence of solutions computed on suc-
cessively refined grids. In Figure 9(a)–(b), the sonic line appears fairly smooth. The
supersonic patch appears to be shock-free. After two further grid refinements, each by
a factor of two in both x/t and y/t (Figure 9(c)), a shock is visible behind the leading
triple point. Our finest grid solution is shown in the plot in Figure 9(d). Two shocks
are visible behind the leading triple point. Further refinement of the grid resulted in
almost no observable change in the solution, as shown in the plot in Figure 10, an in-
dication of grid convergence. At resolutions lower than the one shown in Figure 9(a),
the supersonic region disappears entirely, and the sonic line runs down the inside of
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Fig. 8. The supersonic and subsonic regions near the triple point. The dashed line in (a) is
the sonic line. It delineates the supersonic patch within the subsonic zone behind the triple point;
the Mach contour spacing is 0.0025. In (b) a vertical cross section of M̄ is taken at the location
x/t = 1.0751, slightly to the left of the incident shock/Mach stem. The large jump is the leading
reflected shock. Note the crossings at M̄ = 1, indicating jumps across weak reflected shocks or
smooth transitions across the sonic line.

the reflected shock, through the triple point, and down the Mach shock.

Figure 11 illustrates the size and location of the region where extreme local grid
refinement is performed. The refined grid area is too small to be visible in the main
plot shown in Figure 11. The inset figures show enlargements of the solution con-
tained within the small rectangular box centered about the apparent triple point, as
indicated. The solution shown in the smaller inset figure also contains a small box
centered at the apparent triple point, indicating the approximate size and location of
the region shown in Figures 7(a) and 8(a).

To further explore the wedge angle–shock strength parameter range in which
the triple point paradox occurs, we also computed a solution of the shock reflection
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Fig. 9. A sequence of contour plots illustrating the effect of increasing grid resolution on the
numerical solution. The figures show Mach contours in the refined grid area near the triple point,
with a Mach contour spacing of 0.001. The heavy line is the sonic line. The mesh size used in
the refined uniform grid area is Δξ = Δη = 1.6 × 10−5 in (a), Δξ = Δη = 8 × 10−6 in (b),
Δξ = Δη = 2 × 10−6 in (c), and Δξ = Δη = 1 × 10−6 in (d). The area of the refined uniform grid
in (c) and (d) is depicted in Figure 7(a); the refined uniform grids in (a) and (b) are slightly larger
than the region shown. In (a), the refined uniform grid contains 64 × 64 grid cells. A supersonic
region is visible as a bump in the sonic line, but it is poorly resolved. In (b), the refined uniform
grid contains 128 × 128 grid cells. The supersonic region appears to be smooth. In (c), the refined
uniform grid area contains 150 × 500 grid cells. There is a shock wave behind the leading triple
point. In (d), the refined uniform grid area contains 300 × 1000 grid cells. Two shock waves are
visible behind the leading triple point. The result of further refinement of the grid in (d) is shown
in Figure 10.

problem with M equal to 1.04, wedge angle θ equal to 11.5 degrees, and ratio of
specific heats γ equal to 5/3. This choice of γ corresponds to shock reflection in a
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Fig. 10. Additional refinement of the grid used to obtain the solution in Figures 7, 8, and 9(d)
by a factor of two in both x/t and y/t (Δξ = Δη = 5× 10−7) results in little change in the solution
near the triple point. The Mach contours are plotted at the same levels of Mach number as the plots
in Figure 9, and the size of the region shown is the same. The heavy line is the sonic line.
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Fig. 11. An illustration of the approximate size and location of the region shown in the plots in
Figures 7(a) and 8(a), which is contained in the small rectangular box shown in the smallest inset
figure. The plot shows contour lines of ρ (density).
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Fig. 12. A contour plot of Mach number near the apparent triple point for M = 1.04, θ = 11.5
degrees, and γ = 5/3. The heavy line is the sonic line. The number of grid points in the full grid is
approximately 11 million, of which 800 × 2000 = 1.6 million (Δξ = Δη = 5 × 10−7) are devoted to
the local refinement. The refined uniform grid is contained in the region shown in the plot.

monatomic gas (γ = 1.4 corresponds to a diatomic gas such as air). These data again
correspond to parameter a ≈ 1/2 in the UTSDE model used in [16]. Figure 12 shows
Mach number contours and the sonic line in the neighborhood of the apparent triple
point. Just as in our solution for M = 1.075, θ = 15 degrees, and γ = 1.4, there is
a sequence of triple points, reflected shocks, and expansion fans behind the leading
triple point. Two reflected shock/expansion wave pairs are evident from the shape of
the sonic line, with a slight indication of a third. At this lower shock strength, twice
the grid refinement in both directions was required to obtain a solution comparable
to that obtained for a M = 1.075 incident shock. The incident, reflected, and Mach
shocks at the leading triple point are so weak that no contact discontinuity is visible.

5. Discussion. These numerical results display a structure that is remarkably
similar to the solutions of the shock reflection problem for the UTSDE model in [16]
(compare Figures 7(a) and (b) with Figures 5 and 6 of [16], for example) and to its
analogue for the nonlinear wave system in [17] (see Figure 6, p. 331). In all three cases,
a weak shock reflection in a parameter range where regular reflection is impossible
results in a sequence of triple points and supersonic patches in a tiny region behind
the leading triple point, with an expansion fan originating at each triple point. The
results presented here appear to confirm the validity of the UTSDE as a model for
weak shock reflection. In addition, it now appears that this solution structure may
occur generically in a class of conservation laws that includes the physically important
Euler equations of gasdynamics.

An important feature of the numerical solution is the small size of the supersonic
region. In our solution for a shock with M = 1.075 impinging on a 15 degree ramp, the
height of the supersonic region is approximately 0.6% of the length of the Mach shock.
This can be compared to the results in [16]. The UTSDE model used there depends on
a single order-one transonic similarity parameter a = θ/

√
2(M2 − 1). Solutions were
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obtained over a range of values of a, and the supersonic regions found in the solutions
varied in height from approximately 0.05% to 3% of the length of the Mach shock,
depending on the value of a. Our M = 1.075/15◦ problem corresponds to a = 0.5,
a value for which the height of the supersonic region in [16] was approximately 1.9%
of the height of the Mach shock, somewhat larger than the region obtained in the
present work. The UTSDE are an asymptotic reduction of the Euler equations in the
limit of weak shocks and thin wedges (see [8]), and we do not expect exact agreement
between solutions of the problem for the asymptotic equations and the problem for
the Euler equations. For wedge angles closer to 0 and Mach numbers closer to 1,
we would expect closer agreement with the solutions in [16]. The computation we
performed with M = 1.04, θ = 11.5 degrees displayed in Figure 12 serves as a check
of this statement. The height of the supersonic region in our solution for this choice
of parameters is approximately 1% of the length of the Mach shock, indeed closer to
the figure of 1.9% obtained in [16].

The supersonic regions behind the triple point in our solutions for M = 1.075,
θ = 15◦ and M = 1.04, θ = 11.5◦ are much larger in height than in width. Defining an
aspect ratio Δ(y/t)/Δ(x/t), these solutions have aspect ratios of approximately 8:1
and 9:1, respectively. This quantity agrees closely with the solutions in [16]. There,
solutions obtained over a range of values of a contain supersonic regions with aspect
ratios from approximately 2.75:1 to 8.5:1. The solution in [16] with a = 1/2 has
an aspect ratio of 8:1, approximately the same as the solutions presented here, which
correspond to this value of a. Although the supersonic regions obtained in the present
work are smaller in size than the one obtained in [16] for a = 1/2, the shape of the
regions obtained agrees quite closely.

Table 4.2 gives an indication of how the reflected shock strength decays in the
sequence of shocks/expansions which comprise a Guderley Mach reflection. From the
table, the strength of the first three reflected shocks is approximately in the ratio
9.5 : 2 : 1. This is quite similar to the UTSDE result for a = 1/2 in [16]. There, four
reflected shocks were visible in the solution; the strengths of the first three were in
the approximate ratio 8 : 2 : 1. For the nonlinear wave system solution in [17], the
ratio was approximately 12 : 3 : 1. We do not know precisely how the sequence of
supersonic patches and shocks/expansions in Guderley Mach reflection decreases in
size and strength, respectively, nor do we know if the sequence is finite or infinite.

The experimental results of Skews and Ashworth in [12] appear to confirm the
existence of the Guderley Mach reflection structure reported here. The experiments
were carried out on a 15◦ ramp with incident shock Mach numbers ranging from
1.05 to 1.1. The size of the expansion wave and terminating shocklet which were
observed behind the leading triple point in experiments with measured Mach numbers
of M = 1.069 and M = 1.084 was estimated to be less than 2% of the length of
the Mach stem, a figure which, again, is somewhat larger than the wave structure
observed numerically in the present work. The incident shock wave that is generated
by the shock tube apparatus used in [12] is only approximately planar, however, and
this may be one reason for the discrepancy. In addition, density gradients, which are
visualized by the schlieren photo-optical technique used in [12], persist well beyond the
supersonic patch into the subsonic region, making it difficult to estimate the extent of
the supersonic patch from schlieren photographs. Nevertheless, the structure found in
the experiments is very similar to the numerically computed Guderley Mach reflection
solution. More recent experimental results [13] show more convincing evidence: the
expansion fan and first terminating shocklet observed under conditions corresponding
to a ≈ 1/2 are more clearly visible, and the region appears to have an aspect ratio
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similar to the value of approximately 8:1 obtained in the solutions presented here.
Guderley’s resolution was largely correct: a fourth wave, a centered expansion fan,

originates at the triple point, although Guderley did not have any evidence that this
is what actually occurs, nor did he suggest that there might be, in fact, a sequence of
expansion fans and triple points. It is interesting, as noted in [12], that experimental
observations of weak shock reflections off thin wedges show that not only does an
apparent Mach reflection occur but that the slip line disappears or becomes ill defined.
Figures 6(a) and 7(a) show that the slip line still exists in a weak shock reflection,
but that it is extremely weak, making it difficult to observe experimentally.

6. Conclusion. We have presented numerical evidence of a sequence of triple
points, each containing a centered expansion fan, in solutions of a shock reflection
problem for the full Euler equations. This result is in agreement with previous nu-
merical solutions of shock reflection problems for the UTSDE and the nonlinear wave
system. The present work provides further evidence that the reflection pattern we
call Guderley Mach reflection occurs when a weak shock reflects off a thin wedge.
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ELECTROMAGNETIC SCATTERING IN LAYERED MEDIA∗
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Abstract. We consider the inverse problem to reconstruct the number and the positions of a
collection of finitely many small perfectly conducting scatterers buried within the lower halfspace
of an unbounded two-layered background medium from near field measurements of time harmonic
electromagnetic fields. For this purpose we first study the direct scattering problem and derive an
asymptotic expansion of the scattered field, as the size of the scatterers tends to zero. Integral
equation methods and a factorization of the corresponding near field measurement operator are
applied to prove this expansion. In the second part of this work we use the asymptotic expansion to
justify a noniterative reconstruction algorithm, which is a combination of factorization methods and
MUSIC-type methods. We illustrate the feasibility of this method by a numerical example.
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1. Introduction. We consider a simple but fully three dimensional model for
the electromagnetic exploration of perfectly conducting objects buried within the
lower half-space of an unbounded two-layered background medium. In possible appli-
cations, such as, e.g., humanitarian demining or, more generally, the exploration of
the ground’s subsurface to detect and identify buried objects, the two layers would
correspond to air and soil. Moving a set of electric devices parallel to the surface of
ground to generate a time harmonic field, the induced field is measured within the
same devices. The goal is to retrieve information about buried scatterers from these
data.

This work originated in the project [23] on humanitarian demining. In the course
of this project mathematical methods for analyzing data obtained from standard off-
the-shelf metal detectors have been developed. The aim of the project has been to
reduce the number of false alarms produced by such devices used for humanitarian
demining.

In mathematical terms, we consider an inverse scattering problem for Maxwell’s
equations in a two-layered background medium. An iterative method for such a
problem was recently proposed by Delbary et al. [17]. Among the so-called qualitative
methods (see Cakoni and Colton [10]), the linear sampling method was studied by
Gebauer et al. [20] and by Cakoni, Fares, and Haddar [11]. Moreover, the factorization
method was applied by Kirsch [29] and by Gebauer, Hanke, and Schneider [21]. In
numerical experiments these methods turned out to be quite sensitive to noise. This
is of course due to the ill-posedness of the inverse problem.

In order to handle this ill-posedness it is generally advisable to incorporate all
available a priori knowledge about the measurement device and the scatterers and
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to determine very specific features. Standard off-the-shelf metal detectors used for
humanitarian demining work at relatively low frequencies around 20 kHz; cf., e.g.,
[22]. In vacuum this corresponds to wavelengths of approximately 15 km. Thus the
typical size of the objects of interest, which is only a few centimeters, is very small
with respect to the wavelength of the incident field. We use this a priori knowledge
to justify a noniterative reconstruction method that determines only the number and
the position of the unknown scatterers but is more robust against noise in the data.

This method is a generalization of a method which was originally developed for
electrical impedance tomography by Brühl, Hanke, and Vogelius [8]. It is based on
an asymptotic expansion of the scattered field on the measurement device as the size
of the scatterers tends to zero. A similar reconstruction method was recently inves-
tigated by Ammari et al. [2] for homogeneous background media and by Iakovleva
et al. [24] for two-layered background media. In contrast to the present investiga-
tion, these works study a discrete measurement array, which can be considered as a
special case of the measurement device studied here. We expect that the theoretical
results obtained for nondiscrete measurement devices can be applied to even more
realistic models for the measurement process; cf., e.g., [17]. Moreover, the asymptotic
expansions of the scattered field were obtained only formally in [2] and [24]. Here we
give a rigorous justification of these formulas for two-layered background media. For
bounded background domains related formulas were rigorously proven by Ammari et
al. [6, 4, 5], and these results were extended to unbounded homogeneous media and
plane wave incident fields by Ammari and Volkov [7]. But this analysis applies neither
to layered media nor to near field measurements such as considered here.

Our proof of the asymptotic formula employs a factorization of the near field
measurement operator that maps magnetic dipole distributions on the measurement
device to the corresponding scattered field on the same device. We apply layer po-
tential techniques to describe the three operators occurring in this factorization and
expand them separately as the size of the scatterers tends to zero. Then these expan-
sions are combined to calculate the leading order term in the asymptotic expansion
of the scattered field. This generalizes the approach we used in [1] for a boundary
value problem in electrostatics. By contrast, in [6, 4, 5, 7] variational methods were
applied.

Then, we derive a characterization of the location of the scatterers in terms of
the range of the leading order term of the asymptotic expansion of the near field
measurement operator, similar to range criteria known from factorization methods,
introduced first by Kirsch [28], and MUSIC-type methods, applied first to inverse
scattering problems by Devaney [18]. We use a MUSIC-type strategy to implement
this range criterion numerically; basically, MUltiple SIgnal Classification is a method
of characterizing the range of finite rank operators on Hilbert spaces; see Cheney [12].

The article is organized as follows. After introducing some notation in the next
section we describe our model and define the measurement operator in section 3. In
section 4 we derive a factorization of this operator, and in section 5 we collect some
facts concerning boundary integral operators arising in electromagnetic scattering the-
ory for layered background media. Sections 6 and 7 are devoted to the asymptotic
expansion of the measurement operator. Then, in section 9 we derive a characteriza-
tion of the scatterers in terms of a range criterion, and in section 10 we comment on
how to implement this criterion numerically. Finally, we present numerical results.

2. Preliminaries. We introduce our notation and recall some facts concerning
function spaces used in the context of Maxwell’s equations. For further details we
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refer the reader to [9, 31, 32]. Suppose D ⊂ R
3 is a bounded domain of class C2,α,

0 < α < 1. Denote by (e1, e2, e3) the usual Cartesian basis of R
3, by x = (x1, x2, x3)

�

a generic point in R
3, and by ν the unit outward normal to ∂D. Throughout let x ·y

and x×y be the scalar product and the vector product of x ,y ∈ R
3, respectively, and

let |x | denote the Euclidean norm of x . The standard complex valued Sobolev spaces
Hr(D), Hr

loc( R
3\D) for any r ∈ R and Hs(∂D) for s ∈ [−2, 2] are defined on D, R

3\
D and on the boundary ∂D, respectively; see [30]. Let γ0 : Hr(D) → Hr−1/2(∂D),
1/2 < r ≤ 2, be the standard trace operator. We also need the spaces H (curl, D),
Hloc(curl, R

3 \D), H (div, D), and Hloc(div, R
3 \D) of (locally) square integrable

vector fields with (locally) square integrable curl and divergence, respectively.
The surface gradient ∇∂D and the surface vector curl curl∂D are defined on ∂D in

the usual way by a localization argument. The adjoint operators of −∇∂D and curl∂D
are the surface divergence div∂D and the surface scalar curl curl∂D, respectively. We

introduce the Hilbert space H
−1/2
t (∂D) of tangential vector fields in H−1/2(∂D)3

and the Hilbert spaces H
−1/2
div (∂D) and H

−1/2
curl (∂D) of vector fields in H

−1/2
t (∂D)

with surface divergence and surface scalar curl in H−1/2(∂D), respectively. The space

H
−1/2
curl (∂D) is naturally identified with the dual space of H

−1/2
div (∂D). We denote the

corresponding duality pairing by 〈b,a〉∂D =
∫
∂D

b ·a ds for any a ∈ H
−1/2
div (∂D) and

b ∈ H
−1/2
curl (∂D).

For any regular vector field u we define the normal trace γn(u) := u |∂D · ν,
the tangential trace γt(u) := ν × u |∂D, and the projection on the tangent plane
πt(u) := (ν × u |∂D) × ν. Furthermore, let r(a) := ν × a for any regular vector field
a on ∂D. Then γn, γt, πt, and r can be extended to continuous linear, surjective
operators

γn :H (div, D) → H−1/2(∂D), γt :H (curl, D) → H
−1/2
div (∂D),

πt :H (curl, D) → H
−1/2
curl (∂D), r :H

−1/2
t (∂D) → H

−1/2
t (∂D).

The extension of r is an isomorphism with r−1 = r� = −r, which maps H
−1/2
div (∂D)

to H
−1/2
curl (∂D) and vice versa. For u ∈ H (curl, D) we have γt(u) = r(πt(u)) and

πt(u) = −r(γt(u)). We note that for a ∈ H
−1/2
t (∂D),

(2.1) div∂D a = curl∂D r(a) and curl∂D a = −div∂D r(a).

Furthermore, for f ∈ H1(D),

(2.2) ∇∂Dγ0(f) = πt(∇f) and curl∂Dγ0(f) = −r(∇∂Dγ0(f)) = −γt(∇f).

Finally, for u ∈ H (curl, D), it holds that

(2.3) −div∂D γt(u) = curl∂D πt(u) = γn(curlu).

Throughout we let scalar operators operate on vectors componentwise and vector
operators on matrices column by column. For Banach spaces X and Y we denote
by L(X,Y ) the set of all bounded linear operators on X to Y . We write L(X) for
L(X,X). Moreover, in our estimates we shall use a generic constant C.

3. The mathematical setting. We decompose the space R
3 = R

3
+∪Σ0∪ R

3
−

in a hyperplane Σ0 := {x ∈ R
3 | x3 = 0} corresponding to the surface of the ground,

and the two halfspaces R
3
+ := {x ∈ R

3 | x3 > 0} and R
3
− := {x ∈ R

3 | x3 < 0}
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above and below Σ0 representing air and ground, respectively. For convenience we
set R

3
0 := R

3 \ Σ0. We assume that both halfspaces are filled with homogeneous
materials with dielectricity ε and permeability μ given by

ε(x ) :=

{
ε+, x ∈ R

3
+,

ε−, x ∈ R
3
−,

μ(x ) :=

{
μ+, x ∈ R

3
+,

μ−, x ∈ R
3
−,

and we require that ε+ as well as μ± are positive numbers, whereas ε− may be complex
with positive real and nonnegative imaginary parts to allow for soil materials that
are conducting. The associated (discontinuous) wavenumber is k := ω

√
εμ, where

we assume ω > 0. If ε− /∈ R , then k is taken to have positive imaginary part.
Throughout we investigate radiating solutions of the time harmonic Maxwell system

(3.1) curlH + iωεE = 0, curlE − iωμH = 0

in the exterior of some compact set C ⊂ R
3. By this we understand, cf., e.g., [16, 31],

solutions E ,H ∈ Hloc(curl, R
3 \ C) which obey the integral radiation condition

(3.2)

∫
∂BR(0)

∣∣∣∣xR ×H (x ) +
( ε(x )

μ(x )

)1/2

E(x )

∣∣∣∣
2

ds(x ) = o(1) as R → ∞,

where BR(0) := {x ∈ R
3 | |x | < R} denotes the ball of radius R > 0 around the

origin.
For layered medium we have to distinguish between the electric and the magnetic

dyadic Green’s functions. The electric dyadic Green’s function G
e is the radiating

(distributional) solution of

curlx
1

μ(x )
curlx G

e(x ,y) − ω2ε(x )Ge(x ,y) =
1

μ(x )
δ(x − y) I 3, x ,y ∈ R

3,

where I 3 denotes the 3×3 identity matrix. Note that we are using x as an independent
variable and y denotes the position of the source. The magnetic dyadic Green’s
function G

m fulfills the same equation, but ε and μ have to be swapped. From the
derivation of these Green’s tensors in [31, pp. 318–327] (cf. also [34, 17, 33]), we find
that G

e and G
m can be written as

G
e/m(x ,y) = Πe/m(x ,y) +

1

k(x )2
∇x divx Πe/m(x ,y)

for x ,y ∈ R
3
0, x �= y . Here the (matrix valued) functions Πe and Πm are given by

(3.3) Πe/m(x ,y) := Φk(x)(x − y) I 3 + F e/m(x ,y), x ,y ∈ R
3
0, x �= y ,

where Φk+
and Φk− denote the fundamental solution for the scalar Helmholtz equation

in homogeneous medium with wavenumber k+ and k−, respectively; cf. [15, p. 16].
The functions Πe and Πm solve

(Δx + k(x )2)Πe/m(x ,y) = −δ(x − y) I 3, x ,y ∈ R
3
0,

and so F e and Fm solve

(Δx + k(x )2)F e/m(x ,y) = 0, x ,y ∈ R
3
0.
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Applying a regularity result due to Weber [35, Thm. 2.9], we find that G
e/m|R

3
±
(·,y) ∈

C∞( R
3
± \ {y}) for y ∈ R

3
0. Thus, F e(·,y) and Fm(·,y) are smooth functions in R

3
0

for y in any compact subset of R
3
0.

Using Maxwell’s equations and integration by parts the following reciprocity re-
lations can be proven; cf. also [16, 24, 13]:

μ(y)Ge(x ,y) = μ(x )Ge�(y ,x ) for x ,y ∈ R
3
0, x �= y ,(3.4a)

ε(y)Gm(x ,y) = ε(x )Gm�(y ,x ) for x ,y ∈ R
3
0, x �= y ,(3.4b)

k2(y)curlxG
e(x ,y) = k2(x )(curlyG

m)�(y ,x ) for x ,y ∈ R
3
0, x �= y .(3.4c)

We denote by Σd := {x ∈ R
3
+ | x · e3 = d} ⊂ R

3
+ the hyperplane parallel to the

surface of the ground at height d > 0 and assume that measurements and excitations
are restricted to an open bounded sheet M ⊂ Σd supporting the device. A time
harmonic excitation, given by a magnetic dipole density ϕ ∈ L2(M) := L2(M)3 on
M, leads to a primary electromagnetic field (E i,H i) satisfying (3.1) in R

3 \ M,
where the magnetic field has the form

(3.5) H i = k2
+

∫
M

G
m(·,y)ϕ(y) ds(y);

cf., e.g., Sommerfeld [34].
We suppose that R

3
− contains a finite number of perfectly conducting scatterers,

each of the form Dδ,j := zj + δBj , where Bj is a bounded domain of class C2,α,
0 < α < 1, containing the origin, such that all components of Bj are simply connected,
and their boundaries are connected, 1 ≤ j ≤ m. The points zj ∈ R

3
−, 1 ≤ j ≤ m, that

determine the location of the scatterers are assumed to satisfy |zj − zl| ≥ c0 for j �= l
and dist(zj ,Σ0) ≥ c0 for some constant c0 > 0, 1 ≤ j, l ≤ m. The value of 0 < δ ≤ 1,
the common order of magnitude of the diameters of the scatterers, is assumed to
be small enough such that the scatterers are disjoint and compactly contained in
R

3
−. So the total collection of scatterers takes the form Dδ :=

⋃m
j=1(zj + δBj). The

perfect conductor sitting in Dδ induces a secondary field (E s,H s) which is a radiating
solution of (3.1) in R

3 \Dδ subject to the boundary condition

(3.6) ν ×E s = −ν ×E i on ∂Dδ.

For a mathematical treatment of this direct problem we refer the reader to [16, 31, 17].
We define the (measurement) operator Gδ, which maps given excitations ϕ onto the
corresponding secondary magnetic field H s|M on M, i.e.,

(3.7) Gδ : L2(M) → L2(M), Gδϕ := H s|M.

As in [20, Thm. 2.1] it can be seen that Gδ is a compact operator.

4. The factorization of Gδ. In this section we study a factorization of the
measurement operator Gδ from (3.7) similar to the one developed in [20], but here we
do not restrict ourselves to tangential excitations and measurements.

Suppose ψ ∈ H
−1/2
div (∂Dδ) and denote by (Eψ,H ψ) the associated radiating so-

lution of the exterior Maxwell boundary value problem

curlH ψ + iωεEψ = 0, curlEψ − iωμH ψ = 0 in R
3 \Dδ,(4.1a)

ν ×Eψ = ψ on ∂Dδ.(4.1b)
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Uniqueness of solutions follows for �ε− = 0 from [16, Prop. 2.5]. For �ε− > 0 this
was proven in [17, Thm. 2.1]. Existence of solutions will be shown in the next sections
by reducing the boundary value problem to an integral equation of the second kind
and applying Riesz–Fredholm theory. We define

(4.2) Lδ : H
−1/2
div (∂Dδ) → L2(M), Lδψ := H ψ|M.

Then Lδ is a bounded linear operator. In particular, if E i and H s are the pri-
mary electric and secondary magnetic fields introduced in section 3, respectively, then
ψ := −ν ×E i|∂Dδ

yields H ψ = H s. This means that Lδ : −ν ×E i|∂Dδ
�→ H s|M.

We denote the standard bilinear form on L2(M) by 〈·, ·〉M and the corresponding

transpose of Lδ by L�
δ : L2(M) → H

−1/2
curl (∂Dδ).

Proposition 4.1. Let ϕ ∈ L2(M). Denote by H i and H s the associated
primary and secondary magnetic fields introduced in section 3. Then

(4.3) L�
δ ϕ =

1

iωμ+
(ν ×H |∂Dδ

) × ν on ∂Dδ,

where H = H i + H s is the total magnetic field.

Proof. Given ψ ∈ H
−1/2
div (∂Dδ), let (Eψ,H ψ) be the radiating solution to (4.1).

For any y ∈ R
3 \Dδ we have the representation formula

H ψ(y) =

∫
∂Dδ

ε(y)

ε(x )

(
G

m�(x ,y)(ν × curlH ψ)(x )

+ (curlxG
m)�(x ,y)(ν ×H ψ)(x )

)
ds(x );

cf. [16, Prop. A.9]. Using this formula the proposition can be proven by applying
(4.1), (3.5), (3.6), two times partial integration as in [31, Thm. 3.31], and (3.2). See
also [20] for a corresponding result for tangential densities ϕ on M.

Finally, we consider the diffraction problem

(4.4a) curlH d + iωεEd = 0, curlEd − iωμH d = 0 in R
3 \ ∂Dδ,

with the jump conditions

(4.4b) [(ν ×H d) × ν]∂Dδ
= χ, [ν ×Ed]∂Dδ

= 0 on ∂Dδ.

Here, χ ∈ H
−1/2
curl (∂Dδ) is a given tangential field on ∂Dδ, and the square brackets

denote the differences between the respective traces from outside and inside. We are
looking for a radiating solution (Ed,H d) of this problem. Uniqueness of solutions
has been stated in [29, Thm. 3.4] for �ε− = 0. If �ε− > 0 this can be shown by the
same arguments as used in [33, pp. 61–63]. Existence of solutions will be shown later
by writing them in terms of layer potentials. Given the solution, we define

(4.5) Fδ : H
−1/2
curl (∂Dδ) → H

−1/2
div (∂Dδ), Fδχ := ν ×Ed|∂Dδ

.

Then Fδ is a bounded linear operator. For χ = (ν ×H |∂Dδ
) × ν, i.e., the tangential

component of the total magnetic field corresponding to some excitation ϕ ∈ L2(M) as
described in section 3, the solution of the diffraction problem (4.4) can be constructed
from the corresponding primary and secondary fields, namely,

Ed =

{
E s, x ∈ R

3 \Dδ,

−E i, x ∈ Dδ,
H d =

{
H s, x ∈ R

3 \Dδ,

−H i, x ∈ Dδ.
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Consequently, we have Fδ : (ν×H |∂Dδ
)×ν �→ ν×E s|∂Dδ

= −ν×E i|∂Dδ
. Altogether,

we obtain the mapping sequence

ϕ
L�

δ�−→ 1

iωμ+
(ν ×H |∂Dδ

) × ν
Fδ�−→ − 1

iωμ+
ν ×E i|∂Dδ

Lδ�−→ 1

iωμ+
H s|M.

This yields the following theorem; cf. [20] for a corresponding result in case of tan-
gential densities ϕ on M.

Theorem 4.2. Given Lδ from (4.2) and Fδ from (4.5) the measurement operator
Gδ from (3.7) admits the factorization

(4.6) Gδ = iωμ+LδFδL
�
δ .

5. Surface potentials. Here, we collect some results concerning boundary in-
tegral operators for electromagnetic scattering in two-layered media.

5.1. Surface potentials for homogeneous media. First, we consider a ho-
mogeneous medium with wavenumber k−. If D ⊂ R

3 is a bounded domain of class
C2,α, 0 < α < 1, the single layer potential with smooth density f is defined by

(S−
Df)(x ) :=

∫
∂D

Φk−(x − y)f(y) ds(y), x ∈ R
3 \ ∂D.

Then S−
Df and ν ×∇S−

Df are continuous across ∂D; cf. [14, Thm. 2.12, Thm. 2.17].
It can be shown [30, Thm. 6.11] that the mapping S−

D : H−1/2(∂D) → H1
loc( R

3) is
bounded. The jump relations on ∂D remain valid for f ∈ H−1/2(∂D), but they have
to be interpreted in the sense of trace theorems.

Analogously, the vector potential with smooth tangential density a is given by

(A−
Da)(x ) :=

∫
∂D

Φk−(x − y)a(y) ds(y), x ∈ R
3 \ ∂D.

Then A−
Da , ν · curlA−

Da , and ν × curl curlA−
Da are continuous across ∂D; cf. [14,

Thm. 2.24] and [15, Thm. 6.11]. The tangential components of ν × curlA−
Da are

discontinuous across ∂D and satisfy the jump relation

ν(x ) × curlA−
Da

∣∣±
∂D

(x ) =

∫
∂D

ν(x ) × curlx(Φk−(x − y)a(y)) ds(y) ± 1

2
a(x )

for x ∈ ∂D. It can be shown [30, Thm. 6.11] that A−
D : H

−1/2
div (∂D) → Hloc(curl, R

3)

is bounded and that the jump relations on ∂D remain valid for a ∈ H
−1/2
div (∂D).

Furthermore, for smooth tangential densities a we define

(M−
Da)(x ) :=

∫
∂D

ν(x ) × curlx (Φk−(x − y)a(y)) ds(y), x ∈ ∂D,

(N−
Da)(x ) := ν(x ) × curl curl

∫
∂D

Φk−(x − y)ν(y) × a(y) ds(y), x ∈ ∂D.

Combining results from [30, 15] and [27], it can be seen that the operators

M−
D : H

−1/2
div (∂D) → H

−1/2
div (∂D) and N−

D : H
−1/2
curl (∂D) → H

−1/2
div (∂D) are contin-

uous. Moreover, M−
D is compact, and its transpose with respect to the bilinear form

〈·, ·〉∂D is given by M−
D

�
= rM−

Dr. The operator N−
D is symmetric. We also need the

following identity (see [15, p. 170]:

(5.1) divA−
Da = S−

D div∂D a , a ∈ H
−1/2
div (∂D).
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5.2. The potential theoretic limit. For k− = 0 the expression Φk− reduces
to the fundamental solution Φ0 of Laplace’s equation. Substituting Φk− by Φ0 in the
definitions above, we obtain integral operators

S0
D :H−1/2(∂D) → H1

loc( R
3), A0

D :H
−1/2
div (∂D) → Hloc(curl, R

3),

M0
D :H

−1/2
div (∂D) → H

−1/2
div (∂D), N0

D :H
−1/2
curl (∂D) → H

−1/2
div (∂D).

The corresponding mapping properties and jump relations remain valid for k = 0.
Suppose that all components of D are simply connected and the complement of D

is connected. Then the operator 1
2I + M0

D has trivial nullspace in H
−1/2
div (∂D) [14,

Thm. 5.5]. Therefore, we can apply Fredholm’s alternative and find that 1
2I + M0

D

and 1
2I + M0

D
�

are invertible on H
−1/2
div (∂D) and H

−1/2
curl (∂D), respectively. From

M0
D

�
= rM0

Dr we observe that for any a ∈ H
−1/2
div (∂D) it holds that

(5.2)
(1

2
I ±M0

D
�)

ra = r
(1

2
I ∓M0

D

)
a .

Thus, − 1
2I + M0

D and − 1
2I + M0

D
�

are invertible on H
−1/2
div (∂D) and H

−1/2
curl (∂D),

respectively, too.

Furthermore, given a scalar smooth function f we define

(K0
Df)(x ) :=

∫
∂D

∂Φ0(x − y)

∂ν(y)
f(y) ds(y), x ∈ ∂D.

It can be shown [32, Thm. 4.4.1] that the mapping K0
D : H1/2(∂D) → H1/2(∂D) is

compact. The operator − 1
2I + K0

D has trivial nullspace in H1/2(∂D) [3, Lem. 2.5].

Hence, by Fredholm’s alternative − 1
2I + K0

D and − 1
2I + K0

D
�

are invertible on

H1/2(∂D) and H−1/2(∂D), respectively.

Lemma 5.1. (a) The operators ± 1
2I + M0

D are isomorphisms on

H
−1/2
div,0 (∂D) := {a ∈ H

−1/2
div (∂D) | div∂D a = 0}.

(b) For any f ∈ H1/2(∂D),

(5.3)
(
±1

2
I + M0

D
�)−1

∇∂Df = −∇∂D

(
∓1

2
I + K0

D

)−1

f.

Proof. Part (a) follows at once from

(5.4) div∂D M0
Da = −K0

D
�

div∂D a , a ∈ H
−1/2
div (∂D);

cf. [15, p. 169]. By duality, (5.4) yields M0
D

�∇∂Df = −∇∂DK0
Df for f ∈ H1/2(∂D).

Thus, we find

(
±1

2
I + M0

D
�)∇∂Df = −∇∂D

(
∓1

2
I + K0

D

)
f,

which gives (5.3).
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5.3. Surface potentials for layered media. Here, we consider again the two-
layered medium introduced in section 3. Let D ⊂ R

3
− be a bounded domain of class

C2,α, 0 < α < 1, such that dist(D,Σ0) ≥ c0 for some constant c0 > 0. We define
modified vector potentials with smooth tangential density a by

(Ae/m
D a)(x ) :=

∫
∂D

Πe/m(x ,y)a(y) ds(y)

=(A−
Da)(x ) +

∫
∂D

F e/m(x ,y)a(y) ds(y), x ∈ R
3 \ ∂D,

and boundary integrals

(R
e/m
D a)(x ) :=

∫
∂D

ν(x ) × curlx(F e/m(x ,y)a(y)) ds(y), x ∈ ∂D,(5.5)

(M
e/m
D a)(x ) :=

∫
∂D

ν(x ) × curlx(Πe/m(x ,y)a(y)) ds(y)

=(M−
Da)(x ) + (R

e/m
D a)(x ), x ∈ ∂D.(5.6)

Because F e/m(·,y) is smooth in R
3
0 for y in any compact subset of R

3
0, we find that

Ae/m
D a and ν × curl curlAe/m

D a are continuous across ∂D. Furthermore,

ν × curlAe/m
D a

∣∣±
∂D

=
(
±1

2
I + M

e/m
D

)
a on ∂D.

The mapping Ae/m
D : H

−1/2
div (∂D) → Hloc(curl, R

3
0) is continuous, and the operators

R
e/m
D : H

−1/2
div (∂D) → H

−1/2
div (∂D) and M

e/m
D : H

−1/2
div (∂D) → H

−1/2
div (∂D) are

compact. Assume that the exterior of D is connected and that the wavenumber
k− is not an interior Maxwell eigenvalue for D. Then the operator 1

2I + Mm
D has

trivial nullspace in H
−1/2
div (∂D). This can be proven in essentially the same way as

[14, Thm. 4.23] for homogeneous medium and continuous densities. So we can apply
Fredholm’s alternative to obtain that 1

2I + Mm
D and 1

2I + Mm
D

� are invertible on

H
−1/2
div (∂D) and H

−1/2
curl (∂D), respectively.

6. First estimates. In the following two sections we consider the case of a single
scatterer, i.e., Dδ = z + δB. Multiple scatterers will be studied in section 8.

We often have to deal with changes of coordinates; thus we introduce the following
notation. Given a ∈ C(∂Dδ)

3 and b ∈ C(∂B)3 we define â , (a)∧ ∈ C(∂B)3 and
b̌, (b)∨ ∈ C(∂Dδ)

3 by

(6.1) (a)∧(ξ) := â(ξ) := a(δξ + z ) and (b)∨(x ) := b̌(x ) := b
(x − z

δ

)
for ξ ∈ ∂B and x ∈ ∂Dδ, respectively. This notation is also applied to functions from
Sobolev spaces.

For arbitrary bounded domains D ⊂ R
3 of class C2,α, 0 < α < 1, we use the

following norms on H
−1/2
div (∂D) and H

−1/2
curl (∂D):

‖a‖
H

−1/2
div (∂D)

:= inf
u∈H (curl,D), γt(u)=a

‖u‖H (curl,D) for a ∈ H
−1/2
div (∂D),

‖b‖
H

−1/2
curl (∂D)

:= inf
u∈H (curl,D), πt(u)=b

‖u‖H (curl,D) for b ∈ H
−1/2
curl (∂D).
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A simple calculation (cf. [1, Lem. 4.1] for a similar result) yields the following scal-
ing properties of these norms under changes of coordinates as in (6.1). Suppose

a ∈ H
−1/2
div (∂Dδ), b ∈ H

−1/2
curl (∂Dδ), and assume 0 < δ ≤ 1. Then

δ
3
2 ‖â‖

H
−1/2
div (∂B)

≤ ‖a‖
H

−1/2
div (∂Dδ)

≤ δ
1
2 ‖â‖

H
−1/2
div (∂B)

,(6.2a)

δ
3
2 ‖b̂‖

H
−1/2
curl (∂B)

≤ ‖b‖
H

−1/2
curl (∂Dδ)

≤ δ
1
2 ‖b̂‖

H
−1/2
curl (∂B)

.(6.2b)

In order to derive the asymptotic expansion in section 7 we need to expand the
fundamental solution Φk−(x−y) = Φk−(δ(ξ−η)) for x = δξ+z �= δη+z = y ∈ ∂Dδ,

i.e., ξ �= η ∈ ∂B, as δ → 0. Expanding ei k−δ|ξ−η| in a power series we obtain the
following formulas:

Φk−(x − y) =
1

δ

(
Φ0(ξ − η) +

i k−δ

4π
+ O(δ2)

)
as δ → 0,(6.3)

∇xΦk−(x − y) =
1

δ2

(
∇ξΦ0(ξ − η) −

k2
−δ

2

8π

ξ − η

|ξ − η| + O(δ3)

)
as δ → 0.(6.4)

Remark 6.1 (eigenvalues). In section 5.3 we had to assume that the wavenumber
k− is not an interior Maxwell eigenvalue for the bounded domain D to obtain invert-
ibility of the operators 1

2I + Mm
D and 1

2I + Mm
D

�. Interior Maxwell eigenvalues for
D are wavenumbers κ such that Maxwell’s equations (3.1) in D with homogeneous
boundary condition ν ×E |∂D = 0 on ∂D have a nontrivial solution. If �κ > 0, it is
well known that solutions to the interior Maxwell boundary value problem are unique
(cf. [31, Thm. 4.17]), and thus κ is no eigenvalue. On the other hand, there is a
discrete set of real eigenvalues κj > 0, j ∈ N , for D accumulating only at infinity; cf.
[31, Thm. 4.18].

Let {kj}j∈N be the set of interior Maxwell eigenvalues corresponding to the ref-
erence domain B. By a change of coordinates in the variational formulation of the
eigenvalue problem (see [31, p. 96]), we find that {δ−1kj}j∈N is the set of eigenvalues
corresponding to the domain Dδ = z + δB, 0 < δ ≤ 1. Therefore, we can assume
henceforth in the derivation of the asymptotic expansion without loss of generality
that δ is small enough so that k− /∈ {δ−1kj}j∈N , i.e., that k− is no interior Maxwell
eigenvalue for the domains Dδ considered hereafter.

In the next lemma we investigate the scaling properties of the operator Mm
Dδ

.

Lemma 6.2. For a ∈ H
−1/2
div (∂Dδ) we have

Mm
Dδ

a = (M0
Bâ)∨ + (Em

M â)∨.

Here Em
M is a bounded linear operator, which is O(δ2) in L(H

−1/2
div (∂B)) as δ → 0,

independent of a .

Proof. Let a ∈ H
−1/2
div (∂Dδ) and aj , j ∈ N , be smooth tangential vector fields

with smooth surface divergence on ∂Dδ so that aj converges to a in H
−1/2
div (∂Dδ). For

fixed j ∈ N and x ∈ Dδ we observe by a change of variables ξ := x−z
δ and η := y−z

δ
that

(M0
Dδ

aj)(x ) =

∫
∂B

ν(ξ) × 1

δ
curlξ

(
âj(η)

1

4πδ|ξ − η|

)
δ2 ds(η) = (M0

Bâj)(ξ),

i.e., M0
Dδ

aj = (M0
Bâj)

∨. From (6.4) we find

∇x(Φk− − Φ0)(x − y) =
1

δ2

(
−
k2
−δ

2

8π

ξ − η

|ξ − η| + O(δ3)

)
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for x �= y as δ → 0. So, again by a change of coordinates we obtain for x ∈ ∂Dδ

(
(M−

Dδ
−M0

Dδ
)aj

)
(x ) =

∫
∂Dδ

ν(x ) ×
(
∇x(Φk− − Φ0)(x − y) × aj(y)

)
ds(y)

= δ2

∫
∂B

ν(ξ) ×
((

−
k2
−

8π

ξ − η

|ξ − η| + O(δ)

)
× âj(η)

)
ds(η) =: (E−

M âj)(ξ).

The kernel of E−
M is pseudohomogeneous of class −2 (cf. [32, pp. 168–175]), and

hence E−
M is continuous from H−1/2(∂B)3 into H3/2(∂B)3; cf. [32, Thm. 4.3.2]. So

E−
M is also continuous from H

−1/2
div (∂B) to H

−1/2
div (∂B); in particular, it is O(δ2) in

L(H
−1/2
div (∂B)) as δ → 0. Thus, recalling the continuity properties of the operators

M−
Dδ

, M0
B , and E−

M and letting j → ∞, we obtain

M−
Dδ

a = (M0
Bâ)∨ + (E−

M â)∨.

Recalling (5.6) it remains to estimate the norm of Rm
Dδ

a . For this purpose, we

denote by R̃m
Dδ

a the extension of Rm
Dδ

to H (curl, Dδ) (with respect to the trace
operator γt), which is obtained canonically from (5.5) via

R̃m
Dδ

a :=

∫
∂Dδ

curlxF
m(·,y)a(y) ds(y) in Dδ.

Then, because Fm is smooth near the center of the scatterer,

‖Rm
Dδ

a‖2

H
−1/2
div (∂Dδ)

= inf
u∈H (curl,Dδ), γt(u)=Rm

Dδ
a
‖u‖2

H (curl,Dδ)
≤ ‖R̃m

Dδ
a‖2

H (curl,Dδ)

=

∫
Dδ

∣∣∣∫
∂Dδ

curlxF
m(x ,y)a(y) ds(y)

∣∣∣2 dx

+

∫
Dδ

∣∣∣curlx

∫
∂Dδ

curlxF
m(x ,y)a(y) ds(y)

∣∣∣2 dx

≤
∫
Dδ

(
‖curlxF

m(x , ·)‖2

H
−1/2
curl (∂Dδ)

+ ‖curlx curlxF
m(x , ·)‖2

H
−1/2
curl (∂Dδ)

)
‖a‖2

H
−1/2
div (∂Dδ)

dx

≤ Cδ3‖a‖2

H
−1/2
div (∂Dδ)

∫
Dδ

1 dx ≤ Cδ6‖a‖2

H
−1/2
div (∂Dδ)

.

Using (6.2) we find

‖(Rm
Dδ

a)∧‖
H

−1/2
div (∂B)

≤ δ−
3
2 ‖Rm

Dδ
a‖

H
−1/2
div (∂Dδ)

≤ Cδ2‖â‖
H

−1/2
div (∂B)

.

Thus, we define

Em
Mb := E−

Mb + (Rm
Dδ

b̌)∧, b ∈ H
−1/2
div (∂B),

and obtain the desired result.
For a ∈ H

−1/2
div (∂Dδ) Lemma 6.2 yields

(1

2
I + Mm

Dδ

)
a =

((1

2
I + M0

B + Em
M

)
â
)∨

.
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Thus,

(6.5)
(1

2
I+Mm

Dδ

)−1

a =
((1

2
I+M0

B+Em
M

)−1

â
)∨

=
((1

2
I+M0

B

)−1

â
)∨

+(Ẽm
M â)∨,

where Ẽm
M is a bounded linear operator, which is O(δ2) in L(H

−1/2
div (∂B)) as δ → 0,

independent of a .

7. Asymptotic expansion. In this section we expand the three operators Lδ,
L�
δ , and Fδ occurring in the factorization (4.6) of the measurement operator Gδ

separately as the inhomogeneity size δ tends to zero. Then, we use these expansions
to calculate the leading order term in the asymptotic expansion of Gδ.

First, we consider the exterior Maxwell boundary value problem (4.1) and study
the asymptotic behavior of the operator Lδ from (4.2). A radiating solution of this
problem is given by

Eψ :=
ε−
ε

curlAm
Dδ

(1

2
I + Mm

Dδ

)−1

ψ in R
3
0 \Dδ,

H ψ := − iωε−

∫
∂Dδ

G
m(·,y)

((1

2
I + Mm

Dδ

)−1

ψ
)
(y) ds(y) in R

3
0 \Dδ.

By Taylor expansion we obtain for x ∈ M, z ∈ R
3
− with dist(z ,Σ0) ≥ c0 for some

constant c0 > 0, and η ∈ ∂B as δ → 0 that

G
m(x , δη + z ) = G

m(x , z ) + δ

3∑
l=1

∂G
m

∂yl
(x , z )ηl + O(δ2).

Thus, by a change of coordinates, applying (6.5) we have

H ψ(x ) = − iωε−δ
2

∫
∂B

G
m(x , δη + z )

((1

2
I + M0

B

)−1

ψ̂
)
(η) ds(η) + O(δ4)

= − iωε−δ
2
G

m(x , z )

∫
∂B

((1

2
I + M0

B

)−1

ψ̂
)
(η) ds(η)

− iωε−δ
3

∫
∂B

3∑
l=1

ηl
∂G

m

∂yl
(x , z )

((1

2
I + M0

B

)−1

ψ̂
)
(η) ds(η) + O(δ4)

for x ∈ M as δ → 0. The last term on the right-hand side is bounded by
Cδ4‖ψ̂‖

H
−1/2
div (∂B)

, where the constant C is independent of δ and ψ, uniformly for

x ∈ M. We define L0 : H
−1/2
div (∂B) → L2(M),

(7.1) L0a := − iωε−G
m(·, z )

∫
∂B

((1

2
I + M0

B

)−1

a
)
(η) ds(η),

and L1 : H
−1/2
div (∂B) → L2(M),

(7.2) L1a := − iωε−

∫
∂B

3∑
l=1

ηl
∂G

m

∂yl
(·, z )

((1

2
I + M0

B

)−1

a
)
(η) ds(η).

Then L0 and L1 are bounded linear operators, and we have the following asymptotic
behavior.
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Proposition 7.1. For all ψ ∈ H
−1/2
div (∂Dδ),

(7.3) Lδψ = δ2L0ψ̂ + δ3L1ψ̂ + ELψ̂,

where EL is a bounded linear operator, which is O(δ4) in L(H
−1/2
div (∂B),L2(M)) as

δ → 0, independent of ψ.
Next we consider the asymptotic behavior of the operator L�

δ from (4.3). Let

ϕ ∈ L2(M) and ψ ∈ H
−1/2
div (∂Dδ). For X ∈ {B,Dδ} we denote by 〈·, ·〉∂X the

duality pairing between H
−1/2
div (∂X) and H

−1/2
curl (∂X). Using (7.3) we obtain

〈L�
δ ϕ,ψ〉∂Dδ

= 〈ϕ, Lδψ〉M = 〈δ2L�
0 ϕ + δ3L�

1 ϕ + E�
L ϕ, ψ̂〉∂B

= 〈(L�
0 ϕ)∨ + δ(L�

1 ϕ)∨ + δ−2(E�
L ϕ)∨,ψ〉∂Dδ

,

where L�
0 , L

�
1 , E

�
L : L2(M) → H

−1/2
curl (∂B) are the dual operators of L0, L1, and EL,

respectively. Because by duality E�
L is O(δ4) in L(L2(M),H

−1/2
curl (∂B)), we obtain

the following asymptotic behavior.
Proposition 7.2. For all ϕ ∈ L2(M),

L�
δ ϕ = (L�

0 ϕ)∨ + δ(L�
1 ϕ)∨ + δ−2(E�

L ϕ)∨,

where E�
L is a bounded linear operator, which is O(δ4) in L(L2(M),H

−1/2
curl (∂B)) as

δ → 0, independent of ϕ.
Now we calculate the operators L�

0 and L�
1 explicitly. Let ϕ ∈ L2(M) and

a ∈ H
−1/2
div (∂B). Recalling the definition of the operator L0 from (7.1) we find

〈ϕ, L0a〉M =

∫
M

(
− iωε−G

m(x , z )

∫
∂B

((1

2
I+M0

B

)−1

a
)
(η) ds(η)

)
·ϕ(x ) ds(x )

=

(
− iωε−

∫
M

G
m�(x , z )ϕ(x ) ds(x )

)
·
∫
∂B

((1

2
I + M0

B

)−1

a
)
(η) ds(η).

Recalling (3.4b) and (3.5), we obtain

〈ϕ, L0a〉M =
1

iωμ+
H i(z ) ·

∫
∂B

((1

2
I + M0

B

)−1

a
)
(η) ds(η)

=

∫
∂B

1

iωμ+

((1

2
I + M0

B
�)−1

πt

(
H i(z )

))
(ξ) · a(ξ) ds(ξ),

where πt denotes the projection on the tangent plane to ∂B. Therefore, we have

(7.4) L�
0 ϕ =

1

iωμ+

(1

2
I + M0

B
�)−1

πt(H
i(z )).

In the same way we obtain from (7.2) that

〈ϕ, L1a〉M =

∫
∂B

1

iωμ+

((1

2
I + M0

B
�)−1

πt

( 3∑
l=1

ηl
∂H i

∂yl
(z )

))
(ξ) · a(ξ) ds(ξ).

Here, ηl denotes the lth component of the surface variable on ∂B. Thus we have

(7.5) L�
1 ϕ =

1

iωμ+

(1

2
I + M0

B
�)−1

πt

( 3∑
l=1

ηl
∂H i

∂yl
(z )

)
.



ASYMPTOTIC FACTORIZATION IN INVERSE SCATTERING 1391

We return to the diffraction problem (4.4) and the operator Fδ from (4.5). Given

χ ∈ H
−1/2
curl (∂Dδ), we define

Ed := − 1

iωε
curl

μ−
μ

curlAe
Dδ

(ν × χ) in R
3
0 \ ∂Dδ,

H d :=
μ−
μ

curlAe
Dδ

(ν × χ) in R
3
0 \ ∂Dδ.

Then (Ed,H d) is a radiating solution to (4.4), and recalling (3.3), (5.1), and (2.1) we
find

ν ×Ed
∣∣
∂Dδ

(x ) = − 1

iωε−
ν(x ) × curlx curlx

∫
∂Dδ

Πe(x ,y)(ν × χ)(y) ds(y)

= iωμ−ν(x ) ×
∫
∂Dδ

Φk−(x − y)(ν × χ)(y) ds(y)

+
1

iωε−
ν(x ) ×

∫
∂Dδ

∇xΦk−(x − y)(curl∂Dδ
χ)(y) ds(y)

− 1

iωε−
ν(x ) × curlx curlx

∫
∂Dδ

F e(x ,y)(ν × χ)(y) ds(y) .

Remark 7.3. The previous formula employs a slight abuse of notation, because

pointwise evaluation is not defined for elements of H
−1/2
div (∂Dδ). However, we included

the argument for better readability.

Define PDδ
: H

−1/2
curl (∂Dδ) → H

−1/2
div (∂Dδ) by

PDδ
a := − 1

iωε−
ν × curl curl

∫
∂Dδ

F e(·,y)(ν × a)(y) ds(y)

for a ∈ H
−1/2
curl (∂Dδ). Then we can see as in the proof of Lemma 6.2 that

‖(PDδ
a)∧‖

H
−1/2
div (∂B)

≤ Cδ2‖â‖
H

−1/2
curl (∂B)

.

Therefore, by change of coordinates, applying (6.3) and (6.4), we obtain

(ν ×Ed
∣∣
∂Dδ

)∧(ξ) = δ−1 1

iωε−
ν(ξ) ×

∫
∂B

∇ξΦ0(ξ − η)(curl∂B χ̂)(η) ds(η)

+ δ iωμ−ν(ξ) ×
∫
∂B

Φ0(ξ − η)(ν × χ̂)(η) ds(η)

+ δ iωμ−ν(ξ) ×
∫
∂B

1

8π

ξ − η

|ξ − η| (curl∂B χ̂)(η) ds(η) + O(δ2)

as δ → 0. The O(δ2)-term in (6.3) and the O(δ3)-term in (6.4) define pseudo-
homogeneous kernels of class −3 (cf. [32, pp. 168–174]); i.e., the corresponding inte-
gral operators are continuous from H−1/2(∂B)3 into H5/2(∂B)3 (cf. [32, Thm. 4.4.1]).

Thus, these operators are also continuous from H
−1/2
curl (∂B) into H

−1/2
div (∂B), and to-

gether with the (constant) O(δ)-term in (6.3) they lead to terms of order O(δ2) in

H
−1/2
div (∂B) in the asymptotic expansion of ν ×Ed|∂Dδ

as δ → 0.

We define F0 : H
−1/2
curl (∂B) → H

−1/2
div (∂B),

(F0a)(ξ) :=
1

iωε−
ν(ξ) ×

∫
∂B

∇ξΦ0(ξ − η)(curl∂B a)(η) ds(η),(7.6)
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and F1 : H
−1/2
curl (∂B) → H

−1/2
div (∂B),

(7.7) (F1a)(ξ) := iωμ−
(
ν ×A0

B(ν × a)
∣∣
∂B

)
(ξ)

+ iωμ−ν(ξ) ×
∫
∂B

1

8π

ξ − η

|ξ − η| (curl∂B a)(η) ds(η).

Note that − iωε−F0 = N0
B . Thus, F0 and the first part of F1 are bounded. Because

the kernel of the second part of F1 is homogeneous of class −2 (cf. [32, sec. 4.3.2]), the
second part of F1 is continuous also. We obtain the following asymptotic behavior.

Proposition 7.4. For all χ ∈ H
−1/2
curl (∂Dδ),

Fδχ = δ−1(F0χ̂)∨ + δ(F1χ̂)∨ + (EF χ̂)∨,

where EF is a bounded linear operator, which is O(δ2) in L(H
−1/2
curl (∂B),H

−1/2
div (∂B))

as δ → 0, independent of χ.
Next we consider the boundary value problem of finding u ∈ H (curl, B) such

that

curl curlu = 0 in B,(7.8a)

divu = 0 in B,(7.8b)

ν × u = c on ∂B,(7.8c)

where c ∈ H
−1/2
div (∂B) is a given tangential function. We show that (7.8) has at most

one solution and use this fact to prove that F0L
�
0 = 0 on L2(M) and L0F0 = 0 on

H
−1/2
curl (∂B).

Lemma 7.5. Let c ∈ H
−1/2
div (∂B). Then the boundary value problem (7.8) has at

most one solution in H (curl, B).
Proof. Using integration by parts we find for any solution u ∈ H (curl, B) of

(7.8) with homogeneous boundary condition c = 0 that

0 =

∫
B

curl curlu(x ) · u(x ) dx

=

∫
B

|curlu(x )|2 dx +
〈
γt(curlu), πt(u)

〉
∂B

=

∫
B

|curlu(x )|2 dx .

Hence, curlu = 0 in B, and because the boundaries of all components of B are
assumed to be connected, we obtain from [31, Thms. 3.41 and 3.42] a scalar potential
p ∈ H1(B) with γ0(p) = 0 on ∂B such that u = ∇p. Finally, because Δp = divu = 0
in B by (7.8b), we have p = 0 in B. Hence, u = ∇p = 0 in B.

Proposition 7.6. Let ϕ ∈ L2(M) and a ∈ H
−1/2
curl (∂B). Then F0L

�
0 ϕ = 0 and

L0F0a = 0.
Proof. Given ϕ ∈ L2(M), by (7.4) and (7.6) we find that on ∂B

F0L
�
0 ϕ =

1

ω2ε−μ+
ν × curl curlA0

B

(
ν ×

(1

2
I + M0

B
�)−1

πt

(
H i(z )

))
,

where H i(z ) is given by (3.5). An easy computation applying (5.2) shows that

(7.9) ±ν ×
(
±1

2
I + M0

B
�)−1

πt(·) = ∓
(
∓1

2
I + M0

B

)−1

γt(·) .
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Therefore,

F0L
�
0 ϕ = − 1

ω2ε−μ+
ν × curl curlA0

B

(
−1

2
I + M0

B

)−1

γt
(
H i(z )

)
.

Now let

u := curlA0
B

(
−1

2
I + M0

B

)−1

γt
(
H i(z )

)
in B;

then u is a solution to (7.8) with c = γt
(
H i(z )

)
. From Lemma 7.5 we obtain that

u = H i(z ) is constant in B. Hence,

F0L
�
0 ϕ = − 1

ω2ε−μ+
γt(curlu) = 0 on ∂B.

Because F0 is symmetric, also L0F0a = 0 for each a ∈ H
−1/2
curl (∂B).

Recalling Theorem 4.2, we can we put our results together and obtain the following
asymptotic expansion of the measurement operator Gδ.

Theorem 7.7. Let ϕ ∈ L2(M); then

Gδϕ = iωμ+δ
3
(
L0F1L

�
0 ϕ + L1F0L

�
1 ϕ

)
+ O(δ4)

in L2(M) as δ → 0. More precisely, the last term on the right-hand side is bounded
by Cδ4‖ϕ‖L2(M), where the constant C is independent of δ and ϕ.

The proof of this theorem follows straightforwardly from the previous propositions
and Theorem 4.2. We refer the reader to [1, Thm. 5.9] for a similar proof in the
electrostatic case.

Finally, for ϕ ∈ L2(M), we are going to calculate L0F1L
�
0 ϕ and L1F0L

�
1 ϕ

explicitly.
Lemma 7.8. For each ϕ ∈ L2(M) we have

(7.10) F0L
�
1 ϕ = − 1

ω2ε−μ+
γt
(
curlH i(z )

)
on ∂B.

Proof. Given ϕ ∈ L2(M), by (7.5) and (7.6), applying (7.9) we find

F0L
�
1 ϕ =

1

ω2ε−μ+
ν × curl curlA0

B

(
ν ×

(1

2
I + M0

B
�)−1

πt

( 3∑
l=1

ηl
∂H i

∂yl
(z )

))

= − 1

ω2ε−μ+
ν × curl curlA0

B

(
−1

2
I + M0

B

)−1

γt

( 3∑
l=1

ηl
∂H i

∂yl
(z )

)
.

Let

u := curlA0
B

(
−1

2
I + M0

B

)−1

γt

( 3∑
l=1

ηl
∂H i

∂yl
(z )

)
in B;

then u is a solution to (7.8) with c = γt(
∑3

l=1 ηl
∂H i

∂yl
(z )). From Lemma 7.5 we obtain

u(ξ) =
∑3

l=1 ξl
∂H i

∂yl
(z ) for a.e. ξ ∈ B. An easy calculation shows that therefore

curlu = curlH i(z ) in B, which ends the proof.
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Lemma 7.9. For each ϕ ∈ L2(M) we have

(7.11) F1L
�
0 ϕ = −μ−

μ+
γt

(
A0

B

(
−1

2
I + M0

B

)−1

γt
(
H i(z )

))
on ∂B.

Proof. Given ϕ ∈ L2(M), by (7.4) and (7.7), applying (2.1) and (7.9) we find
that on ∂B

(F1L
�
0 ϕ)(ξ) = − μ−

μ+

(
γt

(
A0

B

(
−1

2
I + M0

B

)−1

γt
(
H i(z )

)))
(ξ)

+
μ−
μ+

ν(ξ) ×
∫
∂B

1

8π

ξ − η

|ξ − η|

(
div∂B

((
−1

2
I + M0

B

)−1

γt
(
H i(z )

)))
(η) ds(η).

(7.12)

By Lemma 5.1(a), − 1
2I + M0

B is an isomorphism on H
−1/2
div,0 (∂B). Therefore, because

by (2.3) it holds that div∂B γt
(
H i(z )

)
= −γn

(
curl

(
H i(z )

))
= 0, we find

div∂B

((
−1

2
I + M0

B

)−1

γt
(
H i(z )

))
= 0.

Hence, the second term on the right-hand side of (7.12) vanishes, and we obtain the
desired result.

Definition 7.10. For a bounded C2,α domain D ⊂ R
3 we define the magnetic

polarizability tensor M
0
D ∈ R

3×3 by M
0
D := (m0

ij)
3
i,j=1 with

m0
ij := −

∫
∂D

ηj

((
−1

2
I + K0

D
�)−1

νi

)
(η) ds(η), 1 ≤ i, j ≤ 3.

The electric polarizability tensor M
∞
D ∈ R

3×3 corresponding to the domain D is given
by M

∞
D := (m∞

ij )3i,j=1 with

m∞
ij :=

∫
∂D

ηj

((1

2
I + K0

D
�)−1

νi

)
(η) ds(η), 1 ≤ i, j ≤ 3.

The magnetic and the electric polarizability tensor are symmetric and positive
definite matrices; cf. [3, 19].

Proposition 7.11. For each ϕ ∈ L2(M) we have

L1F0L
�
1 ϕ =

1

iωμ+

μ−
μ+

curlxG
e(·, z )M∞

B curlH i(z ) on M.

Proof. Let ϕ ∈ L2(M). By (7.10) and (7.2),

L1F0L
�
1 ϕ = − 1

iωμ+

∫
∂B

3∑
l=1

ηl
∂G

m

∂yl
(·, z )

((1

2
I+M0

B

)−1

γt
(
curlH i(z )

))
(η) ds(η)

on M. Applying (7.9), we find

−
∫
∂B

3∑
l=1

ηl
∂G

m

∂yl
(·, z )

((1

2
I + M0

B

)−1

γt
(
curlH i(z )

))
(η) ds(η)

=

3∑
l=1

∂G
m

∂yl
(·, z )

∫
∂B

ηl I 3

(
ν ×

(
−1

2
I + M0

B
�)−1

πt

(
curlH i(z )

))
(η) ds(η)
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on M. Because by (2.2)

πt

(
curlH i(z )

)
= πt

(
∇η

(
curlH i(z ) · η

))
= ∇∂B

(
curlH i(z ) · η

)
on ∂B, where η denotes the coordinate function in a neighborhood of ∂B, we can
apply (5.3) and (2.2) to obtain for 1 ≤ l ≤ 3 that∫

∂B

ηl I 3

(
ν ×

(
−1

2
I + M0

B
�)−1

πt

(
curlH i(z )

))
(η) ds(η)

=

∫
∂B

πt(ηl I 3)
�
(
curl∂B

(1

2
I + K0

B

)−1(
curlH i(z ) · η

))
(η) ds(η).

From the duality of curl∂B and curl∂B , and from (2.3), we find∫
∂B

πt(ηl I 3)
�
(
curl∂B

(1

2
I + K0

B

)−1(
curlH i(z ) · η

))
(η) ds(η)

=

∫
∂B

(
ν · curl(ηl I 3)

)�
(ξ)

(((1

2
I + K0

B

)−1

η
)
(ξ) · curlH i(z )

)
ds(ξ).

An easy calculation reveals

3∑
l=1

∂G
m

∂yl
(·, z )curlη(ηl I 3)

� =
(
curlyG

m�)�(·, z ).

Applying (3.4b) and (3.4c), we observe

(
curlyG

m�)�(·, z ) =
μ−
μ+

curlxG
e(·, z ).

So, we find

3∑
l=1

∂G
m

∂yl
(·, z )

∫
∂B

(
ν · curl(ηl I 3)

)�
(ξ)

(((1

2
I + K0

B

)−1

η
)
(ξ) · curlH i(z )

)
ds(ξ)

=
μ−
μ+

curlxG
e(·, z )

∫
∂B

ν(ξ)

(((1

2
I + K0

B

)−1

η
)
(ξ) · curlH i(z )

)
ds(ξ)

=
μ−
μ+

curlxG
e(·, z )M∞

B curlH i(z ).

Proposition 7.12. For each ϕ ∈ L2(M) we have

L0F1L
�
0 ϕ = iωε−

μ−
μ+

G
m(·, z )M0

BH i(z ).

Proof. Let ϕ ∈ L2(M) and set

u := curlA0
B

(
−1

2
I + M0

B

)−1

γt
(
H i(z)

)
in B.

As in the proof of Proposition 7.6 we find that u = H i(z ) in B. So we obtain

(7.13) γn

(
curlA0

B

(
−1

2
I + M0

B

)−1

γt
(
H i(z)

))
= γn

(
H i(z )

)
on ∂B.
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By (7.11) and (7.1),

L0F1L
�
0 ϕ

= iωε−
μ−
μ+

G
m(·, z )

∫
∂B

((1

2
I+M0

B

)−1

γt

(
A0

B

(
−1

2
I+M0

B

)−1

γt
(
H i(z )

)))
(η) ds(η)

on M. Observing that πt( I 3) = ∇∂Bη on ∂B, where η again denotes the surface
variable on ∂B, and applying (2.2), we can calculate∫

∂B

((1

2
I + M0

B

)−1

γt

(
A0

B

(
−1

2
I + M0

B

)−1

γt
(
H i(z )

)))
(η) ds(η)

=

∫
∂B

((1

2
I + M0

B
�)−1

∇∂Bη
)�

(ξ)γt

(
A0

B

(
−1

2
I + M0

B

)−1

γt
(
H i(z )

))
(ξ) ds(ξ).

Applying (5.3), the duality of −∇∂B and div∂B , and (2.3), we have∫
∂B

((1

2
I + M0

B
�)−1

∇∂Bη
)�

(ξ)γt

(
A0

B

(
−1

2
I + M0

B

)−1

γt
(
H i(z )

))
(ξ) ds(ξ)

=

∫
∂B

((
−1

2
I + K0

B

)−1

η
)
(η)

(
−γn

(
curlA0

B

(
−1

2
I + M0

B

)−1

γt
(
H i(z )

)))
(η) ds(η).

Finally, recalling (7.13), we obtain∫
∂B

((
−1

2
I + K0

B

)−1

η
)
(η)

(
−γn

(
curlA0

B

(
−1

2
I + M0

B

)−1

γt
(
H i(z )

)))
(η) ds(η)

= −
∫
∂B

((
−1

2
I + K0

B

)−1

η
)
(η)

(
ν(η) ·H i(z )

)
ds(η) = M

0
BH i(z ).

From Theorem 7.7 and Propositions 7.11 and 7.12 we obtain the following corol-
lary.

Corollary 7.13. Let ϕ ∈ L2(M), and let H i be the corresponding incident
field from (3.5). Then

Gδϕ = δ3
(
−k2

−G
m(·, z )M0

BH i(z ) +
μ−
μ+

curlxG
e(·, z )M∞

B curlH i(z )
)

+ O(δ4)

in L2(M), as δ → 0. More precisely, the last term on the right-hand side is bounded
by Cδ4‖ϕ‖L2(M), where the constant C is independent of δ and ϕ.

8. Multiple scatterers. The results of the previous sections can be extended
to the practically important case of finitely many well-separated small scatterers as
introduced in section 3. This generalization works in the same way as we did in [1,
section 6] for the electrostatic case. Because the calculations are rather technical and
no new ideas are needed, we just mention the final result and leave the details to the
reader.

Let M
0
B1

, . . . ,M0
Bm

and M
∞
B1

, . . . ,M∞
Bm

denote the magnetic and electric polariz-
ability tensors corresponding to B1, . . . , Bm, respectively. In case of multiple scatter-
ers Corollary 7.13 reads as follows.

Corollary 8.1. Let ϕ ∈ L2(M), and let H i be the corresponding incident field
from (3.5). Then
(8.1)

Gδϕ = δ3
m∑
l=1

(
−k2

−G
m(·, zl)M0

Bl
H i(zl) +

μ−
μ+

curlxG
e(·, zl)M∞

Bl
curlH i(zl)

)
+ O(δ4)
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in L2(M), as δ → 0. More precisely, the last term on the right-hand side is bounded
by Cδ4‖ϕ‖L2(M), where the constant C is independent of δ and ϕ.

9. A characterization of the scatterers. Using the asymptotic formula (8.1)
we can now derive a characterization of the centers of the scatterers z1, . . . , zl using
a range criterion. For this purpose we introduce the operator T : L2(M) → L2(M)
describing the leading order term in the asymptotic expansion (8.1), given by

(9.1) Tϕ :=

m∑
l=1

(
−k2

−G
m(·, zl)M0

Bl
H i(zl) +

μ−
μ+

curlxG
e(·, zl)M∞

Bl
curlH i(zl)

)
.

Because (3.5) implies that H i depends linearly on ϕ, it follows that T is linear. From
Corollary 8.1 we obtain

(9.2) Gδ = δ3T + O(δ4)

as δ → 0 in L(L2(M)). Next we define the operator R : C
3×2m → L2(M):

(9.3) Ra := k2
−

m∑
l=1

(
G

m(·, zl)al +
μ−
μ+

curlxG
e(·, zl)am+l

)

for a = (a1, . . . ,a2m) ∈ C
3×2m, al ∈ C

3. Endowing C
3×2m with the bilinear form

〈a , b〉C 3×2m :=
∑2m

l=1 al · bl for a = (a1, . . . ,a2m) b = (b1, . . . , b2m) ∈ C
3×2m with

al, bl ∈ C
3, using (3.5), (3.4b), and (3.4c), we obtain

〈Ra ,ϕ〉M =

m∑
l=1

al · k2
−

∫
M

G
m�(x , zl)ϕ(x ) ds(x )

+
m∑
l=1

al+m · k2
−
μ−
μ+

∫
M

(curlxG
e)�(x , zl)ϕ(x ) ds(x )

=

m∑
l=1

(
al ·

μ−
μ+

H i(zl) + al+m · μ−
μ+

curlH i(zl)
)

for any a ∈ C
3×2m and ϕ ∈ L2(M). So, R� : L2(M) → C

3×2m is given by

(9.4) R�ϕ =
μ−
μ+

(
H i(z1), . . . ,H

i(zm), curlH i(z1), . . . , curlH i(zm)
)
.

Lemma 9.1. (a) R is injective. (b) R� is surjective.
Proof. (a) Suppose a ∈ C

3×2m such that Ra = 0. Then

H̃ := k2
−

m∑
l=1

(
G

m(·, zl)al +
μ−
μ

curlxG
e(·, zl)am+l

)

together with the associated electric field Ẽ := −1/(iωε)curlH̃ is a radiating solution
of Maxwell’s equations (3.1) in R

3 \
⋃m

l=1{zl} that satisfies H̃ |M = 0. Now we can

follow the proof of [20, Thm. 3.2] and obtain H̃ = 0 in R
3 \

⋃m
l=1{zl}.

Let l ∈ {1, . . . ,m}; then of course limt→0 H̃ (zl+ tb) = 0 for any b ∈ R
3. A short

calculation shows that the singularity of G
m(·, zl) in zl is of order 3, while the sin-

gularity of curlxG
e(·, zl) in zl is of order 2. So, from limt→0 G

m(zl + te3, zl)al = 0 it
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follows that al = 0. Indeed, otherwise the singularity of G
m(·, zl)al at zl would imply

that limt→0 |H̃ (zl + te3)| = ∞. Accordingly, limt→0 curlxG
e(zl + te1, zl)am+l = 0

and limt→0 curlxG
e(zl + te2, zl)am+l = 0 yield am+l = 0. Because l ∈ {1, . . . ,m}

was arbitrary, we are done.
(b) This part of the proof follows from part (a) and the well-known relation

R(R�) = N (R)a between ranges and null spaces of dual operators with finite rank.
Here, N (R)a denotes the annihilator of N (R) in C

3×2m.
Comparing the formulas (9.3) and (9.4) for R and R� and the definition (9.1)

of T , we find that these operators are related by T = RMR�, where the operator
M : C

3×2m → C
3×2m is given by

Ma :=
μ+

μ−

(
−M

0
B1

a1, . . . ,−M
0
Bm

am,
1

k2
−

M
∞
B1

am+1, . . . ,
1

k2
−

M
∞
Bm

a2m

)
.

From the positive definiteness of the magnetic and electric polarizability tensors
M

0
B1

, . . . ,M0
Bm

and M
∞
B1

, . . . ,M∞
Bm

we conclude that M is invertible. Taking a closer
look at the range of T , we first observe that R(T ) ⊂ R(R). We show that this
inclusion is actually an equality.

Proposition 9.2. The range of T has dimension 6m and is given by

R(T ) = span
C

{
G

m(·, zl)ej , curlxG
e(·, zl)ej

∣∣ j = 1, 2, 3; l = 1, . . . ,m
}
.

Proof. The surjectivity of R� and M implies R(T ) = R(RMR�) = R(R). The
proposition is then an immediate consequence of (9.3) and Lemma 9.1(a).

Now we present the main tool for the identification of the positions zl: the char-
acterization of the centers of the scatterers in terms of the range of the leading order
term T of the asymptotic expansion of the measurement operator Gδ.

Proposition 9.3. Let d = (d1,d2) ∈ ( C
3 × C

3) \ {(0, 0)}, z ∈ R
3
−, and

gz ,d :=
(
G

m(·, z )d1 + curlxG
e(·, z )d2

)
|M.

Then, gz ,d ∈ R(T ) if and only if z ∈ {z1, . . . , zm}.
Proof. Assume that gz ,d ∈ R(T ). As a consequence of Proposition 9.2, gz ,d may

be represented as

gz ,d =

m∑
l=1

(
G

m(·, zl)al + curlxG
e(·, zl+m)al+m

)
on M,

with a1, . . . ,a2m ∈ C
3. But then both

H a :=

m∑
l=1

(
G

m(·, zl)al +
μ+

μ
curlxG

e(·, zl+m)al+m

)

and

H b := G
m(·, z )d1 +

μ+

μ
curlxG

e(·, z )d2,

together with their associated electric fields, are radiating solutions of Maxwell’s equa-
tions (3.1) in R

3\(
⋃m

l=1{zl}∪{z}) that coincide on M. So, H̃ := H a −H b together
with its electric field is a radiating solution of (3.1) in R

3 \ (
⋃m

l=1{zl} ∪ {z}) that

satisfies H̃ |M = 0. Following the proof of [20, Thm. 3.2] we conclude that H̃ = 0
everywhere in R

3 \ (
⋃m

l=1{zl} ∪ {z}). Thus H a = H b in R
3 \ (

⋃m
l=1{zl} ∪ {z}).

This is only possible if z ∈ {z1, . . . , zm}, and we have established the necessity of this
condition. The sufficiency follows from Proposition 9.2.
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10. Determining the position of the inhomogeneities. Let (·, ·)L2(M) de-
note the (complex) scalar product on L2(M). Because Gδ is a compact operator on
L2(M), it admits a singular value decomposition

Gδϕ =

∞∑
j=1

σδ
j (ϕ, v δ

j )L2(M)u
δ
j , ϕ ∈ L2(M),

where ((σδ
j )

2)j∈N are the eigenvalues of G∗
δGδ, written in decreasing order with mul-

tiplicity, σδ
j ≥ 0. Similarly, the finite rank operator T can be decomposed as

Tϕ =

6m∑
l=1

σl(ϕ, vl)L2(M)ul, ϕ ∈ L2(M),

with s1 ≥ s2 ≥ · · · ≥ s6m > 0. From (9.2) we obtain

G∗
δGδ = δ6T ∗T + O(δ7)

in L(L2(M)) as δ → 0. So, applying [26, Thm. V.4.10] we get the following aymptotic
formula for the singular values as δ → 0:

(10.1) (σδ
j )

2 = δ6σ2
j + O(δ7), j ∈ N ,

where we have set σl = 0 for l ≥ 6m. Next, for j ∈ N and l = 1, . . . , 6m, let

P δ
j : L2(M) → span

C
{uδ

1 , . . . ,u
δ
j } and Pl : L2(M) → span

C
{u1, . . . ,ul}

denote the orthogonal projections onto these subspaces, respectively. We can write
these projections as line integrals of the resolvent of GδG

∗
δ and δ6TT ∗, respectively;

see [26, III-(6.19)]. Then, a short calculation shows that

(10.2) P δ
l = Pl + O(δ), l = 1, . . . , 6m,

as δ → 0 in L(L2(M)), provided that we make appropriate choices of eigenvectors uδ
l

and ul, l = 1, . . . , 6m.
In Proposition 9.3 we have seen that a point z ∈ R

3
− coincides with one of the po-

sitions zl, l = 1, . . . ,m, if and only if gz ,d ∈ R(T ) or, equivalently, (I − P6m)gz ,d = 0.
If we decompose the test function orthogonally as gz ,d = P6mgz ,d + (I − P6m)gz ,d

and define the angle β(z ) ∈ [0, π/2] by

cotβ(z ) :=
‖P6mgz ,d‖L2(M)

‖(I − P6m)gz ,d‖L2(M)
,

then we have

z ∈ {zl | l = 1, . . . ,m} ⇐⇒ β(z ) = 0 ⇐⇒ cotβ(z ) = ∞.

Unfortunately, we cannot compute β(z ), because P6m corresponds to the leading
order term T of the asymptotic expansion (9.2), but what we measure is the full
measurement operator Gδ. However, in view of (10.2), for small values of δ the
projected test function P6mgz ,d is well approximated by P δ

6mgz ,d , and the projectors
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P δ
p can be computed for each p ∈ N by means of the singular value expansion of the

measurement operator Gδ. Hence, for p ∈ N , we define the angle βδ
p(z ) ∈ [0, π/2] by

cotβδ
p(z ) :=

‖P δ
p g

z ,d‖L2(M)

‖(I − P δ
p )gz ,d‖L2(M)

=

(∑
j≤p |(uδ

j , g
z ,d )L2(M)|2∑

j>p |(uδ
j , g

z ,d )L2(M)|2

)1/2

.

If we plot cotβδ
6m(z ), we expect to see large values for points z which are close to the

positions zl, l = 1, . . . ,m.
Because the number m of unknown scatterers is usually not known a priori, it has

to be estimated somehow. Two different strategies are available: On the one hand,
recalling (10.1), m may be estimated by looking for a gap in the set of singular values
σδ
l of Gδ. This works if δ is small enough and the noise level is not too high. Otherwise

it may give misleading results. On the other hand, we can plot cotβδ
p(z ) for increasing

values of p, until the number of reconstructed scatterers does not increase any more.
This is reasonable, because for any subspace U ⊂ R(T ) Proposition 9.3 reduces to

gz ,d ∈ U =⇒ z ∈ {z1, . . . , zm}.

So, testing whether gz ,d is contained in a subspace U ⊂ R(T ), we can only expect to
reconstruct a (possibly empty) subset of {z1, . . . , zm}. The number of reconstructed
scatterers is monotonically increasing as dim(U) increases until all m scatterers are
reconstructed for dim(U) = 6m. Because none of the singular vectors of Gδ cor-
responding to singular values σδ

j , j > 6m, is expected to be exactly of the form

gz ,d , z /∈ {z1, . . . , zm}, the number of reconstructed scatterers should be constant for
moderately sized j > 6m. Both strategies have been successfully tested in [8].

Finally, we show numerical results to illustrate the feasibility of the reconstruction
method. We consider a two-layered background medium; the upper layer is empty
(ε+ = ε0 = 8.85 · 10−12 Fm−1, μ+ = μ0 = 1.25 · 10−6 Hm−1), while the lower
halfspace is filled with soil (ε− = ε0(εr + i σ

ωε0
) = 8.67 · 10−11 + i 5.95 · 10−9 Fm−1,

μ− = (1 + χ)μ0 = 1.25 · 10−6 Hm−1, i.e., σ = 7.5 · 10−4 Sm−1, χ = 1.9 · 10−5, and
εr = 9.8). The parameters for the lower halfspace are measurement data taken by
Igel and Preetz [25] in the course of the project [23].

The measurement device operates on a square of size 50 × 50 cm2 parallel to the
surface of ground centered at (0, 0, 10) cm. We simulate the measurement operator
Gδ as done in [20]. For this purpose we impose magnetic dipoles with three linearly
independent polarizations and a frequency of 20 kHz on a 6×6 equidistant grid on the
measurement device. Then we approximate the corresponding scattered fields on the
same grid using a boundary element method. The scatterers are two ellipsoids with
semiaxes (0.1, 0.2, 0.3) cm and (2, 3, 1) cm buried at position (−15, 15,−10) cm and
(15,−15,−40) cm, respectively. The simulated forward data contain an estimated
numerical error of 4%. Additionally, we perturb the simulated scattered field by a
uniformly distributed relative error of 3%.

The values of cotβδ
12(z ) for z ∈ [−25, 25]2 × [−50, 0] cm3 are used to visualize

the location of the scatterers. The numerical implementation is essentially the same
that has been used in [20] for a linear sampling method. Concerning implementation
details, we refer the reader to this work; see also [8]. Figure 10.1 shows the first
20 singular values of the measurement operator Gδ and horizontal cross sections of
cotβδ

12(z ) for z3 = −10 cm and z3 = −40 cm, respectively. There is no distinct
gap after the first 12 singurar values. One reason for this is the (numerical) error
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Fig. 10.1. Singular values of Gδ and cross-sectional plots of cotβδ
12(z ) for z3 = −10 cm and

z3 = −40 cm with 3% noise.

Fig. 10.2. Isosurface plots cotβδ
12(z ) = 25 and cotβδ

12(z ) = 125 with 3% noise.

in the forward data. Here the iterative procedure described above can be used to
estimate the number of the scatterers. In the cross sectional plots the centers of the
scatterers are clearly determined. Figure 10.2 shows isosurface plots cotβδ

12(z ) = 20
and cotβδ

12(z ) = 200. We emphasize that these visualizations should not be mistaken
as reconstructions of the shape of the scatterers. These plots give just an idea of
possible positions of buried scatterers; they can be expected to be inside the (red)
surfaces. Our method does not allow a binary test for whether some point belongs
to a scatterer or not. If we perturb the simulated forward data in this example with
5% equally distributed noise, the reconstructions of the positions of the scatterers
get worse, but still two scatterers are reconstructed. For higher amounts of noise the
method fails.

Note that this is only one particular numerical example that by no means covers
all possible situations of interest. Comparing the method proposed here with the
linear sampling method from [20], using (among others) the example above, we found
that the linear sampling method is more sensitive to uncorrelated noise. Using the
unperturbed simulated data, the position of the scatterers has been reconstructed by
the linear sampling method. But with 3% noise in the data the linear sampling method
failed. The MUSIC-type reconstruction method studied in [24] gives numerical results
comparable to the results presented here, although we mention that much higher
frequencies have been used in [24]. In their final implementation both methods are
quite similar. Our analysis from sections 9 and 10 is meant to be an extension of [24]
and a rigorous justification of both methods.
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11. Conclusions. We have considered an inverse scattering problem for small
scatterers in a two-layered background medium which originated in the project [23]
on humanitarian demining. An asymptotic expansion of the near field measurement
operator as the size of the scatterers tends to zero has been proven. We used the
asymptotic formula to justify a noniterative reconstruction method that can be in-
terpreted as an asymptotic version of a factorization method, or as a MUSIC-type
method. First numerical results indicate that this method may be appropriate to
detect small buried objects from sufficiently accurate measurements of the scattered
field above the surface of ground. Although our results have been derived for an ide-
alized setting, we expect that the asymptotic expansion as well as the reconstruction
method can be applied to more realistic models for measurement devices used for
humanitarian demining, including special coil geometries such as, e.g., the double D
design considered in [17]. We intend to address this in the future.
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[8] M. Brühl, M. Hanke, and M. S. Vogelius, A direct impedance tomography algorithm for
locating small inhomogeneities, Numer. Math., 93 (2003), pp. 635–654.

[9] A. Buffa, M. Costabel, and D. Sheen, On traces of H(curl,Ω) in Lipschitz domains, J.
Math. Anal. Appl., 276 (2002), pp. 845–867.

[10] F. Cakoni and D. Colton, Qualitative methods in inverse scattering theory. An introduction,
Interaction of Mechanics and Mathematics, Springer-Verlag, Berlin, 2006.

[11] F. Cakoni, M’B. Fares, and H. Haddar, Analysis of two linear sampling methods applied to
electromagnetic imaging of buried objects, Inverse Problems, 22 (2006), pp. 845–867.

[12] M. Cheney, The linear sampling method and the MUSIC algorithm, Inverse Problems, 17
(2001), pp. 591–595.

[13] W. C. Chew, Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, New York,
1990.



ASYMPTOTIC FACTORIZATION IN INVERSE SCATTERING 1403

[14] D. Colton and R. Kress, Integral Equation Methods in Scattering Theory, John Wiley &
Sons, New York, 1983.

[15] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, 2nd ed.,
Appl. Math. Sci. 93, Springer-Verlag, Berlin, 1998.

[16] P.-M. Cutzach and C. Hazard, Existence, uniqueness and analyticity properties for electro-
magnetic scattering in a two-layered medium, Math. Methods Appl. Sci., 21 (1998), pp.
433–461.

[17] F. Delbary, K. Erhard, R. Kress, R. Potthast, and J. Schulz, Inverse electromagnetic
scattering in a two-layered medium with an application to mine detection, Inverse Prob-
lems, 24 (2008), 015002.

[18] A. J. Devaney, Super-resolution processing of multi-static data using time reversal and MU-
SIC, preprint, Department of Electrical Engineering, Northeastern University, Boston, MA,
1999.

[19] A. Friedman and M. S. Vogelius, Identification of small inhomogeneities of extreme con-
ductivity by boundary measurements: A theorem on continuous dependence, Arch. Ration.
Mech. Anal., 105 (1989), pp. 299–326.

[20] B. Gebauer, M. Hanke, A. Kirsch, W. Muniz, and C. Schneider, A sampling method for
detecting buried objects using electromagnetic scattering, Inverse Problems, 21 (2005), pp.
2035–2050.

[21] B. Gebauer, M. Hanke, and C. Schneider, Sampling methods for low-frequency electromag-
netic imaging, Inverse Problems, 24 (2008), 015007.

[22] D. Guelle, A. Smith, A. Lewis, and T. Bloodworth, EUR 20837 Metal Detector Handbook
for Humanitarian Demining, Office for Official Publications of the European Communities,
Luxembourg, 2003.

[23] HuMin/MD—Metal Detectors for Humanitarian Demining—Development Potentials in
Data Analysis Methodology and Measurement, Project Network, available online at
http://www.humin-md.de/.

[24] E. Iakovleva, S. Gdoura, D. Lesselier, and G. Perrusson, Multi-static response matrix of
a 3-D inclusion in half space and MUSIC imaging, IEEE Trans. Antennas Propagat., 55
(2007), pp. 2598–2609.

[25] J. Igel and H. Preetz, Elektromagnetische Bodenparameter und ihre Abhängigkeit von den
Bodeneigenschaften.—Zwischenbericht Projektverbund Humanitäres Minenräumen, Tech-
nical report, Leibniz Institute of Applied Geosciences, Hannover, Germany, 2005.

[26] T. Kato, Perturbation Theory for Linear Operators, Grundlehren Math. Wiss. 132, Springer-
Verlag, Berlin, 1966.

[27] A. Kirsch, Surface gradients and continuity properties for some integral operators in classical
scattering theory, Math. Methods Appl. Sci., 11 (1989), pp. 789–804.

[28] A. Kirsch, Characterization of the shape of a scattering obstacle using the spectral data of the
far field operator, Inverse Problems, 14 (1998), pp. 1489–1512.

[29] A. Kirsch, An integral equation for Maxwell’s equations in a layered medium with an appli-
cation to the factorization method, J. Integral Equations Appl., 19 (2007), pp. 333–359.

[30] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge Univer-
sity Press, Cambridge, UK, 2000.

[31] P. Monk, Finite Element Methods for Maxwell’s Equations, Oxford University Press, Oxford,
UK, 2003.
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[33] M. Petry, Über die Streuung Zeitharmonischer Wellen im Geschichteten Raum, Ph.D. thesis,
Georg-August-Universität zu Göttingen, Göttingen, Germany, 1993.

[34] A. Sommerfeld, Partial Differential Equations in Physics, Academic Press, New York, 1949.
[35] C. Weber, Regularity theorems for Maxwell’s equations, Math. Methods Appl. Sci., 3 (1981),

pp. 523–536.



SIAM J. APPL. MATH. c© 2008 Society for Industrial and Applied Mathematics
Vol. 68, No. 5, pp. 1404–1422

ANALYTICAL AND NUMERICAL SOLUTIONS FOR TORSIONAL
FLOW BETWEEN COAXIAL DISCS WITH HEAT TRANSFER∗
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Abstract. We consider nonisothermal torsional flow between two coaxial parallel plates with
heat transfer at the upper rotating plate, constant temperature on the lower stationary plate, and
no heat loss at the fluid-air interface. Viscous heating is modelled by a Nahme law with exponential
dependence on temperature. Due to the highly nonlinear nature of the governing equations an exact
solution is not feasible. Therefore we solve the problem using both numerical and perturbation meth-
ods. Specifically, analytical solutions are obtained using asymptotic expansions based on the aspect
ratio and the Nahme–Griffith number, a measure of viscous heating, as perturbation parameters.
The numerical solutions are obtained by a finite element method. Good agreement is found between
the analytical and numerical solutions in the appropriate parameter range. In viscometric applica-
tions the torque exerted by the fluid on the lower plate is an important quantity. For isothermal
flow the dimensionless torque can easily be calculated. In this paper we obtain an analytical formula
that can be used to calculate nonisothermal correction to the torque.

Key words. parallel-plate flow, viscous heating, axisymmetric finite elements
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1. Introduction. The problem of viscous heating in viscometric flow of New-
tonian and non-Newtonian liquids is of both theoretical and practical interest. An
exact solution was obtained for flow of a Newtonian fluid between two infinite parallel
plates by Nahme in 1940 [1]. The viscosity was modelled by an exponential function of
temperature. A similar result was obtained by Kearsley [2] for the pressure gradient
flow of a Newtonian fluid in a tube. Bird and Turian [3] analyzed the viscous heating
problem for the flow of a Newtonian fluid between a cone and a plate. The equations
for the temperature and velocity were uncoupled by assuming an isothermal veloc-
ity profile. The variational form for the temperature was then solved numerically.
Isothermal boundary conditions were imposed at the physical boundaries and zero
heat loss imposed at the air-liquid interface. Their analysis showed that viscous heat-
ing can lead to observable errors in the cone-and-plate viscometer. In a subsequent
paper, Turian and Bird [4] extended the theoretical investigation to plane Couette
flow of Newtonian fluids with temperature dependent viscosity and thermal conduc-
tivity. The thermal conductivity was assumed to be a linear function of temperature,
while the viscosity was assumed to obey a Nahme law with exponential dependence
on temperature. A regular perturbation solution in powers of the Brinkman number
was obtained for the velocity and temperature. A perturbation solution in powers
of the Brinkman number were later obtained for non-Newtonian liquids described by
the power-law and Ellis models [5]. The boundary conditions were the same as those
used in [4]. Exact analytical solutions have also been obtained by Martin [6] for flows
between infinite concentric cylinders and infinite parallel plates for Newtonian and
power-law fluids. Two types of boundary conditions were considered, one in which
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both surfaces were isothermal and the other in which one was isothermal and the
other adiabatic. Closed-form solutions similar to those of Nahme and Kearsley were
obtained for isothermal and adiabatic boundary conditions by Gavis and Laurence
[7].

These early analytical studies were motivated by the need to quantify the devia-
tion form isothermal flow in viscometers when viscous dissipation is significant and to
provide simple formulas to correct for such deviations in quantities such as the torque
on the stationary plate in parallel-plate flow. In recent years renewed interest in this
matter has been spurred by experiments in elastic instabilities of viscoelastic fluids. It
has been observed that viscous heating could lead to qualitatively and quantitatively
significant deviation from isothermal theory in the stability property of a viscoelastic
fluid. Experimental study of the stability of isothermal flow of viscoelastic torsional
flow was first reported by Magda and Larson [8] and McKinley et al. [9]. Linear
stability analysis was first carried out by Oztekin and Brown [10] for flow between
parallel-plate flow in which the boundary condition at the fluid-air interface was ne-
glected. Linear stability results for flow in a finite domain incorporating boundary
conditions at the free surface have also been considered [11, 12, 13].

Experiments on the effect of viscous heating on the stability of torsional flow of
viscoelastic fluids was first reported by Rothstein and McKinley [14]. The results were
found to be remarkably different from those of isothermal flows. It was shown that
viscous heating tended to stabilize the flow. A linear stability for the nonisothermal
problem was later analyzed by Olagunju, Cook, and McKinley [15] which agrees quali-
tatively with their experimental results. In that paper isothermal boundary conditions
on the plates were used, while those at the free surface were neglected. However, as
noted by Arigo [16], it is practically impossible to control the temperature on the up-
per rotating cone (or plate in the case of the parallel-plate torsional viscometer). He
also notes that the upper rotating cone (or plate) is cooled by convection of ambient
air at 23–24 degrees Celsius. A more realistic set of boundary conditions is to treat
the bottom plate as isothermal, the free surface as an insulated boundary, and the top
plate as a thermal mass. The insulation boundary condition surface can be justified
on the grounds that for a small gap thickness, the surface available for heat transfer
to the ambience through the radial interface is practically negligible. It is hoped that
this will give results that are in quantitative agreement with experiments. A heat
transfer boundary condition was used for the viscoelastic Taylor–Couette problem by
Al-Mubaiyedh, Suresh Kumar, and Khomani [17]. In their study, the heat transfer
boundary condition was used to numerically simulate the experiments of Baumert
and Muller [18, 19]. Another assumption that was made in [15] is that the parallel
plates are infinite in extent. In order to obtain better agreement between theory
and experiments we think that it is necessary to relax these assumptions. As a first
step in this direction we study the effect of the finite geometry and the more realistic
boundary conditions on the base flow. In [20], Olagunju showed that for torsional flow
of a viscoelastic fluid the base flow is not always purely circumferential. He showed
that viscous heating leads to secondary flows with recirculating roll cells in the base
solution.

In this paper, we obtain perturbation and numerical solutions for the flow be-
tween two parallel plates of a Newtonian fluid with temperature dependent viscosity.
Specifically we will assume an exponential dependence of Nahme type. As noted
above this problem has been solved for flow between two infinite parallel plates [1, 4].
In this limit the problem reduces to two coupled ordinary differential equations for
the temperature and azimuthal velocity. We propose solving the problem in a finite
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geometry with a fluid-air interface. In this case we obtain two coupled partial dif-
ferential equations for the temperature and velocity. Bird and Turian (see [5]) have
also analyzed the problem in a finite geometry between a cone and a plate. However,
they assumed that the velocity profile was isothermal, thereby reducing the problem
to a single partial differential equation for the temperature. In all previous work that
we know the boundary conditions are either isothermal on both plates or isothermal
on one plate and zero heat transfer on the other. We will adopt the more realistic
boundary conditions described above, namely the isothermal condition on the sta-
tionary plate, heat transfer on the upper plate, and zero heat transfer at the fluid-air
interface. To the best of our knowledge exact analytical solutions for this problem
have not been previously reported. Having an analytical solution for this problem
will enable one to estimate errors in the torque calculations due to heat transfer and
edge effects if needed. This is important in viscometry. Analytical solutions can also
be used to validate numerical calculations. For viscoelastic flows in which secondary
flow in the base flow is weak or nonexistent the solution provided here provides an
accurate approximation to the base flow needed in any linear stability analysis.

2. Governing equations. We consider the flow of a fluid in the region between
two coaxial parallel plates of radius a and separation h in which the top plate ro-
tates at a constant angular speed ω and the bottom plate is stationary. Following
Olagunju [21], the nondimensionalized equations governing the primary flow for the
azimuthal velocity W and a scaled temperature Θ are given in cylindrical coordinates
as

(1)
∂2W

∂z2
+ α2

(
∂2W

∂r2
+

1

r

∂W

∂r
− W

r2

)
=

∂Θ

∂z

∂W

∂z
+ α2 ∂Θ

∂r

(
∂W

∂r
− W

r

)
,

(2)
∂2Θ

∂z2
+ α2

(
∂2Θ

∂r2
+

1

r

∂Θ

∂r

)
= −Na0 e−Θ

[(
∂W

∂z

)2

+ α2

(
∂W

∂r
− W

r

)2
]

with boundary conditions

(3) at z = 0, W = 0, Θ = ϑw,

(4) at z = 1, W = r,
∂Θ

∂z
+ B Θ = Bϑa,

(5) at r = 0, W = 0, |Θ| < ∞,

(6) at r = 1,
∂W

∂r
− W

r
= 0.

∂Θ

∂r
= 0.

Here ϑw and ϑa are the scaled temperature at the stationary plate and the am-
bient. The aspect ratio α = h/a and the modified Biot number B are defined in
section A.1 of the appendix. The Nahme–Griffith number Na0, which is a mea-
sure of viscous heating in the fluid, is zero for isothermal flows. It is defined as
Na0 ≡ (η0δa

2ω2)/(kT0). The quantity η0 is the isothermal viscosity, δ a thermal sen-
sitivity parameter, k the thermal conductivity, and T0 a reference temperature [14].
Since the equations are nonlinear finding an exact analytical solution valid for all pa-
rameter values is impractical. Therefore we will solve the equations numerically using
a finite element method. We will also obtain analytical solutions using perturbation
expansions in Nahme–Griffith number Na and aspect ratio α.
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3. Analytical solutions.

3.1. An exact solution for α = 0 and B = 0. An exact solution of equations
(1)–(6) can be found for α = 0, B = 0, and all values of Na0. This corresponds to
plane Couette flow with the upper plate insulated. This solution does not satisfy the
boundary conditions at the fluid-air interface r = 0. However, we will show that it
provides an excellent approximation to the solution for small α except very close to
r = 1. In addition we will show that the torque exerted by the fluid on the lower plate
is very well approximated by this exact solution when the aspect ratio α is small. An
analytical formula is provided which can be used to calculate nonisothermal correction
to the torque, as is often required in rheometry. To the best of our knowledge, this
analytical representation for the torque has not been previously reported. Note that
the exact solution obtained by Nahme [1] corresponds to α = 0 and B = ∞.

Setting α and B to zero, (1)–(6) reduce to the following:

(7)
d2W

dz2
=

dΘ

dz

dW

dz
,

(8)
d2Θ

dz2
= −Na0e

−Θ

(
dw

dz

)2

.

The boundary conditions are

(9) W = 0, Θ = ϑw for z = 0

and

(10) W = r,
∂Θ

∂z
= 0 for z = 1.

It is straightforward to obtain the solution which is given by

(11) W =
r

2
− 1

μNa
tanh[E(1 − 2z)],

(12) Θ = ϑw + ln

[(
1 +

r2Na

8

)
sech2[E(1 − 2z)]

]
,

where Na = Na0e
−ϑw ,

E = tanh−1 (rμNa/2) ,

and

μ =

[
2Na

(
1 +

r2

8
Na

)]− 1
2

.

The dimensionless torque on the lower plate is defined as

T =

∫ 1

0

∫ 1

0

(
dW

dz

)
z=0

r2drdz.

Using the solution obtained above, a series solution for T valid for Na < 2 is given by

(13) T =

∞∑
n=0

∞∑
k=0

(−1)k
(

Na

2

)n+k
(n + k)!

n!k!

1

(2n + 1)(2n + 2k + 4)
.

For other values of Na the integral can easily be computed numerically. These solu-
tions will be compared to asymptotic and numerical solutions below.
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3.2. Asymptotic solution for Na � 1 : ϑw = ϑa. We seek a regular
expansion in Nahme number for W and Θ as follows:

(14) W = W0 + Na W1 + O(Na2), Θ = Θ0 + Na Θ1 + O(Na2).

Here and in what follows Na = Na0e
−ϑw . The governing equations for W0 and

Θ0 are

(15)
∂2W0

∂z2
+ α2

(
∂2W0

∂r2
+

1

r

∂W0

∂r
− W0

r2

)
=

∂Θ0

∂z

∂W0

∂z
+ α2 ∂Θ0

∂r

(
∂W0

∂r
− W0

r

)
,

(16)
∂2Θ0

∂z2
+ α2

(
∂2Θ0

∂r2
+

1

r

∂Θ0

∂r

)
= 0

with the boundary conditions

(17) at z = 0, W0 = 0, Θ0 = ϑw,

(18) at z = 1, W0 = r,
∂Θ0

∂z
+ B Θ0 = B ϑw,

(19) at r = 0, W0 = 0, |Θ0| < ∞,

(20) at r = 1,
∂W0

∂r
− W0

r
= 0,

∂Θ0

∂r
= 0.

The leading order solution for Na = 0 gives the isothermal solution

(21) W0 = rz,

(22) Θ0 = ϑw.

Note that this solution is valid for all values of α.
The solution at order Na corresponding the first nonisothermal correction satisfies

the following equations:

∂2W1

∂z2
+ α2

(
∂2W1

∂r2
+

1

r

∂W1

∂r
− W1

r2

)
= r

∂Θ1

∂z
,(23)

∂2Θ1

∂z2
+ α2

(
∂2Θ1

∂r2
+

1

r

∂Θ1

∂r

)
= −r2(24)

with boundary conditions

at z = 0, W1 = 0, Θ1 = 0,(25)

at z = 1, W1 = 0,
∂Θ1

∂z
+ BΘ1 = 0,(26)

at r = 0, W1 = 0, |Θ1| < ∞,(27)

at r = 1,
∂W1

∂r
− W1

r
= 0,

∂Θ1

∂r
= 0.(28)
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Note that (23)–(24) are now uncoupled. The equations can be solved exactly by
separation of variables as follows:

(29) Θ1 = −
∞∑

n=1

Γ̄n

λ2
n

[
2α3

λn

I0
(
λnr
α

)
I1

(
λn

α

) − 4α4

λ2
n

− α2r2

]
sin(λnz)

and

(30) W1 =

∞∑
m=1

Fm(r) sin(mπz),

where λn, n = 1, 2, . . . , are positive solutions of the transcendental equation

(31) tan(λn) +
λn

B
= 0,

and Γn = − 1
α2

4(1−cos(λn))
2λn−sin(2λn) . This equation has infinitely many positive roots. Here

In is the modified Bessel function of the first kind. This solution is also valid for all
values of the aspect ratio α.

The expression for Fm(r) involves complicated integrals of Bessel functions (see
the appendix for details).

3.3. Asymptotic solution for Na � 1 : ϑw �= ϑa. The governing equations
for W0 and Θ0, W1 and Θ1 are the same as in the previous section.

At zeroth order in Na we have the isothermal solution

(32) Θ0 = χz + ϑw, where χ ≡ B(ϑa − ϑw)

1 + B
,

(33) W0 =

(
eχz − 1

eχ − 1

)
r.

The equations at order Na are

(34)
∂2W1

∂z2
+ α2

(
∂2W1

∂r2
+

1

r

∂W1

∂r
− W1

r2

)
=

χ r eχz

eχ − 1

∂Θ1

∂z
+ χ

∂W1

∂z
,

(35)
∂2Θ1

∂z2
+ α2

(
∂2Θ1

∂r2
+

1

r

∂Θ1

∂r

)
= − χ2r2eχz

(eχ − 1)
2

with boundary conditions

(36) on z = 0, W1 = 0, Θ1 = 0,

(37) on z = 1, W1 = 0,
∂Θ1

∂z
+ BΘ1 = 0,

(38) on r = 0, W1 = 0, |Θ1| < ∞,

(39) on r = 1,
∂W1

∂r
− W1

r
= 0,

∂Θ1

∂r
= 0.
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Although these equations can also be solved exactly the solutions are rather too
complicated. Therefore we will obtain the solution as an expansion in α. This limit
has applications in rheometric devices where α is typically less than 0.1. For the case
α = O(1) the solution will be computed numerically. Because the limit α → 0 is
singular we use the method of matched asymptotic expansion. Thus we seek an outer
solution and an inner solution and then obtain a composite expansion for the solution
by matching.

Outer solution. For the outer solution we expand as follows:

(40) W1 = W o
10 + αW o

11 + O(α2), Θ1 = Θo
10 + αΘo

11 + O(α2),

where the superscript (o) refers to the outer solution.
The governing equations at zeroth order in α are

(41)
∂2W o

10

∂z2
=

χ r eχz

eχ − 1

∂Θo
10

∂z
+ χ

∂W o
10

∂z
,

(42)
∂2Θo

10

∂z2
= − χ2r2eχz

(eχ − 1)
2

with the corresponding boundary conditions

(43) at z = 0, W o
10 = 0, Θo

10 = 0,

(44) at z = 1, W o
10 = 0,

∂Θo
10

∂z
+ BΘ10 = 0.

The solution satisfying the above governing equations and the boundary conditions
are

(45) Θo
10 =

r2

(eχ − 1)2

[
1 − eχz + z

(χ + B)eχ −B

1 + B

]
,

W o
10 =

χr3

(eχ − 1)3

[
−e2χz

2χ
+ ((χ + B)eχ −B)

eχz(χz − 1)

(1 + B)χ2

]

− χeχzr3

(eχ − 1)4

[
1 − e2χ

2χ
+ ((χ + B)eχ −B)

1 + (χ− 1)eχ

(1 + B)χ2

]

− r3

(eχ − 1)4

[
e2χ − eχ

2
− eχ ((χ + B)eχ −B)

1 + B

]
.(46)

Further, it is also determined that

(47) W o
11 = 0, Θo

11 = 0.

Inner solution. For the inner expansion we introduce the stretched variable,
ξ ≡ 1−r

α , and seek an expansion of the form

(48) W i
1 = W i

10 + αW i
11 + O(α2), Θi

1 = Θi
10 + αΘi

11 + O(α2).



ANALYTICAL SOLUTIONS FOR COAXIAL DISC FLOW 1411

The governing equations and the boundary conditions at zeroth order in α are

(49)
∂2W i

10

∂z2
+

∂2W i
10

∂ξ2
− χ

∂W i
10

∂z
=

χeχz

(eχ − 1)

(
∂Θi

10

∂z

)
,

(50)
∂2Θi

10

∂z2
+

∂2Θi
10

∂ξ2
= − χ2eχz

(eχ − 1)
2 ,

(51) at z = 0, W i
10 = 0, Θi

10 = 0,

(52) at z = 1, W i
10 = 0,

∂Θi
10

∂z
+ BΘi

10 = 0,

(53) at ξ = 0,
∂W i

10

∂ξ
= 0,

∂Θi
10

∂ξ
= 0.

It is straightforward to obtain the following expressions:

(54) Θi
10 =

1

(eχ − 1)2

[
1 − eχz + z

(χ + B)eχ −B

1 + B

]
,

W i
10 =

χ

(eχ − 1)3

[
−e2χz

2χ
+ ((χ + B)eχ −B)

eχz(χz − 1)

(1 + B)χ2

]

− χeχz

(eχ − 1)4

[
1 − e2χ

2χ
+ ((χ + B)eχ −B)

1 + (χ− 1)eχ

(1 + B)χ2

]

− 1

(eχ − 1)4

[
e2χ − eχ

2
− eχ ((χ + B)eχ −B)

1 + B

]
.(55)

The order α equations are

(56)
∂2Θi

11

∂z2
+

∂2Θi
11

∂ξ2
=

2ξχ2eχz

(eχ − 1)
2 ,

(57)
∂2W i

11

∂z2
+

∂2W i
11

∂ξ2
− χ

∂W i
11

∂z
=

∂W i
01

∂z

(
∂Θi

10

∂z

)
+

∂W i
00

∂z

(
∂Θi

11

∂z

)
.

The boundary conditions are the same as above. The solution of the equations is

(58) Θi
11 = −2ξΘi

10 − 2

∞∑
n=1

Γ̃ne
−λn(1−r)

α

λ3
n

sin(λnz),

W i
11 = −3ξW i

10 +

∞∑
m=1

2Ãme−Λmξe
χz
2

Λ2
m

sin(mπz)

+

∞∑
m=1

∞∑
n=1

Γ̃nB̃mn

λ2
n(Λ2

m − λ2
n)

(
e−λnξ − λne

−Λmξ

Λm

)
e

χz
2 sin(mπz),(59)
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where

(60) Γ̃n =
χ2

∫ 1

0
eχz sin(λnz)dz

(eχ − 1)2
∫ 1

0
sin2(λnz)dz

and

Λ2
m =

χ2

4
+ m2π2,

Ãm =
χ

(eχ − 1)3

∫ 1

0

(
−χeχz + (χ+B)eχ−B

1+B

)
e

χz
2 sin(mπz)dz∫ 1

0
sin2(mπz)dz

,

B̃mn =
2χ

eχ − 1

∫ 1

0
e

χz
2 cos(λnz) sin(mπz)dz∫ 1

0
sin2(mπz)dz

.(61)

Composite solution. In order to use the Van Dyke matching principle, the
outer solution for the velocity and the temperature distribution is expressed in terms
of the inner variable including terms of the first order in α,

(62) (Θo)
i
= χz + ϑw + Na(1 − 2αξ)Θi

10 + O(Na2),

(63) (W o)
i
=

(
eχz − 1

eχ − 1

)
r + Na(1 − 3αξ)W i

10 + O(Na2).

The Van Dyke matching principle is expressed using the formulas

(64) W c = W o + W i − (W o)
i
, Θc = Θo + Θi − (Θo)

i
.

The composite solution for temperature and velocity distribution is then given by

Θc = χz + ϑw + Na

(
r2

(eχ − 1)2

[
1 − eχz + z

(χ + B)eχ −B

1 + B

])

−2Naα
∞∑

n=1

Γ̃ne
−λn(1−r)

α

λ3
n

sin(λnz) + O(Na2),(65)

W c =

(
eχz − 1

eχ − 1

)
r + NaW o

1 + Naα

∞∑
m=1

2Ãme−Λm
(1−r)

α e
χz
2

Λ2
m

sin(mπz)

+Naα

∞∑
m=1

∞∑
n=1

Γ̃nB̃mn

λ2
n(Λ2

m − λ2
n)

(
e−λn

(1−r)
α − λne

−Λm
(1−r)

α

Λm

)
e

χz
2 sinmπz.(66)

4. Numerical solution. The domain Ω for numerical computation is 0 < z < 1
and 0 < r < 1, shown in Figure 1. In order to apply the finite element method, we
need to rewrite the two partial differential equations in variational forms. We multiply
the continuity equation (1) by rV (r, z) (cf. [22, 24, 25, 26]), the test function with
boundary conditions specified in Figure 1. Then we apply the integration by parts to
obtain ∫

Ω

(
∂W

∂z

∂V

∂z
+ α2 ∂W

∂r

∂V

∂r
+ α2WV

r2

)
rdrdz −

∫
r=1

α2WV dz

=

∫
Ω

(
−∂Θ

∂z

∂W

∂z
− α2 ∂Θ

∂r

(
∂W

∂r
− W

r

))
V rdrdz.(67)
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We do the same for (2), with a test function rV (r, z), but having different boundary
conditions shown in Figure 1:∫

Ω

(
∂Θ

∂z

∂V

∂z
+ α2 ∂Θ

∂r

∂V

∂r

)
rdrdz −

∫
z=1

r(Bϑa −BΘ)V dr

= Na

∫
Ω

e−Θ

((
∂W

∂z

)2

+ α2

(
∂W

∂r
− W

r

)2
)
V rdrdz.(68)

�

z

�

r1

1

(for W in (67))

V = 0

V = 0

V = 0

V free

�

z

�

r1

1

(for Θ in (68))

V free

V free

V = 0

V free

Fig. 1. Boundary conditions for the test functions V (for W and Θ in (67)–(68)).

To obtain homogeneous boundary conditions for the variational problems (67)–
(68), we use the following decompositions:

W = W b + W 0, W b = rz,(69)

Θ = Θb + Θ0, Θb = ϑw + z
B

1 + B
(ϑa − ϑw).(70)

We seek solutions W 0 and Θ0 instead, which have homogeneous boundary conditions,
also depicted in Figure 2:

W 0
∣∣
r=0,z=0,z=1

= 0,
∂W 0

∂r

∣∣∣∣
r=1

=
W 0

r
,

Θ0
∣∣
z=0

= 0,
∂Θ0

∂r

∣∣∣∣
r=0,r=1

= 0,
∂Θ0

∂z

∣∣∣∣
z=1

= −BΘ0.

That is, we will find finite element solutions W 0
h and Θ0

h, where h stands for the grid
size.

To discretize (67) and (68), due to the special domain of the unit square, one
may use spectral methods (cf. [22]) or tensor product methods (cf. [23]) to get a
high order approximation. To handle the nonlinearity of the coupled system, and to
handle possible irregular domains in future, we use Qk finite elements, continuous and
piecewise polynomials of separate degree k or less, on uniform grids Kh = {K | K =
[ri − h, ri] × [zj − h, zj ], i, j = 1, . . . , 1/h} of Ω:

Qh :=

⎧⎨
⎩V ∈ C(Ω) | V |K =

∑
0≤i,j≤k

aijr
izj ∀K ∈ Kh

⎫⎬
⎭ ⊂ H1(Ω).

We use the following notation for the discrete spaces with homogeneous boundary
conditions:

Qh,W := Qh ∩ {V = V (r, z) ∈ C(Ω) | V (0, z) = V (r, 0) = V (r, 1) = 0} ,(71)

Qh,Θ := Qh ∩ {V = V (r, z) ∈ C(Ω) | V (r, 0) = 0} .(72)
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�

z

�

r1

1

W b = 0

W b = r

W b = 0

∂W b

∂r − W b

r = 0W b = rz

�

z

�

r1

1

W 0 = 0

W 0 = 0

W 0 = 0

∂W 0

∂r − W 0

r = 0

�

z

�

r1

1

∂Θb

∂r = 0

∂Θb

∂z + BΘb = Bϑa

Θb = ϑw

∂Θb

∂r = 0

�

z

�

r1

1

∂Θ0

∂r = 0

∂Θ0

∂z + BΘ0 = 0

Θ0 = 0

∂Θ0

∂r = 0

Fig. 2. Boundary conditions for W 0 and Θ0 in (69)–(70).

The finite element discretizations of (67)–(68) read as follows: Find (W 0
h ,Θ

0
h) ∈

Qh,W ×Qh,Θ such that

AW (W 0
h , V ) = FW,Θ(V ) −AW (W b, V ) ∀V ∈ Qh,W ,(73)

AΘ(Θ0
h, V ) = GW,Θ(V ) −AΘ(Θb, V ) + Bcz(ϑa, V ) ∀V ∈ Qh,Θ,(74)

where the bilinear forms and functionals are defined by

AW (U, V ) = a(U, V ) + α2

(
U

r
,
V

r

)
r

− α2cr(U, V ),(75)

AΘ(U, V ) = a(U, V ) + Bcz(U, V ),(76)

FW,Θ(V ) =

(
−∂Θ

∂z

∂W

∂z
− α2 ∂Θ

∂r

(
∂W

∂r
− W

r

)
, V

)
r

,(77)

GW,Θ(V ) = Na

(
e−Θ

[(
∂W

∂z

)2

+ α2

(
∂W

∂r
− W

r

)2
]
, V

)
r

,(78)

a(U, V ) =

∫
Ω

(
∂U

∂z

∂V

∂z
+ α2 ∂U

∂r

∂V

∂r

)
rdrdz,(79)

(U, V )r =

∫
Ω

UV rdrdz,(80)

cr(U, V ) =

∫
r=1,0≤z≤1

UV dz,(81)

cz(U, V ) =

∫
z=1,0≤r≤1

rUV dz.(82)

We solve the nonlinear system of equations (73)–(74) numerically by a straightfor-
ward Seidel iteration. That is, initially given some guesses (both zero in computation)
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of W 0
h and Θ0

h, we generate the right-hand side of (73) and use the conjugate gradient
method to solve (73) to get a new W 0

h . Then the new W 0
h and the old Θ0

h would
be used to generate the right-hand side vector in (74). We solve (74) again by the
conjugate gradient method to get a new Θ0

h. The next lemma shows that the two
linear systems at each step described above are uniquely solvable, because both the
coefficient matrices are symmetric and positive definite.

Lemma 4.1. For any V ∈ Qh,Θ ∪Qh,W and V 
= 0,

(83) a(V, V ) > 0.

For any V ∈ Qh,W and V 
= 0,

(84) AW (V, V ) > 0.

For any V ∈ Qh,Θ, V 
= 0, and B ≥ 0,

(85) AΘ(V, V ) > 0.

Proof. Equations (83) and (84) are shown in [27]. Equation (85) is a corollary of
(83), noting the sign of B is positive.

Algorithm 4.1. The coupled nonlinear system (73)–(74) is solved by the Seidel
iteration with the given initial guess W 0

h,0 = 0 and W 0
Θ,0 = 0. For j = 1, 2, . . . ,

W 0
h,j = W 0

h,j−1 + eW ,

where eW solves the equation

(86) AW (eW , V ) = FWj−1,Θj−1(V ) −AW (W b, V ) −AW (W 0
h,j−1, V ) ∀V ∈ Qh,W

and

Θ0
h,j = Θ0

h,j−1 + eΘ,

where eΘ solves the equation
(87)
AΘ(eΘ, V ) = GWj ,Θj−1(V )−AΘ(Θb, V )+Bcz(ϑa, V )−AΘ(Θ0

h,j−1, V ) ∀V ∈ Qh,Θ.

Here Wj = W b + W 0
h,j and Θj = Θb + Θ0

h,j for j = 0, 1, 2, . . . .

A typical pair of solutions (Wh,Θh) is shown in Figure 3.

r

z

Fig. 3. Solutions W and Θ for (1) and (2) when α = .01, Na = 1, ϑw = 1.5, ϑa = 1, B = 0.1.
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(a) Numerical solution α=0.25,
(b) Asymptotic solution α=0.25,
(c) Numerical solution α=0.1,
(d) Asymptotic solution α=0.1
(e) Exact solution(α=0)

Fig. 4. Solutions obtained by (73)–(74), (29)–(30), and (11)–(12).

5. Discussion. In this section we compare the analytical solutions obtained in
section 3 with the finite element solution obtained in section 4. The exact solution
given in (11)–(12) is valid for α = 0, B = 0, and all values of Na, the perturbation
solution given in (29)–(30) is valid for all values of α and small Na, while the solution
found in (65)–(66) is valid only for small α and Na. The numerical solution, on the
other hand, is valid for all parameter values.

The plots in Figures 4–8 depict the deviation of the temperature and velocity
from the isothermal solution. We plot Θ−Θ0 and W −W0, where Θ0 and W0 are the
isothermal solutions. Figures 4 and 5 show the deviation of temperature at z = 0.5 and
r = 0.5, respectively, for Na = 0.1, B = 0, and selected values of α. The case B = 0
corresponds to insulated boundary condition on the upper plate. For α = 0.1 all three
solutions agree very well except near the free surface r = 1. The error in the exact
solution for α = 0 arises because it does not satisfy the boundary condition at the
free surface. The error between the numerical and asymptotic solutions is otherwise
very small. Figure 6 shows the deviation of the velocity for the same values of the
parameters. The agreement among all three solutions is again very good. In Figure
7, the deviation in temperature is shown for α = 0, 1, B = 1, θw = 1.0, θa = 1.5 for
two values of Na. While the agreement between numerical and asymptotic solutions
is excellent for Na = 0.1, there is a small discrepancy for the case Na = 1.0. This is
actually quite good since the perturbation expansion was truncated at order O(Na).

Figure 8 shows the deviation of the velocity for a large value of the Biot number B.
In this limit the two plates are nearly isothermal, and we see a qualitative difference
from the solution for B = O(1). Specifically, the profile is symmetric about the
midplane z = 0, whereas for smaller values of B the profile is asymmetric. Another
qualitative difference is the location of the maximum temperature. On any fixed
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(a) Numerical solution α=0.25,
(b) Asymptotic solution α=0.25,
(c) Numerical solution α=0.1,
(d) Asymptotic solution α=0.1
(e) Exact solution(α=0)

Fig. 5. Solutions obtained by (73)–(74), (29)–(30), and (11)–(12).

plane the maximum occurs at the free surface r = 1 when B = 0. As B increases the
location of the maximum moves away from the free surface. From these figures we
also see that the deviation in temperature and velocity from the isothermal solution
is order O(Na) when Na is small.

Finally, in Figure 9 we plot the torque on the lower stationary plate as a function
of the Nahme number Na for selected values of α and B. Although the exact solution
is valid only for α = 0 and B = 0 the agreement with the numerical solution for
α = 0.1 and B = 0.1 is excellent. Thus, in applications in which the aspect ratio α is
small the exact solution can be used to obtain very accurate corrections to the torque
in viscometric applications. We also show the series representation for the torque
equation (13), and the agreement is excellent for Na < 2.

6. Summary. Nonisothermal torsional flow with the heat transfer boundary
condition at the upper rotating plate, the isothermal boundary condition at the lower
stationary plate, and the insulated boundary condition at the fluid/air interface has
been analyzed. It is assumed that viscosity is an exponential function of temperature.
We have obtained analytical solutions valid in the limit of small aspect ratio α and in
the limit of small Nahme–Griffith number Na. The nonlinear coupled partial differ-
ential equations have also been solved numerically using the finite element method.
Our results show that the asymptotic solutions agree very well with the numerical
solution. For small vales of Na the deviation of temperature and velocity from the
isothermal solution is small, approximately of order O(Na). Furthermore, we show
that for viscometric applications in which the aspect ratio α is typically less than 0.1,
the exact solution obtained for α = 0 and B = 0 gives very accurate results for the
nonisothermal correction to the torque for small values of α and the Biot number B.
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(a) Numerical solution α=0.1
(b) Asymptotic solution α=0.1
(c) Exact solution(α=0)

Fig. 6. Solutions obtained by (73)–(74), (29)–(30), and (11)–(12).

Appendix.

A.1. Heat transfer boundary condition. In this section, the derivation of
the heat transfer boundary condition at the upper rotating plate is detailed. Following
the convention adopted in Ozisik [29],

(88) −k
∂T̃

∂z̃
= �

(
T̃ − T̃a

)
at the surface S,

where � is the heat transfer coefficient and k is the thermal conductivity of the rotating
plate. The surface S corresponds to the surface of the upper rotating plate at z = 1.
After normalization of variables and introducing the thickness of the plate H, to
procure a meaningful parameter, the Biot number Bi = �H

k :

(89)
∂T

∂z
=

Bih

H
(−T + Ta) ,

where h is the thickness of the gap between the two plates [28, 29]. In dimensionless
form this becomes

(90)
∂Θ

∂z
+ BΘ = Bϑa,

where B ≡ Bi h
H .

A.2. The function Fm(r). The function Fm(r) appearing in (30) satisfies the
following ordinary differential equation:

r2F ′′
m + rF ′

m −
(

1 +
m2π2r2

α2

)
Fm = ϕ(r),

ϕ = 2r3
∞∑

n=1

[
mπΓ̄n (1 − cos(mπ) cos(λn))

m2π2 − λ2
n

][
2α

λ2
n

I0(
λnr
α )

I1(
λn

α )
− r2

λ2
n

− 4α2

λ4
n

]
.(91)



ANALYTICAL SOLUTIONS FOR COAXIAL DISC FLOW 1419

0 0.2 0.4 0.6 0.8 1
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

At r=.5 for α=0.1, θ
a
=1 θ

w
=1.5 B=1  

z

Θ−
Θ 0

 

 

(a) Numerical solution Na=0.1
(b) Asymptotic solution Na=0.1
(c) Numerical solution Na=1
(b) Asymptotic solution Na=1

Fig. 7. Solutions obtained by (73)–(74), (29)–(30), and (11)–(12).
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(a) Numerical solution
(b) Asymptotic solution

Fig. 8. Solutions obtained by (73)–(74), (29)–(30), and (11)–(12).
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(a) Numerical solution (α=0.1, B=0.01)
(a) Numerical solution (α= 1, B=0.01)
(b) Exact solution(α=0)
(b) Series solution(α=0)

Fig. 9. Plot of the torque T versus Na.

The general solution to the above ordinary differential equation is

Fm(r) = C1I1

(mπr

α

)
+ C2K1

(mπr

α

)
+ I1

(mπr

α

)[∫
ϕ(r)K1(

mπr
α )

r
dr

]

−K1

(mπr

α

)[∫
ϕ(r)I1(

mπr
α )

r
dr

]
,(92)

where K0 and K1 are modified Bessel functions of the second kind.
The evaluation of the integrals is shown next:∫

ϕ(r)K1(
mπr
α )

r
dr = 2

∞∑
n=1

mπΓ̄n (1 − cos(mπ) cos(λn))

λn(m2π2 − λ2
n)

[
−4mπrα3

λn(m2π2 − λ2
n)2

(93)

×
λnI1(

λnr
α )K0(

mπr
α ) + mπI0(

λnr
α )K1(

mπr
α )

I1(
λn

α )
− 2r2α2

λn(m2π2 − λ2
n)

×
λnI1(

λnr
α )K1(

mπr
α ) + mπI0(

λnr
α )K0(

mπr
α )

I1(
λn

α )
+

αr4

mπ
K2

(mπr

α

)

+
2α2r3

m2π2
K3

(mπr

α

)
+

4α3r2

mπλ2
n

K2

(mπr

α

)]
,

∫
ϕ(r)I1(

mπr
α )

r
dr = 2

∞∑
n=1

mπΓ̄n(1 − cos(mπ) cos(λn))

λn(m2π2 − λ2
n)

[
4mπrα3

λn(m2π2 − λ2
n)2

(94)

×
λnI0(

mπr
α )I1(

λnr
α ) −mπI0(

λnr
α )I1(

mπr
α )

I1(
λn

α )
− 2r2α2

λn(m2π2 − λ2
n)
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×
λnI1(

mπr
α I1(

λnr
α ) −mπI0(

λnr
α )I0)

mπr
α )

I1(
λn

α )
− αr4

mπ
I2

(mπr

α

)

+
2α2r3

m2π2
I3

(mπr

α

)
− 4α3r2

mπλ2
n

I2

(mπr

α

)]
.

The boundary conditions Fm = 0 at r = 0 and F ′
m − Fm

r = 0 at r = 1 are used to
determine the constants in the above equation. The boundary condition on the axis
causes the constant of integration C2 to be zero. The other boundary condition is
used to determine the constant of integration C1. However, because of the complexity
of the nature of the solution as judged from the above equations, the constant C1 is
shown to be determined in principle. However, the actual formulation is employed to
generate plots via CAS (computer algebra system):

C1 = −
[∫

ϕ(r)K1(
mπr
α )

r
dr

]
r=1

−
K0(

mπ
α ) + K2(

mπ
α ) − 2α

mπK1(
mπ
α )

I0(
mπ
α ) + I2(

mπ
α ) − 2α

mπ I1(
mπ
α )

[∫
ϕ(r)I1(

mπr
α )

r
dr

]
r=1

.(95)
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STABILITY OF SOLITARY WAVES IN A SEMICONDUCTOR
DRIFT-DIFFUSION MODEL∗
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Abstract. We consider a macroscopic (drift-diffusion) model describing a simple microwave
generator, consisting of a special type of semiconductor material that, when biased above a certain
threshold voltage, generates charge waves. These waves correspond to travelling wave solutions of the
model equation which, however, turn out to be unstable in a standard formulation of the travelling
wave problem. Here a different formulation of this problem is considered, where an external voltage
condition is applied in the form of an integral constraint. Global existence of this novel Cauchy
problem is proven and the results of numerical experiments are presented, which suggest the stability
of solitary waves. In addition, a small amplitude limit is considered, for which linearized orbital
stability of solitary waves can be proven.
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1. Introduction. In this paper we consider the nondimensionalized one-
dimensional semiconductor drift-diffusion model

∂tn = ∂x(∂xn− v(E)n) ,(1.1)

∂xE = n− 1(1.2)

for (x, t) ∈ R×(0,∞), where n(x, t) denotes the electron density and E(x, t) the (neg-
ative) electric field. In the drift-diffusion equation (1.1), v(E) is the field dependent
drift velocity, and in the Poisson equation (1.2), the constant 1 represents the scaled
constant doping concentration. The special feature of the model is the nonmonotonic-
ity of v(E), made precise below.

The system will be considered subject to the initial condition

(1.3) n(0, x) = nI(x) for all x ∈ R ,

where initially and, thus, for all times, we assume global charge neutrality:∫
R

(nI − 1)dx = 0 .

This has the consequence that the field takes the same value

E∞(t) := lim
|x|→∞

E(t, x)
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at x = ±∞. Instead of prescribing E∞(t), we leave it as an unknown and pose the
integral constraint

(1.4)

∫
R

(E(t, x) − E∞(t)) dx = U(t) ,

where the function U(t) is given for t ≥ 0.
This problem arises from a one-dimensional model of a simple microwave gener-

ator. When biased above a certain voltage threshold, the generator produces current
oscillations based on dipole charge waves travelling through the semiconductor mate-
rial. This is known as the Gunn effect; see [4] and [5].

The system (1.1), (1.2) subject to (1.3), (1.4) will be motivated below by scaling
arguments. We start with the unscaled equations describing the flow of electrons in a
piece of homogeneous n-type semiconductor material of length L (cf. [9]),

∂tn = ∂x(D∂xn− v(E)n) , with t > 0, x ∈ (−L,L) ,(1.5)

εs∂xE = q(n− C), with x ∈ (−L,L) .(1.6)

This is the standard unipolar drift-diffusion model where the transport of holes is
neglected. The constant parameters are the diffusivity D, the permittivity εs of the
semiconductor material, the elementary charge q, and the donor concentration C > 0.
Since this fixed background charge density is positive, the negatively charged electrons
will dominate among the mobile charges, satisfying the omission of the positively
charged holes from the model. The function v stands for the drift velocity of electrons
and depends on the field, thus leading to a nonlinear coupling of the system, which
is supplemented by an initial condition n(0, x) = nI(x) and by Dirichlet boundary
conditions for the electron concentration:

(1.7) n(t,−L) = n(t, L) = C for t > 0 .

In addition, the application of an exterior (given) voltage Ū is described by the integral
condition

(1.8)

∫ L

−L

E(t, x) dx = Ū(t) .

For standard semiconductor materials such as silicon, measurements of the drift
velocity v(E) yield an odd nonlinear increasing function of the field E, almost linear
for small fields, and bounded from above by a velocity saturation value vsat. However,
there are semiconductor materials such as gallium arsenide (GaAs), for which the
velocity v reaches a maximum at a certain threshold value of the field ET (cf. [13]),
with the profile of v decreasing for E > ET to vsat; see Figure 1. This nonmono-
tonicity of the velocity is responsible for the existence of pulse like solutions, namely
solitary (travelling) waves, which are necessary for the Gunn effect. We are interested
in studying the stability of these waves.

Using L as characteristic length, L/vsat as characteristic time, vsat as charac-
teristic velocity, C as characteristic electron density, and ET as characteristic field
strength, one obtains the dimensionless equations

∂tn = ∂x(ν∂xn− nv(E)) ,(1.9)

λ2∂xE = n− 1 ,(1.10)
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vsat

E T
E sat

Fig. 1. Electron drift velocity.

subject to the conditions

n(t,−1) = n(t, 1) = 1 ,(1.11) ∫ 1

−1

E(t, x) dx = Ū(t) ,(1.12)

where the drift velocity v is now normalized in the sense that it takes its maximum
at E = 1 and satisfies limE→∞ v(E) = 1. The dimensionless parameters

λ2 =
εsET

L2qC
, ν =

D

Lvsat

are, respectively, the square of the scaled Debye length and the relative strength
of diffusive and convective terms. We are interested in the case of a high doping
concentration and a long device; therefore the parameters λ2 and ν are both small.
We shall make the scaling assumption that they are of the same order of magnitude
and, for simplicity, actually set ν = λ2.

We recall that for a given constant voltage, the homogeneous steady state solution

n ≡ 1, E ≡ 1

2
Ū

of (1.9), (1.10) is stable if Ū ≤ 2 (E ≤ 1) and unstable if Ū > 2 (E > 1); cf. [14],
[1]. Stable solitary waves are expected to arise in the latter case. The appropriate
space-time scaling for these waves is achieved by (t, x) → (t/λ2, x/λ2), which expands
both the temporal and the spatial domains. It leads to (1.1)–(1.2), and the integral
condition (1.12) becomes

(1.13) λ2

∫ 1
λ2

− 1
λ2

E(t, x) dx = Ū(t) .

In the “Gunn operation mode” we expect waves travelling through the device, whose
typical length is of order one in terms of the new x-variable. Away from the wave,
i.e., in most of the device, we expect an almost constant electric field, and we denote
an approximation by E1/λ2(t). The condition (1.13) can then be rewritten as

λ2

∫ 1
λ2

− 1
λ2

(E(t, x) − E1/λ2(t)) dx = Ū(t) − 2E1/λ2(t) .(1.14)
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Passing to the limit λ2 → 0 formally gives E∞(t) = Ū(t)/2 with E(t, x) → E∞(t)
as |x| → ∞. In [15] Szmolyan considered the problem (1.1), (1.2) subject to this
boundary condition and an initial condition for n. It is striking that, with standard
linearization techniques, he proved that solitary waves are unstable in this case.

These results are rather unexpected if compared with the experimental evidence
on Gunn diodes. The aim of this work is to study a reformulation of the problem,
which seems to stabilize the solitary waves. Formally, the reformulation can be derived
by introducing

U(t) := lim
λ→0

1

λ2

(
Ū(t) − 2E1/λ2(t)

)
and passing to the limit in (1.14) after dividing by λ2. Obviously, this leads to the
integral condition (1.4).

In the language of asymptotic analysis, the assumption that the small parameters
ν and λ2 are of the same order of magnitude leads to a significant limit, since the
small parameters can then be eliminated from the differential equations by the above
rescaling. However, since the ratio λ2/ν depends on both the device length and the
doping concentration, situations where this ratio is either very small or very large can
also be physically relevant. An asymptotic analysis of travelling waves in the former
case can be found in [9]. It turns out that in this case all travelling wave solutions
have a far-field value of the electric field close to Esat (see Figure 1). This result can
be seen as a (not very strong) physical justification of prescribing U(t), since this is
then close to prescribing the contact voltage Ū(t).

For convenience we introduce the unknown

e(t, x) := E(t, x) − E∞(t) =

∫ x

−∞
(n(t, y) − 1) dy with t > 0, x ∈ R .

Substituting n = ∂xe+1 into (1.1) and integrating with respect to x gives the equation

(1.15) ∂te = ∂2
xe− v(e + E∞) ∂xe + v(E∞) − v(e + E∞) ,

subject to the initial condition

(1.16) e(0, x) = eI(x) =

∫ x

−∞
(nI(y) − 1) dy ,

with nI as in (1.3), and to the integral constraint (1.4), which now simply reads

(1.17)

∫
R

e(t, x) dx = U(t) .

Differentiation with respect to time gives

(1.18) U ′(t) =

∫
R

(v(E∞(t)) − v(E∞(t) + e(t, x)))dx .

We shall solve (1.15) subject to (1.18) instead of (1.17). This will be favorable since
(1.18) can be seen as an equation for E∞ for given U ′(t) and e.

The formulation of the problem will be completed by specifying the precise as-
sumptions on the drift velocity.
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Assumption 1. We assume v ∈ C3
B([0,∞)), v(0) = 0, sign v′(E) = sign(1 − E),

limE→∞ v(E) = 1, ∃Ei > 1 such that sign v′′(E) = sign(E − Ei). Finally, v′′′ ≥ 0 on
(1, Ei).

The equation v(Esat) = 1 uniquely defines Esat < 1. We also introduce σi =
supE>0 |div/dEi(E)|, i = 1, 2, 3.

The paper is organized as follows. In section 2 we review the existence of solitary
waves but incorporate the condition (1.4) into the problem. It turns out that for all
U > 0 there exists a unique (up to translation) solitary wave having E∞ < 1. In
section 3 we prove existence of solutions of (1.15)–(1.18) for positive U(t). Actually
there is also a restriction on the values of U ′(t), which is required to be in the range of
the right-hand side of (1.18). The existence proof uses a fixed point argument involving
the operator defined by solving the condition (1.18) (for given e). This operator is only
locally Lipschitz in L1

x(R). This difficulty does not ensue in bounded domains; see [8].
There is still no general result on the stability of solitary waves. In section 4, however,
we provide strong numerical evidence that we succeeded in stabilizing the travelling
waves by the new formulation. Moreover, in section 5 we consider a small wave limit by
imposing a small external voltage. We prove linear asymptotic stability of the limiting
solitary waves. It turns out that the limit equation is the so-called conserved Fisher
equation with a constant competition rate, a model of population dynamics with
global regulation [11]. In particular, our proof shows linearized asymptotic stability
of its stationary solutions.

2. Solitary waves. In this section we prove existence of solitary waves subject
to the constraint (1.4). Let ξ =: x− ct be the travelling wave variable, where c > 0 is
the wave speed. Then a solitary wave solution (E(ξ), n(ξ)) of (1.1)–(1.2) is a solution
of

n′ = n(v(E) − c) − v(E∞) + c ,

E′ = n− 1

that satisfies

(2.1) n → 1 and E → E∞ as |ξ| → ∞ .

A straightforward computation using both differential equations leads to

n− 1

n
n′ − (v(E) − v(E∞))E′ =

(n− 1)2

n
(v(E∞) − c) .

Since the right-hand side does not change sign, integration with respect to ξ and the
far-field conditions imply that a solution exists only if c = v(E∞) holds, which we
assume in the following:

n′ = n(v(E) − v(E∞)),(2.2)

E′ = n− 1.(2.3)

We incorporate the condition (1.4), which in the travelling wave variable reads

(2.4)

∫
R

(E(ξ) − E∞) dξ = U,

where U is a given constant, and E∞ will be determined as part of the solution of
(2.1)–(2.4). The main result of this section is the following theorem.
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Theorem 2.1. For each U > 0 there exists a solution (n,E,E∞) of (2.1)–(2.4)
which is unique up to translation in ξ and satisfies Esat < E∞ < 1. The far-field value
E∞ of the field is a strictly decreasing function of U , satisfying

(2.5) lim
U→0

E∞(U) = 1 and lim
U→∞

E∞(U) = Esat .

Before we prove the theorem we recall the existence result of (2.1)–(2.3) for a
given value of E∞.

Lemma 2.2. For every E∞ ∈ (Esat, 1), there exists a unique (up to translation in
ξ) solution (n,E) of (2.1)–(2.3) that satisfies E > E∞. The total charge density n− 1
has one simple zero, to the left of which it is positive (and negative to the right).

This lemma is just a reformulation of the existence result that appears in [15].
The proof uses the fact that (2.2), (2.3) is a conservative system and uses the first
integral relation

(2.6) n− log n− 1 =

∫ E

E∞

(v(y) − v(E∞)) dy .

Proof of Theorem 2.1. By Lemma 2.2 it is sufficient to prove that the relation
between E∞ and U is one-to-one. With the solution (n,E) of (2.1)–(2.3) for given
E∞ ∈ (Esat, 1), we define

U(E∞) :=

∫
R

(E(ξ) − E∞)dξ .

The derivative can be written as U ′ :=
∫

R
(Ê(ξ)−1)dξ, where we define Ê = dE/dE∞

and n̂ = dn/dE∞. The latter satisfy the equations

Ê′ = n̂ ,
n− 1

n
n̂ = (v(E) − v(E∞))Ê − v′(E∞)(E − E∞) ,

by differentiating (2.3) and (2.6) with respect to E∞. Let us, without loss of generality,
fix the point where n − 1 changes sign at ξ = 0, i.e., n(0) = 1. The second equation
above implies that

Ê(0) = v′(E∞)
E(0) − E∞

v(E(0)) − v(E∞)
.

The properties of v, E∞ < 1, and E > E∞ imply that Ê(0) < 1. Away from ξ = 0,
Ê solves

Ê′ =
n

n− 1
[v(E) − v(E∞)](Ê − 1)

+
n

n− 1
[v(E) − v(E∞) − v′(E∞)(E − E∞)] .

The term in the second line is negative for large negative ξ and positive for large
positive ξ. This implies Ê < 1 for large |ξ|. Extrema of Ê away from ξ = 0 satisfy
Ê = v′(E∞) E−E∞

v(E)−v(E∞) < 1 analogously to the above. This shows that Ê(ξ) < 1 for

all ξ and, thus, U ′(E∞) < 0.
The assertion (2.5) then also follows since the amplitude of the wave tends to zero

for E∞ → 1 and to infinity for E∞ → Esat.
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3. Existence. In this section existence of solutions of (1.15), (1.16), (1.18) will
be proven for given bounded U(t) ∈ C1

B(R+) and for initial data eI satisfying

(3.1) eI ∈ L1
x(R) ∩ L∞

x (R), eI(x) > 0 a.e. in x .

Clearly U(t) is fixed by U(0) =
∫

R
eI(x) dx > 0 and by U ′(t) appearing in (1.18).

Assumption 2. There are positive constants δ and K, such that

0 < δ ≤ U(t) ≤ K and ‖eI‖∞ ≤ K ,

where ‖ · ‖p denotes the norm in Lp
x(R).

The derivative U ′(t) will have to be small enough as specified below. We start by
the derivation of an a priori estimate.

Proposition 3.1. For solutions of (1.15), (1.16), (1.18), ‖e(t, ·)‖∞ ≤ C(σ1)K
with C(σ1) =

√
2 max{2, c√σ1} holds for all t ≥ 0.

Proof. The proof follows the idea of a similar result in [7]. Multiplying (1.15) by
ep−1 for p ≥ 2 and integration gives the estimate

(3.2)
d

dt

∫
R

ep dx ≤ −4
(p− 1)

p

∫
R

(∂xe
p/2)2 dx + pσ1

∫
R

ep dx .

We observe that, by interpolation,

‖eI‖p ≤ ‖eI‖(p−1)/p
∞ ‖eI‖1/p

1 ≤ K .

Our aim is to derive a uniform-in-p and uniform-in-time estimate on ‖e(t, ·)‖p for a
sequence of p such that p → ∞. We use the Nash inequality [10]

‖u‖3
2 ≤ c‖u‖2

1‖∂xu‖2

in one space dimension with u = ep/2; thus, with the notation zp(t) = ‖e(t, ·)‖pp,

(3.3)
dzp
dt

≤ pσ1zp

(
1 − c̃(p− 1)

p2

z2
p

z4
p/2

)
,

where c̃ = 4/(c2σ1). Starting with z1(t) = U(t) ≤ K, the above inequality can be
used recursively for obtaining bounds Mk for z2k(t). Suppose z2k−1(t) ≤ Mk−1; then

z2k(t) ≤ Mk = max

{
K2k

,
2k√

c̃(2k − 1)
M2

k−1

}
.

Let us now examine the sequence Mk, defined by the recursion and by M0 = K. Since,

obviously, Mk−1 ≥ K2k−1

and 2k/
√

2k − 1 ≥ 1,

K2k ≤ 2k√
2k − 1

M2
k−1

holds. Thus, we make the upper bound Mk larger by the new definition

Mk = B2(k+1)/2M2
k−1 , M0 = K , B := max{1, c̃−1/2} ,

where we have used 2k/
√

2k − 1 ≤ 2(k+1)/2. This recursion can be solved explicitly:

Mk = (
√

2B)ak2bk/2K2k

,
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where ak =
∑k−1

n=0 2n = 2k − 1 < 2k and bk =
∑k−1

n=0(k− n)2n = 2k+1 − 2− k < 2k+1.
Thus, since B ≥ 1,

Mk ≤ (2
√

2BK)2
k

,

and hence

‖e(t, ·)‖2k ≤
√

2K max{2, c√σ1} for all k .

The proof is completed by passing to the limit k → ∞.
Now we prepare a decoupled solution approach and examine (1.18) as an equation

for E∞(t).
Proposition 3.2. Let the function e ∈ L1

x(R) ∩ L∞
x (R) satisfy ‖e‖1 ≥ γ > 0

and ‖e‖∞ ≤ M . Then the function F (E; e) :=
∫

R
(v(E) − v(E + e(x)))dx is strictly

increasing on (0, Ē) with

Ē(γ,M) = 1 − v′(1 + M)γ

2M2σ3
> 1 .

Furthermore,

F (0; e) ≤ −v(M)
γ

M
, F (Ē; e) ≥ 3v′(1 + M)2γ2

8M3σ3
,

F ′(E; e) ≥ −v′(1 + M)γ

2M
for 0 ≤ E ≤ Ē .

Proof. By the convexity of v′ on (0, Ei) and by the fact that v′ is increasing and
negative on (Ei,∞), the secant between E and E + M lies above the graph of v′ for
E ≤ 1. Therefore

F ′(E) ≥
∫

R

(
v′(E) − v′(E)

(
1 − e

M

)
− v′(E + M)

e

M

)
dx

=

∫
R

(v′(E) − v′(E + M))
e

M
dx ≥ (v′(E) − v′(E + M))

γ

M

for 0 ≤ E ≤ 1. Again by the same properties of v′, the right-hand side takes its
minimum value for E = 1, so F ′(E) ≥ −v′(1 + M)γ/M for 0 ≤ E ≤ 1.

Since

|F ′′(E)| ≤
∫

R

|v′′(E) − v′′(E + e)|dx ≤ σ3M ,

the derivative of F for E > 1 can be estimated by

F ′(E) ≥ −v′(1 + M)
γ

M
− (E − 1)σ3M ,

proving that F is increasing on (0, Ē) and the lower bound on F ′ in the statement
of the proposition. The lower bound for F (Ē) is obtained by integrating the above
inequality from E = 1 to E = Ē and using that F (1) > 0, which holds, obviously,
since v has its maximum at E = 1.

For estimating F (0) = −
∫

R
v(e)dx, we use the L∞-bound on e and the fact that

secants between the origin and other points on the graph of v lie below the graph by
the properties of v:

F (0) ≤ −
∫

R

v(M)
e

M
dx ≤ −v(M)

γ

M
,

where the second inequality is due to the lower bound on the L1-norm of e.
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On the other hand, we consider the problem for e with given E∞. In this case,
the integral of e will not necessarily be equal to U(t), which was the basis of the proof
of Proposition 3.1. As a consequence, the estimates below are not uniform in time.

Proposition 3.3. Let E∞(t) be given. Then the problem (1.15), (1.16) for e has
a unique positive solution satisfying∫

R

e(t, x)dx ≥ U(0)e−tσ1 and e(t, x) ≤ Ketσ1 , x ∈ R, t > 0 .

Proof. Existence and uniqueness are standard results for semilinear parabolic
equations. Positivity is a consequence of the maximum principle. The first estimate
follows easily from integration of (1.15). The upper bound in the second estimate is a
supersolution.

We are now ready to formulate the main existence result.
Theorem 3.4. Let M = C(σ1)K denote the bound from Proposition 3.1 and let

−v(M)
δ

M
< U ′(t) <

3v′(1 + M)2δ2

8M3σ3
, t ≥ 0 .

Then the problem (1.15)–(1.18) has a unique global solution satisfying 0 < E∞(t) <
Ē(δ,M) and 0 < e(t, x) ≤ M .

Remark 3.5. It seems unsatisfactory that the bounds on U(t) (in Assumption 2)
and on its derivative (in the formulation of the theorem) are required. However, exam-
ples of nonexistence of a solution for data violating such bounds are easily constructed.
The range of the function F (E∞, e(t, ·)) (the right-hand side of (1.18)) as a function of
E∞ is a subset of (−σ1U(t), σ1U(t)). Therefore it is a necessary condition for the exis-
tence of a solution that U ′(t) lies in this interval for all t. The more restrictive bounds
of the theorem guarantee stable (unique) solvability. For an example of nonexistence
see the following section.

Proof. The first step is the construction of a local solution by a fixed point iteration
on E∞ acting on the set E := {E(t) ∈ L∞

t ((0, T )) : 0 ≤ E(t) ≤ Ē} with T > 0. For
a given E ∈ E , we first solve the problem (1.15), (1.16) with E∞ replaced by E. By
Proposition 3.3, this problem has a unique solution e[E] satisfying

Ketσ1 ≥
∫

R

e[E](t, x)dx ≥ U(0)e−tσ1 ≥ δe−Tσ1 =: γT

and

e[E](t, x) ≤ Ketσ1 ≤ MeTσ1 =: MT

for 0 ≤ t ≤ T . With Proposition 3.2, the range of F (· ; e[E]) includes the interval

(−v(MT ) γT

MT
,

3v′(1+MT )2γ2
T

8M3
Tσ3

). For T small enough, this in turn includes the range of

U ′(t) as given in the formulation of the theorem. Therefore the equation F (Ê; e[E]) =
U ′ has a unique solution Ê = F(E) ∈ [0, Ē] which completes the definition of the
fixed point operator F : E → E .

We shall prove that, for T small enough, F is a contraction and start with the
mild formulation of (1.15), (1.16):

e(t, ·) = G(t, ·) ∗ eI +

∫ t

0

∂xG(t− s, ·) ∗ [V (E(s) + e(s, ·)) − V (E(s))]ds

+

∫ t

0

G(t− s, ·) ∗ [v(E(s)) − v(E(s) + e(s, ·))]ds ,
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where G(t, x) = (4πt)−1/2e−x2/(4t) is the fundamental solution of the one-dimensional
heat equation, ∗ denotes convolution with respect to x, and V is a primitive of v. For
estimating the difference between e1 = e[E1] and e2 = e[E2], we start with

|v(E1) − v(E1 + e1) − v(E2) + v(E2 + e2)|

≤
∣∣∣∣∣
∫ E1

E2

(v′(E) − v′(E + e1))dE

∣∣∣∣∣ + |v(E2 + e2) − v(E2 + e1)|

≤ e1 σ2|E1 − E2| + σ1|e1 − e2| ,

and, analogously,

|V (E1) − V (E1 + e1) − V (E2) − V (E2 + e2)|
≤ e1σ1|E1 − E2| + σ0|e1 − e2| .

We shall also use the properties∫
R

G(t, x) dx = 1 ,

∫
|∂xG(t, x)| dx =

1√
tπ

for all t > 0

of the fundamental solution as well as the convolution inequality ‖f ∗g‖1 ≤ ‖f‖1‖g‖1.
A combination of these ingredients leads to an estimate of the form

sup
0<t<T

‖e1(t, ·) − e2(t, ·)‖1

≤ c
√
T

(
sup

0<t<T
‖e1(t, ·) − e2(t, ·)‖1 + sup

0<t<T
|E1(t) − E2(t)|

)

for T ≤ 1. It is an obvious consequence that the map E → e[E] from E to L∞
t ((0, T ),

L1
x(R)) is Lipschitz continuous with an arbitrarily small Lipschitz constant for small

enough T .
Denoting Ê1 = F(E1) and Ê2 = F(E2), then F (Êi; ei) = U ′(t) holds for i = 1, 2.

The difference of the two equations can be written as

F ′(Ẽ; e1)(Ê1 − Ê2) +

∫
R

[v(Ê2 + e2) − v(Ê2 + e1)]dx = 0 ,

with Ẽ between Ê1 and Ê2. This implies the estimate

sup
0<t<T

|Ê1(t) − Ê2(t)| ≤ − 2Mσ1

v′(1 + M)γ
sup

0<t<T
‖e1(t, ·) − e2(t, ·)‖1 ,

proving Lipschitz continuity also for the second step of the fixed point map. This
concludes the proof of existence and uniqueness of a local solution.

Since solutions satisfy the uniform-in-time bounds 0 < e ≤ M and
∫

R
e dx ≥ δ

and the above construction of local solutions works for initial conditions satisfying
these bounds, the solution actually exists for all times, concluding the proof.

4. Numerical results. In this section we present numerical experiments ap-
proximating (1.1)–(1.4) by solving the initial value problem for (1.15) subject to (1.18).
In the time iteration we solve alternatively (1.18) and (1.15); for a given bounded pos-
itive initial condition eI with finite mass we find the corresponding initial value of E∞
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by solving (1.18), this value is then used in (1.15) to get e in the next time step, and
so on.

We discretize the equations on a domain (0, L) and impose Neumann boundary
conditions for (1.15). The scheme treats the second order term implicitly (backward
Euler) and the first order term explicitly (forward Euler) in time. Also, the first order
term is discretized in space by first order upwinding. For a given U ′(t) we approximate
the integral (1.18) in the interval [0, L] as a Riemann integral by using the trapezoidal
rule. At each time step k a unique solution of the discretized equation∫ L

0

{v(Ek+1
∞ ) − v(Ek+1

∞ + ek)}dx− U ′(tk) = 0

is achieved by using the MATLAB implemented routine fzero, where the starting
guess is Ek

∞.
In all examples below we have taken L = 200, the spatial step h = 0.1, and the

time step τ = 0.01. As electron velocity function we use

v(E) = c e−aE − d e−bE + 1 ,(4.1)

with

a = ln(6)/3 , b = 4 ln(6)/3 , c = 2, and d = 3.

This v is normalized according to Assumption 1.

1 2 3 4 5

−10

−5

0

5

E∞

F

(a) F (E∞, eI) for eI as in (4.2) with l = 5.

1 2 3 4 5

−10

−5

0

5

E∞

F

(b) F (E∞, eI) for eI as in (4.2) with l = 1.

Fig. 2. The function F computed for the initial data (4.2).

As initial condition we take the piecewise linear function

(4.2) eI(x) =

⎧⎨
⎩

0 if 0 ≤ x ≤ 10 or x > 18,
l
4x− 5

2 l if 10 < x ≤ 14,
− l

4x + 9
2 l if 14 < x ≤ 18;

here l is the maximum of eI giving the initial voltage U(0) = 4l. The function E∞ →
F (E, eI) for eI with l = 1 and l = 5, respectively, is plotted in Figure 2(a). Observe
that the values at which F vanishes are, respectively, E∞(0) ≈ 0.77 and E∞(0) ≈ 0.37;
i.e., the smaller the integral of e, the closer is E∞ to 1, as expected for solitary waves
(see Theorem 2.1). Since the speed of the solitary waves is given by c = v(E∞), we
expect the profiles to move to the right faster for smaller values of l. From now on we
take l = 5 in (4.2); in this case U(0) = 20.
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We start with examples for constant U . Figures 3(a) and 3(b) show, respectively,
electric field and electron concentration profiles at t = 0 and t = 90, 100, 110. Fig-
ures 3(c) and 3(d) show the same solutions against the moving variable ξ = x − ct,
where the speed c = v(E∞(t)) is evaluated at t = 110. The profiles at times t =
90, 100, 110 overlap in this frame, suggesting the stability of solitary waves.

0 50 100 150 200
0

1

2

3

4

5

6

x

E

t

(a) The electric field profile E = e + E∞ at
t = 0, 90, 100, 110.
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0.85

0.9

0.95

1

1.05
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1.2

1.25
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n

t

(b) The electron concentration profile n at
t = 0, 90, 100, 110.

5 10 15 20 25
0.5

1

1.5

2

2.5

3

ξ

E

(c) The electric field profile E = e + E∞ at
t = 90, 100, 110 against the travelling wave
coordinate ξ.

−5 0 5 10 15 20 25 30
0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

ξ

n

(d) The electron concentration profile n at
t = 90, 100, 110 against ξ.

Fig. 3. Numerical solutions for constant U . Figures 3(a) and 3(c) show electric field values,
and for completeness those corresponding to the electron concentration are shown to the right in
Figures 3(b) and 3(d). The wave speed used above has been computed by using the value of E∞ at
t = 110; here E∞(110) ≈ 0.5 and c ∼ v(E∞) ≈ 1.58.

For nonconstant U we first choose U ′(t) = 4 sin(4t)/(1 + t/10). Thus initially
U ′(0) = 0, and U ′(t) oscillates about this value, while the amplitude of the oscillations
decays to 0 as t → ∞. Figure 4(a) shows electric field profiles initially and at times
t = 10, 20, 30. In Figure 4(b) electric field profiles are shown at times t = 90, 80, 110
against the variable x−ct. Since U(t) → const. as t → ∞, we have taken c = v(E∞(t))
for t = 110, as before. The profiles now do not overlap precisely, but are fairly close
to each other, again suggesting convergence to a solitary wave as t → ∞ with wave
speed c = limt→∞ v(E∞(t)).

We now consider a t-periodic U , simply choosing U ′(t) = sin(t). Although U does
not approach a constant value as t → ∞ and convergence to solitary waves is not
expected, the solution profiles move to the right with an apparently constant speed.
Figure 5(a) shows the solution profiles at t = 31, 37 (left) and at t = 79, 85 (right),
i.e., profiles at, roughly, the beginning and the end of two time periods. The two
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(a) Electric field profile at t = 0, 10, 20, 30.
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x−ct

E

(b) Electric field profile at t = 90, 100, 110
against x− ct with c = v(E∞(110)) ≈ 1.55.

Fig. 4. Numerical solutions with U ′(t) = 4 sin(4t)/(1 + t/10). Only electric field profiles are
shown. Figure 4(a) shows profiles at early time steps, where the amplitude of the oscillations of
U ′(t) is appreciated. In Figure 4(b) late time steps are shown in the moving frame ξ.
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(a) Electric field profile at t = 31, 37 (left)
and at t = 79, 85 (right).
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x−ct

E

(b) Electric field profile at against x−ct with
average speed c ≈ 1.57.

Fig. 5. Numerical solutions with U ′(t) = sin(t). Only electric field profiles are shown. Figure
5(a) shows profiles at times t = 31, 37 (left) and at t = 79, 85 (right). Figure 5(b) shows the same pro-
files as Figure 5(a) against the coordinate x−ct with the average speed c =

∑100
tk=50 v(E∞(tk))/5000 ≈

1.57.

profiles to the left are almost a translation of each other, so are the two profiles on
the right. This indicates that, as t → ∞, a t-periodic “translating speed” is reached,
presumably given by c = v(E∞(t)). To support this idea, we have computed the
“averaged” speed of the solution at late time steps, including at least one period,
namely c =

∑100
tk=50 v(E∞(tk))/5000 ≈ 1.57. Figure 5(b) shows well-centered profiles

against the moving coordinate with the average speed; these are at times t = 51, 57
and at t = 79, 85 (on top).

Finally, as an illustration of nonexistence we take U ′(t) = t2+3.8, so that initially
U ′ is close to the maximum of F ; see Figure 2(b). In this case the (numerical) solution
ceases to exist at t = 1.23; i.e., U ′(1.22) exceeds the maximum of F . Electric field
profiles for t < 1.23 are shown in Figure 6(a). The function F for e at t = 1.2 is
shown in Figure 6(b). Observe that the maximum of F is approximately attained at
E∞ = 1.1 and that the solution (e, E∞) has E∞(1.2) ≈ 1.084.



1436 C. M. CUESTA AND C. SCHMEISER

5 10 15 20 25 30

1

1.5

2

2.5

3

3.5

4

4.5

5

x

E

(a) Electric field profile at t = 1, 1.1, 1.2.
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(b) The function F for e at t = 1.2.

Fig. 6. Numerical solutions for U ′(t) = t2 +3.8 and the function F for e evaluated at e(1.2, x).
In this case the numerical solution ceases to exist at t = 1.23 when the value of U ′(t) exceeds the
maximum of F .

5. Small wave limit: Linearized stability. In this section we prove linearized
stability of small solitary waves. We consider a small given constant voltage:

U = ε � 1 .

We derive the limit ε → 0 formally. From Theorem 2.1, solitary waves have E∞ ∼ 1
as ε → 0, hence also c ∼ v(1) as ε → 0. The amplitude of the waves is also small by
(2.6). With this in mind we introduce the moving coordinate ξ = x − v(1)t and the
scaling

e = ε2e1 , E∞ = 1 − ε2E1 , τ = ε2t , η = εξ .

Then, in (1.15), after dividing by ε4 and formally passing to the limit ε → 0, we
obtain

(5.1) ∂τe1 = ∂2
ηe1 +

v′′(1)

2
(2E1e1 − e2

1)

and, from (1.17) and (1.18),

(5.2)

∫
R

e1 dη = 1 , 2E1 =

∫
R

e2
1 dη .

As mentioned in the introduction, problem (5.1)–(5.2) is the conserved Fisher equa-
tion; see [11]. We now look at stability of stationary solutions to (5.1), since these are
the limiting profiles of solitary waves as ε → 0.

With the abbreviation

κ := −v′′(1) > 0 ,

the family of stationary solutions is given explicitly by

(5.3) ē(η) =
κ

48
sech2

( κ

24
(η + C)

)
, Ē =

κ

144
,

with the shift C ∈ R.
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We observe that rescaling with

η → κ−1η , e1 → κe1 , E1 → κE1 , τ → κ−2τ ,

we can set κ = 1 in (5.1), with no changes in (5.2).
Denoting perturbations of e1 and E1 by u and A, respectively, the linearized

problem (with κ = 1) reads

∂τu = ∂2
ηu + (ē− Ē)u− ēA[u] ,(5.4) ∫

R

u dη = 0 , A[u] =

∫
R

ē u dη ,(5.5)

with

(5.6) ē(η) =
1

48
sech2

( η

24

)
, Ē =

1

144
,

where, without loss of generality, the shift has been set to zero. Note that there is a
one-dimensional family of stationary solutions spanned by u = ē′, A = 0. This fact
corresponds to the translation invariance of the nonlinear problem.

Theorem 5.1. The family of stationary solutions of (5.4), (5.5) is asymptotically
stable: for an initial condition u0 satisfying∫

R

u0 ē
′ dη = 0 ,

the solution of (5.4), (5.5) subject to u(τ = 0) = u0 satisfies

‖u(τ, ·)‖2 ≤ eμτ‖u0‖2 with μ ≤ − 1

192
< 0 .

Proof. The linearized operator can be written as the sum of two self-adjoint op-
erators on the space L2

0(R) = {u ∈ L2(R) :
∫

R
u dη = 0} equipped with the L2-inner

product 〈·, ·〉:

Lu = L1u + L2u , L1u = ∂2
ηu + (ē− Ē)u , L2u = −ēA[u] .

Obviously, L2 is nonpositive: 〈L2u, u〉 = −A[u]2 ≤ 0.
The spectrum of L1 considered on all of L2(R) can be computed explicitly; see

[6]: we obtain the essential spectrum (−∞,−Ē] and the isolated eigenvalues

λ1 = −3

4
Ē = − 1

192
, λ2 = 0 , λ3 =

5

4
Ē .

This can be obtained by using (5.6) and transforming the linear eigenvalue problem
for L1 into a hypergeometric equation; see [3] for details. In the computation of λ1

we also used (5.6).
The eigenfunction corresponding to λ3 has

∫
R
u dη �= 0, since, according to the

Sturm–Liouville theory (see, e.g., [2]), the eigenfunction corresponding to the largest
eigenvalue does not change sign. This implies that in the restricted space L2

0(R) we
actually have 〈L1u, u〉 ≤ 0.

Finally, ē′ is the eigenfunction corresponding to λ2 and ker(L1) = span{ē′}. If P
is the spectral projection onto ker(L1) then for u ∈ L2(R) satisfying (5.5), we have

(5.7) 〈L1(I − P )u, (I − P )u〉 ≤ λ1‖(I − P )u‖2
2 .

Since L1 is self-adjoint, P can be expressed as Pu = 〈u, ē′〉 ē′.
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By choosing the initial condition u0 of (5.4), (5.5) such that Pu0 = 0, it is easily
checked that also Pu = 0 for all t > 0, which finishes the proof.
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solution, in general accurate to any specified degree, is obtained by a recent method which employs
Padé approximants. Numerical results exhibit the flows due to moving walls or various combinations
of downstream pressure gradients.
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1. Introduction. A classic problem in two-dimensional creeping flow, having an
analogy in plane elastostatics, is the disturbance created by the presence of a semi-
infinite barrier in a channel flow (see Figure 1.1) driven by a pressure gradient and
or shearing. The “parallel lines” geometry suggests the use of the Wiener–Hopf tech-
nique; however, the advantage of the constricting walls in creating unidirectional flows
both upstream and downstream is offset by the appearance, in general, of a matrix
Wiener–Hopf system. The exception is the case of symmetric geometry which yields
Wiener–Hopf equations of standard (scalar) type [1], since then the flow components
that are even and odd with respect to the centerline can be considered separately.
Despite this simplification, the even problem (no flow across the line of the barrier),
which is the case of greater interest, requires an intricate factorization constructed
and used by Buchwald and Doran [2] and Foote and Buchwald [3]. An erroneous at-
tempt was presented earlier by Graebel [4] with the aim of achieving better accuracy
than the approximate, yet still complicated, solutions given by Koiter [5]. Richardson
[6] neglected an important feature of the factorization in [2]. Jensen and Halpern [7]
verified the calculations of Buchwald and coworkers in using their solution to examine
the role of the stress singularity at the edge of surfactant between thin fluid layers.
Without a general procedure for solving matrix Wiener–Hopf problems (see further
discussion on this point is section 3.1), an alternative strategy for the biharmonic
equation is to employ complex variable techniques, facilitated by the removal of one
wall (that is, the receding of one channel wall to infinity). Approximations are still
required using this approach, as presented by Moore, Buchwald, and Brewster [8] for
a Stokesian entry problem, in which the remaining wall translates, and by Kim, Choi,
and Jeong [9] for a model of the half-pitot tube, in which a shear flow is prevented
from generating any flux into the channel. The following study is both an application
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Fig. 1.1. Geometry of problem.

of a new Padé approximant procedure [10] and the first solution of this classic problem
by the Wiener–Hopf technique.

Consider the unidirectional flow between rigid walls at y = −1, h, where (x, y)
are Cartesian coordinates, at which the velocity u has the prescribed values u−1, uh,
respectively (see Figure 1.1). The flow u∞(y)x̂, where x̂ is the unit vector in the x
direction, is given by

(1.1) u∞(y) = uh

(
y + 1

h + 1

)
+ u−1

(
h− y

h + 1

)
− G

2μ
(h− y)(y + 1).

Here the first two terms of the velocity profiles may be identified as a shear flow with
different wall speeds and the last term with a flow driven by a pressure gradient G
that accounts for the prescribed flux being different from the flux generated by the
shear flow. It is readily observed from (1.1) that only the weighted average of the wall
velocities has a role in the study of the disturbance flow generated by the introduction
of a fixed plate at y = 0, x < 0. With uh + u−1h = −U(h + 1), this occurs when the
flow speed at y = 0, namely

(1.2) u∞(0) =
uh + u−1h

h + 1
− Gh

2μ
= −

(
U +

Gh

2μ

)
,

is nonzero, or when there is a flux “mismatch” in (−1, 0) between the upstream flow
and that in the downstream channel.

In terms of pressure gradients G−, G+ at infinity (as shown in Figure 1.1), the
downstream (x → −∞) unidirectional velocity profiles are given by

u∞
− (y) = −u−1y +

G−
2μ

y(y + 1), −1 < y < 0,(1.3)

u∞
+ (y) = uh

y

h
− G+

2μ
y(h− y), 0 < y < h,(1.4)

whose total flux must equal that in the upstream (x → ∞) unidirectional velocity
profile (1.1). Thus

(1.5)
(G+ −G)h3 + (G− −G)

6μ
= (h + 1)

(
U +

Gh

2μ

)
,
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which is to be viewed as determining the upstream pressure gradient G in terms of
G+, G−, U . The flux “mismatch,” ΔQ, is now given by

(1.6) ΔQ =

∫ 0

−1

[
u∞(y) − u∞

− (y)
]
dy = −1

2

(
U +

Gh

2μ

)
+

(G− −G)

12μ
.

Evidently the sets of values of the wall velocities and pressure gradients in (1.1),
(1.3) for which the presence of the semi-infinite barrier creates a disturbance flow
form a two-parameter family described by nonzero values of the vector [u∞(0),ΔQ],
with only its direction being significant. Thus any two flows of type (1.1), (1.3) that
yield parallel values of this vector, determined by (1.2), (1.6), may be regarded as
equivalent because their suitably weighted difference must be a unidirectional flow
with zero velocity at y = 0.

For example, the two flows determined by G− = 0 = G and either u−1 = 0, uh =
V ∗ or u−1 = −V, uh = 0 both yield values of [u∞(0),ΔQ] that are parallel to (2, 1)
because, if V ∗ = −V h, they differ by the shear flow u = V y. The former is the finite
version of the two-dimensional model of a half-pitot tube studied by Kim, Choi, and
Jeong [9], whose motivation was the experimental work reported by Stanton, Marshall,
and Bryant [11] and Taylor [12]. The latter is the finite version of a Stokesian entry
problem, with no pressure gradient far down the semi-infinite channel, studied by
Moore, Buchwald, and Brewster [8]. The condition of no pressure gradient upstream
ensures, for any uh, that their flow is recovered in the limit h → ∞.

In the case of symmetric geometry, h = 1 and evidently (1.2)–(1.6) show that
flows with u−1 = −U = uh, G+ = G− are equivalent to the even case:

(1.7) ΔQ = 0, u∞
− (−y) = u∞

+ (y), 0 < y < 1,

which consists downstream of a shear and pressure-driven flow combination, while
flows with u−1 = 0 = uh, G+ = −G− are equivalent to the odd case:

(1.8) G = 0, u∞(0) = 0, ΔQ =
G−
12μ

, u∞
− (−y) = −u∞

+ (y), 0 < y < 1,

which is a pressure-driven flow out of one channel into the other.
In view of the above discussion, a generic study which covers all possible flow

cases in fact need only consider forcing due solely to the moving walls and various
combinations of downstream pressure gradients. The two cases are therefore the
following:

1. U �= 0 and G+ = 0 = G−. Therefore, [u∞(0),ΔQ] is parallel to [2(h2 − h +
1), h(h− 1)], so its direction depends on h only.

2. U = 0 and various flux ratios. Hence

(1.9)
ΔQ

u∞(0)
=

3h + 1 −G−/G

6h
,

which displays a two-parameter dependence.
As an illustration of the use of MATLAB, a computational solution of this channel
flow, using approximate boundary conditions, was given by Fehribach and Davis [13].

2. The Wiener–Hopf problem. The equations of steady creeping flow, the
Stokes equations [14], are

(2.1) ∇p = μ∇2v, ∇ · v = 0,
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where v is the velocity, p the dynamic pressure, and μ the viscosity. For two-
dimensional flow referred to Cartesian coordinates (x, y), equations (2.1) allow a
stream function ψ(x, y) to be introduced such that

(2.2) v =
∂ψ

∂y
x̂ − ∂ψ

∂x
ŷ, ∇4ψ = 0.

Consider the flow between rigid walls at y = −1, h and a semi-infinite fixed barrier
at y = 0, x < 0 at which the stream function has distinct constant values and its y-
derivative has the prescribed values u−1 = −U , uh = −U , 0, respectively (see Figure
1.1). Then v ∼ u∞(y)x̂ as x → ∞ and v ∼ u∞

± (y)x̂ as x → −∞, where u∞(y)
and u∞

± (y) are given by (1.1) and (1.3), (1.4), with the upper “plus” (lower “minus”)
sign referring to the upper (lower) duct region. It is advantageous to choose for the
disturbance field not v−u∞(y)x̂ but rather v−u∞

± (y)x̂. Thus, on setting, as in (2.2),

(2.3) v − u∞
± (y)x̂ =

∂ψ̄

∂y
x̂ − ∂ψ̄

∂x
ŷ,

{
0 < y < h,
−1 < y < 0,

the disturbance stream function ψ̄(x, y) is biharmonic, satisfies the homogeneous con-
ditions

(2.4) ψ̄ = 0 =
∂ψ̄

∂y
at y = −1, h, −∞ < x < ∞, and y = 0, x < 0,

is continuous along with its y-derivative on y = 0, x > 0, and, according to (1.3),
(1.4), and (2.3), is generated by the discontinuities

(2.5)

[
∂2ψ̄

∂y2

]0+

0−
= U

h + 1

h
+

G+h + G−
2μ

,

[
∂3ψ̄

∂y3

]0+

0−
= −G+ −G−

μ

on y = 0, x > 0. If, for convenience, these discontinuities tend to zero as x → ∞, i.e.,
(2.5) is modified to

(2.6)

[
∂2ψ̄

∂y2

]0+

0−
=

[
U
h + 1

h
+

G+h + G−
2μ

]
e−εx,

[
∂3ψ̄

∂y3

]0+

0−
= −G+ −G−

μ
e−εx

on y = 0, x > 0, where ε is a small positive real constant, then the disturbance stream
function ψ̄ and its derivatives tend to zero as x → ±∞ as a consequence of the choice
(2.3), which further implies that the unknown functions s(x), t(x), defined by

(2.7)

[
∂2ψ̄

∂y2

]0+

0−
= s(x),

[
∂3ψ̄

∂y3

]0+

0−
= t(x), y = 0, x < 0,

also decay to zero as x → −∞. On completion of the solution procedure ε will be set
to zero.

In terms of the Fourier transform

(2.8) Ψ(k, y) =

∫ ∞

−∞
ψ̄(x, y)eikxdx,

the boundary conditions (2.4), (2.6), (2.7) yield

(2.9) Ψ(k,−1) = 0 = Ψy(k,−1), Ψ(k, h) = 0 = Ψy(k, h),
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(2.10) Ψ(k, 0) =

∫ ∞

0

ψ̄(x, 0)eikxdx = Ψ+(k, 0), Ψy(k, 0) = Ψ+
y (k, 0),

[Ψyy(k, y)]
0+
0− =

∫ 0

−∞
s(x)eikxdx +

[
U
h + 1

h
+

G+h + G−
2μ

] ∫ ∞

0

eix(k+iε)dx(2.11)

= S−(k) +

[
U
h + 1

h
+

G+h + G−
2μ

]
i

k + iε
,

[Ψyyy(k, y)]
0+
0− =

∫ 0

−∞
t(x)eikxdx− G+ −G−

μ

∫ ∞

0

eix(k+iε)dx(2.12)

= T−(k) − G+ −G−
μ

i

k + iε
.

Convergence of the above Fourier full- and half-range transforms is ensured if k lies
in an infinite strip containing the real line, here and henceforth referred to as D,
with its width limited from below by the singularity at k = −iε. Evidently (see [1])
the unknown pairs of (half-range transform) functions Ψ+(k, 0), Ψ+

y (k, 0) and S−(k),
T−(k) are regular in the region above and including D, denoted D+, and the region
below and including D, denoted D−, respectively. Thus, D+ ∩ D− ≡ D.

In view of the behavior of ψ̄ at x = ±∞, the Fourier transform (2.8) can be
applied to the biharmonic equation, whence

(2.13)

(
d2

dy2
− k2

)2

Ψ = 0

and hence a general solution which satisfies (2.9) is

Ψ(k, y) = A(k)k(1 + y) sinh[k(1 + y)](2.14)

+ B(k){k(1 + y) cosh[k(1 + y)] − sinh[k(1 + y)]}, −1 < y < 0,

Ψ(k, y) = C(k)k(h− y) sinh[k(h− y)](2.15)

+ D(k){k(h− y) cosh[k(h− y)] − sinh[k(h− y)]}, 0 < y < h.

Application of the conditions (2.10) now yields(
A(k)
B(k)

)
=

1

sinh2 k − k2
(2.16)

×
(

k sinh k −(k cosh k − sinh k)
−(k cosh k + sinh k) k sinh k

)(
Ψ+(k, 0)

k−1Ψ+
y (k, 0)

)
,

(
C(k)
D(k)

)
=

1

sinh2 kh− k2h2
(2.17)

×
(

kh sinh kh kh cosh kh− sinh kh
−(kh cosh kh + sinh kh) −kh sinh kh

)(
Ψ+(k, 0)

k−1Ψ+
y (k, 0)

)
.

As Ψ+(k, y) and Ψ+
y (k, y) are continuous across the line y = 0, the discontinuities

(2.11), (2.12) may be regarded as conditions on Ψyy − k2Ψ and its derivative, which
facilitates the deduction of the following matrix Wiener–Hopf equation:
(2.18)(

T−(k)
−S−(k)

)
− i

k + iε

(
U
h + 1

h

[
0
1

]
+

1

2μ

[
2G+ − 2G−
G+h + G−

])
= K(k)

(
Ψ+(k, 0)
Ψ+

y (k, 0)

)
,
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where

K(k) =

(
k2[f(k) + g(k)] −ke(k)

−ke(k) g(k) − f(k)

)
,(2.19)

e(k) = 2k

(
k2

sinh2 k − k2
− k2h2

sinh2 kh− k2h2

)
,(2.20)

f(k) = 2k

(
k

sinh2 k − k2
+

kh

sinh2 kh− k2h2

)
,(2.21)

g(k) = k

[
sinh 2k

sinh2 k − k2
+

sinh 2kh

sinh2 kh− k2h2

]
.(2.22)

It can easily be seen that K(k) possesses the properties

(2.23) K(k) = K(−k) = [K(k)]T ,

where T denotes the transpose, a fact that is exploited subsequently. The determinant
of the kernel is

(2.24) |K(k)| =
4k4[sinh2 k(h + 1) − k2(h + 1)2]

(sinh2 kh− k2h2)(sinh2 k − k2)
.

The forcing term in (2.18) displays the two independent flows identified above. In
the case of symmetric geometry, h = 1 implies that e(k) is identically zero, and hence
the Wiener–Hopf equation (2.18) separates into disjoint scalar equations of standard
type. Then, in the even case, G+ ≡ G− implies that T− and Ψ+ vanish, while, in the
odd case, U ≡ 0 ≡ G+ + G− implies that S− and Ψ+

y vanish, as expected.
It remains to consider the pressure singularity at the barrier edge. In the neigh-

borhood of r = 0, using the obvious polar coordinate representation,

ψ̄ ∼ 21/2r3/2 cos
1

2
θ[Λ1 sin θ + Λ2(1 + cos θ)](2.25)

= Λ1(r + x)1/2y + Λ2(r + x)3/2,(2.26)

after rejecting the more singular terms of order r1/2. Thus

(2.27) ψ̄(x, 0) ∼ Λ2(2x)3/2,
∂ψ̄

∂y
(x, 0) ∼ Λ1(2x)1/2 as x → 0+,

and by writing, for x < 0,

(2.28) ψ̄ ∼ Λ1y|y|
(r − x)1/2

+
Λ2|y|3

(r − x)3/2
;

it follows that

(2.29)
∂2ψ̄

∂y2
(x, 0) ∼ ±Λ1

(
2

−x

)1/2

,
∂3ψ̄

∂y3
(x, 0) ∼ ±Λ2

6

(−2x)3/2

as x → 0− on the upper/lower side of the barrier. The latter result indicates that
the pressure jump across the barrier behaves as 6μΛ2(2/(−x))1/2 as the edge is ap-
proached. This agrees with the asymptotic form
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(2.30) μ−1p̄ ∼ 21/2r−1/2

(
−Λ1 cos

1

2
θ + 3Λ2 sin

1

2
θ

)
,

obtained from (2.25) by noting that (2.1) and (2.2) ensure that p̄ and μ∇2ψ̄ are
conjugate functions. The rejection of order r1/2 terms in (2.25) thus minimizes the
order of this edge singularity in the pressure, as, for example, in the calculations for
the spherical cap [15] and the hollow sphere with caps removed [16]. A bounded
pressure jump occurs if Λ2 = 0, which may be achieved by a suitable choice of the
direction of the forcing vector in (2.18). Such a procedure is unnecessary for the
geometrically symmetric even case since then Λ2 must be zero for ψ̄ to be an odd
function of θ in (2.25). The Wiener–Hopf calculation [2, 3, 5] generates an entire
function that is identically zero, from which it is deduced that Λ1 = 2/

√
π.

3. Factorization of the duct kernel.

3.1. Introduction and overview of the factorization procedure. In the
previous section the matrix Wiener–Hopf equation was derived, in which the kernel,
K(k), is written in (2.19). The aim of this section is to factorize K(k) into a product
of two matrices

(3.1) K(k) = K−(k)K+(k),

one containing those singularities of K(k) lying in the lower half-plane, referred to as
K+(k), and K−(k), which is analytic in the lower half-plane D− and hence contains
the singularities of K(k) lying above the strip D. Note that [K+(k)]−1 and [K−(k)]−1

are also analytic in the regions D+ and D−, respectively. Further, it is necessary for
successful completion of the Wiener–Hopf procedure that K±(k) are at worst of al-
gebraic growth (see Noble [1]). Unfortunately, although matrix kernel factorization
with the requisite growth behavior has been proven to be possible for a wide class of
kernels (Gohberg and Krein [17]), to which the kernel (2.19) belongs, no constructive
method has been found to complete this in general. There are classes of matrices
for which product factorization can be achieved explicitly, the most important of
which are those amenable to Hurd’s method [18] and Khrapkov–Daniele commutative
matrices [19, 20]. Details of these, and an extensive bibliography on matrix kernel
factorization, can be found in [21, 10, 22]. The present problem yields a kernel which,
to the authors’ knowledge, falls outside of the classes permitting an exact factoriza-
tion, and so an approximate decomposition will be performed here. The approach
follows that developed recently by one of the authors and has been successfully ap-
plied to problems in elasticity [21, 22] and acoustics [10]. Essentially, the procedure
is to rearrange the kernel into an appropriate form, namely, to resemble a Khrapkov
(commutative) matrix, and then to replace a scalar component of it by a function
which approximates it accurately in the strip of analyticity D. The new approximate
kernel is able to be factorized exactly (into an explicit noncommutative decomposi-
tion), and, in the previous cases cited above, strong numerical evidence was offered
for convergence of the resulting approximate factors to the exact ones as the scalar
approximator is increased in accuracy. Further, the convergence to the solution has
been validated for one particular matrix kernel [23], where an exact noncommutative
factorization can be derived by an alternative procedure.

The kernel in (2.19) appears, on face value, significantly simpler to factorize than
those in the previously mentioned articles [21, 10], because it contains only simple
pole singularities rather than branch cuts. Therefore, it could perhaps be considered
as more appropriately factorized by pole removal methods, such as those suggested
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by Idemen [24], Noble [1], Rawlins [25], Abrahams [26], and Abrahams and Wickham
[27], reducing the problem down to an infinite algebraic system of equations which
needs to be solved numerically. However, there are three reasons why this approach
is not useful here. The first is a technical point; it can be shown that the procedure
for removing singularities from the kernel, and thereby obtaining the kernel factors
K±(k), is not nearly as straightforward as for those kernels considered by the afore-
mentioned authors. Second, the pole locations are complex and are found from the
zeros of the determinant of the kernel K(k) in (2.24), i.e., the roots of the transcen-
dental Papkovich–Fadle dispersion relation. This creates further complications in the
factorization scheme. The third, and most compelling, reason for avoiding this ap-
proach is that we would like a final solution which will offer uniformly accurate results
for all values of upper duct height h, from h = 1 to h = ∞, a range that does not
imply any loss of generality. Clearly, as h → ∞, more and more of the Papkovich–
Fadle poles need to be included to maintain constant accuracy (more and more move
down close to the strip D), and so the corresponding algebraic system to solve has to
be truncated after a greater and greater number of terms. Thus, we cannot expect
to recover the h → ∞ case, that is, when the upper duct top wall is removed, so we
could not employ such a factorization in a solution which we would hope to compare
with other results for this particular flow domain (Moore, Buchwald, and Brewster
[8], Kim, Choi, and Jeong [9], etc.)

In view of the above arguments we aim to employ the Wiener–Hopf approximant
matrix (WHAM) method [10] discussed previously and to do this in such a way
that maintains the requisite accuracy over all values of h ≥ 1. As mentioned in the
introduction, when h = 1, then the kernel should reduce to two scalar functions,
reflecting the symmetric and antisymmetric motions clearly evident to exist from
the symmetry in duct geometry. When h = ∞, the upper duct wall is removed, and
although others have tackled this by alternative approximate/numerical means, it can,
in fact, be shown that the kernel actually reduces to a commutative (Khrapkov) form
[23]. Therefore, an exact factorization is again achievable. Hence, if the approximate
factorization, to be achieved here by the WHAM method, is organized so that in both
limits, h → 1 and h → ∞, it reduces to the exact kernel decomposition, then very
good accuracy can be expected for all intermediate h values. This is what will be
done below. However, as a complication to this factorization, we must take account
of two unfortunate features of the kernel. The first is the fact that the elements
of K(k), and in particular e(k), f(k) shown in (2.20)–(2.22), differ by a factor of
k near the origin. This is identical to that found for the kernel in [21] and can be
handled by a suitable rearrangement of terms. The second is due to the fact that
K(k) must be written as a product of three matrices such that the inner matrix L(k)
(see (3.6) below) has a determinant with behavior proportional to k−2 as k → 0. This
is a removable singularity because it is pre- and postmultiplied by matrices which
each have determinant k. Unfortunately, the inner matrix is the one we initially
factorize, and so additional arrangement is necessary to take this small-k behavior
into account. With these points of explanation in mind, the factorization procedure
is now elucidated.

3.2. Conditioning of the matrix kernel.

3.2.1. Behavior for large |k|. The matrix K(k) is characterized by its elements
e(k), f(k), g(k), given in (2.20)–(2.22), and in particular by their behavior for large
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and small k. For large k it is easily deduced that

e(k) ∼ 8k3(e−2|k| − h2e−2|k|h), |k| → ∞, k ∈ D,(3.2)

f(k) ∼ 8k2(e−2|k| + he−2|k|h), |k| → ∞, k ∈ D,(3.3)

g(k) ∼ 4|k|, |k| → ∞, k ∈ D.(3.4)

It is appropriate to arrange the kernel to be diagonally dominant as k → ∞ in D, and
so simple algebra gives

(3.5) K(k) =
1

2

(
0 −k
1 0

)(
1 −1
i i

)
L(k)

(
i 1
i −1

)(
k 0
0 1

)
,

where L(k) may be written in the form

(3.6) L(k) = g(k)I +

(
0 f(k) + ie(k)

f(k) − ie(k) 0

)
,

with I the identity.

3.2.2. Behavior of the kernel near the origin. Near the origin the scalar
functions e(k), f(k), g(k) take the form

e(k) ∼ 6

(
h2 − 1

h2

)
1

k
,(3.7)

f(k) ∼ 6

(
h3 + 1

h3

)
1

k2
,(3.8)

g(k) ∼ 6

(
h3 + 1

h3

)
1

k2
,(3.9)

to leading order, and it is easy to show that at the next order

(3.10) g(k) − f(k) ∼ 4

(
h + 1

h

)
,

so that we may write

(3.11) g(k) − f(k) ∼ β2k2f(k),

in which

(3.12) β2 =
2

3

h2

h2 − h + 1
.

Note that β2 tends to its minimum value 2/3 as h → 1 or h → ∞ and takes the
maximum value 8/9. This small variation in value over all h is important to ensure
an eventually uniform factorization accuracy. We may also express e(k) in terms of
f(k) near the origin:

(3.13) e(k) ∼ δkf(k),

where the parameter δ takes the value

(3.14) δ =
h(h− 1)

h2 − h + 1
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and is monotonic in h going from δ = 0 at h = 1 to δ = 1 at h = ∞. Again, this small
variation will prove helpful to the factorization.

We now arrange L(k) to appear in Khrapkov form, namely, that the square of the
second matrix term should be a scalar polynomial in k times the identity. We can do
this by removing the factor

√
f2(k) + e2(k) from this matrix in (3.6). However, as

(3.15) f(k) ± ie(k) ∼ f(k)(1 ± iδk), k → 0,

it is more effective [21] to write L(k) as

(3.16) L(k) = g(k)I +

√
f2(k) + e2(k)

1 + δ2k2
J(k),

(3.17) J(k) =

(
0 d(k)(1 + iδk)

d−1(k)(1 − iδk) 0

)
,

in which

(3.18) d(k) =

√(
f(k) + ie(k)

f(k) − ie(k)

)(
1 − iδk

1 + iδk

)
.

It is a simple matter to show that we can choose a branch of d(k) which is regular
in D, takes the value unity at k = 0, and, in view of the relative magnitudes of e(k),
f(k) as |k| → ∞ in D, (3.2), (3.3), also tends to unity at infinity in the strip. If we
had omitted the factor (1 − iδk)/(1 + iδk) in d(k), then arg(d(k)) would not have
tended to zero as k → ±∞.

The matrix L(k) now appears to be in Khrapkov form, in view of the property

(3.19) J2(k) = Δ2(k)I,

where Δ2(k) is the polynomial

(3.20) Δ2(k) = 1 + δ2k2.

However, J(k) is not entire, as required for a Khrapkov factorization, but contains
d(k), which has infinite sequences of finite branch cuts at rotationally symmetric
locations in the upper and lower half-planes. These will have to be considered once
the partial Khrapkov decomposition is complete but, for the present, will be ignored.

3.3. Partial decomposition of K(k).

3.3.1. Limiting values of L(k). The first point to remark here is that (3.19)
is arranged in appropriate form for the limiting values of h. As h → 1, expression
(2.20) reveals immediately that e(k) = 0 and similarly, from (3.14), δ = 0. Hence
L(k) reduces to

(3.21) L(k) = g(k)I + f(k)

(
0 1
1 0

)
, h = 1.

By adding and subtracting rows this can be trivially reduced to two scalar decompo-
sition problems, but this will also be decomposed exactly in the following Khrapkov
factorization as d(k) ≡ 1. Similarly, as h → ∞, δ → 1 and

(3.22) e(k) = kf(k) =
2k3

sinh2 k − k2
, h → ∞.
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Hence in this limit d(k) = 1 also and

(3.23) L(k) = g(k)I + f(k)

(
0 1 + ik

1 − ik 0

)
, h = ∞,

which also permits an exact factorization [23] and justifies the particular form of d(k)
chosen in (3.18).

3.3.2. Introduction of resolvent matrix. Before performing the Khrapkov
factorization on L(k), there is a problem, alluded to above, which must be resolved
first. Note that as k → 0, from (3.6), (3.11), and (3.13),

(3.24) L(k) ∼ f(k)

(
1 + β2k2 1 + iδk
1 − iδk 1 + β2k2

)

so that

(3.25) |L(k)| ∼
[
6
h3 + 1

h3k2

]2

(2β2 − δ2)k2 ∼ 12(h + 1)4

h4k2
+ O(1).

This is clearly singular at the origin and therefore violates the original assumption
of regularity in D. Of course, this is because we are working with L(k) and not the
original kernel K(k). To overcome this “removable singularity” in the determinant it
is convenient to introduce the new matrix, R(k), called the resolvent, where

(3.26) R−1(k) = (1 + β2k2)I − J(k),

with J(k) as in (3.17), which commutes with L(k). The combined matrix

(3.27) T(k) = R−1(k)L(k)

has determinant value

(3.28)

[
2(h + 1)3

h(h2 − h + 1)

]2

at k = 0, and so T(k) may now be factorized instead of L(k). We will later have to
deal with factorizing R(k), but this will not prove to be a problem.

3.3.3. Partial decomposition of matrix T(k). We have seen above that
R−1(k) and L(k) commute, and indeed any matrices of the form αI + βJ(k) will
commute with any other. Therefore, we may pose (see [19]) the product factors of
T(k) in the form

(3.29) T±(k) = r±(k)

(
cosh[Δ(k)θ±(k)]I +

1

Δ(k)
sinh[Δ(k)θ±(k)]J(k)

)
,

where r±(k), θ±(k) are scalar functions of k with the analyticity property indicated
by their superscript. The function Δ(k), given by (3.20), generates no branch cuts
because (3.29) contains only even powers of Δ(k). The scalar factors r±(k), θ±(k)
are deduced by equating

(3.30) T(k) = T+(k)T−(k),
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which yields

r+(k)r−(k) cosh[Δ(k)(θ+(k) + θ−(k))] = g(1 + β2k2) − Δ
√

f2 + e2,(3.31)

r+(k)r−(k) sinh[Δ(k)(θ+(k) + θ−(k))] =
√
f2 + e2(1 + β2k2) − Δg.(3.32)

These may be separated to give

[r+(k)r−(k)]2 = (g2 − f2 − e2)
[
(2β2 − δ2) + β4k2

]
k2,(3.33)

tanh[Δ(k)(θ+(k) + θ−(k))] =

√
f2 + e2(1 + β2k2) − Δg

g(1 + β2k2) − Δ
√

f2 + e2
,(3.34)

and by the usual sum-split formula (e.g., equation (1.17) of Noble [1])

θ+(k) =
1

2πi

∫ ∞

−∞

1

Δ(ζ)
tanh−1

{√
f2(ζ) + e2(ζ)(1 + β2ζ2) − Δ(ζ)g(ζ)

g(ζ)(1 + β2ζ2) − Δ(ζ)
√

f2(ζ) + e2(ζ)

}
dζ

ζ − k

=
k

πi

∫ ∞

0

1

Δ(ζ)
tanh−1

{√
f2(ζ) + e2(ζ)(1 + β2ζ2) − Δ(ζ)g(ζ)

g(ζ)(1 + β2ζ2) − Δ(ζ)
√

f2(ζ) + e2(ζ)

}
dζ

ζ2 − k2
,(3.35)

valid for �(k) > 0. Note that the last result is true because the integrand is even in
ζ, and this further implies that

(3.36) θ−(k) = θ+(−k), k ∈ D−.

Actually, the full range integral could be taken along any path in D parallel to the real
axis, and so if θ+(k) is required for real k, then the first integral would be indented
below (above for θ−(k)) this point. We can confirm that the integral representations
in (3.35) exist by examining the integrand as ζ → 0 and ζ → ∞ (it is finite valued
at all other points in D). From (3.7)–(3.9) a little algebra reveals that the right-
hand side of (3.34) is O(k2), k → 0, and similarly (3.2)–(3.4) suggests that (3.34) is
O(k−1), k → ∞. Hence, the first integrand in (3.35) is bounded in D and decays
proportionally to O(ζ−3) as |ζ| → ∞ in the strip. Therefore, this representation is
ideal for computing θ±(k) and can be directly coded for numerical evaluation.

This procedure has to be modified for [r+(k)r−(k)]2 in (3.33) whose right-hand
side tends to [2(h + 1)3/h(h2 − h + 1)]2 as k → 0 and ∼ 16β4k6 as |k| → ∞, k ∈ D.
The latter behavior is not suitable for direct application of the product decomposition
formula (Noble [1, equation (1.20)]), which requires a function that tends to the value
unity at infinity. This is simply circumvented by applying a suitable divisor to (3.33),
employing the standard factorization formula, and then decomposing the divisor into
upper- and lower-half functions by inspection. This yields

r+(k) =

[
31/2

(
h + 1

h

)
− 2ik

]1/2 [
31/4

(
h + 1

h

)
(1 + i) − 2ik

]1/2

×
[
31/4

(
h + 1

h

)
(1 − i) − 2ik

]1/2
h

[3(h2 − h + 1)]1/2

× exp

{
1

4πi

∫ ∞

−∞
log

[
[g2(ζ) − f2(ζ) − e2(ζ)]ζ2

12
(
h+1
h

)4
+ 16ζ4

]
dζ

ζ − k

}
(3.37)



ASYMMETRIC CHANNEL DIVIDER IN STOKES FLOW 1451

for �(k) > 0, and indentation of the contour below k is taken if k is real. Note that
the exponential function in this expression may be reexpressed as

(3.38) exp

{
k

2πi

∫ ∞

0

log

[
[g2(ζ) − f2(ζ) − e2(ζ)]ζ2

12
(
h+1
h

)4
+ 16ζ4)

]
dζ

ζ2 − k2

}
,

where convergence of this and the above integral are now ensured. The function r−(k),
analytic in the lower half-plane, is again, due to the symmetry, simply obtained from

(3.39) r−(−k) = r+(k), k ∈ D+.

Hence T±(k) have been determined (see (3.29), (3.35), (3.37)) in a form which can be
evaluated directly, and these are analytic in their indicated half-planes, D±, except
for the singularities occurring in K(k) (due to d(k)) which have yet to be resolved.

3.3.4. Partial decomposition of the resolvent matrix. Having introduced
the inverse of R(k) above in order to improve the convergence of L(k), we now need
to factorize it directly. The form of R(k) has been chosen to enable us to do this
easily. First, R−1(k) may, by inspection, be written in the form

(3.40)
1

2
[(1 + ik

√
2β2 − δ2)I − J(k)][(1 − ik

√
2β2 − δ2)I − J(k)],

where both matrices are entire save for the finite cuts in the scalar function d(k)
contained within J(k). The first matrix has determinant

(3.41) −2β2k(k − iγ),

where

(3.42) γ =

√
2β2 − δ2

β2
=

√
3

2

(
h + 1

h

)
,

and the second has determinant

(3.43) −2β2k(k + iγ).

Hence we may write

(3.44) R(k) = 2R+(k)R−(k),

where

(3.45) R±(k) =
1

2β2k(k ± iγ)

[
(1 ∓ ikβ2γ)I + J(k)

]
are the partial decomposition matrices; i.e., they are analytic in their indicated half-
planes except for poles at k = 0 and the finite branch cuts in d(k). Note that R±(k)
commute with each other and with T±(k), while the pole at k = iγ lies in the upper
half-plane. Hence, this completes the partial product factorization of K(k), and from
(3.5), (3.27), (3.30), (3.44), we obtain

(3.46) K(k) = Q−(k)Q+(k),
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where

Q−(k) =

(
−ik −ik
1 −1

)
R−(k)T−(k),(3.47)

Q+(k) = T+(k)R+(k)

(
ik 1
ik −1

)
.(3.48)

Note that Q±(k) are free of a pole singularity at k = 0 even though R±(k) contain this
singularity (verified in section 3.4.3). All that remains is to remove (approximately)
the residual singularities appearing in J(k).

3.4. Approximate factorization.

3.4.1. Padé approximation and partial decomposition of approximate
kernel. There is no exact procedure known for eliminating the finite branch cuts
in d(k) from the upper (lower) half-planes of the matrix factor Q+(k) (Q−(k)). To
obtain an approximate factorization we replace the original matrix K(k) by a new
one, KN (k), where

(3.49) KN (k) =
1

2

(
0 −k
1 0

)(
1 −1
i i

)
LN (k)

(
i 1
i −1

)(
k 0
0 1

)
,

(3.50) LN (k) = g(k)I +

√
f2(k) + e2(k)

1 + δ2k2
JN (k),

and JN (k) is as given in (3.17) but with a modified scalar d(k) → dN (k), i.e.,

(3.51) JN (k) =

(
0 dN (k)(1 + iδk)

d−1
N (k)(1 − iδk) 0

)
.

We follow the procedure outlined in articles [21, 10, 23, 22] closely and so do not give
the arguments here, contained in those papers, for the convergence of approximate
factors to the exact ones. It will suffice to later verify the results obtained herein
by numerical experiment. The scalar dN (k) is any function which approximates d(k)
accurately in the strip D, and for efficacy of the following method it is most convenient
to use a rational function approximation

(3.52) dN (k) =
PN (k)

QN (k)
,

where PN (k), QN (k) are polynomial functions of order N . Note that the order of each
polynomial is the same, as we require that dN (k) → 1 as |k| → ∞. There is a variety of
ways of generating the coefficients of these polynomials, and the simplest and perhaps
most justifiable (in terms of its analyticity properties) is to use Padé approximants
[28]. As a note of caution, we must check that dN (k) does not introduce spurious
singularities into the strip of analyticity D; otherwise we will produce an inaccurate
factorization. One-point Padé approximants, if they exist, are determined uniquely
from the Taylor series expansion of the original function at any point of regularity. If
we work with the origin, then the (one-point) Padé approximant of d(k) is found by
solving

(3.53)
∞∑
i=0

eik
i − PN (k)

QN (k)
= O(k2N+1),
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where
∑∞

i=0 eik
i is the Maclaurin expansion of d(k). This provides ample accuracy for

our purposes (see section 5), due to the rapid decay at large real k that is otherwise
present in the Fourier transform inversion formulas (4.7) and (4.8).

Note that the approximation of just d(k) ensures that the scalar Khrapkov factors
(3.35), (3.37) remain the same, etc., and so a partial decomposition of KN (k) is simply

(3.54) KN (k) = Q−
N (k)Q+

N (k),

in which Q±
N (k) are given by (3.47), (3.48), with R±(k) replaced by R±

N (k) and T±(k)
replaced by T±

N (k), for which the subscript N denotes that JN (k), given by (3.51),
replaces J(k) everywhere. Thus, the factorization of KN (k) has been accomplished
apart from sequences of poles, arising from the zeros and poles of dN (k) occurring in
both half-planes exterior to D. If we can remove these singularities, then an explicit
exact factorization of KN (k) will have been achieved, which approximates the actual
factors K±(k) in their regions of analyticity.

3.4.2. Removal of pole singularities. The exact factorization of KN (k), given
by (3.49), may be written as

(3.55) KN (k) = K−
N (k)K+

N (k),

(3.56) K−
N (k) = Q−

N (k)M(k), K+
N (k) = M−1(k)Q+

N (k),

in which M(k) must be a meromorphic matrix which has to be chosen to eliminate the
poles of Q−

N (k) in the lower half-plane and the poles of Q+
N (k) in D+. We can pose

a (nonunique) ansatz for M(k) after noting certain symmetry properties of Q±
N (k).

First, from (3.18),

(3.57) d(−k) = 1/d(k),

which must be reflected in the similar approximant behavior:

(3.58) dN (−k) = 1/dN (k).

Thus,

(3.59) JN (−k) = [JN (k)]T ,

where the superscript denotes the transpose, and so by inspection of (3.45),

(3.60) R+
N (−k) = [R−

N (k)]T .

Similarly, from (3.36), (3.39) and the obvious evenness of Δ(k) in (3.20), changing k
to −k in (3.29) reveals

(3.61) T+
N (−k) = [T−

N (k)]T .

Hence we find (see (3.48)) that

(3.62) Q+
N (−k) = [T−

N (k)]T [R−
N (k)]T

(
−ik −ik
1 −1

)T

= [Q−
N (k)]T

and deduce that the second equation in (3.56) gives

(3.63) K+
N (−k) = M−1(−k)[Q−

N (k)]T .
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Symmetry properties dictate, by comparison with the first equation of (3.56), that we
can construct a suitably scaled M(k) so that

(3.64) M−1(−k) = [M(k)]T .

After this is achieved, it suffices to eliminate poles of K−
N (k) in the lower half-plane.

Now suppose that dN (k) has Np poles in the upper half-plane at k = ipn, n =
1, 2, . . . , Np (ipn �∈ D−), and Nq poles in the region below the strip at k = −iqn,
n = 1, 2, . . . , Nq. That is, QN (k) in (3.52) has zeros at k = ipn,−iqn. As has already
been stated, there are, in total,

(3.65) Np + Nq = N

simple poles in the complex plane, and, due to the symmetry (3.58), there are N
simple zeros of PN (k) at

(3.66) k = −ipn, n = 1, 2 . . . , Np; k = iqn, n = 1, 2 . . . , Nq,

in the lower and upper regions, respectively. Thus, dN (k) and its inverse may be
expressed as Mittag–Leffler expansions:

dN (k) = 1 +

Np∑
n=1

αn

pn + ik
+

Nq∑
n=1

βn

qn − ik
,(3.67)

1

dN (k)
= 1 +

Np∑
n=1

αn

pn − ik
+

Nq∑
n=1

βn

qn + ik
,(3.68)

where both tend to unity at infinity by virtue of dN (k) being a one-point Padé ap-
proximant of d(k) in (3.18). The coefficients αn, βn are easily determined from the
coefficients of the polynomials PN (k), QN (k), the numerator and denominator, re-
spectively, of dN (k). By inspection of the location of dN (k) in Q−

N (k), the ansatz for
M(k) is now posed (cf. those offered in [10, 23]) as

M(k)(3.69)

=

⎛
⎝ 1√

2
+
∑Np

n=1
An

pn+ik +
∑Nq

n=1
Bn

qn−ik −
(

1√
2

+
∑Np

n=1
Cn

pn+ik +
∑Nq

n=1
Dn

qn−ik

)
(

1√
2

+
∑Np

n=1
Cn

pn−ik +
∑Nq

n=1
Dn

qn+ik

)
1√
2

+
∑Np

n=1
An

pn−ik +
∑Nq

n=1
Bn

qn+ik

⎞
⎠ ,

where An, Bn, Cn, Dn are as yet undetermined constants. This form encapsulates
the zeros and singularities of dN (k) and is chosen to satisfy the symmetry relation
(3.64). However, the latter holds only if |M(k)| ≡ 1, whereas (3.69) gives

|M(k)| =

⎛
⎝ 1√

2
+

Np∑
n=1

An

pn + ik
+

Nq∑
n=1

B̄n

qn − ik

⎞
⎠

⎛
⎝ 1√

2
+

Np∑
n=1

An

pn − ik
+

Nq∑
n=1

Bn

qn + ik

⎞
⎠

+

⎛
⎝ 1√

2
+

Np∑
n=1

Cn

pn − ik
+

Nq∑
n=1

Dn

qn + ik

⎞
⎠

⎛
⎝ 1√

2
+

Np∑
n=1

Cn

pn + ik
+

Nq∑
n=1

Dn

qn − ik

⎞
⎠ .(3.70)

The four sets of poles can be eliminated by setting the coefficients to satisfy the two
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systems of equations

Am

⎛
⎝ 1√

2
+

Np∑
n=1

An

pn + pm
+

Nq∑
n=1

Bn

qn − pm

⎞
⎠

+ Cm

⎛
⎝ 1√

2
+

Np∑
n=1

Cn

pn + pm
+

Nq∑
n=1

Dn

qn − pm

⎞
⎠ = 0 (1 ≤ m ≤ Np),(3.71)

Bm

⎛
⎝ 1√

2
+

Np∑
n=1

An

pn − qm
+

Nq∑
n=1

Bn

qn + qm

⎞
⎠

+ Dm

⎛
⎝ 1√

2
+

Np∑
n=1

Cn

pn − qm
+

Nq∑
n=1

Dn

qn + qm

⎞
⎠ = 0 (1 ≤ m ≤ Nq).(3.72)

Then |M(k)| is entire and takes the value unity at infinity. Hence Liouville’s theorem
implies that the determinant is indeed |M(k)| = 1 everywhere, as required.

By premultiplying M(k) by R−(k)T−(k) and eliminating poles in the lower half-
plane, conditions relating these coefficients can be found. From (3.29) and (3.45) we
know that [

(1 + ikβ2γ)I + JN (k)
]

(3.73)

×
[
cosh[Δ(k)θ−(k)]I +

1

Δ(k)
sinh[Δ(k)θ−(k)]JN (k)

]
M(k)

must be analytic in D−, and so from (3.51) we wish to remove poles in the lower
half-plane from

(3.74)

(
a−(k) b−(k)(1 + iδk)dN (k)

b−(k)(1 − iδk)/dN (k) a−(k)

)
M(k),

where

a±(k) = (1 ∓ ikβ2γ) cosh[Δ(k)θ±(k)] + Δ(k) sinh[Δ(k)θ±(k)],(3.75)

b±(k) = cosh[Δ(k)θ±(k)] +
(1 ∓ ikβ2γ)

Δ(k)
sinh[Δ(k)θ±(k)](3.76)

are scalar functions analytic in the indicated regions. Note that

(3.77) a−(k) = a+(−k), b−(k) = b+(−k).

The top-left element of the matrix in (3.74) is, by employing (3.67),

a−(k)

⎛
⎝ 1√

2
+

Np∑
n=1

An

pn + ik
+

Nq∑
n=1

Bn

qn − ik

⎞
⎠ + b−(k)(1 + iδk)(3.78)

×

⎛
⎝1 +

Np∑
n=1

αn

pn + ik
+

Nq∑
n=1

βn

qn − ik

⎞
⎠

⎛
⎝ 1√

2
+

Np∑
n=1

Cn

pn − ik
+

Nq∑
n=1

Dn

qn + ik

⎞
⎠ ,

which appears to contain simple poles at k = −ipn, n = 1, . . . , Np, k = −iqn, n =
1, . . . , Nq, in the lower half-plane unless they are suppressed. However, there are in
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fact no poles at k = −ipn because the sum of these terms multiplies dN (k), which we
know is zero at these points. Thus, setting the expression in (3.78) to remain finite
at the remaining singularity locations k = −iqn gives the relation, after use of (3.77),

(3.79)

a+(iqm)Bm + b+(iqm)βm(1 + δqm)

⎛
⎝ 1√

2
+

Np∑
n=1

Cn

pn − qm
+

Nq∑
n=1

Dn

qn + qm

⎞
⎠ = 0,

1 ≤ m ≤ Nq.

Similarly the bottom-left element of (3.74) contains no poles in the lower half-plane
if and only if

(3.80)

a+(ipm)Cm + b+(ipm)αm(1 − δpm)

⎛
⎝ 1√

2
+

Np∑
n=1

An

pn + pm
+

Nq∑
n=1

Bn

qn − pm

⎞
⎠ = 0,

1 ≤ m ≤ Np.

Likewise, suppression of the lower half-plane poles in the second column of (3.74)
yields

(3.81)

a+(iqm)Dm − b+(iqm)βm(1 + δqm)

⎛
⎝ 1√

2
+

Np∑
n=1

An

pn − qm
+

Nq∑
n=1

Bn

qn + qm

⎞
⎠ = 0,

1 ≤ m ≤ Nq,

(3.82)

a+(ipm)Am − b+(ipm)αm(1 − δpm)

⎛
⎝ 1√

2
+

Np∑
n=1

Cn

pn + pm
+

Nq∑
n=1

Dn

qn − pm

⎞
⎠ = 0,

1 ≤ m ≤ Np.

By inspection, (3.79), (3.81) imply (3.72) and similarly (3.80), (3.82) imply (3.71).
Therefore, not only do (3.79)–(3.82) enforce K−

N (k) to be analytic in D− as required,
but relations (3.56), (3.62)–(3.64) reveal that they are also sufficient to ensure that
K+

N (k) is free of singularities in the half-plane D+, as are the inverses [K±
N (k)]−1 in

their indicated half-planes D±.
Thus (3.79)–(3.82) constitute a linear system of 2N equations for the 2N un-

knowns Am, Bm, Cn, Dn and are easily solved to determine their values. Note that it
may transpire that 1 + δqm or 1 − δpm is zero for particular choices of m, h, N , etc.,
in which case (Bm, Dm) or (Am, Cm) would vanish. However, this does not present
any difficulty (cf. equation (80) in [10]), and no cases have been encountered in which
the system for Am–Dm is singular.

3.4.3. Approximate noncommutative factorization. The explicit approx-
imate factorization of K(k) is complete, having obtained an exact noncommutative
matrix product decomposition of KN (k). The factors K±

N (k) are constructed from
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(3.56), with Q±
N (k) given from (3.51), (3.47), (3.48), (3.45), and (3.29). The mero-

morphic matrix M(k) takes the explicit form (3.69), in which the coefficients satisfy
algebraic equations (3.79)–(3.82). As N increases it is expected that K±

N (k) will con-
verge rapidly to the exact factors K±(k), and this will be borne out by numerical
results given in section 5. All that remains here is to verify that the apparent pole at
k = 0 in R±(k) is removed and to give the behavior of K±

N (k) for large |k| in D±.
As k → 0, we know that dN (k) → 1 by virtue of the function d(k) in (3.18), and

hence R±
N (k) behaves as, from (3.45), (3.51),

(3.83) R±
N (k) =

∓i

2β2kγ

(
1 1
1 1

)
+ O(1).

Therefore,

(3.84)

(
−ik −ik
1 −1

)
R−

N (k) ∼ 1

β2γ

(
1 1
0 0

)
+ O(1), k → 0.

Now, T±
N (k), from their definitions, are bounded at the origin, and, by inspection, so

is M(k) in (3.69). Hence, from (3.56) and (3.84) we can deduce that

(3.85) K−
N (k) = O(1), k → 0.

Similarly, from above,

(3.86) R+
N (k)

(
ik 1
ik −1

)
= O(1), k → 0,

and so K+
N (0) is bounded too.

As |k| tends to infinity it is a straightforward matter to deduce the asymptotic
behavior of the product factors. First, by inspection of (3.45),

(3.87) R±
N (k) ∼ i

2β2k

(
∓β2γ +δ
−δ ∓β2γ

)
,

in view of the fact that we defined dN (k) in JN (k) to behave as

(3.88) dN (k) → 1, |k| → ∞.

Second, the asymptotic form of the Krapkhov decomposition elements r±(k), θ±(k)
can be deduced from their integral definitions written in (3.37), (3.39), and (3.35),
(3.36), respectively. The latter identities are easily shown to give

(3.89) θ±(k) = ±ε/k + O(k−2), |k| → ∞, k ∈ D±,

where

(3.90) ε =
i

π

∫ ∞

0

1

Δ(ζ)
tanh−1

{√
f2(ζ) + e2(ζ)(1 + β2ζ2) − Δ(ζ)g(ζ)

g(ζ)(1 + β2ζ2) − Δ(ζ)
√

f2(ζ) + e2(ζ)

}
dζ,

and for r±(k) the integral in the exponent of (3.37) is also O(k−1) for large |k|. Hence
by inspection we find that

(3.91) r±(k) = 2β(∓ik)3/2 + O(k1/2), |k| → ∞, k ∈ D±,
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and so the asymptotic form of T±
N (k), (3.29), is

(3.92) T±
N (k) ∼ 2β(∓ik)3/2

(
cosh(εδ) ±i sinh(εδ)

∓i sinh(εδ) cosh(εδ)

)
.

Therefore, Q±
N (k) in (3.47), (3.48) can be estimated. Finally, the meromorphic matrix

(3.69) has the large |k| form

(3.93) M(k) =
1√
2

(
1 −1
1 1

)
.

Thus the asymptotic growth of K±
N (k) in (3.56) is found to be

K−
N (k) ∼ − (ik)1/2√

2β

(
−ik −ik
1 −1

)(
β2γ δ

−δ β2γ

)

×
(

cosh(εδ) −i sinh(εδ)
+i sinh(εδ) cosh(εδ)

)(
1 −1
1 1

)
,(3.94)

K+
N (k) ∼ − (−ik)1/2√

2β

(
1 1
−1 1

)(
cosh(εδ) i sinh(εδ)

−i sinh(εδ) cosh(εδ)

)

×
(

β2γ −δ
δ β2γ

)(
ik 1
ik −1

)
.(3.95)

The kernel decomposition is now complete.

4. Solution of the Wiener–Hopf equation. Having obtained an approximate
factorization of K(k), it is now a straightforward matter to complete the solution of
the Wiener–Hopf equation (2.18). Dropping the subscript N in the factorization
(3.55) for brevity, the Wiener–Hopf equation can be recast into the form

[K−(k)]−1

(
T−(k)
−S−(k)

)
− i

k + iε

{
[K−(k)]−1 − [K−(−iε)]−1

}
(4.1)

×
(
U
h + 1

h

[
0
1

]
+

1

2μ

[
2G+ − 2G−
G+h + G−

])
= E(k) = K+(k)

(
Ψ+(k, 0)
Ψ+

y (k, 0)

)

+
i

k + iε
[K−(−iε)]−1

(
U
h + 1

h

[
0
1

]
+

1

2μ

[
2G+ − 2G−
G+h + G−

])
,

where k ∈ D. The left-hand side is analytic in D−, whereas the right-hand side
is regular in D+. Thus the equation has been arranged so that the two sides offer
analytic continuation into the whole complex k-plane which must therefore be equal
to an entire function, denoted E(k), say. To determine E(k) we must examine the
growth at infinity of both sides of (4.1) in their respective half-planes of analyticity.
To do this we require the large k behavior of T−(k), S−(k), Ψ+(k), Ψ+

y (k), which
relate directly to the values of the untransformed physical variables near the tip of
the splitter plate. For example, a function which behaves like xn, x → 0+, has a
half-range (0 to ∞) Fourier transform which decays like O(k−n−1), k → ∞, in the
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upper half-plane (see equation (1.74) of [1]). Hence from (2.27) and (2.29) we deduce,
respectively, that

(4.2) Ψ+(k, 0) = O(k−5/2), Ψ+
y (k, 0) = O(k−3/2)

as |k| → ∞, k ∈ D+ and hence

(4.3)

(
T−(k)
−S−(k)

)
− i

k

(
U
h + 1

h

[
0
1

]
+

1

2μ

[
2G+ − 2G−
G+h + G−

])
=

(
O(k1/2)
O(k−1/2)

)

as |k| → ∞, k ∈ D−. These are used, together with the asymptotic forms (3.94),
(3.95), to reveal that both elements of the left-hand side of (4.1) decay as O(k−1)
in the lower half-plane, and similarly the right-hand side has the form O(k−1) as
|k| → ∞ in the upper half-plane. Hence, E(k) is an entire function which decays to
zero at infinity and so, by Liouville’s theorem, is identically zero. Thus, the solution
of the Wiener–Hopf equation is(

Ψ+(k, 0)
Ψ+

y (k, 0)

)
= − i

k + iε
[K+(k)]−1[K−(−iε)]−1(4.4)

×
(
U
h + 1

h

[
0
1

]
+

1

2μ

[
2G+ − 2G−

G+h + G−

])

or, equivalently,(
T−(k)
−S−(k)

)
=

i

k + iε

{
I − K−(k)[K−(−iε)]−1

}
(4.5)

×
(
U
h + 1

h

[
0
1

]
+

1

2μ

[
2G+ − 2G−
G+h + G−

])
.

From this we can directly deduce the coefficients A(k)–D(k), via (2.16), (2.17), and
hence establish Ψ(k, y) in −1 < y < h, from (2.14), (2.15). Finally, on setting the
convergence factor ε to zero in (4.4), the disturbance stream function is

(4.6) ψ̄ =
1

2π

∫ ∞

−∞
Ψ(k, y)e−ikxdk,

where the integral path runs along the real line indented above the origin, and

Ψ(k, y) =
−i

sinh2 k − k2

(
(1 + y) sinh[k(1 + y)]

(1 + y) cosh[k(1 + y)] − k−1 sinh[k(1 + y)]

)T

(4.7)

×
(

k sinh k −(cosh k − k−1 sinh k)
−(k cosh k + sinh k) sinh k

)
[K+(k)]−1[K−(0)]−1

×
(
U
h + 1

h

[
0
1

]
+

1

2μ

[
2G+ − 2G−
G+h + G−

])
in −1 < y < 0, whereas in 0 < y < h

Ψ(k, y) =
−i

sinh2 kh− k2h2

(
(h− y) sinh[k(h− y)]

(h− y) cosh[k(h− y)] − k−1 sinh[k(h− y)]

)T

(4.8)

×
(

kh sinh kh h cosh kh− k−1 sinh kh
−(kh cosh kh + sinh kh) −h sinh kh

)
[K+(k)]−1[K−(0)]−1

×
(
U
h + 1

h

[
0
1

]
+

1

2μ

[
2G+ − 2G−
G+h + G−

])
.
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It is a straightforward matter to verify that this solution satisfies the biharmonic
equation and the boundary and jump conditions (2.4), (2.5), (2.7). From this the
downstream velocity field is determined from (2.3).

Formulas (4.7), (4.8) are suitable for evaluating ψ̄, given by (4.6), in the x < 0
channels by completing the contour in the upper half-plane. Consistent with (2.3),
there is no contribution from the pole at k = 0 to (4.6), which consists of Papkovich–
Fadle strip eigenfunctions, generated by residues at the zeros of sinh2 k − k2 or
sinh2 kh − k2h2. These infinite sums describe how, in each channel, the flow differs
from its far downstream profile u∞

± .
However, the evaluation of ψ̄ in the upstream (x > 0) channel is achieved by com-

pleting the contour in the lower half-plane. When [K+(k)]−1 is replaced, according
to (3.1), by adjK(k)K−(k)/|K(k)|, the substitution of (2.19), (2.24) into (4.7) yields

Ψ(k, y)(4.9)

=
i

k2[sinh2 k(h + 1) − k2(h + 1)2]

(
(1 + y) sinh[k(1 + y)]

(1 + y) cosh[k(1 + y)] − k−1 sinh[k(1 + y)]

)T

× V(k)

(
1 0
0 −k

)
K−(k)[K−(0)]−1

(
U
h + 1

h

[
0
1

]
+

1

2μ

[
2G+ − 2G−
G+h + G−

])
,

in which the elements of V(k) are concisely defined by

V11 + V22 = kh(h + 1) sinh k, V11 − V22 = − sinh kh sinh k(h + 1),

V21 + V12 = k−1 sinh kh sinh k(h + 1) − kh(h + 1) cosh k,

V21 − V12 = sinh kh cosh k(h + 1) − h sinh k.

The residue at the pole k = 0 yields the upstream behavior (x → ∞)

ψ̄ ∼ h

( (
1+y
h+1

)2 (
1+y
h+1

)3
)(

−h
2 1 − h

2
h
6 (h + 3) −1

)
(4.10)

×
(
U
h + 1

h

[
0
1

]
+

1

2μ

[
2G+ − 2G−
G+h + G−

])

in −1 < y < 0, which, when substituted into (2.3), gives the net upstream flow form.
That is, the y-derivative of (4.10) is verified, with use of (1.5), to equal u∞(y)−u∞

− (y),
given by (1.1), (1.3). A similar calculation, based on (4.8), verifies that u∞(y)−u∞

+ (y)
is obtained in (0, h). Identical series of Papkovich–Fadle eigenfunctions arise in (4.6)
from residues associated with the zeros of [sinh2 k(h + 1) − k2(h + 1)2]. This infinite
sum describes how the flow differs from its far upstream profile u∞ in −1 < y < h.

5. Numerical computation. The calculations are performed with MATLAB,
except for the evaluation of the Padé approximants d2m by means of Maple. The
resulting fractions are then converted to floating points (16 digit accuracy) and re-
turned to MATLAB. Accuracy is low unless N = 2M with M even to take account of
symmetries about both axes. Maximum accuracy occurs at about N = 2, M = 16 and
could be increased by means of variable precision arithmetic. The poles ipm,−iqm
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Fig. 5.1. Stream function plots for the downstream shear case with U = 1 for (left) h = 1.5 and
(right) h = 3 (note the different y-scale). The difference in stream function values (volume flux)
between contours is 0.2.

and coefficients αm, βm in (3.67) are then readily determined, followed by JN (k) and
R+

N (k). Evaluation of r+
N (k), θ+

N (k) yields T+
N (k) and hence Q+

N (k), given by (3.48).
The scalar Wiener–Hopf decomposition of r and θ is achieved by using standard
MATLAB numerical integration. The default relative accuracy of 10−6 easily suffices
because higher accuracy is actually obtained, as in many contour integrals of analytic
functions. Finally, K+

N (k) is constructed. The stream function, ψ(x, y), is evaluated
in either of the x < 0 channels as a sum of the residues of (4.7) or (4.8) at the re-
spective first 50 poles in the upper half-plane. Note that knowledge of the two sets
of residues allows the inverse Fourier transform (4.6) to be computed for any x(< 0)
at essentially zero marginal cost. The companion matrix function K−

N (k), needed in
(4.9) for x > 0, is constructed similarly.

The numerical evaluation of the approximation [K+
N (k)]−1 to [K+(k)]−1 in (4.7),

(4.8) depends on the accurate determination of the coefficients a+(ipm), . . . in (3.79)–
(3.82). These are given by (3.75), (3.76), in which Δ(k) appears analytically, but
branch cuts may arise from the presence θ±(k) in the sinh functions. By factoring
Δ(ζ) from the numerator of the fraction in (3.35), it is evident that the branch cuts
created by the approximate factorization arise solely from the square root in the
definition (3.16) of L(k).

Very high accuracy would require variable precision arithmetic and a large number
of terms in the residue sum, especially when computing the stream function values
near the entrance to the downstream channels.

Figure 5.1 displays streamlines for h = 1.5 and h = 3 in the downstream shear
case (G+ = 0 = G−). For the same values of h, Figure 5.2 shows streamlines when
the walls are stationary (U = 0) with respective flux ratios Λ = 1,−0.5,−2, which
typify the physically distinct ranges, Λ > 0, −1 < Λ < 0, Λ < −1. The curves have
an imperceptible defect at x = 0; the values of ψ(0, y) computed using (4.7) and (4.9)
are not exactly the same in the Padé approximant technique but would be identical
for the exact matrix K. This discrepancy provides an estimate of the error, which is
found to decrease with N until at least N = 12, which is the value used in the figures.
While the qualitative behavior in the pressure-driven case depends only on Λ, plots
require a normalization of G− and G+: for convenience, G− = 12μ was taken.
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Fig. 5.2. Stream function plots for the pressure-driven case. Left-hand panels: h = 1.5; right-
hand panels: h = 3. Top row: Λ = 1, middle row: Λ = −0.5, bottom row: Λ = −2. The difference
in stream function values (volume flux) between contours is 0.2. The jagged contour for h = 3,
Λ = −0.5 is a contouring artifact.

6. Conclusion. The Padé approximant technique for matrix Wiener–Hopf equa-
tions yields accurate numerical results for a classic Stokes flow problem for all channel
width ratios. The theory is complicated by the need for successive modifications L,
T of the kernel and M, M−1 of the matrix factors Q−, Q+ in order to establish the
required analyticity of K− and K+. The numerical implementation is not difficult
conceptually but demands the usual careful attention to the analyticity properties of
the functions involved. The technique provides a constructive scheme to obtain the
physical solution without the major difficulties encountered in matching the three sets
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of biorthogonal Papkovich–Fadle eigenfunctions.
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GLOBAL ASYMPTOTIC STABILITY FOR A CLASS OF
NONLINEAR CHEMICAL EQUATIONS∗

DAVID F. ANDERSON†

Abstract. We consider a class of nonlinear differential equations that arises in the study of
chemical reaction systems known to be locally asymptotically stable and prove that they are in fact
globally asymptotically stable. More specifically, we will consider chemical reaction systems that are
weakly reversible, have a deficiency of zero, and are equipped with mass action kinetics. We show
that if for each c ∈ R

m
>0 the intersection of the stoichiometric compatibility class c + S with the

subsets on the boundary that could potentially contain equilibria, LW , are at most discrete, then
global asymptotic stability follows. Previous global stability results for the systems considered in
this paper required (c + S) ∩ LW = ∅ for each c ∈ R

m
>0.
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1. Introduction. This paper is motivated by the consideration of a class of
nonlinear systems that arises in the study of chemistry and biochemistry. Suppose
there are m chemical species, {X1, . . . , Xm}, undergoing a series of chemical reactions.
For a given reaction, denote by y, y′ ∈ Z

m
≥0 the vectors representing the number of

molecules of each species consumed and created in one instance of that reaction,
respectively. Using a slight abuse of notation, we associate each such y (and y′) with
a linear combination of the species in which the coefficient of Xi is yi. For example,
if y = [1, 2, 3]T for a system consisting of three species, we associate with y the linear
combination X1 + 2X2 + 3X3. Under this association, each y (and y′) is termed a
complex of the system. We may now denote any reaction by the notation y → y′,
where y is the source, or reactant, complex and y′ is the product complex. We note
that each complex may appear as both a source complex and a product complex in
the system. Let S = {Xi}, C = {y}, and R = {y → y′} denote the sets of species,
complexes, and reactions, respectively. Denote the concentration vector of the species
as x ∈ R

m. In order to know how the state of the system is changing, we need to
know the rate at which each reaction is taking place. Therefore, for each reaction
y → y′, there is a C1 function Ry→y′(·) satisfying the following:

1. Ry→y′(·) is a function of the concentrations of those species contained in the
source complex, y.

2. Ry→y′(·) is monotone increasing in each of its inputs, and Ry→y′(x) = 0 if
any of its inputs are zero.

The dynamics of the system are then given by the coupled set of ordinary differential
equations

(1) ẋ(t) =
∑

y→y′∈R
Ry→y′(x(t))(y′ − y)

.
= f(x(t)),
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where the last equality is a definition. The functions Ry→y′ are typically referred to as
the kinetics of the system. This notation closely matches that of Feinberg, Horn, and
Jackson, and it is their work that the main results in this paper extend [12, 7, 9, 10, 8].

Integrating (1) gives

x(t) = x(0) +
∑

y→y′∈R

(∫ t

0

Ry→y′(x(s))ds

)
(y′ − y).

Therefore, x(t) − x(0) remains in the linear space S = Span{y′ − y}y→y′∈R for all
time. We shall refer to the space S as the stoichiometric subspace of the system and
refer to the sets c + S, for c ∈ R

m, as stoichiometric compatibility classes, or just
compatibility classes. Later we will demonstrate that trajectories with positive initial
conditions remain in R

m
>0 for all time. The sets (c+S)∩R

m
>0 will therefore be referred

to as the positive stoichiometric compatibility classes. Given that trajectories remain
in their positive stoichiometric compatibility classes for all time, we see that the types
of questions that one should ask about these systems differ from the questions one
normally asks about nonlinear systems. For example, instead of asking whether there
is a unique equilibrium value to the system (1) and then asking about its stability
properties, it is clearly more appropriate to ask whether there is a unique equilibrium
within each positive stoichiometric compatibility class and, if so, what are its stability
properties relative to its compatibility class.

The most common kinetics chosen is that of mass action kinetics. A chemical
reaction system is said to have mass action kinetics if

(2) Ry→y′(x) = ky→y′xy1

1 xy2

2 · · ·xym
m

for some constant ky→y′ . It has been shown that, for many systems of the form (1)
with mass action kinetics, there is within each stoichiometric compatibility class pre-
cisely one equilibrium with strictly positive components, and that equilibrium is lo-
cally asymptotically stable relative to its class [12, 9, 8]. In order to show that the
equilibrium values are locally stable, the following Lyapunov function is used (one for
each compatibility class):

(3) V (x, x̄) = V (x) =

m∑
i=1

[xi(ln(xi) − ln(x̄i) − 1) + x̄i] ,

where x̄ is the unique equilibrium of a given positive stoichiometric compatibility
class. It turns out that the function V “almost” acts as a global Lyapunov function.
That is, V is nonnegative for x ∈ (x̄+S)∩R

m
>0, zero only at x̄, and strictly decreasing

along trajectories. However, V does not tend to infinity as trajectories near the
boundary of (x̄+ S) ∩ R

m
>0, and without such unboundedness one cannot, in general,

conclude global stability. It has been shown in numerous papers, however, that global
stability of x̄ does hold if there are no equilibria on the boundary of (x̄ + S) ∩ R

m
>0

[15, 2, 13, 14]. Therefore, work has been done giving sufficient conditions for the
nonexistence of boundary equilibria in order to conclude that the equilibrium value
within each compatibility class is globally stable relative to its class [2, 13, 14].

To each subset W of the set of species, the set of points LW is defined to be

(4) LW = {x ∈ R
m : xi = 0 ⇔ Xi ∈ W}.

We will show that there are no boundary equilibria if and only if

(5) [(c + S) ∩ R
m
≥0] ∩ LW = ∅
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for all c ∈ R
m
>0 and for certain subsets of the species, W . We will then prove that

global stability holds if the intersection given in (5) is either empty or discrete for
each c ∈ R

m
>0 and those same subsets, W . This will imply that global stability

holds even if there are boundary equilibria, so long as the boundary equilibria are
extreme points of the positive stoichiometric compatibility classes. To the best of
our knowledge there is only one other result concerning the global stability of mass
action systems with boundary equilibria, and this is contained within the Ph.D. thesis
of Chavez [6]. In order to guarantee global stability even if there exist boundary
equilibria, Chavez requires that each boundary equilibrium be hyperbolic with respect
to its stoichiometric compatibility class, and she requires another (more technical)
condition on the stable subspaces of each boundary equilibrium (see [6, pg. 106] for
details). As our results are applicable to systems with boundary equilibria that are
nonhyperbolic, our results can be viewed as an extension of those in [6].

The layout of the paper is as follows. In section 2 we will introduce the systems
we consider in this paper: weakly reversible, deficiency zero systems with mass action
kinetics. We will then present some preliminary results and conclude with a proof
that global stability follows if there are no equilibria on the boundary of the positive
stoichiometric compatibility classes. No originality is claimed for this result as it is
known. Also in section 2 we demonstrate how the “no boundary equilibria” assump-
tion is equivalent to (5) holding for all c ∈ R

m
>0 and certain subsets of the species,

W . In section 3 we extend the previous theorems to prove that global stability still
holds if the intersection given in (5) is always either empty or discrete for those same
subsets, W . We also show in section 3 how the hypothesis that the intersection in (5)
is always empty or discrete is equivalent to a condition on the extreme points of the
nonnegative stoichiometric compatibility classes. In section 4, we demonstrate our
results on a number of examples. Finally, in section 5 we sketch how to extend our
results to systems with non-mass action kinetics.

2. Preliminary results. We start with definitions taken from [12, 8, 9].
Definition 2.1. A chemical reaction network, {S, C,R}, is called weakly revers-

ible if for any reaction y → y′, there is a sequence of directed reactions beginning with
y′ and ending with y. That is, there exist complexes y1, . . . , yk such that the following
reactions are in R: y′ → y1, y1 → y2, . . . , yk → y.

To each reaction network, {S, C,R}, there is a unique, directed graph constructed
in the following manner. The nodes of the graph are the complexes, C. A directed
edge is then placed from complex y to complex y′ if and only if y → y′ ∈ R. Each
connected component of the resulting graph is termed a linkage class of the graph.
We denote the number of linkage classes by l.

As shown in the introduction, each trajectory remains in its stoichiometric com-
patibility class for all time. There is another restriction on the trajectories of solutions
to (1) that is given in the following lemma. The proof can be found in both [15] and [1].

Lemma 2.2. Let x(t) be a solution to (1) with initial condition x(0) ∈ R
m
>0.

Then, x(t) ∈ R
m
>0 for all t > 0.

2.1. Persistence and ω-limit points. By Lemma 2.2, each trajectory must
remain within R

m
>0 if its initial condition is in R

m
>0; therefore the linear subsets of in-

terest are the intersections of the stoichiometric compatibility classes and R
m
>0. Recall

that in the introduction these sets were termed the positive stoichiometric compati-
bility classes. This paper will mainly be concerned with showing that trajectories to
systems given by (1) remain away from the boundaries of the positive stoichiometric
compatibility classes. That is, we will show that the systems are persistent. To be
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precise, let φ(t, ξ) be the solution to (1) with initial condition ξ ∈ R
m
>0. The set of

ω-limit points of the trajectory is

(6) ω(ξ)
.
= {x ∈ R

m
≥0 : φ(tn, ξ) → x, for some tn → ∞}.

Definition 2.3. A system is persistent if ω(ξ) ∩ ∂R
m
>0 = ∅ for each ξ ∈ R

m
>0.

We refer the reader to [4, 3, 5, 16] for some of the history and usage of the notion of
persistence in the study of dynamical systems. In order to show that a chemical system
is persistent, it is critical to understand which points on the boundary are capable of
being ω-limit points. With that in mind, we introduce the following definition.

Definition 2.4. A nonempty subset W of the set of species is called a semilock-
ing set if for each reaction in which there is an element of W in the product complex,
there is an element of W in the reactant complex. W is called a locking set if every
reactant complex contains an element of W .

Locking and semilocking sets are easily understood. First suppose that W ⊂
{X1, . . . , Xm} is a locking set. Then, because every reactant complex contains an
element of W , if the concentration of each element of W is zero, each kinetic function,
Ry→y′ , must equal zero. Therefore, all of the fluxes are zero, and ẋ(t) = 0. We
therefore see that the system is “locked” in place. Now suppose W is a semilocking
set. If the concentration of each element of W is zero, then any flux which affects the
species of W is turned off, and the elements of W are “locked” at zero. Semilocking
sets have another, important, interpretation in terms of the linkage classes and weak
reversibility. If the concentrations of the elements of a semilocking set are equal to
zero and the system is weakly reversible, then all of the fluxes of any linkage class with
a complex containing an element of W are equal to zero (and so these linkage classes
are “locked”), while the fluxes of the other linkage classes are not necessarily equal
to zero. Therefore, the concept of a semilocking set and a locking set are equivalent
for systems that are weakly reversible and have only one linkage class. We note that
our notion of a semilocking set is analogous to the concept of a siphon in the theory
of Petri nets. See [2] for a full discussion, including historical references, of the role
of Petri nets in the study of chemical reaction networks.

The following theorem now characterizes the boundary points that have the ca-
pability of being ω-limit points of the system. This result was first proved in [2];
however, the proof given here is completely different and straightforward.

Theorem 2.5. Let W be a nonempty subset of the species. If there exists a
ξ ∈ R

m
>0 such that ω(ξ) ∩ LW 	= ∅, then W is a semilocking set.

Proof. Suppose, in order to find a contradiction, that there is a ξ ∈ R
m
>0 and a

subset of the species, W , such that ω(ξ) ∩ LW 	= ∅ and W is not a semilocking set.
Let y ∈ ω(ξ) ∩ LW . We note that there exists a species Xj , with Xj ∈ W , such that
at least one input to Xj (term in fj of (1) with a positive coefficient) is nonzero if the
concentrations are given by y, for otherwise W would be a semilocking set. Therefore,
because all outputs from species Xj (terms in fj with a negative coefficient) are zero
at y, there exist ε > 0 and k > 0 such that if x(t) ∈ R

m
>0 ∩Bε(y), then

(7) fj(x(t)) = x′
j(t) > k,

where Bε(y) = {x : |x− y| < ε}.
Because f(·) is C1, we have ‖f‖∞,loc < M for some M > 0, and this bound is

valid in R
m
>0∩Bε(y). Therefore, for any 0 < a < b, if x(t) ∈ R

m
>0∩Bε(y) for t ∈ (a, b),
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we have that

(8) |x(b) − x(a)| =

∣∣∣∣∣
∫ b

a

f(x(s))ds

∣∣∣∣∣ ≤ (b− a)M.

Now consider a partial trajectory starting on the boundary of R
m
>0 ∩ Bε(y) at time

tε, ending on the boundary of R
m
>0 ∩Bε/2(y) at time tε/2, and remaining within that

annulus for all time in (tε, tε/2). Note that one such partial trajectory must exist every
time we enter R

m
>0 ∩Bε/2(y), and this happens at least once by our assumption that

y ∈ ω(ξ) ∩ LW . By (8), tε/2 − tε ≥ ε/(2M). On the other hand, by (7), x′
j(t) > k for

t ∈ (tε, tε/2). Therefore,

xj(tε/2) = xj(tε) +

∫ tε/2

tε

x′
j(s)ds

≥ xj(tε) + εk/(2M)

≥ εk/(2M).

Combining the above with the fact that we still have x′
j(t) > k on R

m
>0 ∩ Bε/2(y),

we see that there cannot exist times tn such that x(tn) → y, as n → ∞. This is a
contradiction and completes the proof.

Remark. Theorem 2.5 is a powerful tool for understanding the dynamics of chemi-
cal reaction systems. We see that in order to prove that a chemical system is persistent,
it is sufficient to show that [(c+S)∩R

m
≥0]∩LW = ∅ for all c ∈ R

m
>0 and all semilocking

sets W . We will show in Lemma 2.8 that for many reaction systems such a condition
is equivalent to having no equilibria on the boundaries of the positive stoichiometric
compatibility classes.

2.2. Deficiency and the deficiency zero theorem. We require one more
definition before we can state precisely the types of systems we consider in this paper.

Definition 2.6. The deficiency, δ, of a reaction network {S, C,R} is given by
δ = n − l − s, where n is the number of complexes of the system, l is the number of
linkage classes, and s = dimS, the dimension of the stoichiometric subspace.

Remark. It has been shown that the deficiency of a reaction network is a nonneg-
ative number. In fact, the deficiency is the dimension of a certain subspace associated
with the system. See [9, 10, 8] for details.

The main types of systems considered in this paper are those with mass action
kinetics that are weakly reversible and have a deficiency of zero. The following theorem
by Feinberg [8, 10] is the catalyst for studying such systems. The proof can be found
in [8] or [10].

Theorem 2.7 (the deficiency zero theorem). Consider a system of the form (1)
with mass action kinetics that is weakly reversible and has a deficiency of zero. Then,
within each positive stoichiometric compatibility class there is precisely one equilibrium
value, and it is locally asymptotically stable relative to its compatibility class.

In order to prove that the systems considered in the deficiency zero theorem have
equilibria that are locally asymptotically stable relative to their compatibility classes,
the Lyapunov function (3) is used. It is shown that for x ∈ (x̄+S)∩R

m
>0 (where x̄ is

the equilibrium guaranteed to exist by Theorem 2.7), V (x) ≥ 0 with equality if and
only if x = x̄, and that dV (x(t))/dt < 0 for all trajectories with initial condition in
(x̄+S)∩R

m
>0. We will make use of these facts throughout the paper without reference;

however, we point the interested reader to the original works [8, 10] for details.
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2.3. Boundary equilibria. The following lemma shows that for weakly revers-
ible, mass action systems with a deficiency of zero, having no equilibria on the bound-
aries of the positive stoichiometric compatibility classes is equivalent to [(c+S)∩R

m
≥0]∩

LW = ∅ for all c ∈ R
m
>0 and semilocking sets W . Following Lemma 2.8 we present a

theorem pertaining to any system equipped with a globally defined Lyapunov func-
tion that does not necessarily go to infinity as x goes to the boundary of the domain.
We then use these results in combination with Theorem 2.5 to conclude that for
weakly reversible, deficiency zero systems with mass action kinetics, having no equi-
libria on the boundaries of the positive stoichiometric compatibility classes implies
global stability of the equilibrium values given by Theorem 2.7. We again note that
it is already known that global asymptotic stability follows from a lack of boundary
equilibria. For example, in [15] Sontag showed that all trajectories must converge to
the set of equilibria, and so a lack of boundary equilibria implies convergence to the
unique equilibrium in the interior of the positive stoichiometric compatibility class.
We rederive this result here because our methods put it in a larger context in which
global stability is understood through the intersections given in (5) and because it
makes clear how our results in section 3 are truly a generalization of this fact.

Lemma 2.8. For any chemical reaction system, the set of equilibria on the bound-
aries of the positive stoichiometric compatibility classes is contained in

⋃
c

⋃
W [(c +

S)∩R
m
≥0]∩LW , where the first union is over c ∈ R

m
>0 and the second union is over the

semilocking sets. Further, if there are no equilibria on the boundaries of the positive
stoichiometric compatibility classes for a weakly reversible, deficiency zero system with
mass action kinetics, then [(c + S) ∩ R

m
≥0] ∩ LW = ∅ for all c ∈ R

m
>0 and semilocking

sets W .

Proof. Let y be an equilibrium on the boundary of a positive stoichiometric
compatibility class. Let W be the set of species with a concentration of zero at y.
Because each complex that contains an element of W is providing zero flux, in order
for y to be an equilibrium value each reaction in which there is an element of W in
the product complex must have an element of W in the reactant complex. Thus, W
is a semilocking set and y ∈ [(c + S) ∩ R

m
≥0] ∩ LW for some c ∈ R

m
>0.

In order to prove the second part of the lemma, we suppose W is a semilocking
set for the system and suppose y ∈ [(c + S) ∩ R

m
≥0] ∩ LW for some c ∈ R

m
>0. We will

now produce an equilibrium value on the boundary of (c+S)∩R
m
>0. If W = S, y = �0,

and, because W is a semilocking set, y is an equilibrium. Otherwise, consider the
system consisting only of those species not in the semilocking set W . By the argu-
ments in [10], the linkage classes not “locked” by W form their own weakly reversible,
deficiency zero system. Therefore, there is an equilibrium value with strictly positive
components for that reduced system, z̄. Let ȳ = (z̄,�0) (where we have potentially
rearranged the ordering of the species so that those not in the semilocking set came
first). ȳ is a boundary equilibrium value to our original system. Therefore, the result
is shown.

Theorem 2.9. Let x(t) = x(t, x(0)) be the solution to ẋ = g(x) with initial
condition x(0), where g is C1 and the domain of definition of the system is the open
set C ⊂ R

m. Let x̄ ∈ C be the unique equilibrium value to the system. Finally, suppose
that there is a globally defined Lyapunov function V that satisfies the following:

1. V (x) ≥ 0 with equality if and only if x = x̄.
2. dV (x(t))/dt ≤ 0 with equality if and only if x(t) = x̄.
3. V (x) → ∞, as |x| → ∞.

Then either x(t) → x̄ or x(t) → ∂C.
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Proof. Suppose that x(t) � x̄. Because V (·) decreases along trajectories, the
value V (x(t)) is bounded above by V (x(0)) for all t > 0. Therefore, because V (x) →
∞ as |x| → ∞, x(t) remains bounded for all t > 0. Also, the local asymptotic
stability of x̄ combined with the fact that x(t) � x̄ implies there is a ρ > 0 such that
|x(t) − x̄| > ρ for all t > 0.

Let ε > 0 and for x ∈ C let d(x, ∂C) represent the distance from x to the boundary
of C. Let Cε = {x ∈ C | d(x, ∂C) ≥ ε and |x− x̄| ≥ ρ}. Using that trajectories remain
bounded for all time, we may use the continuity of the functions ∇V and g to conclude
that there is a positive number η = η(ε) such that ∇V (x) · g(x) < −η for all x ∈ Cε.
Therefore, the amount of time that any trajectory spends in the set Cε is bounded
above by V (x(0))/η (for, otherwise, x(t) → x̄). Because ε > 0 was arbitrary we see
that x(t) → ∂C.

Corollary 2.10. If there are no equilibria on the boundaries of the positive
stoichiometric compatibility classes for a weakly reversible deficiency zero system with
mass action kinetics, then the unique positive equilibrium value within each positive
stoichiometric compatibility class is globally asymptotically stable relative to its com-
patibility class.

Proof. Trajectories are bounded because of the existence of the Lyapunov func-
tion (3). Combining this fact with Theorems 2.5 and 2.9 and Lemma 2.8 completes
the proof.

3. Main results. By Lemma 2.8, we see that the no boundary equilibria as-
sumption for weakly reversible deficiency zero systems with mass action kinetics is
equivalent to the assumption that [(c + S) ∩ R

m
≥0] ∩ LW = ∅ for all c ∈ R

m
>0 and all

semilocking sets W . This then implies global stability by Corollary 2.10. We will
extend these results by proving that global stability holds if [(c + S) ∩ R

m
≥0] ∩ LW

is empty or discrete for each c ∈ R
m
>0 and each semilocking set W . The following

definition is necessary.

Definition 3.1. For a vector x ∈ R
m, the support of x, denoted supp(x), is the

subset of the species such that Xi ∈ supp(x) if and only if xi 	= 0.

Proposition 3.2. Let {S, C,R} be a weakly reversible, deficiency zero, mass
action chemical reaction system with dynamics given by (1). Suppose that y ∈ ω(x(0))
for some x(0) ∈ R

m
>0. Then there must exist a nonzero z0 ∈ S with supp(z0) ⊂

supp(y).

Proof. If y ∈ R
m
>0, there is nothing to show. Therefore, assume that y is on the

boundary of the positive stoichiometric compatibility class. By Theorem 2.5, there is
a semilocking set W such that y ∈ [(x(0) + S) ∩ R

m
≥0] ∩ LW .

Let V (x) : R
m
>0 → R be given by (3), and let

Vi(xi) = xi(ln(xi) − ln(x̄i) − 1) + x̄i,

so that V (x) =
∑m

i=1 Vi(xi). Reordering the species if necessary, we suppose W =
{X1, . . . , Xd}. Choose ρ > 0 so small that for each i ≤ d, xi < ρ =⇒ ln(xi)− ln(x̄i) <
0. Let ε > 0 satisfy ε < ρ. Let tε be a time such that xi(tε) ≤ ε for all i ≤ d and
|xj(tε) − yj | < ε for all j ≥ d + 1. Let Tε = min{t > tε : |xi(t) − yi| ≤ xi(tε)/2 for all
i ≤ m}. We know such tε and Tε exist because y is an ω-limit point of the system.
Note that Tε > tε and that for each i ≤ d, xi(Tε) < xi(tε). We consider how V (x(t))
changes from time tε to time Tε. Applying the mean value theorem to each Vi(·) term
gives
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V (x(Tε)) − V (x(tε)) =

m∑
i=1

Vi(xi(Tε)) − Vi(xi(tε))(9)

=

d∑
i=1

(ln(x̃i) − ln(x̄i))(xi(Tε) − xi(tε))

+

m∑
i=d+1

(ln(x̃i) − ln(x̄i))(xi(Tε) − xi(tε))

(10)

for some x̃i ∈ [xi(Tε), xi(tε)]. Recalling that V decreases along trajectories of x(t) by
Theorem 2.7, we have V (x(Tε)) − V (x(tε)) < 0. Note that because for j ≥ d + 1 we
have |x̃j − yj | < ε, there are positive constants cj such that cj > |ln(x̃j) − ln x̄j |, and
that bound is valid for any ε < ρ. Let C =

∑m
j=d+1 cj .

By our choices above, we know that for each i ∈ {1, . . . , d} the following inequal-
ities hold:

1. ln(x̃i) − ln(x̄i) < 0.
2. xi(Tε) − xi(tε) < 0.

Therefore, each piece of the first sum in (10) is strictly positive. Thus, to ensure that
V is decreasing along this trajectory, the second sum in (10) must be negative and,
letting Δxi = xi(Tε) − xi(tε) for each i, we have

d∑
i=1

(ln(x̃i) − ln(x̄i)) Δxi <

∣∣∣∣∣
m∑

j=d+1

(ln(x̃j) − ln(x̄j)) Δxj

∣∣∣∣∣
≤

m∑
j=d+1

cj |Δxj |.
(11)

In fact, because each term on the left-hand side of (11) is positive, a similar inequality
must hold for each i = 1, . . . , d. That is, for i ≤ d

(ln(x̃i) − ln(x̄i))Δxi ≤
m∑

j=d+1

cj |Δxj |.

For each i ≤ d, x̃i ∈ [xi(Tε), xi(tε)] and xi(Tε), xi(tε) < ε. Hence, letting |ln x̄i| = ki,
we have that for each i ≤ d

|ln(x̃i) − ln(x̄i)| ≥ |ln ε| − ki.

Thus, for each i = 1, . . . , d,

|Δxi| ≤
1

|ln ε| − ki

m∑
j=d+1

cj |Δxj |.

Let Δmax = supj∈{d+1,...,m}{|Δxj |} and δ(ε) = supi∈{1,...,d} (|ln ε| − ki)
−1. We know

Δmax 	= 0 because if it were equal to zero, then the right-hand side of (11) would be
zero, which it cannot be as it is strictly larger than the left-hand side. Combining the
above shows that for each i = 1, . . . , d,

|Δxi| ≤ δ(ε)CΔmax.

Now we consider the vector Δx = x(Tε) − x(tε) ∈ S. Normalizing the vector Δx
by dividing each entry by Δmax then produces a vector v(ε)

.
= 1

Δmax
Δx with the

following properties:
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1. v(ε) ∈ S.
2. For i = 1, . . . , d, |vi(ε)| ≤ δ(ε)C.
3. There is at least one entry in v(ε) with norm 1 (the one for which the maxi-

mum in the definition of Δmax was achieved), and none has a higher norm.
4. 1 ≤ |v(ε)| ≤ m.

Property 4 follows from property 3. ε > 0 was arbitrary, so we may consider a
sequence {εn} such that εn > εn+1 and εn → 0. For each εn we may redo the
work above. This leads to a sequence of vectors {v(εn)} and a sequence of num-
bers {δ(εn)} such that δ(εn) → 0 and for each n all four properties above hold.
Because each vector from the sequence {v(εn)} is contained in the compact space
{v : 1 ≤ |v| ≤ m} ∩ S, there is a convergent subsequence {v(εnk

)} and a vector z0

such that v(εnk
) → z0 ∈ {v : 1 ≤ |v| ≤ m}∩S ⊂ S, as k → ∞. Note that z0 cannot be

the zero vector because |z0| > 1. However, δ(εnk
) → 0, and so the first d components

of z0 are equal to zero. Hence, supp(z0) ⊂ supp(y).
We now present our main result.
Theorem 3.3. Let {S, C,R} be a weakly reversible, deficiency zero, mass action

chemical reaction system with dynamics given by (1). Suppose that for each c ∈ R
m
>0

and each semilocking set W , the set [(c+S)∩R
m
≥0]∩LW is either empty or discrete.

Then the unique positive equilibrium of each stoichiometric compatibility class guar-
anteed to exist by the deficiency zero theorem is globally asymptotically stable relative
to its compatibility class.

Proof. We suppose, in order to find a contradiction, that there is a positive
equilibrium, x̄, that is not globally asymptotically stable relative to its compatibility
class. By Theorems 2.5, 2.7, and 2.9, there is a semilocking set W , a ξ ∈ R

m
>0, and a

vector y such that y ∈ [(x̄ + S) ∩ R
m
≥0] ∩ LW and y ∈ ω(ξ). By Proposition 3.2, there

exists a nonzero z0 ∈ S such that supp(z0) ⊂ supp(y). Because y ∈ x̄+S and z0 ∈ S,
for any η > 0 we have y + ηz0 ∈ x̄ + S. Further, because supp(z0) ⊂ supp(y), if η
is small enough, we have that y + ηz0 ∈ R

m
≥0 ∩ LW . But this is valid for all η small

enough, and so [(x̄ + S) ∩ R
m
≥0] ∩ LW is not discrete. This is a contradiction, and so

the result is shown.
Remark. In the chemistry literature there is a notion of an equilibrium value

being complex balanced. Briefly, an equilibrium value is complex balanced if, at equi-
librium, the total flux out of any complex is equal to the total flux into that complex.
The conclusion of the deficiency zero theorem, including the existence of the Lya-
punov function (3), holds so long as there is at least one equilibrium in the positive
orthant that is complex balanced [8, 11]. The deficiency zero theorem gives a sim-
ple and checkable condition (δ = 0) on the network structure alone that guarantees
that a system has a complex balanced equilibrium for any choice of rate constants.
We therefore note that the conclusion of Theorem 3.3 holds for any mass action sys-
tem that has a complex balanced equilibrium in the positive orthant and for which
[(c + S) ∩ R

m
≥0] ∩ LW is either empty or discrete for each c ∈ R

m
>0 and semilocking

set W .
Corollary 3.4. Suppose that for a weakly reversible, deficiency zero, chemical

reaction system with mass action kinetics, each semilocking set is a locking set. Sup-
pose further that within each stoichiometric compatibility class, the set of equilibria
on the boundary is discrete. Then the unique positive equilibrium of each stoichio-
metric compatibility class guaranteed to exist by the deficiency zero theorem is globally
asymptotically stable relative to its compatibility class.

Proof. Because each semilocking set is a locking set, the set of boundary equilibria
for a given compatibility class is precisely given by

⋃
W [(c + S) ∩ R

m
≥0] ∩ LW , where
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the union is over the set of semilocking sets. Therefore, each [(c + S) ∩ R
m
≥0] ∩ LW is

discrete, and invoking Theorem 3.3 completes the proof.
Corollary 3.5. Suppose that a weakly reversible, deficiency zero, chemical

reaction system with mass action kinetics has only one linkage class. Suppose further
that within each stoichiometric compatibility class, the set of equilibria on the boundary
is discrete. Then the unique positive equilibrium of each stoichiometric compatibility
class guaranteed to exist by the deficiency zero theorem is globally asymptotically stable
relative to its compatibility class.

Proof. For single linkage class systems that are weakly reversible, each semilocking
set is a locking set. Using Corollary 3.4 completes the proof.

3.1. Connection with extreme points. We connect our results to a condition
on the extreme points of the positive stoichiometric compatibility classes.

Proposition 3.6. For y ∈ R
m
≥0, let W = {Xi : yi = 0} = supp(y)C . Then the

following are equivalent:
(i) y is an extreme point of (y + S) ∩ R

m
≥0.

(ii)
[
(y + S)

⋂
R

m
≥0

] ⋂
LW = {y}.

Proof. (i) =⇒ (ii). Suppose that (i) is true, but (ii) is not. Then, because[
(y+S)

⋂
R

m
≥0

]⋂
LW is not discrete, there exists a v ∈ S

⋂
LW such that for sufficiently

small ε, y± εv ∈
[
(y+S)

⋂
R

m
≥0

]⋂
LW . Noting that y = (1/2)(y+ εv)+ (1/2)(y− εv)

then shows that y is not an extreme point of (y + S)∩R
m
≥0, which is a contradiction.

(ii) =⇒ (i). Suppose that (ii) is true, but (i) is not. Because y is not an extreme
point of (y + S) ∩ R

m
≥0, there exist nonzero vectors v1 	= y, v2 	= y in (y + S)

⋂
R

m
≥0

and 0 < λ < 1 such that

(12) y = λv1 + (1 − λ)v2.

Because v1, v2 ∈ (y + S)
⋂

R
m
≥0, there exist u,w ∈ S such that v1 = y + u and

v2 = y + w, and ui, wi ≥ 0 if Xi ∈ W . However, because λ, 1 − λ > 0, we see
by (12) that ui, wi = 0 for all Xi ∈ W . Therefore, v1, v2 ∈

[
(y + S)

⋂
R

m
≥0

] ⋂
LW ,

contradicting (ii).
Theorem 3.3 can now be reformulated in the following way.
Theorem 3.7. Let {S, C,R} be a weakly reversible, deficiency zero, mass action

chemical reaction system with dynamics given by (1). For any boundary point y ∈
[(c+S)∩R

m
≥0] of a positive stoichiometric compatibility class, let Wy = {Xi : yi = 0} =

supp(y)C . Finally, suppose that Wy is a semilocking set only if y is an extreme
point. Then the unique positive equilibrium of each stoichiometric compatibility class
guaranteed to exist by the deficiency zero theorem is globally asymptotically stable
relative to its compatibility class.

Proof. Suppose W is a semilocking set. Let y ∈ LW be such that there exists a
c ∈ R

m
>0 with y ∈ c+S. If no such y and c exist, then [(c+S)

⋂
R

m
≥0]

⋂
LW = ∅ for all

c ∈ R
m
>0. If such a y and c do exist, then W = Wy and, by assumption, y is an extreme

point. Thus, by Proposition 3.6,
[
(y + S)

⋂
R

m
≥0

] ⋂
LW =

[
(c + S)

⋂
R

m
≥0

] ⋂
LW is

discrete. Invoking Theorem 3.3 completes the proof.

4. Examples. We begin with an example found in [6] for a receptor-ligand
model. See [6] for full details.

Example 4.1. Consider the following system, which we assume has mass action
kinetics:

(13)

2A + C � A + D�⏐ ⏐� �⏐ ⏐�
B + C � E

.
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For this example there are four complexes and one linkage class, and the dimen-
sion of the stoichiometric compatibility class is easily verified to be three. Therefore,
the system has a deficiency of zero, and our results apply. The minimal semilock-
ing sets (that is, those that must be contained in all others) are given by W1 =
{A,B,E}, W2 = {A,C,E}, and W3 = {C,D,E}. Therefore, showing that the set⋃3

i=1 [(c + S) ∩ R
5
≥0] ∩ LWi is discrete for any c ∈ R

5
>0 would also show that the sum

over all semilocking sets is discrete. For this example, it is easily verified that

(14) S = Span

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎡
⎢⎢⎢⎢⎣

1
0
0
1
−1

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

0
1
0
2
−2

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

0
0
1
−2
1

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

One method to show that for a given i the set [(c+S)∩R
5
≥0]∩LWi is at most discrete

is to demonstrate that there are no nonzero vectors contained in S with support
given by WC

i . This method bypasses the need to check whether the intersection
[(c + S) ∩ R

5
≥0] ∩ LWi

is nonempty. It is easily verified that there are no nonzero

vectors contained in S with support given by WC
1 or WC

2 . In [6] it is shown that for
each c ∈ R

5
>0, (c + S) ∩ R

5
≥0 does intersect one of LW1

or LW2
. Therefore, there are

always equilibria on the boundary; however, by our results or those found in [6], they
will not affect the global stability of the interior equilibria.

Let U3 = {x ∈ R
5 | supp(x) ∈ WC

3 }. It is easy to show that U3

⋂
S =

span{[2,−1, 0, 0, 0]T }. Thus, the method used in the previous paragraph does not
work. Therefore, for our results to apply, we need to verify that [(c+S)∩R

5
≥0]∩LW3

=

∅ for any c ∈ R
5
>0. Because LW3 is characterized by having the last three entries equal

to zero, in order to prove that [(c+S)∩R
5
≥0]∩LW3 = ∅ for any c ∈ R

5
>0, it is sufficient

to show that the space spanned by the last three components of the vectors in (14)
does not contain a vector with strictly negative components. We have

(15) Span

⎧⎨
⎩
⎡
⎣ 0

1
−1

⎤
⎦ ,

⎡
⎣ 0

2
−2

⎤
⎦ ,

⎡
⎣ 1

−2
1

⎤
⎦
⎫⎬
⎭ = Span

⎧⎨
⎩
⎡
⎣ 0

−1
1

⎤
⎦ ,

⎡
⎣ 1

−1
0

⎤
⎦
⎫⎬
⎭ ,

which does not include a strictly negative vector. Thus, [(c+S)∩R
5
≥0]∩LW3 = ∅ for

any c ∈ R
5
>0. Combining all of the above with Theorem 3.3 shows that for any choice

of rate constants and initial condition, the system (13) has a globally asymptotically
stable equilibrium value.

Example 4.2. Consider the system

(16) 2A � A + B � B + C.

There are three complexes and one linkage class, and the dimension of the stoichiomet-
ric compatibility class is two. Therefore, the system (16) has a deficiency of zero. The
minimal semilocking sets are W1 = {A,B} and W2 = {A,C}. The stoichiometric sub-
space is of dimension two and the quantity A+B+C is conserved. Thus, each stoichio-
metric compatibility class is a plane that intersects each of LW1

= {v : v1 = v2 = 0,
v3 	= 0} and LW2

= {v : v1 = v3 = 0, v2 	= 0} in precisely one point. See Figure 4.1.
Therefore, by Theorem 3.3, for any choice of rate constants and initial condition, the
system (16) has a globally asymptotically stable equilibrium value. We note that it
is easily verified that the eigenvalues of the linearized problem around the equilibria
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B

A

C

Fig. 4.1. The stoichiometric compatibility class for the system (16) is a plane defined by the
conservation law A + B + C = M for some M > 0. This plane intersects the sets LW1

and LW2

(bolded axes) each in precisely one point.

associated with the semilocking set W1 are all zero, and so the results of [6] do not
apply here.

Example 4.3. Consider the system

(17) 2A � A + B 2B � A + C.

There are four complexes and two linkage classes, and the dimension of the stoi-
chiometric compatibility class is two. Therefore, the system (17) has a deficiency of
zero. The only minimal semilocking set is W = {A,B}, and this is also a locking
set. The stoichiometric subspace is of dimension two, and the quantity A + B + C
is conserved. Thus, each stoichiometric compatibility class is a plane that intersects
LW = {v : v1 = v2 = 0, v3 	= 0} in precisely one point. Therefore by Theorem 3.3 or
Corollary 3.4, for any choice of rate constants and initial condition, the system (17)
has a globally asymptotically stable equilibrium value. It is easily verified that the
boundary equilibria are not hyperbolic with respect to their compatibility classes, and
so the results of [6] do not apply in this case.

5. Non-mass action kinetics. In [15], Sontag extended the deficiency zero
theorem to systems with non-mass action kinetics. He considered weakly reversible,
deficiency zero system whose kinetic functions are given by

(18) Ry→y′(x) = ky→y′θ(x1)
y1 · · · θ(xm)ym ,

where the functions θi : R → [0,∞) satisfy the following:
1. Each θi is locally Lipschitz.
2. θi(0) = 0.

3.
∫ 1

0
|ln(θi(y))|dy < ∞.

4. The restriction of θi to R≥0 is strictly increasing and onto R≥0.
To prove the local asymptotic stability of the unique equilibrium within each stoichio-
metric compatibility class, the following Lyapunov function was used:

(19) V (x) =

m∑
i=1

∫ xi

x̄i

(ρi(s) − ρi(x̄i)) ds,

where ρi(s) = ln θi(s) and x̄ is the unique equilibrium within the positive stoichiomet-
ric compatibility class. Note that θ(x) = |x| gives mass action kinetics, in which case
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the Lyapunov function given in (19) is the same as that in (3). The only dynamical
property of the deficiency zero theorem used in this paper is that ∇V (x) → −∞ as
xi → 0. We note that for the Lyapunov function (19), we still have that property
because

∇V (x) =

m∑
i=1

ρi(xi) − ρi(x̄i),

and ρi(xi) = ln θi(xi) → −∞ as xi → 0 by the properties of θi(·) given above.
Therefore, our results in this paper, and in particular Theorem 3.3, Corollary 3.4,
Corollary 3.5, and Theorem 3.7, are valid in the setting (18).
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VOLTAGE AND CURRENT EXCITATION FOR TIME-HARMONIC
EDDY-CURRENT PROBLEMS∗
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Abstract. We give a systematic presentation of voltage or current intensity excitation for time-
harmonic eddy-current problems. The key point of our approach resides in a suitable power law that
permits us to understand the role of voltage excitation. We also shed light on the influence of the
boundary conditions on the proposed formulations.
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tion, finite elements
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1. Introduction and basic results. In many electromagnetic phenomena it is
useful to couple formulations in terms of electrical circuits with more general formula-
tions based on Maxwell equations (or else on some reduced model like the eddy-current
system).

This coupling is often performed by transforming some data like voltage or current
intensity into suitable boundary conditions for the electromagnetic fields. In particu-
lar, it is interesting to devise efficient formulations of the eddy-current problem when
the only excitation present is either an assigned voltage (typically, at contacts) or a
given current intensity in the eddy-current region.

On the other hand, it is well known that the topological properties of the con-
ductor and the type of boundary conditions imposed on the boundary of the compu-
tational domain have a strong influence on the general setting of the problem and on
the structure of the solution.

Several possible approaches have been proposed in recent years, especially by
engineers interested in practical computations. Let us mention only the contributions
in [13], [22], [20], [21], [28], [29], [26], [19], [12], [23], [10], [8], and the references therein,
though this list is far from complete.

In this paper we propose a systematic approach to eddy-current problems driven
by voltage or current intensity. Our aim is to give a general mathematical formula-
tion for these problems and to analyze their well-posedness. These theoretical results
are then the basis for devising stable and convergent finite element approximation
schemes.

A typical difficulty is that, in many situations, eddy-current problems are well-
posed even if no additional condition like voltage or current intensity is imposed. As
a consequence, to overcome this apparent contradiction it is necessary to focus on the
modeling of the problem so that it becomes possible to impose the voltage or current
intensity equation, but without giving up Maxwell equations (a flaw that was present
in previous papers on this subject).
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In the rest of this section we introduce notation and describe the problems we
shall consider, and we present two basic results concerning well-posedness. In section 2
we discuss modeling, basing our argument on a global power law that relates voltage
to current intensity. In the third section our proposal for treating voltage and current
excitation problems is described. In section 4 we systematically present the variational
formulations of these problems. Finally, the last section is devoted to giving a short
description of some numerical approximation schemes based on finite elements.

In the following, for the sake of simplicity we assume that the domain Ω ⊂ R
3 is

a simply connected bounded open set, with a connected boundary ∂Ω. It is composed
of two parts, a conductor ΩC and an insulator ΩI . The interface between ΩC and ΩI

will be denoted by Γ. The unit outward normal vector on ∂Ω will be indicated by n,
while the unit normal vector on Γ, directed toward ΩI , will be denoted by nC = −nI .

It is well known that (see, e.g., [15]) the time-harmonic eddy-current problem is
given by Ampère and Faraday equations

curlH − σE = Je in Ω,
curlE + iωμH = 0 in Ω,

where H and E are the magnetic and electric fields, respectively, Je is the given
electric current density, σ is the electric conductivity, μ is the magnetic permeability,
and ω �= 0 is a given angular frequency. Moreover, suitable boundary conditions have
to be added (and also some conditions for the unique determination of the electric
field in ΩI). For a mathematical justification of the complete eddy-current model we
refer the reader to [7] (see also [1], [18]).

Let us also note that the magnetic permeability μ is assumed to be a symmetric
tensor, uniformly positive definite in Ω, with entries in L∞(Ω). The same assumption
holds for the dielectric coefficient ε in ΩI (this coefficient will come into play when
imposing uniqueness conditions for EI), and for the electric conductivity σ in ΩC ; on
the other hand, σ vanishes outside ΩC .

We will distinguish between two different geometric situations and three different
types of boundary conditions.

First geometric case: Electric ports. The conductor ΩC is not strictly contained
in Ω, namely, ∂ΩC ∩ ∂Ω �= ∅. More precisely, for the sake of simplicity we assume
that ΩC is a simply connected domain with ∂ΩC ∩ ∂Ω = ΓE ∪ ΓJ , where ΓE and
ΓJ are connected and disjoint surfaces on ∂Ω (“electric ports”). Therefore, we have
∂ΩC = ΓE ∪ΓJ ∪Γ. The boundary of the insulator ΩI , which is connected, is given by
∂ΩI = ΓD ∪ Γ, where ΓD ⊂ ∂Ω. As a consequence, we have ∂Γ = ∂ΓD = ∂ΓE ∪ ∂ΓJ

(see Figure 1, left).
Second geometric case: Internal conductor. The conductor ΩC is strictly contained

in Ω, namely, ∂ΩC ∩ ∂Ω = ∅. Moreover, for the sake of simplicity we assume that ΩC

is a torus-like domain. In this case, we simply have ∂ΩC = Γ and ∂ΩI = ∂Ω ∪ Γ (see
Figure 1, right).

First set of boundary conditions. These are given by E × n = 0 on ∂Ω for both
the geometric cases.

Second set of boundary conditions. These are given by E×n = 0 on ΓE ∪ΓJ and
H × n = 0 and εE · n = 0 on ΓD for the electric port case, and by H × n = 0 and
εE · n = 0 on ∂Ω for the internal conductor case.

Third set of boundary conditions. These are given by E × n = 0 on ΓE ∪ ΓJ ,
μH · n = 0 and εE · n = 0 on ΓD for the electric port case, and by μH · n = 0 and
εE · n = 0 on ∂Ω for the internal conductor case.
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Γ
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∂Ω

Σ

Γ

Λ

Fig. 1. The geometry of the domain for the electric port case (left) and for the internal conductor
case (right).

Summing up, we are going to consider six different problems:
Case A. Electric ports, E × n = 0 on ∂Ω.
Case B. Electric ports, E×n = 0 on ΓE ∪ΓJ , H×n = 0 and εE ·n = 0 on ΓD.
Case C. Electric ports, E×n = 0 on ΓE ∪ΓJ , μH ·n = 0 and εE ·n = 0 on ΓD.
Case D. Internal conductor, E × n = 0 on ∂Ω.
Case E. Internal conductor, H × n = 0 and εE · n = 0 on ∂Ω.
Case F. Internal conductor, μH · n = 0 and εE · n = 0 on ∂Ω.
Among the six boundary value problems described here above, Case C has some

specific features. In fact, it is the only one for which the solution of the eddy-current
problem is not unique.

Let us start by proving this result.
Theorem 1.1. Let us consider the solutions H and E of the eddy-current problem

curlH − σE = Je in Ω,
curlE + iωμH = 0 in Ω.

The magnetic field H in Ω and the electric field EC in ΩC are uniquely determined
for each one of the set of boundary conditions described in Cases A, B, D, E, and F.

Proof. Assume that Je = 0 in Ω. Multiply the Faraday equation by H (the
complex conjugate of H) and integrate in Ω. Integration by parts gives

0 =

∫
Ω

curlE · H +

∫
Ω

iωμH · H =

∫
Ω

E · curlH +

∫
Ω

iωμH · H +

∫
∂Ω

n × E · H.

Replacing EC by σ−1 curlHC , and recalling that curlHI = 0 in ΩI , we have

0 =

∫
ΩC

σ−1 curlHC · curlHC +

∫
Ω

iωμH · H +

∫
∂Ω

n × E · H.

Thus the uniqueness result follows at once if we prove that the boundary integral
vanishes.

This is clearly the case if we are considering Cases A, B, D, and E. For Case F,
we have divτ (E× n) = curlE · n = −iωμH · n = 0 on ∂Ω; hence there exists a scalar
function W such that E × n = gradW × n on ∂Ω. Therefore,∫

∂Ω
n × E · H =

∫
∂Ω

H × n · gradW = −
∫
∂Ω

divτ (H × n)W
= −

∫
∂Ω

curlH · nW = 0

as curlHI = 0 in ΩI .
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Remark 1.2. It is worthwhile to note that, for Case C, assuming Je = 0, one has∫
ΩC

σ−1 curlHC · curlHC +

∫
Ω

iωμH · H = W|ΓJ

∫
ΓJ

curlHC · n.

In fact, we know that on the ports ΓE and ΓJ we still have divτ (E×n) = 0, and also
on ΓD we have divτ (E × n) = curlE · n = −iωμH · n = 0; thus we conclude that
divτ (E × n) = 0 on ∂Ω. Therefore, as before, we can write E × n = gradW × n on
∂Ω, and we see that W is constant on ΓE and on ΓJ , say, W = 0 on ΓE and W = WJ

on ΓJ . Thus∫
∂Ω

n × E · H = −
∫
∂Ω

curlH · nW = −WJ

∫
ΓJ

curlHC · n,

as curlHI · n = 0 on ΓD and W = 0 on ΓE .
In particular, we see that there is still a free degree of freedom: it can be either

the constant value of W on ΓJ (the voltage between the two ports of ΩC) or the value∫
ΓJ

curlHC ·n (the current intensity in ΩC). Therefore, in the present case uniqueness
requires that one of these conditions also be imposed.

Case C has been proposed in [16] as a valid approximation of a realistic electric
port problem. Thus it is a useful starting point for developing our considerations.

In [6] (see also [10]) the following has been proved.
Theorem 1.3. For each Je ∈ (L2(Ω))3, there exists a unique solution H and E

of the eddy-current problem (Case C)

(1)

curlH − σE = Je in Ω,
curlE + iωμH = 0 in Ω,
div(εIEI) = 0 in ΩI ,
E × n = 0 on ΓE ∪ ΓJ ,
εE · n = 0 on ΓD,
μH · n = 0 on ΓD,

with one of the following additional conditions:

(2) either WJ = V or

∫
ΓJ

curlHC · n = I,

where the voltage V and the current intensity I are given complex numbers, and WJ

denotes the constant value on ΓJ of the function W such that E × n = gradW × n
on ∂Ω, having set W = 0 on ΓE.

In [10] and [6] the convergence of a finite element approximation scheme is also
proved (in the former the considered unknowns are HC and a scalar magnetic poten-
tial; in the latter they are the same magnetic potential and EC).

Other finite element schemes can be found in [26] and [12], where the problem is
described through the so-called T-Φ formulation, namely, in terms of a current vector
potential and a scalar magnetic potential.

2. The power law. In [23], a paper that has deeply inspired our work, Hiptmair
and Sterz propose using a suitable power law to relate the voltage and the current
intensity. They define

(3) P̂ :=

∫
ΩC

σEC · EC + iω

∫
Ω

μH · H

and assume that, for the problem at hand, the power law P̂ = V I holds.
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In this paper we propose to modify the definition of the power in the following
way:

(4) P :=

∫
ΩC

σ−1 curlHC · curlHC + iω

∫
Ω

μH · H.

Since curlH = σE + Je, when Je,C = 0 the two definitions are clearly the same: but
we will see in the following that the presence of the current density has important
consequences. In particular, the relation among power, voltage, and current intensity
takes a more general form.

First we note that, when Je,C �= 0 and σ−1Je,C is a gradient of a suitable scalar
function, the solution of the eddy-current problem can take the form H = 0 and
EC = −σ−1Je,C �= 0; therefore, in that case one has I = 0 and P̂ �= 0, and the power

law P̂ = V I does not hold.
To motivate in a more precise way our definition of the power in (4), let us look at

this example in further detail. Consider the eddy-current problem (1) (Case C) with
a given assigned voltage V and with Je,I = 0, Je,C = −V σ gradφC , where φC is the
unique solution to

(5)

⎧⎪⎪⎨
⎪⎪⎩

div(σ gradφC) = 0 in ΩC ,
φC = 1 on ΓJ ,
φC = 0 on ΓE ,
σ gradφC · n = 0 on Γ.

It is easily seen that the solution is given by E = V gradφ and H = 0, where φ is
equal to φC in ΩC and to φI in ΩI , φI being the unique solution to

(6)

⎧⎨
⎩

div(εI gradφI) = 0 in ΩI ,
φI = φC on Γ,
εI gradφI · n = 0 on ΓD.

Therefore, as we noted before, the current intensity I is equal to 0 and P̂ �= 0 = V I;
moreover, this example is also giving us some other useful information. In fact, for
each complex number q ∈ C, take now Je,C = qσ gradφC , Je,I = 0. Computing the
power P for the corresponding solution we find, by proceeding as in Theorem 1.1 and
Remark 1.2,

P =
∫
ΩC

σ−1 curlHC · curlHC + iω
∫
Ω

μH · H
=

∫
ΩC

σ−1Je,C · curlHC + V
∫
ΓJ

curlHC · n
= q

∫
ΩC

gradφC · curlHC + V
∫
ΓJ

curlHC · n.

On the other hand,

(7)

∫
ΩC

gradφC · curlHC

= −
∫
ΩC

φC div curlHC +
∫
ΓE∪ΓJ∪Γ

φC curlHC · nC

=
∫
ΓJ

curlHC · n.

as φC = 0 on ΓE , φC = 1 on ΓJ , and curlHC · nC = curlHI · nC = 0 on Γ.
In conclusion, P is still proportional to I, as

P = (q + V )

∫
ΓJ

curlHC · n = (q + V ) I;
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moreover, this is telling us that, when considering Case C, assigning a voltage V is in
some sense equivalent to imposing a current density Je,C = V σ gradφC in ΩC .

More precisely, the solution (H̃, Ẽ) with voltage V and Je,C = 0 and the solution

(Ĥ, Ê) with voltage 0 and Je,C = V σ gradφC satisfy H̃ = Ĥ; in fact, the difference

(H̃−Ĥ, Ẽ− Ê) is a solution of the problem with voltage V and Je,C = −V σ gradφC .

Therefore, as we have seen above, Ẽ − Ê = V gradφ and H̃ − Ĥ = 0.
This will lead us to propose a suitable formulation for the eddy-current problem

with one of the boundary conditions described in Cases A, B, D, E, and F and,
moreover, subjected to a given voltage or current intensity excitation; the key point
will be that these excitations, unlike Case C, have to be interpreted as a particular
applied current density.

Remark 2.1. Proceeding as in the proof of Theorem 1.1, when Je �= 0, we have

P =
∫
ΩC

σ−1 curlHC · curlHC + iω
∫
Ω

μH · H
=

∫
ΩC

σ−1Je,C · curlHC −
∫
ΩI

Je,I · EI +
∫
∂Ω

E × n · H.

The term
∫
∂Ω

E × n · H is vanishing for Cases A, B, D, and E. Instead, for Case F

we have
∫
∂Ω

E × n · H =
∫
∂Ω

Je,I · nW , where W is the scalar function such that
gradW × n = E × n on ∂Ω. Finally, for Case C we have (see Remark 1.2)∫

∂Ω

E × n · H =

∫
ΓD

Je,I · nW + WJ

∫
ΓJ

curlHC · n,

where WJ is a constant and W|ΓJ
= WJ , W|ΓE

= 0.
When Je,I = 0 and Je,C = qσ gradφC , we have seen that for Case C the power

law holds in the generalized form P = (q + V ) I. This is showing us that we have to
consider two voltages, say, an “electric” voltage V (the value V = W|ΓJ

−W|ΓE
) and

a “source” voltage q, associated to the current density qσ gradφC . Their sum q + V
is the total voltage.

When considering the other cases A, B, D, E, and F, only the “source” voltage
has meaning.

3. Voltage and current excitation. Since the eddy-current problem has a
unique solution for each of the sets of boundary conditions described in Cases A, B,
D, E, and F (see Theorem 1.1), it is not possible to impose an additional condition,
say, voltage or current intensity, if we do not relax some of the other equations.

Before starting, let us mention the formulations proposed in some preceding pa-
pers. In [23], where the voltage/current excitation problem has been considered in the
most systematic way, it was proposed to slightly modify the formulation for Case A,
requiring E×n = gradϕ×n on ∂Ω, where ϕ ∈ H1/2(∂Ω), ϕ = V on ΓJ , ϕ = 0 on ΓE

(and, therefore, ϕ �= const in a transition region Θ ⊂ ΓD). In other words, E× n �= 0
in Θ. This formulation, which is proved to be well-posed, depends, however, on the
choice of the region Θ and of the function ϕ in Θ. An alternative approach, also pro-
posed in [23], valid for all the cases considered here and for which Θ = ∅, ends up with
the violation of the Faraday law on a specific surface (either the surface that “cuts”
the basic nonbounding cycle in ΩI , or else any surface crossing the interface Γ).

In [20] and [28] the internal conductor case is considered, having assigned a given
voltage V . Also in this case the Faraday law is violated on the cutting surface Λ.
Instead, the approach proposed in [21] gives a solution that does not satisfy the
Faraday law across the interface Γ.
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In [10] a formulation for the electric port case with assigned current intensity is
given, leading to the solution also obtained in [6] for Case C; however, for Case A it
can be checked that the Faraday law is violated on the cutting surface Ξ (instead, the
violation of the Faraday law across the interface Γ occurs in [8], where the internal
conductor case is considered).

Finally, in [26] and [12] the finite element approximation of Case C is considered
for an assigned voltage, by means of a formulation based on a current vector potential
and a magnetic scalar potential.

Let us come now to our point of view: clearly, on one side we do not want to
give up Maxwell equations, namely, Faraday and Ampère equations; on the other
side, we would like to formulate a problem for which only the physical quantities and
the physical domains ΩC and ΩI play a role (and not artificial regions like, e.g., the
transition zone Θ introduced in [23]).

The main point is to recall what we have proved for Case C, where a voltage V
was “equivalent” (at least, for the determination of H and in the power law) to the
current density Je,C = V σ gradφC in ΩC . Note that the function gradφC is the basis
function of the space of harmonic fields

Ĥ(ΩC) := {η̂ ∈ (L2(ΩC))3 | curl η̂ = 0,div(ση̂) = 0,
ση̂ · n = 0 on Γ, η̂ × n = 0 on ΓE ∪ ΓJ},

normalized with the condition ∫
γ̂

η̂ · dτ = 1,

where γ̂ is a path joining ΓE to ΓJ . Thus, for the internal conductor case we are led
to introduce the space of harmonic fields

H(ΩC) := {η ∈ (L2(ΩC))3 | curlη = 0,div(ση) = 0,ση · n = 0 on Γ},

defining as ρC its basis function normalized with the condition∫
γ

ρC · dτ = 1,

where the (closed) cycle γ is internal to ΩC (and we have freely chosen an orientation
of γ).

The voltage or current excitation problem is therefore formulated as follows.
Voltage rule. When the voltage V is imposed, modify Ohm’s law in ΩC by

adding to the current density σEC the “applied” current density Je,C = V σQC , where
QC = gradφC for the electric port case, and QC = ρC for the internal conductor
case. Thus the Ampère law reads

curlHC − σEC = V σQC .

In the former case, we intend that the voltage passes from 0 on ΓE to V on ΓJ ; in
the latter case, the voltage passes from 0 to V along the basic cycle γ.

Current intensity rule. When the current intensity I is imposed, modify
Ohm’s law in ΩC by adding to the current density σEC the “applied” current density
Je,C = V σQC , where QC is as in the “voltage rule” and V has to be determined.
Thus the Ampère law reads

curlHC − σEC − V σQC = 0.
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Then determine the field quantities and the voltage V such that the additional con-
straint ∫

S

curlHC · n = I

is also satisfied, where S = ΓJ for the electric port case, and S = Σ, a section of ΩC ,
for the internal conductor case. In the former case, the unit vector n is the outward
normal on ΓJ ; in the latter case, the unit vector n on Σ is oriented the same as the
basic cycle γ.

Let us show that, when adopting these two rules, we are respecting the power
law. Assume that we have Je,C = V σQC and Je,I = 0. Then, by proceeding as in
Theorem 1.1, and taking into account the boundary conditions of Cases A, B, D, E,
and F, we have that∫

ΩC

σ−1 curlHC · curlHC + iω

∫
Ω

μH · H =

∫
ΩC

σ−1Je,C · curlHC ,

and hence

P =

∫
ΩC

σ−1 curlHC · curlHC + iω

∫
Ω

μH · H = V

∫
ΩC

QC · curlHC .

On the other hand, from (7) we have∫
ΩC

gradφC · curlHC =

∫
ΓJ

curlHC · n = I;

thus if QC = gradφC , we conclude with

P =
∫
ΩC

σ−1 curlHC · curlHC + iω
∫
Ω

μH · H
= V

∫
ΩC

gradφC · curlHC = V I,

the power law for the electric port case.
The internal conductor case needs some additional information in order to express

the current intensity in a suitable way. Let us denote by Σ a section of ΩC , namely, a
surface in ΩC cutting the basic nonbounding cycle γ. We know that the basis function
ρC is the L2(ΩC)-extension of the gradient of a suitable scalar function q, defined in
ΩC \ Σ and having a jump equal to 1 across Σ. Hence,

(8)

∫
ΩC

curlHC · ρC =
∫
ΩC\Σ curlHC · grad q

= −
∫
ΩC\Σ q div curlHC +

∫
Γ
q curlHC · nC

+
∫
Σ

curlHC · n
=

∫
Σ

curlHC · n,

as curlHC · nC = curlHI · nC = 0 on Γ and the jump of q on Σ is equal to 1. Hence
we end up with

P =
∫
ΩC

σ−1 curlHC · curlHC + iω
∫
Ω

μH · H
= V

∫
ΩC

ρC · curlHC = V I,

the power law for the internal conductor case.
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Remark 3.1. As is clear from our procedure, in the electric port case we could
obtain a suitable formulation (namely, satisfying the power law) for any current den-
sity Je,C = V σ grad ΦC such that ΦC = 1 on ΓJ and ΦC = 0 on ΓE . Hence, how is
the choice of φC introduced in (5) motivated?

In this respect, it should be noted that, from the Ampère equation curlHC =
σEC+Je,C , the electric field satisfies the (physically consistent) conditions div(σEC)=
0 in ΩC and σEC · n = 0 on Γ only if divJe,C = 0 in ΩC and Je,C · n = 0 on Γ, and
therefore, only if ΦC = φC , the solution to (5).

The same remark applies for the internal conductor case: in that situation, the
integral ∫

ΩC

uC · curlHC

has the same value for any vector field uC such that curluC = 0 and
∫
γ
uC · dτ = 1.

But if we also require that div(σuC) = 0 in ΩC and σuC · n = 0 on Γ, then we
conclude uC = ρC .

4. Variational formulations. We can consider H-based formulations, or E-
based formulations. In our opinion, the simplest approach is in terms of H. We will
focus first on the electric port case; however, we do not present here Case C, which,
for a “hybrid” formulation which is related to the H-formulation, has been studied
in [6]. Then we will consider the internal conductor case, whose formulation is quite
similar, focusing in particular on Case F.

Electric ports: Voltage excitation, H-formulation. For Case A, the problem is as
follows: for each given V ∈ C find the unique solution H ∈ X to

(9)

∫
ΩC

σ−1 curlHC · curlwC +

∫
Ω

iωμH · w = V

∫
ΩC

gradφC · curlwC

for each w ∈ X, where

X := {w ∈ H(curl; Ω) | curlwI = 0 in ΩI}.

Then set EC := σ−1 curlHC − V gradφC in ΩC , and in ΩI define EI to be the
solution to

(10)

⎧⎪⎪⎨
⎪⎪⎩

curlEI = −iωμIHI in ΩI ,
div(εIEI) = 0 in ΩI ,
EI × nI = −EC × nC on Γ,
EI × n = 0 on ΓD.

Let us remark that the voltage excitation problem for Case B is trivial: in fact,
from (7) and the Stokes theorem we have∫

ΩC

gradφC · curlwC =

∫
ΓJ

curlwC · n =

∫
∂ΓJ

w · dτ = 0,

as w× n = 0 on ΓD. Therefore, for any V ∈ C we find H = 0; hence, we can assume
that V = 0 and set E = 0.

The well-posedness of problem (9) comes from the coerciveness in X of the
sesquilinear form

∫
ΩC

σ−1 curlHC · curlwC +
∫
Ω
iωμH · w.
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Instead, a delicate point here is the unique solvability of problem (10). In fact, as
is well known, boundary-value problems for the curl-div system in general need some
compatibility conditions to be satisfied in order to ensure the existence of a solution
and need suitable additional conditions to be imposed to guarantee its uniqueness;
some of these conditions are related to the nontrivial topology of ΩI .

More precisely, first one has to verify the conditions div(μIHI) = 0 in ΩI ,
divτ (EC × nC) = iωμIHI · nI on Γ, and μIHI · nI = 0 on ΓD.

It is possible to check that these conditions are satisfied by means of a suitable
choice of test functions in (9) (for a similar procedure, see, for instance, [3]). In fact,
the first follows from (9) taking as test function w = gradψ, ψ a smooth function with
a compact support in Ω (and in this way one also obtains μCHC ·nC+μIHI ·nI = 0 on
Γ, as, indeed, div(μH) = 0 in Ω). The second comes from the Faraday equation in ΩC ,
which is obtained by integration by parts, and the relation divτ (EC ×nC) = curlEC ·
nC . The last is obtained by taking as test function w = gradψ, with ψ ∈ H1(Ω).

Then one has to consider some spaces of harmonic fields. Concerning uniqueness,
it is clear that we are interested in requiring that the solution EI is orthogonal (with
weight εI) to the space

Hun
A (ΩI) := {η̂ ∈ (L2(ΩI))

3 | curl η̂ = 0,div(εI η̂) = 0,
η̂ × n = 0 on ΓD ∪ Γ}.

However, this space is trivial (namely, it contains only η̂ = 0). In fact, cutting ΩI

with a surface Ξ transversal to ΓD and Γ, an element η̂ of Hun
A (ΩI) in the set ΩI \ Ξ

is the gradient of a function p having a constant jump through Ξ. But, due to the
fact that grad p × n = 0 on ΓD ∪ Γ, a connected surface, p is constant on ΓD ∪ Γ,
and therefore its jump through Ξ is equal to 0. Thus η̂ is the gradient of a harmonic
function p with constant boundary value: hence p is constant in ΩI and η̂ = 0 in ΩI .

Existence is instead associated to the space

Hex
A (ΩI) := {η̂ ∈ (L2(ΩI))

3 | curl η̂ = 0,div η̂ = 0,
η̂ · n = 0 on ΓD ∪ Γ},

which, proceeding as before, is easily shown to be one-dimensional; let us denote by ρ̂I

its basis vector. For the solvability of problem (10) one has to satisfy the compatibility
condition

(11)

∫
ΩI

iωμIHI · ρ̂I +

∫
Γ

EC × nC · ρ̂I = 0,

which comes from (10)1 and (10)3 by integration by parts. This relation indeed follows
from (9) by choosing the test function wI = ρ̂I and wC = ρ̂∗, where ρ̂∗ ∈ H(curl; ΩC)
satisfies ρ̂∗×nI = ρ̂I ×nI on Γ, integrating by parts and using the Faraday equation
in ΩC .

In conclusion, (10) is uniquely solvable. It is important to remark that this is not
the case if one defines, as in [23], where the same formulation (9) has been proposed,
the electric field EC = σ−1 curlHC in ΩC : in that case, in fact, (11) is not satisfied,
and therefore it is not possible to determine EI .

It is worthwhile to note that (11) is indeed equivalent to the Faraday equation
on the surface Ξ that cuts the basic nonbounding cycle in ΩI . Hence, setting EC =
σ−1 curlHC leads to the violation of the Faraday equation on that surface.



VOLTAGE/CURRENT EXCITATION FOR EDDY-CURRENT MODELS 1487

Electric ports: Current intensity excitation, H-formulation. Let us start noting
that this problem does not have a meaning for Case B. In fact, one has

I =

∫
ΓJ

curlHC · n =

∫
∂ΓJ

H · dτ = 0,

as H × n = 0 on ΓD.
Therefore, we consider only Case A. The problem can be expressed in this way:

for each given I ∈ C find the unique solution (H, V ) ∈ X × C to

(12)

⎧⎨
⎩

∫
ΩC

σ−1 curlHC · curlwC +
∫
Ω
iωμH · w

− V
∫
ΩC

gradφC · curlwC = 0,∫
ΩC

gradφC · curlHC = I

for each w ∈ X, where X is as in (9). Then EC and EI are determined in the same
way as before. Let us also recall that, from (7), we have∫

ΩC

gradφC · curlHC =

∫
ΓJ

curlHC · n.

The well-posedness of problem (12) comes from the theory of saddle-point prob-
lems. In fact, the sesquilinear form

∫
ΩC

σ−1 curlHC ·curlwC +
∫
Ω
iωμH ·w is coercive

in X; moreover, since the unknown V ∈ C is a number, to show that the inf-sup con-
dition is satisfied it is enough to find w∗ ∈ X such that∣∣∣∣

∫
ΩC

gradφC · curlw∗
C

∣∣∣∣ > 0.

This can be done by taking the solution w∗
C to⎧⎨

⎩
curlw∗

C = σ gradφC in ΩC ,
divw∗

C = 0 in ΩC ,
w∗

C · n = 0 on ΓE ∪ ΓJ ∪ Γ

and the solution w∗
I to ⎧⎪⎪⎨

⎪⎪⎩
curlw∗

I = 0 in ΩI ,
divw∗

I = 0 in ΩI ,
w∗

I × nI = −w∗
C × nC on Γ,

w∗
I · n = 0 on ΓD.

Formulation (12) has been proposed also in [10] (for both Cases A and C). How-
ever, there EC = σ−1 curlHC , thus violating, for Case A, the Faraday equation on
the surface Ξ.

Electric ports: Voltage excitation, E-formulation. Having clarified that voltage ex-
citation is equivalent to a source V σ gradφC , the electric field formulation for Case A
is easily devised: for each given V ∈ C find E ∈ Y such that

(13)

∫
Ω

μ−1 curlE · curl z +

∫
ΩC

iωσEC · zC = −iωV

∫
ΩC

σ gradφC · zC

for each z ∈ Y , where

Y := {z ∈ H(curl; Ω) | div(εIzI) = 0 in ΩI , z × n = 0 on ∂Ω}.
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The existence of a solution E to problem (13) follows at once from what was
already proved for the H-formulation. Uniqueness is straightforward.

The magnetic field H is then determined in Ω as H = − 1
iωμ−1 curlE.

A formulation similar to (13) (but based on the source term V σ grad ΦC , the
function ΦC having been defined in Remark 3.1) has been presented in [23]. However,
there the electric field is not the solution to (13), but it is corrected, only in ΩC , by
adding V grad ΦC . Since a curl-free vector field in ΩI that has tangential component
on Γ equal to V grad ΦC ×n does not exist (again, this is related to the solvability of
problem (10)), this leads to the violation of the continuity of the tangential component
of E through the interface Γ and thus to the violation of the Faraday law.

Electric ports: Current intensity excitation, E-formulation. Since curlHC = σEC+
V σ gradφC , the variational formulation (for the sole Case A) now reads as follows:
for each given I ∈ C, find (E, V ) ∈ Y × C such that

(14)

⎧⎨
⎩

∫
Ω

μ−1 curlE · curl z +
∫
ΩC

iωσEC · zC
+ iωV

∫
ΩC

σ gradφC · zC = 0,∫
ΩC

gradφC · σEC + V
∫
ΩC

σ gradφC · gradφC = I

for each z ∈ Y .
As before, existence of a solution is ensured by the correspondent result for the

magnetic field H. Instead, uniqueness is a more delicate point. In fact, multiply-
ing (14)2 by iωU , where U ∈ C, we find∫

Ω
μ−1 curlE · curl z

+ iω
∫
ΩC

σ(EC + V gradφC) · (zC + U gradφC) = iωI U.

Thus, putting I = 0 and choosing z = E and U = V , we obtain curlE = 0 in Ω and
EC + V gradφC = 0 in ΩC . Since Ω is simply connected, we also have E = gradψ in
Ω, and the boundary condition E × n = 0 on ∂Ω gives ψ = const on ∂Ω. Therefore,
integrating EC on the path γ̂ joining ΓE to ΓJ , we find

0 =
∫
γ̂

gradψC · dτ =
∫
γ̂
EC · dτ ,

= −
∫
γ̂
V gradφC · dτ = −V.

Thus V = 0, and consequently E = 0.
Also in this case, the magnetic field H is obtained in Ω by setting

H = − 1

iω
μ−1 curlE.

Again, a formulation like (14) (but based on the source term V σ grad ΦC) has
been proposed in [23]. The remark at the end of the preceding subsection still applies.

Internal conductor: Voltage excitation, H-formulation. We have already made
explicit the “voltage rule”: applying a voltage is equivalent to considering a current
density Je,C = V σρC . Then, for the H-based formulation, Cases D and E can be
studied as in [3]. Let us focus on Case F.

The problem reads as follows: for each given V ∈ C find the unique solution
H ∈ X to

(15)

∫
ΩC

σ−1 curlHC · curlwC +

∫
Ω

iωμH · w = V

∫
ΩC

ρC · curlwC
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for each w ∈ X, where

X := {w ∈ H(curl; Ω) | curlwI = 0 in ΩI}.

Then set EC := σ−1 curlHC−V ρC in ΩC , and in ΩI define EI to be the solution
to

(16)

⎧⎪⎪⎨
⎪⎪⎩

curlEI = −iωμIHI in ΩI ,
div(εIEI) = 0 in ΩI ,
EI × nI = −EC × nC on Γ,
εIEI · n = 0 on ∂Ω.

Again, the main problem here is the solvability of (16). For the internal conductor,
this has been already done in [3], to which we refer the reader.

Let us also recall that the same variational formulation (15) has been proposed
in [20], [28], and [23]. However, there EC := σ−1 curlHC , leading to the violation of
the Faraday equation on the surface Λ cutting the basic nonbounding cycle of ΩI .

Internal conductor: Current intensity excitation, H-formulation. Let us start
focusing on Case F. Recalling (8), the problem is as follows: for each given I ∈ C

find the unique solution (H, V ) ∈ X × C to

(17)

⎧⎨
⎩

∫
ΩC

σ−1 curlHC · curlwC +
∫
Ω
iωμH · w

− V
∫
ΩC

ρC · curlwC = 0,∫
ΩC

ρC · curlHC = I

for each w ∈ X, where X is as in (15); then set EC := σ−1 curlHC −V ρC in ΩC and
determine EI as in (16).

The well-posedness of problem (17) comes from the theory of saddle-point prob-
lems. Taking into account what we have already presented for the electric port case,
it is enough to find w∗ ∈ X such that∣∣∣∣

∫
ΩC

ρC · curlw∗
C

∣∣∣∣ > 0.

This can be done by taking the solution w∗
C to⎧⎨

⎩
curlw∗

C = σρC in ΩC ,
divw∗

C = 0 in ΩC ,
w∗

C × nC = c0ρI × nC on Γ

and the solution w∗
I to ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

curlw∗
I = 0 in ΩI ,

divw∗
I = 0 in ΩI ,

w∗
I × nI = c0ρI × nI on Γ,

w∗
I × n = 0 on ∂Ω,∫

∂Ω
w∗

I · n = 0,

where c0 =
∫
ΩC

σρC · ρC . Here ρI is the basis function of the space

H(ΩI) := {η ∈ (L2(ΩI))
3 | curlη = 0,divη = 0,η · n = 0 on ∂Ω ∪ Γ},
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normalized by
∫
γ̃

ρI ·dτ = 1, where γ̃ is the basic nonbounding cycle entering the “han-
dle” of ΩC , and oriented consistently with the nonbounding cycle γ which runs in ΩC

(namely, each one is oriented counterclockwise with respect to the other). Note that
the existence of the solution w∗

C is a consequence of the relation
∫
Γ
(ρC ×nC) ·ρI = 1.

To complete the presentation, let us note that, if interested in considering Case
D, one has to substitute in (16) the boundary condition εIEI · n = 0 on ∂Ω with
EI × n = 0 on ∂Ω and add the condition

∫
∂Ω

εIEI · n = 0.
Instead, concerning Case E, one has to use in (17) the space

X := {w ∈ H(curl; Ω) | curlwI = 0 in ΩI ,wI × n = 0 on ∂Ω}.

Internal conductor: Voltage excitation, E-formulation. We are not going to give
details for this case. In fact, the “voltage rule” is telling us that we have only to
consider a current density Je,C = V σρC ; hence this formulation is easily devised (for
instance, for Cases D and E one can follow what was done in [5]). Moreover, the case
in which excitation is due to the current intensity can also illustrate the functional
framework to be used for the voltage excitation case (in this respect, see the first
equation in (18)).

Internal conductor: Current intensity excitation, E-formulation. The “current
intensity rule” says that the given current intensity I is generating not only the electric
field but also a current density V σρC . Moreover, we have curlHC = σEC + V σρC .
Then, the problem is as follows: for each given I ∈ C find (E, V ) ∈ Y × C such that

(18)

⎧⎨
⎩

∫
Ω

μ−1 curlE · curl z +
∫
ΩC

iωσEC · zC
+ iωV

∫
ΩC

σρC · zC = 0,∫
ΩC

ρC · σEC + V
∫
ΩC

σρC · ρC = I

for each z ∈ Y , where

Y :=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

{z ∈ H(curl; Ω) | div(εIzI) = 0 in ΩI ,
z × n = 0 on ∂Ω,

∫
∂Ω

εIEI · n = 0} for Case D,
{z ∈ H(curl; Ω) | div(εIzI) = 0 in ΩI ,

εIzI · n = 0 on ∂Ω} for Case E,
{z ∈ H(curl; Ω) | div(εIzI) = 0 in ΩI ,

εIzI · n = 0 on ∂Ω,divτ (z × n) = 0 on ∂Ω} for Case F.

As before, existence is a consequence of what was already proved for the H-
formulation. Concerning uniqueness, by proceeding as in the electric port case we find
curlE = 0 in Ω and EC = −V ρC in ΩC . Since Ω is simply connected, we also have
E = gradψ in Ω. Therefore, integrating EC on the cycle γ, we find

0 =
∫
γ

gradψC · dτ =
∫
γ
EC · dτ

= −
∫
γ
V ρC · dτ = −V.

Thus V = 0, and consequently E = 0.
Having solved (18), the magnetic field in Ω is as usual defined as

H = − 1

iω
μ−1 curlE.

A similar formulation has been proposed in [23], [8] (in the former paper, by

replacing the source V ρC by V grad Φ̃C , Φ̃C being a function jumping by 1 through



VOLTAGE/CURRENT EXCITATION FOR EDDY-CURRENT MODELS 1491

a section Σ of ΩC). However, in these papers the electric field is not the solution EC

to (18)1 but is corrected in ΩC by adding the source term. In this way the Faraday
law is no longer verified across the interface Γ.

The same remark applies for the voltage excitation problem of the preceding
subsection and the formulations proposed in [21], [23].

5. Numerical approximation. The variational formulations presented in the
preceding section can be used as a starting point for devising finite element methods
for approximating the solution.

In fact, the voltage excitation problem reduces to a standard problem with a
given current density (V σ gradφC or else V σρC); therefore, any method used for
eddy-current problems can be applied. Without any attempt at being complete, let
us mention only those proposed in [17], [9], [2], [4] for the H-formulation and in [27],
[11], [24], [25], [5] for the E-formulation (or for the related magnetic vector potential
formulation).

It is worthwhile to note that, when considering the H-formulation, it is not nec-
essary to construct the functions gradφC or ρC . In fact, to give an example for the
electric port case, one can proceed in this way: consider a fixed (and coarse) mesh in
ΩC , and let IC

∗ be the finite element interpolant taking value 0 everywhere, except
on ΓJ , where it has value 1. Then define φ∗ to be the solution to⎧⎨

⎩
div(σ gradφ∗) = −div(σ grad IC

∗ ) in ΩC ,
φ∗ = 0 on ΓE ∪ ΓJ ,
σ gradφ∗ · n = −σ grad IC

∗ · n on Γ.

Thus φC = IC
∗ + φ∗ in ΩC , and

∫
ΩC

gradφC · curlwC =
∫
ΩC

(grad IC
∗ + gradφ∗) · curlwC ,

=
∫
ΩC

grad IC
∗ · curlwC ,

as div curlwC = 0, φ∗ = 0 on ΓE ∪ ΓJ , and curlwC · n = 0 on Γ.

Therefore, we have verified that in the H-based variational formulations one can
substitute φC by the easily computable IC

∗ , and the solution H remains the same.
Clearly, the need to compute φC (namely, φ∗) comes into play again if one wants to
recover EC , which is given by

EC = σ−1 curlHC − V gradφC = σ−1 curlHC − V grad IC
∗ − V gradφ∗.

If the current intensity is given, the constraint
∫
ΩC

QC · curlHC = I has to

be added (here QC = gradφC or else QC = ρC). In the H-formulation, the volt-
age V plays the role of a Lagrange multiplier associated to this constraint, and the
global problem is a saddle-point problem. For any type of conforming finite element
discretization using edge elements in ΩC , the presence of this Lagrange multiplier
requires that an inf-sup condition like∣∣∣∣

∫
ΩC

QC · curlw∗
C,h

∣∣∣∣ ≥ β||w∗
h||X

is satisfied for a constant β > 0, independent of h, and a suitable discrete vector
function w∗

h.
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This can be done as follows (for instance, let us focus on the electric port case):
expressing gradφC in terms of grad IC

∗ , as done before, we have by integration by
parts and the Stokes theorem∫

ΩC
gradφC · curlw∗

C,h =
∫
ΩC

grad IC
∗ · curlw∗

C,h =
∫
ΓJ

curlw∗
C,h · n

=
∫
∂ΓJ

w∗
C,h · dτ =

∫
∂ΓJ

w∗
I,h · dτ .

Let us consider a fixed (and coarse) mesh in Ω, and let II
∗ be the finite element inter-

polant taking value 0 everywhere in ΩI , except on the cutting surface Ξ, transversal to
ΓD and Γ, where it has a double value, 0 on one side and 1 on the other side (following
the orientation of ∂ΓJ , that is, counterclockwise with respect to n on ΓJ). From now
on we consider triangulations that are all obtained as a refinement of the basic coarse
mesh in such a way that a discrete function on the coarse mesh is also a discrete func-
tion on all the other meshes. Then choose as w∗

I,h the (L2(ΩI))
3-extension of grad II

∗ ,

computed in ΩI \ Ξ; note that grad II
∗ × n is defined in a unique way on Ξ, as the

jump of II
∗ on Ξ is equal to 1. Finally, take as w∗

C,h the edge element interpolant, on
the coarse mesh in ΩC , of the value w∗

I,h × nI on Γ. It is easily checked that with

this choice
∫
∂ΓJ

w∗
I,h · dτ = 1 and that the norm ||w∗

h||X does not depend on h, and
therefore the inf-sup condition is satisfied.

Coming to the E-formulation, when the current intensity is assigned it takes a
nonstandard form: in fact, in (14) and (18) it is questionable if the sesquilinear forms
on the left-hand sides are coercive, and, on the other hand, the current intensity
condition is not a pure constraint, so that these problems are not saddle-point prob-
lems. In this paper we have proved existence and uniqueness of the solution for the
infinite dimensional case, but a complete analysis of a finite element approximation
method could be a more delicate point. However, this approach was used in [8] for an
axisymmetric problem, with good numerical performances.

Remark 5.1. When the current intensity is assigned, it is possible to devise an
alternative formulation in terms of a magnetic vector potential and an electric scalar
potential, with the Coulomb gauge. Namely, one looks for A and vC such that

μH = curlA in Ω, EC = −iωAC − grad vC in ΩC ,

with divA = 0 in Ω and A · n = 0 on ∂Ω.

Writing (14) and (18) in terms of these unknowns, and inserting the gauging term
as a penalization, as is usually done with this approach, one ends up with a sesquilinear
form that can be proved to be coercive (for similar computations, see [14], where the
analysis of the A − vC method is presented when the excitation is due to a given
current density Je).
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and O. Pironneau, eds., University of Jyvs̈kylä, Jyväskylä, Finland, 2004, http://www.mit.
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GLOBAL STABILITY OF VIRUS SPREADING IN COMPLEX
HETEROGENEOUS NETWORKS∗
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Abstract. Various networks are possessed of an obvious heterogeneity in the connectivity
properties, and it is of practical significance to study epidemic spreading in networks of this kind.
Pastor-Satorras and Vespignani established the dynamical mean-field reaction rate equations for the
spreading of infections in complex heterogeneous networks based on the well-known SIS model, and
figured out an epidemic threshold λc such that if λ (effective spreading rate) is above λc, the infection
spreads and becomes endemic. The significance of this result is far-reaching; however, the authors
have not found a strict mathematical proof of their conclusion in the literature. In this paper, we
approach this problem by proving that if λ is above λc, the infection spreads and approaches the
unique positive stationary point of the reaction rate equations as long as there exist infected nodes
in the network initially; i.e., the virus infection process is globally stable.
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1. Introduction. In recent years, complex networks have been widely researched,
with research mainly focused on network topology, network evolutionary models, net-
work dynamics, and empirical studies on real networks; see, e.g., [1, 2, 3]. Various
networks are complex heterogeneous networks, where there is an obvious heterogeneity
in the connectivity properties of network nodes. The node degree distribution of these
networks is found, through empirical studies, to follow power law, which implies an
unexpected statistical abundance of vertices, so-called hubs, with very large degrees.
Examples of such networks include the Internet [4], Reply Networks on Bulletin Board
System [5], the network of airline connections [6], and the web of sexual contacts [7],
just to list a few which are relevant to epidemic spreading. Thus, it is of practical
significance to study epidemic spreading on complex heterogeneous networks.

The extreme heterogeneity of real networks relevant to epidemic spreading implies
that traditional epidemiological models such as the SI model, SIS model, and SIR
model need scrutiny in the framework of complex heterogeneous networks, and it has
been discovered that in heterogeneous networks, these models behave much differently
from those in homogeneous ones [8, 6, 9, 10, 11]. The work done by Pastor-Satorras
and Vespignani is the famous representative research in this area, and they present a
detailed analytical and numerical study on the SIS model in the framework of complex
networks [10, 11].

In the SIS model, each node exists in only two discrete states, “healthy” or “in-
fected.” At each time step, the susceptible (healthy) node is infected with rate ν × k′

if it is connected to k′ infected nodes. At the same time, infected nodes are cured and
become again susceptible with rate δ. We define an effective spreading rate λ = ν/δ.
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Without loss of generality, we can set δ = 1. Since there exists a large difference
in the degree values of nodes in complex networks, and since nodes with different
degree values also have different probabilities of being connected to infected nodes, it
is therefore very inaccurate to describe a virus infection process in complex networks
with only one unifying dynamical reaction rate equation as in traditional epidemio-
logical models. Pastor-Satorras and Vespignani established the following dynamical
mean-field reaction rate equation based on the SIS model [10, 11]:

(1.1)
dρk(t)

dt
= −ρk(t) + λk[1 − ρk(t)]Θ(t), k = 1, 2, . . . , n, λ > 0,

where ρk(t) denotes the relative density of infected nodes with given degree k, k =
1, 2, . . . , n, n denotes the maximum degree values of all nodes, P (i) ≥ 0 denotes the

density of nodes with given degree i, Θ(t) = 〈k〉−1 ∑n
i=1 iP (i)ρi(t), and 〈k〉 denotes

the mean of degree values; i.e., 〈k〉 =
∑n

i=1 iP (i). For convenience, we call (1.1) the
Satorras–Vespignani (SV) rate equation.

The stationary point of the SV rate equation satisfies the following algebraic
equation:

(1.2) −ρk + λk (1 − ρk) 〈k〉−1
n∑

i=1

iP (i)ρi = 0, ρk ≥ 0.

Pastor-Satorra and Vespignani noticed the fact that if and only if λ > λc = 〈k〉
/
〈k2〉,

the SV rate equation allows a positive stationary point, and in this case, there exists
only one positive stationary point, where 〈k2〉 =

∑n
k=1 k

2P (k) denotes the second
order moment of the node degree distribution. By virtue of this fact, Pastor-Satorras
and Vespignani inferred that if λ > λc, the infection spreads and becomes endemic;
i.e., the SV equation is globally stable. However, so far as the authors know, no
current literature presents a theoretical proof of this conclusion.

In this paper, we give a detailed analytical solution to this problem. We prove
that if λ > λc and there exist infected nodes initially, i.e.,

∑n
i=1 iP (i)ρi(0) > 0, the

relative density of infected nodes with given connectivity k will approach the unique
stationary point of the SV rate equation, i.e., limt→∞ ρk(t) = ρk.

2. Global stability of epidemic spreading. Before stating and proving the
main theorem of this paper, we first prove the following lemma.

Lemma 1. Suppose that the initial relative infected densities 0 ≤ ρk(0) ≤ 1 satisfy∑n
i=1 iP (i)ρi(0) > 0; then as t > 0, the solution ρk(t) of (1.1) satisfies 0 < Θ(t) < 1,

0 < ρk(t) < 1.
Proof. By (1.1), Θ(t) satisfies the following equation:

(2.1)
dΘ(t)

dt
= −Θ(t) + λ 〈k〉−1

n∑
k=1

k2P (k)[1 − ρk(t)]Θ(t).

Since Θ(0) = 〈k〉−1 ∑n
i=1 iP (i)ρi(0) > 0, by virtue of the Picard–Lindelöf theorem on

existence and uniqueness of solutions of differential equations, we know that Θ(t) �= 0
for any t > 0; therefore, as t > 0, Θ(t) > 0.

Equation (1.1) can be rewritten as

(2.2)
dρk(t)

dt
= − [1 + λkΘ(t)] ρk(t) + λkΘ(t).
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Since Θ(t) > 0, we have

(2.3)
dρk(t)

dt
+ [1 + λkΘ(t)] ρk(t) > 0.

Multiplying the above inequality by exp[t + λk
∫ t

0
Θ(s)ds] and integrating from 0 to

t, we get

(2.4) ρk(t) > ρk(0) exp

[
−t− λk

∫ t

0

Θ(s)ds

]
≥ 0,

where t > 0.
On the other hand, it can be verified that the function 1 − ρk(t) satisfies the

equation

(2.5)
d [1 − ρk(t)]

dt
= − [1 + λkΘ(t)] [1 − ρk(t)] + 1.

Similarly to the above proof, we have 1 − ρk(t) > 0. Thus, as t > 0, it follows that
0 < ρk(t) < 1.

The above lemma signifies that if there are infected nodes in the network initially,
no matter how many and how distributed, then at any time after the infection process
starts, there will appear infected nodes with any given degree.

Now, we prove the main theorem of this paper.
Theorem 1. Suppose that the initial relative infected densities 0 ≤ ρk(0) ≤ 1

satisfy
∑n

i=1 iP (i)ρi(0) > 0 and that λ > 〈k〉
/〈

k2
〉
; then ρk(t), the solution of the SV

rate equation, satisfies limt→∞ ρk(t) = ρk, where ρ1, ρ2, . . . , ρn are the unique nonzero
stationary points of the SV rate equation.

Proof. In order to prove this theorem, we first prove that the limit limt→∞ ρk(t)
exists. For this purpose, we have to prove that

lim inf
t→+∞

ρk(t) = lim sup
t→+∞

ρk(t).

Letting u
(1)
k = 1, define the sequence

(2.6) u
(m+1)
k =

λk 〈k〉−1 ∑n
i=1 iP (i)u

(m)
i

1 + λk 〈k〉−1 ∑n
i=1 iP (i)u

(m)
i

, 1 ≤ k ≤ n, m = 1, 2, . . . .

According to Lemma 1, for 1 ≤ k ≤ n, lim supt→+∞ ρk(t) ≤ 1 = u
(1)
k . Applying

Proposition 2 in the appendix repeatedly, we obtain

(2.7) lim sup
t→+∞

ρk(t) ≤ u
(m)
k , 1 ≤ k ≤ n, m = 1, 2, . . . .

Consider the convergence of the sequence defined by (2.6). By (2.6), for all k, u
(2)
k ≤

1 = u
(1)
k . If, for all k, u

(m+1)
k ≤ u

(m)
k , it follows from (2.6) that

∀k, u
(m+2)
k =

λk 〈k〉−1 ∑n
i=1 iP (i)u

(m+1)
i

1 + λk 〈k〉−1 ∑n
i=1 iP (i)u

(m+1)
i

≤ λk 〈k〉−1 ∑n
i=1 iP (i)u

(m)
i

1 + λk 〈k〉−1 ∑n
i=1 iP (i)u

(m)
i

= u
(m+1)
k .(2.8)
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By induction, we know that for each k, the sequence u
(m)
k is decreasing, so its limit

exists and is denoted by uk = limm→∞ u
(m)
k . Leting m → ∞ on both sides of (2.6)–

(2.7), we deduce that uk = limm→∞ u
(m)
k satisfies the following relations:

−uk + λk (1 − uk) 〈k〉−1
n∑

i=1

iP (i)ui = 0,

lim sup
t→+∞

ρk(t) ≤ uk, 1 ≤ k ≤ n.(2.9)

On the other hand, we consider the function

(2.10) f(x) = 〈k〉−1
n∑

k=1

λk2P (k)x

1 + λkx
− x.

By simple calculations, we obtain

f(0) = 0,

f ′(0) = 〈k〉−1
n∑

k=1

λk2P (k) − 1

= λ 〈k〉−1 〈
k2
〉
− 1 > 0.(2.11)

By the definition of derivatives, if x > 0 is sufficiently small, then f(x) > f(0) = 0.

According to Proposition 1 in the appendix and (2.11), we can take l
(1)
k such that

(2.12) ∀k, 0 < l
(1)
k < lim inf

t→∞
ρk(t), f

(
〈k〉−1

n∑
i=1

iP (i)l
(1)
i

)
> 0.

We define the following sequence:

(2.13) l
(m+1)
k =

λk 〈k〉−1 ∑n
i=1 iP (i)l

(m)
i

1 + λk 〈k〉−1 ∑n
i=1 iP (i)l

(m)
i

, 1 ≤ k ≤ n, m = 1, 2, . . . .

By (2.12) and applying Proposition 2 in the appendix repeatedly, we have

(2.14) lim inf
t→+∞

ρk(t) ≥ l
(m)
k , 1 ≤ k ≤ n, m = 1, 2, . . . .

Now consider the convergence of the sequence defined by (2.13). First, according to
(2.10), (2.12), and (2.13), we have

(2.15) 〈k〉−1
n∑

k=1

kP (k)l
(2)
i > 〈k〉−1

n∑
i=1

iP (i)l
(1)
i .

By (2.13) and (2.15), we obtain

∀k, l(3)k =
λk 〈k〉−1 ∑n

i=1 iP (i)l
(2)
i

1 + λk 〈k〉−1 ∑n
i=1 iP (i)l

(2)
i

>
λk 〈k〉−1 ∑n

i=1 iP (i)l
(1)
i

1 + λk 〈k〉−1 ∑n
i=1 iP (i)l

(1)
i

= l
(2)
k .(2.16)
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If for all k, l
(m+1)
k > l

(m)
k , it follows from (2.13) that

∀k, l(m+2)
k =

λk 〈k〉−1 ∑n
i=1 iP (i)l

(m+1)
i

1 + λk 〈k〉−1 ∑n
i=1 iP (i)l

(m+1)
i

>
λk 〈k〉−1 ∑n

i=1 iP (i)l
(m)
i

1 + λk 〈k〉−1 ∑n
i=1 iP (i)l

(m)
i

= l
(m+1)
k .(2.17)

Thus, by induction, we know that, for each k, the sequence l
(m)
k , m ≥ 2, is increasing,

so its limit exists and is denoted by lk = limm→∞ l
(m)
k . Letting m → ∞ on both sides

of (2.13)–(2.14), we deduce that the limit lk = limm→∞ l
(m)
k satisfies the following

relations:

−lk + λk (1 − lk) 〈k〉−1
n∑

i=1

iP (i)li = 0,

lk ≤ lim inf
t→+∞

ρk(t), 1 ≤ k ≤ n.(2.18)

By (2.9) and (2.18), both uk = limm→∞ u
(m)
k and lk = limm→∞ l

(m)
k are positive

stationary points of the SV rate equation; thus by the uniqueness of the positive
stationary point of the SV rate equation, we have that uk = lk = ρk and

(2.19) ρk ≤ lim inf
t→+∞

ρk(t) ≤ lim sup
t→+∞

ρk(t) ≤ ρk, 1 ≤ k ≤ n.

That is, limt→∞ ρk(t) = ρk, and Theorem 1 is proved.
Theorem 1 indicates that if λ > 〈k〉

/
〈k2〉 and there exist infected nodes (no matter

how few) in the network initially, then after a duration of transitions between healthy
nodes and infected nodes, the infection process becomes stable and the relative density
ρk(t) of infected nodes with given degree k approaches the unique positive stationary
point of the SV rate equation.

3. Conclusions. In this paper, we present a strict proof of global stability of
dynamical mean-field reaction rate equations for the spreading of infections in complex
heterogeneous networks based on the well-known SIS model established by Pastor-
Satorras and Vespignani. According to our theorem, if the virus spread speed is
above the threshold (〈k〉

/
〈k2〉), then as long as there exist infected nodes in the

system, infections will spread, and the eventual proportion of infected nodes with
given degree is independent of the initial number of infected nodes; i.e., the infection
process is globally stable.

Appendix. Proof of two propositions. In the appendix, we will prove some
properties about the solution and stationary point of the SV rate equation:

(A.1)
dρk(t)

dt
= −ρk(t) + λk[1 − ρk(t)]Θ(t), k = 1, 2, . . . , n, λ > 0,

where Θ(t) = 〈k〉−1 ∑n
i=1 iP (i)ρi(t).

Proposition 1. Suppose that the initial relative infected densities 0 ≤ ρk(0) ≤ 1
satisfy

∑n
i=1 iP (i)ρi(0) > 0 and that λ > 〈k〉

/
〈k2〉; then the solution ρk(t) of (A.1)

satisfies inft≥0 Θ(t) > 0; for any τ > 0, inft≥τ ρk(t) > 0.
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Proof. According to Lemma 1, as t ≥ 0, Θ(t) > 0. By (2.1), we have

(A.2)
dΘ(t)
dt

Θ(t)
=

(
λ

〈
k2
〉

〈k〉 − 1

)
− λ 〈k〉−1

n∑
k=1

k2P (k)ρk(t).

It follows easily that

(A.3)
dΘ(t)
dt

Θ(t)
≥
(
λ

〈
k2
〉

〈k〉 − 1

)
− λnΘ(t).

We will prove that there exists t̄ > 0 such that as t ≥ t̄,

(A.4)

(
λ

〈
k2
〉

〈k〉 − 1

)
− λnΘ(t) <

(
λ
〈k2〉
〈k〉 − 1

)
2

.

First notice that there exists t̄ > 0 such that as t = t̄, (A.9) holds. Otherwise, for all
t > 0, the following holds:

dΘ(t)
dt

Θ(t)
≥
(
λ

〈
k2
〉

〈k〉 − 1

)
− λnΘ(t)

≥

(
λ
〈k2〉
〈k〉 − 1

)
2

.(A.5)

By integrating on both sides of (A.5), we have, for all t > 0,

Θ(t) ≥ Θ(0) exp

⎡
⎢⎢⎣
t

(
λ
〈k2〉
〈k〉 − 1

)
2

⎤
⎥⎥⎦ → ∞,

which contradicts Θ(t) < 1. So, there exists t̄ > 0, such that as t = t̄, (A.4) holds.
Now, we further prove that as t ≥ t̄, (A.4) holds. If this were not true, there would
exist t1 > t̄ such that

(A.6) t1 = inf

⎧⎪⎪⎨
⎪⎪⎩t > τ

∣∣∣∣∣∣∣∣
(
λ

〈
k2
〉

〈k〉 − 1

)
− λnΘ(t) ≥

(
λ
〈k2〉
〈k〉 − 1

)
2

⎫⎪⎪⎬
⎪⎪⎭ .

Thus, as 0 < t < t1, (A.4) holds, while as t = t1,

(A.7)

(
λ

〈
k2
〉

〈k〉 − 1

)
− λnΘ(t) =

(
λ
〈k2〉
〈k〉 − 1

)
2

.

By (A.3), we have

(A.8)
dΘ(t)

dt

∣∣∣∣
t=t1

≥ Θ(t1)

(
λ
〈k2〉
〈k〉 − 1

)
2

> 0.
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By the definition of derivatives, as t approaches t1 from the left of t1, Θ(t) < Θ(t1),
so (

λ

〈
k2
〉

〈k〉 − 1

)
− λnΘ(t) >

(
λ

〈
k2
〉

〈k〉 − 1

)
− λnΘ(t1)

=

(
λ
〈k2〉
〈k〉 − 1

)
2

,(A.9)

which contradicts the definition of t1, so, as t ≥ t̄, (A.4) holds. That is, as t ≥ t̄, the
following holds:

(A.10) Θ(t) >
1

2λn

(
λ

〈
k2
〉

〈k〉 − 1

)
.

By virtue of Lemma 1 and continuity of Θ(t), we have

(A.11) inf
t≥0

Θ(t) = min

[
inf

0≤t≤t̄
Θ(t), inf

t>t̄
Θ(t)

]
> 0.

We prove the second conclusion next. Letting σ = inft≥0 Θ(t), by (A.1), as t > 0,
the following holds:

dρk(t)

dt
= − (1 + λkΘ(t)) ρk(t) + λkΘ(t)

≥ − (1 + λk) ρk(t) + λkσ.(A.12)

Multiplying both sides of the above inequality by exp [(1 + λk) t] and taking integra-
tion, we have

ρk(t) ≥ exp [− (1 + λk) t] ρk(0)

+
λkσ

1 + λk
(1 − exp [− (1 + λk) t]) ,(A.13)

from which we know that, for any τ > 0, inft≥τ ρk(t) > 0.
The main theorem of this paper is proved by virtue of the following proposition.
Proposition 2. Suppose the solution ρk(t) of (A1) satisfies lim supt→+∞ ρk(t) ≤

uk and lim inft→+∞ ρk(t) ≥ lk, where uk ≥ 0, lk ≥ 0; then

lim sup
t→+∞

ρk(t) ≤
λk
〈k〉

∑n
i=1 iP (i)ui

1 + λk
〈k〉

∑n
i=1 iP (i)ui

,

lim inf
t→+∞

ρk(t) ≥
λk
〈k〉

∑n
i=1 iP (i)li

1 + λk
〈k〉

∑n
i=1 iP (i)li

.(A.14)

Proof. Since lim supt→+∞ ρk(t) ≤ uk, for all ε > 0, there exists τ > 0 such that
as t ≥ τ , ρk(t) ≤ uk + ε. According to Lemma 1, we have 1− ρk(t) > 0, so, by (A.1),
we know that, as t ≥ τ , the following holds:

(A.15)
dρk(t)

dt
≤ −ρk(t) + λk[1 − ρk(t)] 〈k〉−1

n∑
i=1

iP (i)(ui + ε).
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It follows easily that

dρk(t)

dt
≤ −

[
1 + λk 〈k〉−1

n∑
i=1

iP (i)(ui + ε)

]
ρk(t)

+ λk 〈k〉−1
n∑

i=1

iP (i)(ui + ε).(A.16)

It follows from (A.16) that

ρk(t) ≤
ρk(τ)

exp
{(

1 + λk 〈k〉−1 ∑n
i=1 iP (i)(ui + ε)

)
(t− τ)

}

+
λk 〈k〉−1 ∑n

i=1 iP (i)(ui + ε)

1 + λk 〈k〉−1 ∑n
i=1 iP (i)(ui + ε)

.(A.17)

Taking the limit as t → +∞, we obtain

(A.18) lim sup
t→+∞

ρk(t) ≤
λk 〈k〉−1 ∑n

i=1 iP (i)(ui + ε)

1 + λk 〈k〉−1 ∑n
i=1 iP (i)(ui + ε)

.

Letting ε → +∞, we obtain the first inequality in (A.14). The second inequality in
(A.14) can be proved similarly.
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ELECTRIC DISCHARGE SINTERING: A MATHEMATICAL MODEL∗

G. A. KRIEGSMANN†

Abstract. In this paper we mathematically model the densification of metallic powders and the
sintering of ceramic powders by electric discharge. The ordinary and partial differential equations
governing these processes are the same with the exception of the effective electrical conductivity.
This function is a monotonically decreasing (increasing) function of temperature for the metallic
(ceramic) powders. We employ asymptotic methods to approximate the solution to these equations
in the limit as ε → 0, where ε is the ratio of the discharge to diffusion time scales. We find on the
shortest time scale that the temperature, voltage, and density satisfy a system of nonlinear, coupled
ordinary equations. We solve these and find the relationship between the temperature and density,
as functions of the input energy. The results on the short or discharge time scale do not take into
account diffusion and heat loss into the surrounding medium. These occur on a much longer time
scale, which we identify and exploit to deduce a new approximation. On this time scale the capacitor
has no more energy to deposit into the powder. The temperature relaxes to that of its surroundings
and the density increases to its final value. Our results show the functional relationship between the
final density and the initial energy stored in the capacitor, as well as the initial density of the powder.

Key words. heat transfer, electric discharge, asymptotics, partial differential equations, differ-
ential equations

AMS subject classifications. 34E10, 34E13, 35K20, 78A30

DOI. 10.1137/070706689

1. Introduction. Over the last several years researchers have used electric dis-
charges to sinter ceramic materials and to compact metal powders [1, 2, 3]. The
experimental configurations have cylindrical dies, which contain a powdered material.
The green powders are compacted with punches which also act as electrodes through
which a short, powerful current pulse is passed. The source of the current is a capac-
itor bank that is charged to a few hundred volts and in some applications to metal
powders, 20 kilovolts [2]. In all cases the dies are surrounded by a thermally insulating
layer such as alumina, Al2O3. The short current pulse passing through the powder
rapidly heats it to a temperature at which the ceramic powder sinters or the metallic
powders meld together. A schematic of the experimental set-up is shown in Figure 1.

In this paper we introduce a mathematical model to describe this sintering or
densification process. Specifically, our model takes the form of a heat equation, a
Laplace equation describing the electric potential, and an evolution equation describ-
ing the densification of the powder. All of these equations are coupled and nonlinear.
In addition, there is a differential equation relating the change in the capacitor voltage
across the punches to the current flowing through them. Implicit in this mathemat-
ical description is the assumption that the powdered material can be treated as a
continuum.

Our mathematical model is very similar to the one developed and analyzed to
describe temperature surges in thermistors [4]. There are two obvious differences; the
first is the addition of the evolution equation for the density, and the second, the
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Fig. 1. Schematic of experimental set-up.

equation for the capacitor voltage. In reference [4] the external circuit was a battery
and resistor in series with the thermistor. More subtle and important differences are
the time scales. These produce different physical balances and hence different physics.
For example, the time scale describing the source in our heat equation is commensurate
with the capacitive discharge time scale; both are very small compared with the
diffusion time scale along the axis of the experimental device. In the thermistor model
the source and diffusion time scales are of the same order; the result is a nonlinear,
nonlocal heat equation.

Denoting the ratio of the source to diffusion time scales by ε, we perform an
asymptotic analysis of the solutions to our equations as ε → 0. Assuming that the
sintering dynamics occur on the same time scale as the source, our analysis shows
that the temperature, voltage, and density satisfy a system of three nonlinear ordinary
differential equations to leading order. These are analyzed, and the qualitative features
of the solutions are described. In particular, the capacitor voltage decays to zero, the
density reaches a maximum, and the temperature achieves a maximum, too; all depend
in a critical fashion on the initial energy stored in the capacitor. These results are
valid only on the source time scale which we call the heating regime. On the much
longer convective time scale, the thermal energy decays as the sample loses heat
to the surrounding medium through the metallic punches. In this span of time the
temperature of the sample decays to that of the surrounding environment. On this
time scale, diffusion plays a minor role, yielding an O(ε2) spatial variation along the
axis of the experimental device.

If the sintering or the densification dynamics occur on the convective time scale,
the results are more complicated. In the heating regime, the voltage again decays to
zero, the density remains at its initial value, and the temperature achieves a maximum.
This maximum depends upon the initial density and the initial energy stored in the
capacitor. These results again are valid only in the heating regime. On the convective
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time scale the density increases to its final value, and the temperature decays to that
of the surrounding medium. The final density depends critically upon its initial value
and the energy stored in the capacitor. Our results explicitly show this dependence.

We close this introduction by giving a brief outline of the paper. Section 2 contains
the mathematical formulation of our model. In section 3 a careful dimensional analysis
is given identifying the relevant time scales for our problem. Section 4 contains our
asymptotic analyses in both the heating and convective regimes. Here the time scale
associated with the sintering dynamics is taken to be commensurate with the source
time scale. In section 5 we present our analysis for the slow densification case. Here the
sintering time scale is commensurate with the convective time scale. Finally, section 6
contains our conclusions.

2. Problem formulation. In Figure 1 we show a schematic of an electro-
discharge consolidation experiment. The powder specimen to be densified is contained
in an electrically nonconducting cylinder, of radius R0 and height L, surrounded by a
layer of alumina. Two punches compress the powder through an external force F . The
punches also serve as electrodes connected to a capacitor charged to an initial voltage
V0 which can be on the order of a few hundred to several thousand volts. When the
switch is closed the capacitor discharges and creates a current, I, which flows through
the powder specimen. This rapidly heats the powder and causes it to sinter into a
dense material.

We model the compacted powder as a continuum with a temperature T , defined
inside the cylindrical region 0 < Z < L, 0 < R < R0, satisfying

(1a)
∂

∂t
[ρCp T ] = ∇ · (K∇T ) + σ(T )|∇Φ|2,

where ρ is an averaged density, Cp the thermal capacity, K the thermal conductiv-
ity, and σ the electrical conductivity of the powder, which all can depend upon the
temperature and the external force F , with the exception of Cp. In this equation Φ is
the electric potential, caused by the discharging capacitor, which satisfies in the same
region

(1b) ∇ · (σ∇Φ) = 0.

Denoting the voltage across the capacitor as V (t) and the current flowing from it as
I(t), we have from Kirchoff’s current law

(1c) C
dV

dt
= −I,

where C is the capacitance.
We shall now determine a relationship between the current, the temperature, and

the potential. First, we recall that the current density is defined by J = σ∇Φ, where
∇Φ is the electric field. Next, we assume that the R component of this current density
vanishes at R = R0, that is, σ ∂Φ

∂R = 0 there. This assumes no current flows out of
the powder into the insulation. Next, we integrate (1b) over the cylindrical domain
Z0 < Z < Z1, 0 < R < R0, where Z0 and Z1 are arbitrary, apply the divergence
theorem, and use ΦR = 0 at R = R0 to obtain∫∫

Z=Z1

σ
∂Φ

∂Z
dX dY =

∫∫
Z=Z0

σ
∂Φ

∂Z
dX dY.



1506 G. A. KRIEGSMANN

This shows that the integral of σΦZ , the Z component of the current density, is
independent of Z and hence a constant. This constant is the current in (1c) and is
defined by

(1d) I =

∫∫
Ω

σ
∂Φ

∂Z
dX dY,

where Ω is an arbitrary circular cross-section of the powder sample.
Finally, to close these equations we must model the evolution of the powder

density as it sinters. We assume the phenomenological equation

(1e)
∂ρ

∂t
= G(T )[ρ1 − ρ]

qualitatively describes this evolution [5], where the reaction rate G depends upon
temperature and ρ1 is the bulk density for a single species powder, or an average bulk
density of a multispecies powder.

The boundary conditions we apply are

(2a)
∂T

∂R
= 0,

∂Φ

∂R
= 0, R = R0, 0 < Z < L,

where the first assumes a perfect thermal insulation and the second is a restatement
that no current flows radially out of the sample,

(2b) Φ(X,Y, 0, t) = 0, Φ(X,Y, L, t) = V (t),

which relates the potential to the capacitor voltage, and
(2c)

K
∂T

∂Z
−h(T−TA) = 0, Z = 0, K

∂T

∂Z
+h(T−TA) = 0, Z = L, 0 < R < R0.

Here, we thermally model the punches by a linear Newton law of cooling where TA

is the ambient temperature of the surrounding air and h is the effective heat transfer
coefficient. This boundary condition removes the need to study heat diffusion in the
punch and ultimately heat convection from the punch into the surrounding medium.
It is valid when the mass of the punch is small and its thermal conductivity is large.
Such are the cases in [1, 2, 3].

Finally, the initial conditions required are

(2d) T = TA, 0 < R < R0, 0 < Z < L, V (0) = V0, ρ(0) = ρ0(F ),

where V0 is the initial voltage of the charged capacitor and ρ0(F ) is the initial density
of the powder which depends upon the forces on the punches.

3. Nondimensional analysis. We begin this section by introducing the dimen-
sionless dependent and independent variables

(3a) u =
T

TA
− 1, φ =

Φ

V0
, v =

V

V0
, i =

I

σAV0L
, w =

ρ

ρ1

and

(3b) τ =
t

θS
, x =

X

L
, r =

R

L
,
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respectively. Here and henceforth, the subscript A denotes that a function is evaluated

at the ambient temperature, and θS =
Cpρ1TAL2

σAV 2
0

is the time scale associated with the

capacitive source. We also define the dimensionless functions

(3c) k(u) =
K(T )

KA
, f(u) =

σ(T )

σA
, g(u) =

G(T )

GA
.

Introducing (3a)–(3c) into (1a)–(1e) and combining (1c) and (1d), we find that
our dimensionless equations are

∂[wu]

∂τ
= ε∇ · (k∇u) + f(u)|∇φ|2, 0 < z < 1, 0 < r < r0 =

R0

L
, τ > 0,(4a)

∇ · (f∇φ) = 0, 0 < z < 1, 0 < r < r0, τ > 0,(4b)

dv

dτ
= −λ

∫∫
r<r0

f(u)
∂φ

∂z
dx dy,(4c)

∂w

∂τ
= γg(u)(1 − w).(4d)

Here we have defined three new parameters, each a ratio of time scales. The first is
λ = θS/θC , where θC = C/σAL is the capacitive time scale. The second is γ = θSGA.
We assume here that both these parameters are order one quantities. On the other
hand, the third parameter ε = θS/θZ << 1, where θZ = ρ0Cp/KAL

2 is the diffusive
time scale in the Z direction. That is, we are assuming that heat diffuses much more
slowly than the source time scale. The corresponding boundary conditions become

∂u

∂r
= 0,

∂φ

∂r
= 0, r = r0, 0 < z < 1,(5a)

φ(x, y, 0, τ) = 0, φ(x, y, 1, τ) = v(t), 0 < r < r0,(5b)

k(u)
∂u

∂z
−Bu = 0, z = 0, k(u)

∂u

∂z
+ Bu = 0, z = 1.(5c)

In (5c) the Biot number is defined by B = θZ/θcon, where θcon = ρ1CpL/h is the
convective time scale at which the sample cools. The Biot number is also a small
parameter for L ∼ several centimeters. We relate it to ε by B = βε, where β =
(θZ/θcon)(θZ/θS) = O(1). Finally, the dimensionless initial conditions are

(5d) u = 0, 0 < r < r0, 0 < z < 1, v(0) = 1, w(0) =
ρ0(F )

ρ1
.

Equations (4)–(5) constitute our dimensionless initial boundary value problem.

4. Analysis. This section contains two parts. In the first we analyze the evo-
lution of u, v, and w on a time scale where τ = O(1). In this time frame diffusion
and convective heat losses play a minor role as the powder sample rapidly heats. We
shall provide a leading order asymptotic analysis of our problem. This result becomes
nonuniform for large τ when diffusion and convection become important. The analysis
on a much larger time scale is the subject of the second part of this section.
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4.1. The heating regime. We begin our analysis with the observation that the
boundary data and initial conditions are all independent of r and the angle θ. Thus,
we shall seek a solution of (4)–(5) that depends only upon z and τ . Accordingly,
(4a)–(4c) become

∂[uw]

∂τ
= ε

∂

∂z

(
k
∂u

∂z

)
+ f(u)

∣∣∣∣∂φ∂z
∣∣∣∣
2

, 0 < z < 1, τ > 0,(6a)

∂

∂z

(
f(u)

∂φ

∂z

)
= 0, 0 < z < 1, τ > 0,(6b)

dv

dτ
= −Λf(u)

∂φ

∂z
,(6c)

where Λ = πr2
0λ. Equation (4d) remains the same as do the boundary and initial

equations, except now (5c) is replaced by

(6d) k(u)
∂u

∂z
− βεu = 0, z = 0, k(u)

∂u

∂z
+ βεu = 0, z = 1.

We now exploit the smallness of the parameter ε and seek an asymptotic solution
of the form

u ∼ u0 + εu1 + ε2u2 + · · ·(7a)

φ∼φ0 + εφ1 + ε2φ2 + · · ·(7b)

v ∼ v0 + εv1 + ε2v2 + · · ·(7c)

w ∼ w0 + εw1 + ε2w2 + · · · .(7d)

Inserting these expansions into our equations, boundary, and initial conditions, we
find to leading order that u0, v0, φ0, and w0 satisfy

∂[u0w0]

∂τ
= f(u0)

∣∣∣∣∂φ0

∂z

∣∣∣∣
2

,
∂u0

∂z
= 0, z = 0, 1, u0(z, 0) = 0,(8a)

∂

∂z

(
f(u0)

∂φ0

∂z

)
= 0, φ0(0, τ) = 0, φ(1, τ) = v(τ), τ > 0,(8b)

dv0

dτ
= −Λf(u0)

∂φ0

∂z
, v0(0) = 1,(8c)

∂w0

∂τ
= γg(u0)(1 − w0), w0(0) =

ρ0(F )

ρ1
.(8d)

We now integrate (8b) twice and employ the boundary conditions at z = 0 and
z = 1 to find

φ0 = v0(τ)
Q(z)

Q(1)
, Q(z) =

∫ z

0

1

f(u0)
dz′.

Now from this result we observe that ∂φ0

∂z = v0/f(u0)Q(1), which is independent of
z. Thus, the right-hand side of (8a) is independent of z, too, and this implies that u0

and w0 are functions of τ alone. This observation yields

(9) φ0 = z v0(τ),
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and upon inserting this result into (8a), (8c), and (8d) we arrive at the third order
system of ordinary differential equations

d[u0w0]

dτ
= f(u0)v

2
0 , u0(0) = 0,(10a)

dv0

dτ
= −Λf(u0)v0, v0(0) = 1,(10b)

dw0

dτ
= γg(u0)[1 − w0], w0(0) =

ρ0(F )

ρ1
.(10c)

We next divide (10a) by (10b), integrate this result, and use the initial conditions
to obtain the first integral

(11) v2
0 = 1 − 2Λu0w0.

Combining this with (10a), differentiating the left-hand side, and using (10c) to elim-
inate the derivative of w0, we find

(12)
du0

dτ
=

1

w0
{(1 − 2Λu0w0)f(u0) − γu0g(u0)(1 − w0)}, w0(0) =

ρ0(F )

ρ1
,

and this combined with (10c) yields a second order system, which describes the leading
order heating process.

We begin by noting that f(u) is a positive function; it may increase or decrease
with u depending upon the powdered material. If we assume for the moment that g(u)
is also a positive function, then a simple phase plane analysis of our system reveals
that u0 and w0 both evolve from their initial conditions (0, ρ0/ρ1) to their steady state
values (u∗

0, w
∗
0), where u∗

0 = 1/2Λ and w∗
0 = 1, as τ → ∞. Coupling this information

with (10b) it is easy to deduce that v0 decreases monotonically from its initial value
of 1 to its steady state v∗0 = 0 as τ → ∞. It is interesting to note that the final state is
independent of the dimensionless electrical conductivity f(u) and the dimensionless
reaction rate g(u). These functions will of course affect the rate at which u0, w0, and
v0 approach their steady state values.

A more physically realistic assumption about the function g(u) is to require it
to vanish for u < uT and increase monotonically and smoothly for u > uT . Here uT

denotes a dimensionless threshold temperature. This characterization is equivalent
to assuming that no sintering or densification occurs below this temperature. For
simplicity and concreteness of presentation we take

g(u) =

{
0, 0 ≤ u < uT ,

tanh2(ν(u− uT )), uT ≥ u,

where ν controls how rapidly g switches. For this choice of g, or any other smooth
switching function, there will be two cases to consider: low power, where 1

2Λ < uT ,
and high power, where 1

2Λ > uT .
We begin by considering the high power case. Figure 2a shows two trajectories

for different values of w0(0) = ρ0/ρ1. Both trajectories remain horizontal, where w0

is essentially fixed at its initial value, until they cross the threshold uT , where w0

increases with u0. This continues until the right-hand side of (12) changes sign and u0

decreases with increasing w0. The functions u0 and w0 then approach the steady state
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Fig. 2a. Phase plane: High power.
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Fig. 2b. Phase plane: Low power.

values, u∗
0 = 1/2Λ and w∗

0 = 1, respectively. The function v0 converges to v∗0 = 0, as
can be deduced from (11).

We next consider the case of low power, where the dynamics are more interesting.
Figure 2b also shows two trajectories for different values of w0(0). For the larger
initial condition the trajectory never crosses the threshold temperature uT , remains
horizontal, and approaches the hyperbola w0 = 1/2Λu0 as τ → ∞. There w∗

0 = w0(0)
and u∗

0 = 1/2Λw0(0). The trajectory for the lower initial condition remains horizontal
until it crosses uT , where w0 increases with u0. This continues until the right-hand side
of (12) changes sign and u0 decreases with increasing w0. The trajectory approaches
its steady state on the hyperbola where u∗

0 = uT and w∗
0 = 1/2ΛuT . Again, we deduce

from (11) that v∗0 = 0.

In closing this subsection we express the final state of the system in terms of
its dimensional quantities. We first consider the high power case 1/2Λ > uT or, in
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dimensional terms,

1

2

CV 2
0

ρ1CpVS
> TT − TA.

Here, TT is the threshold temperature, VS is the volume of the sample, and 1
2CV 2

0

is the total energy initially stored in the capacitor. The steady state values of the
density and temperature for this case are

(13a) ρ∗ = ρ1w
∗
0 = ρ1

and

(13b) T ∗ = TA(1 + u∗
0) = TA +

1

2

CV 2
0

ρ1CpVS
,

respectively. The result (13a) is intuitively obvious, but (13b) is not. It states that
the increase in the system’s temperature above its ambient value depends very little
upon the physical properties of the powder sample. In fact, it depends only upon the
volume of the sample, the final density ρ1, and the total energy initially stored in the
capacitor.

In dimensional terms, the low power case occurs when

1

2

CV 2
0

ρ1CpVS
< TT − TA.

If the initial density ρ0 is sufficiently large, then, according to Figure 2b, the density
remains constant and the temperature increases to 1

2Λw0(0)
. In terms of dimensional

quantities, the steady state density and temperature are

(13c) ρ∗ = ρ1w0(0) = ρ0

and

(13d) T ∗ = TA +
1

2

CV 2
0

ρ0CpVS
,

respectively. The only difference between this final temperature and the one given for
higher power (13b) is the presence of ρ0 in the denominator. Finally, if the initial
density is low enough, then the system evolves along the lower trajectory shown in
Figure 2b. The steady state density and temperature are now given by

(13e) ρ∗ = ρ1
1

2ΛuT
=

ρ1

2

{
CV 2

0

ρ1CPVS

}
1

TT − TA

and

(13f) T ∗ = TA(1 + uT ) = TT ,

respectively, where it must be recalled that the low power constraint implies ρ∗ < ρ1.
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4.2. The cooling period. The analysis in the preceding section was concerned
with times on the order of θS , the source time scale. Convective heat losses, modeled by
Newton’s law of cooling, are unimportant here. However, they do become important
on a much longer time period where the powder sample cools back to the ambient
temperature, TA. We can analyze this behavior by introducing the long time scale
t̄ = ε2τ . In dimensional terms, this t̄ = t/βθcon; that is, we are now considering the
temperature evolution on the convective time scale. Inserting this change of variable
into (6a) gives

(14a) ε
∂

∂t̄
(uw) =

∂

∂z

(
k
∂u

∂z

)
+

1

ε
S(z, t̄), 0 < z < 1, t̄ > 0,

where the source S is defined by S = f(u)|∂φ∂z |2. The source term can be simplified
by integrating (6b) twice and using the boundary conditions (5b) to obtain φ =
v(τ)Q(z)/Q(1), where now Q(z) =

∫ z

0
1

f(u) dz
′. Differentiating this result with respect

to z and replacing τ by t̄/ε2, we find that the source term becomes

(14b) S(z, t̄) =
v2(t̄/ε2)

f(u)Q2(1)
.

Now, on the cooling time scale t̄ = O(1), which implies that the argument of
v in (14b) is very large; alternatively, τ >> 1. But for large values of τ we have
shown that v ∼ v0 → 0 exponentially. Thus, the S/ε is negligible and (14a) becomes
a homogeneous diffusion equation on this time scale. Also, by inserting τ = t̄/ε2 into
(14) and letting ε → 0 we obtain γg(u){1−w} = 0. This is satisfied in both the high
and low power cases. In the former, w ∼ w∗

0 = 1. In the latter, u ∼ u∗
0 ≤ uT so that

g = 0.
Taking the facts that S = 0 and w = w∗

0 into consideration, we find that u satisfies

(15a) εw∗
0

∂

∂t̄
(u) =

∂

∂z

(
k
∂u

∂z

)
, 0 < z < 1, t̄ > 0.

In addition to this equation u must still satisfy the boundary conditions (6c) at z = 0
and z = 1. Finally, an initial condition must be prescribed to close the initial boundary
value problem for u. Intuitively, this is given by the large τ value of u0, namely,

(15b) u|t̄=0 = u∗
0.

We note here that the arguments of this paragraph can be put on more formal grounds
by asymptotically matching the long time behavior of the solution on the heating time
scale with the short time behavior of the solution on the cooling time scale.

We now proceed to find the behavior of u(z, t̄) as ε → 0. As usual, we take

u ∼ U0(z, t̄) + εU1(z, t̄) + ε2U2(z, t̄) + · · ·

and insert this expression into (15) and (6c). Equating to zero the coefficients of the
powers of ε yields a sequence of initial boundary value problems. The leading order
problem is

(16)
∂

∂z

(
k
∂U0

∂z

)
= 0, 0 < z < 1, k

∂U0

∂z
= 0, z = 0, 1, U0(z, 0) = u∗

0.
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Integrating this equation once and applying the boundary conditions, we find that
U0(z, t̄) = U0(t̄), a function of t̄ alone.

The first order correction U1 satisfies

(17a)
∂

∂z

(
k
∂U1

∂z

)
= w∗

0

dU0

dt̄
, 0 < z < 1, U1(z, 0) = 0,

and the inhomogeneous boundary conditions

(17b) k
∂U1

∂z
= βU0, z = 0, k

∂U1

∂z
= −βU0, z = 1.

Integrating the equation in (17a) between z = 0 and z = 1 and applying the boundary
conditions in (17b), we find that U0 satisfies the ordinary differential equation dU0

dt̄ =

−2 β
w∗

0
U0. The solution of this equation satisfying the initial condition in (16) is

(18) U0 = u∗
0e

−2 β
w∗

0
t̄
.

The result given in (18) is the leading order approximation to u on the cooling
time scale. For the high power case the result in terms of dimensional quantities
becomes

(19a) T ∼ TA +
1

2

CV 2
0

ρ1CpVS
e−2t/θcon ,

which explicitly shows that the temperature decays back to its ambient value on the
cooling time scale θcon. This scale depends upon the punches’ ability to lose heat to
their surroundings. For the low power, high initial density case we have

(19b) T ∼ TA +
1

2

CV 2
0

ρ1CpVS
e−2

ρ1
ρ0

t/θcon ,

and for the low power, low initial density case,

(19c) T ∼ TA +
1

2

CV 2
0

ρ1CpVS
e−2 ρ∗

ρ0
t/θcon .

In (19c) the final density ρ∗ is given in (13e). It is interesting to note that the low
power cases decay more quickly to the ambient temperature than the high power
scenario.

5. Slow sintering. Up until now, we have taken the dimensionless parameter γ,
appearing in (4d), as an O(1) quantity. That is, we have assumed that sintering occurs
on the source time scale, τ . In this section we investigate the case where this process
occurs on the much longer cooling time scale, t̄. This assumption implies that γ = γ0ε

2,
where γ0 is now an order one quantity.

The heating regime analysis proceeds as before, the only difference being that
(10c) is replaced by

(20)
dw0

dτ
= 0, w0(0) =

ρ0(F )

ρ1
,

from which it follows that w0 = ρ0(F )
ρ1

; that is, the density remains a constant

on the source time scale. Equations (11) and (12) still remain the same. However,
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u0 → u∗
0 = 1

2Λw0
as τ → ∞. Thus, the final temperature in the heating regime de-

pends upon w0. In terms of dimensional quantities, (13b) is now replaced by

(21) T ∗ = TA(1 + u∗
0) = TA +

1

2

CV 2
0

ρ0(F )CpVS
.

Since ρ1/ρ0 > 1, the final temperature is higher in this case, although increasing the
external force F on the punches diminishes the difference. Finally, we observe that v0

still satisfies (11) and hence approaches zero as τ → ∞.
The cooling period analysis again proceeds as before. Equation (15) is now re-

placed by

(22a) ε
∂(uw)

∂t̄
=

∂

∂z

(
k
∂

∂z
u

)
, u|t̄=0 =

1

2Λw0
,

and equation (4d) by

(22b)
dw

dt̄
= γ0g(u)(1 − w), w|t̄=0 = w0 =

ρ0(F )

ρ1
,

where we have replaced γ by γ0ε
2 and changed the time variable to t̄. The temperature

u still satisfies the boundary conditions contained in (6c).
We now expand both u and w in the asymptotic series u ∼ U0 + εU1 + . . . and

w ∼ W0 + εW1 + . . ., respectively, and perform the same analysis as in section 4.2.
We find to leading order that U0 and W0 satisfy the ordinary differential equations
and initial conditions

d

dt̄
W0 = γ0g(U0) (1 −W0), W0(0) =

ρ0(F )

ρ1
,(23a)

d

dt̄
U0 = − 1

W0
{2βU0 + γU0g(U0)(1 −W0)}, U0(0) =

1

2ΛW0(0)
.(23b)

Equation (23a) is the same as (10c), and (23b) is similar to (12). The difference in
the latter is the new initial condition and the change in its right-hand side.

We again have the high and low power cases to consider, 1
2Λ ≥ uT and 1

2Λ ≤ uT ,
respectively. The phase plane with typical trajectories is shown in Figure 3a for the
former case. These trajectories begin on the hyperbola W = 1/2ΛU and flow to the
left with U0 decreasing and W0 increasing. When this curve crosses U0 = uT , it
becomes horizontal, W0 remains constant, and U0 approaches zero. The final state is
then U∗

0 = 0 and W ∗
0 = ψ(W0(0)), where ψ denotes the function mapping the initial

data to its final state. This function is shown in Figure 3b for different values of Λ.
Since 1/Λ is proportional to the power initially stored in the capacitor, i.e., CV 2

0 , our
results show that higher power levels produce higher densification.

The trajectories for the low power case are shown in Figure 4a, each again begin-
ning on the hyperbola. If the initial density is large enough, the trajectory remains
horizontal, U0 monotonically decreases, and W0 = ρ0/ρ1. If the initial density is suffi-
ciently low, then W0 initially increases and U0 decreases until the threshold U0 = uT

is crossed. After this time W0 remains fixed and U0 approaches zero as t̄ → ∞.
The final density W ∗

0 for the lower power case is also a function of the initial
density W0(0), i.e., W ∗

0 = ψ(W0(0)). This function is shown in Figure 4b for several
values of Λ. Again, higher power levels for a given initial density produce more den-
sification. However, for densities sufficiently large, the temperature is lower than the
threshold and no sintering occurs. This is born out in the linear behavior of ψ as a
function of ρ0/ρ1.
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Fig. 3a. Phase plane: High power.
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Fig. 3b. Final density: High power.

6. Conclusion. We have developed a model to describe a class of experiments
that use an electric discharge to sinter or compact ceramic and metallic powders,
respectively. Our mathematical description begins with the heat equation, Laplace’s
equation, and an evolution equation describing the densification of the powder. All
these equations are coupled and nonlinear and have appended to them the appropriate
initial and boundary conditions.

We have performed an asymptotic analysis to approximate the solutions of these
equations. The appropriate small parameter is the ratio of the source to diffusion
time scales. Our analysis shows that the leading order temperature, voltage across
the sample, and relative density satisfy a third order system of nonlinear, ordinary
differential equations. These are analyzed for a particular densification rate which
possesses a temperature threshold, below which sintering or densification does not
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occur. In particular, we have identified a critical power below which no densification
occurs. We have presented a physical interpretation of our results.

The results described above are valid only on the source time scale where diffusion
and heat loss to the surrounding environment are unimportant. We have identified a
much longer convective time scale on which the heated powder sample loses energy
through the punches to the surrounding medium. We have analyzed our equations
on this time scale and found that the temperature decays back to its ambient value.
The rate depends upon the energy initially stored in the capacitor as does the final
density.

All of the preceding results are based on the assumption that the time scale
associated with the densification rate is commensurate with the source time scale.
We have also modified our analysis to take into account a much slower densification
process that occurs on the convective time scale. During the initial heating of the
powder, the temperature evolves to a steady state that depends upon the initial
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density and the energy stored in the capacitor. The density remains at its initial
value. Then on the long convective time scale the temperature decays back to its
ambient value and the density increases to its final value. This value depends upon
the initial density and the energy stored in the capacitor.

We note that our model assumes that the die, which holds the powder sample,
is perfectly insulated. If this restriction is removed, then ultimately heat will escape
through the cylindrical sides. If the time scale associated with this process is com-
mensurate with the other convective time scales, then a refined theory can be derived.
Finally, we observe that heat conduction in the punches will become important when
the experimental apparatus becomes larger and the punches more massive. Indeed, if
the punches are massive enough, the temperature in them is TA, the ambient value,
and (6c) is replaced by u = 0 at z = 0 and z = 1. This and (6a) strongly suggest that
boundary layers occur at the ends of the sample, and through them heat is transferred
into the punches. This and the incorporation of more complicated die structures are
topics of ongoing research.
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NUMERICAL TESTS OF A PHASE FIELD MODEL WITH SECOND
ORDER ACCURACY∗
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Abstract. Numerical computations are performed for a recently derived phase field model for
the interface between two phases. The rigorous results indicate that solutions to this new phase field
model should converge more rapidly than traditional ones to solutions of the corresponding sharp
interface (free boundary) formulation for sufficiently small values of the approximation parameter
ε representing the thickness of the interfacial region. In particular, the distance between the sharp
interface of the limiting model and the zero level set of the phase function in the phase field model is
of order ε2 rather than ε. Numerical computations within a three-dimensional spherically symmetric
setting compare the computed solutions of this new model with the known exact solutions for the
limiting free boundary problem and confirm the second order accuracy predictions of the theory
for sufficiently small ε. The sets of parameters include those of succinonitrile used in dendritic
experiments.

Key words. phase field model, matched asymptotic expansion, second order accuracy
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1. Introduction. Phase field models are now established as one of the most
popular approaches for the computation of various types of dynamical phase transition
models and problems with moving interfaces [4, 12, 13, 19, 20, 21, 22, 23, 35].

From the perspective of numerical simulation, these models can be interpreted as
approximations of free boundary problems by problems without explicit interface con-
ditions. This simplifies the numerical implementation of the model and, in particular,
renders possible the application of standard software packages for partial differen-
tial equations (PDEs) to free boundary problems without implementing special front
tracking and difficult treatment of topological change techniques. The required res-
olution for the diffuse interface that arises in the phase field models can be achieved
by adaptive mesh refinement, a feature that is typically available in modern software
packages.

Although the phase field (diffuse interface) approach can be used within a number
of physical applications, many of the key ideas can be understood in terms of the two-
phase problem with surface tension and kinetic undercooling. Starting with the free
boundary approach for this physical problem, we consider a material in a spatial region
Ω ⊂ R

n (n � 1) that can be in either of two phases (e.g., liquid or solid) separated
by an interface, Γ(t). Hence the mathematical problem consists of determining both
the temperature T (x, t) and the interface Γ(t) from the system, in its full dimensional
form,
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(1.1)

⎧⎪⎪⎨
⎪⎪⎩

(ρ c T )t = div(K∇T ) in Ω\Γ(t),

ρ � vn = [[K∇T · n ]]−+ on Γ(t),

T = TE − σ
[s]E

{κ + α vn} on Γ(t),

with � and c as the latent heat and heat capacity per unit mass, K the diffusivity, ρ
the density, TE the equilibrium freezing temperature, [s]E (energy/(volume · degree))
the entropy difference per volume, σ (energy/area) the surface tension, and α the
strength of kinetic undercooling. The unit normal, sum of principal curvatures, and
velocity of the interface are given by n, κ, and vn, while [[· · ·]]+− denotes the difference
in the limits from the two sides of the interface.

The history of this problem dates back to 1831 when Lamé and Clapeyron [25]
studied the freezing of the ground using (1.1) with T = TE replacing the third equation
in (1.1). Reformulated in 1889, it became known as the classical Stefan problem [34].
It has the appealing mathematical feature that the temperature, T (x, t), determines
the phase at each point (x, t). By definition, T (x, t) > TE implies that the material is
liquid at that point (or, more generally, in the phase with the higher internal energy),
while T (x, t) < TE means that it is solid, and T (x, t) = TE defines the interface Γ(t).
Thus, the condition that T (x, t) = TE at the interface appears to be mathematically
convenient. Nevertheless, the mathematical study of classical solutions to the Stefan
model posed difficult challenges. Modern analysis (e.g., [26, 31]) converts (1.1) (with
σ = 0) to the single equation [e(u)]t = DΔu, where u is a scaled temperature, e(u) is
proportional to internal energy, and D = K/(ρc) is the heat diffusion coefficient. Since
phase is assumed to be determined by temperature, one can write e(u) = u + H(u)
with H the Heaviside function.

Materials science research (e.g., [17]) in subsequent decades (after Lamé and
Clapeyron [25]) showed that the interface temperature need not be at the equilibrium
melting temperature, TE , so that the material can be liquid well below the melting
temperature, for example. In terms of mathematical modeling, there is a profound
difference between the classical Stefan model (T = TE on Γ(t)) and the modern set
of equations (1.1), since the temperature in the latter model can no longer retain its
dual role of determining both the temperature and the phase. This means that using
(1.1) directly necessitates tracking the interface in time, which is difficult but mathe-
matically possible; see [15] for the well-posedness of the problem. Even if this is done,
however, equations (1.1) are valid only so long as the interface does not self-intersect.

An alternative approach, known as the phase field or diffuse interface model,
is to formulate the problem in terms of two variables, temperature and phase field
(see [10] for more discussion). The mathematical problem is then to solve the following
parabolic system for (Tε, φε) in its full dimensional form:

(1.2)

{
(αε φε)t = Δφε − ε−2W ′(φε) + ε−1[s]Eσ

−1G′(φε)[Tε − TE ] ,

(ρcTε + 1
2ρ�φε)t = div(K∇Tε),

where the unknowns Tε(x, t) and φε(x, t) are, respectively, the temperature and the
phase indicator (φε = 1 for liquid and −1 for solid) and ε is a small positive parameter
representing the thickness of the interfacial region. Here W is a potential with double
well of equal depth at ±1 and G is a function relating microscopically how energy
is relayed in the thin interfacial region. As discussed in full in [10], in order for
the phase field model to approximate accurately the free boundary model (1.1), it is
better to require G and αε to satisfy certain compatibility conditions; in particular,
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the following choice is sufficient:

(1.3) W (s) =
1

2
(1 − s2)2, G(s) = s− 1

3
s3, αε = α +

5

12

ερ�[s]E
(Kσ)

.

The interface in this formulation is now defined as the level set

(1.4) Γε(t) := {x ∈ Ω(t) | φε(x, t) = 0} ;

thus there is no need to track it explicitly, and the practical problem is simply the
computation of a smooth system of parabolic differential equations. A number of
works (e.g., Caginalp and Chen [8, 9] and Soner [33]) have proved that solutions
of the phase field equations converge to those of the corresponding free boundary
problems as ε → 0. The parameter ε represents the thickness of the interfacial region,
whose true value is on an atomic scale. Computing with this true physical value
would make many realistic computations unfeasible. However, it has been shown that
the value of ε can be used essentially as a free parameter that can be increased by
orders of magnitude without significantly altering the behavior of the interface [12].
Although the phase field approach provides a methodology for understanding the
physical interface problems directly and has been used to derive the sharp interface
models, one can also view it as a computational approach designed to approximate
the limiting sharp interface (free boundary) problem. This is the perspective we adopt
in this paper.

The use of phase field computations in realistic physical situations has led to a
growing interest in developing and testing different phase field equations that better
approximate the limiting free boundary problem. Let Γ(t) and Γε(t) denote the
interface of the free boundary problem (1.1) and the zero level set of the phase function
φε(x, t) of the phase field model (1.2), respectively. We are interested in approximating
the free boundary problem with the phase field model by the following criteria: there
exist positive constants C and ε0 such that

(1.5) distance (Γ(t),Γε(t)) ≤ Cεk ∀ ε ∈ (0, ε0].

Established theoretical results (e.g., [8, 9]) and computations (e.g., [13, 19]) indicate
that these estimates are valid for k = 1. Recently, in [10] we derived a phase field
model that ensures a second order accuracy (namely, k = 2 in the bound above)
for the approximation of the free boundary. Unlike the automatic [29] second order
approximation of motion by mean curvature by the Allen–Cahn equation [2], the
second order accuracy here is obtained by special choices of G and αε. In particular,
by utilizing the choice (1.3), all first order terms automatically cancel out, thus leading
to a second order model. Here the coefficient 5

12 for the first order correction of αε

is calculated from the special choices of W and G. The derivation and proof use a
method that differs from the standard technique of matched asymptotic expansions
[1, 6, 9, 11, 16]. In our recent work, the inner expansion is computed with respect
to the interface Γ(t) of the limit interface and not with respect to the level set Γε(t)
of the phase field as in more traditional approaches. A key advantage of this new
technique is that it permits tracking of the position of the perturbed interface by a
distance function hε to the limit interface; see section 2.

There have been other studies attempting to derive phase field models that con-
verge more rapidly to their sharp interface limits by an alternative procedure of finding
conditions that eliminate undesired terms of first order, as done, e.g., in [3]. It is not
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always obvious, however, which terms should be cancelled in order to obtain robust
approximation properties that are an improvement over the original models.

The rigorous theory does not establish the constant C in the estimates (1.5)
or the value of the upper bound ε0 for which the bounds are valid. Consequently,
we perform numerical computations on this recently derived phase field equation to
determine whether the second order accuracy described by these bounds is valid for
typical parameter ranges and computational constraints. In particular, one of the
tests utilizes the physical measurables for succinonitrile that is used in many of the
dendritic experiments [18, 24].

2. The phase field model. In this section, we state the phase field model (1.2)
introduced in [10] in a form that is convenient for computation.

2.1. Nondimensionalization. Using the fully physical dimensional form of
equations has its advantage and convenience for practical considerations. Mathemat-
ically, however, it is awkward and numerically complicated in realizing the stiffness
of the problem. From the viewpoint of scaling invariance, it is desirable to make
a change of variables to transfer the fully dimensional version of the free boundary
problem (1.1) and the phase field model (1.2) into their nondimensional counterparts.

To convert (1.1), introduce L, the diameter of the sample, and use the standard
transformation

u :=
T − TE

�/c
, D :=

K

ρc
, d0 :=

σ c

[s]E �
, a := αD,

d :=
d0

L
,

x

L
=: x̃ −→ x,

D

L2
t =: t̃ −→ t.

The free boundary problem (1.1) then has the following dimensionless form:

(2.1)

⎧⎪⎪⎨
⎪⎪⎩

u±
t = Δu± in Ω±(t),

u± = −d (κ + av) on Γ(t),

v = [[∇u · n]]−+ on Γ(t),

where Ω+(t) ∪ Ω−(t) ∪ Γ(t) = Ω, n is the unit vector normal to Γ(t) pointing toward
Ω+(t), κ is the sum of the principal curvatures of Γ(t) (positive for convex solid), and
v is the normal velocity of Γ(t) (positive for solidification).

Note that the size of the sample (i.e., Ω) in the new, x̄, units is 1 in (2.1). There
are only two physical dimensionless parameters: a and d.

1. The constant a represents the strength of kinetic undercooling; it is a mea-
surable dimensionless material constant.

2. While d0 is a material constant that relates the surface tension or size of the
nucleation radius, the dimensionless constant

d :=
d0

L

depends on the particular experiment. For example, for a typical d0 =
10−7 cm, if the “sample size” or “macroscopic resolution size” is L = 10−3 cm,
then d = 10−4.
Although d is small and the difference between the Gibbs–Thomson condition
u = −d (κ+av) and the Stefan condition u = 0 on the free boundary may ap-
pear insignificant, the respective interface motion is known to be significantly
different for the two conditions [28, 30].
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3. We use a unit for time that matches the units of space. For example, if
D = 10−3 cm2/s and L = 10−3 cm, then t = 1000 represents a physical
L2t/D = 1 second. In other words, t = 1 represents one millisecond.

4. Here u = 1 represents the temperature that a liquid at melting temperature
attains after absorbing an amount of energy equal to the latent heat. For
water, u = 1 represents T = 80◦ C = 353 Kelvin. In this problem there is
another parameter, u∞, the dimensionless temperature at the far field, that
plays a role. When u∞ is small, quite often it is convenient to use u/|u∞|
as the dimensionless temperature. For succinonitrile, �/c = 23.13 Kelvin, so
T∞ = TE − 0.2313 Kelvin is equivalent to u∞ = −0.01.

In addition to the dimensionless quantities above, it is useful to scale the extra
parameter, ε, representing the thickness of interfacial region (5–100 atomic distances).
Introducing dimensionless constants

ε̄ :=
ε

d0
, ε :=

ε

L
=

ε

d0

d0

L
= ε̄ d,

the phase field model (1.2) has the following dimensionless form:

(2.2)

⎧⎨
⎩

ut + 1
2φt = Δu,

(a + 5
12 ε̄)φt = Δφ + ε−2(2φ + ε̄u)(1 − φ2).

The stiffness of the phase field model comes from the largeness of the quantity ε−2

on the right-hand side of the second equation. Here the important correction term 5
12 ε̄

is an addition to the traditional phase field model. It eliminates the first order terms
in the asymptotic expansion. As mentioned in the introduction, the applicability of
the phase field model in numerical computations is due to the fact that one does not
need to use the actual (atomic) size of ε. One can use ε that is much larger—though
still small—without altering the solution significantly [12, 13].

2.2. Initial data. To obtain second order approximation, the initial value to
the phase field system (2.2) has to be second order consistent with the free boundary
problem (2.1). This leads to the following choice of initial data for (2.2) (see [10] for
details):

(2.3)

⎧⎪⎨
⎪⎩

φ(·, 0) = tanh h
ε ,

u(·, 0) =
u+

0

1 + e−2h/ε
+

u−
0

1 + e2h/ε
+

ε

2
∇h · ∇(u+

0 − u−
0 )

∫ h/ε

−∞
z d tanh z.

Here h = h(x) is the signed distance from x to the initial interface Γ(0), and u±
0 =

u±
0 (x) are smooth extensions of the initial temperature for the free boundary problem.

3. Analytic feature of the numerical example. The main purpose of this
paper is to check numerically the validity of the assertion that the new phase field
model (2.2) approximates the free boundary model (2.1) with second order accuracy,
using physical parameters in one case. In particular, the computations can address
the issue of the constants C and ε0 in (1.5), thereby determining whether there is
a computational advantage to the new phase field model in practical circumstances.
The test example in our earlier paper [10] is one dimensional, so the curvature effect
is not present. We would like to find a test case that has the following features:
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1. Explicit solutions for the free boundary problem are available.
2. There are curvature effects.
3. There are kinetic undercooling effects.
4. The ratio between the curvature effect and kinetic undercooling effect can be

adjusted.

There is an example in a three dimensional radially symmetric situation that
models the solidification (growing) process of a solid ball in undercooled liquid [32].
The solution has the properties that (i) the free boundary is located at |x| = R(t) =
2γ

√
t, and (ii) the temperature is a combination of three self-similar solutions to the

heat equation ut = Δu:

u(x, t) = u0 := 1,

u(x, t) = u1(|x|, t), u1(r, t) :=
erf(r/

√
4t)

r
, erf(z) :=

2√
π

∫ z

0

e−y2

dy,

u(x, t) = u2

( |x|√
4t

)
, u2(z) :=

∫ ∞

z

e−y2

y2
dy.

The following calculations verify that for each γ > 0, there is exactly one such solution
to (2.1).

1. When the free boundary is given by |x| = R(t) := 2γ
√
t, one has

κ =
2

R(t)
, v =

dR(t)

dt
=

γ√
t

=
2γ2

R(t)
,

av

κ
= aγ2.

The Gibbs–Thomson condition requires the temperature at the free boundary
to be

u
∣∣∣
Γ(t)

= −d(κ + av) = − A

R(t)
, A := 2d(1 + aγ2).

2. In the ball {x | |x| < R(t)}, the material is in the solid phase. The only self-
similar solution to the heat equation ut = Δu with boundary value u(x, t) =
−A/r at r = |x| = R(t) and vanishing derivative at r = 0 is given by

(3.1) u−(x, t) = −Au1(|x|, t)
erf(γ)

.

3. Outside the ball {x | |x| ≤ R(t)}, the material is in the liquid phase. There is a
family, with parameter B, of solutions having boundary value u(x, t) = −A/r
at r = |x| = R(t):

(3.2) u+(x, t) = −Au1(|x|, t)
erf(γ)

+ B
(
u2(γ) − u2(|x|/

√
4t)

)
.

The solution we need corresponds to that satisfying v = [[ur]]
−
+. Thus, we

have

2γ2

R(t)
=

Bu′
2(γ)√
4t

, i.e., B =
2γ

u′
2(γ)

= −2γ3eγ
2

.
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In conclusion, for each γ > 0 we have a solution to (2.1), given by

(3.3)

⎧⎪⎨
⎪⎩

Γ(t) = {x | |x| = R(t) := 2γ
√
t},

u(x, t) = −2d (1 + aγ2) erf(|x|/
√

4t)

erf(γ) |x| −
∫ max{γ,|x|/

√
4t}

γ

2γ3eγ
2−y2

y2
dy.

For such a solution, the ratio of the strength of the kinetic undercooling to the
strength of the surface tension is av/κ = aγ2. Also, there is an important physical
quantity,

u∞ := u||x|=∞ = −2γ3

∫ ∞

γ

eγ
2−y2

y2
dy.

Given u∞ < 0, one can show that there is a unique positive γ that satisfies the above
relation. Thus, the measure of the degree of undercooling u∞ is equivalent to the
measure of γ.

4. Numerical simulation. For a solution (3.3) of the free boundary problem
(2.1), we solve numerically the corresponding radially symmetric solution to the phase
field model (2.2) in the unit ball:

Ω := {x ∈ R
3 | |x| < 1}.

The system (2.2) is first discretized with respect to time by a second order scheme.
Fix a time mesh size δt > 0. For every integer k � 0, denote by (uk(·), φk(·))
the approximation of the solution (u(·, kδt), φ(·, kδt)) at time t = kδt. The semi-
discretization in time has the form

uk+1 − uk

δt
+

φk+1 − φk

2 δt
= Δ

uk+1 + uk

2
,

ε2aε
φk+1 − φk

δt
− ε2Δ

φk+1 + φk

2
= −W ′(φk) − 1

2W
′′(φk)[φk+1 − φk]

+
ε̄ (uk + uk+1)

2

{
G′(φk) + 1

2G
′′(φk)[φk+1 − φk]

}
,

where

ε̄ :=
ε

d0
, ε :=

ε

L
, aε := a +

5

12
ε̄, W (s) =

1

2
(1 − s2)2, G(s) = s− 1

3
s3.

In the radial (r = |x|) coordinates, the Laplacian Δ is further discretized by linear
finite elements on a uniform mesh of size δr = 1/n, where n is the total number of
spatial mesh points. This scheme leads to a nonlinear system for each time step.

The boundary condition for temperature of the phase field model is taken as the
known exact solution to the free boundary problem, whereas the boundary value for φ
is taken as φ||x|=1 = 1. The solution is calculated for a time interval [t0, t1] according
to the timing of the solution (3.3) of the free boundary problem. Here t0 > 0 is the
initial time, and the terminal time t1 satisfies 2γ

√
t1 < 1. The initial condition (at

time t = t0) is taken as (2.3), where h = h(x) = |x| −R(t0), and u−
0 and u+

0 are as in
(3.1) and (3.2).

In what follows, Model 1 refers to the original phase field model where the cor-
rection term 5

12 ε̄ in the kinetic coefficient, aε, is not present; i.e., aε = a. Model 2 is
that with the correction added: aε = a + 5

12 ε̄.
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Remark. (1) In our actual implementation, the quantity ε̄ (uk+uk+1)
2 on the right-

hand side of the second equation is replaced by ε̄uk. The advantage of such a change
is that the nonlinear system for (φk+1, uk+1) is decoupled into two linear systems,
one for φk+1 and the other for uk+1. Though theoretically the resulting discretization
becomes first order in δt, the discretization is still stable, and in the special case when

ε̄ is small, this change from ε̄ (uk+uk+1)
2 to ε̄uk can be regarded as second order.

(2) The initial condition (2.3) is derived only from model 2; namely, it may not
apply to Model 1, where aε = a. Thus, in numerical implementation for Model 1, the
last term in (2.3) is not added in the initial value for u. This is a routine practice
in traditional numerical simulations for the phase field models. Indeed, starting from
any crude initial data, the phase field dynamics automatically produces a needed fine
profile after a small initiation time.

Computation 1. We begin by testing the accuracy of the numerical scheme. That
is, for fixed ε we find the rate of convergence of the numerical scheme with respect to
the spatial mesh size δr = 1/n and the time mesh size δt. This helps us to determine
how fine a mesh is needed in order to compare the difference between the exact solution
to (2.1) and the exact solution to (2.2).

As an illustration, we take the following values of the dimensionless quantities:

a = 20, d :=
d0

L
= 0.001, ε̄ =

ε

d0
= 5, ε =

ε

L
= 0.005, u∞ = −0.0046 .

The corresponding value of γ and the ratio of kinetic undercooling to curvature effect
are, respectively,

γ =
1

20
,

av

κ
= aγ2 =

1

20
.

We calculate the solution from time t0 = 1.0 with initial radius of solid R(t0) = 0.1
to time t1 = 9.0 with final radius R(t1) = 0.3. The numerical result is summarized in
Table 1. For easy reference, errors to the exact solution of the phase field model (PFM)
and differences to the solution of the free boundary problem (FBP) are calculated in
their relative sizes. In calculating the relative error of the numerical scheme here, the
exact solution is postulated to be the numerical solution with the finest mesh.

With this assumption we examine the previous level of refinement, namely n =
3200, δt = 2.5 × 10−5, and observe that the errors relative to the PFM are much
smaller than those relative to the FBP. This indicates that the mesh refinement
is more than adequate to test how accurately each of the two (phase field) models
approximates the FBP. In particular (for n = 3200, δt = 2.5×10−5) the relative error
of computation for Model 1 is 10−5, while the difference between the computed and
the exact values of the free boundary is 40 times larger at 4×10−4. For Model 2 there
is a factor of 17. Examining the prior two levels of refinement (n = 1600 and n = 800)
for Model 1, we see that the relative error (computation compared with the PFM)
diminishes from 2 × 10−4 (n = 800) to 4.7 × 10−5 (n = 1600) to 10−5 (n = 3200),
i.e., factors of about 4, while the relative difference between computation and the
FBP varies only from 2.2 × 10−4 (n = 800) to 3.7 × 10−4 (n = 1600) to 4.0 × 10−4

(n = 3200). Hence, the difference between the computed Model 1 and exact FBP
stabilizes near 4.0 × 10−4. The situation is similar for Model 2; i.e., the numerical
error in computing the PFM is negligible compared to the difference between the
Model (either 1 or 2) and the exact FBP. Note also that halving the time step has a
very small effect on these errors.
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Table 1

Computation 1. The rate of convergence of the numerical scheme, shown in relative error to
the partial differential equation (rel. error to PFM). Spatial and time mesh sizes are δr = 1/n and
δt. Also shown is the relative difference with respect to the solution to the free boundary problem
(rel. diff. to FBP). Here ε = 0.005.

n δt Model 1 Model 2
(1/δr) Position Rel. error Rel. diff. Position Rel. error Rel. diff.

to PFM to FBP to PFM to FBP
200 4.0 e-4 0.284124 5.3 e-2 5.3 e-2 0.283753 5.4 e-2 5.4 e-2
200 2.0 e-4 0.284529 5.2 e-2 5.2 e-2 0.283945 5.3 e-2 5.4 e-2
200 1.0 e-4 0.284865 5.1 e-2 5.0 e-2 0.294068 5.3 e-2 5.3 e-3
400 4.0 e-4 0.299819 1.0 e-3 6.0 e-4 0.299643 1.0 e-3 1.2 e-3
400 2.0 e-4 0.299853 0.9 e-3 4.9 e-4 0.299676 0.9 e-3 1.1 e-3
400 1.0 e-4 0.299870 0.8 e-3 4.3 e-4 0.299693 0.9 e-3 1.0 e-3
800 2.0 4-4 0.300059 2.1 e-4 2.0 e-4 0.299884 2.3 e-4 3.9 e-4
800 1.0 e-4 0.300063 2.0 e-4 2.1 e-4 0.299889 2.1 e-4 3.7 e-4
800 5.0 e-5 0.300065 1.9 e-4 2.2 e-4 0.299891 2.0 e-4 3.6 e-4

1600 1.0 e-4 0.300110 4.7 e-5 3.7 e-4 0299937 5.0 e-5 2.1 e-4
1600 5.0 e-5 0.300110 4.7 e-5 3.7 e-4 0.299938 4.7 e-5 2.1 e-4
1600 2.5 e-5 0.300110 4.7 e-5 3.7 e-4 0.299938 4.7 e-5 2.1 e-4
3200 1.0 e-4 0.300121 1.0 e-5 4.0 e-4 0.299949 1.0 e-5 1.7 e-4
3200 5.0 e-5 0.300121 1.0 e-5 4.0 e-4 0.299949 1.0 e-5 1.7 e-4
3200 2.5 e-5 0.300121 1.0 e-5 4.0 e-4 0.299949 1.0 e-5 1.7 e-4
6400 1.0 e-4 0.300124 4.1 e-4 0.299952 1.6 e-4
6400 5.0 e-5 0.300124 4.1 e-4 0.299952 1.6 e-4
6400 2.5 e-5 0.300124 4.1 e-4 0.299952 1.6 e-4

Table 2

Computation of interface position at terminal time from the phase field models, in comparison
with 0.300000 from the free boundary model.

ε Model 1 Model 2
Rε(t1) |1 −Rε/R| Rε(t1) |1 −Rε/R|

0.0400 0.29814 6.2 e-3 0.29685 1.0 e-2
0.0200 0.29991 3.1 e-4 0.29924 2.5 e-3
0.0100 0.30015 5.0 e-4 0.29981 6.4 e-4
0.0050 0.30012 4.0 e-4 0.29995 1.7 e-4
0.0025 0.30007 2.4 e-4 0.29999 4.4 e-5

0 0.30000 0 0.30000 0

Thus the computations summarized in Table 1 provide a guide to the error in the
numerical computations of the PDEs in terms of the mesh sizes for n and δt. With
these numerical errors under control, we can pursue our central goal of distinguishing
the differences between the models and the free boundary problems. In what follows
we will vary ε and examine the behavior of these differences as a function of ε. In
particular we would like to determine if the difference between Model 2 and the free
boundary problem is indeed proportional to ε2, particularly when we use material
parameters that are drawn from experiments of dendrites (see Computation 4 below).

In the following examples, the numerical effects are controlled so that the differ-
ence shown can be regarded as that between the solutions to the phase field model
(2.2) and to the free boundary model (2.1).

Computation 2. Using a sufficiently fine mesh that eliminates significant numer-
ical error (as discussed above), we perform a set of calculations with the material
parameters above. These computations involve a spectrum of values of ε, as shown in
Table 2, and will be compared with the hypothesized relation
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(4.1)

∣∣∣∣1 − Rε

R

∣∣∣∣ ∼ Cε2

that has been proved [10] using Model 2 for sufficiently small ε. In this first set of
computations we explore the large ε part of this spectrum. For each model we compute
log |1 −Rε/R| and plot it against log ε, so that a slope of 2 indicates agreement with
(4.1), while a slope of 1 suggests an O(ε) error that is the expected result for Model 1.
The results for Model 2 are

log |1 −Rε/R| = 0.554 + 1.8556 log(ε)

Predictor Coef Std Error of Coef
Constant 0.554 0.112
Log(ε) 1.8556 0.054

with R-Sq = 99.7% and the F -value for the analysis of variance at 1181. The R-Sq
value obtained is a statistical measure (not to be confused with the position R that
we have above) that indicates that essentially all of the variation in the data points
is explained by the linear model above. The F -value is a measure of the squares of
differences between the linear model and the mean relative to the linear model and
the data points. For four, five or six data points the F -value needed for 95% statis-
tical confidence is 12, 10, and 9, respectively. A complete discussion of these mea-
sures can be found in a basic statistical text such as [27]. The coefficient of log(ε)
is 0.8556/0.054 = 15.84 or almost 16 standard deviations away from the coefficient
value of 1. This yields a p-value that is essentially zero; i.e., there is essentially zero
probability that the slope differs from 1 due to randomness. In other words, the null
hypothesis that the relative difference between Model 2 and the free boundary prob-
lem corresponds to an exponent of 1 must be rejected overwhelmingly (16 standard
deviations). The values for Model 2 are plotted using the large dots.

A similar analysis for Model 1 (plotted with small dots) shows that the relative er-
ror displays a less regular pattern, yielding a coefficient of 0.832 (i.e., slightly less than
a linear relationship), but with a p-value of only 0.154 and an F -value of only 3.61:

log |1 −Rε/R| = −1.5276 + 0.832 log(ε).

In practical terms, there is a significant improvement from Model 1 to Model 2
that is evident particularly for smaller values of ε. For the smallest value tested in
these computations, namely, ε = 0.0025, one has a ratio of 240/44 = 5.4545 in the
relative differences (between the two models) to the exact free boundary problem.
The consistency of the results for Model 2 and the coefficient computed above suggest
that the difference between the models grows as ε is made smaller.

Computation 3. We solve numerically the phase field model (2.2) with the fol-
lowing parameter values:

a = 20, d :=
d0

L
= 0.001, u∞ = −0.011, γ = 0.08,

av

κ
= aγ2 = 12.8%.

The parameter ε is taken in the following range:

ε =
ε

L
∈ [0.0025, 0.04], ε̄ =

ε

d0
∈ [2.5, 40].

The time window is [0.390625, 3.515625] during which the interface moves from R(t0) =
0.1 to R(t1) = 0.3. The numerical results are reported in Table 3 and Figure 1(b).
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(a) Computation 2 (b) Computation 3

(c) Computation 4

Fig. 1. Horizontal axis is log10(ε) in (a) and (b) and log10(ε/cm) in (c). The vertical axis
is log10 |1 − Rε/R|. Small dots correspond to Model 1 and large dots to Model 2. Straight lines
represent the hypothetical formula |1 −Rε/R| = Cεk with k = 1 for line with slope 1 and k = 2 for
line with slope 2.

Table 3

For Computation 3.

ε Model 1 Model 2
Rε(t1) |1 −Rε/R| Rε(t1) |1 −Rε/R|

0.0400 0.30169 5.6 e-3 0.29743 8.6 e-3
0.0200 0.30173 5.8 e-3 0.29941 2.0 e-3
0.0100 0.30105 3.5 e-3 0.29985 4.9 e-4
0.0050 0.30057 1.9 e-3 0.29996 1.3 e-4
0.0025 0.30030 9.9 e-4 0.29999 3.1 e-5

0 0.30000 0 0.30000 0

Performing a least squares analysis as in the previous example for Model 2, we
have the result

log |1 −Rε/R| = 0.741 + 2.01753 log(ε)

Predictor Coef Std Error of Coef
Constant 0.74126 0.03563
Log(ε) 2.01753 0.07058
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with R-Sq = 100% and an F -value of 13402. Hence, for these parameters there is
overwhelming evidence confirming the hypothetical exponent of 2. The coefficient
calculated above differs from 1 by 1.0175/0.07058 = 14.42 standard deviations.

By comparison the data for Model 1 leads to the result

log |1 −Rε/R| = −1.21 + 0.661 log(ε)

Predictor Coef Std Error of Coef
Constant −1.21 0.2306
Log(ε) 0.661 0.1128

so that the relative difference between Model 1 and the exact free boundary solution
behaves as ε0.661. A similar regression without the largest value of ε leads to ε0.85

power behavior.
Thus, one can conclude from this range of computations that Model 2 is within

O(ε2), while Model 1 is even slightly worse than O(ε) in these computations. Note
that theorems establishing that Model 1 is O(ε) are also of the form “there exists
ε0 > 0 such that for ε < ε0 one has . . . .” Hence, the data in this range of parameters
shows a significant practical improvement by using Model 2 in place of Model 1 that
is analogous to the rigorous result.

Computation 4. Finally we provide an example using material data from succi-
nonitrile. We take

D = 1.134 × 10−3cm2/s, d0 = 2.821 × 10−7cm,
�

c
= 23.13 Kelvin,

α = 104s/cm2.

Here D, d0, and �/c are from [24]. Note that there are no direct measurements on α
and we choose α as in [4].

We focus on the part of the sample of size L = 10−4 cm with undercooling
TE −T∞ = 0.2521 Kelvin in a solidification process during which the solid ball grows
from radius R0 = 10−5 cm to R1 = 4 × 10−5 cm.

These dimensional numbers translate to the following dimensionless quantities:

a = αD = 11.34, d :=
d0

L
= 0.002821, u∞ = −0.2521

23.13
= −0.0109,

γ = 0.079,
av

κ
= aγ2 = 7.2%, t0 =

(
R0

2γL

)2

= 0.40, t1 =

(
R1

2γL

)2

= 6.40.

The amount of real time for such a solidification process takes (t1−t0)L
2

D = 5.2× 10−5

seconds.
To treat such a scenario within the capacity of computer power, we take ε in the

range 10−5 cm to 2 × 10−7 cm. As we said earlier, the true size of ε is much smaller,
but the interfacial motion is not very sensitive to the size of ε provided it is not very
large. In dimensionless quantities, this translates to

ε =
ε

L
∈ [0.002, 0.1], ε̄ =

ε

d0
∈ [1, 35], ε̄ |u∞| ∈ [0.01, 0.35].

In Table 4 we list the relative differences between the solution of the phase field
model and that of the free boundary problem, with ε given in cm.
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Table 4

For Computation 4, the relative difference between solutions of the free boundary model and
solutions of the phase field models 1 and 2.

ε Model 1 Model 2
Position |1 −Rε/R| Position |1 −Rε/R|

(cm) (cm) (cm)
1 e-5 3.8435 e-5 3.9 e-2 3.8122 e-5 4.7 e-2
5 e-6 3.9723 e-5 6.9 e-3 3.9577 e-5 1.1 e-2
2 e-6 3.9993 e-5 1.8 e-4 3.9935 e-5 1.6 e-3
1 e-6 4.0013 e-5 3.3 e-4 3.9984 e-5 4.1 e-4
5 e-7 4.0011 e-5 2.7 e-4 3.9996 e-5 1.0 e-4
2 e-7 4.0005 e-5 1.3 e-4 3.9999 e-5 1.9 e-5

0 4.0000 e-5 0 4.0000 e-5 0

Fig. 2. Computation 4, Model 2.

Using the above procedure on Model 2, we obtain from the least squares analysis
the result

log |1 −Rε/R| = 8.6759 + 2.007 log(ε)

Predictor Coef Std Error of Coef
Constant 8.6759 0.1575
Log(ε) 2.007 0.02687

Hence, the exponent 2.007 differs from 1 by 1.007/0.02687 = 37.48 standard
deviations, establishing overwhelming evidence that the relative difference between
Model 2 and the exact free boundary solution is better than linear in terms of ε. One
also has that R-Sq = 99.9% and F = 5580 in the analysis of variance. As shown in
Figure 2 the data points are indistinguishable from the straight line with slope 2.007.
For this key set of physical parameters, the standard error of 0.02687 shows that the
exponent is 2.007 ± 0.02687 so that the computational results are in agreement with
the theoretical exponent of 2 in (4.1).
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Fig. 3. Computation 4, Model 1.

The same analysis for Model 1 leads to the linear regression

log |1 −Rε/R| = 5.673 + 1.465 log(ε)

Predictor Coef Std Error of Coef
Constant 5.673 1.053
Log(ε) 1.465 0.1796

The exponent of 1.47 ± 0.18 appears to be better than the theoretical expectation
of 1. Note that the standard error of 0.18 is much larger than the corresponding 0.026
for Model 2 computed above. In Figure 3 one can observe that the slope appears to
diminish for smaller ε. In particular, for the four smallest values of ε, one has the
result

log |1 −Rε/R| = 3.08 + 1.05 log(ε)

Predictor Coef Std Error of Coef
Constant 3.08 1.793
Log(ε) 1.05 0.2899

Examining the practical differences between the exact solution and those rendered
by Models 1 and 2 for the smallest ε in Table 4, one observes that the ratio of the
error in Model 1 to the error in Model 2 is given by

1.3 × 10−4

1.9 × 10−5
= 6.8421

so that a factor of almost seven is attained using Model 1. Note also that the im-
provement accuracy due to refining ε from 5 × 10−7 to 2 × 10−7 is 2.7/1.3 = 2.08 for
Model 1 but 10−4/(1.9× 10−5) = 5.2632 for Model 2. Thus, one would expect that a
calculation with ε = 0.8 × 10−7 would lead to a factor of

6.8421 × 5.2632

2.08
= 17.313.
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In other words, our analysis shows that for computing capacity that is capable of
resolving the phase field model with ε = 0.8 × 10−7 the error (in approximating the
free boundary) in Model 2 would be only (17.313)−1 = 0.05776, or less than 6% of
the error of Model 1. Similarly, for ε = 0.32× 10−7 the corresponding ratio would be

6.8421 ×
(

5.2632

2.08

)2

= 43.809,

leading to about 2% of the error.
The rigorous proof of second order convergence [10] is valid for ε < ε0 for some

positive ε0. In any proof of this type one has no assurance that the ε0 will be large
enough to be of any practical significance. In the computations discussed above,
particularly the last one in which we utilized material parameters of experiments,
it is evident that one obtains this second order convergence using values of ε that
are feasible with current computing capacity. Furthermore, there is the issue of the
constant in (4.1). Although the constant in (4.1) is larger for Model 2 than for the
corresponding expression for Model 1, the factor of ε2 is small enough to render a
much more accurate interface location (relative to the free boundary problem) as
discussed above.

Hence, for computations using ε that is about half of the value we have used, one
may conclude that our new phase field model (i.e., Model 2) can reduce the error in
approximating a free boundary by a factor of 50.

5. Conclusion. We have presented numerical results for a classical phase field
model and a new phase field model, demonstrating their asymptotic agreement with
a free boundary (sharp interface) model using the Gibbs–Thomson condition and
dynamical undercooling at the liquid-solid interface. For both phase field models, the
interface, defined as the zero level set of the phase function, is compared with the
free boundary of the sharp interface model which is the asymptotic limit of the phase
field models. The results confirm the theoretical prediction that the distance between
interface and free boundary is of order ε for the classical phase field model and of
order ε2 for the new model. Indeed, these asymptotic behaviors are seen more clearly
in the new model than in the classical model. A well-behaved second order accuracy
asymptotic behavior of the new model starts from a small ε which is much larger
than that of the classical model, which is first order. While the classical model shows
considerable deviations from its first order asymptotic behavior of approximating the
free boundary model for ε that is not very small, the new model already demonstrates
its second order approximation behavior. When ε is small, the new model always leads
to a substantially better approximation than the classical one.

The theoretical assertion that the new phase field model is a second order accurate
approximation of the free boundary model is derived in [10] from formal expansions in
which 1/d := L/d0 is regarded as an order one constant and solutions are expanded in
ε := ε/L power series. Here we omit the details of the formal asymptotic expansions
and their rigorous verifications; we refer interested readers to the original formal
expansions of Caginalp [5, 7] and rigorous verifications of Caginalp and Chen [9]. In
reality it is true that ε = ε/L is smaller than d = d0/L, but in numerical simulations
such as those demonstrated in this paper, ε is taken as large as d0; i.e., d is as small
as ε.

In such a scenario, one can indeed assume that ε̄ := ε/d0 = ε/d is a fixed positive
constant, expand the solution in ε or d power series, and demonstrate the following:

1. The leading (zeroth) order expansions of both the new and the classical phase
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field models correspond to solutions of the classical Stefan problem, e.g., the
solution (3.3) with d = 0.

2. The first order expansion of the solution of the new phase field model cor-
responds to a solution of the free boundary problem (2.1), e.g., the solution
(3.3) with 0 < d � 1.

3. The zero level set Γε of the phase indicator function φ of the new phase field
model is O(ε) = O(ε̄d) distance away from the free boundary of the classical
Stefan model and is O(ε2) = O(ε̄2d2) distance away from that of the free
boundary problem (2.1) (assuming that both free boundary problems admit
smooth solutions).

4. On the other hand, the zero level set of the phase function of the classical
phase field model is O(ε) = O(ε̄d) distance away from the free boundaries of
both the Stefan problem and (2.1).

For the numerics of our current paper, which involve the mathematical limit of ε
approaching zero, the computations are very close to the exact solutions even if ε/d0

is not small. When ε̄ := ε/d0 is large in numerical simulation, the addition of 5ε̄/12 to
the kinetic undercooling coefficient from a to aε = a + 5ε̄/12 can become significant.

To use the new phase field model (2.2) to approximate (2.1), one needs a resolution
of order o(d) at the interface. Since theoretical predication and numerical validation
of this paper indicate that the error of this approximation at interface is O(ε2), what
we need is ε2 = ε̄2d2 = o(d), that is,

0 < ε �
√
Ld0.

For example, in a dendritic growth experiment [22] with d0 = 8×10−7 cm and L = 0.8
cm, the above criterion means that in numerical simulations using the new phase field
model (2.2) to capture the Gibbs–Thomson condition, the parameter ε used should be
smaller than

√
Ld0 = 8× 10−4 cm, i.e., ε = ε/L < 0.001. This amounts to thousands

of grid points in each space dimension and millions of time steps for simulations of real
experiments. Hence for values such as ε = 0.001, yielding ε̄ = ε/d0 = 1000, there is a
huge computational advantage in using the new phase field model with aε = a+5ε̄/12
replacing a of the traditional phase field model.
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Abstract. Consider a Kirchhoff plate ∂2
t u+Δ2u−∂2

t Δu = 0 in Ω× (0, T ), with boundary data
u = Δu = 0 on ∂Ω×(0, T ) and unknown initial data u(·, 0) = u0 and ∂tu(·, 0) = u1 in Ω. We study an
inverse problem of determining (u0, u1) from an interior observation u|ω×(0,T ). Here Ω is a bounded
domain, ω a nonempty open subset of Ω, and T > 0 a suitable time duration. By means of an iterative
time reversal technique, we derive an asymptotic formula of reconstructing (u0, u1) approximately
with a logarithmical convergence rate for smooth initial data. The convergence becomes uniform and
exponential when (Ω, ω, T ) satisfies the geometric control condition introduced by Bardos, Lebeau,
and Rauch.
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1. Introduction and main results. Let Ω ⊂ R
d (d ∈ N) be a bounded

open set with sufficiently smooth boundary ∂Ω, ω a nonempty open subset of Ω,
T > 0 a suitable time duration, and β ∈ (0, 1) any fixed parameter. Let M =(
αij
)
1≤i,j≤d

∈ C∞ (Ω; Rd×d
)

be a symmetric and uniformly positive definite matrix

(hence (βij)1≤i,j≤d = M1/2 is well defined). Denote by 1|ω the characteristic function
of ω in Ω. Let Q = Ω × (0, T ) and Σ = ∂Ω × (0, T ). Throughout this paper, we shall
use C = C(Ω, ω, T, d, β,M) to denote a generic positive constant, which may change
from line to line.

Denote by Δ =
∑d

i,j=1 ∂xi
(αij∂xj

) the “Laplacian” associated to the matrix M.
We consider the following Kirchhoff plate equation in an inhomogeneous media:

(1.1)

⎧⎪⎪⎨
⎪⎪⎩

∂2
t u + Δ2u− ∂2

t Δu = 0 in Ω × R,

u = Δu = 0 on ∂Ω × R,

u(·, 0) = u0, ∂tu(·, 0) = u1 in Ω.

Let

H �
=
{
z ∈ H3(Ω)

∣∣∣ z = Δz = 0 on ∂Ω
}
×
(
H2(Ω) ∩H1

0 (Ω)
)
.

Clearly, H is a Hilbert space with the norm

||(u0, u1)||H
�
= ‖(∇Δu0, u1,Δu1)‖(L2(Ω))d×H1

0 (Ω)×L2(Ω) .

∗Received by the editors March 9, 2007; accepted for publication (in revised form) February 8,
2008; published electronically June 6, 2008. This work was supported by the NSF of China under
grants 10525105 and 10771149, grant MTM2005-00714 of the Spanish MEC, and the Chinese Post-
doctoral Science Foundation.

http://www.siam.org/journals/siap/68-6/68482.html
†Yangtze Center of Mathematics, Sichuan University, Chengdu 610064, China (kim dang phung@

yahoo.fr).
‡Key Laboratory of Systems and Control, Academy of Mathematics and Systems Sciences, Chinese

Academy of Sciences, Beijing 100080, China, and Yangtze Center of Mathematics, Sichuan University,
Chengdu 610064, China (xuzhang@amss.ac.cn).

1535



1536 KIM DANG PHUNG AND XU ZHANG

Here and henceforth, ∇ = (
∑d

j=1 β
1j∂xj

, . . . ,
∑d

j=1 β
dj∂xj

). It is easy to rewrite (1.1)
as an abstract Cauchy problem in H, with an unbounded operator A : D(A) ⊂ H → H
as the generator of the underlying C0-group. Hence, for any initial data (u0, u1) ∈ H,
system (1.1) is well-posed in H. From the standard operator semigroup theory, D(Ak)
(k ∈ N) are themselves Hilbert spaces with the graph norms.

For any z ∈ C(R;H), we denote by E(z, t) the functional

(1.2) E(z, t)
�
=

1

2

∫
Ω

[
|∇Δz(x, t)|2 + |∇∂tz(x, t)|2 + |Δ∂tz(x, t)|2

]
dx.

It is clear that H is the finite energy space of system (1.1), and its energy E(·, t) is
conservative in the sense that for any u solution of (1.1) and all t ∈ R,

(1.3) E(u, t) =
1

2
||(u0, u1)||2H.

The main purpose of this paper is to investigate the state-observation problem for
system (1.1), which is formulated as follows: To determine the initial data (u0, u1) of
a solution u of (1.1) from the single interior measurement u|ω×(0,T ). It is well known
that the state-observation problem is closely related to the inverse source problem, i.e.,
to determine the source term which causes the evolution process from the boundary
and/or interior measurement. Inverse source problems of PDEs have been the object
of numerous studies in recent years. Extensive related references can be found, say,
in [18, 24, 25, 26] for the hyperbolic equations, in [22] for the Euler–Bernoulli plate
equation, and in other works cited therein. Most of the references on inverse source
problems cited above are addressed to global uniqueness and stability; here we give
a constructive strategy to recover the initial data from a partial measurement of the
solution. Our strategy for identification of source is inspired by the time reversal
method and may be more practical than the formal tools of control theory (e.g., [23]).
By means of an iterative time reversal technique, we further establish an asymptotic
formula to reconstruct the desired initial state (u0, u1) of (1.1) by superposing different
solutions of some Kirchhoff plates depending only on the measurement u|ω×(0,T ).

More precisely, the knowledge of u on ω× (0, T ) allows us to consider a sequence
of solutions {v(j)}j≥0 given as follows. First, let U (−1) = 1

2u in ω × (0, T ). Next,

define v(j) = v(j)(x, t) (j = 0, 1, 2, . . .) inductively to be the solution of the following
system:

⎧⎪⎪⎨
⎪⎪⎩

∂2
t v

(j) + Δ2v(j) − ∂2
t Δv(j) + ∂tΔv(j) · 1|ω = −2∂tΔU (j−1)(·, T − t) · 1|ω in Q,

v(j) = Δv(j) = 0 on Σ,

v(j)(·, 0) = ∂tv
(j)(·, 0) = 0 in Ω,

(1.4)

where U (j) = U (j)(x, t) is given by

U (j)(x, t) =

{
v(0)(x, t) − u(x, T − t), j = 0,

v(j)(x, t) − U (j−1)(x, T − t), j > 0,
for (x, t) ∈ ω × (0, T ).

(1.5)

Note that the values of functions U (j) are defined only in ω × (0, T ). Nevertheless,
by system (1.4), it suffices to determine the values of v(j) in the whole domain Q
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from ∂tΔU (j−1)
∣∣
ω×(0,T )

. It is easy to see that the functions v(j) depend only on ∂tΔu

restricted to ω × (0, T ).
We say that (Ω, ω, T0) satisfies the classical geometric control condition (GCC),

introduced in [2, 3], if ∂Ω is C∞ with no contact of infinite order with its tangent,
and any generalized bicharacteristic ray (x(ρ), t(ρ)) of ∂2

t − Δ starting at ρ = 0 with
t(0) = 0 meets ω × (0, T0) (see also [4] for an improvement on the regularity of ∂Ω
and of M). Notice that GCC can be rephrased by a geodesic condition (see [17]).

The main results of this paper are stated as follows.
Theorem 1.1. Under GCC, for any T ≥ T0 there exists a constant σ > 0 such

that for any initial data (u0, u1) ∈ H and any N > 0, it holds that

(1.6)

∥∥∥∥∥
(

N∑
k=0

v(2k)(·, T ) − u0,

N∑
k=0

∂tv
(2k)(·, T ) + u1

)∥∥∥∥∥
H

≤ Ce−σN ‖(u0, u1)‖H .

Theorem 1.2. Suppose

J3
�
= sup

j>0

∥∥∥∥∥
(

j∑
k=0

v(2k)(·, T ),

j∑
k=0

∂tv
(2k)(·, T )

)∥∥∥∥∥
D(A3)

< +∞

and that Ω is connected. Then, for any nonempty open subset ω of Ω and any
β ∈ (0, 1), there exists a time T > 0 such that for any initial data (u0, u1) ∈ D(A3)
and any N > 0, it holds that
(1.7)∥∥∥∥∥
(

N∑
k=0

v(2k)(·, T ) − u0,

N∑
k=0

∂tv
(2k)(·, T ) + u1

)∥∥∥∥∥
H

≤ C

lnβ(1 + N)
[J3+‖(u0, u1)‖D(A3)].

The above results say that (
∑N

k=0 v
(2k)(·, T ), −

∑N
k=0 ∂tv

(2k)(·, T )) can be em-
ployed to serve as an asymptotic formula to recover the initial state (u0, u1) of system
(1.1). The key point to do this is the time reversibility of Kirchhoff plate. Fink (see
[6, 7]) experimented with the time reversal mirror and succeeded in generating many
applications (e.g., in biomedical engineering and telecommunication). Next, many
mathematicians were also interested in this phenomenon (e.g., [1, 8, 19]). Thanks
to the refocusing properties of the time-reversed waves, the time reversal technique
has been successfully used to solve inverse problems for acoustic waves or electro-
magnetic waves (see, e.g., [5, 12]). Nevertheless, the main novelty in Theorems
1.1 and 1.2 is, respectively, the explicit exponential and logarithmical convergence
rates for (

∑N
k=0 v

(2k)(·, T ), −
∑N

k=0 ∂tv
(2k)(·, T )) to approximate (u0, u1) in the strong

topology of H. Note also that Theorem 1.2 is for the case without GCC on (Ω, ω, T ),
for which one can usually expect a much weaker result than the case with GCC (we
refer the reader to [14, 20] for a different yet related topic for the hyperbolic equa-
tions).

Technically, the proofs of Theorems 1.1 and 1.2 are reduced to suitable observabil-
ity estimates for system (1.1). Under GCC, the desired observability estimate follows
from the known result in [2, 3] for the wave equation. For the treatment in the case
without GCC, by the Fourier–Bros–Iagolnitzer transformation given in [14], the ob-
taining of the desired observability estimate for the evolution system (1.1) depends on
some quantitative unique continuation property for a fourth order elliptic-like equa-
tion with multiple characteristics (see (3.1)), which, in turn, will be established by
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means of global Carleman estimate. Although global Carleman estimates are well
understood for many PDEs with single characteristics or without characteristics, it
seems that there is no reference for the multiple-characteristic PDEs. The crucial
point for the possibility of applying the Carleman estimate to the above-mentioned
multiple-characteristic equation is that this equation can be rewritten equivalently as
two coupled elliptic equations of second order, and that, based on a useful pointwise
estimate for second order differential operators with symmetric coefficients (without
any sign condition), we are successful in using Carleman estimates with a common
weight function for these equations.

To end this section, we remark that, if the first equation in (1.4) is replaced by

∂2
t v

(j) +Δ2v(j) − ∂2
t Δv(j) − (−Δ)−1

(
∂tv

(j) · 1|ω
)

= 2(−Δ)−1
(
∂tU

(j−1)(·, T − t) · 1|ω
)
,

while (u0, u1) is assumed only to belong to D(A), then, based on inequality (5.7) in
Theorem 5.2, the estimate (1.7) in Theorem 1.2 becomes∥∥∥∥∥
(

N∑
k=0

v(2k)(·, T ) − u0,

N∑
k=0

∂tv
(2k)(·, T ) + u1

)∥∥∥∥∥
H

≤ C

lnβ(1 + N)
[J1 + ‖(u0, u1)‖D(A)].

The rest of this paper is organized as follows. In section 2, we derive the desired
pointwise estimate for second order differential operators with symmetric coefficients.
Section 3 shows an interpolation inequality for the fourth order elliptic-like equation
with multiple characteristics mentioned above. Section 4 is devoted to a quantitative
unique continuation property for system (1.1). In section 5, we establish two observ-
ability estimates for solutions of (1.1). The proofs of Theorems 1.1 and 1.2 are given
in section 6.

2. Pointwise estimate for second order differential operators with sym-
metric coefficients. In this section, we will establish a pointwise estimate for second
order differential operators with symmetric coefficients (without any sign condition),
which will play a key role in what follows.

Let m ∈ N. For simplicity, for a function u, we will use the notation ui = ∂u
∂xi

,
where xi is the ith coordinate of a generic point (x1, . . . , xm) in R

m.
For any

(2.1) aij = aji ∈ C1(Rm), i, j = 1, 2, . . . ,m,

we recall the following known identity (see [10, Theorem 4.1], and also [9, Theorem 1.1]
for a variant version).

Lemma 2.1. Assume u, �,Ψ ∈ C2(Rm). Let θ = e� and v = θu. Then

(2.2)

θ2

∣∣∣∣∣∣
m∑

i,j=1

(aijui)j

∣∣∣∣∣∣
2

+ 2

m∑
j=1

{
2

m∑
i,i′,j′=1

aijai
′j′�i′vivj′ −

m∑
i,i′,j′=1

aijai
′j′�ivi′vj′

+ Ψ

m∑
i=1

aijviv −
m∑
i=1

aij
[
(A + Ψ)�i +

Ψi

2

]
v2

}
j

= 2

m∑
i,j=1

cijvivj + Bv2 +

∣∣∣∣∣∣
m∑

i,j=1

(aijvi)j −Av

∣∣∣∣∣∣
2

+ 4

∣∣∣∣∣∣
m∑

i,j=1

aij�ivj

∣∣∣∣∣∣
2

,
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where

(2.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A
�
= −

m∑
i,j=1

(
aij�i�j − aijj �i − aij�ij

)
− Ψ,

B
�
= 2

⎧⎨
⎩AΨ −

m∑
i,j=1

[
(A + Ψ)aij�i

]
j

⎫⎬
⎭+ Ψ2 −

m∑
i,j=1

(
aijΨj

)
i
,

cij
�
=

m∑
i′,j′=1

[
2aij

′
(ai

′j�i′)j′ − (aijai
′j′�i′)j′

]
+ Ψaij .

In what follows, for any function ψ ∈ C4(Rm), and any (large) parameters ς > 1
and κ > 1, we choose the function � in Lemma 2.1 as follows:

(2.4) � = ςϕ, ϕ = eκψ.

It is easy to check that

(2.5) �i = ςκϕψi, �ij = ςκ2ϕψiψj + ςκϕψij , i, j = 1, 2, . . . ,m.

For n ∈ N, we denote by O(κn) a function of order κn for large κ (which is
independent of ς); by Oκ(ςn) a function of order ςn for fixed κ and for large ς. The
desired pointwise estimate for the operator “

∑m
i,j=1

∂
∂xj

(
aij ∂

∂xi

)
” is stated as follows.

Theorem 2.2. Assume (2.1) holds, and u ∈ C2(Rm). Let

(2.6) θ = e�, v = θu, Ψ = 2

m∑
i,j=1

aij�ij .

Then

(2.7)

θ2

∣∣∣∣∣∣
m∑

i,j=1

(aijui)j

∣∣∣∣∣∣
2

+ 2

m∑
i,j=1

{
m∑

i′,j′=1

[
2aijai

′j′�i′vivj′ − aijai
′j′�ivi′vj′

]

+ Ψaijviv − aij
[
(A + Ψ)�i +

Ψi

2

]
v2

}
j

≥ 2

m∑
i,j=1

cijvivj + Bv2,

where A, B, and cij are given in (2.3). Moreover, for ς and κ large enough, the
following estimates hold uniformly in any bounded set of R

m:
(2.8)

m∑
i,j=1

cijvivj ≥ ςκϕ

{
κ

⎛
⎝ m∑

i,j=1

aijψiψj

⎞
⎠
⎛
⎝ m∑

i,j=1

aijvivj

⎞
⎠+

m∑
i,j,i′,j′=1

[
2aij

′
ai

′jψi′j′

+ aijai
′j′ψi′j′ + 2aij

′
ai

′j
j′ ψi′ − (aijai

′j′)j′ψi′

]
vivj

}
,

B = 2ς3κ4ϕ3

⎛
⎝ m∑

i,j=1

aijψiψj

⎞
⎠

2

+ ς3ϕ3O(κ3) + Oκ(ς2).
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Proof. Clearly, (2.7) is a direct consequence of Lemma 2.1. Recalling (2.3) for
cij , and noting (2.6) and (2.5), we have

m∑
i,j=1

cijvivj

=

m∑
i,j,i′,j′=1

[
2aij

′
ai

′j�i′j′ + aijai
′j′�i′j′ + 2aij

′
ai

′j
j′ �i′ − (aijai

′j′)j′�i′
]
vivj

= 2ςκ2ϕ

⎛
⎝ m∑

i,j=1

aijψivj

⎞
⎠

2

+ ςκ2ϕ

⎛
⎝ m∑

i,j=1

aijψiψj

⎞
⎠
⎛
⎝ m∑

i,j=1

aijvivj

⎞
⎠

+ ςκϕ

m∑
i,j,i′,j′=1

[
2aij

′
ai

′jψi′j′ + aijai
′j′ψi′j′ + 2aij

′
ai

′j
j′ ψi′ − (aijai

′j′)j′ψi′

]
vivj

≥ ςκ2ϕ

⎛
⎝ m∑

i,j=1

aijψiψj

⎞
⎠
⎛
⎝ m∑

i,j=1

aijvivj

⎞
⎠

+ ςκϕ
m∑

i,j,i′,j′=1

[
2aij

′
ai

′jψi′j′ + aijai
′j′ψi′j′ + 2aij

′
ai

′j
j′ ψi′ − (aijai

′j′)j′ψi′

]
vivj ,

which gives the first inequality in (2.8).
On the other hand, by (2.5), recalling the definitions of Ψ and A, we see that

Ψ = 2ςκ2ϕ

m∑
i,j=1

aijψiψj + ςϕO(κ), A = −ς2κ2ϕ2
m∑

i,j=1

aijψiψj + Oκ(ς).

Hence, from the definition of B, we have

B = 2

{
− 2ς3κ4ϕ3

⎛
⎝ m∑

i,j=1

aijψiψj

⎞
⎠

2

+ ς3ϕ3O(κ3) + Oκ(ς2)

+ ςκ
m∑

i,j=1

⎡
⎣
⎛
⎝ς2κ2ϕ3

m∑
i′,j′=1

ai
′j′ψi′ψj′ + Oκ(ς)

⎞
⎠ aijψi

⎤
⎦
j

}
+ Oκ(ς2)

= 2

{
− 2ς3κ4ϕ3

⎛
⎝ m∑

i,j=1

aijψiψj

⎞
⎠

2

+ ς3ϕ3O(κ3) + Oκ(ς2)

+ ςκ
m∑

i,j=1

⎛
⎝3ς2κ3ϕ3

m∑
i′,j′=1

ai
′j′ψi′ψj′ + ς2ϕ3O(κ2) + Oκ(ς)

⎞
⎠ aijψiψj

}

= 2ς3κ4ϕ3

⎛
⎝ m∑

i,j=1

aijψiψj

⎞
⎠

2

+ ς3ϕ3O(κ3) + Oκ(ς2),

which yields the second inequality in (2.8).
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3. Interpolation inequality for a fourth order elliptic-like equation with
multiple characteristics. As a crucial preliminary, we derive in this section the
following a priori estimate for a fourth order elliptic-like equation with multiple char-
acteristics.

Theorem 3.1. Suppose that Ω is connected. Then, for any nonempty open
subset ω of Ω, there exists a constant C0 = C0(Ω, ω, d,M) > 0 such that for any
w = w(x, s) ∈ H2(Ω × (−2, 2)) and f = f(x, s) ∈ L2(Ω × (−2, 2)) with

(3.1)

{
−∂2

sw + Δ2w + ∂2
sΔw = f in Ω × (−2, 2) ,

w = Δw = 0 on ∂Ω × (−2, 2)

we have

∫ 1

−1

∫
Ω

|Δw|2 dxds ≤ C0e
C0/ε

[∫ 2

−2

∫
ω

(
|w|2 + |Δw|2

)
dxds +

∫ 2

−2

∫
Ω

|f |2 dxds
]

+ e−2/ε

∫ 2

−2

∫
Ω

(
|Δw|2 + |∂sΔw|2

)
dxds ∀ ε > 0.

(3.2)

Notice that this interpolation estimate (3.2) or Hölder dependence continuous in-
equality has already appeared in [13] for second order elliptic operators in the frame-
work of null controllability for the heat equation.

Before proving Theorem 3.1, we remark that inequality (3.2) is a kind of quan-
titative unique continuation of (3.1) in the following sense: If w ∈ H2(Ω × (−2, 2))
solves (3.1) with f = 0 in Ω × (−2, 2), and w = 0 in ω × (−2, 2), then, by Theorem
3.1, w = 0 in Ω× (−1, 1). On the other hand, it is easy to verify that any solution w
to (3.1) with f = 0 in Ω × (−2, 2) is of the form

w(x, s) =
∞∑
k=1

(
ake

s
√

1+λk− 1
1+λk + bke

−s
√

1+λk− 1
1+λk

)
ϕk(x), ak, bk ∈ C,

where {λk}k≥1 are the eigenvalues of −Δ with homogeneous Dirichlet boundary condi-
tion and {ϕk}∞k=1 the corresponding eigenvectors (constituting an orthonormal basis
of L2(Ω)). Therefore, w(·, s) is analytic with respect to s, which, in turn, implies
w = 0 in Ω × (−2, 2).

Note also that (3.1) is not elliptic in the classical sense. Indeed, the symbol of
its principal operator reads ξ4 + ξ2η2, which vanishes for ξ = 0 and any η ∈ R.
As mentioned in the introduction, we use global Carleman estimates to establish
(3.2). To do this, a key observation is the possibility of decomposing the operator
−∂2

s + Δ2 + ∂2
sΔ as follows:

(3.3) −∂2
s + Δ2 + ∂2

sΔ = (∂2
s + Δ)(−I + Δ) + Δ,

where I is the identity. Consequently, in order to derive the desired inequality (3.2),
it is natural to proceed in cascade by applying the global Carleman estimates to
the second order elliptic operators ∂2

s + Δ and Δ. Thanks to Theorem 2.2, this is
possible because only the symmetry of the matrix (aij)1≤i,j≤m is required. Therefore,
Theorem 2.2 applies to both the operators ∂2

s + Δ and Δ. We remark that, due to
the necessity of using same weight function for these two different elliptic operators
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of second order, there seems no existing Carleman estimate in the literature for our
purpose.

Proof of Theorem 3.1. The proof is divided into four steps.
Step 1. Choice of the weight function. In order to apply Theorem 2.2 in cascade

to the operators ∂2
s + Δ and Δ, it is important to choose a common weight function

θ = θ (x, s) for these two different operators.

It is well known that (see [11] or [21], for example) there is a function ψ̂ ∈ C4
(
Ω
)

such that ψ̂ > 0 in Ω, ψ̂ = 0 on ∂Ω, and

(3.4) 0 <
d∑

i=1

∣∣∣∂xi ψ̂(x)
∣∣∣2 ≤ C

∣∣∣∇ψ̂(x)
∣∣∣2 ∀ x ∈ Ω \ω0

where ω0 ⊂ ω is an arbitrary fixed nonempty open subset of Ω such that ω0 ⊂ ω.
Therefore,

(3.5) h
�
=

1

||ψ̂ ||L∞(Ω)

min
x∈Ω\ω0

|∇ψ̂(x)| > 0.

Let us introduce

(3.6) b =

√
1 +

1

κ
ln (2 + eκ), b0 =

√
b2 − 1

κ
ln

(
1 + eκ

eκ

)
,

where κ > ln 2 is the parameter that appeared in Theorem 2.2 and is chosen large
enough. It is easy to see that

1 < b0 < b ≤ 2.

Further, we choose

(3.7) ψ(x, s) =
ψ̂(x)

||ψ̂ ||L∞(Ω)

+ b2 − s2.

By (2.4) and (2.6), this gives the function ϕ (x, s) = eκψ(x,s) and the desired weight

function θ (x, s) = eςe
κψ(x,s)

(recall Theorem 2.2 for the parameter ς). It is easy to
check that

(3.8)

{
ϕ (·, s) ≥ 2 + eκ for any s satisfying |s| ≤ 1,

ϕ (·, s) ≤ 1 + eκ for any s satisfying b0 ≤ |s| ≤ b.

Step 2. Reduction of (3.1) to a cascade system. Let

(3.9) z = −w + Δw.

Then, in view of (3.3), system (3.1) can be written equivalently as the following elliptic
system of second order in cascade:

(3.10)

⎧⎪⎪⎨
⎪⎪⎩

Δw = z + w in Ω × (−2, 2) ,

∂2
sz + Δz = f − z − w in Ω × (−2, 2) ,

w = z = 0 on ∂Ω × (−2, 2) .
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Note, however, that there is no (homogeneous) boundary condition for w (and
hence z) at s = ±2. Now, we introduce a cut-off function φ = φ (s) ∈ C∞

0 (−b, b) ⊂
C∞

0 (R) such that

(3.11)

{
0 ≤ φ(s) ≤ 1, |s| < b,

φ(s) ≡ 1, |s| ≤ b0.

Let

(3.12) w̃ = φw, z̃ = φz.

Then, noticing that φ does not depend on x, it follows by (3.10) that

(3.13)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Δw̃ = z̃ + w̃ in Ω × (−2, 2) ,

∂2
s z̃ + Δz̃ = φf + 2∂sφ∂sz + z∂2

sφ− z̃ − w̃ in Ω × (−2, 2) ,

w̃ = z̃ = 0 on ∂Ω × (−2, 2) ,

supp w̃(x, ·)
⋃

supp z̃(x, ·) ⊂ (−b, b), x ∈ Ω.

Step 3. Carleman estimates. First, we apply Theorem 2.2 with m = d + 1,
xd+1 = s, (aij)1≤i,j≤d+1 = (M 0

0 0 ), u replaced by w̃, and the weight function θ given
above. In this case, by the definition of cij in (2.3), it is easy to check that

(3.14) cij = 0 whenever one of i and j is equal to d + 1.

Moreover, by (2.8), recalling (3.7) for the definition of ψ and (3.5) for the positive
constant h, we conclude that there is a constant κ0 > 1 such that for any κ ≥ κ0,
one can find a constant ς0 > 1 so that for any ς ≥ ς0, the following estimates hold
uniformly for (x, s) ∈ Ω \ ω0 × [−b, b]:

(3.15)

d∑
i,j=1

cijvivj ≥ ςϕ
{
κ2|∇ψ|2 + O(κ)

}
|∇v|2 ≥ h2

2
ςκ2ϕ|∇v|2,

B = 2ς3κ4ϕ3|∇ψ|4 + ς3ϕ3O(κ3) + Oκ(ς2) ≥ h4ς3κ4ϕ3,

where v = θw̃. Now, integrating inequality (2.7) (with u replaced by w̃) of Theo-

rem 2.2 in Ω× (−b, b), recalling that φ vanishes near s = ±b, ψ̂ = 0 on ∂Ω, and v = 0
on ∂Ω × (−b, b), noting (3.15) and the first equation in (3.13), one arrives at

(3.16)

1

C

{
ςκ2

∫ b

−b

∫
Ω

ϕ|∇v|2dxds + ς3κ4

∫ b

−b

∫
Ω

ϕ3|v|2dxds
}

≤
∫ b

−b

∫
Ω

θ2 |z̃ + w̃|2 dxds +
ςκ

||ψ̂ ||L∞(Ω)

∫ b

−b

∫
∂Ω

ϕ
∂ψ̂

∂ν

∣∣∣∣ ∂v

∂νM

∣∣∣∣
2

d(∂Ω)ds

+ C

{
ςκ2

∫ b

−b

∫
ω0

θ2ϕ|∇w̃|2dxds + ς3κ4

∫ b

−b

∫
ω0

θ2ϕ3|w̃|2dxds
}
,

where ∂ψ̂
∂ν =

∑d
i=1 ψ̂iν

i, ∂v
∂νM

=
∑d

i,j=1 α
ijviν

j , and ν =
(
ν1, . . . , νd

)
= ν(x) is the

unit outward normal vector of Ω at x ∈ ∂Ω. For the boundary term in (3.16), we
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have used that

d+1∑
i,j=1

⎧⎨
⎩

d+1∑
i′,j′=1

[
2aijai

′j′�i′vivj′ − aijai
′j′�ivi′vj′

]⎫⎬
⎭ νj

=
ςκϕ

||ψ̂ ||L∞(Ω)

(
d∑

i=1

ψ̂iν
i

)∣∣∣∣∣∣
d∑

i,j=1

aijviν
j

∣∣∣∣∣∣
2

=
ςκϕ

||ψ̂ ||L∞(Ω)

∂ψ̂

∂ν

∣∣∣∣ ∂v

∂νM

∣∣∣∣
2

,

which follows from the fact that on ∂Ω × (−b, b), we have for j = 1, . . . , d,

vj =

(
d∑

i=1

viν
i

)
νj , �j = ςκϕψj =

ςκϕ

||ψ̂ ||L∞(Ω)

ψ̂j =
ςκϕ

||ψ̂ ||L∞(Ω)

(
d∑

i=1

ψ̂iν
i

)
νj ,

and νd+1 = 0.
Choose a cut-off function g ∈ C∞

0 (ω) with g ≡ 1 in ω0 and 0 ≤ g ≤ 1 in ω.
Multiplying the first equation in (3.13) by gθ2ϕw̃ and integrating it in Ω × (−b, b),
using integration by parts, one obtains

(3.17)

∫ b

−b

∫
ω0

θ2ϕ|∇w̃|2dxds ≤ C

[
ςκ2

∫ b

−b

∫
ω

θ2ϕ2|w̃|2dxds +

∫ b

−b

∫
ω

θ2|z̃|2dxds
]
.

Recalling that v = θw̃, by (2.5), we get

(3.18)
1

C
θ2(|∇w̃|2 + ς2κ2ϕ2|w̃|2) ≤ |∇v|2 + ς2κ2ϕ2v2 ≤ Cθ2(|∇w̃|2 + ς2κ2ϕ2|w̃|2).

By the choice of ψ̂, one can check that ∂ψ̂
∂ν < 0 on ∂Ω. Therefore, by (3.16) and

noting (3.17)–(3.18), we end up with

ςκ2

∫ b

−b

∫
Ω

θ2ϕ|∇w̃|2dxds + ς3κ4

∫ b

−b

∫
Ω

θ2ϕ3|w̃|2dxds

≤ C

(∫ b

−b

∫
Ω

θ2 |z̃|2 dxds + ςκ2

∫ b

−b

∫
ω

θ2 |z̃|2 dxds + ς3κ4

∫ b

−b

∫
ω

θ2ϕ3|w̃|2dxds
)
.

(3.19)

Next, we apply Theorem 2.2 with m = d + 1, xd+1 = s, (aij)1≤i,j≤d+1 = (M 0
0 1 ),

u replaced by z̃, and the weight function θ as the above. In this case, for any fixed
b1 ∈ (0, b), by (2.8), recalling again (3.7) for the definition of ψ and (3.5) for the
positive constant h, we conclude that there is a constant κ1 ≥ κ0 such that for any
κ ≥ κ1, one can find a constant ς1 ≥ ς0 so that, for any ς ≥ ς1, the following estimates
hold uniformly for (x, s) ∈ (Ω × (−b, b)) \ (ω0 × (−b1, b1)):

(3.20)

d+1∑
i,j=1

cijpipj ≥ ςϕ
[
κ2(|∇ψ|2 + |∂sψ|2) + O(κ)

]
(|∇p|2 + |∂sp|2)

≥ h2

2
ςκ2ϕ(|∇p|2 + |∂sp|2),

B = 2ς3κ4ϕ3(|∇ψ|2 + |∂sψ|2)2 + ς3ϕ3O(κ3) + Oκ(ς2) ≥ h4ς3κ4ϕ3,
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where p = θz̃. Using (3.20) and the second equation in (3.13), similar to the proof of
(3.16), one obtains
(3.21)

1

C

{
ςκ2

∫ b

−b

∫
Ω

ϕ(|∇p|2 + |∂sp|2)dxds + ς3κ4

∫ b

−b

∫
Ω

ϕ3|p|2dxds
}

≤
∫ b

−b

∫
Ω

θ2
∣∣φf + 2∂sφ∂sz + z∂2

sφ− z̃ − w̃
∣∣2 dxds

+
ςκ

||ψ̂ ||L∞(Ω)

∫ b

−b

∫
∂Ω

ϕ
∂ψ̂

∂ν

∣∣∣∣ ∂p

∂νM

∣∣∣∣
2

d(∂Ω)ds

+ C

{
ςκ2

∫ b1

−b1

∫
ω0

θ2ϕ(|∇z̃|2 + |∂sz̃|2)dxds + ς3κ4

∫ b1

−b1

∫
ω0

θ2ϕ3|z̃|2dxds
}
.

By the second equation in (3.13), similar to (3.17), one has
(3.22)∫ b1

−b1

∫
ω0

θ2ϕ(|∇z̃|2 + |∂sz̃|2)dxds

≤ C

[
ςκ2

∫ b

−b

∫
ω

θ2ϕ2|z̃|2dxds +

∫ b

−b

∫
ω

θ2
∣∣φf + 2∂sφ∂sz + z∂2

sφ− w̃
∣∣2 dxds

]
.

Now, similar to (3.19), from (3.21) and (3.22), it follows that

(3.23)

ςκ2

∫ b

−b

∫
Ω

θ2ϕ(|∇z̃|2 + |∂sz̃|2)dxds + ς3κ4

∫ b

−b

∫
Ω

θ2ϕ3|z̃|2dxds

≤ C

{
ςκ2

∫ b

−b

∫
Ω

θ2
∣∣φf + 2∂sφ∂sz + z∂2

sφ
∣∣2 dxds +

∫ b

−b

∫
Ω

θ2 |w̃|2 dxds

+ ςκ2

∫ b

−b

∫
ω

θ2 |w̃|2 dxds + ς3κ4

∫ b

−b

∫
ω

θ2ϕ3|z̃|2dxds
}
.

Combining (3.19) and (3.23), we find that for any ς and κ large enough,

(3.24)

∫ b

−b

∫
Ω

θ2ϕ(|∇z̃|2 + |∂sz̃|2)dxds + ς2κ2

∫ b

−b

∫
Ω

θ2ϕ3|z̃|2dxds

+ ς3κ4

∫ b

−b

∫
Ω

θ2ϕ|∇w̃|2dxds + ς5κ6

∫ b

−b

∫
Ω

θ2ϕ3|w̃|2dxds

≤ C

(∫ b

−b

∫
Ω

θ2
∣∣φf + 2∂sφ∂sz + z∂2

sφ
∣∣2 dxds + ς3κ4

∫ b

−b

∫
ω

θ2 |z̃|2 dxds

+ ς5κ6

∫ b

−b

∫
ω

θ2ϕ3|w̃|2dxds
)
.
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Recall that z̃ = Δw̃ − w̃. Therefore, (3.24) leads to

(3.25)

ς2κ2

∫ b

−b

∫
Ω

θ2ϕ3|Δw̃|2dxds

≤ C

[∫ b

−b

∫
Ω

θ2(|f |2 +
∣∣2∂sφ∂sz + z∂2

sφ
∣∣2)dxds

+ ς3κ4

∫ b

−b

∫
ω

θ2ϕ3|Δw̃|2dxds + ς5κ6

∫ b

−b

∫
ω

θ2ϕ3|w̃|2dxds
]
.

Step 4. Completion of the proof. Denote c0 = 2 + eκ > 1, and recall (3.6) for
b0 ∈ (1, b). Fixing the parameter κ in (3.25), by (3.9), using (3.8) and (3.11), one
finds

(3.26)

ς2e2ςc0

∫ 1

−1

∫
Ω

|Δw|2 dxds

≤ CeCς

[∫ b

−b

∫
Ω

|f |2dxds +

∫ b

−b

∫
ω

(|w|2 + |Δw|2)dxds
]

+ Ce2ς(c0−1)

∫
(−b,−b0)∪(b0,b)

∫
Ω

∣∣2∂sφ∂s(Δw − w) + (Δw − w)∂2
sφ
∣∣2 dxds.

From (3.26), one concludes that there exists ε0 > 0 such that the desired inequal-
ity (3.2) holds for ε ∈ (0, ε0], which, in turn, implies that it holds for any ε > 0. This
completes the proof of Theorem 3.1.

4. Quantitative unique continuation for Kirchhoff plate. This section
shows the following quantitative unique continuation for solutions of (1.1).

Theorem 4.1. Suppose that Ω is connected. Then, for any nonempty open subset
ω of Ω and any β ∈ (0, 1), there exists a time T > 0 such that the solution u of (1.1)
satisfies

‖(u0, u1)‖2
H2(Ω)×H1(Ω) ≤ e

C

[
‖(u0,u1)‖H

‖(u0,u1)‖
H2(Ω)×H1(Ω)

]1/β ∫ T

0

∫
ω

|u (x, t)|2 dxdt

∀ (u0, u1) ∈ H \ {0}.

(4.1)

Remark 4.1. Estimate (4.1) is equivalent to

(4.2) ‖(u0, u1)‖2
H2(Ω)×H1(Ω) ≤

C

ln2β

(
1 +

‖(u0,u1)‖2
H

‖u‖2
L2(ω×(0,T ))

) ‖(u0, u1)‖2
H

or, equivalently,
(4.3)

‖(u0, u1)‖2
H2(Ω)×H1(Ω) ≤ CeC/μ

∫ T

0

∫
ω

|u (x, t)|2 dxdt + μ2β ‖(u0, u1)‖2
H ∀μ > 0.

This kind of interpolation estimate or logarithmic dependence continuous inequal-
ity has already appeared in [14, 20] in the framework of boundary control and stabi-
lization for hyperbolic equations.
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In order to prove Theorem 4.1, we need the following known result from [14,
p. 473].

Proposition 4.2. For any N ∈ N, the function

(4.4) F (z)
�
=

1

2π

∫
R

eizτe−τ2N

dτ

is holomorphic in C and there exist four positive constants A, c0, c1, and c2 such that{
|F (z)| ≤ Aec0|Im z|α ,

|Im z| ≤ c2 |Re z| =⇒ |F (z)| ≤ Ae−c1|z|α ,

where α = 2N
2N−1 .

Proof of Theorem 4.1. Fix any nonempty open subset ω1 of ω such that ω1 ⊂ ω.
We claim that it suffices to show that

(4.5)
‖(u0, u1)‖2

H2(Ω)×H1(Ω) ≤ CeC/μ

∫ T

0

∫
ω1

[
|u (x, t)|2 + |Δu (x, t)|2

]
dxdt

+ μ2β ‖(u0, u1)‖2
H ∀μ > 0.

To see this, we choose a cut-off function � ∈ C∞
0 (ω) such that � = 1 in ω1 and

0 ≤ � ≤ 1 in ω. Then, for any μ > 0,

(4.6)

∫ T

0

∫
ω1

[
|u (x, t)|2 + |Δu (x, t)|2

]
dxdt ≤

∫ T

0

‖�u (·, t)‖2
H2(Rd) dt

≤ C

[
1

μ2

∫ T

0

‖�u (·, t)‖2
L2(Rd) dt + μ

∫ T

0

‖�u (·, t)‖2
H3(Rd) dt

]

≤ C

[
1

μ2

∫ T

0

∫
ω

|u (x, t)|2 dxdt + μ ‖(u0, u1)‖2
H

]
.

Combining (4.5) and (4.6), we arrive at (4.3). By Remark 4.1, this yields the desired
inequality (4.1).

We now prove (4.5) and divide the proof into three steps.
Step 1. Reducing the problem to a fourth order elliptic-like equation. Let β ∈

(0, 1), and choose N ∈ N such that 0 < β + 1
2N < 1. Let γ = 1

α = 1 − 1
2N > β.

Recall the definition of F (z) in (4.4) and the constant C0 > 0 in Theorem 3.1 (with
ω replaced by ω1). By Proposition 4.2, for any λ ≥ 1, the holomorphic function

(4.7) Fλ(z)
�
= λγF (λγz) ≡ 1

2π

∫
R

eizτe−( τ
λγ )

2N

dτ

satisfies

(4.8)

{
|Im z| ≤ 2 =⇒ |Fλ (z)| ≤ Aλγe2αc0λ,

|Im z| ≤ 2 and 2
c2

≤ |Re z| =⇒ |Fλ (z)| ≤ Aλγe−c1λ|Re z|α .

In what follows, we fix a time T satisfying

(4.9) T > 8 max

(
2,

2

c2
, α

√
1 + 2αc0C0

c1

)
.
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For any Φ = Φ(t) ∈ C∞
0 (0, T ) ⊂ C∞

0 (R) and any solution u of (1.1), following [14],
we introduce the following Fourier–Bros–Iagolnitzer transformation of u:

(4.10) W�0,λ(x, s) =

∫
R

Fλ(�0 + is− �)Φ(�)u(x, �)d�, s, �0 ∈ R.

Clearly, ∂2
sFλ(�0 + is− �) = −∂2

�Fλ(�0 + is− �). Hence

(4.11)

∂2
s (I − Δ)W�0,λ(x, s)

= −
∫

R

∂2
�Fλ(�0 + is− �)Φ(�) (I − Δ)u(x, �)d�

= −
∫

R

Fλ(�0 + is− �) [Φ′′(�) (I − Δ)u(x, �) + 2Φ′(�)∂t (I − Δ)u(x, �)] d�

−
∫

R

Fλ(�0 + is− �)Φ(�)∂2
t (I − Δ)u(x, �)d�.

Since u is a solution of (1.1), it follows from (4.11) that W�0,λ satisfies the following
fourth order elliptic-like equation with multiple characteristics:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∂2
sW�0,λ(x, s) + Δ2W�0,λ(x, s) + ∂2

sΔW�0,λ(x, s)

=

∫
R

Fλ(�0 + is− �) [Φ′′(�) (I − Δ)u(x, �) + 2Φ′(�)∂t (I − Δ)u(x, �)] d�,

(x, s) ∈ Ω × R,

W�0,λ(x, s) = ΔW�0,λ(x, s) = 0, (x, s) ∈ ∂Ω × R,

W�0,λ(x, 0) = (Fλ ∗ Φu(x, ·)) (�0), x ∈ Ω.

(4.12)

On the other hand, we have

‖ΦΔu (x, ·)‖L2(T
2 −1,T2 +1)

≤ ‖ΦΔu(x, ·) − Fλ ∗ ΦΔu(x, ·)‖L2(T
2 −1,T2 +1) + ‖Fλ ∗ ΦΔu(x, ·)‖L2(T

2 −1,T2 +1)

≤ ‖ΦΔu(x, ·) − Fλ ∗ ΦΔu(x, ·)‖L2(R) +

(∫ T/2+1

T/2−1

|ΔWt,λ(x, 0)|2 dt
)1/2

.

Denote by F (f) the Fourier transform of f . Therefore, using Parseval’s equality

and the fact that F (Fλ) (τ) = e−( τ
λγ )

2N

, one finds

‖ΦΔu(x, ·) − Fλ ∗ ΦΔu(x, ·)‖L2(R) =
1√
2π

∥∥∥F(ΦΔu(x, ·) − Fλ ∗ ΦΔu(x, ·)
)∥∥∥

L2(R)

=
1√
2π

(∫
R

∣∣∣(1 − e−( τ
λγ )

2N)
F
(
ΦΔu(x, ·)

)
(τ)
∣∣∣2 dτ)1/2

≤ C

(∫
R

∣∣∣ τ
λγ

F
(
ΦΔu(x, ·)

)
(τ)
∣∣∣2 dτ)1/2

≤ C

λγ
‖∂t (ΦΔu(x, ·))‖L2(R) .
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Hence,

(4.13)

∫ T/2+1

T/2−1

|Φ(t)Δu(x, t)|2 dt

≤ C

[
1

λ2γ
‖∂t (ΦΔu(x, ·))‖2

L2(R) +

∫ T/2+1

T/2−1

|ΔWt,λ(x, 0)|2 dt
]
.

For any t ∈
(
T
2 − 1, T

2 + 1
)
⊂ R, by Cauchy’s integral theorem (in the theory of

complex variable functions) and Hölder’s inequality, we deduce that

|ΔWt,λ(x, 0)| ≤ 1

π

∫
|�0−t|≤1

∫
|s|≤1

|ΔW�0,λ(x, s)| dsd�0

≤ 2

π

(∫
|�0−t|≤1

∫
|s|≤1

|ΔW�0,λ(x, s)|2 dsd�0

)1/2

.

Hence

∫ T/2+1

T/2−1

|ΔWt,λ(x, 0)|2 dt ≤ 4

π2

∫ T/2+1

T/2−1

dt

∫
|�0−t|≤1

∫
|s|≤1

|ΔW�0,λ(x, s)|2 dsd�0

≤ 4

π2

∫ T/2+1

T/2−1

dt

∫ T/2+2

T/2−2

d�0

∫
|s|≤1

|ΔW�0,λ(x, s)|2 ds

≤ 8

π2

∫ T/2+2

T/2−2

d�0

∫
|s|≤1

|ΔW�0,λ(x, s)|2 ds.

(4.14)

Noticing that ∫
Ω

‖∂t (ΦΔu(x, ·))‖2
L2(R) dx ≤ C ‖(u0, u1)‖2

H ,

combining (4.13) and (4.14), we get

(4.15)

∫ T/2+1

T/2−1

∫
Ω

|Φ(t)Δu(x, t)|2 dxdt

≤ C

[
1

λ2γ
‖(u0, u1)‖2

H +

∫ T/2+2

T/2−2

d�0

∫
|s|≤1

∫
Ω

|ΔW�0,λ(x, s)|2 dxds
]
.

Step 2. The estimate on
∫ T/2+2

T/2−2
d�0
∫
|s|≤1

∫
Ω
|ΔW�0,λ(x, s)|2 dxds. We now fix

any Φ = Φ(t) ∈ C∞
0 (0, T ) satisfying 0 ≤ Φ ≤ 1 in (0, T ) and Φ ≡ 1 on

[
T
4 ,

3T
4

]
.

Applying Theorem 3.1 (with ω replaced by ω1) to W�0,λ, we obtain that for all
ε > 0, ∫

|s|≤1

∫
Ω

|ΔW�0,λ(x, s)|2 dxds

≤ e−2/ε

∫
|s|≤2

∫
Ω

[
|ΔW�0,λ(x, s)|2 + |∂sΔW�0,λ(x, s)|2

]
dxds(4.16)

+ C0e
C0/ε

∫
|s|≤2

∫
ω1

[
|W�0,λ(x, s)|2 + |ΔW�0,λ(x, s)|2

]
dxds
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+ C0e
C0/ε

∫
|s|≤2

∫
Ω

∣∣∣ ∫
R

Fλ(�0 + is− �)
[
Φ′′(�) (I − Δ)u(x, �)

+ 2Φ′(�)∂t (I − Δ)u(x, �)
]
d�
∣∣∣2dxds.

Using the first conclusion in (4.8), we deduce that

(4.17)

∫ T/2+2

T/2−2

d�0

∫
|s|≤2

∫
Ω

[
|ΔW�0,λ(x, s)|2 + |∂sΔW�0,λ(x, s)|2

]
dxds

=

∫ T/2+2

T/2−2

d�0

∫
|s|≤2

∫
Ω

[∣∣∣∣
∫

R

Fλ(�0 + is− �)Φ(�)Δu(x, �)d�

∣∣∣∣
2

+

∣∣∣∣∂s
∫

R

Fλ(�0 + is− �)Φ(�)Δu(x, �)d�

∣∣∣∣
2
]
dxds

≤
∫ T/2+2

T/2−2

d�0

∫
|s|≤2

∫
Ω

⎡
⎣
∣∣∣∣∣
∫ T

0

(
Aλγe2αc0λ

)
|Δu(x, �)| d�

∣∣∣∣∣
2

+

∣∣∣∣∣
∫ T

0

(
Aλγe2αc0λ

)
|Δ∂�u(x, �) + Φ′(�)Δu(x, �)| d�

∣∣∣∣∣
2
⎤
⎦ dxds

≤ Cλ2γe2α+1c0λ ‖(u0, u1)‖2
H .

Similarly,

(4.18)

∫ T/2+2

T/2−2

d�0

∫
|s|≤2

∫
ω1

[
|W�0,λ(x, s)|2 + |ΔW�0,λ(x, s)|2

]
dxds

≤ Cλ2γe2α+1c0λ

∫ T

0

∫
ω1

[
|u(x, t)|2 + |Δu(x, t)|2

]
dxdt.

Further, by the choice of Φ, it is obvious that

supp
(
∂2
t Φ
)
⊂ supp (∂tΦ) ⊂ K

�
=

[
0,

T

4

]⋃[3T

4
, T

]
.

Let K0 =
[
3T
8 , 5T

8

]
. Then dist (K,K0) = T

8 . The choice of T in (4.9) implies T > 16

and T > 16/c2. Hence,
(
T
2 − 2, T

2 + 2
)
⊂ K0, and

|�0 − �| ≥ T

8
≥ 2

c2
∀ (�0, �) ∈ K0 ×K.

Therefore, using the second conclusion in (4.8), we deduce that∫ T/2+2

T/2−2

d�0

∫
|s|≤2

∫
Ω

∣∣∣∣∣
∫

R

Fλ(�0 + is− �)
[
Φ′′(�) (I − Δ)u(x, �)(4.19)

+2Φ′(�)∂t (I − Δ)u(x, �)
]
d�

∣∣∣∣∣
2

dxds

≤ C

∫
K0

d�0

∫
|s|≤2

∫
Ω

∣∣∣∣∣
∫
K

(
Aλγe−c1λ|�0−�|α

)(
|(I − Δ)u(x, �)|
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+ |∂t (I − Δ)u(x, �)|
)
d�

∣∣∣∣∣
2

dxds

≤ C
∣∣∣Aλγe−c1λ(dist(K,K0))

α
∣∣∣2∫

Ω

∣∣∣∣
∫
K

[|(I − Δ)u(x, �)| + |∂t (I − Δ)u(x, �)|] d�
∣∣∣∣
2

dx

≤ Cλ2γe−2c1λ(T
8 )

α

‖(u0, u1)‖2
H .

Combining (4.17)–(4.19), we arrive at

(4.20)

∫ T/2+2

T/2−2

d�0

∫
|s|≤1

∫
Ω

|ΔW�0,λ(x, s)|2 dxds

≤ Cλ2γ

{
e2α+1c0λe−2/ε ‖(u0, u1)‖2

H + e−2c1λ(T
8 )

α

eC0/ε ‖(u0, u1)‖2
H

+ e2α+1c0λeC0/ε

∫ T

0

∫
ω1

[
|u(x, t)|2 + |Δu(x, t)|2

]
dxdt

}
.

Step 3. Choice of ε and completion of the proof. We deduce from (4.15) and
(4.20) that

(4.21)

∫ T/2+1

T/2−1

∫
Ω

|Φ(t)Δu(x, t)|2 dxdt

≤ C

{[
1

λ2γ
+ λ2γe2α+1c0λe−2/ε + λ2γe−2c1λ(T

8 )
α

eC0/ε

]
‖(u0, u1)‖2

H

+ λ2γe2α+1c0λeC0/ε

∫ T

0

∫
ω1

[
|u(x, t)|2 + |Δu(x, t)|2

]
dxdt

}
.

We now choose

(4.22) ε =
1

2α+1c0λ
.

Recall the choice of T in (4.9), which gives −c1
(
T
8

)α
+ 2αc0C0 ≤ −1. Hence

(4.23) e−2c1λ(T
8 )

α

eC0/ε = exp

{
2

[
−c1

(
T

8

)α

+ 2αc0C0

]
λ

}
≤ e−2λ.

Combining (4.21)–(4.23), we deduce that, for all λ ≥ 1,

(4.24)

∫ T/2+1

T/2−1

∫
Ω

|Δu(x, t)|2 dxdt =

∫ T/2+1

T/2−1

∫
Ω

|Φ(t)Δu(x, t)|2 dxdt

≤ C

λ2γ
‖(u0, u1)‖2

H + CeCλ

∫ T

0

∫
ω1

[
|u(x, t)|2 + |Δu(x, t)|2

]
dxdt.

Finally, by means of the energy method, it is easy to show that

(4.25) ‖(u0, u1)‖2
H2(Ω)×H1(Ω) ≤ C

∫ T/2+1

T/2−1

∫
Ω

|Δu(x, t)|2 dxdt.
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Combining (4.24) and (4.25), it is easy to conclude that, for any μ ∈ (0, 1),

(4.26)

‖(u0, u1)‖2
H2(Ω)×H1(Ω)

≤ CeC/μ

∫ T

0

∫
ω1

[
|u(x, t)|2 + |Δu(x, t)|2

]
dxdt + Cμ2β ‖(u0, u1)‖2

H .

Note that this inequality is trivially true for any μ ≥ 1 and for some C > 1. Con-
sequently, inequality (4.5) holds true for all μ > 0. This completes the proof of
Theorem 4.1.

5. Observability estimates for Kirchhoff plate. The purpose of this section
is to establish two observability estimates which quantify the unique continuation
property of (1.1) saying that if its solution u satisfies ∂tΔu = 0 in ω × (0, T ), then
(u0, u1) = 0. Due to the finite speed of propagation, the time T > 0 has to be chosen
large enough.

First, when GCC is assumed, we have the following estimate.
Theorem 5.1. Under GCC, for any T ≥ T0, the solution u of (1.1) satisfies

(5.1) E(u, 0) ≤ C

∫ T

0

∫
ω

|∂tΔu(x, t)|2 dxdt ∀ (u0, u1) ∈ H.

Proof. Under GCC, it follows from [2, 3] that for any g ∈ L2 (Ω × (0, T0)) and
any (χ0, χ1) ∈ H1

0 (Ω) × L2 (Ω), the solution χ of the wave equation

(5.2)

⎧⎪⎪⎨
⎪⎪⎩

∂2
t χ− Δχ = g in Ω × (0, T0) ,

χ = 0 on ∂Ω × (0, T0) ,

χ (·, 0) = χ0, ∂tχ (·, 0) = χ1 in Ω

satisfies the following observability estimate:
(5.3)

‖(χ0, χ1)‖2
H1

0 (Ω)×L2(Ω) ≤ C

[∫ T0

0

∫
ω

|∂tχ (x, t)|2 dxdt +

∫ T0

0

∫
Ω

|g (x, t)|2 dxdt
]
.

Note that the solution u of (1.1) solves

⎧⎪⎪⎨
⎪⎪⎩

∂2
t (I − Δ)u− Δ (I − Δ)u = −Δu in Ω × R,

(I − Δ)u = 0 on ∂Ω × R,

(I − Δ)u (·, 0) = (I − Δ)u0, ∂t (I − Δ)u (·, 0) = (I − Δ)u1 in Ω.

(5.4)

Applying estimate (5.3) to system (5.4) (with χ = (I − Δ)u and g = −Δu), we
conclude that

(5.5)

E (u, 0) ≤ C

[∫ T0

0

∫
ω

|∂t(I − Δ)u (x, t)|2 dxdt +

∫ T0

0

∫
Ω

|Δu (x, t)|2 dxdt
]

≤ C

[∫ T0

0

∫
ω

|∂tΔu (x, t)|2 dxdt + ‖(u0, u1)‖2
H2(Ω)×H1(Ω)

]
.
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However, by (5.5) and using the classical uniqueness-compactness argument (e.g.,
[15]), it follows that

(5.6) ‖(u0, u1)‖2
H2(Ω)×H1(Ω) ≤ C

∫ T0

0

∫
ω

|∂tΔu (x, t)|2 dxdt.

Therefore, combining (5.5) and (5.6), we deduce the desired estimate (5.1). This
completes the proof of Theorem 5.1.

Next, when GCC is not assumed, we have the following weaker estimate.
Theorem 5.2. Suppose that Ω is connected. Then, for any nonempty open subset

ω of Ω, any β ∈ (0, 1), and the time T > 0 given in Theorem 4.1, the solution u of
(1.1) satisfies

(5.7)
E(u, 0) ≤ CeC/μ

∫ T

0

∫
ω

|∂tu (x, t)|2 dxdt + μ2β ‖(u0, u1)‖2
D(A)

∀ (u0, u1) ∈ D(A) \ {0}, ∀ μ > 0,

and

(5.8)
E(u, 0) ≤ CeC/μ

∫ T

0

∫
ω

|∂tΔu (x, t)|2 dxdt + μ2β ‖(u0, u1)‖2
D(A3)

∀ (u0, u1) ∈ D(A3) \ {0}, ∀ μ > 0.

Proof. By (4.3) in Remark 4.1, one sees that the solution u of system (1.1) satisfies
(5.9)∫ T

0

∫
Ω

|Δu (x, t)|2 dxdt ≤ CeC/μ

∫ T

0

∫
ω

|u (x, t)|2 dxdt + μ2β ‖(u0, u1)‖2
H ∀μ > 0,

and

(5.10)

∫ T

0

∫
Ω

|u (x, t)|2 dxdt ≤ CeC/μ

∫ T

0

∫
ω

|u (x, t)|2 dxdt+μ2β ‖(u0, u1)‖2
H ∀μ > 0.

It remains to apply (5.9) (resp., (5.10)) with u replaced by ∂tu (resp., ∂tΔu) to get
the desired estimate (5.7) (resp., (5.8)) by using the following inequality:

E (u, 0) ≤ C

∫ T

0

∫
Ω

|∂tΔu (x, t)|2 dxdt,

which, in turn, follows from the usual energy method.

6. Proof of Theorems 1.1 and 1.2. We begin with the proof of Theorem 1.2.
Recall that the functions v(j) and U (j), defined, respectively, in (1.4) and (1.5), depend
only on ∂tΔu (x, T − t) · 1|ω . Let

(6.1) w(j)(x, t) =

{
v(0)(x, t) − u(x, T − t), j = 0,

v(j)(x, t) − w(j−1)(x, T − t), j > 0,
for (x, t) ∈ Q.

Clearly, w(j) = U (j) in ω × (0, T ). Also, it is easy to check that w(j) solves

(6.2)

{
∂2
tw

(j) + Δ2w(j) − ∂2
t Δw(j) + ∂tΔw(j) · 1|ω = 0 in Q,

w(j) = Δw(j) = 0 on Σ.
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By (6.1) and the third equation in system (1.4), noticing the conservative law
(1.3), we deduce that

(6.3)

{
E(w(j), 0) = E(w(j−1), T ), j > 0,

E(w(0), 0) = E(u, T ) = E(u, 0).

First, applying the standard energy method to system (6.2), it follows that

(6.4) E(w(j), T ) − E(w(j), 0) +

∫ T

0

∫
ω

∣∣∣∂tΔw(j) (x, t)
∣∣∣2 dxdt = 0 ∀ T > 0.

By (5.8) in Theorem 5.2 and using a well-known perturbation argument (e.g., [16,
section 5]), we conclude that the solution w(j) of (6.2) satisfies, for any μ > 0,
(6.5)

E(w(j), 0) ≤ CeC/μ

∫ T

0

∫
ω

∣∣∣∂tΔw(j)(x, t)
∣∣∣2 dxdt + μ2β

∥∥∥(w(j)(·, 0), ∂tw
(j)(·, 0)

)∥∥∥2

D(A3)
.

Combining (6.4)–(6.5) and the first line in (6.3), it follows that, for any μ > 0,
(6.6)

E(w(j), 0) ≤ CeC/μ
[
E(w(j), 0) − E(w(j+1), 0)

]
+μ2β

∥∥∥(w(j)(·, 0), ∂tw
(j)(·, 0)

)∥∥∥2

D(A3)
.

In view of the dissipation law for system (6.2), noticing again (6.1) and the third
equation in system (1.4), one has
(6.7)∥∥∥(w(2j+1)(·, T ), ∂tw

(2j+1)(·, T )
)∥∥∥

D(A3)
≤ C

∥∥∥(w(2j)(·, T ), ∂tw
(2j)(·, T )

)∥∥∥
D(A3)

.

Therefore, by (6.6)–(6.7) and denoting M
�
= supj>0

∥∥(w(2j)(·, T ), ∂tw
(2j)(·, T )

)∥∥2

D(A3)
,

we conclude that

(6.8) E(w(j), 0) ≤ CeC/μ
[
E(w(j), 0) − E(w(j+1), 0)

]
+μ2βM ∀ μ > 0.

Now, by (6.8) and similar to Remark 4.1, one deduces that the solution w(j) of (6.2)
satisfies

(6.9)
E
(
w(j), 0

)
M

≤ C ln−2β

(
1 +

M

E
(
w(j), 0

)
− E

(
w(j+1), 0

)
)
.

Let

αn =
E
(
w(n), 0

)
M

.

Then,

(6.10) αn+1 =
E
(
w(n+1), 0

)
M

=
E
(
w(n), T

)
M

≤ αn.

Combining (6.9) and (6.10), we obtain

(6.11) αn+1 ≤ C ln−2β

(
1 +

1

αn − αn+1

)
∀ n ∈ N.
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Similar to [14, 27], starting from (6.11), one deduces that

(6.12) αn+1 ≤ C ln−2β (1 + n) ∀ n ∈ N,

which gives

(6.13)
E
(
w(2N), T

)
M

≤ C ln−2β (1 + 2N) .

Now it remains to compute w(2N) (·, T ). By induction, it is easy to verify that, for
any N ≥ 1,

w(2N) (·, t) =

N∑
k=1

[
v(2k) (·, t) − v(2k−1) (·, T − t)

]
+ v(0) (·, t) − u (·, T − t) .

Therefore,

(6.14) w(2N) (·, T ) =

N∑
k=0

v(2k) (·, T ) − u0, ∂tw
(2N) (·, T ) =

N∑
k=0

∂tv
(2k) (·, T ) + u1.

Finally, by (6.13)–(6.14) and J3 < +∞, one arrives at the desired estimate (1.7).
Similarly, the proof of Theorem 1.1 follows from (6.3), (6.14), and Theorem

5.1.
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Abstract. This paper presents a new algorithm for conductivity imaging. Our idea is to extract
more information about the conductivity distribution from data that have been enriched by coupling
impedance electrical measurements to localized elastic perturbations. Using asymptotics of the fields
in the presence of small volume inclusions, we relate the pointwise values of the energy density to
the measured data through a nonlinear PDE. Our algorithm is based on this PDE and takes full
advantage of the enriched data. We give numerical examples that illustrate the performance and the
accuracy of our approach.
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1. Introduction. The electrical impedance tomography (EIT) technique has
been an active research topic since the early 1980s. In EIT, one measures the boundary
voltages due to multiple injection currents to reconstruct images of the conductivity
distribution. This problem is known to be ill-posed [1] due to the fact that boundary
voltages are not very sensitive to local changes of the conductivity distribution.

Medical imaging has been one of the important application areas of EIT. Indeed,
biological tissues have different electrical properties that change with cell concentra-
tion, cellular structure, and molecular composition. Such changes of electrical prop-
erties are the manifestations of structural, functional, metabolic, and pathological
conditions of tissues and thus provide valuable diagnostic information.

For practitioners, the practicality of EIT is of great interest: It is a low cost and
portable technology which can be used for real time monitoring. However, it suffers
from poor spatial resolution and accuracy, a well-known feature of inverse problems.
This motivated us to look for a new way of incorporating more information in EIT
data, without altering the cost and portability of the data acquisition, which would
yet improve the resolution of the reconstructed images.

The classical image reconstruction algorithms view EIT as an optimization prob-
lem. An initial conductivity distribution is iteratively updated so as to minimize the
difference between measured and computed boundary voltages. This kind of method
was first introduced in EIT by Yorkey, Webster, and Tompkins [43]. Numerous vari-
ations and improvements followed, which include utilization of a priori information,
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and various forms of regularization [42, 19]. This approach is quite greedy in compu-
tational time yet produces images with poor accuracy and spatial resolution.

In the 1980s, Barber and Brown [14] introduced a back-projection algorithm that
was the first fast and efficient algorithm for EIT, although it provides images with
very low resolution. Since this algorithm is inspired from computed tomography, it
can be viewed as a generalized Radon transform method [39].

A third technique is dynamical electrical impedance imaging, developed by the
Rensselaer impedance tomography group [24] to produce images of changes in con-
ductivity due to cardiac or respiratory functions. Its main idea consists in viewing
the conductivity as the sum of a static term (the background conductivity of the
human body) plus a perturbation (the change of conductivity caused by respiration
or by heart beats). The mathematical problem here is to visualize the perturbation
term by an EIT system. Although this algorithm provides accurate images if the ini-
tial guess of the background conductivity is good, its resolution does not completely
satisfy practitioners especially when screening for breast cancer (see also [25]).

Recently, a commercial system called TransScan TS2000 (TransScan Medical,
Ltd, Migdal Ha’Emek, Israel) was released for adjunctive clinical uses with X-ray
mammography in the diagnosis of breast cancer. Interestingly, the TransScan system
is similar to the frontal plane impedance camera that initiated EIT research early in
1978. The mathematical model of the TransScan can be viewed as a realistic or prac-
tical version of the general EIT system, so any theory developed for this model can be
applied to other areas in EIT, especially to detection of anomalies. In the TransScan,
a patient holds a metallic cylindrical reference electrode, through which a constant
voltage of 1 to 2.5 V, with frequencies spanning 100 Hz–100 KHz, is applied. A scan-
ning probe with a planar array of electrodes, kept at ground potential, is placed on
the breast. The voltage difference between the hand and the probe induces a current
flow through the breast, from which information about the impedance distribution in
the breast can be extracted.

Using a simplified dipole method, Assenheimer et al. [13] and Scholz [40] gave a
physical interpretation of the white spots in TransScan images.

More recently, taking advantage of the smallness of the anomalies to be detected,
Ammari et al. [11] analyzed trans-admittance data for the detection of breast cancer
using the TransScan system. Their model assumes that breast tissues can be con-
sidered homogeneous, at least near the surface, where the planar array of electrodes
is attached, and that the lesion to be detected is located near the surface. In [11],
the authors developed better ways of interpreting TransScan images which improve
accuracy. They also derived a multifrequency approach to handle the case where the
background conductivity is inhomogeneous and not known a priori.

This latter work relies on asymptotic expansions of the fields when the medium
contains inclusions of small volume, a technique that has proven useful in many other
contexts. Such asymptotics have been investigated in the case of the conduction
equation [23, 22, 17, 6, 20, 18, 21], the operator of elasticity [5, 10], and the Helmholtz
equation or the Maxwell system [44, 12, 9]. See the books [7, 8] and their lists
of references. The remarkable feature of this technique is that it allows a stable and
accurate reconstruction of the location and of the geometric features of the inclusions,
even for moderately noisy data.

Since all the present EIT technologies are practically applicable only in feature
extraction of anomalies, improving EIT calls for innovative measurement techniques
that incorporate structural information. A very promising direction of research is the
recent magnetic resonance imaging technique, called current density imaging, which
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measures the internal current density distribution. See the breakthrough work by Seo
and his group [36, 37, 32]. However, this technique has a number of disadvantages,
among which are the lack of portability and a potentially long imaging time. Moreover,
it uses an expensive magnetic resonance imaging scanner.

The aim of this paper is to propose another mathematical direction for future EIT
research in view of biomedical applications, without eliminating the most important
merits of EIT (real time imaging, low cost, and portability). Our method is based
on the simultaneous measurement of an electric current and of acoustic vibrations
induced by ultrasound waves. Its intrinsic resolution depends on the size of the focal
spot of the acoustic perturbation, and thus our method should provide high resolution
images.

Let us now formulate our problem. We first recall that, in mathematical terms,
EIT consists in recovering the conductivity map of a d dimensional body Ω, where d
is the dimension of the ambient space, from measuring the voltage response to one or
several currents applied on the boundary. In practice, a set of electrodes is attached
to the body. One or several currents φi, 1 ≤ i ≤ I, are applied to one or several
electrodes, and the corresponding voltage potentials fi, 1 ≤ i ≤ I, are recorded on
the others. Denoting by γ(x) the unknown conductivity, the voltage potential ui

solves the conduction problem

(1.1)

⎧⎨
⎩

∇x · (γ(x)∇xui) = 0 in Ω,

γ(x)
∂ui

∂n
= φi on ∂Ω.

The problem of impedance tomography is the inverse problem of recovering the
coefficients γ of the elliptic conduction PDE, knowing one or more current-to-voltage
pairs (φi, fi := ui|∂Ω).

The core idea of our approach is to extract more information about the conduc-
tivity from data that has been enriched by coupling the electric measurements to
localized elastic perturbations. More precisely, we propose to perturb the medium
during the electric measurements by focusing ultrasonic waves on regions of small
diameter inside the body. Using a simple model for the mechanical effects of the
ultrasound waves, we show that the difference between the measurements in the un-
perturbed and perturbed configurations is asymptotically equal to the pointwise value
of the energy density at the center of the perturbed zone. In practice, the ultrasounds
impact a spherical or ellipsoidal zone of a few millimeters in diameter. The perturba-
tion should thus be sensitive to conductivity variations at the millimeter scale, which
is the precision required for breast cancer diagnosis.

By scanning the interior of the body with ultrasound waves, given an applied
current φi, we obtain data from which we can compute Si(x) := γ(x)|∇ui(x)|2 in an
interior subregion of Ω. The new inverse problem is now to reconstruct γ knowing Si

for i = 1, . . . , I.
The goal of this work is threefold: First, we show that taking measurements

while perturbing the medium with ultrasound waves is asymptotically equivalent to
measuring Si. To this end, we consider the zone ω deformed by the ultrasound wave
as a small volume perturbation of the background potential γ. We then relate the
difference between the perturbed and unperturbed potentials on the boundary to
the conductivity at the center of ω asymptotically as |ω| → 0. This is our main
idea: the ultrasound waves create localized perturbations that allow us, using the
method of asymptotic expansions of small volume inclusions, to probe within the
medium.
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Second, noting that the potential ui satisfies the nonlinear PDE (the 0-Laplacian)

(1.2)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇x ·
(

Si(x)

|∇ui|2
∇ui

)
= 0 in Ω,

Si(x)

|∇ui|2
∂ui

∂n
= φi on ∂Ω,

we propose a numerical method to compute solutions ũi to (1.2) and then an approx-
imate conductivity γ̃ = Si/|∇ũi|2, using two currents (i.e., I = 2). Recall that an
appropriate choice of φi ensures that ∇ui �= 0 for all x ∈ Ω. See [2, 3, 41, 26].

Third, our algorithm, as the one originally developed in [33] for current density
imaging, requires data measured with two boundary currents for which the flux den-
sities (the gradient of the voltage potentials) are locally orthogonal (or try to be). We
show numerically that this algorithm is able to capture details of the conductivity map
up to the precision of the underlying finite element mesh and thus proves very effective.

The paper is organized as follows. In the next section, we describe the physical
model and the collection of experimental data on the boundary. Section 3 explains
how, given a current φi, the values of Si(x) can be approximated using this data. In
section 4, we describe the numerical method for reconstruction of γ using two applied
currents. Numerical examples that illustrate the performance and the accuracy of
this method are presented in that section. The paper ends with a short discussion.

2. Impedance tomography perturbed by ultrasound waves.

2.1. Description of the experiment. The goal of the experiment is to obtain
an impedance map inside a solid with millimetric precision.

An object (a domain Ω) is electrically probed: one or several currents are imposed
on the surface and the induced potentials are measured on the boundary (see Figure 1).
At the same time, a spherical region of a few millimeters in the interior of Ω is
mechanically excited by focused acoustic waves.

The measurements are made as the focus of the ultrasounds scans the entire
domain. Several sets of measurements can be obtained by varying the ultrasound
waves amplitudes and the applied currents. Several teams have been able to obtain
ultrasonic waves focusing in very small regions deep inside the tissues [16, 31]. The
support of the focal spot is better represented by an ellipsoid, but the locus of the
most intense area can be, in a first approximation, represented by a sphere. The
experiment is successful if, for each focal point, a difference in the boundary voltage
potential can be measured between the potential corresponding to an unperturbed
medium and the potential corresponding to the perturbed one.

2.2. Physical modeling of the effect of ultrasonic waves on the conduc-
tivity. We chose to model the effect of the pressure wave in the simplest way. For
what follows, there are two crucial points. The first one is that the local conductivity
is affected by the pressure wave. The second one is that, at least for acoustic waves
of moderate amplitude, the conductivity perturbation depends continuously on the
amplitude of the wave—and therefore, in a first approximation, linearly. The fact
that acoustic waves affect the conductivity has been known for a long time [35]. In
the context of biomedical imaging, the idea of exploiting this property dates from
the early 1970s [27]. For focused waves, this is much more recent. In [30, 31] it is
established experimentally for moderate and high intensity waves. The experiments
show that only the local conductivity is affected.
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Fig. 1. The experimental setup.

Below is an attempt to justify these experimental findings. Within each (small)
spherical volume, the conductivity is assumed to be constant per volume unit. At a
point x ∈ Ω, within a ball B of volume VB , the electric conductivity γ is defined in
terms of a density ρ as

γ(x) = ρ(x)VB .

The ultrasonic waves induce a small elastic deformation of the sphere B. If this
deformation is isotropic, the material points of B occupy a volume V p

B in the perturbed
configuration, which at first order is equal to

V p
B = VB

(
1 + 3

Δr

r

)
,

where r is the radius of the ball B and Δr is the variation of the radius due to the
elastic perturbation. As Δr is proportional to the amplitude of the ultrasonic wave,
we obtain a proportional change of the deformation. Using two different ultrasonic
waves with different amplitudes but with the same focal spot, it is therefore easy to
compute the ratio V p

B/VB for a given perturbation. We are merely pointing out that
if f(x) = a(1 + x ∗ b), one can evaluate a and b in terms of f(x1), f(x2), x1, and x2.
As a consequence, the perturbed electrical conductivity γp satisfies

(2.1) ∀ x ∈ Ω, γp(x) = ρ(x)V p
B = γ(x)ν(x),

where ν(x) = V p
B/VB is a known function.

2.3. Mathematical modeling of the effect of ultrasonic waves on the
conductivity. We denote by u the voltage potential induced by a current φ, in the
absence of ultrasonic perturbations. It is given by

(2.2)

{
∇x · (γ(x)∇xu) = 0 in Ω,

γ(x) ∂u∂n = φ on ∂Ω,

with the normalization condition
∫
∂Ω

u = 0. We assume that the conductivity γ is
bounded above and below by positive constants

0 < c < γ(x) < C < +∞ a.e. x ∈ Ω.

Further, we suppose that the conductivity γ is known close to the boundary of the
domain so that ultrasonic probing is limited to interior points x such that

dist(x, ∂Ω) ≥ d0,
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where d0 is very large compared to the radius of the focal spot of the ultrasonic per-
turbation. We denote the corresponding open set Ω1. We denote by uω(x), x ∈ Ω, the
voltage potential induced by a current φ, in the presence of ultrasonic perturbations
localized in a domain ω of volume |ω|. The voltage potential uω is a solution to

(2.3)

{
∇x · (γω(x)∇xuω(x)) = 0 in Ω,

γ(x)∂uω

∂n = φ on ∂Ω,

with the notation

γω(x) = γ(x)

[
1 + 1ω(x) (ν(x) − 1)

]
,

where 1ω is the characteristic function of the domain ω. In the next section, we show
how comparing uω and u on ∂Ω provides information about the conductivity.

3. Asymptotic recovery of the conductivity. As the zone deformed by the
ultrasound wave is small, we can view it as a small volume perturbation of the back-
ground conductivity γ, and we seek an asymptotic expansion of the boundary values
of uω − u.

For x ∈ R
d, we note that x = (x1, . . . , xd). For each i = 1, . . . , d, let ζiω be the

solution to {
∇x ·

(
γω(x)∇xζ

i
ω

)
= ∇x · (γ(x)∇xxi) in Ω,

γ(x)
∂ζi

ω

∂n = γ(x)∂xi

∂n on ∂Ω, with
∫
Ω
ζiω = 0.

Corresponding to ζiω, we define ζi = xi−ci, where ci is a constant, in the unperturbed
case.

The following proposition is a variant of a compactness result proved in [20]. In
contrast to previous work, the proof we give here requires only boundedness of the
conductivity γω.

Proposition 3.1. Consider a sequence of sets ω ⊂⊂ Ω, such that 1
|ω|1ω con-

verges in the sense of measures to a probability measure dμ as |ω| tends to zero. Then,

the correctors 1
|ω|1ω

∂ζi
ω

∂xj
converge in the sense of measures to M , where M ∈ L2(Ω, dμ)

is a matrix-valued function.
Furthermore, the correctors

(
ζiω

)
satisfy

‖∇(ζiω − ζi)‖L2(Ω)d ≤ C|ω|1/2 and ‖ζiω − ζi‖L2(Ω) ≤ C|ω| 12+κ,

where the constants κ > 0 and C > 0 depend only on Ω1, supΩ |γω|, and infΩ |γω|.
Proof. The bounds on ∇

(
ζiω − ζi

)
and

(
ζiω − ζi

)
are a direct consequence of

Lemma A.1 if we remark that, inside the domain Ω, ζiω − ζi satisfies

∇x ·
(
γω(x)∇x

(
ζiω − ζi

))
= −∇x · (1ω (γω − γ)∇xxi) in Ω.

As for the existence of a limit (and its additional properties) we refer the reader
to [20].

One of the key elements of our method is the following representation formula.
Proposition 3.2. Assume that u ∈ W 2,∞(ω). Then,∫

∂Ω

(uω − u)φdσ = |ω|
∫

Ω

(γω(x) − γ(x))Mω∇u · ∇u dx + O(|ω|1+κ).
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The exponent κ depends only on Ω1, supΩ |γω|, and infΩ |γω|. The remainder term
has the form ∣∣O(|ω|1+κ)

∣∣ ≤ C |ω|1+κ‖∇u‖L∞(ω)d‖∇2u‖L∞(ω)d×d ,

where C depends only on Ω1, supΩ |γω|, and infΩ |γω|. Finally, the matrix-valued
function Mω is given by

(Mω)ij (x) =
1

|ω|1ω(x)
∂

∂xj
ζiω(x) a.e. x ∈ Ω1.

This is, globally, not a new result. This representation formula and the proof
presented were already obtained by Capdeboscq and Vogelius in [20, Theorem 1].
Compared to Theorem 1 in [20], the regularity required on u is investigated more in
depth. Note that, globally, u satisfies the minimal requirement u ∈ H1(Ω). Additional
regularity on u is required only within ω (in particular, the quality of the representa-
tion formula is not affected). We also note that if ω is a disk in the two-dimensional
case, then (see, for instance, [22])

Mω =
1

|ω|1ω(x)
ν − 1

ν + 1
I2,

where I2 is the unit matrix. The following corollary holds.
Corollary 3.3. Assume that the dimension d = 2, that the perturbed area ω is

a disk centered at z, and that u ∈ W 2,∞(ω). Then, we have

∫
∂Ω

(uω − u)φdσ =

∫
ω

γ(x)
(ν(x) − 1)

2

ν(x) + 1
∇u · ∇u dx + O(|ω|1+κ)

= |∇u(z)|2
∫
ω

γ(x)
(ν(x) − 1)

2

ν(x) + 1
dx + O(|ω|1+κ).

Therefore, if γ is C0,2α(ω), with 0 ≤ α ≤ κ ≤ 1
2 , we have

(3.1) γ(z) |∇u(z)|2 = S(z) + O(|ω|α) (or o(1) if α = 0),

where the function S(z) is defined by

(3.2) S(z) =

(∫
ω

(ν(x) − 1)
2

ν(x) + 1
dx

)−1 ∫
∂Ω

(uω − u)φdσ.

We emphasize that S(z) represents a known function, as the second term on the
right-hand side of (3.2) is exactly the measured data.

Proof of Proposition 3.2. This proof follows the proof of Lemma 2 in [20]. First,
in (3.3) we establish that the boundary data is related to an integral on ω, involving
(γ1 − γ0)∇uω. Then, in (3.7) we show that almost everywhere (γ1 − γ0)∇uω can be
estimated by a quantity involving ∇u and the polarization tensor. Finally, in (3.8) we
show that by approximation this representation formula leads to the desired result.

Integrating (2.2) against Uω, the solution of (2.3), and vice-versa, we obtain after
an integration by parts∫

∂Ω

uωφdσ =

∫
Ω

γ∇uω · ∇u dx and

∫
∂Ω

uφ dσ =

∫
Ω

γω∇uω · ∇u dx.
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Consequently, ∫
∂Ω

(uω − u)φdσ =

∫
Ω

(γ − γω)∇uω · ∇u dx(3.3)

=

∫
ω

(γ − γω)∇uω · ∇u dx.

Notice that uω −u satisfies a homogeneous Neumann boundary condition and verifies

∇ · (γω∇(uω − u)) = −∇ · (1ω(γω − γ)∇u) in Ω.

Since u ∈ W 1,∞(ω), we can again invoke Lemma A.1 to obtain that

‖∇(uω−u)‖L2(Ω)d ≤ C|ω|1/2‖∇u‖L∞(ω)d and ‖uω−u‖L2(Ω) ≤ C|ω|1/2+κ‖∇u‖L∞(ω)d ,

where the constants C, κ depend only on Ω1, supΩ |γω|, and infΩ |γω|. For all θ ∈
W 1,∞(Ω), we now compute∫

Ω

γω∇(uω − u) · ∇ζiω θ dx =

∫
Ω

γω∇ ((uω − u)θ) · ∇ζiω dx

−
∫

Ω

γω(uω − u)∇θ · ∇ζiω dx

=

∫
Ω

γ∇ ((uω − u)θ)∇ζi dx + r1

=

∫
Ω

γ∇(uω − u)∇ζi θ dx + r2.(3.4)

The remainder term is given by

r2 =

∫
Ω

γ(uω − u)∇θ∇ζi dx−
∫

Ω

γω(uω − u)∇θ∇ζiω dx

= O(‖uω − u‖L2(Ω)‖∇ζ −∇ζω‖L2(Ω)d)

= O(|ω|1+κ).

Here, by O(|ω|1+κ) we denote a quantity that is bounded by C‖∇u‖L∞(ω)d‖∇θ‖L∞(Ω)d

· |ω|1+κ, where C depends only on Ω1, supΩ |γω|, and infΩ |γω|.
We shall consider both terms of identity (3.4) independently. On one hand, we

have ∫
Ω

γω∇(uω − u) · ∇ζiω θ dx =

∫
Ω

γω∇(uω − u) · ∇
(
ζiωθ

)
dx

−
∫

Ω

γω∇(uω − u) · ∇θ ζiω dx

=

∫
ω

(γ − γω)∇u · ∇
(
ζiωθ

)
dx

−
∫

Ω

γω∇(uω − u) · ∇θ ζi dx + O
(
|ω|1+κ

)
=

∫
ω

(γ − γω)∇u · ∇ζiω θ dx

+

∫
Ω

(γ∇u− γω∇uω) · ∇θ ζi dx + O
(
|ω|1+κ

)
.(3.5)
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On the other hand, we have∫
Ω

γ∇(uω − u) · ∇ζi θ dx =

∫
Ω

γ∇(uω − u) · ∇
(
ζiθ

)
dx

−
∫

Ω

γ∇(uω − u) · ∇θ ζi dx

=

∫
ω

(γ − γω)∇uω · ∇ζi θ dx

+

∫
Ω

(γ∇u− γω∇uω) · ∇θ ζi dx.(3.6)

Inserting identities (3.5) and (3.6) into (3.4), we have obtained that, for all i = 1, . . . , d,

(3.7)

∫
ω

(γ − γω)
∂uω

∂xi
θ dx =

d∑
j=1

∫
ω

(γ − γω)
∂u

∂xj
· ∂

∂xj
ζiω θ dx + O(|ω|1+κ),

with ∣∣O(|ω|1+κ)
∣∣ ≤ C |ω|1+κ‖∇u‖L∞(ω)d‖∇θ‖L∞(Ω)d ,

where C is a constant that depends only on Ω1, supΩ |γω|, and infΩ |γω|. Let us now
conclude the proof of Proposition 3.2. For each i = 1, . . . , d, choose θi = ∂

∂xi
u ∗ ηε in

ωε = {x ∈ ω s.t. dist(x, ∂ω) > ε}, where η is the standard mollifier. Let θε be defined
as

θε =

(
∂

∂x1
u ∗ ηε, . . . ,

∂

∂xd
u ∗ ηε

)
.

Using for each i = 1, . . . , d the test function θi in (3.7) and summing over i, we obtain

(3.8)

∫
ω

(γ − γω)∇uω · θε dx = |ω|
∫
ω

(γ − γω)∇u · (Mωθε) dx + O(|ω|1+κ),

where

O(|ω|1+κ) ≤ C‖∇u‖L∞(ω)d‖∇θε‖L∞(ω)d ≤ C‖∇u‖L∞(ω)d‖∇2u‖L∞(ω)d .

By passing to the limit in ε and using (3.3), the proof of the proposition is com-
plete.

4. Reconstruction using the 0-Laplacian formulation. In view of deriv-
ing an approximation for the conductivity γ inside Ω1, we introduce the following
equation:

(4.1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∇ ·
(

S(x)

|∇u|2
∇u

)
= 0 in Ω,

S(x)

|∇u|2
∂u

∂n
= φ on ∂Ω.

We emphasize that S is a known function, constructed from the measured data (3.2).
Consequently, all the parameters entering (4.1) are known.
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Our approach uses measurements S1 and S2 obtained using two distinct currents,
φ1 and φ2. We choose this pair of current patterns to have ∇u1×∇u2 �= 0 for all x ∈ Ω,
where ui, i = 1, 2, is the solution to (1.1). See [41, 26] for numerical evidence of the
possibility of such a choice and [4] for a rigorous proof. The key question of course
is whether such a choice of currents can be made simply by imposing appropriate
boundary voltages, independently of the unknown conductivity. This issue will be
discussed at length in a future work [19].

We start from an initial guess for the conductivity γ and solve the corresponding
Dirichlet conductivity problem{

∇ · (γ∇u0) = 0 in Ω,

u0 = ψ on ∂Ω.

The data ψ is the Dirichlet data measured as a response to the current φ (say, φ = φ1)
in absence of elastic deformation.

The discrepancy between the data and our guessed solution is

(4.2) ε0 :=
S(x)

|∇u0|2
− γ.

We then introduce a corrector, uc, computed as the solution to{
∇ · (γ∇uc) = −∇ · (ε0∇u0) in Ω,

uc = 0 on ∂Ω

and update the conductivity

γ :=
S(x) − 2γ∇uc · ∇u0

|∇u0|2
.

We iteratively update the conductivity, alternating directions (i.e., with φ = φ2).
To study the efficiency of this approach, we have tested this method on various

problems and domains, using the PDE solver FreeFem++ [28]. We present here one
such test. The domain Ω is a disk of radius 8 centered at the origin, which contains
three inclusions, an ellipse, an L-shaped domain, and a triangle, so as to image a
convex object, a nonconvex object, and an object with a smooth boundary.

The background conductivity is equal to 0.5; the conductivity takes the values
2 in the triangle, 0.75 in the ellipse, and 2.55 in the L-shaped domain (see Figure
2). We purposely chose values corresponding to small and large contrasts with the
background. Note that our approach is perturbative; thus the smaller the contrast,
the easier the detection. If the contrast is small, both a small volume fraction ap-
proximation and a small amplitude approximation are valid: then the accuracy of a
first order approximation such as the one performed here is increased. The choice of
a significant contrast was not made to highlight the objects but rather to make the
reconstruction more challenging.

Figure 3 shows the result of the reconstruction when perfect measures (with “in-
finite” precision) are available. In that case, the size of the spot is infinitesimal, that
is, at least as small as the mesh size. We use two different boundary potentials,
ψ = x/|x| and ψ = y/|y|. The initial guess is depicted on the left: it is equal to 1
inside the disk of radius 6 centered at the origin, and it is equal to the supposedly
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Fig. 2. Conductivity distribution.

Fig. 3. Reconstruction test. From left to right, the initial guess, the collected data S (x/|x| and
y/|y|), and the reconstructed conductivity.

known conductivity γ = 0.5 near the boundary (outside the disk of radius 6). The two
central pictures represent the collected data, S(x) for ψ = x/|x| on the left and S(x)
for ψ = y/|y| on the right. Given the values of the contrast, we remark that although
one can “see” the triangle and the L-shaped inclusions on these plots, the circle is
hardly noticeable. On the far right, the reconstructed conductivity is represented: it
perfectly matches the target.

In Figure 4, the error is represented as a function of the number of iterations.
The dotted curve is a plot of the (intrinsic) error estimator maxx∈Ω εn(x), given by
(4.2). The curve with diamond symbols depicts the L1-norm a1(n) of the true error
between the reconstructed conductivity γ̃ and the original one:

a1(n) :=

∫
Ω

|γ̃ − γ| dx.

Note that the abscissa is represented in logarithmic scale; thus the convergence seems
exponential.

The other two curves correspond to the same computations, but four directions
are used instead of two: x/|x|, y/|y|, (x + y)/|x + y|, (x − y)/|x − y|. Note that
this does not require more measurements because of the linear dependence on the
boundary condition; it is merely a change in the algorithm. The same level of error
for εn is reached in 45 iterations instead of 222. The same experiment, with a contrast
5 times smaller, converges in less than ten iterations.

We also considered imperfect data. In Figure 5 we follow the same procedure but
now assume that the data was measured at the nodes of a regular mesh on the disk,
with 50, 100, 200, and 400 boundary points. To give an idea of the scale of the mesh
compared to the objects, the projections of the conductivity that we wish to recover
are represented in the left column. The two central columns depict the collected data.
The column on the far right shows the obtained reconstructions.

To accelerate the computations, we used the four direction variant of the algo-
rithm. The error as a function of the iterations is represented in Figure 6. The curves
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1 Estd err., 2 dir.
True err, 2 dir.
Estd err., 4 dir.
True err., 4 dir.

Fig. 4. Convergence results. The curve labeled “Estd err., 2 dir.” (resp., “True err., 2 dir.”)
corresponds to the estimated error (resp., true error) when two directions are used. The curves
“Estd err., 4 dir.” and “True err., 4 dir.” are the errors computed when four directions are used.

with symbols represent the L1-norm of the true error, whereas the dashed line is the
L2-norm of the estimated error ε for the most precise mesh. Although the estimated
error does not decrease noticeably, the true error does. The reconstructed image is
obtained after ten iterations and does not change noticeably henceforth. This calls for
further refinements of the algorithm, such as adapted stepsizes and adapted meshes.
Improvements are indeed possible and will be the subject of a future publication [19].
As it stands, the algorithm already provides reconstructions comparable in accuracy
to those of projected conductivity. Naturally, the sharp corners are easily localized,
but the smooth elliptic shape is also accurately reconstructed, even at the coarsest
scale.

5. Concluding remarks. We have proposed a new technique for conductivity
imaging, which consists in perturbing the medium during the electric measurements,
by focusing ultrasonic waves on regions of small diameter inside the body. We derived
an approximation of the conductivity using small volume asymptotics and obtained a
nonlinear PDE for the potential, in terms of the measured data. Based on this PDE,
we proposed a new algorithm for the reconstruction of the conductivity distribution
which proves remarkably accurate.

Motivated by the practical limitations of EIT, we intend to pursue the present
investigation in the following directions:

(i) Study the reconstruction capabilities of this method when only partial data,
measured on a small portion Γ of the boundary, is available.

(ii) Study the dependence of the algorithm on the global geometry of Ω.
(iii) Study the sensitivity of the method to limitations on the intensities of the

applied voltages, as electrical safety regulations limit the amount of the total
current that patients can sustain.
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Fig. 5. Reconstruction tests. From top to bottom, using a regular mesh with 50, 100, 200,
and 400 boundary points. From left to right, the initial guess, the collected data S (for x/|x| and
y/|y|), and the reconstructed conductivity.

Moreover, we also intend to address some of the mathematical questions raised
by this imaging approach, among which are the uniqueness for solutions to the PDE
(1.2), the uniqueness of the inverse problem of recovering the conductivity distribution
with two measurements, and the convergence analysis of the reconstruction algorithm.

Appendix. Useful estimate.
Lemma A.1. Let a ∈ L∞(Ω) be a positive function satisfying C0 > a > c0 > 0,

and let F ∈ L∞(Ω)d. Let V be a closed subset of H1(Ω) such that

H1
0 (Ω) ⊂ V ⊂ H1(Ω).

Assume that φ ∈ V is such that

(A.1) ∇ · (a∇φ) = ∇ · (1ω(x)F ) in Ω.

Suppose that Ω contains a subset of Ω′ ⊂ Ω of class C2, such that dist(Ω′, ∂Ω) >
d0 > 0, and such that ω ⊂ Ω′, or alternatively that Ω is a cube and that φ is periodic
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Fig. 6. Convergence results. The curves labeled “True L1 err.” correspond to the L1 norm of
the discrepancy between the real and reconstructed conductivity. The curve labeled “Estd L2 err.,
400 el.” represents the estimated error for the regular mesh designed with 400 boundary points.

on that cube. Then,

(A.2) ‖∇φ‖L2(Ω)d ≤ 1
√
c0

|ω|1/2‖F‖L∞(Ω)d .

Furthermore, there exist κ > 0 and C > 0, two positive constants depending only on
Ω′, d0, c0, and C0, such that

(A.3) ‖φ‖L2(Ω) ≤ C|ω| 12+κ‖F‖L∞(Ω)d .

At this point, let us emphasize the fact that the background is not required to be
smooth. The proof uses Meyers’s theorem [38].

Proof. We shall now prove Lemma A.1 for V = H1(Ω) or V = H1
0 (Ω). Integrating

(A.1) against φ, we obtain∫
Ω

a∇φ · ∇φdx =

∫
Ω

1ωF · ∇φdx.

Thus, using the Cauchy–Schwarz inequality, we get (A.2). Define ψ ∈ H1(Ω) as the
unique solution to

−∇ · (a∇ψ) = φ in Ω,

ψ = 0 on ∂Ω.

Choose f ∈ C∞
0 (Ω) to be a cut-off function such that f ≡ 1 on Ω′ and 0 ≤ f ≤ 1.

According to Meyers’s theorem [38] (see also [15, pp. 35–45]), there exists an η > 0
depending only on Ω, c0, C0, and f such that ψ ∈ W 1,2+η(Ω′), and we have

‖∇ (ψf)‖L2+η(Ω) ≤ C ‖φ‖L2+η(Ω) .
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Using the Gagliardo–Nirenberg inequality,

‖φ‖L2+η(Ω) ≤ C ‖φ‖αL2(Ω) ‖∇φ‖1−α
L2(Ω)d with α =

η

2 + η

≤ C ‖φ‖αL2(Ω) |ω|
1

2+η .

We then compute ∫
Ω

φ2 dx =

∫
Ω

a∇ψ · ∇φdx

=

∫
Ω

1ωF · ∇ψ dx

≤ ‖F‖L∞(Ω)

∫
Ω

|1ω∇ψ| dx.

Using Hölder’s inequality, we then obtain∫
Ω

φ2 dx ≤ ‖F‖L∞(Ω) |ω|
1+η
2+η ‖∇ (fψ)‖L2+η(Ω)

≤ C ‖F‖L∞(Ω) |ω| ‖φ‖
α
L2(Ω) .

Consequently,

‖φ‖L2(Ω) ≤ C ‖F‖L∞(Ω) |ω|
1
2+ η

2(4+η) ,

and therefore, choosing κ = η
2(4+η) concludes the proof.
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BACKSCATTERING IN RANDOM WAVEGUIDES∗
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Abstract. In this paper we derive a general system of transport equations for the moments
of reflected and transmitted mode amplitudes in a randomly perturbed waveguide, in a regime
where backscattering is significant. The derivation is based on a limit theorem for the system
of coupled differential equations for the mode amplitudes, in the limit where the amplitude of the
random fluctuations of the medium is small, the correlation lengths in the transverse and longitudinal
directions are of the same order of the wavelength, and the waveguide is long. Using this system we
derive several results in specific regimes, including the enhanced backscattering phenomenon for the
reflected wave: when an incoming monochromatic wave with a specific incidence angle is present,
the mean reflected power has a local maximum in the backward direction twice as large as the mean
reflected power in the other directions.
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1. Introduction. This paper is devoted to the analysis of wave propagation in a
random waveguide. We use a separation of scales technique introduced by Papanico-
laou and his co-authors. Although this technique was originally introduced for wave
propagation in one-dimensional random media [1], it has been shown recently that it
is possible to extend the technique to three-dimensional random media in the context
of waveguides [5, 7, 6]. By writing the coupled mode equations for the complex mode
amplitudes, diffusion approximation theorems can be applied, leading to differential
equations driven by Brownian motions whose solutions are Itô diffusion processes. In
[5, 6, 7] the analysis was restricted to the forward scattering approximation, where
the conversion from forward-going to backward-going modes is neglected. This regime
is characterized by the equipartition of energy: the mean transmitted mode powers
become uniformly distributed when the waveguide is long enough. In this paper, we
revisit this analysis in the general case and take into account backscattering. We de-
rive a system of transport equations for the moments of the reflected and transmitted
mode amplitudes in the regime where the fluctuations of the random medium have
a small amplitude and a correlation length of the same order as the typical wave-
length. This allows us to exhibit the enhanced backscattering phenomenon: when
a monochromatic input mode is applied, the mean reflected mode powers become
uniformly distributed, except for the mode corresponding to the backward direction,
where the mean reflected power is twice the mean power of the other modes. This
phenomenon, also known as weak localization, is well referenced in the physical litera-
ture and it has been observed in several experimental contexts, such as in optics with
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powder suspensions [17, 15], with biological tissues [18], and with ultracold atoms [11]
as well as in acoustics [14]. The physical analysis of the weak localization is based on
diagrammatic expansions [16], where interference effects between direct and reverse
paths play a crucial role. Here we give a mathematical derivation of this phenomenon
by an asymptotic analysis in the context of random waveguides. We also compute
the second moments of the reflected mode powers and show that these quantities are
not statistically stable in the sense that their fluctuations are of the same order as
their mean values. This means that it is necessary to average the reflected power to
detect the enhanced backscattering. This point was already mentioned in the physical
literature, and we give here a quantitative analysis of this phenomenon.

2. Propagation in a random waveguide. We consider wave propagation in
a waveguide where the medium parameters have small random perturbations. Many
modern applications involve propagation in waveguides [3, 4, 13]. We will here de-
scribe the problem in a scaling regime where the radius of the waveguide is of the
order of a few wavelengths and with the medium parameters varying randomly in the
longitudinal and transversal directions with a correlation length on the order of the
wavelength. This scaling regime was also considered in [5, 7, 6]. The analysis could
be generalized to other scaling limits whenever diffusion approximation theorems can
be applied.

We consider linear acoustic waves propagating in three spatial dimensions:

(2.1) ρ(x, z)
∂u

∂t
+ ∇p = 0,

1

K(x, z)

∂p

∂t
+ ∇ · u = 0 for x ∈ D and t, z ∈ R,

where p is the pressure field, u is the velocity field, ρ is the density of the medium,
K is the bulk modulus, and (x, z) = (x, y, z) stands for the space coordinates. The
cross section of the waveguide is denoted by D, and we shall use Dirichlet boundary
conditions

(2.2) p(t,x, z) = 0 for x ∈ ∂D and z ∈ R.

The direction of propagation along the waveguide axis is z and the transverse coordi-
nates are denoted by x ∈ D. The random part of the waveguide occupies the region
z ∈ [0, L/ε2] and is embedded in between two homogeneous waveguide sections. In-
side the perturbed waveguide the bulk modulus is randomly varying, and we assume
for simplicity that the density is homogeneous:

1

K(x, z)
=

{
1
K

(1 + εν(x, z)) for x ∈ D, z ∈ [0, L/ε2],
1
K

for x ∈ D, z ∈ (−∞, 0) ∪ (L/ε2,∞),
(2.3)

ρ(x, z) = ρ̄ for x ∈ D, z ∈ (−∞,∞).(2.4)

It is possible to take into account a randomly varying density; this complicates the
algebra but leads to the same general system of transport equations for the moments
of reflected and transmitted mode amplitudes. Such a generalization was carried
out in the case of randomly layered media in [5, section 17.3]. Here ε is a small
parameter and ν(x, z) is a zero-mean random process that describes the random
medium fluctuations that are mixing in the z-direction. This weakly heterogeneous
regime can be encountered, for instance, in underwater acoustics [4, 8].
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2.1. Waveguide modes. In a homogeneous waveguide ν = 0, the complex
amplitude of a monochromatic wave p(t,x, z) = p̂(ω,x, z)e−iωt at frequency ω satisfies
the time-harmonic form of the wave equation (Helmholtz equation):

(2.5) ∂2
z p̂ + Δ⊥p̂ + k2(ω)p̂ = 0.

Here Δ⊥ is the transverse Laplacian, k(ω) = ω/c̄ is the wavenumber, and c̄ =
√
K̄/ρ̄ is

the homogenized wave speed. The monochromatic wave can be decomposed in terms
of normal modes which are the (normalized in L2(D)) solutions of the eigenvalue
problem

−Δ⊥φj(x) = λjφj(x), x ∈ D, φj(x) = 0, x ∈ ∂D,

for j = 1, 2, . . . . The eigenvalues are positive and nondecreasing, and we assume for
simplicity that they are simple, so we have 0 < λ1 < λ2 < · · · . The eigenmodes are
real and form an orthonormal set∫

D
φj(x)φl(x) dx = δjl.

For a given frequency ω, there exists a unique integer N(ω) such that λN(ω) ≤ k2(ω) <
λN(ω)+1, with the convention that N(ω) = 0 if λ1 > k2(ω). The modal wavenumbers
βj(ω) for 1 ≤ j ≤ N(ω) are defined by

(2.6) βj(ω) =
√

k2(ω) − λj .

The solutions p̂j(ω,x, z) = φj(x)e±iβj(ω)z, j = 1, . . . , N(ω), of the wave equation
(2.5) are the propagating waveguide modes. For j > N(ω) we define the modal
wavenumbers by βj(ω) = [λj−k2(ω)]1/2, and the corresponding solutions q̂j(ω,x, z) =
φj(x)e±βj(ω)z of the wave equation (2.5) are the evanescent modes.

From now on we consider the perturbed waveguide as described by (2.3)–(2.4).
We expand the time-harmonic field inside the randomly perturbed waveguide in terms
of the transverse eigenmodes of the unperturbed waveguide:

(2.7) p̂(ω,x, z) =

N(ω)∑
j=1

φj(x)p̂j(ω, z) +

∞∑
j=N(ω)+1

φj(x)q̂j(ω, z),

where p̂j is the amplitude of the jth propagating mode and q̂j is the amplitude of

the jth evanescent mode. For 1 ≤ j ≤ N(ω), let âj(ω, z) and b̂j(ω, z) represent
the amplitudes of the forward- and backward-propagating modes, with the forward
direction referring to the z-direction. They are given by

p̂j(ω, z) =
1√
βj(ω)

(
âj(ω, z)e

iβj(ω)z + b̂j(ω, z)e
−iβj(ω)z

)
,(2.8)

dp̂j(ω, z)

dz
= i
√
βj(ω)

(
âj(ω, z)e

iβj(ω)z − b̂j(ω, z)e
−iβj(ω)z

)
.(2.9)

We next make a change of the z variable by introducing the rescaled processes âεj(ω, z),

b̂εj(ω, z), j = 1, . . . , N(ω), given by

(2.10) âεj(ω, z) = âj

(
ω,

z

ε2

)
, b̂εj(ω, z) = b̂j

(
ω,

z

ε2

)
.
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By projecting the wave equation (2.5) on the transverse eigenmodes and by expressing
the amplitudes of the evanescent modes in terms of the amplitudes of the propagating
modes [5, 6], we obtain the following mode coupling equations for the amplitude

processes âε(ω, z) = (âεj(ω, z))j=1,...,N(ω) and b̂ε(ω, z) = (b̂εj(ω, z))j=1,...,N(ω):

dâε

dz
=

[
1

ε
H(aa) + G(aa)

](
ω,

z

ε2

)
âε +

[
1

ε
H(ab) + G(ab)

](
ω,

z

ε2

)
b̂ε,(2.11)

db̂ε

dz
=

[
1

ε
H(ab) + G(ab)

](
ω,

z

ε2

)
âε +

[
1

ε
H(aa) + G(aa)

](
ω,

z

ε2

)
b̂ε,(2.12)

with the two-point boundary conditions

(2.13) âεj(ω, 0) = 0, b̂εj(ω,L) = b̂inc
j (ω),

which correspond to a left-propagating wave incoming from the right homogeneous
waveguide. The matrices G describe coupling via evanescent modes [5]. The N(ω)×
N(ω) coupling matrices have entries of form

H
(aa)
jl (ω, z) =

ik2(ω)

2

Cjl(z)√
βjβl(ω)

ei(βl(ω)−βj(ω))z,(2.14)

G
(aa)
jl (ω, z) =

ik4(ω)

4

∑
l′>N(ω)

∫ ∞

−∞

Cjl′(z)Cll′(z + s)√
βjβ2

l′βl(ω)
eiβl(ω)(z+s)−iβj(ω)z−βl′ (ω)|s| ds,

H
(ab)
jl (ω, z) = −e−2iβj(ω)zH

(aa)
jl (ω, z), G

(ab)
jl (ω, z) = −e−2iβj(ω)zG

(aa)
jl (ω, z),(2.15)

Cjl(z) =

∫
D
φj(x)φl(x)ν(x, z) dx(2.16)

for j, l = 1, . . . , N(ω).

2.2. Channel coupled wave approximation. We use an invariant imbedding
step to convert the boundary value problem to an initial value problem with the
objective being to characterize the reflected and transmitted wave fields. Accordingly
we introduce the N(ω) ×N(ω) reflection and transmission matrices Rε and T ε by

(2.17) b̂ε(ω, 0) = T ε(ω, z)b̂ε(ω, z), âε(ω, z) = Rε(ω, z)b̂ε(ω, z).

Using (2.11)–(2.12) we find that these matrices solve the problems

d

dz
Rε = Hb,ε + Ha,εRε −RεHa,ε −RεHb,εRε,(2.18)

d

dz
T ε = −T ε

(
Ha,ε + Hb,εRε

)
,(2.19)

where we defined

Ha,ε(ω, z) =
1

ε
H(aa)

(
ω,

z

ε2

)
+ G(aa)

(
ω,

z

ε2

)
,

Hb,ε(ω, z) =
1

ε
H(ab)

(
ω,

z

ε2

)
+ G(ab)

(
ω,

z

ε2

)
,

and where Rε(ω, z) and T ε(ω, z) take initial values at z = 0

(2.20) T ε(ω, 0) = I, Rε(ω, 0) = 0.



1578 JOSSELIN GARNIER AND KNUT SØLNA

We remark that energy conservation leads to the reflection-transmission conservation
relation

(2.21) Rε†Rε + T ε†T ε = I,

where the sign † stands for the conjugate transpose [5].
The initial value problem (2.18) is a stochastic Riccati matrix equation, and it can

be analyzed in the limit ε → 0 using the theory of diffusion approximations [5, 10].
The matrix H(aa) contains rapidly varying phase factors and is centered with respect
to the randomness that fluctuates on the scale ε2 and is mixing in the z-direction. In
this white-noise scaling regime we can then identify the corresponding infinitesimal
generator and the associated white-noise model that describes the joint law of the
transmission and reflection matrices in the limit ε → 0.

3. The reflected wave field. We consider the problem of characterizing the
modal distribution of the reflected or transmitted waves. We consider in this section
the reflected waves, and we will address the transmitted waves in section 4.

3.1. The moments of the reflected time-harmonic field. We first consider
the time-harmonic reflected field for a single frequency ω. We can compute the limit
of the moments of the reflection matrix by using the diffusion approximation theory.

Proposition 3.1. Let p = {(j1, l1), . . . , (j|p|, l|p|)} ∈ {1, . . . , N(ω)}2|p| denote
a multi-index ( |p| is the number of index pairs in p). We introduce the moments of
elements Rε

jl of the reflection matrix:

Mε
p,q(ω, z) = E

[ ∏
(j,l)∈p

Rε
jl(ω, z)

∏
(m,n)∈q

Rε
mn(ω, z)

]
.

These moments converge as ε → 0 to the solution Mp,q of the system

(3.1)
dMp,q

dz
= Dp,q(ω)Mp,q +

[
Sω(M)

]
p,q

,

with the initial conditions

(3.2) Mp,q(ω, z = 0) = 10(|p|)10(|q|).

Here we have defined the linear operator Sω,

[
Sω(M)

]
p,q

= −
∑

(j,l)∈p

d
(1)
jl Mp|{(j,l)|(l,j)},q −

∑
(j,l)∈q

d
(1)
jl Mp,q|{(j,l)|(l,j)}

−
∑

{(j,l),(j̃,l̃)}∈p

d
(2)
jl Mp|{(j,l),(j̃,l̃)|(j̃,j),(l,l̃)},q + d

(2)

j̃l̃
Mp|{(j,l),(j̃,l̃)|(j,j̃),(l̃,l)},q

−
∑

{(j,l),(j̃,l̃)}∈p

d
(1)

jl̃
Mp|{(j,l),(j̃,l̃)|(j̃,j),(l̃,l)},q + d

(1)

j̃l
Mp|{(j,l),(j̃,l̃)|(j,j̃),(l,l̃)},q

−
∑

{(j,l),(j̃,l̃)}∈p

[
d
(5)
jl + d

(5)

j̃l̃
+ d

(1)

jj̃
+ d

(1)

ll̃

]
Mp|{(j,l),(j̃,l̃)|(j̃,l),(j,l̃)},q

−
∑

{(j,l),(j̃,l̃)}∈q

d
(2)
jl Mp,q|{(j,l),(j̃,l̃)|(j̃,j),(l,l̃)} + d

(2)

j̃l̃
Mp,q|{(j,l),(j̃,l̃)|(j,j̃),(l̃,l)}
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−
∑

{(j,l),(j̃,l̃)}∈q

d
(1)

jl̃
Mp,q|{(j,l),(j̃,l̃)|(j̃,j),(l̃,l)} + d

(1)

j̃l
Mp,q|{(j,l),(j̃,l̃)|(j,j̃),(l,l̃)}

−
∑

{(j,l),(j̃,l̃)}∈q

[
d
(5)
jl + d

(5)

j̃l̃
+ d

(1)

jj̃
+ d

(1)

ll̃

]
Mp,q|{(j,l),(j̃,l̃)|(j̃,l),(j,l̃)}

+
∑

(j,l)∈p

∑
(j̃,l̃)∈q

d
(3)

jlj̃l̃
Mp|(j,l),q|(j̃,l̃)

+
∑

(j,l)∈p

∑
(j̃,l̃)∈q

N∑
k=1 �=j

[
d
(4)

jkj̃
Mp|{(j,l)|(k,l)},q|{(j̃,l̃)|(k,l̃)} + d

(4)

jkl̃
Mp|{(j,l)|(k,l)},q|{(j̃,l̃)|(j̃,k)}

]

+
∑

(j,l)∈p

∑
(j̃,l̃)∈q

N∑
k=1 �=l

[
d
(4)

lkl̃
Mp|{(j,l)|(j,k)},q|{(j̃,l̃)|(j̃,k)} + d

(4)

lkj̃
Mp|{(j,l)|(j,k)},q|{(j̃,l̃)|(k,l̃)}

]

+
∑

(j,l)∈p

∑
(j̃,l̃)∈q

N∑
k1,k2=1

d
(2)
k1k2

Mp|{(j,l)|(j,k1),(k2,l)},q|{(j̃,l̃)|(j̃,k1),(k2,l̃)}

+
∑

(j,l)∈p

∑
(j̃,l̃)∈q

N∑
k1,k2=1

d
(5)
k1k2

Mp|{(j,l)|(j,k1),(k2,l)},q|{(j̃,l̃)|(j̃,k2),(k1,l̃)},

and we have used the following notation: If p is a multi-index and {(j1, l1), . . . ,
(jm, lm)} ⊂ p, then p|{(j1, l1), . . . , (jm, lm)|(j̃1, l̃1), . . . , (j̃n, l̃n)} denotes the new
multi-index obtained from p by removing the index pairs {(j1, l1), . . . , (jm, lm)} and
by adding the new index pairs {(j̃1, l̃1), . . . , (j̃n, l̃n)}. Finally, the coefficients Dp,q(ω)
and d(j)(ω), j = 1, . . . , 5, are defined by

Dp,q = i
∑

(j,l)∈p

(
κj + κl

)
− i

∑
(j,l)∈q

(
κj + κl

)

−
∑

(j,l)∈p

N∑
k=1

(
Γjk + Γlk + Γ̃jk + Γ̃lk

)
−

∑
(j,l)∈q

N∑
k=1

(
Γjk + Γlk + Γ̃jk + Γ̃lk

)

− 2
∑

{(j,l),(j̃,l̃)}∈p

(
Γ̌jj̃ + Γ̌ll̃

)
− 2

∑
{(j,l),(j̃,l̃)}∈q

(
Γ̌jj̃ + Γ̌ll̃

)

−
∑

(j,l)∈p

∑
(j̃,l̃)∈p

2	
(
Γ̌jl̃

)
−

∑
(j,l)∈q

∑
(j̃,l̃)∈q

2	
(
Γ̌jl̃

)

+ 2
∑

(j,l)∈p

∑
(j̃,l̃)∈q

(
Γ̌jl̃ + Γ̌lj̃ + Γ̌j̃j + Γ̌l̃l

)
,

d
(1)
jl (ω) = 2	

[
Γ̃jl(ω)

]
1j �=l, d

(2)
jl (ω) = 2	

[
Γjl(ω)

]
,

d
(3)

jlj̃l̃
(ω) = 2	

[
Γjl(ω)

]
1(j,l)=(j̃,l̃) or (j,l)=(l̃,j̃),

d
(4)

jkj̃
(ω) = 2	

[
Γ̃jk(ω)

]
1j=j̃ , d

(5)
k1k2

(ω) = 2	
[
Γk1k2(ω)

]
1k1 �=k2 ,

with 	(x) the real part of x, 1j �=l = 1 if j 
= l and 0 otherwise, and

Γ̌jl(ω) =
k4(ω)

4

∫∞
0

E[Cjj(0)Cll(s)] ds

βjβl(ω)
,(3.3)
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Γ̃jl(ω) =
k4(ω)

4

∫∞
0

ei(βj(ω)−βl(ω))s
E[Cjl(0)Cjl(s)] ds

βjβl(ω)
,(3.4)

Γjl(ω) =
k4(ω)

4

∫∞
0

ei(βj(ω)+βl(ω))s
E[Cjl(0)Cjl(s)] ds

βjβl(ω)
,(3.5)

κl(ω) =
k4(ω)

4

∑
l′>N(ω)

∫∞
−∞ E [Cll′ (0)Cll′ (s)] eiβl(ω)s−βl′ (ω)|s| ds

βlβl′(ω)
.(3.6)

We will discuss applications of this proposition in the next sections, but we first
give a generalization of the result for the two-frequency case. The proof of Proposi-
tion 3.1 is a simplified version of the proof of the next proposition, so we shall present
it only for this second proposition.

3.2. The transport equations for the two-frequency moments. We have
the following result, which is proved in Appendix A. We use the same notation as in
Proposition 3.1.

Proposition 3.2. We introduce the moments of elements Rε
jl of the reflection

matrix at two nearby frequencies:

(3.7) Uε
p,q(ω, h, z) = E

[ ∏
(j,l)∈p

Rε
jl(ω + ε2h/2, z)

∏
(m,n)∈q

Rε
mn(ω − ε2h/2, z)

]
,

where we set Rε
jl(ω± ε2h/2, z) = 0 if j or l is larger than N(ω± ε2h/2). The family

of Fourier transforms (in h)

(3.8) Wε
p,q(ω, τ, z) =

1

2π

∫
e−ih[τ−φp,q(ω)z]Uε

p,q(ω, h, z) dh

converges as ε → 0 to the solution Wp,q of the system of transport equations

(3.9)
∂Wp,q

∂z
+ φp,q(ω)

∂Wp,q

∂τ
= Dp,q(ω)Wp,q +

[
Sω(W)

]
p,q

,

with the initial conditions

(3.10) Wp,q(ω, τ, z = 0) = 10(|p|)10(|q|)δ(τ).

The coefficient φp,q(ω) is defined by

(3.11) φp,q(ω) =
1

2

∑
(j,l)∈p

(
β′
j(ω) + β′

l(ω)
)

+
1

2

∑
(j,l)∈q

(
β′
j(ω) + β′

l(ω)
)
,

with β′
j(ω) = dβj(ω)/dω, while the coefficient Dp,q(ω) and the operator Sω are given

in Proposition 3.1.
The set of transport equations (3.9) describes accurately the reflected wave field,

and it is the key tool in analyzing various applications with waves in random wave-
guides. The corresponding transport equations in the layered case with one-dimen-
sional medium variations were first obtained in [1]. They have played a crucial role
in the analysis of a wide range of applications, and they have been generalized to
describe a wide range of propagation scenarios in [5]. The transport equations given
in Proposition 3.2 provide a rigorous tool for studying qualitatively and quantitatively
the multiple scattering effects in a nonlayered random medium.
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Remark. The convergence of Wε and the existence and uniqueness of the so-
lution W to the system of transport equations (3.9) are established in the space
C([0, L], S′

H), where S′
H is a generalization of the space of distributions introduced

in [12] to study the analogous problem with N = 1 (randomly layered media).
The space S′

H can be identified as the dual of the space SH of the test functions
λ = (λp,q(τ))p∈{1,...,N(ω)}2|p|,q∈{1,...,N(ω)}2|q|,τ∈R, where the λp,q(τ) are infinitely dif-
ferentiable in τ and are rapidly decaying as functions of τ , |p| and |q|. The convergence
of Mε in Proposition 3.1 is established in the space C([0, L], S′

M ), where S′
M is the

dual of the space SM of the test sequences λ = (λp,q)p∈{1,...,N(ω)}2|p|,q∈{1,...,N(ω)}2|q|

which are rapidly decaying in |p| and |q|.
3.3. Interpretation of the transport equations. We make the five following

observations regarding the system of transport equations.
(1) By integrating the solution of the system of transport equations in τ , it is

straightforward to see that the integral quantity is the solution of the system (3.1).
This shows that we have

(3.12) Mp,q(ω, z) =

∫
Wp,q(ω, τ, z) dτ.

Therefore, the following remarks stated in terms of the family Wp,q hold true for the
family of moments Mp,q as well.

(2) Consider the set of moments Wp,q such that |p| − |q| = c with c a nonzero
integer. These moments form a closed subfamily with each member satisfying a zero
initial condition. Therefore, these moments vanish and only moments having the same
number of conjugated and unconjugated terms |p| = |q| survive in the limit ε → 0.

(3) Consider the case when

(3.13) Cjl(z) ≡ 0 for j 
= l.

This corresponds to the situation where modes with different modal wavenumbers are
not coupled. This is the case particularly when the inhomogeneities of the waveguide
do not have lateral variations ν(x, z) = ν(z). It then follows that

Γ̃jl(ω) = Γ̃
(0)
j (ω)1j=l, Γ̃

(0)
j (ω) =

k4(ω)

2β2
j (ω)

∫ ∞

−∞
E[ν(0)ν(s)] ds,(3.14)

Γjl(ω) = Γ
(0)
j (ω)1j=l, Γ

(0)
j (ω) =

k4(ω)

4β2
j (ω)

∫ ∞

0

E[ν(0)ν(s)]ei2βj(ω)s ds.(3.15)

This simplification gives d
(1)
jl = 0, d

(2)
jl = 2Γ

(0)
j 1j=l, d

(3)

jlj̃l̃
= 2Γ

(0)
j 1j=l=j̃=l̃, d

(4)

jj̃k
=

2Γ̃
(0)
j 1j=j̃=k, and d

(5)
k1k2

= 0. The analysis of the system shows that the solution has
the form

Wp,q(ω, τ, z) =

{
W

(1)
p1 ∗ · · · ∗W (N)

pN (ω, τ, z) if p = q = {(1, 1)p1 , . . . , (N,N)pN },
0 otherwise,

where ∗ stands for the convolution in τ and for each j = 1, . . . , N the family (W
(j)
p )p∈N

is the solution of the closed system of transport equations

(3.16)
∂W

(j)
p

∂z
+ 2pβ′

j(ω)
∂W

(j)
p

∂τ
= 2p2	

[
Γ

(0)
j (ω)

] (
W

(j)
p+1 + W

(j)
p−1 − 2W (j)

p

)
,



1582 JOSSELIN GARNIER AND KNUT SØLNA

with the initial conditions W
(j)
p (ω, τ, z = 0) = 10(p)δ(τ). We therefore obtain that

the backward and forward jth modes are uncoupled from the other modes, but their
moments are coupled together according to the system that governs the propagation
of one-dimensional waves in random media [1]. This is not qualitatively surprising,
but this analysis shows that a sufficient criterion for this reduction is (3.13).

(4) If the two-point statistics of the process ν(x, z) are such that

(3.17) Γjl(ω) ≡ 0 for all j, l = 1, . . . , N(ω),

then d(2) = d(3) = d(5) = 0. Consequently there is coupling in the system of transport
equations only for indices (p,q) and (p′,q′) such that |p| = |p′| and |q| = |q′|. Since
the initial conditions are zero for all nonempty indices (p,q), the moments Wp,q are
zero as soon as |p| or |q| is positive. In other words, Rε

jl → 0 for all j, l = 1, . . . , N
in distribution as ε → 0. This shows that the forward scattering approximation is
valid as soon as the condition (3.17) is fulfilled. This approximation is frequently used
in the literature; it consists in neglecting coupling between forward- and backward-
propagating modes, while retaining the coupling between forward-going modes and the
implicit coupling to the evanescent modes. Here we give the necessary and sufficient
condition (3.17) for the validity of this approximation.

(5) In the full system (2.18) we do not have“reciprocity” in that in general
Rε

jl 
= Rε
lj because of the coupling with the evanescent modes modeled by the matrices

G. However, the following symmetry relation is satisfied:

Wp,q = Wp̃,q̃

for p̃n = (ln, jn) with pn = (jn, ln) and q̃ correspondingly defined. This means
that reciprocity is satisfied in the limit ε → 0, and this follows from the following
observations:

• The initial condition in (3.10) depends on the multi-index only through
|p| and |q|.

• The coupling matrices G(aa) and G(ab) in (2.18) affect only the diagonal
coefficients Dp,q in a symmetric way in the problem for Wp,q.

• We have the symmetry relations

(
H(aa)

)T
= −H(aa),

(
H(ab)

)T
= H(ab)

in the coupling matrices in (2.18).

3.4. Enhanced backscattering. In this section we consider the case where the
forward coupling is strong while the coupling between the forward- and backward-
going modes is weak. As seen above, the forward scattering approximation consists
in neglecting completely the latter coupling, and it is valid when the matrix Γ is zero.
Here we assume that Γ is not zero but Γ is small compared to Γ̃. This allows us to
simplify significantly the system of transport equations and to present very interest-
ing results. In particular, we show in the following proposition that the enhanced
backscattering phenomenon extensively discussed in the physical literature can be
exhibited from the particular structure of the reflected time-harmonic wave field.

We denote by Pjl the mean reflected power of the mode j when the input wave
is a mode l:

P(1)
jl (ω, z) = M(j,l),(j,l)(ω, z) = lim

ε→0
E[|Rε

jl(ω, z)|2], j, l = 1, . . . , N(ω),
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for a random waveguide with length z.
Proposition 3.3. If the matrix norm of 	[Γ(ω)] is small compared to 1/L and

the positive spectral gap (3.20) of the operator Lω in (3.18) below, which is defined in

terms of Γ̃(ω), is large compared to 1/L, then the mean reflected mode powers are

P(1)
jl (ω,L) =

{
P0(ω) if j 
= l,
2P0(ω) if j = l,

where P0(ω) is given by

P0(ω) =
2

N(ω)(N(ω) + 3)

[∑
j �=l

	[Γjl(ω)] + 2
∑
j

	[Γjj(ω)]

]
L.

The first condition “	[Γ(ω)L]  1” means that the coupling between backward-
and forward-going modes is weak. The second condition about the spectral gap means
that the coupling between forward-going modes is strong (as well as the coupling
between backward-going modes). The most striking result of this proposition is that,
if the incident wave is a pure mode l, then the mean reflected power of the lth mode

P(1)
ll is twice the mean reflected power of any other mode P(1)

jl , j 
= l.
First, this result shows that the reflected wave has a memory of the initial con-

ditions. This is in contrast to the transmitted wave field in the same regime, where
the equipartition of energy means that the mean transmitted mode powers acquire
a uniform distribution over the modes, independently of the initial conditions (see
section 4.4).

Second, since a mode corresponds to a particular wavevector angle, this result
means that we observe a uniform mean reflected power in all outgoing directions,
except in the backscattered direction (corresponding to the input one), where we
observe twice as much power. The physical reason for this enhancement of backscat-
tered power is the constructive interference between the direct and reverse paths in
the backscattering direction. Enhanced backscattering was first predicted in three-
dimensional random media in [2] and was detected by several groups [9, 15, 17]. It is
also referred to as the weak localization effect. The most popular techniques amongst
physicists for analyzing the weak localization effect, and more generally for taking into
account interference effects, are based on diagrammatic expansions [16]. Here we give
a mathematical derivation of this phenomenon in the context of random waveguides.

Proof. The initial conditions for the solution Wp,q of the system of transport
equations is zero as soon as |p| > 0 or |q| > 0. Since the coupling terms from |p|
to |p| ± 1 and from |q| to |q| ± 1 are proportional to 	(Γ), this shows that the only
coefficients Wp,q of order 	(Γ) are the ones with |p| = 1 and |q| = 1. Up to terms of
higher order, we find that

Wp,q(ω, τ, z) =

⎧⎨
⎩

δ(τ) if p = q = ∅,
Wjl(ω, τ, z) if {p = (j, l), q = (j, l)} or {p = (j, l), q = (l, j)},
0 otherwise,

where Wjl is the solution of

∂Wjl

∂z
+
[
β′
j(ω) + β′

l(ω)
]∂Wjl

∂τ
= (LωW )jl + 2	

[
Γjl(ω)

]
δ(τ),

with the initial conditions Wjl(ω, τ, z) = 0. Here Lω is the linear operator from R
N×N

into R
N×N defined by
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(3.18) (LωP)jl =

⎧⎪⎪⎨
⎪⎪⎩

∑
k �=j

γ̃jk(Pkl − Pjl) +
∑
k �=l

γ̃kl(Pjk − Pjl) − 2γ̃jlPjl if j 
= l,

2
∑
k �=j

γ̃jk(2Pjk − Pjj) if j = l,

where γ̃jl(ω) = 2	[Γ̃jl(ω)]. By integrating in τ and using (3.12), we obtain the system
for the mean reflected powers

(3.19)
dP(1)

jl

dz
= (LωP(1))jl + 2	

[
Γjl(ω)

]
.

Interpreting Lω as an N2(ω) × N2(ω) matrix acting on N2(ω)-dimensional vectors,
it is straightforward to check that the vector P∗(ω) defined by

P∗
jl(ω) =

⎧⎪⎪⎨
⎪⎪⎩

1√
N(ω)(N(ω) + 3)

if j 
= l,

2√
N(ω)(N(ω) + 3)

if j = l

is a unit eigenvector of Lω associated with the eigenvalue zero. Additionally, using
the positivity of the matrix 	(Γ̃) and the Perron–Frobenius theorem, one can show
that zero is a simple eigenvalue and all other eigenvalues are negative. Let us denote
by λ(N2)(ω) ≤ · · · ≤ λ(2)(ω) < 0 these eigenvalues and by Q(N2)(ω), . . . ,Q(2)(ω) the
corresponding unit eigenvectors. The spectral gap mentioned in the proposition is
|λ(2)(ω)|, which is also given by

(3.20) |λ(2)(ω)| = inf
P∈RN2(ω), 〈P,P∗(ω)〉=0

−〈P,LωP〉
〈P,P〉 ,

where 〈·, ·〉 denotes the scalar product in R
N2(ω). The integration of (3.19) gives

(3.21) P(1)
jl (ω, z) = P∗

jl 〈P∗, 2	(Γ)〉 z +

N2∑
k=2

Q(k)
jl

〈
Q(k), 2	(Γ)

〉 exp(λ(k)z) − 1

λ(k)
.

If |λ(2)|z is much larger than 1, then the first term of the right-hand side is much
larger than the other terms. This gives the desired result.

3.5. Fluctuation theory for the reflected mode powers. The previous sec-
tion describes the mean reflected powers. It is important to study the fluctuations of
the reflected powers in order to predict under which conditions the enhanced backscat-
tering can be observed. Propositions 3.1–3.2 allow us to study the fluctuations of the
reflected mode powers by looking at their second moments:

P(2)
jl,mn(ω, z) = lim

ε→0
E
[
|Rε

jl(ω, z)|2|Rε
mn(ω, z)|2

]
.

We investigate the asymptotic correlation matrix (of size N2(ω) × N2(ω)) of the
reflected mode powers:

Corjl,mn(ω) = lim
ε→0

E

[
|Rε

jl(ω,L)|2|Rε
mn(ω,L)|2

]
− E

[
|Rε

jl(ω,L)|2
]
E

[
|Rε

mn(ω,L)|2
]

E

[
|Rε

jl(ω,L)|2
]
E

[
|Rε

mn(ω,L)|2
]

=
P(2)
jl,mn(ω,L) − P(1)

jl (ω,L)P(1)
mn(ω,L)

P(1)
jl (ω,L)P(1)

mn(ω,L)
.
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Proposition 3.4. If the matrix norm of 	[(Γ(ω)] is small compared to 1/L and

the positive spectral gap of the operator L(2)
ω given in 1–7 below, which is defined in

terms of Γ̃(ω), is large compared to 1/L, then the second moments of the reflected
mode powers satisfy

lim
N(ω)→∞

Corjl,mn(ω) =

{
0 if (j, l) 
= (m,n) and (j, l) 
= (n,m),
1 if (j, l) = (m,n) or (j, l) = (n,m).

The result for (j, l) 
= (m,n) shows that the reflected mode powers are asymptot-
ically uncorrelated as N → ∞. The result for (j, l) = (m,n) shows that they are not
statistically stable quantities as N → ∞, since their normalized variances are equal
to one. This means that the fluctuations of the reflected mode powers are of the same
order as their mean values. This implies that it is necessary to perform an averaging
in order to observe the enhanced backscattering. This averaging can be done by a
summation of the reflected mode powers over different experiments with different re-
alizations of the random medium, or with the same realization of the random medium
but with different frequencies of the input monochromatic wave.

Another interesting point is that the normalized variances of the background
reflected powers (i.e., Corjl,jl for j 
= l) are asymptotically equal to one and equal to
the normalized variance of the backscattered reflected power (i.e., Corjj,jj).

Proof. We apply the same strategy as in the proof of Proposition 3.3. Once
again, the fundamental argument is that the coupling terms from |p| to |p| ± 1 are
proportional to 	(Γ). Therefore, the lowest order terms in 	(Γ) of the coefficients
Wp,q with |p| = |q| = 2 are

Wp,q(ω, τ, z) =

⎧⎪⎪⎨
⎪⎪⎩

Wjl,mn(ω, τ, z) if
p = {(j, l), (m,n)} and q = {(j, l), (m,n)}
or {(l, j), (m,n)} or {(j, l), (n,m)}
or {(l, j), (n,m)},

0 otherwise,

where Wjl,mn is the solution of

∂Wjl,mn

∂z
+(β′

j +β′
l +β′

m+β′
n)

∂Wjl,mn

∂τ
= (L(2)

ω W )jl,mn+2	(Γjl)Wmn+2	(Γmn)Wjl,

with the initial conditions Wjl,mn(ω, τ, z = 0) = 0. Here L(2)
ω is the linear operator

from R
N2×N2

into R
N2×N2

defined by the following:
1. If j = l = m = n,

(L(2)
ω P(2))jj,jj =

∑
k �=j

γ̃jk[16P(2)
jk,jj − 4P(2)

jj,jj ],

where γ̃jl(ω) = 2	[Γ̃jl(ω)].
2. If j = l = m 
= n,

(L(2)
ω P(2))jj,jn =

∑
k �=j

γ̃jk[4P(2)
jk,jn − 2P(2)

jj,jn] +
∑
k �=j

γ̃jk[P(2)
jj,kn − P(2)

jj,jn]

+
∑
k �=m

γ̃nk[P(2)
jj,jk − P(2)

jj,jn] − 6γ̃jnP(2)
jj,jn.

A formula of the same form holds true if j = l = n 
= m or j 
= l = m = n or
l 
= j = m = n.
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3. If j = l 
= m = n,

(L(2)
ω P(2))jj,nn =

∑
k �=j

γ̃jk[4P(2)
jk,nn − 2P(2)

jj,nn] +
∑
k �=n

γ̃nk[4P(2)
jj,kn − 2P(2)

jj,nn].

4. If j = m 
= l = n,

(L(2)
ω P(2))jl,jl =

∑
k �=j

γ̃jk[4P(2)
kl,jl−2P(2)

jl,jl]+
∑
k �=l

γ̃lk[4P(2)
jk,jl−2P(2)

jl,jl]−4γ̃jlP(2)
jl,jl.

A formula of the same form holds true if j = n 
= l = m.
5. If j = l 
= m 
= n,

(L(2)
ω P(2))jj,mn =

∑
k �=j

γ̃jk[4P(2)
jk,mn − 2P(2)

jj,mn] +
∑
k �=m

γ̃mk[P(2)
jj,kn − P(2)

jj,mn]

+
∑
k �=n

γ̃nk[P(2)
jj,mk − P(2)

jj,mn] − 2γ̃mnP(2)
jj,mn.

A formula of the same form holds true if m = n 
= j 
= l.
6. If j = m 
= l 
= n,

(L(2)
ω P(2))jl,jn =

∑
k �=j

γ̃jk[P(2)
kl,jn − P(2)

jl,jn] +
∑
k �=l

γ̃lk[P(2)
jk,jn − P(2)

jl,jn]

+
∑
k �=j

γ̃jk[P(2)
jl,kn − P(2)

jl,jn] +
∑
k �=n

γ̃nk[P(2)
jl,jk − P(2)

jl,jn]

− 2 [γ̃jl + γ̃jn + γ̃ln]P(2)
jl,jn.

A formula of the same form holds true if j = n 
= l 
= m or l = m 
= j 
= n or
l = n 
= j 
= m.

7. In the other cases,

(L(2)
ω P(2))jl,mn =

∑
k �=j

γ̃jk[P(2)
kl,mn − P(2)

jl,mn] +
∑
k �=l

γ̃lk[P(2)
jk,mn − P(2)

jl,mn]

+
∑
k �=m

γ̃mk[P(2)
jl,kn − P(2)

jl,mn] +
∑
k �=n

γ̃nk[P(2)
jl,mk − P(2)

jl,mn]

− 2 [γ̃jl + γ̃mn]P(2)
jl,mn.

By integrating in τ , we find the system for the second moments of the reflected powers:

(3.22)
dP(2)

jl,mn

dz
= (L(2)

ω P(2))jl,mn + 2	(Γjl)P(1)
mn + 2	(Γmn)P(1)

jl .

Interpreting L(2)
ω as an N4(ω) ×N4(ω) matrix acting on N4(ω)-dimensional vectors,

it is possible to check that the vector P(2),∗(ω) defined by

P(2),∗
jl,mn =

1√
T ∗

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

8 if j = l = m = n,
4 if j = l 
= m = n,

2 if

∣∣∣∣∣∣
j = m 
= l = n or j = n 
= l = m or j = l 
= m 
= n
or j 
= l 
= m = n or j = l = m 
= n or j = l = n 
= m
or j 
= l = m = n or l 
= j = m = n,

1 otherwise
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is the unit eigenvector of L(2)
ω associated with the eigenvalue zero, where T ∗ =

N4 +6N3 +15N2 +42N . The other eigenvalues are negative. As a result, taking into
account the expression in (3.21) for P(1), the integration of (3.22) gives

1

z2
P(2)
jl,mn(ω, z)

z→∞−→ P(2),∗
jl,mn

N∑
j̃,l̃,m̃,ñ=1

P(2),∗
j̃l̃,m̃ñ

(
	(Γj̃l̃)P

∗
m̃ñ + 	(Γm̃ñ)P∗

j̃l̃

)
〈P∗, 2	(Γ)〉 ,

which in turn gives the result of the proposition.

4. The transmitted wave field. We consider the problem of characterizing
the distribution of the transmitted field.

4.1. The moments of the transmitted time-harmonic field. We consider
the time-harmonic transmitted field for a frequency ω. We can compute the limit of
moments of the transmission matrix as in the case of the reflection matrix. We use
the same notation as in Proposition 3.1.

Proposition 4.1. We introduce the joint moments of elements of the reflection
matrix along with a pair of elements of the transmission matrix:
(4.1)

Mt,ε
p,q(ω, z; j1, j2) = E

[
T ε
j1l1(ω, z)T ε

j2l2
(ω, z)

∏
(j,l)∈p

Rε
jl(ω, z)

∏
(m,n)∈q

Rε
mn(ω, z)

]

for t = (l1, l2). The family of moments Mt,ε
p,q converges as ε → 0 to the solution

Mt
p,q of the system

(4.2)
dMt

p,q

dz
= Dt

p,q(ω)Mt
p,q +

[
Sω(M)

]t
p,q

+
[
Zω(M)

]t
p,q

,

with the initial conditions Mt
p,q(ω, z = 0; j1, j2) = 10(|p|)10(|q|)1j1(l1)1j2(l2). The

linear operator Zω is defined by

[
Zω(M)

]t
p,q

=

N∑
k=1

d
(4)
l1kl2

M(k,k)
p,q

+

N∑
k1,k2=1

d
(2)
k1k2

M(k1,k1)
p∪{(k2,l1)},q∪{(k2,l2)} + d

(5)
k1k2

M(k2,k1)
p∪{(k1,l1)},q∪{(k2,l2)}

−
∑

(j,l)∈p

d
(6)
l1j

M(j,l2)
p|{(j,l)|(l1,l)},q + d

(6)
l1l

M(l,l2)
p|{n|(j,l1)},q

+
∑

(j,l)∈q

N∑
k=1

d
(4)
jkl1

M(k,l2)
p,q|{(j,l)|(k,l)} + d

(4)
lkl1

M(k,l2)
p,q|{(j,l)|(j,k)}

−
∑

(j,l)∈q

d
(6)
jl2

M(l1,j)
p,q|{(j,l)|(l2,l)} + d

(6)
ll2

M(l1,l)
p,q|{(j,l)|(j,l2)}

+
∑

(j,l)∈p

N∑
k=1

d
(4)
jkl2

M(l1,k)
p|{(j,l)|(k,l)},q + d

(4)
lkl2

M(l1,k)
p|{(j,l)|(j,k)},q

−
∑

(j,l)∈p

d
(2)
jl M

(j,l2)
p|{(j,l)|(l,l1)},q + d

(5)
jl M

(l,l2)
p|{(j,l)|(j,l1)},q
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−
∑

(j,l)∈q

d
(2)
jl M

(l1,j)
p,q|{(j,l)|(l,l2)} + d

(5)
jl M

(l1,l)
p,q|{(j,l)|(j,l2)}

+
∑

(j,l)∈q

N∑
k1,k2=1

d
(2)
k1k2

M(k1,l2)
p∪{(k2,l1)},q|{(j,l)|(j,k1),(k2,l)}

+
∑

(j,l)∈q

N∑
k1,k2=1

d
(5)
k1k2

M(k2,l2)
p∪{(k1,l1)},q|{(j,l)|(j,k1),(k2,l)}

+
∑

(j,l)∈p

N∑
k1,k2=1

d
(2)
k1k2

M(l1,k1)
p|{(j,l)|(j,k1),(k2,l)},q∪{(k2,l2)}

+
∑

(j,l)∈p

N∑
k1,k2=1

d
(5)
k1k2

M(l1,k2)
p|{(j,l)|(j,k1),(k2,l)},q∪{(k1,l2)}.

The coefficient Dt
p,q(ω) is defined by

Dt
p,q = Dp,q + i (κl1 − κl2) − Γkl1 − Γkl2 −

N∑
k=1

(
Γ̃kl1 + Γ̃l2k − 2Γ̌l1l21l1 �=l2

)

− 2
∑

(j,l)∈p

(
Γ̌jl11j �=l1 + Γ̌ll11l �=l1 − Γ̌jl21j �=l2 − Γ̌ll21l �=l2

)

+ 2
∑

(j,l)∈q

(
Γ̌jl11j �=l1 + Γ̌ll11l �=l1 − Γ̌jl21j �=l2 − Γ̌ll21l �=l2

)
.

The coefficient d(6)(ω) is given by

d
(6)
jl (ω) = 2	

[
Γ̃jl(ω)

]
.

The linear operator Sω and the coefficients Dp,q(ω), κl(ω), and d(j)(ω), j = 1, . . . , 5,
are defined in Proposition 3.1.

4.2. Transmission transport equations. We consider here the two-frequency
statistics of the transmitted field. We have the following result that is proved in
Appendix B.

Proposition 4.2. We introduce the joint moments of elements of the reflection
matrix at two nearby frequencies along with a pair of elements of the transmission
matrix:

Ut,ε
p,q(ω, h, z; j1, j2) = E

[
T ε
j1l1(ω + ε2h/2, z)T ε

j2l2
(ω − ε2h/2, z)(4.3)

×
∏

(j,l)∈p

Rε
jl(ω + ε2h/2, z)

∏
(m,n)∈q

Rε
mn(ω − ε2h/2, z)

]

for t = (l1, l2). The family of Fourier transforms

(4.4) Wt,ε
p,q(ω, τ, z; j1, j2) =

1

2π

∫
e−ih[τ−φp,q(ω)z]Ut,ε

p,q(ω, h, z; j1, j2) dh

converges as ε → 0 to the solution Wt
p,q of the system of transport equations

(4.5)
∂Wt

p,q

∂z
+ φt

p,q(ω)
∂Wt

p,q

∂τ
= Dt

p,q(ω)Wt
p,q +

[
Sω(W)

]t
p,q

+
[
Zω(W)

]t
p,q

,
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with the initial conditions Wt
p,q(ω, τ, z = 0; j1, j2) = 10(|p|)10(|q|)1j1(l1)1j2(l2)δ(τ).

The coefficient φt
p,q(ω) is given by

(4.6) φt
p,q(ω) = φp,q(ω) +

β′
l1

(ω) + β′
l2

(ω)

2
.

This generalized set of transport equations describes accurately the transmitted
wave field and is the key tool in analyzing various applications with wave propagation
in random waveguides. The corresponding transport equations in the layered case are
presented in [5].

4.3. Interpretation of the transmission transport equations. We make
the following observations regarding the system of transport equations.

(1) By integrating the solution of the system of transport equations in τ , it is
straightforward to see that the integral quantity is the solution of the system (4.2).
This shows that we have

(4.7) Mt
p,q(ω, z; j1, j2) =

∫
Wt

p,q(ω, τ, z; j1, j2) dτ.

Therefore, the following remarks stated in terms of the family Wt
p,q hold true for the

family of moments Mt
p,q as well.

(2) Consider the set of moments Wt
p,q such that |p| − |q| = c with c a nonzero

integer. These moments form a closed subfamily with each member satisfying a zero
initial condition. Therefore, these moments vanish, and again only moments having
the same number of conjugated and unconjugated terms survive in the small ε limit.

(3) Consider the case (3.13) when Cjl ≡ 0 for j 
= l, as described under (3) in
section 3.3. Recall that this corresponds to the situation where modes with different
modal wavenumbers are not coupled, which is the case particularly when the inhomo-
geneities of the waveguide do not have lateral variations. The analysis of the system
in (4.2) then shows that the solution has the form

Wt
p,q(ω, τ, z; j1, j2) = W (1)

p1
∗ · · · ∗W (l−1)

pl−1
∗ V (l)

pl
∗W (l+1)

pl+1
∗ · · · ∗W (N)

pN
(ω, τ, z)

if t = (j1, j2) = (l, l) and p = q = {(1, 1)p1 , . . . , (N,N)pN }, and Wt
p,q(ω, τ, z; j1, j2) =

0 otherwise. For each j, (W
(j)
p )p∈N is given by (3.16) and for each l, (V

(l)
p )p∈N is the

solution of the closed system of transport equations

∂V
(l)
p

∂z
+ (2p+ 1)β′

l(ω)
∂V

(l)
p

∂τ
= 2	

[
Γ

(0)
l (ω)

] [
(p+ 1)2(V

(l)
p+1 − V (l)

p ) + p2(V
(l)
p−1 − V (l)

p )
]
,

with the initial conditions V
(l)
p (ω, τ, z = 0) = 10(p)δ(τ). We therefore obtain that

the backward and forward jth modes are uncoupled from the other modes, but they
are coupled together according to the system that governs the propagation of one-
dimensional waves in random media [1].

4.4. Forward scattering approximation. To contrast with the fully coupled
case discussed above, we address in this section the forward scattering approximation
analyzed in detail in [5, 7]. As shown above, this approximation is valid when Γ is
zero or very small (in the sense that 	(Γ)L  1). The system of transport equations
of Proposition 4.2 can be dramatically simplified, since only the terms Wt

p,q with
p = q = ∅ contribute at the leading order, and these terms satisfy a closed system of
transport equations as described in the following proposition.
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Proposition 4.3. If Γ(ω) = 0, then the (transformed) autocorrelation function
of the transmission coefficients at two nearby frequencies,

Vε
jl(ω, τ, z) =

1

2π

∫
e−ih[τ−β′

l(ω)z]
E

[
T ε
jl(ω + ε2h/2, z)T ε

jl(ω − ε2h/2, z)
]
dh,

has a limit as ε → 0:

lim
ε→0

Vε
jl(ω, τ, z) = Vjl(ω, τ, z).

For any fixed l ∈ {1, . . . , N(ω)}, the subfamily (Vjl(ω, τ, z))j=1,...,N(ω) is the solution
of the system of transport equations

(4.8)
∂Vjl

∂z
+ β′

j(ω)
∂Vjl

∂τ
=
∑
n �=j

2	
[
Γ̃jn(ω)

]
(Vnl − Vjl) ,

with the initial conditions Vjl(ω, τ, z = 0) = δ(τ)1l(j). Here Γ̃(ω) is given by (3.4).
Let us introduce the mean transmitted power of the mode j when the input wave

is a mode l:

P(t)
jl (ω, z) = M(l,l)

∅,∅ (ω, τ, z; j, j) = lim
ε→0

E
[
|T ε

jl(ω, z)|2
]
.

The next proposition shows the equipartition of energy of the transmitted wave.
Proposition 4.4. If Γ(ω) = 0, then the mean transmitted powers converge to

the uniform distribution, that is,

P(t)
jl (ω, z)

z→∞−→ 1

N(ω)
,

uniformly in j, l and exponentially in z.
Proof. By integrating (4.8) in τ , we get that, for any fixed l, the subfamily

(P(t)
jl (ω, z))j=1,...,N(ω) is the solution of the linear system

(4.9)
∂P(t)

jl

∂z
=

N(ω)∑
n=1

L(t)
jn(ω)P(t)

nl ,

starting from P(t)
jl (ω, z = 0) = 1l(j). Here L(t)(ω) is the N(ω) ×N(ω) matrix

L(t)
jn(ω) =

⎧⎪⎨
⎪⎩

2	
[
Γ̃jn(ω)

]
if j 
= n,

−2
∑
m�=j

2	
[
Γ̃jm(ω)

]
if j = n.

Using the positivity of the coefficients 	[Γ̃jn] and the Perron–Frobenius theorem, we
find that the matrix L(t) has zero as an isolated eigenvalue, and all other eigenvalues
are negative. It is straightforward to check that the eigenvector corresponding to the
zero eigenvalue is the uniform vector, which establishes the proposition.

Appendix A. Derivation of channel reflection-transport equations.

A.1. Propagator equations. We prove here Proposition 3.2. Note first that
we can write the first equation in (2.18) in the form

(A.1)
d

dz
Rε = −ΦεHa,ε + RεΦεHa,εRε + Ha,εRε −RεHa,ε,
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where Φε(ω, z) is the N(ω) ×N(ω) diagonal matrix with diagonal entries:

Φε
jj(ω, z) = e−2iβj(ω)z/ε2 .

Our objective is now to compute cross moments of reflection matrix entries using
diffusion approximation, and we remark that the phase factors in Φε then act as
decoupling terms, decoupling the entries in (A.1). We introduce the quantities Uε

p,q

that give high-order products of elements Rε
jl of the reflection matrix at two nearby

frequencies:

(A.2) Uε
p,q(ω, h, z) =

∏
(j,l)∈p

Rε
jl(ω + ε2h/2, z)

∏
(m,n)∈q

Rε
mn(ω − ε2h/2, z).

It now follows from (2.18) that the Uε
p,q’s solve evolution equations of the form

(A.3)
∂Uε

p,q

∂z
=
[
Hε

U (Uε)
]
p,q

.

Here
[
Hε

U (Uε)
]
p,q

is a finite sum of Uε
p(1),q(1) , . . . , U

ε
p(m),q(m) , where the multi-indices

p(1),q(1), . . . ,p(N),q(N) are obtained from p and q by one or two replacements. We
have explicitly

[
Hε

U (Uε)
]
p,q

=
∑

(j,l)∈p

Uε
p|(j,l),q

×
{
Hb,ε

jl −
N∑

k1,k2=1

Rε
jk1

Hb,ε
k1k2

Rε
k2l +

N∑
k=1

[
Ha,ε

jk Rε
kl −Rε

jkH
a,ε
kl

]}
ω+hε2/2

+
∑

(j,l)∈q

Uε
p,q|(j,l)

×
{
Hb,ε

jl −
N∑

k1,k2=1

Rε
jk1

Hb,ε
k1k2

Rε
k2l

+

N∑
k=1

[
Ha,ε

jk Rε
kl −Rε

jkH
a,ε
kl

]}
ω−hε2/2

,

which can also be written as

[
Hε

U (Uε)
]
p,q

=
∑

(j,l)∈p

{
Hb,ε

jl Uε
p|(j,l),q −

N∑
k1,k2=1

Hb,ε
k1k2

Uε
p|{(j,l)|(j,k1),(k2,l)},q

+

N∑
k=1

[
Ha,ε

jk Uε
p|{(j,l)|(k,l)},q −Ha,ε

kl Uε
p|{(j,l)|(j,k)},q

]}
ω+hε2/2

+
∑

(j,l)∈q

{
Hb,ε

jl Uε
p,q|(j,l) −

N∑
k1,k2=1

Hb,ε
k1k2

Uε
p,q|{(j,l)|(j,k1),(k2,l)}

+

N∑
k=1

[
Ha,ε

jk Uε
p,q|{(j,l)|(k,l)} −Ha,ε

kl Uε
p,q|{(j,l)|(j,k)}

]}
ω−hε2/2

.(A.4)

Next we observe that
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Ha,ε
jl |ω±ε2h/2 ∼ αε

jl (ω, h, z) e
i(βl(ω)−βj(ω))z/ε2e±i(β′

l(ω)−β′
j(ω))zh/2

≡ α±,ε
jl (ω, h, z) ei(βl(ω)−βj(ω))z/ε2 ,

Hb,ε
jl |ω±ε2h/2 ∼ −αε

jl (ω, h, z)e
−i(βl(ω)+βj(ω))z/ε2e∓i(β′

l(ω)+β′
j(ω))zh/2

≡ α̃±,ε
jl (ω, h, z) e−i(βl(ω)+βj(ω))z/ε2

as ε → 0 for

αε
jl(ω, h, z) =

ik2(ω)

2ε

Cjl

(
z
ε2

)
√
βjβl(ω)

+
ik4(ω)

4

∑
l′>N(ω)

∫ ∞

−∞

Cjl′
(

z
ε2

)
Cll′

(
z
ε2 + s

)
√
βjβ2

l′βl(ω)
eiβl(ω)s−βl′ (ω)|s| ds.

Using this notation, we get from (A.4)

[
Hε

U (Uε)
]
p,q

=
∑

(j,l)∈p

{
α̃+,ε
jl Uε

p|(j,l),qe
−i(βl+βj)z/ε

2

+

N∑
k=1

[
α+,ε
jk Uε

p|{(j,l)|(k,l)},qe
i(βk−βj)z/ε

2 − α+,ε
kl Uε

p|{(j,l)|(j,k)},qe
i(βk−βl)z/ε

2
]

−
N∑

k1,k2=1

α̃+,ε
k1k2

Uε
p|{(j,l)|(j,k1),(k2,l)},qe

i(βk1
+βk2

)z/ε2
}

+
∑

(j,l)∈q

{
α̃−,ε
jl Uε

p,q|(j,l)e
i(βj+βl)z/ε

2

+

N∑
k=1

[
α−,ε
jk Uε

p,q|{(j,l)|(k,l)}e
i(βj−βk)z/ε2 − α−,ε

kl Uε
p,q|{(j,l)|(j,k)}e

i(βl−βk)z/ε2
]

−
N∑

k1,k2=1

α̃−,ε
k1k2

Uε
p,q|{(j,l)|(j,k1),(k2,l)}e

−i(βk1
+βk2

)z/ε2
}
,(A.5)

where the βj ’s are evaluated at ω.

A.2. The homogeneous propagator equations. In order the eliminate the
h-dependence in the coefficients of (A.5), we now introduce the transformation

(A.6) V ε
p,q(ω, τ, z) =

1

2π

∫
e−ih[τ−φp,q(ω)z]Uε

p,q(ω, h, z) dh,

where φp,q(ω) is given by (3.11). We then obtain from (A.5) that V ε solves the
infinite-dimensional system of partial differential equations

∂V ε
p,q

∂z
+ φp,q(ω)

∂V ε
p,q

∂τ
=
[
Hε

V (V ε)
]
p,q

,

with the initial conditions V ε
p,q(ω, τ, z = 0) = 10(|p|)10(|q|)δ(τ). The source term

now has the form
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[
Hε

V (V ε)
]
p,q

=
∑

(j,l)∈p

{
−αε

jlV
ε
p|(j,l),qe

−i(βj+βl)z/ε
2

+

N∑
k1,k2=1

αε
k1k2

V ε
p|{(j,l)|(j,k1),(k2,l)},qe

i(βk1
+βk2

)z/ε2

+

N∑
k=1

αε
jkV

ε
p|{(j,l)|(k,l)},qe

i(βk−βj)z/ε
2

−
N∑

k=1

αε
klV

ε
p|{(j,l)|(j,k)},qe

i(βk−βl)z/ε
2

}

+
∑

(j,l)∈q

{
−αε

jlV
ε
p,q|(j,l)e

i(βj+βl)z/ε
2

+

N∑
k1,k2=1

αε
k1k2

V ε
p,q|{(j,l)|(j,k1),(k2,l)}e

−i(βk1
+βk2

)z/ε2

+

N∑
k=1

αε
jkV

ε
p,q|{(j,l)|(k,l)}e

i(βj−βk)z/ε2

−
N∑

k=1

αε
klV

ε
p,q|{(j,l)|(j,k)}e

i(βl−βk)z/ε2
}
,(A.7)

where the βj ’s are evaluated at ω.

A.3. Transport equations. We next apply the diffusion approximation to get
transport equations for the moments; see [5] for background material on and related
to applications of the diffusion approximation theory. Observe that the function Hε

V

is linear and the random coefficients are rapidly fluctuating. Those coefficients whose
amplitudes are of order ε−1 are centered and fluctuate on the scale ε2; moreover, they
are assumed to be rapidly mixing, giving a white-noise scaling situation. We can thus
apply diffusion approximation results to obtain transport equations for the moments
E[V ε

p,q] in the limit ε → 0:

Wp,q(ω, τ, z) = lim
ε→0

E[V ε
p,q(ω, τ, z)].

We then obtain from (A.7) that Wp,q solves the infinite-dimensional system of partial
differential equations

∂Wp,q

∂z
+ φp,q(ω)

∂Wp,q

∂τ
= i
[ ∑
(j,l)∈p

(
κj + κl

)
−

∑
(j,l)∈q

(
κj + κl

)]
Wp,q +

[
H(W)

]
p,q

,

with the initial conditions Wp,q(ω, τ, z = 0) = 10(|p|)10(|q|)δ(τ), and where we
defined κl(ω) (which is real) by (3.6). The source term now takes the form

(A.8)
[
H(W)

]
p,q

=

6∑
k=1

Ik,

and we next identify the coupling terms Ik. We remark that in applying the diffusion
approximation there is no coupling between terms that contain phase modulation of
the type exp[i(βj − βl)z/ε

2] with terms that contain phase modulation of the type
exp[i(βm +βn)z/ε2] since the rapid phases then cannot cancel. There are eight terms
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in the expression for Hε
V in (A.7); we label the first four associated with the multi-

index p by 1p, . . . , 4p and the last by four by 1q, . . . , 4q. First we consider the cross
interaction of the terms 1p and 2p and also the corresponding combination 1q and 2q
that is associated with complex conjugate coefficients. We label their contribution by
the term I1, which is given by

I1 = −
∑

{(j,l),(j̃,l̃)}∈p

2	
(
Γjl

) (
Wp|{(j,l),(j̃,l̃)|(j̃,j),(l,l̃)},q + Wp|{(j,l),(j̃,l̃)|(j̃,l),(j,l̃)},q1j �=l

)

−
∑

{(j,l),(j̃,l̃)}∈p

2	
(
Γj̃l̃

) (
Wp|{(j,l),(j̃,l̃)|(j,j̃),(l̃,l)},q + Wp|{(j,l),(j̃,l̃)|(l,j̃),(l̃,j)},q1j̃ �=l̃

)

−
∑

{(j,l),(j̃,l̃)}∈q

2	
(
Γjl

) (
Wp,q|{(j,l),(j̃,l̃)|(j̃,j),(l,l̃)} + Wp,q|{(j,l),(j̃,l̃)|(j̃,l),(j,l̃)}1j �=l

)

−
∑

{(j,l),(j̃,l̃)}∈q

2	
(
Γj̃l̃

) (
Wp,q|{(j,l),(j̃,l̃)|(j,j̃),(l̃,l)} + Wp,q|{(j,l),(j̃,l̃)|(l,j̃),(l̃,j)}1j̃ �=l̃

)

−
∑

(j,l)∈p

N∑
k=1

(Γjk + Γlk)Wp,q −
∑

(j,l)∈q

N∑
k=1

(
Γjk + Γlk

)
Wp,q,

where Γ is defined by (3.5).
Next we consider the cross interaction of the terms 1p and 2p with the terms 1q

and 2q. We label their contribution by the term I2, which is given by

I2 =
∑

(j,l)∈p

∑
(j̃,l̃)∈q

2	
(
Γjl

)
Wp|(j,l),q|(j̃,l̃)1(j,l)∼=(j̃,l̃)

+
∑

(j,l)∈p

∑
(j̃,l̃)∈q

N∑
k1,k2=1

2	
(
Γk1k2

)
Wp|{(j,l)|(j,k1),(k2,l)},q|{(j̃,l̃)|(j̃,k1),(k2,l̃)}

+
∑

(j,l)∈p

∑
(j̃,l̃)∈q

N∑
k1,k2=1

2	
(
Γk1k2

)
Wp|{(j,l)|(j,k1),(k2,l)},q|{(j̃,l̃)|(j̃,k2),(k1,l̃)}1k1 �=k2 ,

where (j, l) ∼= (j̃, l̃) if (j, l) = (j̃, l̃) or (j, l) = (l̃, j̃).
We have completed the analysis of the terms associated with phase modulation

of the form exp[i(βj + βl)z/ε
2] and consider now terms associated with phases of the

form exp[i(βj −βl)z/ε
2]. Consider first the interaction of the terms 3p, 4p, 3q, and 4q

with themselves. We label this contribution by I3, which is given by

I3 = −
{

2
∑

{(j,l),(j̃,l̃)}∈p

[
Γ̌jj̃ + Γ̌ll̃

]
+

∑
(j,l)∈p

N∑
k=1

[
Γ̃jk + Γ̃lk

]}
Wp,q

− 2
∑

{(j,l),(j̃,l̃)}∈p

[
1j �=j̃	

(
Γ̃jj̃

)
+ 1l �=l̃	

(
Γ̃ll̃

)]
Wp|{(j,l),(j̃,l̃)|(j̃,l),(j,l̃)},q

−
{

2
∑

{(j,l),(j̃,l̃)}∈q

[
Γ̌jj̃ + Γ̌ll̃

]
+

∑
(j,l)∈q

N∑
k=1

[
Γ̃jk + Γ̃lk

]}
Wp,q

− 2
∑

{(j,l),(j̃,l̃)}∈q

[
1j �=j̃	

(
Γ̃jj̃

)
+ 1l �=l̃	

(
Γ̃ll̃

)]
Wp,q|{(j,l),(j̃,l̃)|(j̃,l),(j,l̃)},
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where Γ̌ and Γ̃ are defined by (3.3)–(3.4).
Next, we deal with the cross interaction between the terms 3p and 4p and corre-

spondingly between 3q and 4q. We label this contribution by I4 and obtain

I4 = −
{ ∑

(j,l)∈p

∑
(j̃,l̃)∈p

2Γ̌jl̃

}
Wp,q −

∑
(j,l)∈p

2	
(
Γ̃jl

)
Wp|{(j,l)|(l,j)},q1j �=l

− 2
∑

{(j,l),(j̃,l̃)}∈p

	
(
Γ̃jl̃

)
1j �=l̃Wp|{(j,l),(j̃,l̃)|(l̃,l),(j̃,j)},q

− 2
∑

{(j,l),(j̃,l̃)}∈p

	
(
Γ̃j̃l

)
1j̃ �=lWp|{(j,l),(j̃,l̃)|(l,l̃),(j,j̃)},q

−
{ ∑

(j,l)∈q

∑
(j̃,l̃)∈q

2Γ̌jl̃

}
Wp,q −

∑
(j,l)∈q

2	
(
Γ̃jl

)
Wp,q|{(j,l)|(l,j)}1j �=l

− 2
∑

{(j,l),(j̃,l̃)}∈q

	
(
Γ̃jl̃

)
1j �=l̃Wp,q|{(j,l),(j̃,l̃)|(l̃,l),(j̃,j)}

− 2
∑

{(j,l),(j̃,l̃)}∈q

	
(
Γ̃j̃l

)
1j̃ �=lWp,q|{(j,l),(j̃,l̃)|(l,l̃),(j,j̃)}.

Now we consider the cross interaction between the terms 3p and 3q and corre-
spondingly between 4p and 4q. We label this contribution by I5 and obtain

I5 =
∑

(j,l)∈p

∑
(j̃,l̃)∈q

[
2Γ̌j̃jWp,q +

N∑
k=1 �=j

2	
[
Γ̃jk

]
Wp|{(j,l)|(k,l)},q|{(j̃,l̃)|(k,l̃)}1j=j̃

]

+
∑

(j,l)∈p

∑
(j̃,l̃)∈q

[
2Γ̌l̃lWp,q +

N∑
k=1 �=l

2	
(
Γ̃lk

)
Wp|{(j,l)|(j,k)},q|{(j̃,l̃)|(j̃,k)}1l=l̃

]
.

Finally, we analyze the cross interaction between the terms 3p and 4q and corre-
spondingly between 4p and 3q. We label this contribution by I6 and obtain

I6 =
∑

(j,l)∈p

∑
(j̃,l̃)∈q

[
2Γ̌jl̃Wp,q +

N∑
k=1 �=j

2	
(
Γ̃jk

)
Wp|{(j,l)|(k,l)},q|{(j̃,l̃)|(j̃,k)}1j=l̃

]

+
∑

(j,l)∈p

∑
(j̃,l̃)∈q

[
2Γ̌lj̃Wp,q +

N∑
k=1 �=l

2	
(
Γ̃lk

)
Wp|{(j,l)|(j,k)},q|{(j̃,l̃)|(k,l̃)}1l=j̃

]
.

We can now assemble the terms in the source term H for the transport equation, and
this completes the proof of Proposition 3.2.

Appendix B. Derivation of channel transmission-transport equations.
We consider next the wave field that has been transmitted through the waveguide and
develop a family of transport equations that generalize those we derived above for the
characterization of the reflected field. The transmitted field can be characterized
by the transmission operator in (2.17). Recall that the transmission and reflection
matrices solve (2.18). In order to obtain a closed system of transport equations, we
introduce the quantities

U t,ε
p,q(ω, h, z; j1, j2) = T ε

j1l1(ω + ε2h/2, z)T ε
j2l2

(ω − ε2h/2, z)Uε
p,q(ω, h, z)
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for t = (l1, l2). Then we find, using (A.3),

∂U t,ε
p,q

∂z
=
[
Hε

U (U t,ε)
]
p,q

− Uε
p,q

{
T ε
j2l2

}
ω−hε2/2

{ N∑
k1=1

T ε
j1k1

(
Ha,ε

k1l1
+

N∑
k2=1

Hb,ε
k1k2

Rε
k2l1

)}
ω+hε2/2

− Uε
p,q

{
T ε
j1l1

}
ω+hε2/2

{ N∑
k1=1

T ε
j2k1

(
Ha,ε

k1l2
+

N∑
k2=1

Hb,ε
k1k2

Rε
k2l2

)}
ω−hε2/2

,

with Hε
U defined in (A.5). We remark that the family of coefficients U t,ε

p,q(ω, h, z; j1, j2)
for fixed j1 and j2 form a closed subfamily, which allows us to rewrite the previous
system as

∂U t,ε
p,q

∂z
=
[
Hε

U (U t,ε)
]
p,q

+
[
Hε,1

U (Uε)
]t
p,q

+
[
Hε,2

U (Uε)
]t
p,q

,(B.1)

[
Hε,1

U (Uε)
]t
p,q

= −
N∑

k=1

({
Ha,ε

kl1

}
ω+hε2/2

U (k,l2),ε
p,q +

{
Ha,ε

kl2

}
ω−hε2/2

U (l1,k),ε
p,q

)
,

[
Hε,2

U (Uε)
]t
p,q

= −
N∑

k1,k2=1

({
Rε

k2l1H
b,ε
k1k2

}
ω+hε2/2

U (k1,l2),ε
p,q

+
{
Rε

k2l2
Hb,ε

k1k2

}
ω−hε2/2

U (l1,k1),ε
p,q

)
.

B.1. Homogeneous propagator equations in the transmission case. In
order the eliminate the h-dependence in the coefficients of (B.1), we introduce the
transformation

(B.2) V t,ε
p,q(ω, τ, z; j1, j2) =

1

2π

∫
e−ih[τ−φt

p,q(ω)z]U t,ε
p,q(ω, h, z; j1, j2) dh,

with φt
p,q(ω) defined in (4.6). We then obtain from (B.1) that V t,ε

p,q solves the infinite-
dimensional system of partial differential equations

(B.3)
∂V t,ε

p,q

∂z
+ φt

p,q(ω)
∂V t,ε

p,q

∂τ
=
[
H̃ε

V (V ε)
]t
p,q

,

with the initial conditions V t,ε
p,q(ω, τ, z = 0; j1, j2) = 10(|p|)10(|q|)1j1(l1)1j2(l2)δ(τ).

We decompose the source term as

(B.4) H̃ε
V = Hε

V + Hε,1
V + Hε,2

V ,

with Hε
V defined in (A.7) and the specific transmission source terms given by

[
Hε,1

V (V ε)
]t
p,q

= −
N∑

k=1

[
αε
kl1

V (k,l2),ε
p,q ei(βk−βl1

)z/ε2 + αε
kl2V

(l1,k),ε
p,q ei(βl2

−βk)z/ε2
]
,

(B.5)

[
Hε,2

V (V ε)
]t
p,q

=

N∑
k1,k2=1

[
αε
k1k2

V
(k1,l2),ε
p∪{(k2,l1)},qe

i(βk1
+βk2

)z/ε2

+ αε
k1k2

V
(l1,k1),ε
p,q∪{(k2,l2)}e

−i(βk1
+βk2

)z/ε2
]
,(B.6)

where the βj ’s are evaluated at ω.
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B.2. Transport equations. We now apply the diffusion approximation to get
transport equations for the above modified moments that are relevant in the trans-
mission case. That is, we deduce transport equations for the moments E[V t,ε

p,q] in the
limit ε → 0:

Wt
p,q(ω, τ, z; j1, j2) = lim

ε→0
E[V t,ε

p,q(ω, τ, z; j1, j2)].

We then obtain from (B.3) that Wt
p,q solves the infinite-dimensional system of partial

differential equations

∂Wt
p,q

∂z
+ φt

p,q(ω)
∂Wt

p,q

∂τ
= i

[
κl1 − κl2 +

∑
(j,l)∈p

(
κj + κl

)
−

∑
(j,l)∈q

(
κj + κl

)]
Wt

p,q

+
[
H(Wt)

]
p,q

+
[
H1(W)

]t
p,q

,

with the initial conditions Wt
p,q(ω, τ, z = 0; j1, j2) = 10(|p|)10(|q|)1j1(l1)1j2(l2)δ(τ).

The source term H is defined in (A.8), and the specific transmission source term has
the form

(B.7)
[
H1(W)

]t
p,q

=

4∑
k=1

Ĩk,

and we next identify the coupling terms Ĩk.
First, we consider the terms that correspond to the interaction of the terms Hε,1

V

in (B.5) with themselves. This contribution is

Ĩ1 = 2

N∑
k=1

	
(
Γ̃kl1

)
W(k,k)

p,q 1l1=l2 −
N∑

k=1

[
Γ̃kl1 + Γ̃l2k − 2Γ̌l1l2

]
Wt

p,q1l1 �=l2 .

Then, we consider the cross interaction of the terms in Hε,2
V in (B.5). This gives

the contribution

Ĩ2 = 2

N∑
k1,k2=1

	
(
Γk1k2

) [
W(k1,k1)

p∪{(k2,l1)},q∪{(k2,l2)} + W(k2,k1)
p∪{(k1,l1)},q∪{(k2,l2)}1k2 �=k1

]
.

The terms in Hε,1
V interact with those in Hε

V having phase modulations of the form
exp[i(βj − βl)z/ε

2], giving the following contribution to the diffusion approximation:

Ĩ3 = −2
∑

(j,l)∈p

[
Γ̌jl11j �=l1 + Γ̌ll11l �=l1 − Γ̌jl21j �=l2 − Γ̌ll21l �=l2

]
Wt

p,q

+ 2
∑

(j,l)∈q

[
Γ̌jl11j �=l1 + Γ̌ll11l �=l1 − Γ̌jl21j �=l2 − Γ̌ll21l �=l2

]
Wt

p,q

− 2
∑

(j,l)∈p

[
	
(
Γ̃l1j

)
W(j,l2)

p|{(j,l)|(l1,l)},q + 	
(
Γ̃l1l

)
W(l,l2)

p|{(j,l)|(j,l1)},q

]

+ 2
∑

(j,l)∈q

N∑
k=1

[
	
(
Γ̃jk

)
W(k,l2)

p,q|{(j,l)|(k,l)}1j=l1 + 	
(
Γ̃lk

)
W(k,l2)

p,q|{(j,l)|(j,k)}1l=l1

]

− 2
∑

(j,l)∈q

[
	
(
Γ̃jl2

)
W(l1,j)

p,q|{(j,l)|(l2,l)} + 	
(
Γ̃ll2

)
W(l1,l)

p,q|{(j,l)|(j,l2)}

]

+ 2
∑

(j,l)∈p

N∑
k=1

[
	
(
Γ̃kj

)
W(l1,k)

p|{(j,l)|(k,l)},q1j=l2 + 	
(
Γ̃kl

)
W(l1,k)

p|{(j,l)|(j,k)},q1l=l2

]
.
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Finally, we consider the cross interaction of the terms in Hε,2
V with those in Hε

V .
This gives the contribution

Ĩ4 = −
N∑

k=1

Γkl1Wt
p,q − 2

∑
(j,l)∈p

	
(
Γjl

) [
W(j,l2)

p|{(j,l)|(l,l1)},q + W(l,l2)
p|{(j,l)|(j,l1)},q1j �=l

]

−
N∑

k=1

Γkl2Wt
p,q − 2

∑
(j,l)∈q

	
(
Γjl

) [
W(l1,j)

p,q|{(j,l)|(l,l2)} + W(l1,l)
p,q|{(j,l)|(j,l2)}1j �=l

]

+ 2
∑

(j,l)∈q

N∑
k1,k2=1

	
(
Γk1k2

)
W(k1,l2)

p∪{(k2,l1)},q|{(j,l)|(j,k1),(k2,l)}

+ 2
∑

(j,l)∈q

N∑
k1,k2=1

	
(
Γk1k2

)
W(k2,l2)

p∪{(k1,l1)},q|{(j,l)|(j,k1),(k2,l)}1k1 �=k2

+ 2
∑

(j,l)∈p

N∑
k1,k2=1

	
(
Γk1k2

)
W(l1,k1)

p|{(j,l)|(j,k1),(k2,l)},q∪{(k2,l2)}

+ 2
∑

(j,l)∈p

N∑
k1,k2=1

	
(
Γk1k2

)
W(l1,k2)

p|{(j,l)|(j,k1),(k2,l)},q∪{(k1,l2)}1k1 �=k2
.

We can now assemble the terms in the source term H1 for the transport equation,
and this completes the proof of Proposition 4.2.
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Abstract. We study a chemostat model that describes competition between n microbial species
for a single-limited resource based on storage. The model incorporates internal resource storage
variables that serve the direct connection between species growth and external resource availability.
Mathematical analysis for the global dynamics of the model is carried out by using the fluctuat-
ing method. It is shown that the competitive exclusion principle holds for the limiting system of
the model. The species with the smallest ambient nutrient concentration wins the competition.
We extend the result of competitive exclusion in the paper [H. L. Smith and P. Waltmam, SIAM
J. Appl. Math., 54 (1994), pp. 1113–1131] from two species to n species.

Key words. chemostat, single-limited resource, competition, competitive exclusion, fluctuating
lemma
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1. Introduction. One of the basic hypotheses in the mathematical modeling of
competition of microorganisms for a single-limited nutrient in a continuous culture
[JM], [HHW], [T], [FS], [AM], [SW2] is that the rate of consumption of the nutrient
and the rate of growth of the organism are directly proportional [M]: (rate of growth
of organism)= y (rate of consumption of nutrient); y is called the yield constant and
is determined over a finite period of time by

y =
weight of organism formed

weight of the nutrient used
.

In phytoplankton ecology, it has long been known that the yield can vary depending
on the growth rate [D], [G1], [G2], [CM], [CN1], [CN2]. Droop [D] was the first to give
a variable yield model or so-called internal storage model. He proposed the idea that
the organism consumes the nutrient and converts the nutrient into internal storage
(cell quota). When the internal storage is below the minimum cell quota, the organism
ceases to grow. If the cell quota is above the minimum cell quota, then the growth
rate increases with the cell quota. Furthermore, the nutrient uptake rate increases
with nutrient concentration and decreases with cell quota. The model of growth with
one limiting nutrient incorporating these relations has been tested in both constant
and fluctuating environments [G3], [NG], [SC]. Thus the variable yield models are
well supported experimentally.

In [SW1], the authors studied the competition between two species competing for
a single-limited resource with internal storage. They applied the method of a mono-
tone dynamical system [S] to show that the competitive exclusion principle holds.
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When the number of species is greater than two, the method of the monotione dy-
namical system no longer works. In this paper we shall rigorously prove that the
competitive exclusion principle also holds for the competition between n microbial
species; n ≥ 2 for a single-limited resource with internal storage. The result is similar
to that of the classical simple chemostat model [HHW]: the species with the smallest
ambient nutrient concentration wins the competition.

In section 2, we present the mathematical model and state the main results.
In section 3 we give the proof of the main theorem. The main tools in the proof
are the conservation principle, which allows the reduction of the (2n+1)-dimensional
system of ordinary differential equations to a (2n)-dimensional system; the fluctuating
method [HHG, WX], which provides tools to determine the global behavior of the (2n)-
dimensional reduced system; and finally, results on the asymptotically autonomous
system due to Thieme [Th], which show that the (2n + 1)-dimensional system and
the reduced (2n)-dimensional system have the same global asymptotic behavior. In
section 4, we discuss the updated mathematical models of microorganisms competing
for multiple nutrients in phytoplankton ecology. Several open problems are presented
for future research.

2. The model and main result. The model of n species, n ≥ 2, competing
for a single-limited resource with internal storage in a chemostat, takes the form

S′(t) = (S(0) − S(t))D −
n∑

i=1

xi(t)fi(S(t), Qi(t)),

x′
i(t) = [μi(Qi(t)) −D]xi(t),

(2.1)
Q′

i(t) = fi(S(t), Qi(t)) − μi(Qi(t))Qi(t),

S(0) ≥ 0, xi(0) > 0, Qi(0) ≥ Qmin,i, i = 1, 2, . . . , n.

Here S(t) denotes the concentration of the external limiting resource in the chemostat
at time t, xi(t) denotes the concentration of species i at time t, Qi(t) represents the
average amount of stored nutrient per cell of species i at time t, μi(Qi) is the growth
rate of species i as a function of cell quota Qi, fi(S,Qi) is the per capita uptake rate
of species i as a function of resource concentration S and cell quota Qi, S

(0) is the
input concentration, D is the dilution rate of the chemostat, and Qmin,i denotes the
threshold cell quota below which no growth of species i occurs. The growth μi(Qi)
takes the forms [D, G1, G2, CN1, CN2]

μi(Qi) = μi∞

(
1 − Qmin,i

Qi

)
,

μi(Qi) = μi∞
(Qi −Qmin,i)+

Ki + (Qi −Qmin,i)+
,

where Qmin,i is the minimum cell quota necessary to allow cell division, (Qi−Qmin,i)+
is the positive part of (Qi−Qmin,i), and μi∞ is the maximal growth rate of the species.
According to Grover [G2],

fi(S,Qi) = ρi(Qi)
S

ai + S
,

ρi(Qi) = ρhigh
max − (ρhigh

max − ρlow
max)

Qi −Qmin,i

Qmax,i −Qmin,i
,
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where Qmin,i ≤ Qi ≤ Qmax,i. Cunningham and Nisbet [CN1, CN2], Klausmeier and
Litchman [KL], and Klausmeier, Litchman, and Levin [KLL] took ρi(Qi) to be a
constant.

Motivated by these examples, we assumed that μi(Qi) is defined and continuously
differentiable for Qi ≥ Pi > 0 and satisfies

μi(Qi) ≥ 0, μ′
i(Qi) > 0 and continuous for Qi ≥ Pi, μi(Pi) = 0.(2.2)

In both examples above, Pi = Qmin,i. We assume that fi(S,Qi) is continuous differ-
entiable for S > 0 and Qi ≥ Pi and satisfies

fi(0, Qi) = 0,
∂fi
∂S

> 0,
∂fi
∂Qi

≤ 0.(2.3)

In particular, fi(S,Qi) > 0 when S > 0.
From (2.2) and (2.3), it follows that Q′

i ≥ 0 if Qi = Pi and the interval of Qi values
[Pi,∞) is positively invariant under the dynamics of (2.1). Therefore, we assume that
the initial values satisfy

xi(0) > 0, Qi(0) ≥ Pi, S(0) ≥ 0, i = 1, 2, . . . , n.(2.4)

Assume that the equilibrium E takes the form

E = (S, x1, Q1, . . . , xn, Qn).

Then we have the following steady states.
(i) The washout steady state

E0 = (S(0), 0, Q0
1, 0, Q

0
2, . . . , 0, Q

0
n)

always exists. Here Q0
i is the unique solution of

fi(S
(0), Qi) −Qiμi(Qi) = 0.(2.5)

(ii)

E1 = (λ1, x
∗
1, Q

∗
1, 0, Q̂

1
2, 0, Q̂

1
3, . . . , 0, Q̂

1
n),

E2 = (λ2, 0, Q̂
2
1, x

∗
2, Q

∗
2, 0, Q̂

2
3, . . . , 0, Q̂

2
n),

...

En = (λn, 0, Q̂
n
1 , 0, Q̂

n
2 , . . . , 0, Q̂

n
n−1, x

∗
n, Q

∗
n).

The equilibrium Ei corresponds to the presence of the ith population and the absence
of the others. The parameters λi, Q

∗
i , x

∗
i , Q̂

i
j , j �= i, satisfy

μi(Q
∗
i ) = D,(2.6)

fi(λi, Q
∗
i ) = μi(Q

∗
i )Q

∗
i = DQ∗

i ,(2.7)

x∗
i =

(S(0) − λi)D

fi(λi, Q∗
i )

=
S(0) − λi

Q∗
i

,(2.8)

fj(λj , Q̂
i
j) = μj(Q̂

i
j)Q̂

i
j , j �= i.(2.9)
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The steady state Ei exists if and only if the equation μi(Qi) = D has a unique solution
Q∗

i and

fi(S
(0), Q∗

i ) > DQ∗
i .

Lemma 2.1. The solutions S(t), x1(t), Q1(t), . . . , xn(t), Qn(t) of system (2.1) are
positive and bounded for all t ≥ 0. Furthermore,

S(t) +
n∑

i=1

Qi(t)xi(t) = S(0) + O(e−Dt), t → ∞,(2.10)

and there exist γi > Pi, t0 > 0 such that Qi(t) ≥ γi for all t ≥ t0, for i = 1, 2, . . . , n.
The above lemma is a statement that system (2.1) is as “well behaved” as one that

is intuited from the biological problem. Equation (2.10) is the conservation principle.
Therefore, all solutions of (2.1) asymptotically approach

S(t) +

n∑
i=1

Qi(t)xi(t) = S(0)(2.11)

as t → ∞. Consequently, as a first step in the analysis of (2.1), we consider the
restriction of (2.1) to the exponentially attracting invariant subset given by (2.11).
Dropping S from (2.1) and letting Ui = Qixi, 1 ≤ i ≤ n, we obtain the following
system:

U ′
i(t) = fi

(
S(0) −

n∑
i=1

Ui(t), Qi(t)

)
Ui(t)

Qi(t)
−DUi(t),

Q′
i(t) = fi

(
S(0) −

n∑
i=1

Ui(t), Qi(t)

)
− μi(Qi(t))Qi(t),(2.12)

Ui(0) > 0, Qi(0) ≥ Pi, 1 ≤ i ≤ n,

n∑
i=1

Ui(0) ≤ S(0).

We note that Ui(t) is the total amount of stored nutrient of the ith species at time t.
In the next section, we shall study the reduced limiting system (2.12). The relevant
domain for (2.12) is

Ω =

{
(U1, Q1, . . . , Un, Qn) ∈ R

2n :

∑n
i=1 Ui ≤ S(0), Uk ≥ 0,

Qk ≥ Pk, k = 1, 2, . . . , n

}
,(2.13)

which is positively invariant under (2.12).
Lemma 2.2. Let (S(t), x1(t), Q1(t), . . . , xn(t), Qn(t)) be the system of (2.1). For

1 ≤ i ≤ n, if one of the following cases holds:
(i) μi(Qi) < D for all Qi ∈ [Pi,∞),
(ii) (2.6) holds with fi(S,Q

∗
i ) < μi(Q

∗
i )Q

∗
i for all S ∈ [0, S(0)],

(iii) (2.6) and (2.7) hold with S(0) < λi,
then

lim
t→∞

xi(t) = 0.

In the first two cases, we denote λi = +∞.
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This lemma states that if the maximal growth rate of the ith organism is less
than the dilution rate D or if the input concentration S(0) is too small, then the
ith organism will die out as time becomes large. Note that the resulting behavior is
competition independent.

Our basic hypothesis is

0 < λ1 < λ2 ≤ · · · ≤ λn,

(Hn)
λ1 < S(0).

For an equilibrium E = (S, x1, Q1, . . . , xn, Qn) of system (2.1), we denote

Ê = (U1, Q1, . . . , Un, Qn)

as the corresponding equilibrium of system (2.12).

Lemma 2.3. Let (Hn)hold; then the equilibrium Ê1 is locally asymptotically stable
and the rest of the equilibria Ê0, Ê2, . . . , Ên are saddles if they exist. Furthermore, if
S(0) > λi, i = 1, 2, . . . , n, then the stable manifolds of Ê0 and Êk, k = 2, 3, . . . , n, are

M+(Ê0) = {(0, Q1, 0, Q2, . . . , 0, Qn) : Pi < Qi, i = 1, 2, . . . , n}

and

M+(Êk) =

{
(0, Q1, . . . , 0, Qk−1, Uk, Qk, , . . . , Un, Qn) :

Pi < Qi, i = 1, 2, . . . , n,
Ui > 0, i = k, k + 1, . . . , n

}
.

The following is our main theorem.
Theorem 2.4. Let (Hn)hold. The solution of (2.1) satisfies

lim
t→∞

(S(t), x1(t), Q1(t), x2(t), Q2(t), . . . , xn(t), Qn(t)) = E1

= (λ1, x
∗
1, Q

∗
1, 0, Q̂

1
2, 0, Q̂

1
3, . . . , 0, Q̂

1
n),

where Q∗
1, λ1, x

∗
1, Q̂

1
j , j = 2, 3, . . . , n, satisfy

μ1(Q
∗
1) = D,

f1(λ1, Q
∗
1) = DQ∗

1,

x∗
1 =

S(0) − λ1

Q∗
1

,

fj(λ1, Q̂
1
j ) = μj(Q̂

1
j )Q̂

1
j , j = 2, . . . , n.

This theorem states that under the hypothesis (Hn)only one species survives, the
one with the lowest value of λi, and gives the limiting nutrient concentrations.

3. Proofs. From the differential inequality [H2], the proof of Lemma 3.1 is easy,
and so we omit it.

Lemma 3.1. Let x : R+ → [a,∞), y : R+ → [b,∞), and g : [a,∞) × [b,∞) → R

be continuously differentiable and satisfy

x′(t) ≤ g(x(t), y(t)), t ≥ 0.
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Suppose

∂g

∂x
(x, y) < 0,

∂g

∂y
(x, y) > 0,

and suppose that for each y ∈ [b,∞) there exists a unique solution x∗ = x∗(y) ∈ [a,∞)
of g(x, y) = 0. If lim supt→∞ y(t) ≤ α, then

lim sup
t→∞

x(t) ≤ x∗(α).

Proof of Lemma 2.1. From (2.2), (2.3), and (2.4), it is easy to verify that the
solutions S(t), Qi(t), xi(t), 1 ≤ i ≤ n, are positive for all t ≥ 0. The first equation of
(2.1) gives

S′ ≤ (S(0) − S)D;

then obviously we have

lim sup
t→∞

S(t) ≤ S(0).(3.1)

For i = 1, 2, . . . , n, consider the differential equation of Qi in (2.1):

Q′
i = fi(S,Qi) − μi(Qi)Qi.

From (2.2), (2.3), (3.1), and Lemma 3.1 it follows that

lim sup
t→∞

Qi(t) ≤ Q0
i ,(3.2)

where Q0
i > Pi is defined in (2.5).

Let T = S +
∑n

i=1 Qixi. Then T satisfies

T ′ = (S(0) − T )D.

Therefore,

T = S(0) + O(e−Dt) as t → ∞.(3.3)

Thus the conservation principle (2.10) holds.
Next we show that there exist γi > Pi and t0 > 0 such that Qi(t) ≥ γi for t ≥ t0.

We show S(t) is bounded below by a constant γ > 0. Let Ui = xiQi. Rewrite the
first equation in (2.1) as

S′ +

(
D +

n∑
i=1

Ui

Qi

fi(S,Qi)

S

)
S = S(0)D.

Then from (3.3), (2.3) it follows that

S′ +

⎡
⎢⎣D + S(0)

(
max

1≤i≤n

1

Pi

)
· max

1≤i≤n

0≤S≤S(0)

∂fi
∂S

(S, Pi)

⎤
⎥⎦S ≥ S(0)D.

Then there exists γ > 0 such that S(t) ≥ γ, t ≥ t0.
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From (2.1), we have

Q′
i = fi(S,Qi) − μi(Qi)Qi ≥ fi(γ,Qi) − μ(Qi)Qi.

Then it follows that Qi(t) ≥ γi for t ≥ t0, where γi satisfies

fi(γ, γi) = μ(γi)γi, γi > Pi.

For each 1 ≤ i ≤ n, we have

xi(t) = Ui(t)/Qi(t) ≤ T (t)/Pi ≤ (S(0) + ε)/Pi for t large.

Consequently, the solution

(S(t), x1(t), Q1(t), . . . , xn(t), Qn(t))

is bounded for t ≥ 0.
Proof of Lemma 2.2. Suppose case (i) holds. Then

μi(Q
0
i ) < D,(3.4)

where Q0
i is defined in (2.5). In case (ii) or (iii), we have

fi(S
(0), Q∗

i ) < μi(Q
∗
i )Q

∗
i .

Since gi(Q) = fi(S
(0), Q) − μi(Q)Q is strictly decreasing in Q, from (2.5) it follows

that Q∗
i > Q0

i . Thus from (2.2) we obtain (3.4) again.
To complete the proof, it remains to show that the inequality (3.4) implies that

limt→∞ xi(t) = 0. Let η = (D − μi(Q
0
i ))/2. Since μi(Qi) is increasing in Qi, there

exists δ > 0 such that

μi(Qi) ≤ μi(Q
0
i ) + η = D − η whenever Qi ≤ Q0

i + δ.

By (3.2) there exists tδ > 0 such that

Qi(t) < Q0
i + δ for all t ≥ Tδ > 0.

It follows that

xi(t)= xi(Tδ) exp

(∫ t

Tδ

(μi(Qi(τ)) −D) dτ

)

≤ xi(Tδ)e
−η(t−Tδ) → 0 as t → ∞.

Proof of Lemma 2.3. Assume that the equilibrium Ê takes the form

Ê = (U1, Q1, . . . , Un, Qn).

Let the variational matrix evaluated at Ê be J(Ê) = (aij)
2n
i,j=1.

Let Ê = Ê0. Then it is easy to verify that the eigenvalues of J(Ê0) are a11, a22, . . . ,
a2n,2n, where

a2i−1,2i−1 = μi(Q
0
i ) −D,
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a2i,2i =
∂fi
∂Qi

(S(0), Q0
i ) − μ′

i(Q
0
i )Q

0
i − μi(Q

0
i ) < 0, i = 1, 2, . . . , n.(3.5)

From (2.3), (2.5), and (2.7) we have S(0) > λi if and only if Q0
i > Q∗

i . Therefore,

a1,1 > μ1(Q
∗
1) −D = 0,

and consequently Ê0 is unstable. Furthermore, it is a saddle since (3.5) holds. It is
easy to verify that if S(0) > λi, i = 1, 2, . . . , n, then a2i−1,2i−1 > 0, i = 1, 2, . . . , n,

and Ê0 is a saddle point with n-dimensional stable manifold

M+(Ê0) = {(0, Q1, 0, Q2, . . . , 0, Qn) : Pi < Qi, i = 1, 2, . . . , n} .

Let Ê = Êk, 1 ≤ k ≤ n. Then for i �= k,

a2i−1,2i−1 = μi(Q̂
k
i ) −D,

a2i,2i =
∂fi
∂Qi

(λk, Q̂
k
i ) − Q̂k

i μ
′
i(Q̂

k
i ) − μi(Q̂

k
i ) < 0.

It is easy to verify that the set of eigenvalues of J(Êk) is the union of

{a2i−1,2i−1, a2i,2i : 1 ≤ i ≤ n, i �= k}

and the set of eigenvalues of Mk, where

Mk =

(
−∂fk

∂S x∗
k −fk(λk, Q

∗
k)

x∗
k

Q∗
k

+ ∂fk
∂Qk

x∗
k

−∂fk
∂S

∂fk
∂Qk

− μ′
kQ

∗
k − μk

)
.

Since

trace(Mk) = −∂fk
∂S

x∗
k +

∂fk
∂Qk

− μ′
kQ

∗
k − μk < 0,

det(Mk) =
∂fk
∂S

x∗
kμ

′
kQ

∗
k > 0,

the eigenvalues of Mk have negative real part.
Consider Ê = Ê1. The assumption (Hn)implies that

Q̂1
i < Q∗

i , i = 2, . . . , n.(3.6)

Therefore, from (3.6) it follows that

a2i−1,2i−1 = μi(Q̂
1
i ) −D < μi(Q

∗
i ) −D = 0, i = 2, . . . , n,

and consequently Ê1 is locally asymptotically stable.
Consider Ê = Êk, k ∈ {2, . . . , n}. The assumption (Hn)implies that λ1 < λk.

Then from (2.3) we have

f1(λ1, Q̂
k
1) < f1(λk, Q̂

k
1) = μ1(Q̂

k
1)Q̂k

1 ,

f1(λ1, Q̂
k
1) − μ1(Q̂

k
1)Q̂k

1 < 0 = f1(λ1, Q
∗
1) − μ1(Q̂

∗
1)Q

∗
1.

Thus

Q∗
1 < Q̂k

1 .
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Therefore,

a1,1 = μ1(Q̂k
1) −D > μ1(Q

∗
1) −D = 0,

and consequently Êk is unstable. Furthermore, from (3.5) it is a saddle . Similarly, it is
easy to verify that if S(0) > λi, i = 1, 2, . . . , n, then a2i−1,2i−1 > 0, i = 1, 2, . . . , k− 1,

and Êk is a saddle point with a (2n + 1 − k)-dimensional stable manifold. From the
results of [SW1] and induction on n, it follows that

M+(Êk) =

{
(0, Q1, . . . , 0, Qk−1, Uk, Qk, . . . , Un, Qn) :

Pi < Qi,
i = 1, 2, . . . , n

}
.

We note now the following lemma.
Lemma 3.2 (see [C]). Let f(t) ∈ C2[t0,∞). If f(t) → constant and |f ′′(t)| is

bounded for t ≥ t0, then

lim
t→∞

f ′(t) = 0.

The following is the so-called fluctuating lemma, which will be used to prove our
main result.

Lemma 3.3 (see [HHG]). Let f : R+ → R be a differentiable function. If

lim inf
t→∞

f(t) < lim sup
t→∞

f(t),

then there are sequences {tm} ↗ ∞ and {τm} ↗ ∞ such that for all m

f ′(tm) = 0, f(tm) → lim sup
t→∞

f(t) as m → ∞,

f ′(τm) = 0, f(τm) → lim inf
t→∞

f(t) as m → ∞.

Now we prove our main result.
Lemma 3.4. Let S(t) = S(0) −

∑n
i=1 Ui(t). Consider the solution

(U1(t), Q1(t), . . . , Un(t), Qn(t))

of the reduced system (2.12) with initial conditions Ui(0) > 0, Qi(0) ≥ Pi, 1 ≤ i ≤ n,
S(0) ≥ 0. Suppose limt→∞ S(t) does not exist; then lim supt→∞ S(t) ≤ λj for some
j ∈ {1, 2, . . . , n}.

Proof. Since limt→∞ S(t) does not exist, it follows that

lim inf
t→∞

S(t) < lim sup
t→∞

S(t).

From Lemma 3.3, there exists {tm} ↗ ∞ such that

S′(tm) = 0 and S(tm) → lim sup
t→∞

S(t) as m → ∞.(3.7)

Since

S′(t) = −(U ′
1(t) + · · · + U ′

n(t)),

for each tm there exists jm ∈ {1, 2, . . . , n} such that

U ′
jm(tm) ≤ 0, m = 1, 2, . . . .
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We may choose a subsequence {t̄m} of {tm} such that

U ′
j(t̄m) ≤ 0

for some j ∈ {1, 2, . . . , n} and for all m. Thus without loss of generality we may
assume that

U ′
j(tm) ≤ 0

for some j ∈ {1, 2, . . . , n} and for all m. Thus

fj(S(tm), Qj(tm)) ≤ DQj(tm).

Let γS = lim supt→∞ S(t) and γQ = lim supt→∞ Qj(t). Let {t̃m} be a subsequence of
{tm} such that limm→∞ Qj(t̃m) = Q̄j . Then Q̄j ≤ lim supt→∞ Qj(t) = γQ, and from
the above inequality we have fj(γS , Q̄j) ≤ DQ̄j . Since fj(γS , Qj) − DQj is strictly
decreasing in Qj , then fj(γS , γQ) −DγQ < fj(γS , Q̄j) −DQ̄j ≤ 0. Thus we have

fj(γS , γQ) < DγQ.(3.8)

Consider the differential equation of Qj in (2.1):

Q′
j = fj(S,Qj) − μj(Qj)Qj .(3.9)

From (3.1), (2.3), and Lemma 3.1 it follows that

γQ = lim sup
t→∞

Qj(t) ≤ K(0),(3.10)

where

fj(S
(0),K(0)) − μj(K

(0))K(0) = 0.(3.11)

If λj > S0, from (3.1) the assertion of the lemma holds. Thus we assume that
λj ≤ S0. From (2.3) and (3.11) it follows that

fj(λj ,K
(0)) − μj(K

(0))K(0) ≤ 0.

Compare the above inequality with (2.7):

fj(λj , Q
∗
j ) − μj(Q

∗
j )Q

∗
j = 0.(3.12)

From (2.2), (2.3), (3.11), and (3.12) it follows that

K(0) ≥ Q∗
j .(3.13)

Let L(1) satisfy

fj(L
(1),K(0)) −DK(0) = 0.(3.14)

Then from (2.3), (3.10) we have

0 = fj(L
(1),K(0)) −DK(0) ≤ fj(L

(1), γQ) −DγQ.

From (2.3), (3.8) it follows that

fj(L
(1), γQ) ≥ DγQ ≥ fj(γS , γQ),



1610 SZE-BI HSU AND TING-HAO HSU

γS ≤ L(1).(3.15)

Since K(0) ≥ Q∗
j , from (3.14) and (2.3) it follows that

fj(L
(1), Q∗

j ) −DQ∗
j ≥ 0.

From (3.12) we have

L(1) ≥ λj .

On the other hand, the inequality K(0) ≥ Q∗
j implies that

fj(L
(1),K(0)) = DK(0) = μj(Q

∗
j )K

(0) ≤ μj(K
(0))K(0) = fj(S

(0),K(0)).

Thus we have

S(0) ≥ L(1) ≥ λj .(3.16)

By (3.9), (3.15), and Lemma 3.1, we have

lim sup
t→∞

Qj(t) ≤ K(1),(3.17)

where

fj(L
(1),K(1)) = μj(K

(1))K(1).(3.18)

Since λj ≤ L(1), it follows that

fj(λj ,K
(1)) − μj(K

(1))K(1) ≤ 0.

By (3.12), we have

K(1) ≥ Q∗
j .

Since S(0) ≥ L(1), from (3.11), (3.16), and (3.18) it follows that

K(0) ≥ K(1) ≥ Q∗
j .(3.19)

Inductively we construct two sequences {L(m)}∞m=1 and {K(m)}∞m=1 satisfying

S(0) ≥ L(1) ≥ L(2) ≥ · · · ≥ λj ,

K(0) ≥ K(1) ≥ K(2) ≥ · · · ≥ Q∗
j ,

and for any m = 1, 2, . . . ,

lim sup
t→∞

S(t) ≤ L(m),(3.20)

lim sup
t→∞

Qj(t) ≤ K(m),

fj(L
(m+1),K(m)) = DK(m),(3.21)

fj(L
(m),K(m)) = μj(K

(m))K(m).
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Let L = limm→∞ L(m) and K = limm→∞ K(m). Then from (3.21) it follows that

fj(L,K) = DK,

fj(L,K) = μj(K)K.

Thus K = Q∗
j and L = λj . By (3.20) it follows that

lim sup
t→∞

S(t) ≤ λj ,

lim sup
t→∞

Qj(t) ≤ Q∗
j .

Hence we complete the proof of Lemma 3.4.
Theorem 3.5. Let (Hn)hold. Then the solution

(U1(t), Q1(t), . . . , Un(t), Qn(t))

of the reduced system (2.12) in the relevant domain Ω (see (2.13)) satisfies

lim
t→∞

(U1(t), Q1(t), . . . , Un(t), Qn(t)) = Ê1 = (U∗
1 , Q

∗
1, 0, Q̂

1
2, . . . , 0, Q̂

1
n).(3.22)

Proof. Let S(t) = S(0) −
∑n

i=1 Ui(t). If limt→∞ S(t) exists, we claim that
limt→∞ S(t) = λ1. Let limt→∞ S(t) = c.

If c > λ1, then for ε > 0 small there exists Tε > 0 such that

Q′
1 > f1(λ1 + ε,Q1) − μ1(Q1)Q1 for t ≥ Tε.

Thus Q1(t) ≥ Q∗
1 + η, η > 0 small, t ≥ Tε. Hence

x′
1

x1
= μ1(Q1) −D ≥ μ1(Q

∗
1 + η) −D > 0.

Then x1(t) is unbounded for t ≥ Tε. This is in contradiction to Lemma 2.1.
If c < λ1, then for 2 ≤ i ≤ n, by the differential equation of Qi in (2.1) and Lemma

3.1, we have lim supt→∞ Q1(t) < Q∗
1 and lim supt→∞ Qi(t) < Q̂1

i for 2 ≤ i ≤ n. Hence
from (3.6), limt→∞ xi(t) = 0, 1 ≤ i ≤ n, and limt→∞ S(t) = S(0) < λ1. This is in
contradiction to (Hn).

Obviously from Lemma 3.2, limt→∞ S(t) = λ1 implies

lim
t→∞

Qi(t) = Q̂1
i , lim

t→∞
xi(t) = 0, 2 ≤ i ≤ n,

lim
t→∞

Q1(t) = Q∗
1, lim

t→∞
x1(t) = x∗

1.

Thus the trajectory (U1(t), Q1(t), . . . , Un(t), Qn(t)) tends to Ê1 as t → ∞.
If limt→∞ S(t) does not exist, then lim supt→∞ S(t) > lim inft→∞ S(t). From

Lemma 3.4, we have lim supt→∞ S(t) ≤ λj for some j ∈ {1, 2, . . . , n}. From (Hn), we
have

lim sup
t→∞

S(t) ≤ λn.

Assume that (2.6) and (2.7) hold. Consider the differential equation of Qn in (2.1):

Q′
n = fn(S,Qn) − μn(Qn)Qn.
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From Lemma 3.1 it follows that

lim sup
t→∞

Qn(t) ≤ Q̃n,

where Q̃n satisfies

fn(λn, Q̃n) = μn(Q̃n)Q̃n.

From (2.7) it follows that Q̃n = Q∗
n. Thus

lim sup
t→∞

Qn(t) ≤ Q∗
n.(3.23)

Let

κn = lim inf
t→∞

Qn(t).

If κn = Q∗
n, then limt→∞ Qn(t) = Q∗

n. From (3.23) and Lemma 3.2, we have
limt→∞ S(t) = λn, which contradicts the assumption that limt→∞ S(t) does not exist.
Hence we have κn < Q∗

n. Let

y0 = (U1(0), Q1(0), . . . , Un(0), Qn(0)), Ui(0) > 0, Qi(0) ≥ Pi(0) for 1 ≤ i ≤ n.

Next we claim that the ω-limit set ω(y0) satisfies

ω(y0) ∩ ({(U1, Q1, . . . , Un, Qn) : Un = 0} \M) �= ∅,(3.24)

where

M :=
(
M+(Ê0)

⋃
M+(Ê2)

⋃
· · ·

⋃
M+(Ên)

)
;

M+(Ê) denotes the stable manifold of the equilibrium Ê. First we prove that

ω(y0) \M �= ∅.

If not, then ω(y0) ⊆ M . It is easy to show that ω(y0) �= {Ê0}. If Ê0 ∈ ω(y0), then
from the Butler–McGhee lemma [BFW], there exists a point

q ∈
(
M+(Ê0) \ {Ê0}

)⋂
ω(y0).

Then the negative orbit O−(q) ⊆ ω(y0). But from Lemma 2.3, either O−(q) is
unbounded or (0, P1, 0, P2, . . . , 0, Pn) ∈ O−(q). This contradicts Lemma 2.1. As-
sume that Êk ∈ ω(y0) for some k ∈ {2, . . . , n}. Obviously ω(y0) �= {Êk}. If
Êk ∈ ω(y0), then from the Butler–McGhee lemma, there exists a point q ∈ (M+(Êk)\
{Êk})

⋂
ω(y0). Then from the Lemma 2.3 the negative orbit O−(q) is unbounded, or

Ê0 ∈ O−(q), or (0, P1, . . . , 0, Pk−1, Uk, Pk, . . . , Un, Pn) ∈ O−(q) for some Uk, . . . , Un.
For any one of the three cases, we obtain a contradiction.

Since y0 /∈ M , we may choose

ȳ0 = (Ū1(0), Q̄1(0), . . . , Ūn(0), Q̄n(0)) ∈ (ω(y0) \M).(3.25)

Consider the solution of (2.12):

y(t, ȳ0) = (U1(t; ȳ0), Q1(t; ȳ0), . . . , Un(t; ȳ0), Qn(t; ȳ0)).
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From (3.23) and the positive invariance of ω(y0), we have

Qn(t, ȳ0) ≤ Q∗
n, t ≥ 0.

Thus

μn(Qn(t; ȳ0)) −D ≤ 0, t ≥ 0.(3.26)

Let

η = D − μn

(
Q∗

n + κn

2

)
> 0

and

Λ(t) =

{
τ : 0 ≤ τ ≤ t, Qn(τ ; ȳ0) ≤

Q∗
n + κn

2

}
, t ≥ 0.

Then

μn (Qn(τ, ȳ0)) −D < −η, τ ∈ Λ(t).

Since Q′
n(t; ȳ0) is uniformly bounded for t ∈ [0,∞), Qn(t; ȳ0) is uniformly continuous

on [0,∞). Let {τm} ↗ ∞ satisfies Qn(τm; ȳ0) → κn as m → ∞. Then given

ε =
Q∗

n + κn

2
− κn > 0,

there exists δ = δ(ε) > 0 such that

|Qn(τ ; ȳ0) − κn| < ε whenever |τ − τm| < δ.

Hence

Qn(τ ; ȳ0) < κn + ε =
Q∗

n + κn

2
for − δ < τ − τm < δ,

and therefore

|Λ(t)| → +∞ as t → ∞.

Since

x′
n(t; ȳ0) = (μn(Qn(t; ȳ0)) −D)xn(t; ȳ0),

it follows that

xn(t; ȳ0) = xn(0; ȳ0) exp

(∫ t

0

(μn(Qn(τ ; ȳ0)) −D) dτ

)

≤ xn(0; ȳ0) exp

(∫
Λ(t)

(μn(Qn(τ ; ȳ0)) −D) dτ

)

≤ xn(0; ȳ0)e
−η|Λ(t)| → 0 as t → ∞.
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Therefore,

lim sup
t→∞

Un(t; ȳ0)≤
(

lim sup
t→∞

xn(t; ȳ0)

)(
lim sup
t→∞

Qn(t; ȳ0)

)

≤
(

lim sup
t→∞

xn(t; ȳ0)

)
Q∗

n = 0.

Hence

ω(ȳ0) ⊆ {(U1, Q1, . . . , Un, Qn) ∈ Ω : Un = 0}.

Since ȳ0 /∈ M by (3.25), it follows that

ω(ȳ0) ∩ ({(U1, Q1, . . . , Un, Qn) ∈ Ω : Un = 0} \M) �= ∅.

By the invariance of ω-limit sets, we have

ω(ȳ0) ⊆ ω(y0).

It follows that

ω(y0) ∩ ({(U1, Q1, . . . , Un, Qn) ∈ Ω : Un = 0} \M) �= ∅.

Continuing the above arguments, we consider the systems (2.12) with 1 ≤ i ≤
n− 1. Then from the positive invariance of the ω-limit set,

ω(y0) ∩ ({(U1, Q1, . . . , Un, Qn) ∈ Ω : Un−1 = Un = 0} \M) �= ∅.

Inductively we have

ω(y0) ∩ (Γ \M) �= ∅,

where

Γ = {(U1, Q1, . . . , Un, Qn) ∈ Ω : U2 = U3 = · · · = Un = 0}.

In particular,

ω(y0) ∩ (Γ \ {Ê0}) �= ∅.

It is easy to verify that

ω(Γ \ {Ê0}) = {Ê1}.

Consequently, we have

Ê1 ∈ ω(y0).

By Lemma 2.3, the assumption (Hn)implies that Ê1 is asymptotically stable. Thus

ω(y0) = {Ê1}.

That is,

lim
t→∞

(U1(t), Q1(t), . . . , Un(t), Qn(t)) = Ê1.
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The above equality contradicts the assumption that limt→∞ S(t) does not exist. Thus
limt→∞ S(t) exists, and we complete the proof of Theorem 3.5.

Proof of Theorem 2.4. From Lemma 2.1 all solutions of the system (2.1) with
initial conditions S(0) > 0, xi(0) > 0, Qi(0) ≥ Pi asymptotically approach

S +
n∑

i=1

Ui = S(0)

as t → ∞. Hence the system (2.12) is the reduced limiting system of (2.1). To apply
Theorem 4.2 of [Th], we note that the equilibria of (2.12) are isolated invariant sets
of (2.12) and by Theorem 3.5, every solution of (2.12) converges to the equilibrium
Ê1 = (U∗

1 , Q
∗
1, 0, Q̂

1
2, . . . , 0, Q̂

1
n). Furthermore, we conclude from [Th, Theorem 4.2],

that every solution of (2.1) converges to the equilibrium

E1 = (λ1, x
∗
1, Q

∗
1, 0, Q̂

1
2, 0, Q̂

1
3, . . . , 0, Q̂

1
n).

4. Discussion. It is well known that the competitive exclusion principle holds
for microorganisms competing for a single-limited nutrient in a chemostat when the
yields of organisms are assumed to be fixed constants [HHW], [H1]. In phytoplankton
ecology, it has long been known that yield is not constant and it can vary depending
on the growth rate [D]. This led to the formulation of the variable-yield model, or
the internal storage model. In this paper we proved that the competitive exclusion
principle also holds for the variable-yield model in the case of a single-limited nutrient.
Mathematically we extend the result of competitive exclusion in [SW1] from two
species to arbitrary n species. Biologically the internal storage model with one limiting
nutrient has been tested successfully in both constant and fluctuating environments
[G3], [SC]. It is more realistic than the constant-yield model.

However, organisms require multiple nutrients to live and reproduce. In phyto-
plankton ecology, there are many studies in the competition of species for multiple
nutrients. Narang and Pilyugin [NP] studied the dynamics of microbial growth by
constructing some new physiological models. In [LC] Legović and Cruzado proposed
an internal storage model of one species consuming multiple complementary nutrients
in a continuous culture. Then in [LLSK] Leenheer et al. proved the global stability for
the above model by the method of monotone dynamical systems. Li and Smith [LS1]
studied the internal storage model for two species competing for two complementary
nutrients. By using the method of monotone dynamical systems, they established
the global dynamics of the model. It is shown that basically the model exhibits the
familiar Lotka–Volterra alternatives: competitive exclusion, stable coexistence, and
bistability. In phytoplankton ecology, many people studied the competition of organ-
isms for multiple complementary nutrients by using the internal storage model. In
[KL] Klausmeier and Litchman studied phytoplankton growth and stoichiometry un-
der multiple nutrient limitation. In [KLL] Klausmeier, Litchman, and Levin studied
the case of two species and two essential nutrients and suggested experimental tests
for the model. In [LKMSF] the authors studied the multiple-nutrient, multiple-group
model for phytoplankton communities and listed many biological parameters in the
internal storage model.

We conjecture that for the internal storage model there are at most two species
that survive for the case of n organisms competing for two complementary nutrients.
We note that even in the classical model of fixed yields, the conjecture is still unsolved
[LS2]. It is also interesting to compare the mathematical analysis results of the internal
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storage model to those of the classical constant-yield model in the case of three or
more complementary nutrients [PH]. These will be the subject of our work in the
future.

Acknowledgments. We are grateful to two anonymous referees for their careful
reading and helpful suggestions which led to an improvment of our original manu-
script.
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Abstract. We consider a class of finite Markov moment problems with an arbitrary number
of positive and negative branches. We show criteria for the existence and uniqueness of solutions,
and we characterize in detail the nonunique solution families. Moreover, we present a constructive
algorithm to solve the moment problems numerically and prove that the algorithm computes the
right solution.
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1. Introduction. We aim at inverting a moment system often associated with
the prestigious name of Markov. The original form of the problem is the following.
Given a finite set of moments mk for k = 1, . . . ,K, find a bounded measurable density
function f satisfying

(1.1) mk =

∫
R

xk−1f(x)dx, 0 ≤ f ≤ 1, k = 1, . . . ,K.

The condition for the existence of solutions f(x) to this problem is classical [1, 2].
In general, solutions are not unique, unless more conditions are given, e.g., based
on entropy minimization [3, 4] or L∞-minimization [19, 18]. A typical result is that
the unique solution for even K is piecewise constant, taking values in {0, 1}. More
precisely, if K = 2n, then f is of the form

(1.2) f(x) =

n∑
j=1

χ[yi,xi](x),

where χI(x) is the characteristic function for the interval I and

(1.3) y1 < x1 < y2 < x2 < · · · < yn < xn.

See Theorem 6.1 and consult, e.g., [5, 8, 17, 23, 25] for general background on moment
problems.

A reduced form of the finite moment problem is to search for solutions to (1.1)
which are precisely of the form (1.2), (1.3). One then obtains an algebraic problem
for the branch values,

(1.4) mk =
1

k

n∑
j=1

xk
j − ykj , k = 1, . . . ,K = 2n.
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Finding {xj} and {yj} from {mk} is an ill-conditioned problem when the branch
values of the solution come close to each other; the Jacobian of the problem is a
Vandermonde matrix, and iterative numerical resolution routines require extremely
good starting guesses when the matrix degenerates. For less than four moments, a
direct method based on solving polynomial equations was presented in [21]. Routines
based on the simplex algorithm were proposed in [19]. Another algorithm was pre-
sented by Koborov, Sklyar, and Fardigola in [16, 24] in the slightly modified setting
where f takes values in {−1, 1} instead of {0, 1}. It consists of solving a sequence
of high degree polynomial equations, constructed through a rather intricate process
with unclear stability properties. In [14] we showed that this algorithm can be dras-
tically simplified and adapted to (1.4). Later, in [15], we also gave a direct proof that
the simplified algorithm indeed computes the correct solution, relying on the classical
Newton identities and Toeplitz matrix theory.

The moment problem has many applications in, for instance, probability and
statistics [10, 7] but also in areas like wave modulation [6, 22] and “shape from mo-
ments” inverse problems [11]. Our own motivation comes from a quite different field,
namely, multiphase geometrical optics [3, 4, 12, 13, 14, 21]. In this application one
needs to solve a system of nonlinear hyperbolic conservation laws. To evaluate the
flux function in the PDEs a system like (1.4) must be solved. In a finite difference
method this means that the system must be inverted once for every point in the
computational grid repeatedly in every timestep. It is thus important that the in-
version can be done quickly and accurately; this difficulty has been a bottleneck in
computations. In [14] we used the simplified algorithm mentioned above for numerical
implementation inside a shock-capturing finite difference solver. It is our aim here to
develop better algorithms and understanding to open the way for the processing of
intricate wave-fields with large K and thus complement the seminal paper [4], where
the multiphase geometrical optics PDEs were first proposed.

In this paper we are concerned with a generalization of (1.4). In the geometrical
optics application, the number of moments K is typically not even, and one can have
a variable number of positive (xk) and negative (yk) branches. We thus consider the
problem

(1.5) mk =

nx∑
j=1

xk
j −

ny∑
j=1

ykj , k = 1, . . . ,K,

where nx+ny = K but where nx and ny are not necessarily equal. We study existence
and uniqueness of solutions to this problem (Theorem 4.1). In particular, we are
interested in how and when uniqueness is lost. For these cases we characterize the
family of solutions that exists. The reason is to understand what happens numerically
close to degenerate solutions, which is an important feature in the application we have
in mind: In the exact solution to the multiphase geometrical optics PDEs, the moment
problem is typically degenerate for large domains; the numerical approximation is
almost degenerate.

We also give constructive algorithms to solve (1.5) and prove that they gener-
ate the right solution (Theorem 2.1). In a future paper we will study the numerical
stability of these algorithms. Experimentally we note, for instance, that to compute
the next moment, Algorithm 3 is much more stable than Algorithm 1. The difficulty
lies in understanding perturbations around degenerate solutions, which is where the
algorithms are most unstable. For this the insights of this paper will be of impor-
tance.
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Remark 1. The problem (1.5) can be cast in the form of (1.1) if one demands
that the density function f(x) be of the form

(1.6) f(x) =

nx∑
j=1

sgn(xj) [H(x) −H(x− |xj |)] −
ny∑
j=1

sgn(yj) [H(x) −H(x− |yj |)] ,

and we rescale the moments mk → kmk. For the case nx = ny = n and K = 2n with
interlaced branch values (1.3), this reduces to (1.2).

This paper is organized as follows. In section 2 we present the algorithms for
solving (1.5). Notation and various ways of describing a solution are subsequently
introduced in section 3. Next we derive conditions for existence and uniqueness of
solutions in section 4 and also discuss various properties of the solution, particularly
when it is not unique. A theorem proving the correctness of the algorithms is proved
in section 5. Finally, in section 6, we give additional properties of the elements of our
algorithms and use these to relate our results back to the classical Markov theory.

2. Algorithms. In this section we detail the algorithms that we propose for
solving (1.5). The solution that we obtain is what we call the minimal degree solution,
meaning that when the solution is not unique as many branch values as possible are
zero. See section 4 for a precise definition. The algorithms are as follows; they may
fail in case there is no solution to (1.5).

Algorithm 1 (computing {xj} and {yj}).
1. Construct the sequence {ak} as follows. Set a0 = 1 and ak = 0 for k < 0.

For 1 ≤ k ≤ K, let the elements be given as the solution to

(2.1)

⎛
⎜⎜⎜⎝

1
−m1 2

...
. . .

. . .

−mK−1 . . . −m1 K

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

a1

a2

...
aK

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

m1

m2

...
mK

⎞
⎟⎟⎟⎠ .

2. Construct the matrix A1 ∈ R
nx×nx as

A1 =

⎛
⎜⎜⎜⎝

any
any−1 . . . any−nx+1

any+1 any . . . any−nx+2

...
...

. . .
...

any+nx−1 any+nx−2 . . . any

⎞
⎟⎟⎟⎠ .

Compute the rank of A1. Let ñx = rankA1 and ñy = ny − nx + ñx.

3. Construct the matrices Ã0, Ã1 ∈ R
ñx×ñx as

Ã0 =

⎛
⎜⎜⎜⎝

añy+1 añy . . . añy−ñx+2

añy+2 añy+1 . . . añy−ñx+3

...
...

. . .
...

añy+ñx
añy+ñx−1 . . . añy+1

⎞
⎟⎟⎟⎠ ,

Ã1 =

⎛
⎜⎜⎜⎝

añy añy−1 . . . añy−ñx+1

añy+1 añy . . . añy−ñx+1+1

...
...

. . .
...

añy+ñx−1 añy+ñx−2 . . . añy

⎞
⎟⎟⎟⎠ .
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4. Solve the generalized eigenvalue problem

(2.2) Ã0v = xÃ1v

to get the {xj} values of the minimal degree solution to (1.5).
5. To compute the {yj} values, the same process is used with mk replaced by

−mk and the roles of nx and ny interchanged.
An alternative to Algorithm 1 is as follows.
Algorithm 2 (computing {xj} and {yj}).
1. Construct the matrices Ã0 and Ã1 as in steps 1–3 in Algorithm 1.
2. Denote the first column vector in Ã0 by ã0 by and solve

(2.3) Ã1c
′ = −ã0, c′ = (c1, c2, . . . , cñx

)T .

3. Construct the polynomial

P (z) = cñx + cñx−1z + · · · + c1z
ñx−1 + zñx .

The roots of P (z) are the {xj} values of the minimal degree solution to (1.5)
(possibly together with some zeros).

4. To compute the {yj} values, the same process is used with mk replaced by
−mk and the roles of nx and ny interchanged.

Remark 2. We note that the values of ak in the definition (2.1) are indepen-
dent of K, since the system matrix is triangular. We therefore consider the sequence
without reference to K in any other respect than the fact that we are only able to
compute elements with k ≤ K when we are given K moments. The largest index of
the ak-sequence appearing in the matrix A1 is ny + nx − 1 < K. In the matrices

Ã0, Ã1 it is ñy + ñx = ny −nx + 2ñx ≤ ny +nx = K. Hence all three matrices can be
constructed from the first K moments. Some properties of the A1 matrix are detailed
in section 6.

Sometimes one is not interested in finding the individual {xj} and {yj} branch
values but just wants the higher moments, defined as

(2.4) mk =

nx∑
j=1

xk
j −

ny∑
j=1

ykj ,

but now for k > K, given a solution {xj} ∪ {yj} to (1.5). (That this is well defined
is shown later in Theorem 4.1.) For this case there is another algorithm which has
empirically proven to be more stable than first computing {xj} and {yj} from Algo-
rithm 1 or 2 and then entering the values into (2.4). We stress that this is precisely
what is needed in order to compute K-multivalued solutions of the inviscid Burgers
equation in geometrical optics, following the ideas of [4].

Algorithm 3 (computing mK+1).

1. Construct the A1 matrix as in steps 1–2 of Algorithm 1.
2. Let

a0 = (any+1, any+2, . . . , any+nx)T ∈ R
nx ,

and let c̄ = (c1, c2, . . . , cnx)T be one solution to

(2.5) A1c̄ = −a0.



1622 LAURENT GOSSE AND OLOF RUNBORG

3. The next moment is given by

mK+1 = −(K + 1)

nx∑
j=1

cjaK+1−j −
K∑
j=1

mjaK+1−j .

We recall that Algorithm 1 has been shown to be numerically efficient in the
paper [14]. The justification of these algorithms is given in section 5, where we show
the following theorem.

Theorem 2.1. If a solution to (1.5) exists, then the following hold.
(i) In Algorithm 1, the matrix Ã1 is nonsingular. The generalized eigenvalue

problem in (2.2) is well defined and the generalized eigenvalues (counting
algebraic multiplicity) are the {xj}-values of the minimal degree solution to
(1.5) plus ñx −Dmin zeros. (See (3.7) for the definition of Dmin.)

(ii) In Algorithm 2, c′ is well defined,

(2.6) P (z) = det(zI − Ã−1
1 Ã0),

and the roots of P (z) are the {xj}-values of the minimal degree solution to
(1.5) plus ñx −Dmin zeros.

(iii) In Algorithm 3, the computed moment satisfies

mK+1 =

nx∑
j=1

xK+1
j −

ny∑
j=1

yK+1
j

for all solutions {xj} ∪ {yj} to (1.5).
We postpone the proof of Theorem 2.1 to section 5. We just note here that the

last point in Algorithms 1 and 2 can easily be explained by the symmetry of the
problem. Indeed, the negative of (1.5),

−mk =

ny∑
j=1

ykj −
nx∑
j=1

xk
j , k = 1, . . . ,K,

is of the same form as (1.5) itself, with the roles of nx, {xj} and ny, {yj} interchanged.

3. Preliminaries. We will use three different ways of describing the solution to
(1.5). First, we have a set of numbers {xj}nx

j=1 and {yj}ny

j=1, solving (1.5). We call
those numbers branch values. Second, we have a pair of polynomials (p, q) of degrees
at most nx and ny, respectively, in the z variable. Third, we have a pair of coefficient
vectors c = (c0, . . . , cnx

)T ∈ R
nx+1 and d = (d0, . . . , dnx

)T ∈ R
ny+1. These three

representations are related as

(3.1) p(z) = (1 − x1z) · · · (1 − xnxz) = c0 + c1z + · · · + cnx−1z
nx−1 + cnxz

nx

and

(3.2) q(z) = (1 − y1z) · · · (1 − ynyz) = d0 + d1z + · · · + dny−1z
ny−1 + dnyz

ny .

It is clear that there is a one-to-one correspondence between these ways of describing
the solution if we disregard the ambiguity in the ordering of the numbers {xj} and
{yj}. Generally, we will use the notation Deg(p) to denote the degree of a polynomial
p, and, for a given coefficient vector c, we systematically write Pc to denote the
corresponding polynomial (3.1).

Definition 3.1. We call the pair of polynomials (p, q) a (polynomial) solution
to (1.5) if the following hold.
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1. The degrees of p and q are at most nx and ny:

(3.3) Deg(p) ≤ nx, Deg(q) ≤ ny.

2. They are normalized to one at the origin:

(3.4) p(0) = q(0) = 1.

3. Their roots {x̃j} and {ỹj} satisfy

(3.5) mk =

Deg(p)∑
j=1

x̃−k
j −

Deg(q)∑
j=1

ỹ−k
j , k = 1, . . . ,K.

We note that the roots cannot be zero because of (3.4).
Next, we have the following.
Definition 3.2. A pair of vectors

c = (c0, . . . , cnx)T ∈ R
nx+1 and d = (d0, . . . , dny

)T ∈ R
ny+1

is said to be a (coefficient) solution to (1.5) if the corresponding pair (Pc, Pd) (3.1)–
(3.2) realizes a polynomial solution to (1.5).

The number of branch values is always nx and ny, respectively. Some of them
may be zero, and they do not need to be distinct. The number of nonzero branch
values is Deg(p) and Deg(q), respectively. The degree of a solution can then also be
defined.

Definition 3.3. The degree of a solution to (1.5) is the number of nonzero
xj-values. This number is equivalent to Deg(p).

Given any polynomial pair satisfying (3.4), we say that it generates the moment
sequence {mk} if mk is given by (3.5) for all k. In turn, each sequence of moments
{mk} generates the corresponding {ak} sequence through (2.1). We define the big
matrix

A =

⎛
⎜⎜⎜⎝

any+1 any . . . any−nx+1

any+2 any+1 . . . any−nx+2

...
...

. . .
...

any+nx
any+nx−1 . . . any

⎞
⎟⎟⎟⎠ ∈ R

nx×(nx+1).

We let the columns of A be denoted a0, . . . ,anx , and we note that

(3.6) A =

⎛
⎝ | |

a0 · · · anx

| |

⎞
⎠ =

⎛
⎝ |

A0 anx

|

⎞
⎠ =

⎛
⎝ |

a0 A1

|

⎞
⎠ .

Hence A0 and A1 constitute the first and last nx columns of A, respectively. When
a0 ∈ rangeA1 and a0 �= 0, let

(3.7) Dmin = argminj>0 a0 ∈ span{a1, . . . ,aj},

and set Dmin = 0 if a0 = 0. Moreover, define

(3.8) Dmax = Dmin + nx − rankA1.
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4. Existence and uniqueness of solutions. In this section we prove results
on the existence and uniqueness of solutions to (1.5). We aim at establishing the
following theorem.

Theorem 4.1.

(i) There exists a solution to (1.5) if and only if

(4.1) a0 ∈ range(A1).

(ii) If d is the degree of a solution to (1.5), then Dmin ≤ d ≤ Dmax.
(iii) When (4.1) holds, there is a unique solution (p∗, q∗) of minimal degree Dmin.

For this solution, xj �= yi for all indices i, j representing nonzero branch
values. Moreover, Deg(q∗) ≤ ny − nx + rankA1 with equality if Dmin <
rankA1.

(iv) When (4.1) holds, a polynomial pair (p, q) is a solution if and only if p = p∗r
and q = q∗r, where r(z) is a polynomial satisfying r(0) = 1 and Deg(r) ≤
Dmax −Dmin.

(v) The minimal degree solution is the only solution to (1.5) if and only if the
matrix A1 is nonsingular.

(vi) Let {xj} and {yj} be a solution to (1.5). Then the higher moments defined
in (2.4) are well defined.

Let us proceed with several remarks.
Remark 3. In particular, it follows from (i) that there exists a solution as soon

as the matrix A1 is nonsingular.
Remark 4. Since (1.5) is a system of polynomial equations of degree K, one

could expect there to be a finite number of solutions, typically K solutions. However,
because of the special structure of the equations there is either one unique solution
(when A1 is nonsingular) or infinitely many solutions (when A1 is singular).

Remark 5. The form (p∗r, q∗r) of solutions can also be stated as follows: All
solutions have a core set of values {xj}, j = 1, . . . ,Deg(p∗) = Dmin, and {yi}, i =
1, . . . ,Deg(q∗), corresponding to nonzero branch values of the minimal degree solution,
where xj �= yi for all those i, j. One can then add an optional set of nonzero branch
values {xDmin+j} and {yDeg(q∗)+j} for j = 1, . . . , Dmax −Dmin such that xDmin+j =
yDeg(q∗)+j.

To prove this theorem we first establish some utility results in the next subsection.
We then derive different ways of characterizing the solution in section 4.2 which are
subsequently used to prove Theorem 4.1 in section 4.3.

4.1. Utility results. We start with a useful lemma on Taylor coefficients for a
product of functions.

Lemma 4.2. Suppose f , g, and h are analytic functions in a neighborhood of zero
satisfying f(z) = g(z)h(z). Let f have the Taylor expansion

f(z) =

∞∑
k=0

fkz
k,

and let {gk} and {hk} be the corresponding coefficients for g(x) and h(x), respectively.
Then

(4.2) fk =

k∑
j=0

gjhk−j .
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Proof. Since the functions are analytic, the coefficients are given as

fk =
1

k!

dk

dzk
f(z)

∣∣∣
z=0

=
1

k!

dk

dzk
g(z)h(z)

∣∣∣
z=0

=
1

k!

k∑
j=0

cjkg
(j)(0)h(k−j)(0),

where cjk = k!/j!(k − j)! are the binomial coefficients. But g(j)(0) = j!gj and
h(k−j)(0) = (k − j)!hk−j , and therefore (4.2) follows.

Remark 6. The discrete convolution (4.2) is, in fact, precisely an elementwise
description of multiplication of a lower triangular k × k Toeplitz matrix by a vector.
In the notation of [15], it would read f = T (g)h.

As was already known by Markov, the exponential transform of the moment
sequence plays an important role in the analysis of these problems; see, e.g., [1, 2].
We show here that {ak} is a version of the exponential transform of {mk}.

Lemma 4.3. Suppose {mk} is generated by the polynomials p(z) and q(z) and
{ak} is generated by {mk}. Let m(z) be defined as

(4.3) m(z) = m1z +
1

2
m2z

2 +
1

3
m3z

3 + · · · .

Then, if (3.4) holds,

(4.4) em(z) =
q(z)

p(z)
= a0 + a1z + a2z

2 + · · · ,

written as its Taylor expansion around z = 0.
Proof. Let us first show that m(z) is a well-defined analytic function at zero. We

have

m(z) =
∑∞

k=0
mkz

k

k

=
∑∞

k=0

∑nx

j=1

xk
j z

k

k −
∑∞

k=0

∑ny

j=1

yk
j z

k

k

= −
∑nx

j=1 log(1 − xjz) +
∑ny

j=1 log(1 − yjz).

The last step is allowed when |z| < 1/maxij(|xj |, |yi|), which is true for small enough
z since p(0) �= 0. This also shows that the function is analytic at zero. Moreover,

em(z) =

∏ny

j=1(1 − yjz)∏nx

j=1(1 − xjz)
=

q(z)

p(z)
.

Finally, setting a(z) := exp(m(z)) and differentiating gives

za′(z) = zm′(z)a(z),

where all three functions are analytic at zero. Let a(z) have the Taylor coefficients
{ãk}. Then za′(z) = ã1z + 2ã2z

2 + 3ã3z
3 · · · and clearly zm′(z) = m1z +m2z

2 + · · · .
By Lemma 4.2, for k ≥ 1,

kãk =

k∑
j=1

mj ãk−j .

Since ã0 = q(0)/p(0) = 1, we see that ak and ãk satisfy the same nonsingular linear
system of equations (2.1), and therefore ak = ãk, showing (4.4).
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We now have the following basic characterization of a solution.

Lemma 4.4. Suppose p(z) and q(z) are two polynomials satisfying (3.3), (3.4).
They form a polynomial solution to (1.5) if and only if their quotient has the Taylor
expansion around z = 0

(4.5)
q(z)

p(z)
= a0 + a1z + · · · + aKzK + O

(
zK+1

)
,

where {ak} is generated by {mk}. Moreover, if (p, q) is a solution, then (p̄, q̄) is also
a solution if and only if the pair satisfies (3.3), (3.4), and p̄/q̄ = p/q, where these
fractions are defined.

Proof. Let {m̃k} be generated by p and q, and suppose (4.5) holds. Then, as in
the proof of Lemma 4.3 for 1 ≤ k ≤ K,

kak =

k∑
j=1

m̃jak−j .

Since {mk} satisfy the linear system (2.1), we have after subtraction

mn − m̃n = −
n−1∑
k=1

(mk − m̃k)an−k, m1 = m̃1,

for n = 2, . . . ,K. By induction m̃k = mk for 1 ≤ k ≤ K, showing that (p, q) solves
(1.5). On the other hand, if (p, q) is a solution, then (4.5) must hold by (4.4) in
Lemma 4.3.

For the last statement, the “if” part is obvious since both pairs then satisfy (4.5).
To show the “only if” part, suppose both (p, q) and (p̄, q̄) are solutions. By definition
they satisfy (3.3), (3.4), and by (4.5),

q̄(z)

p̄(z)
− q(z)

p(z)
=

q̄(z)p(z) − p̄(z)q(z)

p̄(z)p(z)
= O(zK+1).

Since p̄(0)p(0) = 1, we must have that (q̄(z)p(z) − p̄(z)q(z))/zK+1 is bounded as
z → 0. But since the degree of q̄p− p̄q is at most K = nx + ny, this is possible only
if it is identically zero. Hence q̄(z)p(z) = p̄(z)q(z), which concludes the proof.

4.2. Characterization of the solution. In this section we show three propo-
sitions that characterize solutions to (1.5) in terms of polynomials, coefficient vectors,
and the column vectors of the A matrix in (3.6). We start by expressing the uniqueness
properties of the solution in terms of its polyomial representation.

Proposition 4.5. Suppose the pairs (p, q) and (p̄, q̄) are both polynomial solu-
tions to (1.5). Then the following hold.

(i) Deg(p) − Deg(q) = Deg(p̄) − Deg(q̄).
(ii) If Deg(p̄) ≤ Deg(p), and if there is no polynomial r(z) such that p = p̄r,

then there is another solution (p̃, q̃) with Deg(p̃) < Deg(p). In particular, if
Deg(p) = Deg(p̄) but p �= p̄, there is such a lower degree solution.

(iii) If Deg(p̄) ≤ Deg(p), any polynomial pair (p̄r, q̄r) is a solution if r(z) is a
polynomial satisfying r(0) = 1 and Deg(r) ≤ Deg(p)−Deg(p̄). In particular,
if Deg(p̄) ≤ m ≤ Deg(p), there is a solution (p̃, q̃) with Deg(p̃) = m.
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Proof.
(i) The statement follows directly from Lemma 4.4, since q̄p = p̄q implies that

Deg(q̄) + Deg(p) = Deg(p̄) + Deg(q).

(ii) We let

p(z) = rp(z)p̄(z) + sp(z), q(z) = rq(z)q̄(z) + sq(z)

be the unique polynomial decomposition of (p, q) such that rp, rq, sp, sq are
polynomials, Deg(sp) < Deg(p̄), and Deg(sq) < Deg(q̄). Since p̄q = pq̄ by
Lemma 4.4, we get

p̄q̄(rq − rp) = q̄sp − p̄sq.

Unless rq = rp, the degree of the left-hand side is at least Deg(p̄) + Deg(q̄),
while the degree of the right-hand side is at most

max (Deg(q̄) + Deg(sp), Deg(p̄) + Deg(sq)) < Deg(q̄) + Deg(p̄).

Hence, rq = rp and q̄sp = p̄sq. Since q̄, p̄ �≡ 0, it follows that sp and sq
are either both zero or both nonzero. Suppose sp �≡ 0 and sq �≡ 0. Write
sp(z) = zmp s̃p(z) and sq(z) = zmq s̃q(z), where s̃p(0) �= 0 and s̃q(0) �= 0.
Since

zmp s̃p(z)q̄(z) = zmq s̃q(z)p̄(z)

and also q̄(0) = p̄(0) = 1, the lowest degree term in the left- and right-hand
side polynomials are zmp and zmq , respectively, and therefore mp = mq.
Consequently,

s̃p(z)q̄(z) = s̃q(z)p̄(z)

and s̃p(0) = s̃q(0). We can then take p̃(z) = s̃p(z)/s̃p(0) and q̃(z) = s̃q(z)/s̃q(0).
They satisfy

p̃(z)q̄(z) = q̃(z)p̄(z), p̃(0) = q̃(0) = 1,

while Deg(p̃) = Deg(s̃p) ≤ Deg(sp) < Deg(p) and similarly Deg(q̃) < Deg(q) ≤
ny. Hence (p̃, q̃) is a polynomial solution by Lemma 4.4. It has degree strictly
less than (p, q), which shows the first statement in (ii). If Deg(p) = Deg(p̄)
and p �= p̄, then there is no r(z) satisfying the requirements, showing the
second statement in (ii).

(iii) We finally let r(z) be any polynomial with Deg(r) ≤ Deg(p) − Deg(p̄) and
r(0) = 1. We then set p̃ = p̄r and q̃ = q̄r. These polynomials trivially satisfy
(3.4) and (4.5). Since Deg(p̃) = Deg(r) + Deg(p̄) ≤ Deg(p) ≤ nx and

Deg(q̃) = Deg(r) + Deg(q̄) ≤ Deg(p) − Deg(p̄) + Deg(q̄) = Deg(q) ≤ ny,

they also satisfy (3.3) and thus are a polynomial solution by Lemma 4.4. In
particular, we can take r(z) of degree m.

A solution to (1.5) can also be characterized in terms of the coefficient vectors.
We have the following proposition.

Proposition 4.6. The pair c = (c0, . . . , cnx)T ∈ R
nx+1 and d = (d0, . . . , dny )T ∈

R
ny+1 is a coefficient solution to (1.5) if and only if
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(i) c0 = 1,
(ii) c is in the null-space of A, and
(iii)

(4.6) dk =

min(k,nx)∑
j=0

cjak−j , k = 0, . . . , ny.

Proof. Suppose first that c is in the null-space of A, c0 = 1, and {dk} is given by
(4.6). Extend the coefficient sequences by setting ck = 0 for k > nx and dk = 0 for

k > ny. Since c is in the null-space of A, we get
∑k

j=0 cjak−j = 0 when ny + 1 ≤ k ≤
nx + nx = K, and in conclusion

(4.7) dk =

k∑
j=0

cjak−j , k = 0, . . . ,K.

Upon noting that {ck}∞k=0 and {dk}∞k=0 are the Taylor coefficients of Pc and Pd, and
since Pc(0) = c0 = 1, Pd(0) = d0 = a0c0 = 1, Lemma 4.2 shows that

(4.8) Pd(z) = Pc(z)
[
a0 + a1z + · · · + aKzK + O

(
zK+1

)]
,

and by Lemma 4.4 we have that (Pc, Pd) is a solution to (1.5). Conversely, if (Pc, Pd)
is a solution, then c0 = Pc(0) = 1, and by Lemma 4.2 we get that (4.7) holds. For
k = ny + 1, . . . ,K this also implies that c is in the null-space of A.

The final proposition of this section relates the degree of the solution to the
column vectors of A and the linear spaces they span.

Proposition 4.7. Let Vj = span{a1, . . . ,aj} and V 0
j = span{a0, . . . ,aj}. Set

V0 = V 0
−1 = ∅. Then the following hold.

(i) There is a solution if and only if a0 ∈ Vnx = Range(A1).
(ii) There is a solution of degree j ≥ 0 if and only if

(4.9) a0 ∈ Vj and aj ∈ V 0
j−1.

(iii) When a0 ∈ Vnx
, then

a0 ∈ Vd, V 0
d = Vd

if and only if d ≥ Dmax.
(iv) When a0 ∈ Vnx , the vectors

a1, . . . ,aDmin

(when Dmin > 0),

aDmax+1, . . . ,anx

(when Dmax < nx) are all linearly independent. Moreover,

aj ∈ VDmin , Vj = VDmin , j = Dmin, . . . , Dmax.
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Proof.
(i) By Proposition 4.6 there exists a solution to (1.5) if and only if there is a

coefficient vector c = (1, c′)T in the null-space of A, i.e.,

Ac = A1c̄ + a0 = 0.

But such a vector c̄ exists if and only if a0 is in the range of A1. This
shows (i).

(ii) Again by Proposition 4.6 there is a solution of degree j if and only if there is
a vector c = (c0, c1, . . . , cj , 0, . . . , 0)T such that

(4.10) 0 = Ac = c0a0 + c1a1 + · · · + cjaj ,

with cj �= 0 and c0 = 1. For j = 0 this is clearly equivalent to a0 = 0
or a0 ∈ V0 = V 0

−1. For j > 0 the existence of cj-coefficients satisfying
(4.10) is equivalent to the left condition in (4.9). Moreover, if aj �= V 0

j−1 =
span{a0, . . . ,aj−1}, then we must have cj = 0 to satisfy (4.10), and c cannot
represent a solution of degree j. On the other hand, if cj = 0 and aj =
c′0a0 + · · ·+ c′j−1aj−1 for some nonzero coefficients c′k, then a0 + c′′1a1 + · · ·+
c′′j−1aj−1 + aj = 0, with c′′k = (1 + c′0)ck − c′k, represents a solution of degree
j. This shows (ii).

(iii) The statement is obvious in case Dmin = 0. If Dmin > 0, there are scalars
such that

(4.11) a0 = v1a1 + · · · + vDminaDmin ,

by (3.7). Hence, a0 ∈ VDmin and since the Vj spaces are nested, Vj ⊂ Vj+1,
we have a0 ∈ Vd for d ≥ Dmin. Moreover, the minimal property of Dmin

ensures that vDmin
�= 0 in (4.11), so that a0 /∈ Vd when d < Dmin.

(iv) To show that when Dmin > 0 the vectors a1, . . . ,aDmin are linearly indepen-
dent, we use (4.11) and note that Pc(z) with c = (1,−v1, . . . ,−vDmin , 0, . . . , 0)T

is a polynomial solution to (1.5). Suppose now that there are nonzero coeffi-
cients c′j such that

c′1a1 + · · · + c′Dmin
aDmin = 0.

Then Pc′ with c′ = (1, c′1 − v1, . . . , cDmin
− vDmin

, 0, . . . , 0)T is another poly-
nomial solution to (1.5). Moreover, by the minimality property of Dmin we
must have cDmin − vDmin �= 0 and therefore Deg(Pc) = Deg(Pc′) = Dmin. But
by (ii) in Proposition 4.5 this implies that there is yet another solution Pc′′

of degree strictly less than Dmin. Hence, there are coefficients c′′j such that

a0 + c′′1a1 + · · · + c′′dad = 0,

with d < Dmin, contradicting (3.7). The vectors must therefore be linearly
independent.
Suppose D∗ ≥ Dmin is the highest degree of an existing solution. Since Pc(z)
is a solution of degree Dmin, we get from (iii) in Proposition 4.5 that there
are solutions of all intermediate degrees Dmin, . . . , D

∗. Hence, from (ii), aj ∈
V 0
j−1 for j = Dmin, . . . , D

∗, and, from (iii), aj ∈ Vj−1 for j = Dmin+1, . . . , D∗.
Noting that if aj+1 ∈ Vj , then Vj = Vj+1, we can conclude inductively that
VDmin = · · · = VD∗ and aj ∈ VDmin for j = Dmin, . . . , D

∗. We now have three
different cases.
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1. If D∗ = nx, then VDmin
= Vnx

, and by (3.8) we get D∗ = rankA1 −
Dmin + Dmax = dimVnx −Dmin + Dmax = dimVDmin −Dmin + Dmax =
Dmax since either a1, . . . ,aDmin are linearly independent or Dmin = 0
and VDmin = ∅. This shows (iv) for D∗ = nx.

2. If D∗ < nx and Dmin = 0, then VDmin = VD∗ = ∅, and

(4.12) Vnx = span{aD∗+1, . . . ,anx}.

Suppose there are nonzero coefficients αk such that

αD∗+1aD∗+1 + · · · + αnx
anx

= 0,

and let k∗ be the highest index of all nonzero coefficients, αk∗ �= 0.
Then ak∗ ∈ V 0

k∗−1 and there is a solution of degree k∗ by (ii), which is in
contradiction to the definition of D∗. Hence, the vectors in (4.12) must
be linearly independent and

D∗ = nx − dimVnx = Dmin + nx − rankA1 = Dmax,

showing (iv) for this case.
3. If D∗ < nx and Dmin > 0, we have

(4.13) Vnx
= span{a1, . . . ,aDmin

,aD∗+1, . . . ,anx
}.

Suppose there are nonzero coefficients αk such that

α1a1 + · · · + αDmin
aDmin

+ · · · + αD∗+1aD∗+1 + · · · + αnx
anx

= 0.

Since a1, . . . ,aDmin are linearly independent, at least one αk with k > D∗

must be nonzero. By the same argument as above in case 2 we then get
a contradiction, and the vectors in (4.13) must be linearly independent.
Hence,

D∗ = Dmin + nx − dimVnx
= Dmin + nx − rankA1 = Dmax,

showing this final case.

4.3. Proof of Theorem 4.1. To prove Theorem 4.1, we essentially have to
combine the results from Propositions 4.5 and 4.7. The statement (i) is given directly
by (i) in the latter. For the remaining points we have the following.

(ii) From (ii) in Proposition 4.7 we see that a0 ∈ Vd and ad ∈ V 0
d−1. It follows

from (iii) in Proposition 4.7 that d ≥ Dmin. On the other hand, if Dmax < nx

and d > Dmax, it says that V 0
d−1 = Vd−1. Hence, ad ∈ Vd−1, which contra-

dicts the linear independence of aDmax , . . . ,anx established in point (iv) of
Proposition 4.7.

(iii) We note that by (3.7) there are scalars v1, . . . , vDmin such that

(4.14) a0 = v1a1 + · · · + vDmin
aDmin

.

Hence, a0 ∈ VDmin
, and since vDmin

�= 0, we also have aDmin
∈ V 0

Dmin
. By

(ii) in Proposition 4.7 there is thus a solution of degree Dmin which we de-
note (p∗, q∗). Since a1, . . . ,aDmin are linearly independent by (iii) in Propo-
sition 4.7, the coefficients in (4.14) are unique, and therefore the Dmin-degree
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solution is also unique. Moreover, suppose that xj = yi = x∗ �= 0 for some
i, j. Then p∗ and q∗ would have a common factor (1−zx∗), and by Lemma 4.4
p̄(z) := p∗(z)/(1− zx∗) and q̄(z) := q∗(z)/(1− zx∗) would also be a solution.
But this is impossible since Deg(p̄) < Deg(p∗) = Dmin. By (iv), shown below,
a solution is given by (p∗r, q∗r), where r(0) = 1 and Deg(r) = Dmax −Dmin.
Hence ny ≥ Deg(q∗r) = Deg(q∗)+nx−rankA1. Suppose finally that Dmin <
rankA1 and that Deg(q∗) < ny−nx+rankA1. Let Deg(r) = Dmax+1−Dmin.
Then (p∗r, q∗r) is still a solution by Lemma 4.4 since (p∗, q∗) is a solution,
Deg(p∗r) = Dmax + 1 = nx + Dmin + 1 − rankA1 ≤ nx, and

Deg(q∗r) < ny − nx + rankA1 + Dmax + 1 −Dmin = ny + 1.

This contradicts (ii) and therefore Deg(q∗) = ny − nx + rankA1, concluding
the proof of (iii).

(iv) We first note that there exists a solution of degree Dmax by Proposition 4.7
since, if Dmax > Dmin, we have a0 ∈ V 0

Dmax−1 and aDmax ∈ VDmin =
VDmax−1 = V 0

Dmax−1. Hence, (iii) in Proposition 4.5 shows that any polyno-
mial pair of the stated type is a solution. On the other hand, if the polynomial
solution is not of this type, then (ii) in Proposition 4.5 says there is a solution
of degree strictly less than Dmin, contradicting (ii) above.

(v) We suppose first that A1 is nonsingular. Then rankA1 = nx so that Dmin =
Dmax and the uniqueness is given by (iii) above. If, on the contrary, A1

is singular, then Dmax > Dmin, and since we can then pick infinitely many
polynomials r(z) in (iv), we have infinitely many solutions.

(vi) This is a consequence of (iv). The solution can be represented by (p∗r, q∗r)
for some polynomial r(z) with r(0) = 1. Let 1/xj for j = 1, . . . , Dmin and
1/yj for j = 1, . . . ,Deg(q∗) be the roots of p∗(z) and q∗(z), respectively. Let
1/zj for j = 1, . . . ,Deg(r) be the roots of r(z). Then

mk =

Dmin∑
j=1

xk
j +

Deg(r)∑
j=1

zkj −
Deg(q∗)∑

j=1

ykj −
Deg(r)∑
j=1

zkj =

Dmin∑
j=1

xk
j −

Deg(q∗)∑
j=1

ykj ,

which is independent of r(z) and uniquely determined because (p∗, q∗) is
unique.

5. Proof of Theorem 2.1. We can now use the results in section 4 to prove
Theorem 2.1.

(i)–(ii) To show the statements about Algorithms 1 and 2 we consider the reduced
problem

(5.1) mk =

ñx∑
j=1

x̃k
j −

ñy∑
j=1

ỹkj , k = 1, . . . , K̃,

where ñx = rankA1 ≤ nx, ñy = ny−nx+ñx ≤ ny, and K̃ = ñx+ñy ≤ K. The
moments mk in the left-hand side are the same as in (1.5). First, we consider
the minimal solution (p∗, q∗) of (1.5). By (iv) in Proposition 4.7 we must
have Deg(p∗) = Dmin ≤ rankA1 = ñx. Moreover, by (iii) in Theorem 4.1,

Deg(q∗) ≤ ny − nx + rankA1 = ñy.
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It follows from Lemma 4.4 that (p∗, q∗) is also a solution to (5.1). Second, let
(p̃∗, q̃∗) be the minimal degree solution to (5.1). Then by (iv) in Theorem 4.1
there is a polynomial r(z) with r(0) = 1 such that p∗ = p̃∗r and q∗ = q̃∗r. But
then (p̃∗, q̃∗) is also a solution to (1.5) by Lemma 4.4. By the uniqueness of
the minimal degree solution of (1.5) it follows that r ≡ 1 and p∗ = p̃∗, q∗ = q̃∗.
Suppose now that there is another polynomial r(z) with r(0) = 1, Deg(r) > 0
such that (p∗r, q∗r) is a solution to (5.1). Then Deg(p∗r) = Dmin + Deg(r) ≤
ñx = rankA1. Hence, Dmin < rankA1, and therefore by (iii) in Theorem 4.1
we have Deg(q∗) = ny − nx + rankA1 = ñy. Thus, Deg(q∗r) > ñy, which is
impossible if (p∗r, q∗r) is a solution. Hence, (p∗, q∗) is the unique solution to

(5.1), and therefore Ã1 is nonsingular by (v) in Theorem 4.1.
Since Ã1 is invertible, the generalized eigenvalue problem (2.2) and c′ are well
defined. Moreover, we can construct Ã−1

1 Ã0. By (2.3),

Ã−1
1 Ã0 =

⎛
⎜⎜⎜⎜⎜⎜⎝

−c1 1 0 · · · 0
−c2 0 1 · · · 0

...
...

. . .
. . .

...

−cñx−1 0 0
. . . 1

−cñx 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

which is a companion matrix. It is well known that for those matrices the
elements in the first column are the coefficients of its characteristic polyno-
mial. This is shown as follows: let Mij be the minor of V := zI − Ã−1

1 Ã0,
i.e., the determinant of the matrix obtained by removing row i and column
j. Then, the determinant can be expanded by minors, for any j:

det(V ) =

ñx∑
i=1

(−1)i+jvijMij , V = {vij}.

Taking j = 1, we get Mi,1 = det(diag(z, . . . , z,−1, . . . ,−1)) with i− 1 occur-
rences of −1, so that Mi,1 = zñx−i(−1)i−1. Therefore,

det(V ) = (−1)2(c1 + z)M1,1 +
∑ñx

i=2 (−1)i+1ciMi,1

= c1z
ñx−1 + zñx +

∑ñx

i=2 ciz
ñx−i

= P (z),

which is exactly (2.6). This shows that the results of Algorithms 1 and 2 are
identical, since the generalized eigenvalues in (2.2) are exactly the roots of
P (z).
It remains to show what the roots are. Let Ã = [ã0 Ã1] be the A matrix
related to (5.1). Clearly, c = (1, c′T )T is in the null-space of Ã, and hence
Pc(z) is the unique solution to (5.1). But for z �= 0,

P (z) = cñx
+ cñx−1z + · · · + c1z

ñx−1 + zñx

= zñx

( cñx

zñx
+

cñx−1

zñx−1
+ · · · + c1

z
+ 1

)
= zñxPc(1/z)

= zñx(1 − x1/z)(1 − x2/z) · · · (1 − xDmin
/z)

= zñx−Dmin(z − x1)(z − x2) · · · (z − xDmin
),
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which extends to z = 0 by continuity. This concludes the proof of points (i)
and (ii).

(iii) Let (p, q) be a polynomial solution to (1.5) and c the corresponding coefficient
solution. From Lemma 4.3 we have

q(z) = p(z)em(z),

where m(z) is defined in (4.3). For the (K + 1)th Taylor coefficient of the
left- and right-hand sides we have by Lemmas 4.3 and 4.2

(5.2) 0 =

nx∑
j=0

cjaK+1−j ⇒ aK+1 = −
nx∑
j=1

aK+1−jcj ,

since the kth Taylor coefficient of q and p is zero for k > nx and k > ny,
respectively. Finally, the last row of (2.1) extended to size K + 1 gives

mK+1 = (K + 1)aK+1 −
K∑
j=1

mjaK+1−j .

Together the last two equations show point (iii).

6. Properties of A1 and Markov’s theorem. We now look in more detail
at the structure of the A1 matrix. In particular, we look at the implications of A1R
being positive definite. Then we get an explicit simplified formula for the matrix,
and our results also shed some light on the relationship of our results to the classical
Markov theorem on the existence and uniqueness of solutions to the finite moment
problem (1.1) discussed in the introduction. For this we need to define the matrix

R =

⎛
⎝ 1

. . .
1

⎞
⎠

and note that left (right) multiplication by R reverses the order of rows (columns) of
a matrix. In our notation we can then formulate Markov’s theorem as follows.

Theorem 6.1 (Markov). Suppose K = 2n is even and n = nx = ny. There is a
unique piecewise continuous function f(x) satisfying

(6.1) mk = k

∫
R

xk−1f(x)dx, 0 ≤ f ≤ 1, k = 1, . . . ,K,

if A1R is symmetric positive definite and the matrix

(6.2)

(
a0 A1

aK+1 aT
0

)

is singular. This f is of the form in (1.2), (1.3).
Remark 7. The theorem does not rule out other forms of f(x) a priori, and

without the second condition in (6.2) such solutions are indeed possible. It considers
only the case nx = ny, i.e., problem (1.4), and says nothing about the possibility of
other solution types, e.g., when the {xj} and {yj} are not interlaced as in (1.3).

We start by introducing some new notation that will be used throughout this
section. If {xj} and {yj} are a solution of (1.5) and (p, q) is the corresponding
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polynomial solution as defined in (3.1), (3.2), we can introduce the new polynomials
pr(z) = znxp(1/z) and qr(z) = znyq(1/z) to describe the solution. Defining them by
continuity at z = 0, we have

(6.3) pr(z) = (z − x1) · · · (z − xnx), qr(z) = (z − y1) · · · (z − yny ).

Furthermore, we assume that the number of distinct roots of pr (xj-branch values) is
ñ. We also order the roots such that we can write

pr(z) = (z − x1)
1+η1(z − x2)

1+η2 · · · (z − xñ)1+ηñ ,

where 1 + ηj is the multiplicity of the root xj , so that

nx = Deg(pr) = ñ +

ñ∑
�=1

η�.

We start the analysis with a lemma giving explicit expressions for the ak-values.
Lemma 6.2. For k ≥ 0,

(6.4) any−nx+1+k =

ñ∑
j=1

1

η!
lim
z→xj

dηj

dzηj

(z − xj)
1+ηjzkqr(z)

pr(z)
.

Proof. This result follows from an application of the residue theorem in complex
analysis as follows. Let Cr be the circle in the complex plane with radius r. Since the
roots of p(z) are nonzero, the function q/p is analytic within and on Cε if ε is taken
small enough, and the Cauchy integral formula gives

ak =

{
1
k!

dk

dzk

q(z)
p(z)

∣∣∣
z=0

, k ≥ 0,

0, k < 0,
=

1

2πi

∮
Cε

q(z)

p(z)zk+1
dz.

Setting

(6.5) f(z) :=
qr(z)

pr(z)
=

zny−nxq(1/z)

p(1/z)

and changing variable z → 1/z, we get

any−nx+1+k =
1

2πi

∮
Cε

q(z)

p(z)zny−nx+k+2
dz =

1

2πi

∮
Cε

f(1/z)

zk+2
dz =

1

2πi

∮
C1/ε

zkf(z)dz.

Hence, any−nx+1+k is given by the sum of the residues of zkf(z) (assuming we take
small enough ε). By (6.5) and the restriction k ≥ 0 we see that its poles are located
at the xj-values and they have multiplicities 1+ηj at xj . Then (6.4) follows from the
residue formula for a pole of a function g(z) at z∗ with multiplicity η + 1,

Res(g, z∗) =
1

η!
lim
z→z∗

dη

dzη
(z − z∗)1+ηg(z).

When the branch values {xj} are distinct, the expression for the ak elements
simplifies. They can then be expressed as sums of the powers of {xj} in a way similar
to the moments mk, but with weights different from one. We can also give a more



A CLASS OF FINITE MARKOV MOMENT PROBLEMS 1635

concise description of the matrices A0 and A1, which can be factorized into a product
of Vandermonde and diagonal matrices. More precisely, we let V be the Vandermonde
matrix

V =

⎛
⎜⎜⎜⎜⎜⎝

1 1 · · · 1
x1 x2 · · · xnx

x2
1 x2

2 · · · x2
nx

... · · · · · ·
...

xnx−1
1 xnx−1

2 · · · xnx−1
nx

⎞
⎟⎟⎟⎟⎟⎠

and introduce the diagonal matrices

W =

⎛
⎜⎝
w1

. . .

wnx

⎞
⎟⎠ , X =

⎛
⎜⎝
x1

. . .

xnx

⎞
⎟⎠ ,

where wj are the weights defined as

(6.6) wj =
qr(xj)

p′r(xj)
.

(Note that pr has only simple roots when {xj} are distinct, so p′r(xj) �= 0.) Then we
can show the following.

Proposition 6.3. If {xj} are distinct, then for k ≥ 0,

(6.7) any−nx+1+k =

nx∑
j=1

wjx
k
j

and

(6.8) A1R = VWV T , A0R = VWXV T .

Proof. When {xj} are distinct, ηj = 0 for all j and the expression (6.4) for the
xj-residue simplifies to

lim
z→xj

(z − xj)z
kqr(z)

pr(z)
=

xk
j qr(xj)

p′r(xj)
.

This shows (6.7). For (6.8) we set bk = any−nx+1+k. Then

A1−rR =

⎛
⎜⎜⎜⎝

br br+1 . . . br+nx

br+1 br+2 . . . br+nx+1

...
...

. . .
...

br+nx br+nx+1 . . . br+2nx

⎞
⎟⎟⎟⎠ ∈ R

nx×nx , r = 0, 1.

From (6.7) we then have, for k ≥ 0,

⎛
⎜⎜⎜⎝

bk
bk+1

...
bk+nx

⎞
⎟⎟⎟⎠ =

nx∑
j=1

wj

⎛
⎜⎜⎜⎜⎝

xk
j

xk+1
j
...

xk+nx
j

⎞
⎟⎟⎟⎟⎠ =

nx∑
j=1

wjx
k
j

⎛
⎜⎜⎜⎝

1
xj

...
xnx
j

⎞
⎟⎟⎟⎠ = V

⎛
⎜⎜⎜⎝

w1x
k
1

w2x
k
2

...
wnxx

k
nx

⎞
⎟⎟⎟⎠ = VW

⎛
⎜⎜⎜⎝

xk
1

xk
2
...

xk
nx

⎞
⎟⎟⎟⎠ .
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Consequently,

A1−rR = VW

⎛
⎜⎜⎜⎝

xr
1 xr+1

1 . . . xr+nx
1

xr
2 xr+1

2 . . . xr+nx
2

...
...

. . .
...

xr
nx

xr+1
nx

. . . xr+nx
nx

⎞
⎟⎟⎟⎠ = VWXrV T ,

which concludes the proof.
We now consider the implications of a positive definite A1R. It turns out that

this is a necessary and sufficient condition to guarantee both distinct {xj}-values and
positive weights. We get the following theorem.

Theorem 6.4. The matrix A1R is symmetric positive definite if and only if {xj}
are distinct and the weights are strictly positive, wj > 0 for j = 1, . . . , nx.

Proof. We use the same notation as in Lemma 6.2 and set

Sj(z) =
1

ηj !
(z − xj)

1+ηj
qr(z)

pr(z)
.

We note that Sj(z) is smooth and regular close to z = xj . Then, by Lemma 6.2, for
k ≥ 0,

any−nx+1+k =

ñ∑
j=1

lim
z→xj

dηj

dzηj
zkSj(z).

Next, we let v = (v1, . . . , vnx
)T be an arbitrary vector in R

nx and recall that Pv(z) is
the corresponding nx − 1 degree polynomial

Pv(z) = v1 + v2z + · · · + vnxz
nx−1.

Then

vTA1Rv =

nx∑
j=1

nx∑
k=1

vjvkany−nx+j+k−1 =

nx∑
j=1

nx∑
k=1

ñ∑
�=1

lim
z→x�

dη�

dzη�
zj+k−2S�(z)vjvk

=

ñ∑
�=1

lim
z→x�

dη�

dzη�
S�(z)

nx∑
j=1

nx∑
k=1

zj+k−2vjvk =

ñ∑
�=1

lim
z→x�

dη�

dzη�
S�(z)Pv(z)

2.(6.9)

If

(6.10) ñ +
ñ∑

j=1

�ηj/2 ≤ nx − 1,

then we can take

Pv(z) = (z − x1)
1+η̃1(z − x2)

1+η̃2 · · · (z − xñ)1+η̃ñ , η̃j = �ηj/2.

Since 2(1 + η̃�) = 2 + 2�η�/2 ≥ 2 + 2(η�/2 − 1) > η� and(
d�

dz�
f(z)(z − z∗)k

)∣∣∣∣
z=z∗

= 0, 0 ≤ � < k,
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for all smooth enough f(z), we get vTA1Rv = 0, which contradicts the positivity of
A1R. Hence,

ñ +

ñ∑
j=1

�ηj/2 > nx − 1 = ñ +

ñ∑
�=1

η� − 1.

Since for any integer n > 0 we have �n/2 ≤ n − 1, it follows that all η� = 0 and
ñ = nx. Hence, if A1R is positive definite, then {xj} are distinct.

To show the theorem it is now enough to show that, when {xj} are distinct, A1R
is positive if and only if the weights are positive. From (6.9) we then have

vTA1Rv =

nx∑
�=1

S�(x�)Pv(x�)
2 =

nx∑
�=1

w�Pv(x�)
2.

Clearly, when all w� > 0, this expression is positive for v �= 0, and A1R is positive
definite. To show the converse, we take Pv(z) to be the Lagrange basis polynomials
Lj(z) of degree nx − 1 defined as

Lj(xi) =

{
1, i = j,

0, i �= j.

If A1R is positive, then

0 < vTA1Rv =

nx∑
�=1

w�Lj(x�)
2 = wj .

This can be done for each j, which concludes the proof.
We can now relate our conclusions with those in Markov’s theorem, Theorem 6.1.

We consider all solutions to (1.5) instead of those given by the integral relation (6.1)
with a piecewise continuous function f(x). The extra condition (6.2) is then automat-
ically satisfied, and we note that the positivity of A1R guarantees a unique solution
also in our space of density functions (1.6). We view this as a corollary of Theorems
4.1 and 6.4.

Corollary 6.5. If there exists a solution to (1.5), then the matrix in (6.2) is
singular. When nx = ny, there is a unique solution to (1.5) of the form (1.3) if and
only if A1R is symmetric positive definite.

Proof. We start by proving the singularity of (6.2). By (ii) in Proposition 4.6 a
coefficient solution c = (c0, . . . , cnx)T = (c0, c̄

T )T satisfies Ac = 0. Since A = (a0 A1),
it remains to prove that c0aK+1 + aT

0 c̄ = 0. This was already proved in (5.2).
Next, we prove the “if” part of the second statement. If A1R is symmetric positive

definite, it is nonsingular, and by (i), (iii), and (v) in Theorem 4.1, the minimal degree
solution exists and is unique and xj �= yi for all i, j. (If xj = 0 for some j, then there is
no zero yi-value since Deg(q∗) = n by point (iii).) By Theorem 6.4 the corresponding
branch values {xj} are distinct. It remains to show that, upon some reordering, the
{xj} and {yj} are interlaced as in (1.3).

Order the xj-values in an increasing sequence and let mk be the number of yj-
values such that yj < xk. Clearly, mk is increasing and 0 ≤ mk ≤ ny. Moreover,
sgn(qr(xk)) = (−1)ny−mk , and since limz→∞ p′r(z) > 0, we also have sgn(p′r(xk)) =
(−1)nx−k. Hence, by also using the fact that ny = nx,
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sgn(wk) = (−1)ny−mk+nx−k = (−1)mk+k.

We conclude that mk +k is even, which implies that mk is, in fact, strictly increasing.
Then, for k = 1, . . . , nx − 1, we have mk+1 ≥ mk + 1 and

nx ≥ mnx ≥ mk + nx − k ⇒ mk ≤ k.

Similarly, mk ≥ m1 + k − 1 ≥ k − 1, so k − 1 ≤ mk ≤ k, and therefore

2k − 1 ≤ mk + k ≤ 2k.

Finally, since mk +k is even, we must have mk = k, which implies that the values are
interlaced.

We now consider the “only if” part. If there is a solution of the form (1.3), then
the {xj}-values are obviously distinct and mk = k. By Proposition 6.3 the weights are
then given by (6.6) and they are positive since, as above, sgn(wk) = (−1)mk+k = 1.
It follows from Theorem 6.4 that A1R is positive definite.

7. Outlook. Several interesting issues may be worth mentioning:

1. Computational complexity in a finite difference implementation: One can con-
sult the article [14], where practical implementation issues and several exam-
ples of increasing complexity have been addressed in the context of geometric
optics problems. In particular, comparisons with Lagrangian (ray-tracing)
solutions are shown.

2. Extension to higher dimensions for the present problem: Nothing seems to
exist in this direction at the time being; see, however, the last sections of [20]
and the routines based on complex variables in [11, 9] for “shape from mo-
ments.”

3. A very special case of the trigonometric moment problem can be solved by
means of a slight variation of the algorithms presented here, in [14], and in
section IV.A of [9]. That is to say, one tries to invert the following set of
equations:

(7.1)
n∑

j=0

μj exp(ikλj) = mk, k = 0, . . . , n.

Let us state that in case the n + 1 real frequencies λj are known, the set of
complex amplitudes μj are found by solving a Vandermonde system:

⎛
⎜⎜⎜⎝

1 · · · 1
exp(iλ0) · · · exp(iλn)

...
...

exp(inλ0) · · · exp(inλn)

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

μ0

μ1

...
μn

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

m0

m1

...
mn

⎞
⎟⎟⎟⎠ .

The frequencies can be found through a byproduct of [9, 14] as we state now.
Let us suppose n is odd (i.e., the number of equations is even); we form the
two matrices
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A1 =

⎛
⎜⎝

m0 · · · mn−1
2

...
...

mn−1
2

· · · mn−1

⎞
⎟⎠ , A2 =

⎛
⎜⎝

m1 · · · mn+1
2

...
...

mn+1
2

· · · mn

⎞
⎟⎠ ,

and then the frequencies can be obtained through a generalized eigenvalue
problem, A1vj = λjA2vj , j = 0, . . . , n. This kind of algorithm can be used to
check the accuracy of the classical FFT and will be studied in a forthcoming
article.
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INCIPIENT DYNAMICS OF SWELLING OF GELS∗

HANG ZHANG† AND M. CARME CALDERER†

Abstract. In this article, we analyze a model of the incipient dynamics of gel swelling and
perform numerical simulations. The governing system consists of balance laws for a mixture of
nonlinear elastic solid and solvent yielding effective equations for the gel. We discuss the multiscale
nature of the problem and identify physically realistic regimes. The mixing mechanism is based on
the Flory–Huggins energy. We consider the case that the dissipation mechanism is the solid-solvent
friction force. This leads to a system of weakly dissipative nonlinear hyperbolic equations. After
addressing the Cauchy problem, we propose physically realistic boundary conditions describing the
motion of the swelling boundary. We study the linearized version of the free boundary problem.
Numerical simulations of solutions are presented too.

Key words. gel swelling, two-component mixture, polymer-solvent friction, type II diffusion,
hyperbolic free boundary problem
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1. Introduction. We present analysis and numerical simulations of a model of
the incipient dynamics of polymer gel swelling. The system that we study is derived
from the balance laws of a two-component mixture of solid polymer and solvent [3].
The free energy of the system consists of the elastic energy of deformation of the
polymer together with the Flory–Huggins free energy of mixing. The dissipation is
due to the friction force between polymer and solvent. The resulting balance laws of
the mixture form a weakly dissipative hyperbolic system. We formulate the boundary
conditions for the swelling boundaries and analyze the free boundary problem for the
linearized equations. We discuss numerical simulations of the solutions of the Cauchy
problem. The effective equations that we obtain clearly reveal the multiscale nature
of the problem and the dynamics associated with the different time scales.

In dimensionless form, the elasticity, Flory–Huggins mixing, and dissipative mech-
anisms bring four time scales into the problem, with the largest one naturally associ-
ated with the friction mechanism: this is the time scale of relaxation to the equilibrium
volume fraction, with diffusive dynamics. Indeed, many works on gels focus on the
relaxation part of the process. In this article, we address the earlier time scale dy-
namics and investigate their physical and mathematical significances, with the goal
of understanding their individual roles. This allows us to gain information on the
start-up of the process and on how the evolution of the swelling surface occurs.

In our applications, we will refer mostly to two classes of materials, entangled
linear polymers and polysaccharides. In terms of the physical parameters that char-
acterize them, the dissipation coefficient and elasticity modulus of the latter are several
orders of magnitude smaller than their polymeric counterparts.

Our study is motivated by polymeric applications to body implanted devices,
such as bone replacement tissue and controlled drug release mechanisms. Predictions
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on change in shape from the dry state to saturation may help the manufacturing
process. Another related application involving polysaccharides is the study of gel
motility phenomena in myxobacteria.

Still a larger time scale would be present if polymer-polymer dissipation were
taken into account. Since our numerical simulations focus on the dynamics at the
smaller time scales, we neglect the latter dissipation source in the present work.

Another motivation to our work is to gain some understanding of the so-called
type II diffusion phenomena [21] and [20]. It has been experimentally observed that
the dynamics of interaction between the gel and its surrounding solvent, in the case
that the polymer is dry, is very different from the case of partially swollen polymer.
Indeed, the latter shows features of standard diffusion. In this work, we argue that
type II diffusion is mostly a hyperbolic phenomena and therefore significantly different
from standard diffusion.

The model that we study was developed in [3]. It consists of laws of balance of
mass, momentum, and energy for two-component systems of nonlinear elastic solid
and solvent. Fields of the problem include volume fractions φ1 and φ2, velocity fields
v1 and v2 for solid and solvent, respectively, and pressure λ, a Lagrange multiplier
corresponding to the constraint of φ1+φ2 = 1. We observe that the continuum theory
for a two-component mixture can be used as a tool to obtain governing equations for a
third material, the gel, with properties that may be significantly different from those of
the individual components. Moreover, the effective equations are formulated in terms
of the center of mass velocity V and the diffusion velocity U = v1−v2. The model as
formulated allows us to identify regimes associated with the different time scales, with
the short times characterizing evolution of the interface between gel and solvent. The
friction between polymer and solvent suggests existence of a purely diffusive regime
with V = 0. Indeed, considering initial conditions satisfying V = 0, there exists a
Lagrange multiplier function that maintains zero center of mass velocity for as long as
the solution exists. If polymer-polymer friction is included in the model, either in the
form of Newtonian dissipation or as given by a viscoelastic law, another time scale,
larger by several orders of magnitude than the diffusive one, is added to the problem.
Our model, then, suggests that, upon relaxation to equilibrium of the diffusive velocity
and volume fraction, the material subsequently evolves as a viscoelastic fluid with
uniform volume fraction, with respect to the transport velocity V.

In one-dimensional geometries, the model reduces to a system of equations for the
diffusion velocity of the mixture U and the volume fraction of the polymer φ1. The
dependence on the center of mass velocity can be eliminated by imposing transitional
invariance of the solutions.

We formulate the one-dimensional problem in Eulerian coordinates, in which case
it becomes a free boundary problem. First, we assume that the interface between dry
polymer and solvent achieves a balance of force all the time, and that the interface
is fully saturated. In our framework, this amounts to neglecting the shortest time
scale of the system that causes very rapid saturation of the interface to an equilib-
rium volume fraction φ∗ ∈ (0, 1). The value of φ∗ can itself be determined by the
pressure applied to the surrounding solvent [7]. We also assume that the interface
moves at the speed of the polymer and formulate an ordinary differential equation
for its dynamics. The remaining boundary conditions are formulated in terms of
the symmetry of the domain with respect to x = 0, implying that U(0, t) = 0. We
study the free boundary problem for the linearized equations and prove the global
existence of solutions (φ(x, t), U(x, t), S(t)) ∈ C1(Q̄S × C1(Q̄S × C2[0, t1])), where
Q(S) := {(x, t) : t ≥ 0, 0 < x < S(t)}; we also prove a global bound for S(t),
0 < |S(t) − L| < C.
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The analysis of the free boundary problem precludes the presence of shocks in
the system. In a separate section, we consider the Cauchy problem and show that the
system is weakly dissipative, as characterized by Dafermos [5]. The existence of an
entropy-entropy pair flux allows us to show that the governing system is L1-stable and,
therefore, solutions of bounded variation follow as a consequence of the theorem in [5].
We show that the condition of hyperbolicity is satisfied for the material constants of a
linear polymer as shown in Table 1. Consequently, the system remains hyperbolic and
weakly dissipative for all time. However, this is not the case for polysaccharide data,
where hyperbolicity is lost at a critical volume fraction φc that may be greater than
the saturation value φ∗. Thus, the swelling interface may stop propagating before
reaching saturation. We interpret such a phenomenon as the onset of deswelling. In
the case of myxobacteria, this may suggest a reversal of direction perhaps achieved
by deswelling. In this model, the break of hyperbolicity shown by the polysaccharide
data occurs because of the small elastic modulus. This provides another motivation
to study early dynamics. Indeed, in polysaccharide systems, the regime of relaxation
dynamics may not be reached.

Works by Doi and coauthors address steady state solutions as well as relaxation
regimes [23], [24], [25], [7], and [27]. Our modeling assumptions involving the free
energy, which combines the Flory–Huggins contribution and the rubber elasticity,
and the multiscale properties of the system are fully motivated by such works and
those by Tanaka and Filmore [19].

This work is also partially inspired by the analysis in [15] of a flow with viscoelastic
particles. From another point of view, the system of equations and free boundary
problem share mathematical analogies with models of diffusion and transport aiming
at including finite speed propagation effects in heat conduction [18].

In section 2 we explain the model, and in section 3, we derive the properties of
the one-dimensional system. The Cauchy problem is studied in section 4, and the
boundary conditions and the free boundary problem are formulated and studied in
section 5. Finally, in section 6, we present numerical simulations for the regularized
system.

2. The model. We use the continuum theory of mixtures of an elastic solid and
a solvent as the main tool to derive the governing equations of a gel [22, Chapter 5].
Since the free energy depends explicitly on the volume fraction of the components,
the mixture modeling the gel turns out to be of immiscible type. Furthermore, since
the intrinsic densities of the components are taken to be constant, the mixture is
incompressible.

2.1. Balance of mass, transport and constitutive equations. We assume
that each component occupies a domain Ωa ⊂ R

3, a = 1, 2, in the reference con-
figuration (Lagrangian), with a reference volume fraction φR

a . Here the subindex 1
refers to the polymer, and 2 represents the fluid. In some applications, the reference
configuration can be taken to be the initial state of the mixture. It is important to
emphasize that the reference domains Ωa, a = 1, 2, will, in general, be distinct. Both
components occupy a common domain in the deformed (Eulerian) configuration.

The deformation of each component, polymer and fluid, respectively, is given by
sufficiently smooth functions

x = M(X, t), X ∈ Ω1,

x = N (X, t), X ∈ Ω2,
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with F = ∇XM(X, t) denoting the gradient of deformation of the polymer. According
to the theory of mixtures, both polymer and fluid may occupy the same region, with
volume fractions φ1(x, t), φ2(x, t), respectively. Here x ∈ Ω represents a point in a
fixed region in space. We also assume that no other material or vacuum is present in
the region; that is,

(2.1) φ1(x, t) + φ2(x, t) = 1

holds. We let ρ1 and ρ2 denote the mass densities of each component, respectively,
per unit volume in space. These are related to the true densities ( mass of component

volume of component )
γ1 and γ2 as follows:

ρ1 = γ1φ1, ρ2 = γ2φ2.

We assume that the mass densities of polymer and fluid are equal, and γ1 = γ2 = 1.
In this case, the densities and volume fractions coincide:

(2.2) ρ1 = φ1, ρ2 = φ2.

We introduce the material velocities of polymer and solvent, respectively:

ṽ1(X, t) =
∂M
∂t

(X, t), X ∈ Ω1,

ṽ2(X, t) =
∂N
∂t

(X, t), X ∈ Ω2.

We denote the corresponding velocity fields

(2.3) v1(x, t) = ṽ1(M−1(x, t), t), v2(x, t) = ṽ2(N−1(x, t), t), x ∈ Ω.

We let T1(x, t) and T2(x, t) denote Cauchy stress tensor of polymer and fluid,
respectively. Each one may consist of elastic and dissipative contributions, although
in this work we emphasize the former. In addition, we take into account the friction
forces fa, per unit volume, that the polymer exerts upon the fluid, and vice versa.
The local forms of the laws of balance of mass and linear momentum are

∂φ1

∂t
+ (v1 · ∇)φ1 + φ1∇ · v1 = 0,(2.4)

∂φ2

∂t
+ (v2 · ∇)φ2 + φ2∇ · v2 = 0,(2.5)

φ1
∂v1

∂t
+ φ1(v1 · ∇)v1 = ∇x · T1 + f1,(2.6)

φ2
∂v2

∂t
+ φ2(v · ∇)v2 = ∇x · T2 + f2.(2.7)

Assuming that the second law of thermodynamics holds for all admissible processes [3],
we have the following equations for the reversible parts of the stress tensors, T1 and
T2, and an expression for the friction forces fa:

T1 = φ1

{
∂ψ1

∂F
F −

(
φ1

∂ψ1

∂φ1
+ φ2

∂ψ2

∂φ1
+ λ

)
I

}
,(2.8)

T2 = −φ2

{
φ1

∂ψ1

∂φ2
+ φ2

∂ψ2

∂φ2
+ λ

}
I,(2.9)

f1 = λ∇φ1 − β(v1 − v2) = −f2,(2.10)
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where λ is the Lagrange multiplier associated with the constraint (2.1) and β(φ1, φ2)
the polymer drag coefficient. The functions ψ1 and ψ2 represent the free energies
of the polymer and solvent, respectively, giving the total free energy of the mixture,
Ψ ≡ φ1ψ1 + ψ2ψ2. According to the Flory theory of mixtures [8],

(2.11) Ψ =
KBT

Vm

(
χ

2
φ1φ2 +

1

N
φ1 log φ1 + φ2 log φ2

)
+ φ1W (F ).

Expressions of the component free energies [9] that yield (2.11) are

ψ1 =
KBT

2Vm
χφ2

2 +
KBT

N1Vm
log φ1 + W (F ),(2.12)

ψ2 =
KBT

2Vm
χφ2

1 +
KBT

N2Vm
log φ2,(2.13)

where W (F ) represents the elastic deformation energy which we will assume to be
neo-Hookean [1]; that is, W (F ) = μtraceFFT , with μ > 0.

With these, (2.8) and (2.9) become

T1 =
KBT

NxVm
φ1

(
(detF )

2
3 −

(
1

2
+

Nx

N1

)
− χNxφ1φ2

)
I − λφ1I + 2μφ1FFT ,(2.14)

T2 = −φ2

(
KBT

N2Vm
+

KBT

Vm
χφ1φ2 + λ

)
I.(2.15)

We now list the parameters of the problem:
1. Vm is the volume occupied by one monomer;
2. KB is the Boltzmann constant, and T is the absolute temperature;
3. N1, N2 denote the number of lattice sites occupied by the polymer and the

solvent;
4. Nx is the number of monomers between entanglement points;
5. φ1

NxVm
represents the number of entanglement points per unit volume;

6. χ is the Flory interaction parameter;
7. β is the polymer drag coefficient;
8. μ is related to the elastic shear modulus.

Parameter values appropriate to semidry polymers are given in Table 1 [27], [16].

Table 1

Data for polymer and polysaccharide.

Parameter Polymer Polysaccharide
Nx 20 20
N1 1000 1000
N2 1 1
Vm .1 nm3 .1 nm3

χ .5 .5
T 300◦ K 300◦ K
μ 104 pNnm−2 10−5 pNnm−2

β 2.4 × 1010 pNsnm−4 2.4 × 103 pNsnm−4

Remark. The approach developed so far is also suitable to account for polymer-
polymer friction by postulating a viscoelastic law for the total stress. Let us denote
τ1 = T1 +φ1λ and τ2 = T2 +φ2λ, the (reversible) extra stress of polymer and solvent,
respectively. Let τ total1 = τ1 + τd1 . In the case of Jeffrey’s model [2], we have

(2.16) τ total1 + ξ[τ̇ total1 − (∇v1)
T τ total1 − τ total1 (∇v1)] = η0D

1 + τ1,
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where D1 is the strain, ξ > 0 denotes a relaxation constant, and η0 > 0 is the
Newtonian viscosity.

2.2. Governing equations of gels. The governing equations for the individual
components give the governing system of the gel. The fields of the gel model consist
of

{V,U, F, φ1, λ},

where V = φ1v1 + (1−φ1)v2 represents the center of mass velocity and U = v1 −v2

the diffusion velocity. The total stress T is defined by

T = T1 + T2 − (1 − φ1)φ1U ⊗ U.

From (2.4)–(2.10), we derive the governing system for the new variables,

∂V

∂t
+ (V · ∇)V = ∇ · T ,(2.17)

∂U

∂t
+ (1 − 2φ1)(∇U)U − (U ⊗ U)∇φ1 + (∇V)U + (∇U)V

=
1

φ1
∇ · T1 −

1

1 − φ1
∇ · T2 −

β

φ1(1 − φ1)
U +

λ∇φ1

φ1(1 − φ1)
,(2.18)

Ft + (V + (1 − φ1)U) · ∇F = ∇(V + (1 − φ1)U)F,(2.19)

∇ · V = 0,(2.20)

∂φ1

∂t
+ ((V + (1 − φ1)U) · ∇)φ1 + φ1∇ · (V + (1 − φ1)U) = 0.(2.21)

Equation (2.19) is a version of the chain rule relating time derivatives of F with
velocity gradients. This equation is required in mixed solid-fluid systems [14]. We
note that the first equation gives the balance of linear momentum for the mixture,
and the second can be interpreted as giving the evolution of the microstructure of the
gel. We now introduce the following tensorial notation:

T̂ :=
T1

φ1
− T2

1 − φ1

=
KBT

Vm

[
1

Nx
(detF )

2
3 −

(
1

2Nx
+

1

N1
− 1

N2

)]
I + 2μFFT ,(2.22)

Ĝ :=
KBT

Vm

[
1

Nx
φ1

−1(detF )
2
3 − φ1

−1

(
1

2Nx
+

1

N1

)
− 1

N2
(1 − φ1)

−1 − χ

]
I

+ 2μφ−1
1 FFT .

We point out that the first notation represents a relative stress, and the second plays
the role of a body force, as indicated by the following calculations:

1

φ1
∇ · T1 −

1

1 − φ1
∇ · T2

= ∇ · (φ−1
1 T1 − (1 − φ1)

−1T2) − (φ−2
1 T1 + (1 − φ1)

−2T2)∇φ1

= ∇ · T̂ + Ĝ(∇φ1) −
λ∇φ1

φ1(1 − φ1)
.
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This allows us to rewrite (2.18) as follows:

∂U

∂t
+ (1 − 2φ1)(∇U)U − (U ⊗ U)∇φ1 + (∇V)U + (∇U)V

= ∇ · T̂ + Ĝ(∇φ1) −
β

φ1(1 − φ1)
U.(2.23)

The governing equations of the gel consist of (2.17), (2.19), (2.20), (2.21), and (2.23).
We note that the latter equation does not involve λ explicitly. Indeed, it appears only
in the balance of linear momentum of the center of mass (2.17).

We conclude this subsection by discussing two limiting regimes modeled by the
previously obtained system. First, let us consider the system obtained by setting
V = 0. This corresponds to fields initially satisfying V = 0 and such that λ solves
the equilibrium equation resulting from (2.17). The governing system for U and φ1

becomes

∂U

∂t
+ (1 − 2φ1)(∇U)U − (U ⊗ U)∇φ1

= ∇ · T̂ + Ĝ(∇φ1) −
β

φ1(1 − φ1)
U,(2.24)

Ft + ((1 − φ1)U) · ∇F = ∇((1 − φ1)U)F,

∂φ1

∂t
+ (((1 − φ1)U) · ∇)φ1 + φ1∇ · ((1 − φ1)U) = 0.

This corresponds to purely diffusive regimes where no net motion of the center of mass
of the mixture takes place. Of course, this type of regime would not be compatible,
for instance, with flow geometries with prescribed nonzero boundary velocity (e.g.,
shearing flow).

Another regime fully characterized by the single velocity V can also be obtained
from the governing system. Indeed, setting U = 0 in (2.17), (2.19), (2.20), (2.21),
and (2.23) and accounting for viscoelastic stress, we get

∂V

∂t
+ (V · ∇)V = ∇ · τ −∇λ,(2.25)

τ + ξ[τ̇ − (∇V)T τ − τ(∇V)] = η0D + (T1 + T2),(2.26)

Ft + V · ∇F = (∇V)F,(2.27)

∇ · V = 0,(2.28)

where T1 +T2 denotes the total elastic stress of the system (2.14) and (2.15). In terms
of dimensional analysis, including a dissipative stress in the system to account for
polymer-polymer friction results in an additional time scale tv = η0

L2
0β
t0 much greater

than that governing the relaxation of the diffusive velocity U:

(2.29) t0 =
βL2

0VmNx

KBT
.

(Here L0 denotes a typical macroscopic length scale of the problem. The dimensional
analysis is presented in a later section.) This is due to the fact that the polymer-
polymer viscosity coefficient represented by η0 is much larger that the polymer-solvent
friction coefficient β. Heuristically, we may argue that in a system where both veloci-
ties are initially present, U relaxes to 0 much faster than V. In the largest time scale,
the mixture is governed by equations (2.25)–(2.28) of viscoelastic flow, in a regime
characterized by transport only.
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2.3. Relaxation regimes. Many studies of gels address the relaxation regimes,
beyond transient behavior. For instance, such an approach has been used by Doi,
Tanaka, and other researchers in many pioneering studies of gel swelling [19], [7].
We now indicate how the proposed equations relate to these earlier models. For this
we return to our original component formulation (2.1) and (2.4)–(2.7). Addition of
(2.4)–(2.5), together with the constraint equation φ1 + φ2 = 1, yields

∇ · (φ1v1 + (1 − φ1)v2) = 0.

With the stress tensors of the form (2.8) and (2.9) and setting ψ1 = φ1W (F ) and
ψ2 ≡ 0, we get

T1 = φ1
∂W

∂F
FT − φ1λ,

T2 = −φ2λ.

The equations of balance of linear momentum become

∂v1

∂t
+ (v1 · ∇)v1 = ∇ ·

(
φ1

∂ψ1

∂F
FT

)
− φ1∇λ− β(v1 − v2),(2.30)

∂v2

∂t
+ (v1 · ∇)v2 = −φ2∇λ + β(v1 − v2).(2.31)

Moreover, neglecting inertial terms, we get

∇ · (φ1v1 + (1 − φ1)v2) = 0,

∇ · T1 + f1 = 0,

∇ · T2 + f2 = 0.

Taking into account that f1 = λ∇φ1 −β(v1 −v2) = −f2, the previous equations yield

∇ · (φ1v1 + (1 − φ1)v2) = 0,

∇ ·
(
φ1

∂W (F )

∂F
FT

)
+ φ1∇λ− β(v1 − v2) = 0,(2.32)

−φ2∇λ + β(v1 − v2) = 0.(2.33)

Addition of (2.32) and (2.33) yields

(2.34) ∇ ·
(
φ1

∂W (F )

∂F
FT − λ

)
= 0,

where ∂W (F )
∂F is the Piola–Kirchoff stress tensor [10]. Taking into account the balance

of mass equation, φ1 detF = 1, we rewrite (2.34) as

∇ ·
(

detF−1 ∂W (F )

∂F
FT − λ

)
= 0.

Note that σ = detF−1 ∂W (F )
∂F FT is the Cauchy stress tensor. Summarizing,

Ft + (v1) · ∇F = ∇(v1)F,

∂φ1

∂t
+ (v1 · ∇)φ1 + φ1∇ · v1 = 0,

∇ · (σ − λ) = 0,

−(1 − φ1)∇ · λ + β(v1 − v2) = 0,

∇ · (φ1v1 + (1 − φ1)v2) = 0.
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We observe that the first equation gives the chain rule, the second corresponds to
balance of mass, the third is the force balance, the fourth corresponds to Darcy’s law,
and the last is the incompressibility condition of the mixture.

Remark. Many analyses found in the literature consider additional linearization
of the previous system [23], [24], [25], [26], and [27].

3. One-dimensional geometry. We consider the gel occupying a strip domain

Ω = {(x, y, z) : −L ≤ x ≤ L}

in the form of a strip, with L > 0 fixed. For instance, this type of geometry may be
appropriate in modeling gliding behavior of bacteria by polysaccharide swelling [11].
We seek solutions of the governing system with x = M(X, t), x = N(X, t) denoting
the deformation map of the polymer and the fluid, respectively. The fields of the
problem are taken as follows:

(3.1) V = (V (x, t), 0, 0), U = (U(x, t), 0, 0), φ1 = φ1(x, t), λ = λ(x, y, z, t).

The deformation gradient matrix is

F = diag(g(x, t), 1, 1), with(3.2)

g(x, t) =
∂M(X, t)

∂X
|X=M−1(x,t) = detF.(3.3)

The equation of balance of mass for the polymer in Lagrangian form is

φ1(x, t) detF (x, t) = α,(3.4)

g(x, t) = αφ1(x, t)
−1

,(3.5)

where 0 ≤ α ≤ 1 is a parameter of the problem. It represents the volume fraction of
dry polymer in the reference configuration. For the deformation gradient F given in
(3.2) and (3.5), we calculate

T1 =
KBT

NxVm

(
α

2
3φ

1
3
1 −

(
1

2
+

Nx

N1

)
φ1 − χNxφ1(1 − φ1)

)
I − λφ1I

+ 2μφ1 diag(1, 1, α2φ−2
1 ).

T2 is as in (2.15). The second and third component equations in (2.17) give λ = λ(x, t)
(independent of y and z). Moreover, the equation ∇·V = 0 together with (3.1a) gives
V = V (t). Prescribing V (0) = 0, V (t) = 0, t > 0 follows, provided that ∇ · T = 0
holds. The latter determines λ in terms of φ1 and U , up to a constant. Moreover, φ1

and U satisfy the equations

∂φ1

∂t
+

∂(φ1(1 − φ1)U)

∂x
= 0,(3.6)

∂U

∂t
+

∂

∂x

(
1

2
U2(1 − 2φ1) −G(φ1)

)
= − β

φ1(1 − φ1)
U,(3.7)

where

G(φ1) =
KBT

VmNx

(
−1

2
α2/3φ

− 2
3

1 −
(

1

2
+

Nx

N1

)
log φ1

)

+ μα2φ−2
1 − KBTχ

Vm
φ1 +

KBT

N2Vm
log(1 − φ1).(3.8)
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The sign of G′(φ1) is very relevant to the forthcoming analysis. Indeed, the
condition G′(φ1) < 0 will be needed to guarantee hyperbolicity of the governing
system, and therefore is a requirement for the propagation of the swelling front towards
the solvent region. It turns out that G′(φ1) < 0 holds for polymer data. However,
in the case of polysaccharides with data as previously given, there is a quantity φc =
φc(μ), 0 < φc < 1, such that G′(φc) = 0. This may be interpreted in terms of the
onset of deswelling, observed in bacteria motility phenomenon [11]; it may also be
associated with volume phase transitions observed in systems with a small elastic
shear modulus [13].

We assume that, initially, the polymer occupies the strip −L < x < L, and the
solvent is in the region |x| > L. At a later time t > 0, the gel occupies the region
−S(t) < x < S(t), where x = S(t) denotes the position of the interface between the
gel and the pure solvent. We look for symmetric solutions about the origin, x = 0, i.e.,
φ1(x) = φ1(−x) and U(−x) = −U(x), x ∈ (−S(t), S(t)). Therefore, it is sufficient
to solve the problem for x > 0 only. Thus, we assume that (3.6) and (3.7) hold for
x ∈ (0, S(t)), t > 0, for the fields (φ1, U). Equation (2.7) for the incompressible
inviscid solvent φ2 = 1 holds in the region x > S(t). This implies that

(3.9) v = 0, λ = − KBT

VmN2
+ c,

where c is a constant. In addition, we choose c so that the pressure in the fluid region
takes a prescribed value, p0; that is, λ = p0, x > S(t).

The boundary conditions of the problem consist of symmetry conditions at x = 0
and balance of forces at the interface x = S(t). The former reduce to

(3.10)
∂φ1

∂x
(0, t) = 0, U(0, t) = 0.

Letting − and + denote the left and right limit at S(t), respectively, we formulate
boundary conditions. We first establish balance of forces

(3.11) (T1 + T2)
−
11 = (T2)

+
11.

Also, following Yamaue and Doi [24], we propose the following constitutive equation
that expresses the degree of permeability of the interface. For a given P > 0, we
assume that

(3.12) λ− − λ+ = P.

Using the expressions of Ti, i = 1, 2, and substituting (3.12) into (3.11) yields

P =
KBT

NxVm

(
α

2
3 (φ−

1 )
1
3 −

(
1

2
+

Nx

N1

)
φ−

1

)
− χ

KBT

Vm
φ−

1 (1 − φ−
1 ) − KBT

NxV2
(1 − φ−

1 )

+ 2μα2(φ−
1 )−1 +

KBT

N2Vm
.(3.13)

If the interface is fully permeable, then the pressure is continuous and P = 0 holds.
In the case of charged polymers the discontinuity of λ is related to the net surface
charge. Here, we take the point of view of P being a parameter of the problem. In
particular, we observe from (3.13) that prescribing P allows us to the determine the
saturation value φ−

1 ≡ φ∗. This, in turn, motives the definition of the interface as the
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location x = S(t) with φ1(S(t), t) = φ∗ that moves with the speed of the polymer.
Specifically, the dynamics of the interface are described by the following equations:

dS

dt
(t) = (1 − φ1(S(t), t))U(S(t), t),(3.14)

S(0) = L,(3.15)

φ1(S(t), t) = φ∗.(3.16)

The problem reduces to three equations, (3.6), (3.7), and (3.14), for the unknowns
(φ1, U, S), with boundary conditions (3.10) and (3.16) and initial conditions (3.15)
and

(3.17) φ1(x, 0) = φ0(x), U(x, 0) = 0, x ∈ (0, L).

We conclude this section by listing the time scales of the problem. Let L0 denote a
typical length; in polymer experiments, this would be of the order of centimeters. We
find the following time constants:

t0 =
βL2

0VmNx

KBT
, t1 =

βL2
0Vm

KBTχ
,

t2 =
βL2

0VmN2

KBT
, t3 =

βL2
0

μ
.

Comparing the time constants, we observe that

t0 =
Nx

χ
t1, t1 =

1

χN2
t2, t2 =

μN2Vm

KBT
t3.

For the data in (1), we have that

t2 ∼ 10−1t3.

The previous data reflect the relative orders of magnitude of the time scales in polymer
applications. The largest time constant is t0, and t2 is the smallest. Many works on
gels focus on the time scale t0 corresponding to the relaxation regime. In our work,
we study the dynamics at the time scale t2. After (3.6) and (3.7) are scaled to make
them nondimensional, G takes the form

G(φ1) = C0

(
−1

2
α2/3φ

− 2
3

1 −
(

1

2
+

Nx

N1

)
log φ1

)
+ C3α

2φ−2
1 − C2φ1 + C1 log(1 − φ1),

with dimensionless parameters

C0 =
β2L2

0VmN2
2

KBTNx
, C1 =

β2L2
0VmN2

2χ

KBT
,

C2 =
β2L2

0VmN2

KBT
, C3 =

μβ2L2
0V

2
mN2

2

K2
BT

2
.

The scaled equations and coefficients are employed in the numerical simulations.
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4. The Cauchy problem. In this section we consider the Cauchy problem for
(3.6) and (3.7) with initial conditions

U(x, 0) = U0(x),

φ1(x, 0) = φ0(x).(4.1)

First we show that for the range of physical parameters corresponding to a semidry
polymer, the governing system is of hyperbolic type with dissipation. Let us denote

u = (φ1, U)T ,

F =

[
φ1(1 − φ1)U,

1

2
U2(1 − 2φ1) −G(φ1)

]T
,

G =

[
0,

β

φ1(1 − φ1)
U

]T
.

The governing system becomes

(4.2)
∂u

∂t
+

∂F

∂x
(u) + G(u) = 0.

The gradient matrix is

DF =

[
(1 − 2φ1)U φ1(1 − φ1)

−U2 −G′(φ1) (1 − 2φ1)U

]
.

Eigenvalues λi, i = 1, 2, of DF are

λ1 = (1 − 2φ1)U +
√
−φ1(1 − φ1)(U2 + G′(φ1)),

λ2 = (1 − 2φ1)U −
√
−φ1(1 − φ1)(U2 + G′(φ1)).

They are real and distinct provided that

U2 + G′(φ1) < 0

holds. The hyperbolic region in the space (φ1, U) consists of the points between the
graphs of U = ±Û(φ1), with Û(φ1) =

√
|G′(φ1)|. The right eigenvectors of DF are

r1 =

[√
φ1(1−φ1)

|U2+G′(φ1)|
1

]
, r2 =

[
−
√

φ1(1−φ1)
|U2+G′(φ1)|

1

]
.

Let

V =

[√
φ1(1−φ1)

|U2+G′(φ1)| −
√

φ1(1−φ1)
|U2+G′(φ1)|

1 1

]
, V −1 =

⎡
⎣ 1

2

√
|U2+G′(φ1)|
φ1(1−φ1)

1
2

− 1
2

√
|U2+G′(φ1)|
φ1(1−φ1)

1
2

⎤
⎦ .

The characteristic coordinates w = V −1u give

w1 =
1

2

(√
φ1

1 − φ1
|U2 + G′(φ1)| + U

)
, w2 =

1

2

(
−

√
φ1

1 − φ1
|U2 + G′(φ1)| + U

)
.
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Let us define the pair of functions,

η(φ1, U) = −
∫
φ

G(ρ) dρ+
1

2
φ1(1−φ1)U

2, q = φ1(1−φ1)U

[
−G(φ1)+

1

2
U2(1−2φ1)

]
.

Lemma 4.1. The functions (η, q) form an entropy-flux pair for the hyperbolic
system.

Proof. We need to find B = (B1(φ1, U, x, t), B2(φ1, U, x, t)) such that

B = Dη,

BDF = Dq,

where D = (∂φ1 , ∂U )T . It is easy to verify that

Dη =

(
1

2
φ1(1 − φ1)U

2 −G,φ1(1 − φ1)U

)
,

Dq =

((
1

2
φ1(1 − φ1)U

2 −G

)
((1 − 2φ1)U − (U2 + G′)φ1(1 − φ1)U),(

1

2
φ1(1 − φ1)U

2 −G

)
φ1(1 − φ1) + φ1(1 − φ1)(1 − 2φ1)U

2

)
.

Choosing B = ( 1
2φ1(1 − φ1)U

2 −G, φ1(1 − φ1)U), a direct calculation gives

BDF = Dq.

Hence, (η, q) is an entropy-flux pair.
We now introduce the concept of L1-stability [4]. The Cauchy problem (3.6)–

(3.7), (4.1) is said to be L1-stable at an equilibrium state U = Û and φ1 = φ̂ if
there are positive numbers r and b such that any admissible bounded variation (BV)
solution U(x, t) and φ1(x, t) of (3.6)–(3.7), (4.1) defined on any time interval [0, T ),

0 < T ≤ ∞, and taking values in the ball Br(φ̂, Û) of R2 satisfies the inequality
(4.3)∫ ∞

∞
|φ1(x, t)− φ̂|+ |U(x, t)− Û | dx ≤ b

∫ ∞

∞
|U0(x)− Û |+ |φ0(x)− φ̂| dx, 0 ≤ t < T.

Lemma 4.2. The Cauchy problem (3.6)–(3.7), (4.1) is L1-stable at the equilibrium
state U = 0, φ = φ∗.

Proof. From Lemma 4.1 and the form of the entropy function, we see that η(φ1, U)
is C1 near the equilibrium U = 0, φ = φ∗. Thus, there are constants r > 0 sufficiently
small and d > 0 such that

d−
1
2 (|φ− φ∗| + |U |) ≤ |η(φ1, U)| ≤ d

1
2 (|φ− φ∗| + |U |)

holds for any (φ,U) ∈ Br(φ
∗, 0). Moreover, the entropy production is nonnegative;

i.e.,

BG = βU2 ≥ 0.

Hence, by an argument similar to [4], the L1-stability is readily established. So, there
exist r and d such that any admissible BV solution U(x, t) and φ1(x, t) of (3.6)–(3.7),

(4.1) satisfies (4.3) with Û = 0 and φ̂ = φ∗.
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We next derive the linearization of the governing system about the equilibrium
solution, U = 0 and φ1 = φ∗, where φ∗ ∈ (0, 1) denotes the saturation volume fraction.
We calculate

DF(ue) =

[
0 φ∗(1 − φ∗)

−G′(φ∗) 0

]
,

2λ1 =
√
φ∗(1 − φ∗)|G′(φ∗)|, 2λ2 = −

√
φ∗(1 − φ∗)|G′(φ∗)|,

r1 =

[√
φ∗(1 − φ∗)

|G′(φ∗)| , 1

]T

, r2 =

[
−

√
φ∗(1 − φ∗)

|G′(φ∗)| , 1

]T

,

V =

[√
φ∗(1−φ∗)
|G′(φ∗)| −

√
φ∗(1−φ∗)
|G′(φ∗)|

1 1

]
.

We also calculate

DG(u∗) =

[
0 0

0 β
φ∗(1−φ∗)

]
,

R = V −1(DG)V =
β

2φ∗(1 − φ∗)

[
1 1
1 1

]
,(4.4)

w = V −1u.

The resulting linear diagonal system is

∂w

∂t
+ diag(λ1, λ2)

∂w

∂x
+ Rw = 0.

We recall that a matrix A is strictly diagonally dominant if

Aii −
∑
i �=j

|Aij | ≥ 0, i, j = 1, 2, . . . , n.

It is easy to check that the matrix R defined by (4.4) has positive entries in the prin-
cipal diagonal and is diagonally dominant. However, since it is not strictly diagonally
dominant, the exponential decay property of TVxφ1 and TVxU established in The-
orem 2 of [6] cannot be asserted here. This prevents us from obtaining asymptotic
stability of solutions with respect to time.

Since the Cauchy problem (3.6)–(3.7) with initial condition (4.1) is L1-stable and
R is diagonally dominant, the results proved by Dafermos [5] on existence and decay
of BV solutions of weakly dissipative hyperbolic systems apply as follows.

Theorem 4.3. Let r, b be defined in (4.3). Consider integrable initial data
(φ0, U0) taking values in Br(φ

∗, 0). Let

σ =

∫ ∞

−∞
|U0(x)| + |φ0(x) − φ∗| dx

and

ω = TV(−∞,∞)|U0(x)| + TV(−∞,∞)|φ0(x)|

over (−∞,∞). Then there are positive constants σ0, ω0, a, and μ such that, when
σ < σ0 and ω < ω0, there exists an admissible global BV solution U(x, t), φ1(x, t) to
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the Cauchy problem (3.6)–(3.7) with (4.1), taking values in Br(φ
∗, 0). Furthermore,

for each fixed t ∈ (0,∞), (φ1(x, t), U(·, t)) is integrable and has bounded variation over
(−∞,∞): ∫ ∞

−∞
|φ1(x, t) − φ∗| + |U(x, t)| dx ≤ bσ,

TV(−∞,∞)|U(·, t)| + TV(−∞,∞)|φ1(·, t) − φ∗| ≤ aωe−μt + aσ.

Next we discuss the free boundary problem for the linearized system.

5. Analysis of the free boundary problem. We now analyze a free boundary
problem for (3.6) and (3.7). We consider the boundary and initial conditions given
by (3.10), (3.16), (3.14), (3.15), and (3.17).

Also, since φ1(x, 0) is the initial volume fraction, we have the bound 0 < φ1(x, 0) <
1 for any 0 ≤ x ≤ L. We consider the linearization of the above equations and
boundary conditions with respect to the equilibrium pair (φ∗, 0).

5.1. Linearization and hyperbolicity condition. We linearize (3.6) and
(3.7) with respect to φ = φ∗ and U = 0, set φ̄ = φ1 − φ∗, and write the result-
ing system as follows:

∂φ̄

∂t
+ φ∗(1 − φ∗)

∂Ū

∂x
= 0,

∂Ū

∂t
−G′(φ∗)

∂φ̄

∂x
= − β

φ∗(1 − φ∗)
Ū .(5.1)

The linearized free boundary conditions (3.10), (3.16), (3.14), (3.15), and (3.17) be-
come

S′(t) = Ū(S(t), t)(1 − φ∗),

S(0) = L,

φ̄(S(t), t) = 0,

Ū(0, t) = 0, t ∈ [0, T ],(5.2)

φ̄(x, 0) = φ0(x) − φ∗, x ∈ [0, L],

Ū(x, 0) = Ū0(x), x ∈ [0, L].

Because 0 < φ0 < 1, we have −φ∗ < φ̄ < 1− φ∗. Let us recall that G′(φ∗) < 0, which
ensures hyperbolicity. Let Γ = G′(φ∗). We make the following change of variables:

φ̄ =
√
−Γ(p + q),

Ū =
√
φ∗(1 − φ∗)(p− q).(5.3)

Then the system (5.1) and (5.2) changes to the following equivalent system of equa-
tions:

pt + λvpx = − β

2φ∗(1 − φ∗)
(p− q),(5.4)

qt − λvqx =
β

2φ∗(1 − φ∗)
(p− q)(5.5)
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with free boundary conditions

S′(t) = (1 − φ∗)
√
φ∗(1 − φ∗)(p(S(t), t) − q(S(t), t)),

S(0) = L,

p(S(t), t) + q(S(t), t) = 0, t ∈ [0, T ],

p− q = 0, t ∈ [0, T ],(5.6)

p(x, 0) = p0(x), x ∈ [0, L],

q(x, 0) = q0(x), x ∈ [0, L],

where λv =
√
−Γφ∗(1 − φ∗).

5.2. Free boundary problem for the linearized system. A free boundary
problem analogous to the present one is studied in [28]. However, the proof of the
theorem relies on the assumption that the speed U is strictly positive at x = 0. Here,
we generalize the global existence result to the case U = 0 at x = 0. We first point
out that the local existence of solution stated next follows from the theorem in [12].

Theorem 5.1. Let 0 < φ∗ < 1, Γ < 0 be constant. Suppose that p0(x), q0(x) ∈
C1[0, L] satisfy compatibility conditions at (0, 0) and (L, 0). Let

(5.7) |p0(L)| <
√
−Γ

2(1 − φ∗)
.

Then there is a t0 > 0 such that the free boundary problem (5.4), (5.5), and (5.6) has
a unique solution (p(x, t), q(x, t), S(t)) ∈ C1(Q̄S,t0) × C1(Q̄S,t0) × C2[0, t0], where

QS,t0 = {(x, t), 0 < x < S(t), 0 < t < t0} ,

and t0 depends on S(0), S′(0), ‖p0(x)‖C1[0,L], and ‖q0(x)‖C1[0,L].
In order to prove global existence of solutions, we will use the lemmas stated next.

The proof of Lemma 5.2 makes use of the approach presented in [28].
Lemma 5.2 (see [28]). Let (φ̄, Ū , S) be a C1 solution of (5.1) and (5.2), and

define p, q as in (5.3). Also, suppose that p0 satisfies (5.7). Then

|S′| < λv, |p(S(t), t)| <
√
−Γ

2(1 − φ∗)
, |q(S(t), t)| <

√
−Γ

2(1 − φ∗)

hold for t ∈ (0, t0).
Proof. We proceed by contradiction. First, since S′(0) > λv, we suppose that

there exists 0 < t̂ ≤ t0 such that

lim
t→t̂−

S′(t) = λv and S′(t) < λv for 0 < t < t̂

holds. This implies that S′(t) reaches its maximum as t approaches t̂, and, conse-
quently,

lim
t→t̂−

S′′(t) ≥ 0.

This together with boundary condition (5.2a) yields

(5.8) lim
t→t̂−

d

dt
Ū(S(t), t) = lim

t→t̂−

∂U

∂x
λv +

∂U

∂t
≥ 0 at (S(t̂), t̂).
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On the other hand, because of boundary condition (5.2c), φ̄ ≡ 0 on (S(t), t) follows,
and therefore

(5.9)
d

dt
φ̄(S(t), t) =

∂φ̄

∂x
λv +

∂φ̄

∂t
= 0 on (S(t), t).

Multiplying (5.1a) by
√
−Γ√

φ∗(1−φ∗)
, adding the result to (5.1b), and taking limits as

x → S(t) and t → t̂−, we get

(5.10)

√
−Γ√

φ∗(1 − φ∗)

(
∂φ̄

∂x
λv +

∂φ̄

∂t

)
+

∂U

∂x
λv +

∂U

∂t
+

βλv

φ∗(1 − φ∗)2
= 0.

By application of (5.9), this reduces to

∂U

∂x
λv +

∂U

∂t
= − βλv

φ∗(1 − φ∗)2
< 0,

which contradicts inequality (5.8). We can follow the analogous argument in the case
that

lim
t→t̂−

S′(t) = −λv and S′(t) > −λv for 0 < t < t0.

Therefore,

|S′(t)| < λv =
√
−Γφ∗(1 − φ∗)

holds. This inequality together with boundary conditions (5.6a) and (5.6c) yields that
the two remaining conclusions of the lemma hold.

Lemma 5.3 (see [28]). Let (φ̄, Ū , S) ∈ C1(QS,t0) × C1(QS,t0) × C2[0, t0] be a
solution of the system (5.1) satisfying boundary conditions (5.2). Also, suppose that

max {‖p0‖L∞ , ‖q0‖L∞} ≤ C0 <
√
−Γ

2(1−φ∗) . Then |p(x, t)| ≤ C0 and |q(x, t)| ≤ C0 for

x ∈ QS,t0 , where QS,t0 is defined in Theorem 5.1.
Proof. Arguing by contradiction, suppose otherwise; that is, there exist ε > 0,

(x∗, t∗) ∈ QS,t0 , such that

|p(x∗, t∗)| = max {|p(x∗, t∗)|, |q(x∗, t∗)|} = C0 + ε,

max {|p(x, t)|, |q(x, t)|} < C0 + ε for any fixed t < t∗.

First, notice that S(t∗) > 0, because, otherwise, if S(t∗) = 0, we can apply the
boundary conditions at x = 0 and x = S(t) to conclude that p = q = 0 ≤ C0. For
0 < x∗ ≤ S(t), there exists δ > 0 such that x∗ − λvδ > 0 and t∗ − δ > 0. Integrating
on characteristics, we have

p(x∗, t∗) = e−
β

2φ∗(1−φ∗) δp(x∗ − λvδ, t
∗ − δ)

+

∫ δ

0

β

2φ∗(1 − φ∗)
e−

β
2φ∗(1−φ∗) (τ−δ)q(x∗ + (τ − δ), t∗ + (τ − δ)) dτ.

With the help of the mean value theorem, we get the estimate

|p(x∗, t∗)| ≤ e−
β

2φ∗(1−φ∗) δ|p(x∗ − λvδ, t
∗ − δ)|

+ |q(x∗ + (θ − δ), t∗ + (θ − δ))|(1 − e−
β

2φ∗(1−φ∗) δ)

≤ max {|p(x∗ − λvδ, t
∗ − δ)|, |q(x∗ + (θ − δ), t∗ + (θ − δ))|}

< C0 + ε.
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This is a contradiction to the statement |p(x∗, t∗)| = C0 + ε. Now, if x∗ = 0, there
exist 0 < δ < t∗ such that 0 < λvδ < S(t); applying the boundary condition p(0, t∗) =
q(0, t∗) yields

|p(0, t∗)| = |q(0, t∗)| ≤ max {|q(λvδ, t
∗ − δ)|, |p(λv(δ − θ), t− (δ − θ))|}

< C0 + δ,

where 0 < θ < δ. This is again a contradiction to |p(x∗, t∗)| = C0 + ε. Hence
|p(x, t)| ≤ C0. We can follow an analogous argument in the case that |q(x∗, t∗)| =
max {|p(x∗, t∗)|, |q(x∗, t∗)|} = C0 + ε.

Remark. Note that we can choose C0 so that max{‖φ0‖L∞ , ‖U0‖L∞} < min{φ∗,
1 − φ∗}. Hence φ̄ is always bounded by min{φ∗, 1 − φ∗}.

Lemma 5.4. Under the assumption of Lemma 5.3 and
∫ L

0
φ̄0 dx+φ∗L > 0, there

exist C > 0 and η > 0 such that

C ≥ S(t) ≥ η > 0,

where η depends on C0, p0, q0, φ
∗, and Γ.

Proof. Integrating ∂φ̄
∂t + φ∗(1 − φ∗)∂Ū∂x = 0 with respect to x at fixed t, we get

∫ S(t)

0

∂φ̄

∂t
dx + φ∗(1 − φ∗)Ū(S(t), t) = φ∗(1 − φ∗)Ū(0, t).

By applying boundary conditions (5.2a) and (5.2d), we get

∫ S(t)

0

∂φ̄

∂t
dx + φ∗S′(t) = 0.

Moreover, using the boundary condition φ̄(S(t), t) = 0, we get

d

dt

{∫ S(t)

0

φ̄dx + φ∗S

}
= 0.

Integration with respect to t gives

∫ S(t)

0

φ̄dx + φ∗S −
∫ L

0

φ̄0 dx− φ∗L = 0.

Following Lemma 5.3, we can choose C0 such that

‖φ̄‖L∞ < 2
√
−ΓC0 ≤ min{φ∗, 1 − φ∗} − ε.

Hence

S(t) ≥ 1

2
√
−ΓC0 + φ∗

(∫ L

0

φ̄0 dx + φ∗L

)
> 0,

and

S(t) ≤ 1

−2
√
−ΓC0 + φ∗

(∫ L

0

φ̄0 dx + φ∗L

)
.
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Lemma 5.5. Then under the assumption of Lemma 5.3,

|px(x, t)| ≤ C3, |qx(x, t)| ≤ C3

for 0 < t < t0, where C3 depends on ‖p0‖C1[0,L], ‖p0‖C1[0,L], and C0.

Proof. First, let us suppose that t0 < t1 = L
2λv

as in Figure 1. Differentiating
(5.4) and (5.5) with respect to x yields

pxt + λvpxx = − β

2φ∗(1 − φ∗)
(px − qx),(5.11)

qxt − λvqxx =
β

2φ∗(1 − φ∗)
(px − qx)(5.12)

and boundary condition

px + qx = 0 at x = 0,(5.13)

(2(1 − φ∗)p−
√
−Γ)px + (2(1 − φ∗)p +

√
−Γ)qx = 0 at x = S(t).(5.14)

Now, for fixed 0 < t < t0, define

A(t) = ‖px(x, t)‖L∞[0,S(t)],

B(t) = ‖qx(x, t)‖L∞[0,S(t)],

C(t) = max {A(t), B(t)} ,
C1 = max

{
‖p0x‖L∞[0,L], ‖q0x‖L∞[0,L]

}
.

If (x, t) ∈ Ω3, integrating along the characteristics of (5.11) and (5.12) yields

qx(x, t) = e−
β

2φ∗(1−φ∗) (t−t0)qx(S(t0), t0)

+

∫ t

t0

β

2φ∗(1 − φ∗)
e

β
2φ∗(1−φ∗) (τ−t)px(S(t0) − λv(τ − t0), τ) dτ,(5.15)

px(S(t0), t0) = e−
β

2φ∗(1−φ∗) t0px(S(t0) − λvt, 0)

+

∫ t0

0

β

2φ∗(1 − φ∗)
e

β
2φ∗(1−φ∗) (τ−t0)qx(S(t0) − λv(t0 − τ), τ) dτ.(5.16)

(S(t 0),t 0)

Ω2

Ω1
(x,t)

Ω3

t1 =L/2λv

Fig. 1.
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From the boundary condition (5.14), we have

qx =

√
−Γ − 2(1 − φ∗)p

2(1 − φ∗)p +
√
−Γ

px.

It follows from Lemma 5.3 that |p(x, t)| ≤ C0 < const. Hence

|qx| ≤
∣∣∣∣
√
−Γ − 2(1 − φ∗)p

2(1 − φ∗)p +
√
−Γ

∣∣∣∣ |px|
≤

∣∣∣∣
√
−Γ + 2(1 − φ∗)C0√
−Γ − 2(1 − φ∗)C0

∣∣∣∣ |px| = C2|px|,

where C2 := |
√
−Γ+2(1−φ∗)C0√
−Γ−2(1−φ∗)C0

| > 1. Combining (5.15) and (5.16) gives

|qx(x, t)| ≤ C1C2e
− β

2φ∗(1−φ∗) t + C2

∫ t

0

β

2φ∗(1 − φ∗)
e

β
2φ∗(1−φ∗) (τ−t)C(τ) dτ.

For (x, t) ∈ Ω1 ∪ Ω2, we have the estimate

|qx(x, t)| ≤ C1e
− β

2φ∗(1−φ∗) t +

∫ t

0

β

2φ∗(1 − φ∗)
e

β
2φ∗(1−φ∗) (τ−t)C(τ) dτ.

Hence

B(t) ≤ C1C2e
− β

2φ∗(1−φ∗) t + C2

∫ t

0

β

2φ∗(1 − φ∗)
e

β
2φ∗(1−φ∗) (τ−t)C(τ) dτ

holds. Now, for (x, t) ∈ Ω2, we have the following relations:

px(x, t) = e−
β

2φ∗(1−φ∗)
x
λv px

(
0, t− x

λv

)

+

∫ t

t− x
λv

β

2φ∗(1 − φ∗)
e

β
2φ∗(1−φ∗) (τ−t)qx

(
λv

(
τ − t +

x

λv

)
, τ

)
dτ,

qx

(
0, t− x

λv

)
= e−

β
2φ∗(1−φ∗) (t−

x
λv

)qx

(
λv

(
t− x

λv

)
, 0

)

+

∫ t−x/λv

0

β

2φ∗(1 − φ∗)
e

β
2φ∗(1−φ∗) (τ−(t− x

λv
))px

(
λv

(
t− x

λv
− τ

)
, τ

)
dτ.

Application of the boundary condition (5.13) to the previous expression yields the
estimate

|px(x, t)| ≤ C1e
− β

2φ∗(1−φ∗) t +

∫ t

0

β

2φ∗(1 − φ∗)
e

β
2φ∗(1−φ∗) (τ−t)C(τ) dτ.

For (x, t) ∈ Ω1 ∪ Ω3, we get

|px(x, t)| ≤ C1e
− β

2φ∗(1−φ∗) t +

∫ t

0

β

2φ∗(1 − φ∗)
e

β
2φ∗(1−φ∗) (τ−t)C(τ) dτ.

Hence,

C(t) ≤ C1C2e
− β

2φ∗(1−φ∗) t + C2

∫ t

0

β

2φ∗(1 − φ∗)
e

β
2φ∗(1−φ∗) (τ−t)C(τ) dτ.
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By Gronwall’s inequality, we have

C(t) ≤ C1C2e
− β

2φ∗(1−φ∗) teC2(1−e
− β

2φ∗(1−φ∗)
t
) =: C3.

Note that C3 has a bound depending only on C1, C2, and t0. Now for t0 > t1, we take
the value of the solution at t = t1 as initial condition and extend the estimate up to

t1 + S(t1)
2λv

. Since S(t1) > η > 0, we can extend the estimate up to t0. This completes
the proof of the lemma.

Lemma 5.6. Under the assumption of Lemma 5.3, there exists ε > 0 such that

|S′(t)| ≤ λv(1 − ε).

Proof. Suppose that for any positive constant ε > 0, there exist 0 < t∗ ≤
min {t0, t1} and 0 < δ < ε such that |S′(t∗)| = λv(1 − δ). Thus, we have

∂φ̄

∂x
λv(1 − δ) +

∂φ̄

∂t
= 0 on (S(t), t),

lim
t→t∗

∂U

∂x
λv(1 − δ) +

∂U

∂t
≥ 0.(5.17)

By following arguments analogous to those in the derivation of (5.10) and using (5.17),
we have

(5.18) λvδ

(
λv

φ∗(1 − φ∗)

∂φ̄

∂x
+

∂Ū

∂x

)
≤ − β

φ∗(1 − φ∗)

λv(1 − δ)

1 − φ∗ .

By Lemma 5.5, |px| ≤ C3 and |qx| ≤ C3, and thus φ̄x and Ūx, as linear combinations

of px and qx, are also bounded by a constant. Hence, λv

φ∗(1−φ∗)
∂φ̄
∂x + ∂Ū

∂x > −C holds,

where C = ( λv

φ∗(1−φ∗) + 1)C3. Thus, letting (x, t) → (x∗, t∗) and using (5.18) and

(5.17), we get

−δλvC +
β(1 − δ)

1 − φ∗ ≤ 0,

which implies

δ ≥ β

C(1 − φ∗)λv + β
> 0.

This contradicts inequality (5.18).
We now state the following theorem on global existence. It also states that the

interface remains bounded and cannot collapse to a point.
Theorem 5.7. Let the assumptions of Theorem 5.1 hold. Let δ > 0 be such that

max{‖p0‖L∞ , ‖q0‖L∞} < δ.

Then for any t > 0, there exists a unique solution

(U(x, t̃), φ1(x, t̃), S(t̃)) ∈ C1(Q̄S,t) × C1(Q̄S,t) × C2[0, t],

where QS,t =
{
(x, t̃), 0 < x < S(t), 0 < t̃ < t

}
. Moreover, there exist η and μ such

that

μ1 > S(t̃) > η > 0.
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Proof. Because the transformation (5.3) is nonsingular, there exists δ > 0 such
that if

max{|p(x, t)|, |q(x, t)|} < δ <

√
−Γ

2(1 − φ∗)
,

then |φ| < max{φ∗, 1− φ∗, } holds. Now, define tmax to be the maximum time of the
local solution to (5.1) with (5.2). First, let us suppose that tmax ≤ t1 = L

2λv
. By

Lemma 5.6, |S′(t)| ≤ λv(1− ε), with ε > 0 depending on max{‖p0‖C1 , ‖q0‖C1}. From
Lemmas 5.3 and 5.5, we have that

lim
t→tmax

‖p(x, t)‖C1 < C3,

lim
t→tmax

‖q(x, t)‖C1 < C3.

On the other hand, by Lemma 5.4, there exists η > 0 such that S(t) ≥ η > 0 for
0 < t < tmax. Then by the local existence theorem, we can extend the solution
beyond tmax; hence we have tmax ≥ t1. Now, taking {φ̄(x, t1), U(x, t1), S(t1)} as

initial condition, we can extend the solution up to time L
2λv

+S(t1)
2λv

. Note that S(t) > η,

and therefore we can further extend the solution up to L
2λv

+mS(t1)
2λv

for any m ∈ Z
+.

Hence, the solution exists for all t > 0.

6. Numerical simulations. Based on the theoretical study, the following sim-
ulations are carried out for the Cauchy problem, with periodic boundary conditions.
In order to achieve numerical stability, an artificial dissipation of form γ�2φ1 is added
to the balance of mass equation, with γ > 0 small. Data are taken from Table 1.

It is well known that the value of β may be very sensitive to the volume fraction
of the polymer. We consider the following expression for β [20]:

β(φ1) = (1 − φ1)φ
2γ

(3γ−1)

1 ,

where γ = 1/2 for a Θ-solvent and γ = 3/5 for a good solvent [27]. Since we are
interested in initial behavior where φ1 jumps from 0 to 1, near the initial location of
the interface between solvent and dry polymer, effectively, β is considerably smaller
than the constant value in Table 1. The time and length scales of the calculations are
taken to be 10−7s and 10−5m, respectively. We take the polymer domain as the strip
(−1, 3) centered at x = 1. Because of the symmetry of the problem, we show only
the strip (−1, 1). We use the spectral method [17] to solve the nonlinear equation
recursively; the result is shown in Figure 2. We observe that initially, the diffusive
velocity builds up quickly, and the volume fraction changes rapidly. However, after
a short initial time interval, the diffusive velocity decays, and the polymer volume
fraction tends to an equilibrium saturation value.

7. Conclusion. We have analyzed the model developed in [3] for a two-com-
ponent mixture of elastic solid and solvent and obtained effective equations for gels.
We investigate the multiple time scales of the system and characterize the corre-
sponding dynamics. We argue that studying early dynamics provides information
on the evolution of swelling fronts and also gives a mathematical characterization of
type II diffusion in polymers. We consider one-dimensional geometries and study the
corresponding Cauchy problem, by applying the theory of Dafermos [5] on weakly
dissipative hyperbolic systems. This allows us to establish existence and asymptotic
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Fig. 2. (a) polymer profile, (b) speed profile, (c) maximum relative velocity U versus time.

properties of the solution of the Cauchy problem. We interpret the breakdown of the
hyperbolicity condition, occurring at critical volume fractions for polysaccharide data,
as an onset of deswelling. We formulate and study the free boundary problem for the
linearized system and prove existence and uniqueness of solutions. This provides di-
rect information on interface evolution; in particular, we show that the strip domain
cannot collapse to a point. Follow-up studies address the nonlinear free boundary
problem by combining estimates of the Cauchy problem with the information on the
solution of the linearized problem.
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A MATHEMATICAL MODEL FOR THE CONTROL AND
ERADICATION OF A WOOD BORING BEETLE INFESTATION∗

STEPHEN A. GOURLEY† AND XINGFU ZOU‡

Abstract. We propose a mathematical model for an infestation of a wooded area by a beetle
species in which the larva develop deep in the wood of living trees. Due to the difficulties of detection,
we presume that only a certain proportion of infested trees will be detected and that detection, if
it happens, will occur only after some delay, which could be long. An infested tree once detected is
immediately cut down and burned. The model is stage structured and contains a second time delay,
which is the development time of the beetle from egg to adult. There is a delicate interplay between
the two time delays due to the possibility in one case for a larva to mature even in a tree destined for
destruction. We present conditions sufficient for infestation eradication and discuss the significance
of the conditions, particularly in terms of the proportion of infested trees that need to be detected
and removed. If the infestation is successfully eradicated, there are always a number of trees that
completely escape infestation, and we compute lower bounds and an approximation for this number.
Finally, we present the results of some numerical simulations.

Key words. delay, age-structure, infestation, eradication

AMS subject classifications. 34K25, 34K60, 92D30

DOI. 10.1137/060674387

1. Introduction. In this paper we present a mathematical model of a possible
strategy for the control of an infestation of wood boring beetles in which the larvae
are burrowed deep in the wood of trees so that they are well protected from natural
enemies but still have some intrinsic death rate. Our model also incorporates removal
of trees that have been diagnosed as infested. Our work has been motivated in large
part by recent infestations in parts of the US and Canada of Anoplophora glabripennis,
commonly known as the Asian longhorned beetle (ALB), which attacks hardwood
trees. Maple, willow, and elm constitute especially good hosts. Birch, ash, poplar, and
numerous other tree species can also host this pest. The ALB has been intercepted at
ports and warehouses all over North America, and it is believed that the pest entered
the US (later spreading to Canada) in wooden packing crates used for imports from
China. The beetle is native to China and Korea, and in China has caused major
damage to poplar plantations with significant economic loss [6]. So far in North
America the pest has affected only urban and suburban areas, but the potential
impact of the ALB on the millions of acres of hardwood forests in the US and Canada
could be devastating. It has been estimated that 1.2 billion trees could be at risk if
the ALB were to become established in North America (see Nowak et al. [13] for a
further discussion of the potential impact). Since the ALB species is not native to
North America, it has no known natural enemies there (in fact, even in China it has
few natural enemies).
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The first time the ALB was found in North America seems to have been in
Brooklyn, NY in 1996. Since then, the species has been found infesting trees in
several US cities, including New York and Chicago, and it was found in Toronto,
Canada for the first time in 2003.

Currently, the only known effective method of control of the ALB is to cut down,
chip, and burn infested trees. Chemical controls are of limited potential because the
larvae are deep within the tree and no effective chemical controls are yet available,
though the effectiveness of certain insecticides is being investigated. It is current
practice to establish quarantines around known infested areas and to monitor potential
host trees within a certain distance of an infested area. Adult beetles are poor fliers
but can fly short distances up to a few hundred yards to other neighboring trees,
though in fact an adult often remains on the same host tree from which it emerged.
ALB infested trees once removed are always replaced with a nonhost species. Other
measures currently used for control include inspection of imports and the imposition
of regulations on wooden packing material used for imports.

The ALB is a large beetle (up to 1.5 in long) which is easy to recognize. Adults
are active from late spring to fall, when they perish. However, a large proportion of
the life cycle of the beetle is spent in the larval stage deep within a tree, and this
makes the detection of ALB activity more difficult. ALB larval activity on a tree
is usually spotted either by inspectors or by members of the public. Warning signs
of a tree being infested include exit holes (typically the diameter of a dime), oozing
sap, sawdust accumulation, and unseasonable yellowing or drooping of leaves. The
females prefer to lay their eggs in the upper canopy of a tree, though the lower trunk
and branches can become affected if the upper canopy has been damaged by previous
ALB activity. Preference for the upper canopy means that detection is more likely
if inspectors are able to inspect it, for example, by climbing the tree. This slows
down and increases the expense of systematically searching for ALB in a wooded area
with the consequence of trees potentially missing detection. We shall aim to include
these factors in the models we present in this paper. Since at present ALB affects
only urban or suburban areas of North America, an infested tree probably stands a
reasonable chance of being diagnosed as such, though possibly not until some time
after the laying of eggs. An infested tree, if detected, will always be cut down and
burned, but if not detected, the tree may survive several more years. Its death in this
case will be due to the weakening of the tree and disruption of sap flow caused by the
tunneling due to the larvae.

Adult ALB of both sexes are promiscuous, mating repeatedly and with different
partners, according to greenhouse experiments reported in Morewood et al. [11]. The
female will chew through the bark on the upper trunk and lay an egg. A single female
can lay from 35 to 90 eggs during her lifetime of one season. The egg hatches after 1–2
weeks and the larva burrows deep into the tree, where it is very well protected from
natural enemies, so there is a high probability of survival to maturity (this probability
does depend to some extent on the tree species; see Morewood et al. [12]). Later in
its development the larva enters the pupa stage, and finally the adult emerges from
the tree. The whole duration from egg to adult lasts about one year but can be as
long as 18 months. Adult emergence creates visible exit holes, which can sometimes
be seen with binoculars, though the holes are not the only or necessarily the earliest
sign of tree infestation.

In our models we shall deal with the issue of infested tree detection by suppos-
ing that there is a time delay σ between the time a tree becomes infested and the
subsequent detection of ALB activity on the tree. To allow for the difficulties of
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detection we assume that only a certain fraction λ of infested trees is detected and
then immediately removed. Such a fraction might well be close to 1, if the infestation
is confined to a small suburban wooded area, but is likely to be much smaller if ALB
infestation were to develop in a wilderness area. The models include a second time
delay τ which models the developmental time of the beetle from egg to adult. As we
shall see, there is a delicate interplay between the two delays σ and τ for reasons that
will be explained early in the next section.

Subsection 2.1 deals with the case when σ < τ and presents the model for this
case together with a detailed derivation. Positivity of solutions is established, which
is not at all obvious from the appearance of the model equations. Then, sufficient
conditions are presented for infestation eradication and a lower bound is given for the
final number of susceptible trees.

Subsection 2.2 addresses the case σ > τ . The model equations for this case look
similar to those for the σ < τ case, but there are subtle differences, and a different
strategy is required to establish positivity of solutions. For this case we again present
an inequality that is sufficient for infestation eradication. Subsection 2.3 deals with
the case when λ = 1. In subsection 2.4 we present a Laplace transform analysis that
enables us to calculate analytically the final number of susceptible trees in the case
when the number of adult beetles is small throughout the course of the infestation.

In some parameter regimes the infestation is not eradicated but instead all trees
become infested, with the number of susceptible trees tending to zero (we shall see,
however, that if the infestation is eradicated, there are always some trees that escape
infestation). In situations in which eradication has not been achieved, the beetle
numbers typically evolve to a periodic cycle in a forest in which all trees end up being
infested. In reality the goal, of course, is to prevent this from happening and aim
for eradication, but without necessarily requiring the detection and removal of every
single infested tree.

2. Model derivation and analysis. Let Ts(t) and Ti(t) denote, respectively,
the numbers of susceptible and infested trees. Trees can survive about 4 years of
infestation before they die; this is somewhat longer than the timescale on which we
would want to remove infested trees, so disease-induced death of infested trees is
neglected. It is also reasonable to neglect natural mortality of trees which occurs on
an even longer timescale (e.g., of 100 years or more for maple trees). The quantities
L(t) and A(t) denote the numbers of larval and adult beetles.

The model we shall develop involves two time delays. We shall let σ denote the
amount of time that elapses between the instant that a tree becomes infested and the
subsequent instant at which there is a probability λ of its being removed and burnt
as a consequence (i.e., a fraction λ ∈ [0, 1] of trees that become infested are removed
σ time units later). We shall let τ denote the time it takes between the laying of an
egg and subsequent emergence of an adult beetle, i.e., the duration of the larval stage,
which in this paper is understood to include all pre-adult stages. It will be clear that
the cases σ < τ and σ > τ have to be dealt with separately. For example, if σ < τ ,
then the period between time of infection of a tree and its subsequent removal (if it
is removed) is not long enough to allow any larva to mature; however, a larva can
still mature if it is fortunate enough to be in a host tree that is not removed. On the
other hand if σ > τ , then it is possible for larvae to complete their development into
maturity and escape as adult beetles even if all infested trees are removed.
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2.1. The case σ < τ . For the case when σ < τ , we propose the following
model:

(2.1)
dTs(t)

dt
= −βA(t)Ts(t),

(2.2)
dTi(t)

dt
= βA(t)Ts(t) − λβA(t− σ)Ts(t− σ),

(2.3)
dL(t)
dt

= Ti(t)B(A(t)) − μLL(t) − λβA(t− σ)Ts(t− σ)

∫ σ

0

B(A(t− a))e−μLa da

− e−μLτB(A(t− τ))

[
Ti(t− τ) − λβ

∫ σ

0

A(ã + t− τ − σ)Ts(ã + t− τ − σ) dã

]
,

(2.4)
dA(t)
dt

= e−μLτB(A(t− τ))

[
Ti(t− τ) − λβ

∫ σ

0

A(ã + t− τ − σ)Ts(ã + t− τ − σ) dã

]
− μAA(t).

Here, all parameters are nonnegative with λ ∈ [0, 1]. We justify each equation in (2.1)–
(2.4) below.

Susceptible trees are converted to infested trees via contact with adult beetles,
and it is assumed that the rate at which this occurs is given by the law of mass action
(equation (2.1)). There is no term reflecting regeneration of trees, partly because this
would occur on a relatively slow timescale and partly because tree replanting would
be of some nonsusceptible species and might not take place at all while the infestation
is still present.

The second term in the right-hand side of (2.2) represents the cutting down (and
subsequent burning) of infested trees. It is assumed that when a tree becomes infested,
it may be recognized and diagnosed as such but only after some time delay σ, which
models the time taken for the tree to begin exhibiting telltale signs. A fraction
λ ∈ [0, 1] of trees which become infested are later cut down, so that at time t the rate
of cutting down of infested trees is λ times the infection rate at the earlier time t−σ.

The first term in the right-hand side of (2.3) is the birth rate, assumed propor-
tional to the total number of infested hosts (recall that a tree is considered infested
after contact with an adult beetle) and also to B(A(t)), where the function B(·) is the
number of eggs laid per unit time per tree. We assume that all eggs hatch successfully,
but some of the larvae may die in the tree at a rate μL. Of course, larvae may also die
due to trees being cut down and burned. The rate at which this happens is evidently
related to the total cutting down rate of infested and dead trees and is computed as
follows:

λβA(t− σ)Ts(t− σ)︸ ︷︷ ︸
rate of tree removal

∫ σ

0

B(A(t− a))e−μLa da︸ ︷︷ ︸
larvae per tree

.

The last term in (2.3), which also appears in (2.4), is the rate at time t at which
larvae mature into adult beetles. We next provide a rigorous derivation of this term,
which is essentially the birth rate at the earlier time t− τ (τ being the length of the
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maturation period), modified to allow for natural mortality and mortality due to tree
removal. Death of adult beetles is modeled by the last term in (2.4).

To derive the maturation term for the case when σ < τ , let b(t, a) denote the
density of beetles at time t of age a. Larval beetles and adult beetles are, respectively,
those of age less than τ and greater than τ so that

(2.5) L(t) =

∫ τ

0

b(t, a) da, A(t) =

∫ ∞

τ

b(t, a) da.

It is larval beetles that are affected by removal of trees, but we must note that, since
we assume σ < τ here, the larvae that are removed due to tree removal will have age
up to at most σ. Any older larvae will necessarily be in trees that escaped removal.
We model this as follows using von Foerster age-structured equations:

(2.6)
∂b

∂t
+

∂b

∂a
= −μLb(t, a) − λβA(t− σ)Ts(t− σ)B(A(t− a))e−μLa, a < σ,

(2.7)
∂b

∂t
+

∂b

∂a
= −μLb(t, a), σ < a < τ.

The explanation for the last term in the right-hand side of (2.6) is as follows. It is
the rate at which larvae of age a are removed due to tree removal, and is therefore
the rate of tree removal λβA(t − σ)Ts(t − σ), times the larvae density of age a per
tree that is thus removed, which will be the birth rate per tree at time t−a times the
probability of survival to age a, i.e., B(A(t− a))e−μLa.

For adult beetles,

(2.8)
∂b

∂t
+

∂b

∂a
= −μAb(t, a), a > τ.

Differentiating the expression for A(t) in (2.5) gives

(2.9)
dA

dt
= b(t, τ) − μAA,

assuming that b(t,∞) = 0. We shall find b(t, τ) in terms of the birth rate b(t, 0) by
integrating (2.6) and (2.7) along characteristics. Since we previously defined B(A(t))
as the number of eggs laid per unit time per tree, the birth rate b(t, 0) is given by

b(t, 0) = Ti(t)B(A(t)).

Define

bζ(a) = b(a + ζ, a).

Then, for a ≤ σ,

dbζ(a)

da
=

[
∂b

∂t
+

∂b

∂a

]
t=a+ζ

= −μLbζ(a) − λβA(a + ζ − σ)Ts(a + ζ − σ)B(A(ζ))e−μLa.

Solving this for bζ(a) leads to

(2.10)

b(t, a) =

e−μLaB(A(t− a))

[
Ti(t− a) − λβ

∫ a

0

A(ã + t− a− σ)Ts(ã + t− a− σ) dã

]
, a ≤ σ.
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For ages a between σ and τ , an easier calculation involving (2.7) shows that

b(t, a) = b(t− (a− σ), σ)e−μL(a−σ),

and b(t− (a− σ), σ) can be found from (2.10) giving that, for σ ≤ a ≤ τ ,

(2.11)

b(t, a) = e−μLaB(A(t−a))

[
Ti(t− a) − λβ

∫ σ

0

A(ã + t− a− σ)Ts(ã + t− a− σ) dã

]
.

This expression looks rather like the corresponding one for a ≤ σ (expression (2.10)),
but note that the upper limit on the integral is now σ rather than a. This difference
is very important. Putting a = τ into (2.11) gives an expression for b(t, τ), which we
insert into (2.9), thereby completing the derivation of (2.4).

The expression for b(t, τ) is those larvae of age τ and represents the rate at which
larval beetles become adult beetles (the adult recruitment rate). Expression (2.11)
with a = τ shows that this is basically the birth rate at the earlier time t−τ (corrected
for larval mortality) minus those larvae that would have made it to adulthood but were
removed and destroyed with their host tree (the integral term represents accumulated
removal of trees that could have hosted the larvae we are discussing, i.e., trees that
became infested at times between t − τ − σ and t − τ). An alternative viewpoint is
that the term in square brackets in (2.11) (with a = τ) is the “effective” number of
host trees at time t− τ when the eggs are laid since, in this σ < τ regime, those trees
that are removed might as well not have been there in the first place.

The derivation of the larval equation (2.3) is by differentiation of the expression
for L(t) in (2.5), breaking the integral up into the a < σ and a ∈ (σ, τ) contributions,
and using (2.6) and (2.7).

As we are considering the σ < τ situation, in which it is impossible for a larva
to complete its development in a tree that gets removed, we should expect that when
λ = 1 (i.e., every tree that becomes infested is later removed), the maturation rate
b(t, τ) should be zero. When (and only when) λ = 1, the number of infested trees at
time t is given by

Ti(t) =

∫ t

t−σ

βA(ξ)Ts(ξ) dξ.

Therefore, indeed, b(t, τ) = 0 when λ = 1, for σ < τ .

2.1.1. Initial data and positivity. The initial data for system (2.1), (2.2),
(2.3), (2.4) has the form

(2.12)

Ts(t) = T 0
s (t) ≥ 0, t ∈ [−τ − σ, 0],

A(t) = A0(t) ≥ 0, t ∈ [−τ − σ, 0],

Ti(t) = β

∫ 0

−σ

A0(t + ξ)T 0
s (t + ξ) dξ, t ∈ [−τ, 0],

L(0) =

∫ 0

−τ

B(A0(ξ))eμLξTi(ξ) dξ

− λβ

∫ σ

0

∫ −a

−τ

B(A0(ξ))A0(a + ξ − σ)T 0
s (a + ξ − σ)eμLξ dξ da,

where T 0
s (t) and A0(t) are prescribed continuous functions. The last two conditions

in (2.12) are compatibility conditions, by which we mean that the initial data for Ti
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and L is not arbitrary but is computed from the prescribed nonnegative initial data
for Ts and A. For example, the larvae present at time t = 0 are the offspring of the
adults at earlier times, and the modeling described thus far in this paper leads to
the expression in (2.12) for L(0). The initial data (2.12) including the compatibility
conditions is the only ecologically relevant initial data.

Proposition 1. Let σ < τ and λ ∈ [0, 1], and let the initial data for system
(2.1), (2.2), (2.3), (2.4) satisfy (2.12). Let the birth function be bounded and satisfy
B(0) = 0 and B(A) > 0 for A > 0. Then all variables in (2.1)–(2.4) are defined for
all t > 0 and are bounded and remain nonnegative for t > 0.

Proof. Existence of solutions follows by the method of steps which, since σ < τ
here, is carried out successively on the steps t ∈ [0, σ], t ∈ [σ, 2σ], etc. It is easily seen
that this works on the subsystem consisting of (2.1), (2.2), and (2.4). For example
when t ∈ [σ, 2σ], all arguments of the delayed variables in (2.4) remain less than σ.
So, local existence is assured for Ts(t), Ti(t), and A(t) (global existence will be shown
later). It turns out that L(t) has an explicit expression in terms of these variables
(see (2.17) below). Next we shall show that all variables remain nonnegative for as
long as they are defined.

It is obvious that Ts(t) ≥ 0 for all t > 0. Next we shall show nonnegativity of
A(t). This will be achieved by jointly showing nonnegativity of A(t) and the function
f(t) defined by

(2.13) f(t) = Ti(t) − λβ

∫ t

t−σ

A(ξ)Ts(ξ) dξ.

Using (2.2) we find that

(2.14)
df

dt
= β(1 − λ)A(t)Ts(t).

Also, (2.4) can be rewritten in a form involving f(t),

(2.15)
dA(t)

dt
= e−μLτB(A(t− τ))f(t− τ) − μAA(t).

As regards initial conditions for f(t), note that when t ∈ [−τ, 0], from (2.12),

f(t) = β

∫ 0

−σ

A(t + ξ)Ts(t + ξ) dξ − λβ

∫ t

t−σ

A(ξ)Ts(ξ) dξ

= (1 − λ)β

∫ 0

−σ

A(t + ξ)Ts(t + ξ) dξ ≥ 0,(2.16)

so f(t) is nonnegative initially. The functions f(t) and A(t) can be viewed as satis-
fying (2.14) and (2.15), considered here as a coupled system in which Ts(t) is some
known nonnegative function. The assumptions on B(·) and the nonnegativity of f(t)
and A(t) for t ≤ 0 allow us to deduce, from Theorem 2.1 on page 81 of Smith [16],
that f(t) ≥ 0 and A(t) ≥ 0 for all t > 0.

From (2.2),

dTi(t)

dt
= βA(t)Ts(t) − λβA(t− σ)Ts(t− σ)

≥ βA(t)Ts(t) − βA(t− σ)Ts(t− σ) =
d

dt

∫ t

t−σ

βA(ξ)Ts(ξ) dξ.
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Thus Ti(t)−
∫ t

t−σ
βA(ξ)Ts(ξ) dξ is an increasing function of t which, by (2.12), is zero

when t = 0. Hence

Ti(t) ≥
∫ t

t−σ

βA(ξ)Ts(ξ) dξ ≥ 0

for t > 0.
Finally, we address positivity of L(t). The solution of (2.3) subject to the com-

patibility condition in (2.12) is most easily found from (2.5) with (2.10) and (2.11)
and turns out to be

(2.17)

L(t) =

∫ t

t−τ

B(A(ξ))e−μL(t−ξ)Ti(ξ) dξ

− λβ

∫ σ

0

∫ t−a

t−τ

B(A(ξ))A(a + ξ − σ)Ts(a + ξ − σ)e−μL(t−ξ) dξ da.

Indeed, the most general solution of (2.3), which is linear in L(t), is the above expres-
sion plus C exp(−μLt) for some constant C, and the latter term would have to be set
to zero to satisfy (2.12). The state space of initial data in (2.12) is forward invariant
in this sense.

Using (2.13) and nonnegativity of f(t), it can be shown that

L(t) ≥
∫ σ

0

∫ t

t−ξ̄

B(A(ξ))A(ξ̄ + ξ − σ)Ts(ξ̄ + ξ − σ)e−μL(t−ξ) dξ dξ̄.

Hence L(t) ≥ 0. Having shown nonnegativity of each solution variable while it is
defined, we may now establish global existence. This can be done by establishing a
priori bounds. Indeed, nonnegativity of the variables and (2.1) imply that Ts(t) is
decreasing, so that Ts(t) is bounded above and below. Since df/dTs = −(1 − λ), it
follows that f(t) is also bounded above and below. It then follows from (2.15), using
boundedness of B(·), that A(t) is bounded. Then (2.13) implies that Ti(t) is bounded.
Then expression (2.17) shows that L(t) is bounded and the proof is complete.

2.1.2. Infestation eradication. In this section we present conditions on the
parameters which guarantee that for initial data satisfying (2.12) in section 2.1.1 the
infestation is eradicated.

Theorem 1. Let σ < τ and λ ∈ [0, 1], and let the initial data for system
(2.1), (2.2), (2.3), (2.4) satisfy (2.12). Let the birth function satisfy B(0) = 0 and
0 < B(A) ≤ B′(0)A for A > 0. Assume further that

(2.18) (1 − λ)e−μLτB′(0)

(
Ts(0) + β

∫ 0

−σ

A0(ξ)T 0
s (ξ) dξ

)
< μA.

Then the solution of the system satisfies A(t) → 0 and L(t) → 0 as t → ∞, so that
the infestation is eradicated.

Furthermore, the final number Ts(∞) of susceptible trees is not less than

(2.19)

Ts(0) exp

⎛
⎜⎜⎜⎝−β

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A0(0)+(1−λ)e−μLτB′(0)

⎛
⎝Ts(0)+β

∫ 0

−σ

A0(ξ)T 0
s (ξ) dξ

⎞
⎠
∫ 0

−τ

A0(ξ) dξ

μA−(1−λ)e−μLτB′(0)

⎛
⎝Ts(0)+β

∫ 0

−σ

A0(ξ)T 0
s (ξ) dξ

⎞
⎠

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎞
⎟⎟⎟⎠ .
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Remark 1. Inequality (2.18) essentially arises from the worst imaginable (but
not actually attainable) scenario in which the entire forest becomes infested before
the infestation is eradicated. If the infestation is successfully eradicated, there will
always be some trees that escape infestation, and (2.19) gives a lower bound for this
number of escaped trees. However, in the proof of the theorem we are faced with the
difficulty that the number Ts(∞) is not known exactly. We need an upper bound for
the function f(t) defined by (2.13) involving only known quantities, and in achieving
this we are forced to use Ts(∞) ≥ 0 so that we are effectively considering an extreme

but unattained situation. The quantity Ts(0)+β
∫ 0

−σ
A0(ξ)T 0

s (ξ) dξ is the total initial
number of trees (susceptible and infested), all of which would end up infested in this
worst case scenario. But a fraction 1 − λ of them is not removed. The left-hand side
of (2.18) is the per capita maturation rate at large times, being the per capita egg
laying rate per tree B′(0), multiplied by the number of infested trees at large times
corrected for tree removal, multiplied by the survival probability e−μLτ .

Proof of Theorem 1. From (2.1) and nonnegativity of solutions, Ts(t) is a decreas-
ing nonnegative function which therefore approaches a nonnegative limit as t → ∞.

Recall the function f(t) defined by (2.13). From (2.1) and (2.14) note that

df

dTs
= −(1 − λ).

Hence

f(t) = −(1 − λ)Ts(t) + Ti(0) − λβ

∫ 0

−σ

A0(ξ)T 0
s (ξ) dξ + (1 − λ)Ts(0).

Since Ts(t) ≥ 0,

f(t) ≤ Ti(0) − λβ

∫ 0

−σ

A0(ξ)T 0
s (ξ) dξ + (1 − λ)Ts(0)

= (1 − λ)

[
Ts(0) + β

∫ 0

−σ

A0(ξ)T 0
s (ξ) dξ

]
using (2.12).

Using the form of (2.4) involving f(t) (i.e., (2.15)) and the above upper bound for
f(t), we obtain

(2.20)

dA(t)

dt
≤ (1 − λ)e−μLτB(A(t− τ))

(
Ts(0) + β

∫ 0

−σ

A0(ξ)T 0
s (ξ) dξ

)
− μAA(t)

≤ (1 − λ)e−μLτB′(0)A(t− τ)

(
Ts(0) + β

∫ 0

−σ

A0(ξ)T 0
s (ξ) dξ

)
− μAA(t).

Since the right-hand side of this is increasing as a function of the delayed variable
A(t − τ), we may say that A(t) is bounded above by the solution of the differential
equation obtained by replacing “≤” by “=” and satisfying the same initial data as
that for A (see, e.g., Theorem 1.1 on page 78 of Smith [16]). By a straightforward
and standard argument involving the characteristic equation of the resulting linear
delay equation, utilizing Theorem 5.1 on page 92 of Smith [16] to assure ourselves
that the dominant eigenvalue is real, we conclude that A(t) → 0 as t → ∞ under
the hypothesis (2.18). The proof that L(t) → 0 follows from (2.3) and the theory
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of asymptotically autonomous systems (see, e.g., Castillo-Chavez and Thieme [2]).
Furthermore since the convergence of A(t) to zero will be exponential, we are assured
that

∫∞
0

A(t) dt < ∞, which is necessary for what follows.
Integrating (2.21) from 0 to ∞ and rearranging gives

∫ ∞

0

A(t) dt ≤
A0(0) + (1 − λ)e−μLτB′(0)

(
Ts(0) + β

∫ 0

−σ

A0(ξ)T 0
s (ξ) dξ

)∫ 0

−τ

A0(ξ) dξ

μA − (1 − λ)e−μLτB′(0)

(
Ts(0) + β

∫ 0

−σ

A0(ξ)T 0
s (ξ) dξ

) .

Inserting this estimate into

Ts(∞) = Ts(0) exp

(
−β

∫ ∞

0

A(t) dt

)
,

which follows from (2.1), gives the estimate (2.19). The proof is complete.

2.2. The case σ > τ . If σ > τ , then the maturation time for a larva is less than
the time that elapses between a tree becoming infested and its possible subsequent
removal σ time units later. Thus, if an egg is laid on a particular tree just after that
tree became infested, then that larva is not at risk of having its host tree removed
and burned. If an egg is laid on a tree that became infested some time ago, such
that the tree now has less than τ time units to go before the time at which there is a
probability λ of its being removed, that larva could still survive to maturation if its
host is not actually removed. These considerations lead us to the following different
model equations:

(2.21)
dTs(t)

dt
= −βA(t)Ts(t),

(2.22)
dTi(t)

dt
= βA(t)Ts(t) − λβA(t− σ)Ts(t− σ),

(2.23)
dL(t)
dt

= Ti(t)B(A(t)) − μLL(t) − λβA(t− σ)Ts(t− σ)

∫ τ

0

B(A(t− a))e−μLa da

− e−μLτB(A(t− τ))

[
Ti(t− τ) − λβ

∫ τ

0

A(ã + t− τ − σ)Ts(ã + t− τ − σ) dã

]
,

(2.24)
dA(t)
dt

= e−μLτB(A(t− τ))

[
Ti(t− τ) − λβ

∫ τ

0

A(ã + t− τ − σ)Ts(ã + t− τ − σ) dã

]
− μAA(t).

All parameters are again nonnegative with λ ∈ [0, 1].
This system looks very similar to the corresponding system for σ < τ described in

subsection 2.1, but there is an important difference: the upper limits in the integrals
in (2.23) and (2.24) are τ rather than σ. This is because in this case, we need only
break down b(t, a) into two cases: (i) when a < τ , b(t, a) is governed by the PDE
in (2.6); and (ii) for a > τ , b(t, a) is governed by the PDE in (2.8). The derivation
of (2.23) and (2.24) is similar to but even simpler than that of (2.3) and (2.4).
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The first goal for this model is again to prove positivity of the solutions corre-
sponding to the initial compatibility conditions (2.12). First, (2.21) gives Ts(t) =

Ts(0) exp(−β
∫ t

0
A(θ) dθ) > 0 for all t ≥ 0. In order to obtain the positivity of other

variables, we introduce a new variable,

g(t) = Ti(t) − λβ

∫ τ

0

A(ã + t− σ)Ts(ã + t− σ) dã

= Ti(t) − λβ

∫ t+τ−σ

t−σ

A(ξ)Ts(ξ) dξ.(2.25)

Then we have

(2.26)
dg(t)

dt
= βA(t)Ts(t) − λβA(t + τ − σ)Ts(t + τ − σ),

and the adults equation (2.24) can be rewritten as

(2.27)
dA(t)

dt
= e−μLτB(A(t− τ))g(t− τ) − μAA(t).

Since g(t) does not behave as nicely as the function f(t) in subsection 2.1, we have
to tackle positivity via another strategy.

Note that, for t ∈ [0, σ − τ ],

dg(t)

dt
≥ βA(t)Ts(t) − βA(t− (σ − τ))Ts(t− (σ − τ)) =

d

dt

∫ t

t−(σ−τ)

βA(ξ)Ts(ξ) dξ,

implying that g(t) −
∫ t

t−(σ−τ)
βA(ξ)Ts(ξ) dξ is increasing on [0, σ − τ ]. Thus, for

t ∈ [0, σ − τ ], we have

g(t) −
∫ t

t−(σ−τ)

βA(ξ)Ts(ξ) dξ

≥ g(0) −
∫ 0

−(σ−τ)

βA(ξ)Ts(ξ) dξ

= Ti(0) − λ

∫ −(σ−τ)

−σ

βA(ξ)Ts(ξ) dξ −
∫ 0

−(σ−τ)

βA(ξ)Ts(ξ) dξ

≥ Ti(0) −
∫ −(σ−τ)

−σ

βA(ξ)Ts(ξ) dξ −
∫ 0

−(σ−τ)

βA(ξ)Ts(ξ) dξ

= Ti(0) −
∫ 0

−σ

βA(ξ)Ts(ξ) dξ = 0.(2.28)

Hence,

(2.29) g(t) ≥
∫ t

t−(σ−τ)

βA(ξ)Ts(ξ) dξ for t ∈ [0, σ − τ ].

This implies that if A(0) > 0 and Ts(0) > 0 (recalling that A0(θ) and T 0(θ) are
continuous in (2.12)), then g(0) > 0. Let δ = min{τ, σ − τ}; then either both A(t)
and g(t) remain positive on [0, δ] or A(t) will become negative before g(t). In the
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latter case, there is a t0 ∈ (0, δ] such that A(t0) = 0, A(t) > 0, and g(t) > 0 for t < t0.
It follows from (2.27) that

A′(t0) = e−μLτB(A(t0 − τ))g(t0 − τ) > 0,

which is impossible. This contradiction shows that A(t) > 0 and g(t) > 0 for all
t ∈ [0, δ]. Repeating this process, we can obtain the positivity of A(t) and Ts(t) on
[0, 2δ] and, by induction, on [0, nδ] for all positive integers n, giving the positivity of
A(t) and Ts(t) for all t > 0.

Once we have obtained the positivity of A(t) and Ts(t), the positivity of Ti(t) and
L(t) can be obtained in precisely the same way as in subsection 2.1. Therefore, we
have obtained the following positivity result for (2.21)–(2.24), parallel to Proposition 1
for (2.1)–(2.4).

Proposition 2. Let σ > τ and λ ∈ [0, 1], and let the initial data for system
(2.21)–(2.24) satisfy (2.12) with A(0) > 0 and Ts(0) > 0. Let the birth function
satisfy B(0) = 0 and B(A) > 0 for A > 0. Then all variables in (2.21)–(2.24) remain
nonnegative for t > 0.

We next seek conditions under which the infestation will be eradicated. Adding (2.21)
and (2.26) gives

d

dt
[g(t) + Ts(t)] = −λβA(t− (σ − τ))Ts(t− (σ − τ)) ≤ 0.

Thus,

g(t) ≤ g(t) + Ts(t) ≤ g(0) + Ts(0)

= Ti(0) − λβ

∫ −(σ−τ)

−σ

A(ξ)Ts(ξ) dξ + Ts(0)

= β

∫ 0

−σ

A(ξ)Ts(ξ) dξ − λβ

∫ −(σ−τ)

−σ

A(ξ)Ts(ξ) dξ + Ts(0)

= (1 − λ)β

∫ −(σ−τ)

−σ

A(ξ)Ts(ξ) dξ + β

∫ 0

−(σ−τ)

A(ξ)Ts(ξ) dξ + Ts(0).(2.30)

Therefore, in the case σ > τ , if (2.18) is replaced by

(2.31)

e−μLτB′(0)

[
(1 − λ)β

∫ −(σ−τ)

−σ

A(ξ)Ts(ξ) dξ + β

∫ 0

−(σ−τ)

A(ξ)Ts(ξ) dξ + Ts(0)

]
< μA,

then by an argument similar to that in the proof of Theorem 1, we can conclude that
the solution of system (2.21)–(2.24) with the initial compatibility conditions (2.12)
satisfies A(t) → 0 and L(t) → 0 as t → ∞; that is, the infestation will be eradicated.
We have proved the following theorem.

Theorem 2. Let σ > τ and λ ∈ [0, 1], and let the initial data for system (2.21),
(2.22), (2.23), (2.24) satisfy (2.12) with Ts(0) > 0 and A(0) > 0. Let the birth function
satisfy B(0) = 0 and 0 < B(A) ≤ B′(0)A for A > 0. Assume further that (2.31) holds.
Then the solution of the system satisfies A(t) → 0 and L(t) → 0 as t → ∞ so that
the infestation is eradicated.

As in section 2.1, under the assumptions in Theorem 2 and based on the Ts(t)
and A(t) equations (i.e., (2.21) and (2.27)) and the estimate (2.30) for the function
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g(t), we can also establish a lower bound for Ts(∞), the final number of susceptible
trees. Indeed, if we denote by M the right-hand side of (2.30), then by an argument
similar to that for obtaining the estimate (2.19), we can derive the following lower
bound for Ts(∞):

(2.32) Ts(∞) ≥ Ts(0) exp

⎛
⎜⎜⎜⎝−β

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A0(0) + e−μLτB′(0)M

∫ 0

−τ

A0(ξ) dξ

μA − e−μLτB′(0)M

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎞
⎟⎟⎟⎠ .

2.3. The case λ = 1. In this subsection we discuss the situation when λ = 1,
which means that every tree that becomes infested is removed σ time units later. We
shall deal with both of the cases σ < τ and σ > τ . In either case, the expression

(2.33) Ti(t) =

∫ t

t−σ

βA(ξ)Ts(ξ) dξ

is available to us, though the implications of this fact for the cases σ < τ and σ > τ
are different. Expression (2.33) gives us the total number of infested trees at time
t, which, when λ = 1, is simply the accumulation of all new infestations over the
previous σ units of time (the corresponding expression for Ti(t) when λ �= 1 appears
later (expression (2.39)) and in this case includes trees that became infested before
time t− σ but escaped detection).

In the case σ < τ the use of expression (2.33) in (2.4) yields A′(t) = −μAA(t)
so that A(t) → 0, and the infestation is eradicated. This is hardly surprising since if
every infested tree is removed σ time units after the time of infestation, and σ < τ ,
then no larva is being given enough time to mature.

If σ > τ , the equation for A(t) is (2.24), and the use of (2.33) leads to

(2.34)
dA(t)

dt
= e−μLτB(A(t− τ))

∫ t−τ

t−σ

βA(ξ)Ts(ξ) dξ − μAA(t).

We will use this equation to show that the infestation is always eradicated when
λ = 1, regardless of the values of σ and τ . The truth of this result even in the σ > τ
case is a little surprising, since this case offers the possibility of some larvae maturing
before their host tree is destroyed. However, numerical simulations do show that even
though eradication is still the final outcome, there may be a long transient in which
the infestation grows worse for a while before dying out.

Theorem 3. Let λ = 1, and consider the system consisting of either (2.1)–(2.4)
or (2.21)–(2.24), with initial data satisfying (2.12) with Ts(0) > 0 and A(0) > 0. Let
the birth function satisfy B(0) = 0 and 0 < B(A) ≤ B′(0)A for A > 0. Then the
infestation is eradicated, that is, (Ti(t), L(t), A(t)) → (0, 0, 0) as t → ∞.

Proof. It is sufficient to show that A(t) → 0. Then L(t) → 0 follows trivially
from (2.3) or (2.23) as appropriate, and Ti(t) → 0 follows from (2.33). We have
already commented above that if σ < τ , then A(t) → 0 trivially; this can be extended
to σ = τ . So it remains to consider the case σ > τ , and it is here that we shall
make use of (2.34), which has to be coupled to (2.21). The latter equation, together
with nonnegativity of solutions, implies that Ts(t) must decay monotonically to some
nonnegative limit as t → ∞. If Ts(t) → 0, then the asymptotic limit of (2.34) is
just A′(t) = −μAA(t), and so A(t) → 0. So it remains to consider the case that
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limt→∞ Ts(t) > 0. If this is so, then from (2.21) it follows that

(2.35)

∫ ∞

0

A(t) dt < ∞.

If we can show that, additionally,

(2.36)

∫ ∞

0

|A′(t)| dt < ∞,

then a result from integration theory assures us that limt→∞ A(t) = 0. The integral
in (2.34) can be expressed in terms of Ts(t − τ) and Ts(t − σ) using (2.21), and the
monotonicity properties of Ts(t) therefore assure us of the existence of a finite C such
that ∣∣∣∣

∫ t−τ

t−σ

βA(ξ)Ts(ξ) dξ

∣∣∣∣ ≤ C for all t ≥ 0.

Therefore, integration of (2.34) and using the estimate 0 < B(A) ≤ B′(0)A lead to∫ ∞

0

|A′(t)| dt ≤ Ce−μLτB′(0)

∫ 0

−τ

A0(t) dt + (Ce−μLτB′(0) + μA)

∫ ∞

0

A(t) dt.

Hence
∫∞
0

|A′(t)| dt < ∞. The proof is complete.

2.4. Approximation of Ts(∞). In subsections 2.1 and 2.2 we have seen that,
under the eradication condition (2.18) for system (2.1)–(2.4), or condition (2.31) for
system (2.21)–(2.24), the infestation is eradicated and the beetle does not affect the
entire forest, since A(t) → 0 and Ts(t) → Ts(∞) =: T ∗

s > 0. Lower bounds for T ∗
s are

provided by inequalities (2.19) and (2.32) for models (2.1)–(2.4) and (2.21)–(2.24), re-
spectively. In this subsection we provide an approach for obtaining an approximation
for T ∗

s . We present our analysis only for (2.21)–(2.24); the analysis for (2.1)–(2.4) is
similar.

It is easily seen using (2.26) that the function

t → g(t) −
∫ t

t−(σ−τ)

βA(ξ)Ts(ξ) dξ

is increasing for all t ≥ 0. But (2.30) implies that this function is bounded from
above. Therefore, it has a limit as t → ∞, and thus g(t) also has a limit as t → ∞,
since we consider the situation in which A(t) → 0. It follows from (2.25) that T ∗

i :=
limt→∞ Ti(t) also exists and T ∗

i = limt→∞ g(t). Now, when t is sufficiently large, A(t)
becomes very small, and hence we may study the linearized approximation of (2.27)
for small A(t), and also replace g(t − τ) by its (as yet undetermined) limiting value
T ∗
i as t → ∞ to obtain

(2.37)
dA(t)

dt
= e−μLτB′(0)T ∗

i A(t− τ) − μAA(t).

Letting p be the transform variable, the Laplace transform Ā(p) of A(t) is

Ā(p) =

A0(0) + e−μLτT ∗
i B

′(0)e−pτ

∫ 0

−τ

A0(ξ)e−pξ dξ

p− e−μLτT ∗
i B

′(0)e−pτ + μA
.
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The structure of (2.37) assures us that the dominant eigenvalue of its characteristic
equation is real (see Smith [16]). Furthermore, this dominant eigenvalue is negative,
since we consider the situation when A(t) → 0, so let it be −p∗(T ∗

i ), to emphasize the
dependence on T ∗

i , with p∗(T ∗
i ) > 0. This dominant eigenvalue is also the singularity

of Ā(p) of greatest real part. By the inversion formula for Laplace transforms, A(t)
can be expressed as a contour integral, which by Cauchy’s residue formula can be
evaluated as a sum of residues of the poles of Ā(p). We shall include in this calculation
only the pole of greatest real part, which is located at p = −p∗(T ∗

i ), to give

A(t) ≈ res
(
Ā(p)ept, p = −p∗(T ∗

i )
)

=

e−p∗(T∗
i ) t

[
A0(0) + e−μLτT ∗

i B
′(0)ep

∗(T∗
i )τ

∫ 0

−τ

A0(ξ)ep
∗(T∗

i )ξ dξ

]
1 + τe−μLτT ∗

i B
′(0)ep

∗(T∗
i )τ

.

Now, from (2.21),

T ∗
s = Ts(0) exp

(
−β

∫ ∞

0

A(t) dt

)
,

giving

(2.38)

T ∗
s ≈ Ts(0) exp

⎛
⎜⎜⎜⎝−

β

[
A0(0) + e−μLτT ∗

i B
′(0)ep

∗(T∗
i )τ

∫ 0

−τ

A0(ξ)ep
∗(T∗

i )ξ dξ

]
p∗(T ∗

i )(1 + τe−μLτT ∗
i B

′(0)ep
∗(T∗

i )τ )

⎞
⎟⎟⎟⎠ .

The solution of (2.22), subject to the initial value formula for Ti(0) from (2.12), is

(2.39) Ti(t) =

∫ t

t−σ

βA(ξ)Ts(ξ) dξ + (1 − λ)

∫ t−σ

−σ

βA(ξ)Ts(ξ) dξ,

which states that the number of infested trees at time t is the accumulated total of
newly infested trees since time t− σ, plus the accumulated total over all times prior
to t− σ that escaped being cut down. Since we consider the case when A(t) → 0, we
can use (2.39) to find T ∗

i in terms of T ∗
s as follows:

T ∗
i = (1 − λ)

∫ ∞

−σ

βA(ξ)Ts(ξ) dξ

= (1 − λ)

[∫ 0

−σ

βA0(ξ)T 0
s (ξ) dξ −

∫ ∞

0

dTs(ξ)

dξ
dξ

]
,

giving

(2.40) T ∗
i = (1 − λ)

[∫ 0

−σ

βA0(ξ)T 0
s (ξ) dξ + Ts(0) − T ∗

s

]
.

Recall that p∗(T ∗
i ) > 0 has been defined such that p = −p∗(T ∗

i ) is the singularity of
Ā(p) of greatest real part. Therefore, p∗(T ∗

i ) satisfies

(2.41) −p∗(T ∗
i ) − e−μLτT ∗

i B
′(0)ep

∗(T∗
i )τ + μA = 0.

Equation (2.41) defines p∗(T ∗
i ) as a function of T ∗

i , and then (2.38) and (2.40) are
solved simultaneously for T ∗

s and T ∗
i .
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3. Numerical simulations. We have carried out some numerical simulations
of our model for both the σ < τ and σ > τ situations. Fortunately, the alternative
formulations of the two systems in terms of the functions f(t) and g(t) make the sys-
tems easily amenable to simulation using standard software tools for delay equations
including those found within MATLAB.

For the σ < τ situation described in subsection 2.1, we simulate the system of
three equations consisting of (2.1), (2.14), and (2.15). Note that one of the delays,
σ, is not explicitly present in this system. However, σ plays a role through the
formula (2.16), which is used to compute the initial data for the variable f from
that for A and Ts. We measure time in months, so τ = 12, corresponding to the
maturation time of one year. We chose the birth rate function B(A) to have the form
B(A) = bmAe−aA, a common choice in the mathematical study of insect infestations,
because it reflects the decreasing per capita egg laying rate due to crowding. In this
formula the quantity bm is the egg laying rate per female adult beetle per tree at
lower densities without the effects of crowding. We assumed that a single female
lays on average about 60 eggs during her life (though estimates vary considerably).
She is active only in summer, but we average over a year to arrive at a figure of
5 eggs per female per month. Good data on the survival probability for the larvae
are not available, but by being deep inside the trees the larvae are well protected
from predators, so if we assume a survival probability of about 0.8, this leads to
μL = 0.0186. Values for other parameters are shown in the figures. Figures 1 and 2
illustrate two situations in which σ < τ . In Figure 1 the infestation is eradicated,
whereas in Figure 2 (in which we used a lower number for the probability λ of an
infested tree being detected and removed) the number of susceptible trees tends to
zero and the entire forest ends up infested, with the number of adult beetles tending
to a constant. Other simulations showed a similar outcome but with the number of
adults evolving to a periodic cycle. We also noted from our numerical experiments
that (2.18) does not appear to be the best possible condition for eradication (i.e., it
is sufficient but not necessary).

For the σ > τ situation of subsection 2.2, the appropriate system to simulate is
that consisting of (2.21), (2.26), and (2.27). This system involves both delays σ and
τ explicitly, with initial data for g calculated from that for A and Ts using (2.25)
and the initial data formula for Ti in (2.12). Figure 3 shows a simulation for the
σ > τ situation in which the time between tree infestation and tree removal is a little
longer than the time taken for a larva to complete its development and mature as an
adult beetle. One expects that it will be more difficult to achieve eradication. The
simulation shows that it is still possible to do so, but only by detecting and removing
95% of infested trees. Figure 4 shows a situation with λ = 1, i.e., every infested
tree is later destroyed, but with σ chosen to be considerably larger than τ , so that
many larvae can complete their maturation and emerge as adults even though their
host tree is doomed. With λ = 1, eradication is the final outcome (Theorem 3) even
though σ > τ , but the simulation shows a large and destructive transient, with very
few susceptible trees remaining after the infestation has died out.

4. Discussion. We have derived a mathematical model to describe the infesta-
tion of wood boring beetles with the Asian longhorned beetle (ALB) as a prototype.
Two delays are needed for the model. One of these delays, denoted by σ, is the av-
erage duration between the time a tree becomes infested and the time the infestation
in the tree is detected and the tree removed. The second delay is the maturation
delay τ for the beetle. Since the purpose is to examine whether or not the cut-burn
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Fig. 1. The σ < τ case: a simulation of (2.1), (2.14), and (2.15). Parameter values were
τ = 12, λ = 0.9, β = 0.005, σ = 3, bm = 0.005, a = 0.1, μL = 0.0186, μA = 0.55. For these values,
(2.18) is satisfied (by a fairly narrow margin) and the infestation is eradicated.

(or removal) control strategy is successful, we have also incorporated a removal rate
λ ∈ [0, 1] into the model. The parameter λ accounts for the possibility that some
infested trees might escape detection, which is very likely indeed if ALB activity were
to reach wilderness areas, and also permits us to explore the possibility that infes-
tation eradication might be possible without necessarily cutting down and burning
every single infested tree. The model assumes different forms depending on whether
σ < τ or σ > τ , given by (2.1)–(2.4) and (2.21)–(2.24), respectively.
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Fig. 2. The σ < τ case: a simulation of (2.1), (2.14), and (2.15). Parameter values were
τ = 12, λ = 0.4, β = 0.005, σ = 3, bm = 0.005, a = 0.1, μL = 0.0186, μA = 0.55. For these values
the infestation takes over the whole forest and the number of adult beetles evolves to a constant.

By applying the comparison method for delay differential equations, we have
obtained some conditions for each of the two model systems that are sufficient for
infestation eradication. We have also established lower bounds and even approxima-
tions for the remaining number of susceptible trees after eradication of the infestation,
and this number has economic significance. We have also conducted some numerical
simulations which confirm all the theoretical results.

If σ < τ , then a beetle larva cannot complete its maturation in a host tree destined
for detection and removal. The eradication condition for this case is (2.18), from which
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we conclude that if the proportion λ of attacked trees that are detected and removed
is sufficiently close to 1, then the control strategy succeeds. Solving (2.18) for λ gives
an explicit requirement on λ. In the case σ > τ , detection of infestation in a tree is
not happening quickly enough and it may be possible for a beetle larva to complete its
maturation even in a tree destined for removal, especially if the larva hatched from an
egg that was laid soon after the tree became infested. The corresponding model (2.21)–
(2.24) is more difficult to analyze, but nevertheless a condition (namely, (2.31)) for
eradication of the infestation can be obtained. However, it is more difficult to satisfy
the condition. Indeed, if

(4.1) e−μLτB′(0)

[
β

∫ 0

−(σ−τ)

A(ξ)Ts(ξ) dξ + Ts(0)

]
< μA,

then (2.31) will hold if λ ∈ [0, 1] is chosen sufficiently close to 1. But if (4.1) does not
hold, that is,

(4.2) e−μLτB′(0)

[
β

∫ 0

−(σ−τ)

A(ξ)Ts(ξ) dξ + Ts(0)

]
≥ μA,

then condition (2.31) is never satisfied regardless of the value of λ ∈ [0, 1], although
we do know from Theorem 3 that the infestation is nevertheless eradicated if λ = 1.
To understand the difference between conditions (2.18) and (2.31), note that con-
dition (2.31) relates to the σ > τ situation, in which the timescale for infestation
detection in a tree is longer than the maturation time for the beetle. Naturally, we
should expect that infestation eradication should be more difficult in the σ > τ sit-
uation than in the σ < τ situation in which, if a tree is found to be infested, then
its destruction happens sufficiently quickly so that a larva cannot mature in it. In
the σ > τ situation it will be possible for some larvae to mature even in a host tree
destined for removal.

Note that σ and λ are the only parameters in the model that are within our
control. For example, σ could be decreased by the use of high technology acoustic
detectors that can detect larval activity in a tree, and λ, which effectively measures the
likelihood of ALB activity being detected in a tree, can be raised by increasing public
awareness of the telltale signs of tree infestation. Another related beetle species in
Japan has been controlled by the use of fungal bands which contain cultures of insect
pathogenic fungi, and there have been trials of the technique on the ALB in Anhui,
China (see Hajek et al. [7]). The fungal bands are placed at an approximate height
of 2–2.5 m around the trees and infect the adult beetles, which can then transfer the
infection during mating, leading to a reduced number of viable eggs. The effectiveness
of the technique can be augmented by the use of a chemical attractant. On the use
of entomopathogenic nematodes, see also Qin et al. [14].

None of the abovementioned measures is likely to be of much value if ALB were
to take hold in wilderness areas. This, of course, highlights the importance of ensur-
ing that the ALB does not become established in North America. Some studies of
Keena [8] on the dependence of ALB activity on temperature suggests that the lower
48 states should be able to support beetle survival and reproduction. The numerical
simulation work reported in this paper highlights the importance of rapid detection
and removal of as many infested trees as possible, and moreover, the simulations
demonstrate that if the detection of infestation timescale σ is significantly larger than
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Fig. 3. The σ > τ case: a simulation of (2.21), (2.26), and (2.27). Parameter values were
τ = 12, λ = 0.95, β = 0.005, σ = 14, bm = 0.005, a = 0.1, μL = 0.0186, μA = 0.55. In
this situation it is possible for a larva to complete its maturation in a tree destined for removal.
Nevertheless it is possible to achieve eradication, but only with a large proportion of infested trees
being detected and removed.

the beetle maturation delay τ , then even though the infestation can be eradicated,
the large transients will result in decimation of the forest.

We point out that although the eradication conditions (2.18) and (2.31) are ob-
tained under the hypothesis B(A) ≤ B′(0)A for A > 0, this assumption is not
crucial. Indeed, if B(A) is continuously differentiable and B(0) = 0 (which al-
ways holds for all birth functions), then by the mean value theorem one can write
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Fig. 4. The σ > τ case: a simulation of (2.21), (2.26), and (2.27). Parameter values were
τ = 12, λ = 1, β = 0.005, σ = 28, bm = 0.005, a = 0.1, μL = 0.0186, μA = 0.55. In this situation
every tree that becomes infested is later destroyed, but with σ considerably larger than τ , many larvae
can mature and escape as adults before their host tree is destroyed. Nevertheless the final outcome is
still eradication, though only after a very destructive transient in which the infestation gets worse.
Note that the final number of susceptible trees is very low, indicating severe destruction of the forest
during the course of the infestation.

B(A) = B′(θ)A ≤ BmA, where Bm = supθ≥0 B
′(θ). Therefore, the results in The-

orems 1 and 2 remain true, with B′(0) being replaced by Bm. Obviously the corre-
sponding eradication conditions become more demanding on λ.

Spatial spread is another important issue that we have not considered here in
this initial work. It is known that the adults of the ALB can fly, but only short
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distances between neighboring trees. Of course, the larvae do not disperse at all. The
invasion of the ALB from Asia to North America is believed to have been via the
use of wooden packing crates and wood products which may contain individuals in
premature stages (eggs, larvae, or pupae). This no doubt accounts for the long range
transport between continents and between different districts. Short range dispersal of
adult beetles could possibly be modeled, as a first approximation, by the incorporation
of Fickian diffusion. However, the actual dispersal behavior of the ALB is not so
straightforward, and some experimental work reported in Bancroft and Smith [1]
suggests a dependence on beetle density, weather conditions, beetle size and tree size,
and that a thorough knowledge of dispersal behavior will be beneficial to eradication
efforts. Release of the ALB is prohibited in the US, so there is little experimental
work documented, but there have been detailed mark and release studies in Gansu
Province, China (Smith et al. [17]) at a site chosen for its landscape similarities to
those of urban infestations in the US. These studies suggest that dispersal depends on
the spacing of suitable host trees, the age of the beetles, availability of host material,
and crowding on suitable trees.

A great deal of mathematical work has been carried out on the dispersal behavior
of beetles and insect species more generally (see Shigesada and Kawasaki [15], and
Kot, Lewis, and van den Driessche [9]), but not specifically on the ALB. In fact, in
our future work on the ALB we are considering the use of integrodifference equations
that are continuous in space but discrete in time, since the ALB seems to follow a
predictable pattern in nonnative habitats of having one generation per year. Discrete
time models have been commonly used in the past to model beetle populations. The
flour beetle tribolium has been particularly well studied due to its high rates of repro-
duction, short life cycle (4 to 6 weeks from egg to adult), ease of culture, and strong
cannibalistic tendencies, which make the beetle suitable for laboratory studies (see
Costantino and Desharnais [3]). These characteristics do imply that tribolium is very
different from the ALB. Cannibalism in particular can affect all pre-adult stages of
tribolium, including even some callow (not fully sclerotized) adults (see Mertz [10]).

Costantino et al. [4] compared the results of laboratory studies with the predic-
tions of a discrete time model incorporating, unlike the present study, two pre-adult
compartments. In the laboratory studies, adult mortality could be manipulated by
removing or adding adults, and recruitment by removing or adding younger adults.
Under conditions of high adult mortality, quasi-periodic cycles and chaos were ob-
served in the laboratory populations and in the model predictions.

It seems unlikely that a continuous time model such as the one we present here
could work satisfactorily for beetle species which have complex dynamics. Discrete
time models might in principle be able to address the issue of complex dynamics, but
these models have their limitations too. For example, western pine beetle populations
can be asynchronous and indistinguishably overlapped because of differential brood
development rates in different trees (see DeMars et al. [5]).

When it comes to modeling the eradication of infestation by removal strategy, we
may have to consider diffusion of adults which depends on the removal strength (i.e.,
the parameter λ ∈ [0, 1]), since when an infected tree is cut, the adult beetles in that
tree will all fly to the neighboring trees. In other words, the removal of infested trees
will enhance the diffusion of the adults. This will make modeling a more interesting
yet more challenging job. We leave such problems for future investigation.

Acknowledgments. We are grateful to the referees for their very useful com-
ments and suggestions.
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Abstract. Using continuum and statistical mechanical theories, we study the switching proper-
ties of a ferronematic in a nematic liquid crystal cell subject to homeotropic boundary conditions at
the cell and particle walls. An external magnetic field normal to the cell plane is also imposed. At
low fields we find thresholdless switching of the nematic director, consistent with experimental data.
At higher fields, there are three regimes, depending on the strength of the anchoring interaction be-
tween the director and the ferroparticle orientation. For low anchoring strengths, there is an inverse
Frederiks effect, and the nematic reorientation reduces and then disappears continuously at a critical
magnetic field. At intermediate fields, the degree of reorientation reduces at high fields but remains
finite. For high fields, however, the director switching saturates. The dimensionless temperature
scale in the problem involves the temperature, the mean nematic elastic constant, the colloidal den-
sity, and the cell dimension. If this quantity is sufficiently low, then high magnetic fields can cause
magnetic segregation. The segregation order parameter is coupled to the director distortion, and this
can change the inverse Frederiks transition into a first order transition, leading to bistability in an
intermediate field regime. These features are perturbed but not changed structurally by the effect of
a small bias magnetic field (< 10 Oe) normal to the unperturbed director. Subject to suitable choice
of parameters, the theory is also quantitatively consistent with the results of the classic experiment
of Chen and Amer in 1983.
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1. Introduction. In 1970 Brochard and de Gennes [1] suggested on theoretical
grounds that it might be possible to construct magnetic colloids based on a liquid
crystal matrix. As a result of the anchoring at the surface of the colloidal particles,
magnetic and nematic order in these materials would be coupled. The weak interaction
between magnetic fields and nematic order, already exploited by the early liquid
crystal pioneers such as Charles Mauguin [2], would then be dramatically increased.

The giant magnetic-nematic coupling might then be fruitfully used in devices
controlled by easily accessible magnetic fields (< 10 Oe). These systems, including as
they do elements of both ferromagnetism and nematic liquid crystalline behavior, have
come to be known as ferronematics (FNs). The key relevant properties of a nematic
crystal doped with single-domain ferromagnetic particles are (a) the intrinsic high
magnetic susceptibility and (b) the uniform molecular reorientation of the entire liquid
crystal (LC) matrix, or macroscopic collective behavior [1], in a varying magnetic field.

It was not until 1983 that Chen and Amer [3] were first able to construct a model
experimental system. One feature complicating the interpretation of experiments is
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the fact that the ferroparticles can coagulate irreversibly. Indeed, subsequent work
has continually been hindered for a long time by difficulties in the manufacture of
stable reproducible magnetic liquid crystalline colloids.

In the last two decades interest in these materials has grown. Not only do these
systems pose interesting physical problems, but also they promise to provide an optical
device technology based on magnetic switching [4, 5, 6, 7, 8]. In particular, Buluy
et al. [9] have recently synthesized an FN which is stable against colloidal aggregation.
This system consists of magnetite particles (Fe3O4) coated with oxyethyl-propylene
glycol and suspended in 5CB.

The initial continuum theory [1] has been generalized by Burylov and Raikher
[10, 11] to the case of a finite anchoring energy of the nematic at the ferroparticle
surface. This provided an explanation for the absence of coalignment of the nematic
director n̂ and the averaged local magnetization M in the FN, as had been found
experimentally [12]. Experiments, among them one on 8CB-based FN with magnetite
particles of nearly spherical shape [6], have subsequently confirmed the generalized
theory. The loss of coalignment has been labeled detachment in the literature. In this
paper we determine some more precise conditions for detachment.

One other important feature which the theory must include is the possibility of
magnetic segregation [1, 13]. This involves the magnetic colloidal particles migrating
toward regions in which the ferronematic coupling energy is minimized. Typically this
occurs in the center of the sample, where the nematic director is most free to rotate
toward the magnetically favored direction.

However, this tendency to segregate is opposed by entropic forces favoring a uni-
form colloidal concentration. The balance is subtle and is controlled by the dimen-
sionless temperature, which is typically of order unity. Previous calculations [14] have
suggested that this effect can lead to hysteretic effects as a function of magnetic field.
The hysteretic effects have been interpreted as the signature of a decoupling of the
nematic director and the ferroparticle orientation. In this paper we give a full account
of the physics of the ordering process which occurs in a confined ferronematic system
within the usual Frederiks geometry.

The plan of the paper is as follows. In section 2 we describe the theoretical model.
In section 3 we give an analysis of the basic aspects of the model, specifically confining
our interest to the case in which magnetic segregation is absent. Most of this work
is analytical, but we conclude this section by presenting the results of some compu-
tational solutions of the equations. We also compare the numerical solutions and the
analytical approximations; the analysis, even where only approximate, yields surpris-
ingly accurate precisions. In section 4 we extend the model to include the so-called
bias field. This is the extra in-plane magnetic field required to stabilize experimen-
tally the systems we are discussing. In section 5 we add a discussion of magnetic
segregation. Both bias field and magnetic segregation are important experimentally
but might be regarded as complications to the basic underlying mathematical model.
In section 6 we give a brief discussion linking our work to some of the available exper-
iments. Finally, in section 7 we draw some conclusions and place our work in a larger
context. A brief preliminary report of our work has been published elsewhere [15].

2. Model. The basic geometry of the problem is shown in Figure 1. The ferro-
particles are needle-like monodomain ferrite grains of length L and diameter d ∼ L/7–
L/3; they are significantly larger than the nematic molecule size. We consider a cell
of thickness D and suppose strong homeotropic nematic anchoring at the cell walls
at z = 0 and z = D.
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ψ
θ

Fig. 1. Schematic of the FN cell. The total magnetic field is given by Hs = [Hb, 0, H], with Hb

the bias field and H the imposed field. In the left-hand diagram, the magnetic director is marked with
an arrow, while the nematic director is marked by a line. The meaning of the angles ψ, signifying
the deviation of the magnetic director from its original orientation, and θ, signifying the nematic
deviation, are shown in the right-hand diagram.

Burylov and Raikher [10, 11] have derived an effective soft homeotropic anchoring
energy Wp per colloidal particle due to the nematic-ferroparticle surface interaction.
We do not discuss the microscopic derivation of the magnitude of this interaction
here but simply note that in our discussion it is a measurable parameter which enters
the theory. The existence of this anchoring encourages, but does not oblige, the
ferroparticles to orient perpendicular to the (averaged) nematic director. This term
changes the physics of the classical nematic liquid crystal.

In addition, the cell may be initially subject to a small bias magnetic field Hb

parallel to the cell substrates. In this initial state ferroparticles are homogeneously
distributed over the cell volume and their magnetic moments are perpendicular to
the unperturbed director n̂0. m̂0 is the unit vector in the direction of the sample
magnetization at H = 0. The sample is uniform in the x-y direction.

The physical states are defined by a nematic director n̂(r), a local normalized

magnetization m̂(r), and a local colloidal particle density ρ(r) = f(r)
ν , with f the

local colloidal packing fraction and ν the colloidal particle volume.
The FN equilibrium state at given magnetic field Hs = H+Hb can be determined

by minimizing the full free energy functional [10]

F =

∫
V

{
1

2

[
K1(∇ · n̂)2 + K2(n̂ · ∇ × n̂)2

+ K3(n̂ ×∇× n̂)2
]
− 1

2
χa(n̂ · Hs)

2 +
fkBT

ν
ln f

− M̄f(m̂ · Hs) + fWp(n̂ · m̂)2
}
dV(1a)
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subject to ferroparticle number conservation

(1b)

∫
f dV = f̄V,

where K1,K2,K3 are elastic (Frank) constants, χa is the anisotropic part of the
nematic diamagnetic susceptibility, f and f̄ are the local and the mean volume particle
fractions, and m̂ is the unit vector in the direction of the sample magnetization
M = M̄fm̂, where normally M̄ = Ms, the saturation magnetization per unit volume
within an individual colloidal particle. In the limit of low applied fields, we shall
find, however, that sometimes M̄ is reduced from this saturation value by thermal
fluctuation effects.

The term in square brackets in (1a) is the Frank–Oseen–Zocher curvature energy.
The remaining terms are, respectively, the magnetic energy density, the contribution
of the mixing entropy of an ideal ferroparticle solution, the magnetic energy of the
colloidal particles, and the anchoring-induced ferronematic interaction [10]. We ignore
the ferroparticle magnetic dipole-dipole interaction energy, which disappears at low

ferroparticle concentrations. It will be useful to define the quantity η(r) = f(r)

f̄
. This

is the local enhancement (or reduction) of the colloidal density induced by segregation
effects. We also suppose the magnetization of the ferroparticles to have reached
saturation [10].

In this geometry, the nematic and magnetic distortions are given, respectively,
by n̂ = (sin θ, 0, cos θ) and m̂ = (− cosψ, 0, sinψ), where θ = θ(z) and ψ = ψ(z) are
shown in Figure 1. In the simple case when the elastic constants K1 and K3 are taken
to be equal (K1 = K3 = K), the free energy functional reduces to

F =

∫ D

0

[
1

2
K

(
dθ

dz

)2

− 1

2
χa(H cos θ −Hb sin θ)2

+ η(z)
f̄kBT

ν
ln η − M̄η(z)f̄(H sinψ + Hb cosψ)

+ η(z)f̄Wp sin2(θ − ψ)

]
dz,(2)

subject to the boundary condition θ(0) = θ(D) = 0 and the constraint 1
D

∫D

0
η(z) dz =

1.
We may sensibly enquire what conditions are required for (1a) and (2) to hold.

This point has been addressed briefly by Burylov and Raikher [10, 11]. However,
a detailed discussion of this point goes beyond the scope of this paper. The key
point is that it should be possible to define the local magnetic director m̂ as a good
macroscopic variable in a continuum theory. This in turn requires that there be
effective coupling of the local magnetic directors over length scales larger than the
typical interparticle distance. We return to this point briefly in section 6, when we
discuss the application of our work to experimental interpretation.

The effective coupling between the magnetic and nematic director will necessarily
involve some orientational distortions induced by the colloidal particles over a length
scale which may be considerably larger than the individual particle. A sufficient
condition for the existence of the director m̂ will be that this distortion region be larger
than the typical interparticle distance, so that the distortions induced by neighboring
colloidal particles overlap. There will then be an indirect interaction between the
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magnetic particles, and a locally macroscopic structure. This condition has been
termed the requirement for collective behavior [1, 10, 16].

To simplify we initially suppose the following:
(a) There is no bias field. The raison d’être of the bias field is to hold m̂ and

hence n̂ in the x-z plane. In the absence of the bias field at very low applied
fields M̄/Ms < 1, but here we shall suppose that this is not the case. We shall
discuss the low bias field case (and criteria for determining what is meant by
this limit) at the end of the paper.

(b) The direct magnetic-nematic interaction as a result of the anisotropic nematic
molecular susceptibility can be ignored as compared to the indirect (but giant)
colloidally mediated coupling. Normally, the anisotropic part of the nematic
diamagnetic susceptibility is extremely low, for 5CB χa = 1.7 × 10−7 [17].
Thus neglecting the bare magnetic-nematic interaction is a reasonable ap-
proximation for the magnetic fields which we shall consider (H < 200 Oe),
as we will see below.

We now nondimensionalize the problem. Length scales are now measured in units
of the cell width D (i.e., z in scaled units is equal to z/D in unscaled units). The
scaled free energy is now given by the following formula:

F =

∫ 1

0

dz

[
1

2

(
dθ

dz

)2

+ ηt ln η − ηh sinψ

+ ηw sin2(θ − ψ)

]
,(3)

subject to the constraint
∫ 1

0
η(z) dz = 1, and with

(a) h = f̄M̄HD2/K the dimensionless magnetic field;
(b) w = f̄WpD

2/K the dimensionless coupling (Wp now per unit volume) be-
tween the nematic and magnetic orientations; we refer to this quantity as the
ferronematic coupling parameter ; and

(c) t = kBT f̄D
2/(νK) the dimensionless temperature; this is roughly the ratio of

the thermal energy of the colloidal particles to the nematic elastic free energy
density.

We note that this nondimensionalization scheme differs from that in a number of
previous papers [10, 11, 13, 14]. In the previous normalization scheme, it turns out
not to be possible to remove the magnetic segregation in a regular way. By contrast,
the scheme introduced in our previous letter [15] and further developed here permits
a simple limit in which there is no magnetic segregation. This corresponds to an infi-
nite temperature limit with respect to the energy parameter driving the segregation.
Segregation can then be considered as a finite temperature perturbation. The natural
perturbation parameter is then a nondimensionalized inverse temperature.

Suitable surrogates for the global behaviors of the parameters will be the quan-
tities θ0(h) = θ

(
h, z = 1

2

)
and the analogous quantity ψ0(h) = ψ

(
h, z = 1

2

)
. We

shall also define the degree of segregation in a number of ways. The segregation order
parameter s(h) is an integral quantity and is defined by

(4) s = −
∫ 1

0

dz η(z) cos 2πz.

The quantity
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(5) η0(h) = η

(
h, z =

1

2

)

is in some respects analogous to θ0(h) and ψ0(h) and measures the ratio of the con-
centration in the center of the cell to its average value.

3. Unsegregated limit. To begin with we put t → ∞ [18]. The colloidal
concentration responds in a Boltzmann-like fashion to its local potential energy. In
the infinite temperature limit, therefore, there is no response; the concentration η(z)
remains constant, and there is no colloidal segregation. Equation (3) and the resulting
field theory are both now much simplified.

The theory now reduces to minimizing

(6) F =

∫ 1

0

dz

[
1

2

(
dθ

dz

)2

− h sinψ + w sin2(θ − ψ)

]
.

3.1. Infinitely strong ferronematic coupling. Now w → ∞, which enforces
θ = ψ; the nematic director follows the magnetic particle distortion and is always
perpendicular to the magnetic particles. The resulting problem is now similar to
the classical Frederiks problem but lacks the symmetry-breaking characteristic of this
problem. The theory now reduces to

(7) F =

∫ 1

0

dz

[
1

2

(
dθ

dz

)2

− h sin θ

]
.

The Euler–Lagrange equation is

(8)
d2θ

dz2
+ h cos θ = 0.

The weak field solution can be calculated by putting cos θ = 1 in this equation.
Substituting θ(0) = θ(1) = 0 then yields

(9) θ(z) =
h

2
z (1 − z).

One suitable figure of merit for the total degree of reorientation is Θ =
∫ 1

0
θ(z) dz.

At low fields Θ = h/12; the effect is proportional to the imposed field and is threshold-
less. Alternatively, we may choose θ0(h) = θ

(
h, z = 1

2

)
. From (9), we find θ0(h) = h

8 .
Later in this paper we shall find it useful to expand θ(h, z) ≈ θ0(h) sinπz in a harmonic
approximation. If we minimize the linearized version of (7) within this approximation,
we obtain θ0(h) ≈ (4/π3)h ≈ 0.129h, rather close to the θ0(h) = 0.125h, given by (9).

A strong field solution can be found using a matched asymptotic expansion
method [19]. A high field is here defined by h ≥ 1 in the absence of any other
scale on which to compare it. We omit the details, as only the conclusion is impor-
tant for the subsequent discussion. There is a boundary region close to the wall, in
which the distortion is small but rapidly increases:

(10) θ(z) ≈ 1.46h1/2z − 0.5
(
h1/2z

)2

.

This region has thickness z0 = 0.46h−1/2. In the bulk of the cell, the solution for θ is
approximately given by

(11) θ(z) =
π

2
− 3.16 exp

[
−h1/2

2

]
cosh

[
h1/2

(
z − 1

2

)]
.
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The key result is that the director distortion saturates. There are boundary re-
gions close to the walls in which the distortion reduces to zero of thickness z0 ∼ h−1/2,
which become increasingly thin with increasing field. The value of the distortion in
the center of the cell becomes increasingly close to saturation, with

(12) θ0(h) =
π

2
− 3.16 exp

[
−h1/2

2

]

and

(13)
π

2
− Θ(h) ∼ h−1/2.

We note that all figures of merit for the total degree of reorientation, including the
optical phase lag measured through the cell, monotonically increase with magnetic
field up to saturation, although this increase does of course slow at high fields.

These results do not, however, carry over exactly into the finite coupling case.
This is because the degree to which the saturated alignment of the magnetic director
is limited by the degree of coupling between the nematic and the magnetic directors,
as we shall see below.

3.2. Finite ferronematic coupling. This corresponds to the more realistic
case of finite anchoring at the colloidal particle surface. The appropriate free energy
functional is given by (6):

(6) F =

∫ 1

0

dz

[
1

2

(
dθ

dz

)2

− h sinψ + w sin2(θ − ψ)

]
.

The Euler–Lagrange equations corresponding to the free energy (6) are

d2θ

dz2
− w sin(2(θ − ψ)) = 0,(14a)

h cosψ + w sin(2(θ − ψ)) = 0.(14b)

Equation (14b) is the bonding equation of Burylov and Raikher [10, 11]. It is
apparent that so long as the ratio h

w � 1, we can expect that θ ≈ ψ. The magnetic and
nematic directors will be coaligned (or bonded) in this circumstance. If this condition
does not hold, then θ ≈ ψ may still hold, but only if cosψ is sufficiently small (i.e., ψ is
sufficiently close to π

2 ). Much of this paper is concerned with determining the details
of when and in what way this relation holds. It ceases to hold with increasing field
when h and w are of the same order of magnitude. The magnetic director becomes
more aligned with the field, but the nematic director is no longer aligned with it. This
phenomenon has been described as decoupling by Burylov et al. [13].

3.2.1. Boundary conditions. From a mathematical point of view these equa-
tions are slightly peculiar. The strong surface anchoring condition on θ yields θ(0) =
θ(1) = θs = 0. However, the boundary conditions ψ(0) = ψ(1) = ψs are not defined
explicitly. However, they are implicit in (14b) from the surface condition θ = 0. This
yields

(15) h cosψs = w sin(2ψs),

which sustains two solutions:
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ψ

Fig. 2. Behavior of the displacement of the magnetic director at the surface ψs, as a function
of scaled magnetic field h. Note the linear behavior at low h, and the sharp singularity at h = h∗,
at which the ψs abruptly saturates.

(a) ψs = arcsin(h/2w), which is the low magnetic field case. For h/2w > 1,
however, ψs = arcsin(h/2w) is no longer well defined.

(b) ψs = π/2, which is the high magnetic field case. The surface value of the
magnetic angle ψs saturates.

Thus ψs(h) is a monotonic function of h, increasing smoothly from zero at h = 0.
For low h, ψs ∼ h; the behavior is linear. But there is a change of regime at h =
h∗(w) = 2w, at which point ψs = ψ(0) = ψ(1) saturates. The behavior of ψs is
shown in Figure 2. The quantity ψs saturates abruptly at h = h∗. There is strongly
discontinuous behavior in the gradient dψs

dh at h = h∗. Just below h = h∗, we have

(16) ψs ∼
π

2
−
√

2

(
1 − h

h∗

)1/2

.

Given the coupling between ψ and θ, one might also expect some nonanalytic prop-
erties in ψ(z) (and hence in θ(z)) for all z as a function of h. Numerical evidence
suggests, however, that the singularity is rounded away from the boundary. We shall
return to this problem elsewhere.

3.2.2. Low field properties. We can now expand (6) in powers of small quan-
tities h, θ0, and γ0, where

(17) θ(z) ≈ θ0 sinπz; ψ(z) = ψs + γ0 sinπz; ψs = arcsin

(
h

2w

)
.

The free energy is then given by

F =

∫ 1

0

{
π2

2
θ2
0 cos2 πz − h sin

[
arcsin

h

2w
+ γ0 sinπz

]

+ w sin2

[
arcsin

h

2w
+ (γ0 − θ0) sinπz

]}
dz.(18)

We now expand the integrand of (18) in a multivariate Taylor series up to second

order in θ0 and γ0, noting that sin
(
arccos h

2w

)
= cos

(
arcsin h

2w

)
=
√

1 − h2

4w2 . Per-

forming the integrals, including those over sinπz and sin2 πz, we obtain the following
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expansion in θ0 and γ0:
(19)

F = − h2

4w
− 2h

π

√
1 − h2

4w2
θ0 +

π2

4
θ2
0 +

h2

8w
γ2
0 +

w

2

(
1 − h2

2w2

)
(θ0 − γ0)

2
+ O(θ3

0, γ
3
0).

This leads to Lagrange equations

π2

2
θ0 + w

(
1 − h2

2w2

)
(θ0 − γ0) −

2h

π

√
1 − h2

4w2
= 0,(20a)

h2

4w
γ0 − w

(
1 − h2

2w2

)
(θ0 − γ0) = 0.(20b)

Solving these we find
(21)

θ0 =
16hw3

π(4w3π2 + 2w2h2 − π2h2w − h4)

(
1 − h2

4w2

)3/2

=
4h

π3
− π2 + 4w

2π5w2
h3 + O(h5)

and

(22) θ0 − γ0 =
h3

π3w2
+ O(h5).

In the limit h
w → 0, as expected, this solution tends to the behavior of the infinitely

strong-coupling regime (9). In the very low field regime, the response is as though the
torque is acting directly on the nematic director. But this response is modified by a
third order term in h. This reduces the response as compared to the infinite coupling
case, as one might expect, given that the restoring force on the nematic director acts
only through the intermediary effect of the magnetic director.

3.2.3. Infinite field limiting properties. For sufficiently high fields, the min-
imizer of the free energy (6) with respect to ψ requires that ψ(z) = π

2 everywhere.
Now (6) reduces to

(23) F ∼
∫ 1

0

dz

[
1

2

(
dθ

dz

)2

+ w sin2
(
θ − π

2

)]
∼
∫ 1

0

dz

[
1

2

(
dθ

dz

)2

− w sin2 θ

]
.

This is just the classic Frederiks transition problem, whose solution is well known [20].
The nematic distortion now no longer saturates at high fields. Indeed, for w ≤

wc = π2

2 , ψ(z) = π
2 everywhere; i.e., the magnetic distortion is maximal. But appar-

ently paradoxically the cost of any nematic distortion is positive, and hence θ(z) ≡ 0;
the nematic distortion is minimal.

However, as w increases beyond wc, the high field nematic distortion increases. In
the region w ∼ wc, we can again make the approximation θ(z) = θ0 sinπz, in which
case (23) reduces to

(24) F (θ0) ∼
1

2

(
π2

2
− w

)
θ2
0 +

w

8
θ4
0 + . . . .

Minimizing this with respect to θ0 yields

(25) θ0 ≈
√

2
(
1 − wc

w

) 1
2

.

Finally for w � wc, θ(z) ≈ π
2 almost everywhere. There is a small healing region

close to the boundaries, of dimension w− 1
2 , over which θ(z) goes from zero to π

2 .
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3.2.4. General classification. On the basis of the evidence adduced above,
we are now in a position to make a general classification of FN behavior into three
regimes. The regimes are as follows.

(a) Weak ferronematic coupling. The weak coupling regime is defined by w ≤
wc = π2

2 . In this regime, as we have shown in section 3.2.2, the initial
response θ0(h) is proportional to h. We have shown in section 3.2.3 that
limh→∞ θ0 ≡ 0, but in fact the condition is stronger. It will turn out that
there is a critical field hc(w) at which the nematic distortion abruptly disap-
pears, so that for h ≥ hc(w), θ0(h) ≡ 0. In any event, there is a turning point
at intermediate hM , and for h > hM , θ0(h) decreases.

(b) Intermediate ferronematic coupling. We know from section 3.2.2 that at
low fields the nematic response increases, with θ0 ∼ h. If w > wc, but∣∣( w

wc

)
− 1
∣∣ � 1, we also know from section 3.2.3 that θ0(h → ∞) is small.

Thus there will be a regime wc < w < wc2 for which necessarily θ0(h) reaches
a maximum as a function of h before decreasing at high fields. The precise
value of wc2 remains to be determined.

(c) Strong ferronematic coupling. We know from section 3.1 that in the infinite
coupling regime θ0(h) increases for all h. We thus expect a regime defined by
w > wc2 for which this behavior is retained.

3.2.5. High field limit. We can now extend the considerations of the infinite
field limit to fields which are merely high. In this case, given the considerations of
section 3.2.1, this means h ≥ 2w. The analysis involves constructing a free energy
expansion in both nematic and magnetic orientation variables. Specifically, the ex-
pansion extends the considerations of (24) involving θ to include departures in ψ from
complete alignment.

We recall from section 3.2.1 that for large h, ψs = π
2 . Hence ψ(z) = π

2 − γ(z),
where the angle γ(z) is small and zero at the boundary. Likewise, at least in the weak
and intermediate ferronematic coupling regimes discussed in section 3.2.4, the angle
θ(z) may be regarded as small.

The appropriate expansion variables are then γ0, θ0, where

(26) ψ(z) ≈ π

2
− γ(z), γ(z) = γ0 sinπz, θ = θ0 sinπz.

We shall construct a Landau expansion of F in the high field regime. From (6),
we obtain

(27) F = F0 +

∫ 1

0

dz

[
1

2

(
dθ

dz

)2

− h cos γ − w sin2(θ + γ)

]
,

where F0 is a reference free energy defined for θ(z) ≡ 0 and ψ ≡ π
2 . Expanding (27)

to fourth order in the angular variables θ0, γ0, using the relations (26), yields

(28) F − F0 =

[
π2

4
θ2
0 +

h

4
γ2
0 − 1

2
w (θ0 + γ0)

2

]
− h

64
γ4
0 +

1

8
w (θ0 + γ0)

4
+ . . . .

Here we have isolated the crucial terms quadratic in the variables θ0, γ0.
Stability is defined by this quadratic term, which can be written as

(29)

FQ =
1

2

[
wc θ

2
0 +

h

2
γ2
0 − w (θ0 + γ0)

2

]
=

1

2

[
(wc − w) θ2

0 +

(
h

2
− w

)
γ2
0 − 2w θ0γ0

]
,
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where we have substituted wc = π2

2 . We have seen in section 3.2.3 that this is the
critical ferronematic coupling beyond which the infinite field nematic distortion no
longer vanishes, i.e., limh→∞ θ0 = 0. And indeed, when γ0 ≡ 0, then by inspection it
is clear that the expression given in (29) is positive definite (and hence θ0 ≡ 0) if and
only if w < wc.

For finite h, θ0 = γ0 = 0 are minimizers of the free energy expression (28) if and
only if the quadratic term (29) is positive definite. This will be the case if

(30a) wc − w > 0

and also if the discriminant of expression (29) is positive:

(30b)

(
h

2
− w

)
(wc − w) > w2.

Rearranging (30b), we obtain a condition

(31a)
h

2
(wc − w) − wwc > 0

or

(31b) h−1 < h−1
c (w) =

1

2
(w−1 − w−1

c ).

The result of this calculation is that in the weak FN coupling limit, i.e., if
w − wc < 0, then the magnetic director is completely saturated, the nematic dis-
tortion will be zero not only in the limit of infinitely high field but also for all fields
h > hc(w), where

(32) hc(w) =
2

(w−1 − w−1
c )

=
2wwc

(wc − w)
.

Equivalently, the quadratic form (29) is positive definite if both wc − w > 0 and
h− hc > 0. Using (29), the free energy (28) can then be recast in a diagonal form in
which the change of character at h = hc, w = wc becomes explicit:

F − F0 =
1

2

[
2w2

c

2wc + h

(
θ0 −

h

2wc
γ0

)2

+
(h− hc(w))(wc − w)

2wc + h
(θ0 + γ0)

2

+
w

4
(θ0 + γ0)

4 − h

32
γ4
0

]
.(33)

In all cases of interest there exists a minimizer of F (θ0, γ0) such that θ0, γ0 are
either zero or small. The γ4

0 term with a negative coefficient is swamped by the
(γ0 + θ0)

4 term.

3.2.6. The weak coupling regime. This is the regime w < wc = π2

2 . We have
seen that the nematic response increases rapidly at low fields and reaches a maximum.
θ0 then decreases, reaching zero at hc(w), where from (31b)

2

hc(w)
=

1

w
− 1

wc
.
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We describe this transition as an inverse Frederiks transition, because at high fields
the nematic director remains undistorted, whereas for lower fields, deviation from the
zero field equilibrium occurs. We note also that

(34) lim
w→wc

h−1
c (w) = 0;

hc(w)

2w
=

1

(1 − w/wc)
.

The critical field hc(w) diverges as w → wc, so that for w > wc, the undistorted state
no longer exists.

For h > hc(w) the magnetic director m̂ is completely aligned with the magnetic
field, corresponding to ψ(z) = π/2 everywhere. This magnetic alignment is coupled to
the nematic director through the colloidal particles, giving an effective perpendicular
field on the nematic of magnitude w. As we have seen above, there is a strong analogy
with the conventional Frederiks effect. If w is too low, even at high fields the effective
aligning force on the nematic particles cannot overcome the elastic energy of the
nematic director. The director thus remains unmoved by the field. The critical value
wc is just that field which corresponds to the Frederiks transition.

We also note that the alignment of the magnetic director ψs at the surface sat-
urates at h∗(w) = 2w. However, in the bulk the magnetic saturation occurs only at
the higher field hc(w) = 2w(1 − w/wc)

−1 = h∗(w)(1 − w/wc)
−1. The effect of the

surface singularities in the response of the bulk system close to h∗(w) is not clear;
preliminary evidence suggests that they may be smoothed out. Cells with weaker
nematic-magnetic coupling saturate at lower fields (i.e., more easily) because the
saturation is discouraged by the nematic elastic term.

At hc(w) there is a transition to nonzero values of θ because the magnetic field
is no longer sufficiently strong to hold the magnetic director perpendicular to the
walls. The magnetic director then orients at some angle to the walls, and this in turn
breaks the left-right symmetry to which the nematic director is subject. The nematic
director thus follows the distorting magnetic director.

In order to analyze the behavior of ψ and θ just below hc, it is necessary to
analyze (33). The quadratic form in this equation is diagonal. The coefficient of the
term

2w2
c

2wc + h

(
θ0 −

h

2wc
γ0

)2

is always positive. Thus, apart from corrections, θ(z) = h
2wc

γ(z), or

(35) γ0 =
2wc

h
θ0.

We can now rewrite (33) as an expansion in θ0 alone. In the spirit of Landau theory,
close to h = hc(w), we replace all values of h by hc(w) except where the relevant term
is (h− hc(w)). After some algebra, we obtain
(36)

F − F0 =
w2

c

2w

[(
1 − hc(w)

h

)(
1 − w

wc

)
θ2
0 +

1

4

(wc

w

)2
(

1 − 1

4

(
1 − w

wc

)3
)
θ4
0

]
.

We note that the coefficient of the quartic term is always positive, despite the
apparent negative term in γ4

0 in (28). Minimizing (36) with respect to θ0 yields

(37) θ0 =
√

2
w

wc

(
(1 − w/wc)[

1 − 1
4 (1 − w/wc)3

]
)1/2 [

hc(w)

h
− 1

]1/2
,



1700 ZADOROZHNII, SLUCKIN, RESHETNYAK, AND THOMAS

exhibiting the expected square root singularity as function of the field. The transition
thus follows the normal paradigm.

As the magnetic field is further reduced, the nematic response increases. However,
at very low fields, the magnetic director responds little to the magnetic field. Then
finally the nematic response also decreases, in sympathy. The qualitative explanation
of this phenomenon is as follows. The degree of distortion is associated with the
couple exerted on the nematic director. This is proportional to sin 2(θ − ψ). For the
undistorted nematic (θ = 0) this has a maximum at ψ = π/4. We thus expect a
maximum in θ0 = θ(z = 1/2) to occur when ψ ≈ π/4.

3.2.7. The intermediate coupling regime. We now discuss the regime for
which θ0(h) is monotonically decreasing at high h, but limh→∞ θ0 = 0. Now the
ferronematic coupling is somewhat larger than in the previous case: wc < w < wc2,
where we shall determine wc2.

The Landau expansion again uses (35) connecting γ0 and θ0. Re-expanding in
terms of the one relevant variable θ0 yields

(38) F ∼ wc

(
1 − w

wc
− 2w

h

)(
1 +

2wc

h

)
θ2
0 +

w

4

(
1 +

2wc

h

)4

θ4
0,

where now the γ4
0 term in (33) is negligibly small at w � π2/6. Minimizing this

function, we obtain the following expression for θ0(h):

(39) θ2
0(h) = 2

(
1 − wc

w
+

2wc

h

)
(

1 +
2wc

h

)3 .

We observe that in the limit h → ∞, this expression is consistent with (37). Indeed,
we can expand θ0(h) in terms of θ0(h = ∞), yielding

(40) θ2
0(h) = θ2

0(h = ∞)

⎛
⎝1 +

2wc

h
(
1 − wc

w

)
⎞
⎠

(
1 +

2wc

h

)3 .

Expanding this, and taking square roots, we obtain, now to leading order in h−1,

(41) θ0(h) = θ0(∞)

⎡
⎣1 +

(wc

h

)⎛⎝ 1

1 − wc

w

− 3

⎞
⎠
⎤
⎦ .

This is the key result of this section. It shows that for w such that 1
1−wc/w

> 3,

θ0(h) for large fields is an increasing function of inverse field and hence a decreasing
function of h. This condition can be rewritten as

(42) wc < w < wc2, wc2 =
3

2
wc.

Equation (42) improves the estimate of wc2 given in our previous paper [15].
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θ ψ

Fig. 3. Weak coupling ferronematics: Nematic (a) and magnetic (b) directors as a function
of dimensionless external field, in the absence of a bias field. Quantities θ0 and ψ0 in the center
of the cell are used as surrogates for global behavior. Curve 1 corresponds to w = 3 and curve 2 to
w = 4.5; w < wc ≈ 4.93. The dotted lines have been added to show comparison with the results of
the asymptotic calculation (36) in section 3.2.6.

3.2.8. The strong coupling regime. This is the regime w > wc2 = 3
2wc. We

can see from (41) that in this regime, the angle θ0 increases at high field. It is further
not clear from the asymptotic analysis whether there is a region of w for which θ0 is
not a monotonic function of h, or whether the maximum in θ0(h) disappears exactly
at wc2. The numerical results are consistent with the latter hypothesis.

3.3. Numerical results. We have also carried out a numerical minimization
of the relevant free energy (3). The method does not involve a direct brute force
quadrature-based solution of the resulting Euler–Lagrange equations. Rather we use
the existence of a set of first integrals, which allows us to parameterize the solutions in
terms of the values of the parameters ψ0, θ0, η0, where these quantities are the values
of the relevant parameters in the middle of the cell. These quantities satisfy algebraic
self-consistency conditions. The method has been used in previous publications [13,
14]. We shall present a detailed discussion of the merits of this approach elsewhere.

Figures 3–6 illustrate the behavior of weak, intermediate, and strong-coupling
FNs in the unsegregated limit. Solid curves are numerical solutions. A comparison of
numerical calculations and asymptotic results is given by dotted lines.

Figure 3 shows the inverse Frederiks transition. As h increases, the nematic
response first increases and then decreases, disappearing at an inverse Frederiks tran-
sition at h = hc(w). The magnetic response is a monotonically increasing function of
h but saturates at h = hc(w) and ψ0 = π/2.

The profiles of the nematic and magnetic directors for weak-coupling FNs at low
and high fields are shown in Figure 4. These profiles demonstrate that the harmonic
approximations for θ(z) and ψ(z) given in (17) and (26) are extremely good. There
is a change of the magnetic director profile shape when h is close to 2w. Our investi-
gation shows that this change in the profile structure is due to the ambiguity of the
dependence of θ (14b) on h or ψ when ψs > π/4 or h >

√
2w, respectively.

Figure 5 also illustrates peculiar changes in the magnetic director behavior with
h. For low fields (h <

√
2w) the magnetic profile is concave-down and ψ0 − ψs > 0.

For high fields the profile is concave-up. In the process of changing the profile from
concave-up to concave-down, there is the intermediate concave-convex profile in the
narrow interval of h close to h = 2w. At a certain value of h in this interval ψ0 = ψs

and Δψ = 0.
Figure 6 shows the nematic and magnetic response in the intermediate and strong-
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θ ψ

Fig. 4. Weak coupling ferronematics: Nematic distortion θ(z) (a) and magnetic distortion
ψ(z) (b) as a function of position for different dimensionless external fields, in the absence of a
bias field, with w = 3, w < wc. Curve 1, h = 2.55; curve 2, h = 4.0; curve 3, h = 8.38; curve 4,
h = 10.56. Solid curves are numerical solutions. Dotted curves are asymptotic solutions; in curves
1 and 2 we used the low h expansion, and in curves 3 and 4 we used the high h expansion. Note
how θ(z) always increases in the center of the cell, but in the weak coupling case ψ(z) increases for
low h but decreases for higher h.

Δ 
ψ

Fig. 5. Differences between surface and bulk behavior as a function of field h for weak ferro-
nematic couplings w = 3 (curve 1) and w = 3.5 (curve 2). The quantity Δψ = ψ0 − ψs is the
difference between the magnetic distortion at the center of the cell and its value at the surface. Note
the discussion in the text.

coupling regimes. As h increases, the nematic response of the intermediate coupling
FN first increases and then decreases, but limh→∞ θ0 =

√
2(1 − wc/w) ≈ 0.6 = 0. In

the strong-coupling regime the nematic response is a monotonically increasing function
of h and saturates at high h. The magnetic response is a monotonically increasing
function of the field in both regimes.

4. Bias field. Experimentally, the bias field is imposed in order to maintain
particles and hence the director in the x-z plane, whereas we simply assume, even in
the absence of a bias field, that the orientation is maintained in this plane. The zero-
bias-field case then becomes the distinguished limit which we have discussed in the
last section. Physically the important point about the bias field is that the resultant
magnetic field is never entirely perpendicular to the cell plane. The consequence of
this is that the angle ψ can reach its saturation value of π/2 only at infinitely high
fields (i.e., h−1 ≡ 0). This contrasts with the zero-bias-field case, for which, as we
have seen, at least for w < wc, ψ ≡ 0 for h > hc(w).

For analytical purposes it is convenient to discuss small perturbations from the
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θ ψ

Fig. 6. Intermediate and strong coupling ferronematics: Nematic (a) and magnetic (b) direc-
tors as a function of dimensionless external field, in the absence of a bias field. (Curve 1) w = 6,
wc < w < 3wc/2, corresponding to intermediate ferronematic coupling; (curve 2) w = 8, w > 3wc/2,
corresponding to strong ferronematic coupling. Dotted lines show comparison with the results of the
asymptotic calculation which minimizes the free energy (28). This figure is the intermediate and
strong FN coupling version of Figure 3.

zero-bias-field case already considered. It is sensible to scale the bias field, by analogy
with other nondimensionalization in the problem, leading to a dimensionless bias field
hb = f̄M̄HbD

2/K. The constant η, high t free energy is now

F =

∫ 1

0

dz

[
1

2

(
dθ

dz

)2

− h sinψ − hb cosψ

+ w sin2(θ − ψ)

]
.(43)

This is the bias field analogue of (3). The Euler–Lagrange equations now become

d2θ

dz2
− w sin(2(θ − ψ)) = 0,(44a)

h cos(ψ) − hb sinψ + w sin(2(θ − ψ)) = 0,(44b)

where (14a) and (44a) are identical, and (44b) differs from its zero-bias-field ana-
logue (14b) by an extra factor −hb sinψ.

The most dramatic effects of the bias field occur in the low w regime. In this
regime, when there is no bias field, the magnetic director saturates. The saturation
drives the high field absence of nematic director distortion and the inverse Frederiks
transition. The bias field destroys the magnetic saturation and thus fundamentally
affects the inverse Frederiks effect.

We first discuss the boundary values ψs. We recall from section 3.2.1 that in the
absence of a bias field, ψs(h) is a monotonically increasing function of h, saturating
at ψs = π

2 at h = h∗ = 2w. We shall investigate the behavior of γs = π
2 −ψs, which in

the hb = 0 case vanishes identically for h > 2w. Combining (44b) and the condition
θs = 0 yields the bias field analogue of (15):

(45) h cosψs − hb sinψs = w sin 2ψs.

For hb = 0 there are two regimes separated by a singularity at h = 2w. In the
h > 2w regime ψs = π/2; γs = 0, whereas for h < 2w, γs = 0. However, a finite value
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ψ

Fig. 7. Behavior of the magnetic surface director deviation ψs(h) as a function of bulk field h
for various different values of bias field hb, with w = 0.9, w < wc. Curve 1: hb = 0.01. Curve 2:
hb = 0.05. Curve 3: hb = 0.1. Compare to the zero-bias-field case shown in Figure 2. Note the
rounding of the sharp singularity at h = h∗ = 2w.

of hb rounds this singularity, and the behavior of ψs and hence all other quantities
can no longer be divided into two distinct regimes. Rewriting (45) in terms of γs, we
obtain

(46) h sin γs − hb cos γs = w sin 2γs.

Linearizing in the regime of small γs � 1 yields

(47) hγs − hb = 2wγs,

yielding

(48) γs =
hb

h− 2w
.

We plot exact numerical results for ψs(h) for a number of different values of hb

in Figure 7. Equation (48) can be regarded as a response by the FN surface to a bias
field probe. The unbiased system is unstable with respect to a perturbation of γs at
h = 2w. One should thus expect that the susceptibility of the magnetic director to
the small bias field would diverge at h = 2w, as indeed occurs (although for fields of
this order, the small γs approximation no longer holds). The nonzero γs is a signature
of a nonzero γ0, and hence of a nonzero θ0, as we now show.

Analogous results are found for the magnetic and nematic director deviations in
the center of the sample. Numerical results are presented in Figure 8.

The results in Figure 8 can be understood semiquantitatively as follows. Using
the expansion of (26), we can rewrite the functional (43) in a power law expansion in
γ0 and θ0, yielding for the relevant terms

F − F0 =
1

2

{
(wc − w)

[
θ0 −

hc(w)

2w
γ0

]2
+

1

2
(h− hc(w))γ2

0

− 4

π
hbγ0 +

w

4
(θ0 + γ0)

4 − h

32
γ4
0 +

4

9π
hbγ

3
0

}
.(49)
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Fig. 8. Effect of bias field on the bulk distortion in the weak ferronematic coupling regime. In
all cases w = 0.9, w < wc, and the nematic director (a) behavior is shown. Curve 1: No bias field
(hb = 0). Curves 2 and 3: Weak bias field (hb = 0.01, 0.1). The re-entrant Frederiks transition
is rounded in the presence of a bias field. The analogous curve for the magnetic director (b) is
monotonic as a function of h, saturates at π/2 for hb = 0, but merely tends to π/2 as h → ∞ for
hb �= 0.

For high fields, the main balance defining γ0 comes from the linear and quadratic
terms; the fourth order terms can be neglected. With this assumption, we mini-
mize (49). This yields γ0 = (2wc/hc(w)) θ0 for the relationship between γ0 and θ0, as
well as an equation for γ0(h):

(50) γ0 =
4

π(h− hc(w))
hb.

There is thus no longer an unambiguous distinction between the high field h >
hc(w) regime, for which γ = θ0 = 0, and the low field h < hc(w) regime, for which
γ0 = θ0 = 0. In the high field regime both θ and ψ differ from their zero-bias values
0 and π/2, respectively, by quantities which are proportional to the bias field, and
appear for h � hc(w) to be heading for a divergence at h = h+

c (w). This divergence is,
however, prevented by higher order terms in (49) which have been neglected here. On
the other hand, there is no qualitative change in the low field response; the magnitude
of the response is proportional to hb.

Taking into account fourth order terms in (49), we find at h = hc(w)

(51) γ0 ≈ 4w

[
hb

πhc(w)(h3
c(w) − 2w3)

]1/3
.

Here the magnitude of the response is proportional to h
1/3
b .

5. Ferroparticle segregation. In the theory as written so far, the ferroparticle
density is kept constant. This corresponds to the limit η = 1 in (3), which in turn
follows in the infinite temperature limit t → ∞. However, inserting a finite value
of t permits the ferroparticle density to respond so that more particles can migrate
to regions where the ferronematic coupling energy is minimized. Interestingly (and
apparently paradoxically) the constant η limit corresponds to inserting an apparently
infinite rather than a zero term. We note that in the real problem t takes its physical
value; it is useful nevertheless to treat it as a variable parameter in the theory.

We recall the figures of merit for the degree of segregation s defined in (4) and
η0 defined in (5) in section 2. Then s = 0, 1 are the limits of complete lack of segrega-
tion and segregation, respectively. The quantity s is a segregation order parameter,
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and it possesses a status comparable in the theory to the angular quantities θ0 and
ψ0. In the low segregation limit we can expand the normalized colloidal density as
follows:

(52) η(z) = 1 − 2s cos 2πz.

5.1. Zero bias field. The full free energy is given by (3):

F =

∫ 1

0

dz

[
1

2

(
dθ

dz

)2

+ ηt ln η − ηh sinψ + ηw sin2(θ − ψ)

]
,

subject to the constraint
∫ 1

0
η(z) dz = 1. The Euler–Lagrange equations are now

d2θ

dz2
− ηw sin(2(θ − ψ)) = 0,(53a)

h cosψ + w sin(2(θ − ψ)) = 0,(53b)

t ln η −
(
h sinψ − w sin2(θ − ψ)

)
= λ,(53c)

where λ is a Lagrange parameter which enforces density conservation. Equation (53a)
modifies (14a) to the case in which segregation is allowed; (53b) is in fact identical
to (14b) and is unchanged by the addition of segregation while (53c) is a new equation
for the self-consistent degree of segregation.

The exact solution for η(z) comes from inverting (53c) and enforcing the density
conservation condition η̄ = 1. This solution is

(54) η(z) =
exp

{[
h sinψ − w sin2(θ − ψ)

]
/t
}

∫ 1

0
dz exp

{[
h sinψ − w sin2(θ − ψ)

]
/t
} .

In general, this solution must be determined self-consistently with solutions for ψ(z)
and θ(z), and the detailed picture is complicated.

However, in the high temperature limit η is always small. We can then describe
the degree of segregation using the order parameter s and perturb away from the
infinite t solution using (4). In this limit

(55) s = −1

t

∫ 1

0

dz cos 2πz
[
h sinψ − w sin2(θ − ψ)

]
,

where values of θ and ψ are given by the infinite t limit. In general, we expect values
of s(h) to peak at intermediate h, for it is in these cases that θ and ψ change most
across the cell.

A particularly interesting case occurs for high fields in the low ferronematic cou-
pling w < wc regime. Here it is possible to include the segregation order parameter s in
an extended Landau expansion closely analogous to (28). The parameter s couples to
the variables θ0, ψ0 in this expansion. We recall (17): in this regime ψ ≈ π

2 −γ0 sinπz;
θ(z) = θ0 sinπz.

We obtain the following free energy:

F − F0 =
1

2

{
2w2

c

2wc + h

(
θ0 −

h

2wc
γ0

)2

+
(h− hc(w))(wc − w)

2wc + h
(θ0 + γ0)

2

+
w

4
(θ0 + γ0)

4 − h

32
γ4
0 + 2s2t− s

[
w(θ0 + γ0)

2 − h

2
γ2
0

]}
.(56)
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Equation (56) is (33) modified by some extra terms in s. The quadratic term in s
comes from the η ln η term in the free energy (3). The linear term comes from the
evident fact that the colloidal density is coupled linearly both to the nematic-magnetic
coupling and to the coupling of the magnetic director with the field.

In the high field h > hc(w) limit there is no structure at all in the infinite t regime,
for now ψ(z) = π/2 and θ(z) = 0. As a result, (54) and (55) show that in this regime
s = 0 and there is no segregation. However, in the low h limit there is structure in
ψ(z), θ(z) and so η(h) = 0 for h < hc(w). As a result, the order parameters s and γ0

couple in a Landau expansion of the free energy of the system close to hc(w). The
coupling is constant, but the stabilizing term in s is proportional to t. It is this fact
which gives rise to the general result s ∼ t−1.

However, the linear coupling between s and quadratic terms in the other order
parameters does have profound consequences. This is a consequence of the Halperin–
Lubensky–Ma theorem [24]. This theorem states that coupling a critical order pa-
rameter to a second noncritical order parameter can under some circumstances drive
a continuous phase transition first-order.

To show what happens in this case, we minimize (56). We obtain (35) for the
relationship between γ0 and θ0, and additional equations for s and γ0:

s =
hhc

16twc

[
1 +

4w2
c − hhc

h(2wc + hc)

(
1 − h

hc

)]
γ2
0 ,(57)

γ2
0 = 8

{[
(2wc + h)2

2wc(2wc + hc)
− h

hc

]
s +

2wc + h

2wc + hc

(
1 − h

hc

)}[
(2wc + h)4

2w3
c (2wc + hc)

− h

hc

]−1

.

(58)

Substituting (35) and (57) into (56), we can evaluate the fourth order term in γ0 at
h = hc(w):

(59) F − F0 =

[
h3
c(w)

2

(
1

w3
− 1

2 t w2
c

)
− 1

]
hc(w)

64
γ4
0 .

The key point is that the coupling terms provide a negative definite contribution
to the fourth order term. The negative magnitude increases as the coupling (which in
this case is the temperature) decreases. Eventually, at a sufficiently low temperature
the sign of the γ4

0 term in the Landau expansion close to h = hc(w) changes. A
negative γ4

0 term signals that the continuous transition at h = hc(w) becomes first
order.

From (59) we find that the tricritical point (i.e., the point at which the continuous
phase transition becomes first order) occurs for

(60) tc(w) =
w3

2w2
c

(
1 − 2w3

h3
c(w)

) ≈ wc

2

(
w

wc

)3

.

We can also look at the properties of γ0(h) and s(h) below h = hc(w) but above
t = tc(w). In this region the transition is still continuous but is approaching tricriti-
cality. By substituting (58) into (57) and expanding s in powers of (hc(w) − h), we
find the segregation order parameter

(61) s =
2wctc(w)

h2
c(w) (t− tc(w))

(hc(w) − h)
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Fig. 9. Behavior of the segregation order parameter as a function of the dimensionless exter-
nal field in the three ferronematic coupling regimes. (Curve 1) Weak coupling regime; w = 4.5,
t = 1.78 < tc = 1.87, hc = 102.1. (Curve 2) Weak coupling regime; w = 4, t > tc = 1.32,
hc = 42.3. (Curve 3) Intermediate coupling regime; w = 5.5. (Curve 4) Strong coupling regime;
w = 7. t = 3.85 in curves 2–4. Solid curves: No bias field. Dashed curves: Weak bias field; hb = 0.1
in curve 1 and hb = 0.4 in curves 2–4.

in the lowest order approximation. We find that s goes linearly with (hc(w)− h) but
that the linear coefficient diverges at the tricritical point.

Likewise, from (57) and (58) we find

(62) γ2
0 =

32tw2
c tc(w)

h4
c(w)(t− tc(w))

(hc(w) − h).

Here the characteristic square root behavior for γ0 is maintained, but the coefficient
of proportionality diverges with a square root divergence as the tricritical point is
approached.

Beyond the tricritical point (i.e., t < tc(w)), there are solutions for h > hc(w).
These solutions belong to a van der Waals loop. Thus there are two qualitatively
different behaviors, separated by a singularity at t = tc(w), with w < wc. For
t > tc(w) we have the inverse Frederiks transition described in detail in the sections
above. For t < tc(w), on the other hand, the functional dependence of s, θ, and ψ
develops a van der Waals loop. These cases are illustrated in Figure 9 (solid curves
2 and 1), where we show curves calculated numerically by minimizing the cell free
energy (1a).

To show what happens in the intermediate and strong-coupling regimes, we re-
write (56) in the form

F − F0 =
1

2

{
2wcw

2wc + h

[
wc

w

(
θ0 −

h

2wc
γ0

)2

−
(

1 + h
w − wc

2wcw

)
(θ0 + γ0)

2

]

+
w

4
(θ0 + γ0)

4 − h

32
γ4
0 + 2s2t + s

[
h

2
γ2
0 − w(θ0 + γ0)

2

]}
,(63)

where w > wc. We now minimize (63). For t � 1 this yields (35) for the relationship
between γ0 and θ0. The equations for s and θ0 are now
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s =
1

4t

[
w

(
1 +

2wc

h

)2

− 2w2
c

h

]
θ2
0,(64a)

θ2
0 =

2

(
1 − wc

w
+

2wc

h

)(
1 +

2wc

h

)
(

1 +
2wc

h

)4

− 2w4
c

wh3
− w

2t

[(
1 +

2wc

h

)2

− 2w2
c

wh

]2 .(64b)

From (64a) and (64b) one can obtain to lowest order in h−1

s =
w − wc

2t− w

[
1 +

2w2
c

wh

(
2w

w − 2t
− wc

wc − w

)]
,(65a)

θ2
0 =

4t

2t− w

[
w − wc

w
+

2wc

wh

(
5wc − 2w +

2wc(2t− wc)

w − 2t

)]
.(65b)

Equations (65a) and (65b) are valid in the high field limit if t > w − wc/2 (by
definition, s ≤ 1). In the limit t → ∞, (65b) reduces to its no-segregation limit (41).
It follows from (65b) that the boundary wc2 of the intermediate coupling regime at
finite temperature reduces to

(66) wc2(t) = t +
5

4
wc −

1

4

(
16t2 − 8twc + 9w2

c

)1/2 ≈ 3

2
wc

(
1 − wc

6t

)
,

and this regime takes place at wc < w < wc2(t). The strong coupling regime should
begin at wc2(t). It is seen from (64a) that s(h) has a maximum if wc < wsc(t), where

(67) wsc(t) =
wc

4

(
1 +

√
1 +

16t

wc

)
.

The behavior of the segregation order parameter in the intermediate and strong-
coupling regimes is shown in Figure 9 (curves 3 and 4).

5.2. Nonzero bias field. For the nonzero bias field, the free energy can be
expressed as

F − F0 =
1

2

{
2wcw

2wc + h

[
wc

w

(
θ0 −

h

2wc
γ0

)2

−
(

1 + h
w − wc

2wcw

)
(θ0 + γ0)

2

]

− 4hb

π
γ0 +

4

9π
hbγ

3
0 − 8hb

3π
γ0s +

w

4
(θ0 + γ0)

4 + 2ts2

− w(θ0 + γ0)
2s +

h

2
γ2
0s−

h

32
γ4
0

}
.(68)

Here (68) is (56) modified by some extra terms in hb. Minimizing this equation, we
obtain (35) for the relationship between γ0 and θ0. For high fields we can find the
relationship between s and γ0:

(69) s =
1

8t

{
16

3π
hbγ0 −

[
h− 2w

(
1 +

h

2wc

)2
]
γ2
0

}
.
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θ ψ

Fig. 10. (a) Director distortion for weak ferronematic coupling at a finite temperature as a
function of the external field, showing the development of a van der Waals loop at the inverse
Frederiks transition. In both curves t = 0.005, w = 0.9 (t < tc ≈ 0.018). Curve 1: No bias field;
hb = 0. Curve 2: Weak bias field; hb = 0.025. The analogous curve for the magnetic director (b) is
nonmonotonic as a function of h, but saturates at π/2 for hb = 0, but merely tends to π/2 as h → ∞
for hb �= 0. Curve 3: The effect of small diamagnetic anisotropy (κ = 1

2
χaK/(f̄M̄D)2 = 0.015).

A solution for θ0 can be obtained from a cubic equation in which linear and cubic
terms play an important role. However, this equation is too complicated and is not
presented here.

The dashed curve 2 in Figure 9 shows that the bias field rounds the re-entrant
Frederiks transition. The van der Waals loop is retained at the small bias field (not
shown in the figure), but no longer occurs at a sufficiently high bias field (dashed
curve 1).

We now make remarks concerning the importance of the bias field. The role of
the bias field in the x direction is to restrict the nematic and magnetic directors to the
x-z plane. In the absence of the bias field but in high applied fields, the system will
choose a (broken symmetry) plane in which to orient. A detailed analysis requires a
full treatment of the local statistical mechanics of the ferronematic ordering and will
be discussed elsewhere.

We have analyzed in detail the behavior of a ferronematic system at high dimen-
sionless temperatures (t ≥ 1). However, our analysis is restricted to a weak bias field
and runs into difficulties if the magnetic particles are not well aligned. Our segregation
parameter s is a useful tool only for high t.

In experiments, however, it is more common to encounter a low-coupling regime
at low t, and it is this regime which is of prime interest for ferronematic applications.
However, to investigate the segregation effect we now have to use the quantity η,
which can take values much larger than unity. Furthermore, the asymptotic analysis
gives little insight into the system properties at large deviations from the initial align-
ment. We thus resort to numerical studies. Figures 10–13 show aspects of the system
behavior in the low-coupling regime at low temperature t for system parameter values
in the experimental region.

In Figures 10 and 11 we illustrate the orientational behavior of the nematic and
magnetic directors and the quantity η in the varying magnetic field in the middle of
the cell. The figures show the development of the van der Waals loop.

We remark that the van der Waals loop, and thus the first order transition between
a highly segregated low field phase and a slightly segregated high field case, is retained
even when a bias field is introduced. In this case, however, if there is no first order
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η

Fig. 11. Ratio of the local to the mean volume particle fraction for weak ferronematic coupling
at a finite temperature as a function of the external field, showing the development of a van der Waals
loop at the inverse Frederiks transition. In both curves t = 0.005, w = 0.9; t < tc ≈ 0.018. Curve 1:
No bias field; hb = 0. Curve 2: Weak bias field; hb = 0.025.

θ
ψ

α

θ
ψ

Fig. 12. (a), (b) Orientational profiles at t = 0.005, w = 0.9, and hb = 0.025. α (dotted lines)
is the angle between magnetic and nematic directors. Curves 1–3 in (b) correspond, respectively, to
the upper, middle (unstable), and lower parts of the van der Waals loop at h = 2.7.

transition, then the continuous transition found in the zero-bias-field case disappears
and is replaced by smooth high field behavior (curve 2 in Figures 10 and 11). In fact,
we have found numerical evidence for van der Waals loops in previous calculations [14,
15]. This analysis presented here provides for the first time a consistent explanation.

We also show, in Figures 12 and 13, some examples of the profiles of the nematic
and magnetic directors and of magnetic colloid concentration profiles through the cell.
In these examples the system is in the weak coupling regime; as the field is increased
the system exhibits a van der Waals loop and a consequent first order phase. We
recall that in this regime, for low fields, the degree of nematic distortion, represented
by θ(1/2) = θmax, goes through a maximum before tumbling in a discontinuous way
and subsequently decreasing to zero in the limit of the high field.

The profile of the magnetic director in Figure 12(a) (given by the angle ψ) shows
a change of regime from low fields to high fields. For low fields the profile is concave-
down (i.e., ψ(1/2) > ψs), whereas for high fields it is concave-up (ψ(1/2) < ψs). We
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η

Fig. 13. Concentration profiles at t = 0.005, w = 0.9, and h = 2.7, hb = 0.025. Curves 1–3
correspond to the upper, middle (unstable), and lower parts of the van der Waals loop, respectively.

have seen this behavior above in the non-bias-field case in Figure 4(b). The change
from concave-down to concave-up profiles occurs near the peaks in θmax (Figure 10(a))
and ηmax (Figure 11) (hmax = 1.68). From this figure we note a well-defined inter-
mediate concave-convex profile. The orientational profile of the nematic director θ is
concave-down everywhere as a result of the boundary conditions on θ. However, we
note that the behavior of θ(z) is unlike that in conventional nematics. In conventional
nematics the nematic director can saturate over most of the cell apart from a region
very close to the boundary. Here, however, we see a constant (absolute) gradient in θ,
apart from very close to the center of the cell, where θ abruptly changes its gradient.

We give here a brief semiquantitative discussion of the changing properties of
ψ(z). As h is increased, the magnetic director profile begins to change when ψ(0) =
ψ(1) = ψs reaches the value π

4 . Using (44b) it can be shown that this occurs at

h∗∗ = hb +
√

2w. For h < h∗∗, dψ(0)
dz > 0 and ψ increases away from the boundary. At

h∗∗, dψ(0)
dz = 0, and for h > h∗∗, dψ(0)

dz < 0; ψ now decreases away from the boundary.
There is then a narrow interval in h over which the turning points in ψ(z) move from
the edge of the cell toward its center. In this interval for 0 < z < zc(h), dψ

dz < 0,

whereas for zc < z < 1
2 , dψ

dz > 0, with ψ(z) = ψ(1 − z) everywhere. Eventually, for
h > h† (which depends in specific cases on hb), zc reaches zc = 1

2 , and for h > h†,
ψ(1/2) < ψs, and the behavior of ψ(z) is monotonic in the interval 0 ≤ 1

2 .1

The inverse Frederiks effect can also be interpreted in terms of a force law. The
torque of the magnetic particles on the nematic matrix is not a monotonic function
of the angle α = π/2− (ψ − θ) between the directors and reaches its maximum value
at α ≈ π/4.

Finally, in this section, we note that it seems likely that the transition to a
ferronematically distorted state actually occurs first through a first order transition
at lower fields. Physical values of t are lower than unity; the result is that our analysis
remains true in the high field limit but is modified in low field limit. Similarly, we

1Further computation shows that the change in the profiles ψ(z) is connected with an ambiguity
of the dependence θ(h, ψ) when ψs > π/4 or h > hb +

√
2w. There are two branches, but only one

of these satisfies the boundary condition θs = 0. On this branch the angle θ decreases with h and
hence with ψ, leading to the inverse Frederiks effect.
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δ

Fig. 14. Experimental data by Chen and Amer [3] of the square root of the phase difference
versus the magnetic field strength (open circles) and the theoretical curve obtained by the numerical
minimization of the cell free energy equations (1a) and (1b).

find that in dimensionless units the bias field required for the analysis presented here
to hold true is hb < t. Unsurprisingly, at low temperatures, a small bias field suffices
to saturate the local magnetic order.

Figures 12(b) and 13 show the profiles in the magnetic field range where the
van der Waals loop is developed. All profiles are symmetrical due to equal nematic
anchoring strengths at the walls of the cell.

6. Experimental considerations. To make contact with the experiment [9, 17,
18, 21], we consider a cell of thickness D = 125 μm and suppose magnetic particles
of L = 0.2 μm, d = L/3. Plausible mean packing fractions are in the range f̄ ≈
2 × 10−7 − 6 × 10−5, with magnetite particles for which M̄ = 485 G. The quantity
Wpd is a quantity with the dimensions of an anchoring energy W . Naive microscopic
theory suggests that this might be expected to be of the same order of magnitude as
the anchoring energy at the surface of the colloidal particle. In this spirit, we expect
Wp d ≈ 10−3 − 10−1 erg/cm2. Finally, for 5CB at T = 25oC, K ∼ 5.3 × 10−7 dyn.
The resulting dimensionless quantities are in the range w ≈ 9× 10−3 − 2.7× 102 and
t ≈ 3.5 × 10−3 − 1.

To obtain higher temperatures t, in order that real experiments more closely
match our ideal systems, it would be necessary to use thicker cells and higher particle
concentrations. For example, with a cell of thickness D = 460 μm, magnetic particles
with L = 0.15 μm, d = L/3, and a mean volume fraction of f = 6.9 × 10−6 (c =
2.3 × 1010 cm−3), we have t = 3.85.

The size and the aspect ratio we consider for the colloidal ferromagnetic particles
are consistent with these particles being in a single-domain magnetic state [22]. We
suppose that the magnetic grains are coated by suitable surfactant [3, 9, 23] to pre-
vent coagulation. This theoretical idealization has in practice presented problems for
experimentalists, but we do not address these here. Finally, we impose homeotropic
boundary conditions at the particle surfaces.

We show in Figure 14 a fit of the experimental data by Chen and Amer [3] to
our theory. The field-induced molecular reorientation of the FN was found in [3] by
measuring the corresponding induced change in phase difference



1714 ZADOROZHNII, SLUCKIN, RESHETNYAK, AND THOMAS

(70) δ =
2π

λ

∫ D

0

[
none

(n2
e cos2 θ + n2

o sin2 θ)1/2
− no

]
dz,

where λ is the wavelength of the incident laser beam and no, ne are, respectively, the
ordinary and extraordinary refractive indices of the sample. The continuous curve is
calculated for λ = 632.8 nm, the width of an FN cell D = 337 μm, Hb = 0.6 Oe,
Ms = 340 G (γ-Fe2O3 magnetic particles), K3 = 7.63× 10−7dyn, K1 = 6× 10−7dyn,
no = 1.5443, ne = 1.7582, and χa = 0.97 × 10−7 (MBBA, T = 25oC [17]). The
parameters of the best fit are L = 0.47 μm, L/d = 7.7 (close to that in [3]), Wp d =
4.9 × 10−2 erg/cm2, and f̄ = 1.83 × 10−8. For the above parameter values, w ≈ 0.22
(low coupling regime). A clear decrease in δ for H > 40 Oe is in agreement with our
prediction of an inverse Frederiks effect.

We note [10] that the ferronematic is expected to exhibit collective behavior only
for colloidal particle concentrations exceeding a critical value wcr, with wcr ∼ 1/2.
However, our estimate for w is slightly below 1/2. There is thus an apparent para-
dox that results can be fitted to a model, but only with parameters for which the
microscopic foundation of the model is weak. The solution to the paradox is not en-
tirely clear, but it is possible to speculate. Among possible weaknesses in the model
are (a) a failure to take account of the polydispersity in size of magnetic particles
and (b) the use of a simple phenomenological Rapini–Papoular expression for the
anchoring energy [10].

The best fit of the birefringence gives the value of mean particle concentration c̄
as about 7% of the total concentration reported in [3]. We speculate that this may be
related to a partial coagulation of the magnetic particles during the preparation of the
ferronematic, i.e., a formation of large multiparticle aggregates whose total magnetic
moment is close to zero [11]. These aggregates would be insensitive to a weak external
magnetic field, thus reducing the birefringence effect.

7. Discussion. In this paper we have carried out an exhaustive analysis of the
ordering processes which take place in a Frederiks-like cell when the liquid crystal is
doped by magnetic colloidal particles. These systems are otherwise known as ferrone-
matics. The original motivation for introducing the magnetic particles is to amplify
the otherwise low magnetic response. The magnetic Frederiks transition would then
be observable at experimentally accessible fields, and the effect could be utilized in
magnetically switched liquid crystal devices.

Our calculations show that the simple amplification picture outlined in the last
paragraph is at best a great simplification. The mathematical structure of these
ferronematic systems seems extremely simple to formulate. There is also an interesting
homogenization problem concerned with determining the magnitude of the effective
magnetic-nematic director interaction which we have not addressed here, but which is
under study elsewhere [25]. The simple formulation nevertheless exhibits a complex
and rich set of behaviors as a function of magnetic field, colloidal particle structure,
and colloidal concentration.

Although these behaviors can be analyzed easily using computational solutions,
we have sought here where possible to examine the structural predictions of the model
using mathematical tools. Without this perspective, the model predictions may look
counterintuitive. A particular advantage of the method presented here, as opposed
to earlier attempts at the same problem, is a change of scaling. The result of this
apparently trivial scaling change is that temperature effects on the colloidal density
can be added as a perturbation rather than present themselves as an essential element
in the theory.
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We find that low magnetic fields do indeed produce a switching analogous to the
switching in Frederiks cells in an electric field. However, if the colloidal particles are
insufficiently anisotropic, or if their volume fraction is too low, the alignment at low
fields is followed by a disorientation process at high fields. In this circumstance, even
though the magnetic particles are ordered by the field, the nematic order is dominated
by the boundaries at high and low fields, although not at intermediate fields. We
have further shown that a first-order disorientation transition is expected as a result
of coupling between the orientation and segregation of the magnetic particles into
regions where the magnetic force is highest.

The key difference between the ferronematic-induced effects and the direct mag-
netic effects is the fact that at high fields the magnitude of the ferronematic effects
saturates. For very high fields, the director is more strongly tied to the magnetic
field than it is to the nematic director. Our treatment completely ignores the direct
interaction between the nematic and the magnetic fields. This is normally down by
several orders of magnitude, but in the very high field limit, this will no longer be
the case. In this very high field limit, our high field asymptotics would need to be
modified. In extreme cases, where the direct and induced fields compete, there is
further potentially interesting very high field physics. But we anticipate that this will
occur at experimentally inaccessible magnetic fields. In any event, we postpone this
to future work.

Finally, we note again the paucity of experimental data on these systems. This is
a result of the difficulties of aligning magnetic particles themselves at higher temper-
atures, and also of preventing van der Waals forces from forcing irreversible colloidal
aggregation. Attempts in the physics and engineering communities to make progress
in this area continue. If these attempts bear fruit, there are further interesting math-
ematical problems to attack in this area. The most obvious of these is the dynamics
of the ordering process itself, which, because of the nature of the couple exerted by
the magnetic field on the local dipole moment, could in principle lead to a slow and
oscillatory response. We postpone this problem to a future paper.

Acknowledgments. We acknowledge useful discussions over the course of this
work with M. P. Allen, S. V. Burylov, M. Carme Calderer, D. Golovaty, I. P. Pinkevich,
Y. Reznikov, C. Rosenblatt, and A. N. Vasilev.

REFERENCES

[1] F. Brochard and P. G. de Gennes, Theory of magnetic suspensions in liquid crystals, J.
Physique (France), 31 (1970), pp. 691–708.

[2] C. Mauguin, Orientation of liquid crystals by a magnetic field, C. R. Acad. Sci., 152 (1911),
pp. 1680–1683 (in French); translation appears in Crystals that Flow: Classic Papers from
the History of Liquid Crystals, T. J. Sluckin, D. A. Dunmur, and H. Stegemeyer, eds.,
Taylor and Francis, London, 2004, pp. 122–127.

[3] S.-H. Chen and N. M. Amer, Observation of macroscopic collective behavior and new texture
in magnetically doped liquid crystals, Phys. Rev. Lett., 51 (1983), pp. 2298–2301.

[4] S. K. Srivatsa and G. S. Ranganath, Nematic kink states in a laser field, Phys. Rev. E (3),
60 (1999), pp. 5639–5646.

[5] C. Y. Matuo and A. M. Figueiredo Neto, Time dependence of the magnetic grain concen-
tration and secondary grain aggregation in ferronematic lyotropic liquid crystals subjected
to magnetic field gradients, Phys. Rev. E (3), 60 (1999), pp. 1815–1820.
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Abstract. We modify existing models of bacteriophage growth on an exponentially growing
bacterial population by including (1) density dependent phage attack rates and (2) loss to phage
due to adsorption to both infected and uninfected bacteria. The effects of these modifications on key
pharmacokinetic parameters associated with phage therapy are examined. More general phage growth
models are explored which account for infection-age of bacteria, bacteria-phage complex formation,
and decoupling phage progeny release from host cell lysis.
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1. Introduction. As pathogenic bacteria have increasingly become resistant to
our arsenal of antibiotics, there has been renewed interest in the use of bacteriophage
to control bacterial infections [13, 11, 12, 14, 15, 23]. Bacteriophage, phage for short,
are viruses which prey on bacteria. Almost as soon as they were discovered there
was interest in using them to control infections and bacterial contamination. The
history of early attempts to use them for such purposes during the last century is
fascinating [13, 12, 6]. It is not hard to see the potential in phage therapy, for, unlike
chemotherapy, which simply results in the death of a susceptible bacteria, phage
therapy results in the death of the host cell and the release of hundreds more lethal
phage. The author found the review articles [13, 12] on phage therapy useful.

Mathematical modeling has long played a significant role in the study of phage-
bacterial interactions for ecological reasons [2, 22, 17, 9] as well as for medical ones
[3, 11, 12, 10, 14, 15, 23]. See also the additional references in these papers. The rea-
sons for this are obvious—among them being the difficulty of carrying out controlled
experiments in vivo and the novelty of a self-replicating therapeutic agent.

It will be useful to briefly review the life cycle of a virulent phage and some of
the associated terminology for later use. Typically, phage specialize to attack only
one or a few strains of a bacterial host whose cell surface contains an appropriate
binding site. Phage attach to a preferred binding site and then inject their genetic
material, DNA or RNA depending on the phage, and perhaps some enzymes into the
cell, which thereafter is called an infected cell. In the case of virulent (also called
lytic) phage, the infected host cell machinery is then immediately co-opted to make
new phage particles which are subsequently released in a burst when phage enzymes
cause the host cell to lyse and the cycle repeats. The latent period is the time between
phage-host binding and subsequent release of the phage at cell lysis, usually on the
order of 20 minutes to an hour depending on the host-phage system. The burst size,
ranging between several to thousands, is a measure of the average number of phage
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progeny resulting from a single infected host cell and also depends on the host-phage
system.

This paper addresses some issues that seem not to have been explored in the
mathematical modeling of bacteriophage growth that may be important in phage
therapy. First, one finds that mass action kinetics, e.g., bxv, where x denotes the
concentration of uninfected bacteria and v is the concentration of phage, is invariably
used to model both the phage attack rate on uninfected bacteria and the rate of loss
of free phage due to attachment [9, 10, 14, 15, 23]. Weld, Butts, and Heinemann [23]
experimentally measured the “adsorption rate” b in the context of the rate of loss of
phage (number of adsorbed phage per free phage per bacterium per minute), found a
wide variation of values, and noted that it decreased as the sum of phage and bacterial
densities (x + y + v) increased, where y is the density of infected bacteria.

In this paper, we will argue that the phage attack rate and the rate of phage loss
due to attachment are distinct. As the former involves attachment and injection of
the one primary (first to inject) phage while the latter takes account of all secondary
phage that attach to a cell, this should not be unexpected. We propose that the
phage attack rate deviates from bxv when phage densities are large due to the higher
likelihood of multiple phage binding to a cell between the time of initial binding and
lysing and therefore to a lower impact per phage particle. Mathematically, this will
be achieved here not by making b dependent on the densities but by adding an extra
multiplicative term to the phage attack rate which depends on the phage density.
Specifically, our analysis leads to the reduced phage attack rate

(1.1)
bxv

FN (cv)
, c = b/ρ,

where 1/ρ denotes the injection time, the time between binding of a phage to a host
bacteria and subsequent injection of genetic material into the host, N denotes the
number of binding sites for phage per host, and

FN (u) = 1 +
u

1 + u
+

u2

(1 + u)(2 + u)
+ · · · + uN

(1 + u)(2 + u) · · · (N − 1 + u)N
.

Observe that FN (u) > 1, so the attack rate is strictly less than bxv. Despite appear-
ances, FN (u) depends rather weakly on N ; F3(u) is a good approximation of F100(u)
on 0 < u < 5. To lowest order, FN (u) ≈ 1 + u, so the effect of the term cv in (1.1) is
nonnegligible precisely when bv × 1

ρ is nonnegligible compared to one. bv/ρ gives the
number of potential irreversible phage attachments that could be formed with a typ-
ical host cell during the injection time. A rough estimate of c = O(10−8) for a strain
of E. coli and phage implies that the term cv in (1.1) is significant when v ≥ O(107),
well within the range used in experimental and theoretical studies.

Second, it seems to us that the rate of loss of phage is underestimated in existing
models and moreover that the effect of this underestimation may be significant for
bacteriophage therapy. For example, if we assume that a phage cannot detect the
state (uninfected or infected) of the host cell to which it binds, then one should not
ignore the loss of the phage due to “wasted attacks” on already infected hosts. We
take into account that a host cell has a multiplicity of potential phage binding sites
on its surface, more than one of which may be simultaneously bound by phage. This
leads, with good approximation, to the expression

(1.2) −bv(x + y)
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for the rate of phage loss due to attachment. As a result our model differs from others
in the literature in that the phage loss rate due to attachment differs from the phage
attack rate on the host.

Finally, most existing models either assume an exponentially distributed latent
period [14, 15] leading to ordinary differential equations or assume a fixed-length latent
period which results in delay differential equations [9, 10, 23]. Here, in the appendix,
we explore a more general model, where infected cells are structured by age-since-
injection and where the release rate of phage progeny may be either a continuous
“budding off” or an abrupt burst at host lysis typical of virulent phage. We also allow
for variable phage progeny size by decoupling cell death from the release of progeny.
This structured model may lead to ordinary differential equations, to delay equations,
or to more general integro-differential equations depending on whether the infected
cell mortality rate is independent of age-since-injection, sharply dependent on it, or
a more smooth nonconstant function of it. However, much of our effort is devoted to
a delay differential equation model resulting from the assumption of a fixed-length
latent period followed by a discrete burst of phage. This model is similar to models
considered by Lenski and Levin [10] and by Beretta and Kuang [2] except for the
modifications already noted. Our treatment of the initial conditions and their effect
during the initial latent period is more natural than in [10, 2], and it facilitates the
consideration of a proliferation threshold for phage therapy.

We show that the density dependent attack rate (1.1) and the modified rate of
phage loss due to attachment (1.2) result in potentially significant modifications in
key pharmacokinetic quantities associated with active phage therapy first identified
by Payne and Jansen [14, 15]. Unlike passive therapy which relies on a massive dose of
phage to kill bacteria in only one phage generation, active therapy does not need such
a large dose since it relies on second and third generation phage for its success. Payne
and Jansen argued for the existence of a threshold number of uninfected host cells
required to support the amplification in phage numbers from one phage generation
to the next (the phage reproductive number exceeds one). This idea has generated
some controversy in the field [7, 8, 13, 16] due to a misunderstanding of its meaning.
However, it is certainly valid for the mathematical models of phage growth treated in
[14, 23]. We derive a threshold condition for phage proliferation which reduces to one
comparable to Payne and Jansen’s when total bacterial density is not too large but
changes character when densities become large.

2. Phage growth on an exponentially growing host population: Fixed-
length latent period. In the appendix we derive a general model of phage growth
which includes the one described below as a special case. Here, we make the following
assumptions:

(a) Bacteria first injected by phage at time t− τ lyse (die) at time t.
(b) Uninfected host cells grow at rate a; infected cells do not grow.
(c) Free phage, those unattached to host cells, decay or wash out at rate m.
(d) Bacteria are removed by washout or death unrelated to phage at rate p.
(e) Phage do not distinguish between infected and uninfected cells with regard

to attachment and injection.
(f) The rate of release of phage progeny from an infected host of infection-age

(time since injection) s ∈ [0, τ ] is η(s). In particular, it is independent of the number
of phage injections.

In other words, we assume the latent period has duration precisely τ units of time
as in [2, 23, 10]; this is relaxed in the more general model in the appendix. As we
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are primarily motivated by applications to phage therapy where one is interested in
treating the initial phase of a bacterial infection which, in the worst case, is charac-
terized by an exponentially growing pathogen, the model equations do not include
density effects on host growth such as in [10, 2]. Payne and Jansen [14, 15] assume
that infected hosts grow at the same rate as uninfected hosts, but we follow Weld,
Butts, and Heinemann [23] and Abedon, Herschler, and Stopar [1], who suggest that
infected host cells do not grow. According to (f), the integral

L =

∫ τ

0

η(s)ds

gives the phage progeny from an infected host assuming that it survives the latent
period. The general release rate η(s) easily accommodates both what is sometimes
called “budding” of phage progeny from a living host cell as well as a “burst” of
phage progeny released at cell lysis. Assumption (e) is used by Schrag and Mittler
in [18] in an ecological setting. We are unaware of any evidence supporting or refuting
it. Our assumption in (f) that the number of progeny is independent of the number
of phage injections is consistent with observations of Stent [20, p. 74], who remarks
that “latent period and burst size do not, however, depend in any very striking way
on the number of phage particles with which each bacterial cell has been infected.”
However, he later mentions lysis inhibition that occurs in the infected host of certain
T-even phage where superinfection late in the latent stage may substantially prolong
the latent stage and enhance the burst size. See also [1]. Hypothesis (d) is rather
standard [14, 23].

Let x denote the density of uninfected host bacteria, y the density of phage-
infected bacteria, and v phage density. The expression (1.1) is used for the phage
attack rate rather than the usual mass action rate bxv for the reasons described in
the introduction. The corresponding loss rate for phage due to attachment to host
cells is modeled by (1.2) to account for wasted attachments following (e) above. We
stress that both these rates are derived in the appendix.

Initial conditions at time t = 0 must take account of the infection-age of the
infected cells since these cells may have been infected at different times in the past.
Moreover, it is reasonable to assume that the initial set of infected cells was obtained
in a manner independent of the initial set of uninfected cells and phage. Therefore,
we prescribe the initial uninfected host density x(0), the initial phage density v(0),
and the initial distribution of infected cells:

U0(s), 0 ≤ s ≤ τ,

where s denotes the age since infection (injection). Thus, for 0 < c < d < τ ,
∫ d

c
U0(s)ds

denotes the number of infected cells with infection-age between c and d. These cells,
infected at times between t = −d and t = −c, will, if not washed out, lyse at times
between τ − d and τ − c.

In our view, the manner in which initial data are formulated here is more natural
than that in [2], where the past history of phage and uninfected host cells are pre-
scribed over a latent period, assuming that the initial population of infected cells at
t = 0 arises through infection of the initial host population by the initial phage.
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For the initial latent period, the equations of the model are given by

dx

dt
= ax− bxv

FN (cv)
− px,

y(t) =

∫ t

0

bx(t− s)v(t− s)

FN (cv(t− s))
e−psds + e−pt

∫ τ−t

0

U0(s)ds, 0 ≤ t ≤ τ,

dv

dt
= −b(x + y)v −mv +

∫ t

0

bx(t− s)v(t− s)

FN (cv(t− s))
e−psη(s)ds(2.1)

+ e−pt

∫ τ−t

0

U0(s)η(s + t)ds.

Observe that infected cells at time t < τ arise either from cells infected after t = 0
or from surviving cells from the founding population U0. The first integral in the
equation for y gives the number of cells infected after t = 0 which survive washout to
be alive at time t. The second gives the survivors from the founding population still
alive at time t; clearly these must have had age less than τ − t in order to be alive at
time t. A similar analysis explains the two integrals in the equation for phage: the first
integral gives phage progeny issuing from cells infected after t = 0, and the second
integral gives phage progeny issuing from survivors from the founding population of
infected cells.

In all our simulations and in most experimental setups, the founding population
of infected cells is taken to vanish, U0 = 0, simplifying the equations during the initial
latent period. Indeed, the natural initial conditions for phage therapy correspond to
administering a dose of phage to an exponentially growing bacterial population that
has not been exposed to phage, and therefore there are initially no infected hosts
of any age of infection. This does not mean that our care in formulating the initial
conditions is wasted since we will have reason to consider nonzero U0 in our later
discussion related to phage therapy.

After the latent period, the founding population of infected cells have all lysed
and the equations are simpler:

dx

dt
= ax− bxv

FN (cv)
− px,

y(t) =

∫ t

t−τ

bx(s)v(s)

FN (cv(s))
e−p(t−s)ds, t > τ,(2.2)

dv

dt
=

∫ τ

0

e−ps bx(t− s)v(t− s)

FN (cv(t− s))
η(s)ds− b(x + y)v −mv.

Key properties of the function FN (u) are given in the lemma below, which is
proved in the appendix. As Figure 2.1 shows, these functions depend rather weakly
on N for small u.

Lemma 2.1. The functions FN : [0,∞) → [1,∞) satisfy the following:
1. d

du
u

FN (u) > 0 and d
duFN (u) > 0,

2. u
FN (u) → N as u → ∞, and

3. F∞(u) ≤ FN+1 ≤ FN (u) ≤ F1(u) = 1 + u,
where

F∞(u) = 1 +

∞∑
n=1

n∏
i=1

u

i + u
.
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Fig. 2.1. Plot of FN (u) versus u for N = 1, 3, 100.

The biological implications of these assertions are not surprising. The fact that
FN (u) > 1 for u > 0 means that the attack rate (1.1) is smaller than the corresponding
mass action rate bxv. According to assertion 3, it increases with N , the number of
host binding sites; more sites means the potential for more attached phage, which
decreases the time to injection. The first assertions ensure that the phage attack rate
increases with increasing phage density v. The second indicates that the maximum
effect of phage on the specific growth rate of bacteria (x′/x) is bN/c. Observe that
F3(2) ≈ F100(2) > 2, so the attack rate is less than half the corresponding mass action
rate bxv when cv > 2.

For t > τ , the y equation can be differentiated to yield

(2.3) y′ =
bxv

FN (cv)
− e−pτ bxτvτ

FN (cvτ )
− py,

where xτ = x(t− τ), vτ = v(t− τ). As noted above, the natural initial conditions for
phage therapy are to administer a dose of phage to an exponentially growing bacterial
population which has not previously been exposed to phage. Thus, U0 ≡ 0 and the
differentiated form of the y equation during the initial latent period differs from (2.3)
in that the second term is removed.

Well-posedness issues related to our system (2.1)–(2.2) can be treated using results
in [5]. Corollary 2.2 of Chapter 12 can be used to prove the existence and uniqueness
of a maximally defined continuous solution corresponding to nonnegative initial data
if, for example, U0 is integrable and η is essentially bounded. Easy arguments give
that the solution is nonnegative, and prior bounds show that it is globally defined.

If the rate of phage progeny release is highly peaked about the age at lysis τ , it
is reasonable to assume that cells produce L-phage exactly on reaching age τ :

(2.4) η(s) = Lδ(s− τ),

where δ(r) is the Dirac impulse function with unit mass concentrated at r = 0. In
that case, the equation for phage simplifies for the latent period to

(2.5)
dv

dt
= −b(x + y)v −mv + Le−ptU0(τ − t), 0 < t ≤ τ,
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and thereafter to

(2.6)
dv

dt
= Le−pτ bxτvτ

FN (cvτ )
− b(x + y)v −mv, t > τ.

2.1. Remarks on long term dynamics. In contrast to ecologically motivated
theoretical studies of phage growth where attention has been paid to long term dy-
namics [2, 17], there has been very little consideration of long term dynamics of phage
growth models aimed at understanding phage therapy [14, 23]. This is probably due
to a tacit assumption that the equations are valid only until such time as an immune
response is mounted. Indeed, the hypothesis of exponential bacterial growth captures
this focus on the short term dynamics.

Returning to the general system (2.1)–(2.2) with budding rate η, if a > p, which we
assume hereafter, then the trivial equilibrium point (x, y, v) = (0, 0, 0) is an unstable
saddle point. For if there are no virus or infected cells, then the uninfected cells grow
at the exponential rate a− p > 0. If, on the other hand, there are no uninfected cells,
then any free virus and infected cells are removed at an exponential rate. Therefore,
it is plausible that no solution starting with x(0) > 0 can satisfy x(t) → 0, t → ∞. We
wish to stress that this fact is common to all models of virulent phage growth in the
literature—not just the one treated here. It is possible to overlook this observation
on viewing the simulations reported here and in [14, 23]. Below we give a proof which
carries over to these other models with only minor changes.

Proposition 2.2. If a > p, then no solution of (2.2) with x(0) > 0 can satisfy
x(t) → 0, t → ∞.

Proof. The assertion is obvious if bN/c ≤ a − p since then x′/x ≥ 0. Hereafter,
assume that bN/c > a − p. If x(t) → 0 as t → ∞ for some nonzero solution of (2.2),
then necessarily y(t) → 0 as well. It can then be seen that v must remain bounded.
By standard arguments, this and the convergence of x(t) imply that x′(t) → 0 and,
therefore, since x(t) 	= 0, v(t) → VI > 0, where VI is the unique positive root of

bv
FN (cv) = a− p guaranteed by Lemma 2.1. The convergence of v(t) implies v′(t) → 0,

but this immediately leads to the contradiction that v → 0.
Proposition 2.2 does not preclude that bacteria levels fall below a singleton, x(t) <

O(1), which means extinction and hence successful treatment. This will be evident
in our numerical simulations. Obviously, our deterministic model breaks down at low
densities of bacteria, but aside from this therapy can be successful if, even with large
initial bacterial populations, there are feasible phage doses that will result in bacteria
levels decreasing to a small fraction of pretreatment levels.

Because we assume that bacteria grow exponentially, rather than, say, logistically
as in [2] or controlled by nutrient limitation as in [11, 10], there is no “phage-free”
equilibrium with host cells at some positive level and no phage or infected cells.

If bN
c > a− p and

(2.7) (a− p)

∫ τ

0

e−psη(s)ds > bVI

(
1 + (a− p)τ

(1 − e−pτ )

pτ

)
,

where the quotient (1−e−pτ )
pτ = 1 when p = 0, then there exists a unique positive

steady state (X,Y, V ). The analytical determination of the stability properties of the
positive steady state via linearization is very challenging. See Beretta and Kuang [2]
for some partial results. Simulations of our system extending for hundreds of hours,
not shown here, are oscillatory in nature and characterized by long periods with cell
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Table 2.1

System parameters.

Parameter Value
a 0.3 /hr
b 9 × 10−7ml/hr
c 3 × 10−8ml
L 150
m 1.8 /hr
p 0
τ .43 hr
N 100
ρ 30/hr
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Fig. 2.2. x(0) = 106, y(0) = 0, v(0) = 108. Dashed lines correspond to c = 0.

densities well below one cell per milliliter. We conclude that the asymptotic behavior
of the model system has limited relevance for phage growth.

2.2. Parameter values for simulations. Measurements of Weld, Butts, and
Heinemann [23] found that the adsorption rate for phage T4 growing on an E. coli
strain averaged 1.5×10−8 ml/min, which translates to the per hour rate in Table 2.1.
Similar values can be found in [14, 20].

Grayson et al. [4] observe that the waiting time following phage binding to the
host for initiation of injection is random, ranging from seconds to minutes. Their data
reasonably fit an increasing but saturating exponential function with time constant t0
which ranges from 79 seconds to 166 seconds. As they find that the injection process
takes roughly 10 seconds, it is reasonable to take our injection time 1/ρ to be 2
minutes.

This leads to a value c = b/ρ = 3 × 10−8 ml, which means that the term cv
appearing in (1.1) is significant; i.e., cv = O(0.1) when v > 0.3 × 107. In the numer-
ical simulation shown in Figure 2.2, we take v(0) = 108 (compare with Payne and
Jansen [14] who use even 109 initial phage in simulations), so cv(0) = 3.

In his monograph, Stent [20] describes experiments of Schlesinger, who measured
the “adsorption capacity” of E. coli for WLL phage by adding phage to a suspension
of bacteria and noting when additional phage could no longer become attached. He
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found that this threshold occurred at about 300 phage per bacterium. Although the
adsorption capacity may differ from the number of binding sites for a variety of rea-
sons, the experiment suggests that the number of binding sites satisfies N = O(102).
The lack of sensitivity of the attack rate (1.1) to N suggests that N = 100 should
give sufficient accuracy.

Parameter values used in our simulations are displayed in Table 2.1. Those not
described above were taken from [14, 23]. Our simulations are restricted to the special
case that a burst of L phage is produced from an infected cell at lysis. Therefore, (2.5)
and (2.6) were used. Initial data were taken following Payne and Jansen.

Assuming that U0(s) ≡ 0, the simulated system is

dx

dt
= ax− bxv

FN (cv)
− px,

dy

dt
=

bxv

FN (cv)
−H(t− τ)e−pτ bxτvτ

FN (cvτ )
− py,(2.8)

dv

dt
= H(t− τ)Le−pτ bxτvτ

FN (vτ )
− b(x + y)v −mv,

where H(t− τ) denotes the Heaviside function and y(0) = 0 (reflecting that U0 ≡ 0)
unless mentioned otherwise. Numerical solutions were computed using the dde23 delay
differential equation solver on MATLAB.

Thick lines in Figure 2.2 display the time series simulating phage therapy over
an hour time frame. A notable feature of the time series is the sharp discontinuity in
the derivative of solution components at the time of the first latent period, roughly
26 minutes or 0.43 hours, caused by the burst of fresh phage. Cell concentrations
below one cell per milliliter should be viewed as the absence of cells; this occurs for
uninfected cells at approximately 0.6 hours. For comparison purposes, the dashed
lines show the result of replacing both the attack rate (1.1) and rate of phage loss
(1.2) by the traditional mass-action term bxv, keeping initial data the same. Note
that the traditional mass-action rate results in a substantially quicker reduction in
uninfected hosts over the first two latent periods and a reduction in infected cells over
the second latent period. Uninfected cells essentially vanish at 0.2 hours and infected
cells at 0.6 hours. Virus levels appear to be affected to a lesser degree. We conclude
that the effect of our modifications in phage attack rate and phage loss rate is to
significantly lengthen host cell survival, at least for initial data used here. As viral
densities appear to be less affected by our modifications, it is probably the case that
the modified attack rate is most significant.

3. Implications for phage therapy. Payne and Jansen [14, 15] discovered
some key pharmacokinetic parameters related to in vivo phage therapy against bac-
terial infection using a very simple model of phage growth. Of course, effects of an
immune response to phage and to bacteria are ignored for these calculations, assuming
that they kick in at a later time.

As noted above, in the context of our deterministic model, successful phage ther-
apy can at best mean that bacterial levels are driven to a sufficiently low level that the
immune system easily finishes them off. Successful phage therapy requires at minimum
that uninfected bacterial density decreases. Our equations imply that

(3.1) x′ < 0 ⇔ v > VI ,
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where VI is the unique positive root of bv
FN (cv) = a − p (see Lemma 2.1). Payne and

Jansen [14] refer to their VI , obtained by setting c = 0 in ours, as the “inundation
threshold” value. For the parameter values in Table 2.1, VI = 3.3 × 105.

Note that there is no guarantee, if one starts out with (3.1) holding, that it
will continue to hold. In fact, Proposition 2.2 implies that x′ < 0 cannot hold indefi-
nitely. Therefore, merely arranging for initial phage densities to exceed the inundation
threshold does not ensure “successful treatment.”

Payne and Jansen identify two phage therapy strategies: passive therapy and ac-
tive therapy. Passive therapy is the attempt to substantially knock down the bacterial
population with the initial dose of phage, ignoring contributing effects of subsequent
phage generations. Active therapy, presumably requiring a much smaller initial dose
of phage, relies on the proliferation potential of phage reproduction to build up phage
densities to levels sufficient to eventually drive down bacterial levels.

3.1. Passive therapy. Payne and Jansen’s derivation of an explicit minimal
phage dose for successful passive therapy, i.e., reaching x(t) = O(1), in [14] relies on
the simplicity of their model. Indeed, there are excellent reasons for simple models, and
the ability to perform explicit calculations is one of them. Our model, which includes
additional features such as the unproductive loss of phage due to phage attacking
uninfected bacteria that are already bound to phage and to wasted phage attacks on
infected cells, does not permit easy calculations. These additional features are most
likely to be nonnegligible at the required large phage doses used in passive therapy.

It is not clear that the notion of a minimal dose for passive therapy is well defined
for our model. Here, we take passive therapy to mean that bacterial density is reduced
to a suitably small fraction of its initial size within the initial latent period. We take
this obviously restrictive view of passive therapy only for analytical convenience; it
is not, however, at great variance from the rather subjective definition of passive
therapy—not to rely on subsequent generations of phage for success.

It seems obvious on biological grounds that if we fix the initial uninfected bacterial
density x(0) and assume as usual that y(0) = 0 but vary the initial phage dose v(0),
then larger doses will lead to smaller uninfected bacterial levels. However, this is far
from obvious from a mathematical viewpoint. The next result establishes this point
and provides a theoretical basis for the concept of a minimal dose for passive therapy.

Proposition 3.1. Let (x(t), y(t), v(t)) and (x̄(t), ȳ(t), v̄(t)) be two solutions of
(2.8) with x(0) = x̄(0) and y(0) = ȳ(0) = 0. If v(0) < v̄(0), then x̄(t) < x(t) and
x̄(t) + ȳ(t) < x(t) + y(t) on 0 < t ≤ τ .

For every θ ∈ (0, 1) and every U > 0 there exists V = V (U) > 0 such that if
(x(t), y(t), v(t)) is a solution of (2.8) with x(0) + y(0) ≤ U and v(0) ≥ V , then

(3.2)
x(τ)

x(0)
≤ e(a−p−(bN/c)θ)τ .

In words, bigger phage doses result in smaller bacteria levels over the first latent
period. In addition, for any initial bacterial density, there is a phage dose which
will reduce bacterial density at the end of the first latent period by a factor that
can be taken as close to e(a−p−(bN/c))τ as desired. Recall that we are assuming a −
p − (bN/c) < 0. Indeed, for the parameters of Table 2.1 it is approximately −1290.
Therefore, e(a−p−(b/c)θ)τ ≈ exp(−1290) if θ ≈ 1. We do not claim that the required
doses are medically feasible or even that there are the required number of phage in
the universe. The proof of Proposition 3.1 is provided in the appendix.
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3.2. Active therapy. In their consideration of active treatment, Payne and
Jansen give an intuitive argument for the existence of a threshold bacterial density
such that phage numbers are amplified over each successive phage generation only if
bacterial density exceeds threshold. We can apply this intuitive reasoning to our model
as well, although we arrive at a somewhat different threshold for phage amplification.
According to our delay model, a cohort of y0 newly infected cells, i.e., U0(s) = y0δ(s),
where δ is the Dirac impulse concentrated at zero so all cells have infection-age zero,
gives rise to y0Le

−pτ phage τ units of time later, when the surviving members of this
cohort of the infected host have lysed. These phage survive 1

b(x+y)+m hours during

which they infect the host at rate bx
FN (cv) per phage. We conclude that the y0Le

−pτ

phage produce Le−pτ bx
(b(x+y)+m)FN (cv)y0 second generation infected cells. The ampli-

fication factor (of y0) is therefore

R0 = Le−pτ bx

(b(x + y) + m)FN (cv)
.

The condition for amplification of infected cells, and hence the condition for prolifer-
ation of phage, is that R0 > 1:

(3.3) Le−pτ bx

(b(x + y) + m)FN (cv)
> 1.

Unlike the proliferation threshold derived in [14], ours does not lead to a threshold
condition for uninfected bacteria alone. However, as active therapy should not require
such large phage doses that cv is significant, it may be reasonable in some cases
to assume cv � 1, in which case FN (cv) ≈ 1 and we may ignore this factor. For
parameter values in Table 2.1, if v < 107, this is a good approximation. Immediately
below, we assume this approximation is valid.

Our proliferation condition involves both infected and uninfected hosts. If b(x+y)
is small relative to m, then we arrive at a threshold bacterial density for phage prolifer-
ation that is comparable to the one obtained in [14] and corrects the one given in [23]:

(3.4) x > Xp ≈ m

bLe−pτ
.

However, if b(x+y) is large relative to m, then (3.3) yields a threshold on the fraction
of uninfected cells

Le−pτ x

x + y
> 1.

In summary, the proliferation threshold computed from our model is more complex
than that of Payne and Jansen since it involves all three quantities x, y, v. If cv � 1,
it reduces to one similar to theirs, a lower bound on uninfected bacteria, when the
total bacterial density is not too large but gives a lower bound for the fraction of
uninfected bacteria when the total bacterial density is large. For parameter values in
Table 2.1, m

bLe−pτ ≈ 13, 500; b(x + y) � m if x + y < 104.
We provide two simulations where active therapy can be clearly identified. Initial

data in Figure 3.1 yield a value R0 ≈ 7 well above unity. Bacteria initially grow before
the phage gain control after the initial latent period. Figure 3.2 can be compared
to Payne and Jansen’s Figure 1(c) in [14], which shows passive therapy. We chose
parameter values to correspond to those in that figure: a = 0.3, b = 10−6, τ = 0.83,
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Fig. 3.1. Active therapy with x(0) = 105, v(0) = 106.
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Fig. 3.2. Compare to [14, Figure 1(c)]: x(0) = 2117, v(0) = 100.

L = 100, m = 1.8, p = 0 with our value of N , and c = b/ρ = 0.33 × 10−7. Initial
data were chosen as in their figure as well except that our starting time corresponds
to their tφ. It must be kept in mind that our model differs from theirs in the attack
rate as well as our assumption that infected hosts do not grow. Our simulation agrees
qualitatively with theirs, although our peak bacterial density exceeds theirs by a factor
of three.

3.3. Summary of conclusions for phage therapy. We have explored a math-
ematical model of virulent phage growth on an exponentially growing bacterial
population, system (2.8), which differs from previous models in two ways: (i) the
density-dependent phage attack rate (1.1) is used in place of the mass action rate,
and (ii) the loss rate of phage due to attachment (1.2) includes all bacterial cells and
not just uninfected ones. Our simulations, particularly Figure 2.2, appear to be most
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strongly influenced by the modification (i), leading to significantly lengthened host
cell survival. However, (ii) played a role in the calculation of the proliferation thresh-
old (3.3) for active therapy which has a more complicated character than the simpler
one deduced in [14]. Finally, in Proposition 3.1 we established that passive therapy
works: for any initial bacterial population there is a phage dose that can reduce the
host population to an insignificant fraction of its initial level within the first latent
period. Although the dose may be impractically large and the restriction to a single
latent period unduly restrictive, our result establishes the principle. It remains to be
seen whether any of these effects are important for phage therapy.

In the following appendix, we show how (i) and (ii) arise from a careful modeling
of bacteria-phage complexes consisting of a single host and a number of attached
phage. The modeling framework we introduce there may be more important in the
long run than the conclusions described above since it leads to much more flexibility
in modeling phage release and host cell survival.

Appendix. We explore several modeling issues in this appendix which may be
of interest for general bacteriophage-host interactions. First, we construct a model
where infected hosts are structured by injection-age and where various complexes
consisting of a host cell and one or more attached phage are explicitly included. We
assume that each cell has a fixed number N of binding sites where host cells can
have multiple attached phage. Finally, the age-structured infected cell population is
reduced to integro-differential equations. Two cases lead to relatively simple equations:
(1) the case where infected cell death rate by lysis is zero until time τ after which it is
infinite, equivalent to fixed-length latent period, and (2) the case where the lysis rate
is constant meaning an exponentially distributed latent period. The first case leads
to the model considered in previous sections, while the second case leads to simpler
ordinary differential equations similar to those in [14].

A.1. Phage-host complex formation. We call a host cell infected when a
phage has injected genetic material into it; until then it is called uninfected. Further-
more, a phage ceases to exist once it has injected its genetic material.

The time between injection and lysis is on the order of 20 minutes or so, depending
on the host-phage system. We will keep track of this “infection age” of infected cells.
Denote by Y (t, s) the distribution of infected cells of age s at time t. The integral∫ a2

a1

Y (t, s)ds

then gives the number of infected (postinjection) cells that were injected between
t− a1 and t− a2, and

Y =

∫ ∞

0

Y (t, s)ds

gives the size of the infected class of cells.
Assume that each host cell has N potential phage binding sites. Then we partition

uninfected host X, infected host Y , and phage V as follows:

X(t) =
∑
i

Ci
x(t),

Y (t, s) =
∑
i

Ci
y(t, s),
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V (t) = v(t) +
∑
i

i

(
Ci

x(t) +

∫ ∞

0

Ci
y(t, s)ds

)
.

Ci
x (Ci

y) denotes the concentration of uninfected (infected) cells having i attached
phage for 0 ≤ i ≤ N , and v(t) denotes the concentration of unadsorbed phage. In the
case of infected cells, we stress that the age variable s denotes time since injection
and not time in a particular compartment. All sums are over the range 0 ≤ i ≤ N .

Recall that a host cell is infected once an attached phage injects, and a phage
ceases to exist once it injects.

We assume that a host complex with i < N attached phage may adsorb an
additional phage at the rate bvCi

z, where z = x, y. The rate constant b, the adsorption
rate, is assumed independent of i and whether the host complex is infected (z = y)
or uninfected (z = x). Let ν(s) denote the death (lysis) rate of infected cells of age s,
and let η(s) denote the rate of release of phage from an infected cell of age s. Here, we
explore the case that both are independent of the number of attached phage. Recall
that ρ is the injection rate; equivalently, 1/ρ is the average time between phage binding
and subsequent injection of genetic material. The model equations are as follows:

X ′ = aX − ρ

N∑
i=1

iCi
x − pX,

(Ci
x)′ = aCi

x + bvCi−1
x − (iρ + bv)Ci

x − pCi
x,(

∂

∂t
+

∂

∂s

)
Ci

y(t, s) = bCi−1
y v + (i + 1)ρCi+1

y − (iρ + bv)Ci
y − (p + ν(s))Ci

y,

Ci
y(t, 0) = ρ(i + 1)Ci+1

x (t),(
∂

∂t
+

∂

∂s

)
Y (t, s) = −(ν(s) + p)Y (t, s),(A.1)

Y (t, 0) = ρ

N∑
i=1

iCi
x(t),

v′ =

∫ ∞

0

Y (t, s)η(s)ds−mv

−bv

N−1∑
i=0

(
Ci

x +

∫ ∞

0

Ci
y(t, s)ds

)
,

where CN+1
x = CN+1

y = 0 and where for i = N the loss term −bvCN
z , z = x, y, in the

equations for CN
z is dropped since all binding sites are filled so no more attachments

are allowed.
Some comments are in order as these equations may not at first appear trans-

parent. Uninfected hosts are lost due to injection of a complex Ci
x(t) by one of its

attached phage, which then becomes a newly infected host Ci−1
y (t, 0) with one less

attached phage. The rate of injection is ρiCi
x since any one of the i attached phage

may inject. This accounts for the loss term −iρCi
x(t) in the equation for X and the

boundary condition for Ci
y(t, s) and Y (t, s) at s = 0. The injection of an infected

host simply reduces the number of attached phage by one. Figure A.1 shows the flow
between the compartments Ci

x and Ci
y. Free phage are lost due to attachment to host

cells.
Initial conditions for (A.1) consist of specifying nonnegative values for X(0),

Ci
x(0), v(0) and nonnegative functions Ci

y(0, s) and Y (0, s) = U0(s) defined for s ≥ 0.
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Fig. A.1. Transfer diagram between complexes for (A.1): ρ denotes injection rate, and bv de-
notes adsorption rate.

We intend to employ a quasi–steady state analysis in order to remove the equa-
tions for the host/phage complexes. Before doing so it is convenient to integrate the
equation for Ci

y with respect to infection-age, yielding

(Ci
y)

′ = −
∫ ∞

0

(ν(s) + p)Ci
y(t, s)ds− (iρ + bv)Ci

y + bvCi−1
y + (i + 1)ρ(Ci+1

y + Ci+1
x ).

Hereafter, unless specifically mentioned, Ci
y denotes

Ci
y(t) =

∫ ∞

0

Ci
y(t, s)ds.

We assume that irreversible binding and injection are fast compared to such
processes as growth and washout of host and the latent period. Therefore, we ignore
these slower processes in the equations for complexes Ci

x and Ci
y in (A.1). Setting the

time derivatives to zero in the Ci
x and Ci

y equations yields

0 = bvCi−1
x − (iρ + bv)Ci

x, 1 ≤ i ≤ N,

0 = bvCi−1
y + (i + 1)ρ(Ci+1

x + Ci+1
y ) − (iρ + bv)Ci

y,

where we employ the conventions used in (A.1).
Adding the first N equations for the Ci

x and then adding all 2N equations yields

N∑
i=1

iCi
x = bvC0

x/ρ, C1
x + C1

y = bv(C0
x + C0

y)/ρ.

Then straightforward calculations give the distribution of phage occupancy of host
cell binding sites:

(A.2) Ci
x + Ci

y =
(bv/ρ)i

i!
(C0

x + C0
y),

meaning phage are distributed according to a Poisson distribution with parameter
(mean and variance) bv/ρ. We also have

(A.3) Ci
x = C0

x

i∏
j=1

u

j + u
, 1 ≤ i ≤ N − 1, CN

x =
u

N
CN−1

x , u = bv/ρ.
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We must express all quantities in terms of the variables X,Y, v used in (A.1). We
summarize the results of doing so below.

Proposition A.1. The phage attack rate is

−ρ
N∑
i=1

iCi
x = − bvX

FN (cv)
, c = b/ρ,

where

FN (u) = 1 +
u

1 + u
+

u2

(1 + u)(2 + u)
+ · · · + uN

(1 + u)(2 + u) · · · (N − 1 + u)N
.

The rate of loss of free phage due to attachment satisfies

−bv
N−1∑
i=0

(Ci
x + Ci

y) = −bv(X + Y )

(
1 −

uN

N !∑N
i=0

ui

i!

)
,

where Y = Y (t) =
∫∞
0

Y (t, s)ds.

Proof. In order to relate C0
x to X, we use (A.3):

X =
∑
i

Ci
x

= C0
x

(
1 +

u

1 + u
+

u2

(1 + u)(2 + u)

+ · · · + uN

(1 + u)(2 + u) · · · (N − 1 + u)N

)
= C0

xFN (u).

Similarly, using (A.2),

X + Y =

N∑
i=0

(Ci
x + Ci

y) = (C0
x + C0

y)

N∑
i=0

ui

i!
.

Finally,

N−1∑
i=0

(Ci
x + Ci

y) = X + Y − (CN
x + CN

y )

= (X + Y ) − uN

N !
(C0

x + C0
y)

= (X + Y )

(
1 −

uN

N !∑N
i=0

ui

i!

)

≈ X + Y.

In view of the above result and the quasi–steady state analysis, our system (A.1)
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reduces to

X ′ = aX − bvX

FN (cv)
− pX,(

∂

∂t
+

∂

∂s

)
Y (t, s) = −(ν(s) + p)Y (t, s),(A.4)

Y (t, 0) =
bvX

FN (cv)
,

v′ =

∫ ∞

0

Y (t, s)η(s)ds−mv

− bv

(
X(t) +

∫ ∞

0

Y (t, s)ds

)
.

Our analysis above shows that the parameter c in (1.1) is given by

c =
b

ρ
= b× adsorption time.

We may solve for Y (t, s) by integrating along characteristics:

Y (t, s) =

{
R(t− s)e−pse−

∫ s
0
ν(u)du, t > s

U0(s− t)e−pte−
∫ s
s−t

ν(u)du, t < s

}
,

where R(t) = bvX
FN (cv) . The total infected cell population, Y (t) =

∫∞
0

Y (t, s)ds, is easily

computed:

Y (t) =

∫ t

0

R(t− s)e−pse−
∫ s
0
ν(u)duds +

∫ ∞

0

U0(s)e
−pte−

∫ s+t
s

ν(u)duds.

Similarly, for the equation for phage,

v′ = −bv(X + Y ) −mv +

∫ t

0

R(t− s)e−psη(s)e−
∫ s
0
ν(u)duds

+ e−pt

∫ ∞

0

U0(s)η(s + t)e−
∫ t+s
s

ν(u)duds.

System (A.4) can now be replaced by the equation for X together with the equa-
tions above for Y and v. Below we consider two special cases for the lysis rate ν.

A.2. Fixed-length latent period. The special case

ν(s) =

{
0, s < τ
∞, s > τ

}

leads to

e−
∫ s
0
ν(u)du = χ[0,τ ](s), e−

∫ s+t
s

ν(u)du =

{
1, s + t < τ
0, s + t > τ

}
,

where, for a set B, χB(z) = 1 if z ∈ B; otherwise χB(z) = 0.
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Hence

Y (t) =

∫ min{t,τ}

0

R(t− s)e−psds +

∫ ∞

0

U0(s)e
−ptχ{s+t<τ}(t, s)ds

=

∫ min{t,τ}

0

R(t− s)e−psds + χ[0,τ ](t)

∫ τ−t

0

U0(s)e
−ptds.

Equivalently,

Y (t) =

{ ∫ t

0
R(t− s)e−psds +

∫ τ−t

0
U0(s)e

−ptds, t < τ∫ τ

0
R(t− s)e−psds, t > τ

}
.

The equation for phage becomes

v′ = −bv(X + Y ) −mv +
∫ min{τ,t}
0

R(t− s)e−psη(s)ds

+ e−ptχ[0,τ ](t)
∫ τ−t

0
U0(s)η(s + t)ds.

Equivalently,

v′ =

⎧⎨
⎩

−bv(X + Y ) −mv +
∫ t

0
R(t− s)e−psη(s)ds

+ e−pt
∫ τ−t

0
U0(s)η(s + t)ds, t < τ

−bv(X + Y ) −mv +
∫ τ

0
R(t− s)e−psη(s)ds, t > τ

⎫⎬
⎭ .

If

η(s) = Lδ(s− τ),

then

v′ =

{
−bv(X + Y ) −mv + Le−ptU0(τ − t), t < τ
−bv(X + Y ) −mv + LR(t− τ)e−pτ , t > τ

}
.

These, together with the equation for X from (A.4), are the equations considered in
section 2.

A.3. Exponentially distributed latent period. In case of an exponentially
distributed latent period, ν(s) ≡ ν, easy computations yield expressions for the in-
fected:

Y (t) =

∫ t

0

R(s)e−(p+ν)(t−s)ds + e−(p+ν)t

∫ ∞

0

U0(s)ds

or, on differentiation,

Y ′ = −(p + ν)Y + R(t), Y (0) =

∫ ∞

0

U0(s)ds.

The phage equation becomes

v′ = −bv(X+Y )−mv+

∫ t

0

R(s)η(t−s)e−(p+ν)(t−s)ds+e−(p+ν)t

∫ ∞

0

U0(s)η(s+t)ds.

If η(s) ≡ Lν, then v satisfies

v′ = −bv(X + Y ) −mv + νL

(∫ t

0

R(s)e−(p+ν)(t−s)ds + e−(p+ν)t

∫ ∞

0

U0(s)ds

)
= −bv(X + Y ) −mv + νLy.

These, together with the equation for X from (A.4), can be compared to those of
Payne and Jansen [14].
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A.4. Proof of Lemma 2.1. Straightforward calculation yields that

FN+1(u) = FN (u) − uN+1

(1 + u) · · · (N + u)N(N + 1)

and that FN (u)/u → 1/N as u → ∞.

We show that u
FN (u) is monotonically increasing by showing it has a positive

derivative. Since we may write

u

FN (u)
=

u

F1(u)

F1(u)

F2(u)
· · · FN−1(u)

FN (u)
,

it suffices to show that u
F1(u) and Fn(u)

Fn+1(u) have positive derivatives for n ≥ 1. u
F1(u) =

u/1 + u is clearly increasing.

d

du

Fn(u)

Fn+1(u)
=

d

du

Fn+1(u) + g(u)

Fn+1(u)

=
g(u)

uFn+1(u)

(
ug′(u)

g(u)
−

uF ′
n+1(u)

Fn+1(u)

)
,

where

g(u) =
un+1

(1 + u)(2 + u) · · · (n + u)(n + 1)n
.

Straightforward computation gives

ug′(u)

g(u)
= 1 +

n∑
i=1

i

i + u

and

uF ′
n+1(u) =

u

1 + u

(
1

1 + u

)
+

u2

(1 + u)(2 + u)

(
1

1 + u
+

2

2 + u

)
+ · · ·

+
un

(1 + u)(2 + u) · · · (n + u)

(
1

1 + u
+

2

2 + u
+ · · · + n

n + u

)

+
un+1

(1 + u)(2 + u) · · · (n + u)(n + 1)

(
1 +

1

1 + u
+

2

2 + u
+ · · · + n

n + u

)
.

On dividing this expression by Fn+1(u), we see that it can be viewed as a convex
combination of the quantities in parentheses in the previous expression, and therefore
it lies between the minimum and maximum of the quantities in parentheses. But the

maximum is clearly inside the last parenthesis, which exactly agrees with ug′(u)
g(u) . We

conclude that

ug′(u)

g(u)
−

uF ′
n+1(u)

Fn+1(u)
> 0.
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A.5. Proof of Proposition 3.1. Setting u = x + y in our system (2.8), we
obtain the system

dx

dt
= ax− bxv

FN (cv)
− px,

du

dt
= ax− pu, 0 ≤ t ≤ τ,(A.5)

dv

dt
= −buv −mv.

This is a monotone system of differential equations whose forward flow preserves the
order relation

(A.6) (x̄, ū, v̄) ≤K (x, u, v) ⇔ x̄ ≤ x, ū ≤ u, v ≤ v̄;

see [19, Chap. 3, sec. 5]. As the Jacobian matrix on the right-hand side is irreducible,
it follows that for 0 < t ≤ τ

(x̄(0), ū(0), v̄(0)) <K (x(0), u(0), v(0)) ⇒ (x̄(t), ū(t), v̄(t)) �K (x(t), u(t), v(t)),

where <K means at least one strict inequality in (A.6) while �K means all inequalities
are strict. The first assertion of Proposition 3.1 is an immediate consequence of the
previous inequality.

As for the second assertion of Proposition 3.1, we need some elementary estimates.
Inequality u′ ≤ (a− p)u leads to u(t) ≤ u(0)e(a−p)t, so there exists M ≥ 1 such that
u(t) ≤ Mu(0), 0 ≤ t ≤ τ . Similarly, v′ ≥ −[bMu(0) + m]v leads to v(t) ≥ Kv(0),
0 ≤ t ≤ τ , where K = e−(bMu(0)+m)τ . If 0 < θ < 1, then

cv

FN (cv)
≥ cKv(0)

FN (cKv(0))
≥ θN

by taking v(0) sufficiently large. Hence, x′

x ≤ a− p− (bN/c)θ.
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TRANSPORT-BASED IMAGING IN RANDOM MEDIA∗

GUILLAUME BAL† AND KUI REN†

Abstract. This paper generalizes well-established derivations of the radiative transfer equation
from first principles to model the energy density of time-dependent and monochromatic high fre-
quency waves propagating in a random medium composed of localized scatterers. The correlation
length of the random scatterers is small compared to the overall distance of propagation so that
ensemble averaging may take place. The correlation length may be either comparable to the typical
wavelength in the system (the weak-coupling regime) or larger than the wavelength (the low-density
regime). The paper also considers the detection and imaging of inclusions buried in highly scattering
random media. In such multiple scattering environments, the coherent wave fields may be too weak
to be used for imaging purposes. We thus propose to model the inclusions as parameters in the
macroscopic radiative transfer equations and consider the imaging problem as an inverse transport
problem. Numerical simulations address the domain of validity of the radiative transfer equation
and of the imaging method. Wave propagation is solved by using a Foldy–Lax framework, and the
forward and inverse transport problems are solved by using a Monte Carlo method. Since the inverse
transport problem is ill-posed, the buried inclusions are parameterized by a small number of degrees
of freedom, typically their position and a few geometric properties.

Key words. imaging in random media, high frequency waves in random media, inverse prob-
lems, radiative transfer equation, Foldy–Lax model

AMS subject classifications. 35R30, 35R60, 65Z05, 78A40, 78A48

DOI. 10.1137/070690122

1. Introduction. The imaging of buried inclusions in random media from acous-
tic, electromagnetic, or elastic wave measurements has a long history. We refer the
reader to, e.g., [2, 9, 15, 21, 30, 28, 36] and their references. Several imaging methods
have been proposed based on the type of available data and on the regime of wave
propagation.

The most favorable situation occurs when the specific realization of the random
medium is explicitly known. We can then use the refocusing properties of time re-
versed waves to backpropagate measured wave fields numerically through the known
random environment. The time reversed waves focus on the location of the buried
inclusions and allow for fairly accurate imaging; see, e.g., [12, 14, 24]. Note, however,
that even small errors in the assessment of the random medium, such as the mislo-
cation of the random scatterers by an amount comparable to the typical wavelength
of the propagating waves, have a very large effect on the refocusing of time reversed
waves [13, 31].

In most applications, the random medium is not known, and this lack of knowl-
edge inevitably degrades the quality of the reconstructions. Randomness may then
roughly be treated in two different ways. One way is to assume that noise is suf-
ficiently small so that it may be treated perturbatively. Imaging is then performed
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by backpropagating appropriately mollified wave field measurements into a homoge-
neous medium or a medium with smooth variations, whose determination is often an
important aspect of the reconstruction. One of the main pitfalls in such reconstruc-
tions is that many classical inversion techniques are not statistically stable, i.e., the
reconstruction strongly depends on the realization in a given set of random media.
We refer the reader to, e.g., [15] for optimal, statistically stable imaging methods in
that context. Such methods no longer work adequately when the fluctuations in the
random medium increase to a point where the coherent wave field, i.e., the part of
the wave field that is not affected by random scattering, becomes too weak. In such
regimes of strong scattering, other models are necessary.

The alternative to backpropagation in a homogeneous or smoothly varying medium
is to find a model that describes wave scattering in the random medium. In regimes
where the wavelength and the correlation length of the random medium are very small
compared to the overall distance of propagation, such as in the propagation of light
through the atmosphere or of near-infrared photons through human tissues, the ki-
netic description for wave propagation is extremely accurate [1, 18]. The wave energy
density is then modeled quite accurately by a radiative transfer (transport) equation
or a diffusion equation.

In this paper, we are interested in the validity of the radiative transfer model
in a more intermediate regime, where the fluctuations in the random medium are
too strong for imaging methods based on coherent information to work, and where
the typical wavelength in the system is smaller, though not orders of magnitude
smaller, than the overall distance of propagation. Typically, GHz microwaves with
a wavelength of 30 cm propagate over distances of tens or hundreds of meters. The
typical random medium we consider here is made of hundreds of scatterers, with a
mean separation distance between scatterers comparable to or larger than compared
to the wavelength but smaller compared to the overall distance of propagation. Our
objective is then to detect and image a—sufficiently large—inclusion buried in the
random medium.

When the density of scatterers is sufficiently large so that the coherent wave
field is too weak to be useful in imaging, the incoherent part of the wave field, i.e.,
the part that has interacted with the unknown random medium, can no longer be
neglected and needs to be modeled. Such a model has to depend on the regime of
wave propagation. In the high frequency regime, when the wavelength is smaller than
the propagation distance, the simplest extension of wave propagation in homogeneous
domains is arguably the radiative transfer equation. Such an equation models the
propagation of the phase-space energy density a(t,x,k) at time t, position x, and
wave number k, and for acoustic waves takes the form

(1)
∂a

∂t
+ ck̂ ·∇xa = Qa, Qa =

∫
Rd

σ(x,k′,k)(a(t,x,k′)−a(t,x,k))δ(c|k′|− c|k|)dk′,

where k̂ = k/|k|, c is sound speed, and σ(x,k,k′) is the scattering coefficient, which
is inversely proportional to the mean free path, the mean distance between successive
interactions of the wave energy with the underlying medium. Note that the radiative
transfer equation may be seen as a perturbation of the propagation of high frequency
waves in a homogeneous medium, which corresponds to the case σ = 0. The radiative
transfer equation is thus characterized by the following two features: scattering is not
sufficiently strong to modify the dispersion relation of high frequency waves; this is the
left-hand side in (1). However, because of incoherent interactions with the underlying
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structure, the—partially incoherent—energy density, rather than the wave field, needs
to be modeled, and while the energy density is still transported through the random
medium, it does so by possibly changing direction in a way described by the scattering
operator on the right-hand side of (1). In that sense, it may be seen as the simplest
model for the energy density of high-frequency waves propagating in heterogeneous
media.

Radiative transfer equations have also been extensively studied and derived either
phenomenologically or from first principles (i.e., starting from a wave equation); see
[3, 18, 23, 27, 35, 37, 38]. We derive the equation in the setting of localized (possibly)
strong scatterers, adapting techniques in [3, 35] to model the energy density of time-
dependent and mono-frequency (monochromatic) waves propagating in such a random
medium. The localized scatterers are assumed here to have a Poisson distribution
with a correlation length that is either comparable to the wavelength (weak-coupling
regime) or much larger than the wavelength (low-density regime). We then propose to
assess the range of validity of the radiative transfer model by comparing its predictions
with wave field calculations. We use a Foldy–Lax model to compute the wave fields.
We demonstrate, based on numerical simulations, that the radiative transfer equations
are very accurate, provided that the wave energy measurements are sufficiently stable
statistically.

Statistical stability is a cornerstone of the interferometric imaging techniques
developed in [15]. Reconstructions based on coherent information are much enhanced
when an inversion technique that is carefully calibrated to the random medium and
statistically stable is employed. When macroscopic models for the incoherent energy
density are used, statistical stability is an absolute prerequisite to any form of imaging.
It is impossible, based on one measurement, to image an inclusion whose influence on
the detectors is a random variable whose fluctuations cannot be averaged out one way
or another (for instance, by collecting measurements on a larger detector). It turns out
that in the high frequency limit, wave energy densities are indeed statistically stable
for a wide class of random media, in the sense that they converge in probability to their
deterministic limit as the wavelength tends to 0. This has been proved in simplified
models of wave propagation [6, 8] and has been confirmed by numerical simulations
[10, 11].

We present here numerical evidence of the statistical stability of the wave en-
ergy density in sufficiently mixing random media with localized scatterers. What we
mean by sufficiently mixing is that the density of scatterers is sufficiently high. We
demonstrate numerically the physically simple fact that the energy density is more
stable statistically when the density of scatterers increases (their correlation length
decreases) while their scattering strength decreases in such a way that the mean free
path remains constant.

Once we are confident in the radiative transfer equation as a model for the wave
energy density, we use the model to image buried inclusions in such random media.
We assume here that the random medium is statistically homogeneous, i.e., that its
statistics are invariant by spatial translation. We can consider two scenarios. In the
first scenario, we measure energy densities in the presence of the inclusion. We thus
have to estimate the mean free path of the random medium and image the inclusion
at the same time. In such a configuration, the inclusion’s influence on available
measurements has to be larger than the statistical instability coming from our lack of
knowledge of the underlying random medium. In the second scenario, we have access
to energy measurements in the presence and in the absence of the inclusion. We may
thus perform differential measurements. These differential measurements are then
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proportional to the inclusion. With a kinematic picture in mind, all the instability in
the random paths that do not visit the object cancels out in differential measurements,
thus allowing us to image much smaller objects. We consider reconstructions under
these two scenarios based on forward wave field calculations and inverse transport
problems.

The rest of the paper is structured as follows. Section 2 presents our model of
random media with localized scatterers and derives the radiative transfer equation
from a high frequency acoustic wave equation. Time-dependent and mono-frequency
equations are considered. The Foldy–Lax approximation to wave propagation is also
presented. The numerical validation of the radiative transfer equations based on
Foldy–Lax wave simulations and transport Monte Carlo simulations is presented in
section 3. Transport-based imaging of inclusions in random media is then considered
in section 4.

2. Radiative transfer models. In this section, we introduce the microscopic
and macroscopic models for the propagation of high frequency waves in random media
with localized scatterers.

We start with the acoustic wave equation with sound speed given by the super-
position of a constant background sound speed and localized strong fluctuations. In
section 2.1, the radiative transfer equation is obtained as the high frequency limit of
the energy density of the acoustic waves following methods developed in, e.g., [3, 35].
The corresponding transport equation for mono-frequency (time-harmonic) waves is
given in section 2.2. Because the scatterers are localized on a scale much smaller than
the wavelength, the wave equation for time-harmonic wave fields is approximated by
the Foldy–Lax model, which is recalled in section 2.3.

It remains to address the modeling of the buried inclusions. Extended objects are
treated like any other pointlike object in the Foldy–Lax formalism. At the radiative
transfer level, we assume that the inclusion is sufficiently large compared to the wave-
length so that energy reflects specularly at the inclusion’s boundary. Such models are
explained in greater detail in section 2.4.

2.1. Derivation of the transport equation. We consider the propagation of
scalar waves in media with, for simplicity, constant density ρ0 and spatially varied
compressibility κ(x),

(2) ρ0∂tv + ∇p = 0, κ(x)∂tp + ∇ · v = 0, p(0,x) = p0(x), v(0,x) = v0(x),

where t > 0 and x ∈ R
d with d ≥ 2 the spatial dimension. The theories that follow

generalize to the context of electromagnetic and elastic waves; see, e.g., [3, 35]. For
concreteness, we restrict ourselves to the case of acoustic waves.

In the high frequency regime of interest in this paper, the above equation rescales,
after the change of variables t �→ t

ε and x �→ x
ε , as

(3) ρ0ε∂tvε + ε∇pε = 0, κε(x)ε∂tpε + ε∇ · vε = 0,

where the initial conditions pε(0,x) = p0ε(x) and vε(0,x) = v0ε(x) oscillate at the
frequency ε−1. The parameter ε thus models the typical wavelength in the system.
The wave speed is defined as

(4) c2ε(x) =
1

ρ0κε(x)
= c20(x) −

√
εVε

(x

ε

)
.
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We retain the scaling
√
εVε(

x
ε ) to use the results developed in, e.g., [3, 35]. Neither

the amplitude nor the correlation length of the potential Vε is necessarily of order O(1),
however. More precisely, the potential Vε is chosen as

(5) Vε(x) = ε−
(γ+2β)d

2

∑
j

τjV
(x − xε

j

εβ

)
,

where β > 0, γ < 1, where V (x) is a compactly supported nonnegative, uniformly
bounded function, where the points xε

j(ω) form a Poisson point process of density νε =

εγdn0, and where the coefficients τj(ω) are square-integrable, mean-zero, independent
identically distributed random variables. Here ω is a point in a sufficiently large
abstract probability space (Ω,F , P ).

The sound speed fluctuations are therefore of the form

(6)
√
εVε

(x

ε

)
= ε

1−(γ+2β)d
2

∑
j

τjV
(x − εxε

j

ε1+β

)
.

We thus conclude that the thickness of the scatterers is tε = ε1+β � ε, the correlation
length in the medium is lε = ε1−γL for L a typical distance of propagation, which
verifies lε 	 ε when 0 < γ < 1 and L = O(1), and the density of scatterers is
nε = ε−dνε = ε(γ−1)dn0 	 O(1).

Note that the Poisson point process allows for the clustering of points xε
j , although

the number of points in a given bounded domain is bounded P -a.s. There is therefore
a (P -)small subset Ωε of Ω, where the above fluctuation is larger than c20, which
would result in a negative c2ε. The process in (6) thus needs to be modified on Ωε, for
instance, by setting the fluctuations to 0. We verify, although we shall not present
this here, that such modifications of the process in (6) occur on a very small set and
that the calculations of the power spectra presented below are not affected by the
change.

We can now use the methodology developed in [35] to show that the wave energy
density is such that

(7) Eε(t,x) −
∫

Rd

aε(t,x,k)dk → 0

in a weak sense (i.e., after integration against a test function in the spatial variables
x), where Eε(t,x) is the energy density defined as

(8) Eε(t,x) = ρ0|vε|2(t,x) + κε(x)p2
ε(t,x),

and where aε(t,x,k) is a phase-space energy density, which solves the following ra-
diative transfer equation:

(9)
∂aε
∂t

+ c0k̂ · ∇aε =

∫
Rd

σε(x,k,q)(aε(x,q) − aε(x,k))δ(c0|k| − c0|q|)dq,

with appropriate initial conditions, where

(10) σε(x,k,q) =
πc20|k|2
2(2π)d

R̂ε(k − q).
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Here, R̂ε is the power spectrum of the fluctuations Vε. It is the Fourier transform of
the correlation function Rε of the fluctuations Vε. They are defined as follows:

(11)
c40Rε(y) = E{Vε(x)Vε(x + y)},

(2π)dc40R̂ε(p)δ(p + q) = E{V̂ε(p)V̂ε(q)},

where V̂ε(p) =
∫

Rd e
−ix·pVε(x)dx is the Fourier transform of Vε(x). We then have the

following result on the asymptotic limit of the power spectrum.
Lemma 2.1. Let us assume that V (x) is a nonnegative, integrable, compactly

supported function such that V̂ (0) = c20L
d for some characteristic distance 0 < L =

O(1), where V̂ (k) is the Fourier transform of V . Then we find that the power spectrum
R̂ε(k) converges in the uniform norm uniformly on compact sets to the limit

(12) R̂0 = L2d
E{τ2}n0.

Proof. We calculate that

c40Rε(y) = ε−(γ+2β)d
E{τ2}E

⎧⎨
⎩

∞∑
j=1

V
(x − xj

ε

εβ

)
V
(x + y − xj

ε

εβ

)⎫⎬
⎭ .

Since V is compactly supported, there is a domain D, at x and y fixed, such that the
above product vanishes for xε

j outside of D. The Poisson point process verifies that
the number of points on D satisfies a Poisson distribution and that, conditioned on
the number of points, these points are uniformly and independently distributed on D.
This yields that

E

{ ∞∑
j=1

V
(x − xj

ε

εβ

)
V
(x + y − xj

ε

εβ

)}

=

∞∑
m=0

e−|D|νε
(|D|νε)m

m!

m∑
j=1

∫
D

V
(x − z

εβ

)
V
(x + y − z

εβ

) dz

|D|

= νε

∫
Rd

V
(z − x

εβ

)
V
(z − x − y

εβ

)
dz,

where |D| is the Lebesgue measure of D. Now,

Hε(y) =

∫
D

V
(z − x

εβ

)
V
(z − x − y

εβ

)
dz =

1

(2π)d

∫
Rd

e−ix·kei(x+y)·kε2βd|V̂ (εβk)|2dk

=
1

(2π)d

∫
Rd

eiy·kε2βd|V̂ (εβk)|2dk.

Its Fourier transform is thus given by

Ĥε(p) = ε2βd|V̂ (εβp)|2 = ε2βd(|V̂ (0)|2 + O(εβ)),

where O(εβ) means a term of order εβ in the uniform norm, uniformly bounded on
compact sets. This follows, e.g., from the analyticity of V̂ (p). Since R̂ε(k) is the
Fourier transform of Rε(x), we find that

c40R̂ε(k) = (|V̂ (0)|2 + O(εβ))E{τ2}n0.
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This proves the result.

In the limit ε → 0, we thus find that aε converges to the solution of the following
radiative transfer equation:

(13)
∂a

∂t
+ c0k̂ · ∇a + Σ(x, |k|)a =

∫
Rd

σ(x,k,q)a(t,x,q)δ(c0|k| − c0|q|)dq,

where

(14)
σ(x,k,q) =

π|k|2L2dc20E{τ2}n0

2(2π)d
,

Σ(x, |k|) =
|Sd−1|π
2(2π)d

|k|d+1L2dc0E{τ2}n0.

Here, |Sd−1| is the Lebesgue measure of the unit sphere in R
d.

Note that the transport equations generalize to the case where the density of
scatterers depends on space. For instance, we may assume that the sound speed
fluctuations are of the form

(15)
√
εVε

(
x,

x

ε

)
= ε

1−(γ+2β)d
2

∑
j

τjϕ(xε
j)V

(
x − εxε

j

ε1+β

)
,

where ϕ(x) is a deterministic nonnegative function on R
d. In the numerical simula-

tions considered below, ϕ(x) is the indicatrix function of our computational domain.
The limit in (12) is then modified as

(16) R̂0(x) = ϕ2(x)L2d
E{τ2}n0.

The scattering coefficients in (14) also need to be multiplied by ϕ2(x) and thus become
spatially dependent.

2.2. Transport equation in the frequency domain. The derivation of trans-
port equations for mono-frequency waves cannot be deduced in a straightforward way
from that of time-dependent equations. We refer to [17] for a derivation of kinetic
models from the Helmholtz equation. We formally generalize these results by adding
a scattering operator to the transport equation to model the interaction with the
underlying random medium.

The Helmholtz equation for the mono-frequency wave field uε(x) with high fre-
quency ω

ε takes the form

(17) ε2Δuε(x) +
ω2

c2ε(x)
uε(x) =

1

ε
d−1
2

ϕ
(x − x0

ε

)
,

where ϕ(x) is a smooth function which localizes in the vicinity of the point x0. We
assume that the density of scatterers vanishes in the vicinity of the source location
x0 so that the dispersion relation is ω = c0|k| locally.

In the absence of scatterers, the results obtained, e.g., in [17] show that there
exists a positive bounded measure a(x,k) such that

(18) lim
ε→0

|uε(x)|2 := ν(x) =

∫
Rd

a(x,k)dk,
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where ν(x) is a positive measure on R
d. Moreover, the phase-space measure a(x,k)

solves the Liouville equation

(19) c0k̂ · ∇a = Q(x,k),

with the source Q(x,k) given by

(20)

Q(x,k) =
c20

2ω(2π)d−1
δ(x − x0)δ

(
ω2

c20
− |k|2

)
|ϕ̂(k)|2

=
c30

4ω2(2π)d−1
δ(x − x0)δ

(
ω

c0
− |k|

)
|ϕ̂(k)|2.

The above transport equation should be augmented with outgoing radiation condi-
tions, namely, the incoming field a(x − tk,k) → 0 as t → +∞.

We briefly recall the derivation of the above equation and explain the scaling for
the source term in (17). The regularized Helmholtz equation (17) with constant sound
speed may be written as(

iεα + ε2Δ +
ω2

c20

)
uε =

1

ε
d−1
2

ϕ
(x

ε

)
for some causality-preserving regularization parameter 0 < α � 1 that will be sent
to 0 eventually, and where we set x0 = 0 to simplify the presentation. In the Fourier
domain at wave number ξ/ε, this is

ûε

(ξ

ε

)
=

εdε−
d−1
2 ϕ̂(ξ)

iεα + ω2

c2 − |ξ|2
.

Let us now introduce the following Wigner transform of uε:

Wε(x,k) =
1

(2π)d

∫
Rd

uε

(
x − εy

2

)
u∗
ε

(
x +

εy

2

)
eik·ydy,

which verifies that

|uε(x)|2 =

∫
Rd

Wε(x,k)dk.

We verify that the Fourier transform x → q of Wε is given by

Ŵε(q,k) =
1

(2πε)d
ûε

(q

2
− k

ε

)
û∗
ε

(q

2
+

k

ε

)

=
ε

(2π)d
|ϕ̂(k)|2

[iεα + ω2

c20
− |k + εq

2 |2][−iεα + ω2

c20
− |k − εq

2 |2]
+ l.o.t.

=
ε

(2π)d
|ϕ̂(k)|2(

ω2

c20
− |k|2

)2 − (
iεα− εk · q

)2 + l.o.t.

=
ε

(2π)d
|ϕ̂(k)|2

2iεα− 2εk · q

[
1(

ω2

c20
− |k|2

)
− iεα

− 1(
ω2

c20
− |k|2

)
+ iεα

]
+ l.o.t.

=
1

i(2π)d
|ϕ̂(k)|2

2α + i2k · q2πiδ

(
ω2

c20
− |k|2

)
+ l.o.t.

=
1

2α + i2k · q
|ϕ̂(k)|2
(2π)d−1

δ

(
ω2

c20
− |k|2

)
+ l.o.t.
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Here, l.o.t. refers to terms that tend to 0 in the sense of distributions as ε → 0. We
refer the reader to, e.g., [17] for a more rigorous derivation. This shows that in the
limit ε → 0, we have

(2α + i2k · q)Ŵ (q,k) =
|ϕ̂(k)|2
(2π)d−1

δ

(
ω2

c20
− |k|2

)
.

Sending the regularizing parameters α → 0+ and denoting by a(x,k) the inverse
Fourier transform q → x of Ŵ , we obtain the Liouville equation (19).

In the presence of scatterers whose density vanishes at x = x0, the radiating
source term Q(x,k) is not modified, and propagation in a homogeneous medium is
replaced formally by propagation in a scattering medium, as in the preceding section.
The phase-space energy density a(x,k) thus solves the following stationary transport
equation:

(21) c0k̂ · ∇a + Σ(x, |k|)a =

∫
Rd

σ(x,k,q)a(x,q)δ(c0|k| − c0|q|)dq + Q(x,k).

The equation should be augmented with zero-incoming radiation conditions, i.e., a(x−
tk,k) → 0 as t → +∞. In practice, we choose the source term ϕ(x) = δ(x) so that
ϕ̂(k) = 1.

2.3. Foldy–Lax model for point scatterers. The Helmholtz equation (17)
is very demanding to solve numerically for the choice of sound speed fluctuations
given in (5). Since β > 0 so that εβ → 0 as ε → 0, the localized scatterers are
very small compared to the wavelength of the propagating waves. As a consequence,
we can replace the localized scatterers by point scatterers. We thus have to solve a
Helmholtz equation with randomly distributed point scatterers.

Assuming that the number of scatterers on a given computational domain is N ,
we obtain that the solution to the Helmholtz equation is given by

(22) u(x) = ui(x) +

N∑
j=1

τjG0(x,xj)u(xj),

where ui(x) is the wave field generated by the source and the Green’s function
G0(x,x

′) is given by

(23) G0(x,x
′) =

⎧⎪⎨
⎪⎩

i

4
H1

0 (k|x − x′|), d = 2,

eik|x−x′|

4π|x − x′| , d = 3,

with H1
0 the 0th order Hankel function of the first kind. When x = xj , the above so-

lution needs modification. The Foldy–Lax model [25, 29, 40] removes the singularities
in a self-consistent fashion by imposing that

(24) u(xj) = ui(xj) +

N∑
j′=1
j′ �=j

τj′G0(xj ;xj′)u(xj′)

for j = 1, . . . , N . We thus need to solve the system (24) first, and then we can evaluate
the field u(x) at each point x using (22).
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The Foldy–Lax equation (24) can be written in matrix form as

(25) HU = Ui,

where

(26) U ≡ [u(x1), . . . , u(xN )]T, Ui ≡ [ui(x1), . . . , u
i(xN )]T,

and where the complex matrix H is given by

(27) Hjj′ = δjj′ − (1 − δjj′)τj′G0(xj ,xj′).

For simplicity, let us assume that the strength of the scatterers is given by τj =
εjτk

2, where the εj are independent variables taking the values 1 and −1 with equal
probability. This is the setting that we will consider in the next section. We then
verify that

(28) Σ2D(x) =
k3τ2n0

4
, σ2D(x,k,k′) =

k3τ2n0

8π

in the two-dimensional case and

(29) Σ3D(x) =
k4τ2n0

4π
, σ3D(x,k,k′) =

k4τ2n0

16π2

in the three-dimensional case. These expressions are consistent with (14), provided
that we set L = 1 and normalize the sound speed c0 = 1. We shall assume that L = 1
and c0 = 1 for the rest of the paper.

2.4. Models for the buried inclusions. We now have to model the buried
inclusions, both at the level of the Helmholtz equation and of the radiative transfer
equation.

The Foldy–Lax model can be generalized to account for the presence of extended
objects. Here, we consider impenetrable objects with vanishing Neumann boundary
conditions at the inclusion’s boundary for the Helmholtz equation. In this setting,
(22) becomes

(30) u(x) = ui(x) +

N∑
j=1

τjG0(x;xj)u(xj) +

M∑
l=1

∫
∂Ωl

nl · ∇yG0(x;y)u(y)dS(y),

where M is the number of extended objects in the domain and Ωl is the lth inclusion
with sufficiently smooth boundary ∂Ωl and outer normal vector −nl on the boundary.
The Foldy–Lax consistent equation now becomes

(31) u(xj) = ui(xj)+

N∑
j′ �=j

τj′G0(xj ;xj′)u(xj′)+

M∑
l=1

∫
∂Ωl

nl ·∇yG0(xj ;y)u(y)dS(y)

for j = 1, . . . , N .
In order to evaluate wave fields at arbitrary points x, we need to solve (30)

for points on the boundary of the extended objects and (31) for xj , j = 1, . . . , N .
Equations (30) and (31) are the new self-consistent Foldy–Lax multiple scattering
equations in the case where extended objects are present.
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At the transport level, in order to obtain a contribution of order O(1), we need to
assume that the inclusion is comparable in size to the overall distance of propagation.
This implies that the extended object is large compared to the wavelength ε so that
its boundary may be treated as specularly reflecting. In other words, we assume the
following specular reflection:

(32) a(x,k) = a(x,k − 2k · n(x)n(x)), x ∈ ∂Ωl.

The radiative transfer equation (21) holds outside of the inclusions, i.e., on R
d\(∪lΩl).

3. Numerical validations. Although radiative transfer equations have been
used for a long time to describe the energy density of waves in random media, nu-
merical validations of such models are more recent; see, e.g., [10, 33] for simulations
in the time domain. The reason is that the propagation of high frequency waves in
highly heterogeneous media is computationally quite expensive. In this section, we
compare the energy densities of monochromatic waves based on the Foldy–Lax model
with the solution of the corresponding radiative transfer equation.

3.1. The wave and transport solvers. The Foldy–Lax consistent equations
(25) form a system of complex-valued algebraic equations with a dense matrix H.
We solve the system by a direct solver that utilizes the LU factorization. In the case
where extended objects are present in the domain, we need to solve (30) and (31). We
approximate the boundary integrals by standard numerical quadrature rules. Since
these integrals are weakly singular, we adopt the kernel splitting method developed
in [22] to discretize the integrals.

The random medium is generated by distributing the random scatterers according
to a Poisson point process of density n0. We recall that for a bounded volume element

V , the number of points in V has the distribution P(NV = k) = e−n0|V |(n0|V |)k
k! for

k ≥ 0, where |V | is the (Lebesgue) measure of V . Once a realization of the number
k is chosen, the k points are placed in V using a uniform (normalized Lebesgue)
distribution on V . A typical distribution of point scatterers is shown in Figure 1.

The transport equation (21) is solved by the Monte Carlo method [39]. We run
enough particles to ensure that the statistical error in the simulation is smaller than
any other involved quantity. As in [10], to which we refer the reader for more details,
we use as much as possible the same random trajectories in the Monte Carlo simulation
for the calculations performed with and without the extended objects. This variance
reduction technique is necessary to calculate the influence of the inclusions accurately.

Note that the Foldy–Lax model and the radiative transfer equations work for a
given (large) frequency. By varying the frequency in the vicinity of a central frequency,
time-domain data may be obtained by inverse Fourier transform. In the rest of the
paper, we concentrate on frequency domain calculations.

3.2. Numerical results. To compare the wave and transport models, we com-
pute the total energy on a fixed array of detectors D; see Figure 1. After appropriate
normalization, the energies take the form

(33) EW =

∫
D

|u(x)|2dx and ET =

∫
D

∫
Sd−1

a(x, k̂)dk̂dx,

where u(x) is the random solution to the wave equation and a(x, k̂) is the energy

density of those waves at position x propagating in direction k̂ ∈ Sd−1, where d = 2
in all our numerical simulations.
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Fig. 1. Setup for the numerical simulations. The inclusion may be placed inside or outside of
the random medium. We show here a typical realization of the distribution of 1000 point scatterers.

Fig. 2. Comparison between measured transport and wave data at frequencies between ω = 2π
λ

and 1.25ω with detectors of size 40λ × 40λ (left) and 80λ × 80λ (right), respectively. Solid line:
transport data ET . Circles with error bar: wave data E{EW } and its standard deviation σ(EW ).

Since u(x) is a random variable, EW is also a random variable, which thus depends
on the realization of the random medium. Note that ET , in contrast, is a deterministic
quantity. We have therefore two objectives: (i) show that E{EW } is close to ET ; and
(ii) show that the standard deviation σ(EW ) of EW is small. The latter is defined as

(34) σ(EW ) =
(
E{(EW − E{EW })2}

) 1
2

.

From now on, we use the standard notation σ to denote standard deviations, which
should not be confused with the scattering cross-section in (21). We are interested in
the behavior of σ(EW ) as a function of the mean free path c0Σ

−1.
Energy measurements and detector size. The first numerical test compares wave

and transport data in the absence of any buried inclusion. The setup is as shown
in Figure 1. In order to illustrate the behavior of the energy density as a function
of frequency, we compare the models for nine frequencies uniformly distributed on
[ω 1.25ω], where ω = 2π

λ . The domain of interest is fixed and given by [0 400λ] ×
[0 200λ]. The point source is located at position (220λ,−40λ). A total of 6000 point
scatterers on average (using a Poisson distribution) are randomly distributed in the
domain. This corresponds to a correlation length lc ≈ 3.65λ. The strength of the
scatterers is chosen such that the mean free path is equal to 40λ. As the frequency
increases, the transport mean free path decreases as the third power of frequency,
as can be seen in (28). We show in Figure 2 a comparison between EW and ET at
different frequencies with two different sizes of the array of detectors. The average
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Fig. 3. Statistical stability of wave data with respect to media properties at three mean free paths:
c0Σ−1 = 30λ (left), c0Σ−1 = 50λ (middle), and c0Σ−1 = 100λ (right). Each dot corresponds to
the wave energy measured on the array of detectors for one realization with an average of 6000
scatterers (top lines labeled 3; lc ≈ 3.65λ), 3000 scatterers (middle lines labeled 2; lc ≈ 5.16λ), and
1500 scatterers (bottom lines labeled 1; lc ≈ 7.30λ), respectively.

E{EW } and standard deviation σ(Ew) are calculated based on 40 realizations of the
random medium.

We observe that the wave and transport models agree quite well. The ensemble
average of the energy density is well captured by the radiative transfer equation.
However, radiative transfer models are valid when energy is averaged over a sufficiently
large domain compared to the wavelength [4, 8]. When averaging takes place over too
small a detector, significant statistical instabilities occur.

These results generalize to the case where an inclusion is present in the random
medium. The comparison between the energy densities EW and ET is then qualita-
tively very similar to the case shown in Figure 2.

Statistical stability and density of scatterers. In the next numerical example, we
want to address the statistical stability of the transport model with respect to the
number of random scatterers. The same average scattering medium, characterized by
a given mean free path, may be obtained from a low density of strong scatterers or a
high density of weak scatterers in such a way that τ2n0 stays constant. We do not have
a theoretical model at present to characterize the statistical stability of the energy EW

when τ and n0 vary while the product τ2n0 remains constant. Intuitively, however,
we expect the random medium to be more mixing, and thus more stable statistically,
when the number of scatterers is large simply because the wave fields interact with the
underlying structure more often. The following numerical simulations confirm this.

We show in Figure 3 the energy measurements obtained from nine types of random
media corresponding to an average of 6000 scatterers (lc ≈ 3.65λ), 3000 scatterers
(lc ≈ 5.16λ), and 1500 scatterers (lc ≈ 7.30λ), and to mean free paths c0Σ

−1 equal to
30λ, 50λ, and 100λ. We observe that, as expected, the standard deviation increases
with the correlation length in the medium (as statistical instability increases) and
that it increases when the mean free path decreases (as the random medium becomes
optically thicker); see the statistics in Table 1.

4. Transport-based imaging in random media. We now examine the capa-
bilities of the radiative transfer model to detect and image inclusions buried in random
media. As in the preceding section, all simulations are performed in a two-dimensional
setting, which is appropriate for the experimental configuration considered in, e.g.,
[31]. Note that both the Foldy–Lax model and the Monte Carlo method are inde-
pendent of dimension, so the proposed numerical method is essentially independent
of spatial dimension.
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Table 1

Average and standard deviation of the wave energy measurements presented in Figure 3.

c0Σ−1 = 30λ c0Σ−1 = 50λ c0Σ−1 = 100λ
6000 3000 1500 6000 3000 1500 6000 3000 1500

E{EW } × 103 1.145 1.150 1.150 0.500 0.496 0.495 0.251 0.253 0.249
σ(EW ) × 104 0.425 0.711 1.156 0.123 0.204 0.383 0.055 0.093 0.181
σ(EW )
E{EW } × 102 3.71 6.18 10.05 2.46 4.11 7.73 2.19 3.69 7.27

As we saw in section 2, the wave energy density is modeled by a radiative trans-
fer equation given by (21) outside of the buried inclusions and by specular reflection
conditions (32) at the inclusions’ boundary. The inclusions thus become constitutive
parameters in the radiative transfer equation, as is the mean free path c0Σ

−1(x).
In this section, we propose to reconstruct the mean free path and the inclusion
in (21)–(32) using energy measurements obtained by solving the Foldy–Lax equa-
tions (22)–(24). Although inverse transport models have been used already (see,
e.g., [1, 34]), to our knowledge this is the first analysis of reconstructions based on a
macroscopic (wavelength-independent) transport model from microscopic (wave- and
medium-dependent) wave data.

We consider three slightly different settings as follows: inclusions buried inside
a random medium; inclusions separated from the array of detectors by a random
medium; and inclusion buried in a random medium and located behind a large blocker
that prevents a direct line of sight from the source location. The settings are shown
in Figure 4.

Fig. 4. Three different setups for the reconstructions: inclusion inside the medium (left),
inclusion outside the medium (middle), and inclusion behind a blocker (right). The small circles
and the squares represent the source and detector locations, respectively. The small disks are the
inclusions to be reconstructed. The large disk represents a blocker, whose location and geometry is
assumed to be known.

The theory of inverse problems for transport equations is relatively well estab-
lished in the presence of phase-space measurements; see [20]. Here, however, we

assume that EW and ET are available, not a(x, k̂) for all x ∈ D and k̂ ∈ Sd−1. As
in reconstructions from knowledge of the Cauchy data in an inverse elliptic problem
[26], the recent theoretical result on inverse transport obtained recently in [7] shows
that our inverse problem is severely ill-posed. The stability of such inverse problems
is notoriously bad, in the sense that noise is drastically amplified during the inversion.

What this means in practice is that the number of degrees of freedom about the
random medium and the inclusion that we can possibly retrieve from available data
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is small. The inverse transport problem thus needs to be parameterized. Our choice
of a parameterization is the following: we assume that the mean free path c0Σ

−1 is
constant in a rectangular domain, whose geometry is known, and vanishes outside of
that domain; and we assume that the inclusion is a disc parameterized by its location
x and its radius R. This hypothesis is slightly relaxed in section 4.3.

4.1. Transport-based imaging method. The reconstruction method for the
parameters mentioned above is based on the following least-square minimization pro-
cedure. Let F be the family of parameters we want to reconstruct. We find these
parameters by solving the following minimization problem:

(35) Fb = arg min
F∈Ξ

O(F),

where Ξ = [Fmin,Fmax] is a family of a priori box constraints that define a region
in which we search for optimal solutions. The objective function that measures the
mismatch between measured data and model prediction is given by

(36) O(F) =
1

2

J∑
j=1

|Ej
T − Ej

W |2,

where Ej
T is the model prediction on detector j, Ej

W the corresponding wave mea-
surement, and J the total number of detectors. We solve this minimization problem
by a quasi-Newton minimization algorithm with BFGS updating rules for the Hessian
matrix. Box constraints on decision variables are enforced by a gradient projection
method. The gradient of the objective function with respect to the parameters to be
recovered is calculated by using a finite difference approximation since we have only
a few parameters to reconstruct. We refer the interested reader to [16, 32] for details
on the BFGS quasi-Newton method and to [34] for an application of the method in
inverse transport problems.

In all of the inversions run below, we consider eight detectors of size 62.5λ× 80λ,
as depicted in Figure 4. We have mentioned that the energy density was statistically
stable only on sufficiently large domains. The size of the detectors thus needs to be
sufficiently large to average over local fluctuations. The number of detectors also needs
to be sufficiently large to increase the amount of available data. We do not possess a
theory for the energy-energy correlations that could guide us in the design of optimal
detector arrays. Several scenarios have been tested, and eight is an optimal number
of detectors in terms of the statistical stability and the amount of nonredundant
information it provides.

The box constraints Ξ have also been chosen to be fairly nonconstraining. For an
inclusion of radius R = 30λ and location (300λ, 400λ) in a random medium of size
[0 600λ]× [0 600λ], for instance, the constraints on the radius are R ∈ [10λ, 100λ] and
the constraints on the locations (x, y) are [50λ 550λ] × [50λ 550λ].

4.2. Imaging under different measurement scenarios. We consider two
imaging scenarios: (i) when we have wave energy measurements in the presence of the
object; and (ii) when we have energy measurements in the presence and in the absence
of the inclusion. The former measurements are referred to as direct measurements.
The latter measurements are referred to as differential measurements.

4.2.1. Scenario Ia: Direct measurement. In this first scenario, we are not
able to probe the random medium in the absence of an inclusion. We distinguish two
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subscenarios, which essentially have the same reconstruction capabilities. In scenario
Ia, we assume that we have access to measurements in the absence of the inclusion
for a given realization of the random medium, which we call medium 1. This allows
us to reconstruct the parameters of the random medium, i.e., here the mean free path
c0Σ

−1. We then assume that we have access to measurements in the presence of the
inclusion in a medium 2 that is completely uncorrelated to medium 1. This allows us to
reconstruct the inclusions’ parameters. In scenario Ib, we assume that we have access
to the measurements in medium 2 only, and hence in the presence of the inclusion. We
have thus to reconstruct all parameters at once. We will present numerical evidence
that both scenarios provide very similar reconstruction capabilities. In both cases,
the inclusion’s influence on the measurements needs to be greater than the noise
level coming from our lack of understanding of the specific realization of the random
medium. In other words, the inclusion’s influence needs be larger than the statistical
instability of the radiative transfer model. The reconstruction in scenario Ia is a
two-step process, as follows.

Step A. We measure the energy density of waves propagating in one realization of
the random medium described above. We then estimate the scattering cross-section
Σ by solving the following minimization problem:

(37) Σb = arg min
Σ∈ΞA

O(Σ),

where ΞA = [Σmin,Σmax] is the space in which we seek Σ, and the objective functional
is given by

(38) O(Σ) =
1

2

J∑
j=1

|Ej
T − Ej

W |2,

where Ej
T is the model prediction detector j, and Ej

W is the corresponding wave
energy measurement.

Step B. We now perform the energy measurements in the presence of an inclusion
buried in medium 2 uncorrelated with the medium used in Step A. Such a scenario
is realistic when we know that medium 2 has statistics similar to medium 1, on
which more refined estimates can be obtained before measurements in medium 2 are
performed.

We use the scattering coefficient Σb (b for best fit) obtained in Step A and image
the inclusion from available measurements in medium 2. The position and radius of
the inclusion, assumed to be a disc, are obtained by the following minimization:

(39) (xb, Rb) = arg min
(x,R)∈ΞB

O(x, R).

Here O(x, R) is defined as in (36), with Ej
T the transport solutions, with Σb the

scattering cross-section, and Ej
W the wave energy measurements in medium 2. Here,

ΞB ⊂ R
d+1 is the constraint set in which the solution (x, R) is sought.

We show in Figure 5 four typical reconstructions ((A)–(D) from left to right) with
this two-step procedure. The reconstructions in (A) and (B) are done for the first
configuration in Figure 4, where the medium covers the domain [0 600λ]×[0 600λ] and
the inclusion is located inside the medium. A few scatterers around the inclusions are
removed from the picture to make the plot clearer. The reconstructions in (C) and
(D) are done for the second configuration in Figure 4, where the medium covers the
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(A) (B) (C) (D)

Fig. 5. Typical reconstruction of an inclusion from direct measurements under scenario Ia. (A)
and (C) are for c0Σ−1 = 200λ. (B) and (D) are for c0Σ−1 = 100λ. Real and reconstructed objects
are plotted as solid and dotted circles, respectively.

Fig. 6. Reconstructed parameters for the four cases in Figure 5 based on 40 realizations.
Top row: distribution of the reconstructed inclusion’s locations. Bottom row: histogram of the
reconstructed radii.

domain [0 600λ]×[0 300λ] and the inclusion is located outside of the medium. The
mean free path (with c0 = 1) for the medium in (A) and (C) is c0Σ

−1 = 200λ and that
for the medium in (B) and (D) is c0Σ

−1 = 100λ. In all experiments, the correlation
length is lc ≈ 7.75λ, with an average of 6000 rods in experiments (A) and (C) and of
3000 rods in experiments (B) and (D).

The reconstructions are repeated for 40 different realizations of the random
medium. The results are presented in Figure 6, where we have plotted the recon-
structed locations and radii for the four cases shown in Figure 5. We observe that in
all cases, the reconstructions of the inclusion’s location are quite accurate. The radii
are also good, though not as accurate. Given the smallness (relative to the mean free
path) of the inclusions, we do not expect to reconstruct their size very precisely.

We have calculated the first two statistical moments (expectation and standard
deviation) of the mean free path, the inclusions’ locations (measured by x- and y-
coordinates), and the inclusions’ radii. The numbers are presented in Table 2. We
observe that the reconstruction of the inclusion’s location is relatively good, as the
variance is quite small. The error in the reconstruction of the inclusion’s geometry
(i.e., the radius) is, however, significantly larger. The results presented in Table 2 also
show that the standard deviations in the x and y variables are somewhat comparable
(and on the order of 2 − 3λ, less than 1% of the distance from the source to the
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Table 2

Reconstructed mean free paths, locations, and radii from the four cases in Figure 5. All numbers
are in units of the wavelength λ. aAveraged value and standard deviation (numbers in brackets)
calculated from 40 realizations.

Inclusion Reconstructiona

c0Σ−1 location R c0Σ−1
b location R

Case A 200 (200, 450) 40 200.0 [2.7] (199.8 [2.4], 449.2 [2.1]) 41.5 [4.3]
Case B 100 (200, 450) 40 99.8 [2.7] (199.8 [1.8], 449.8 [1.7]) 40.0 [5.1]
Case C 200 (300, 400) 40 200.6 [3.3] (300.0 [1.8], 399.7 [2.1]) 40.4 [6.0]
Case D 100 (300, 400) 40 100.1 [2.9] (299.8 [1.9], 399.2 [2.4]) 39.3 [4.9]

Fig. 7. Distributions of the reconstructed locations and radii for 200 realizations of random
media consisting of N = 3000 (left two plots) and N = 6000 (right two plots) point scatterers on
average.

inclusion). This is an indication that the regime of wave propagation is quite highly
mixing so that there is no real privileged direction of propagation.

As we have mentioned in section 3, the statistical stability of the wave energy
measurements depends on the number of scatterers for a given mean free path. We
now consider the reconstruction of inclusions for two random media with a mean
free path equal to c0Σ

−1 = 100λ. The first random medium has an average of 6000
point scatterers (lc ≈ 7.75λ) and the second random medium has an average of 3000
point scatterers (lc ≈ 10.95λ). The results are presented in Figure 7. We have also
calculated the two first statistical moments of the inclusions’ location and radius.
Results are reported in Table 3. The averaged values are very similar for both recon-
structions, which is expected, since radiative transfer is indeed valid for the ensemble
averaged energy density. The standard deviation, however, increases when the scat-
terers become fewer and stronger. In that case, our lack of understanding of the
specific realization of the random medium creates large noise in the data, and hence
in the reconstructions. Such results are consistent with our numerical analysis of the
statistical instability done in section 3.

Let us conclude this section with a remark on the resolution of the method.
With random media with 6000 scatterers on average, a mean free path of c0Σ

−1 =
100λ on a square domain of size 600λ, and an inclusion buried 375λ north of the
source, we have good reconstructions for radii larger than 20λ. At about 20λ, the
“optimal” radius obtained by minimization has a large probability of hitting the box
constraints imposed on the radius and is thus meaningless. In the same configuration
with a random medium with 3000 scatterers on average, the smallest radius we can
confidently reconstruct increases to R = 30. These results lead to the following
conclusion. Even in the presence of a highly mixing random medium (with 6000
scatterers, which may be large for most practical situations [31]), the inclusion needs
to be quite large compared to the wavelength in order for its influence to be larger than
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Table 3

Reconstructed mean free path, location, and radius from media with N = 3000 and N = 6000
point scatterers on average. aAveraged value and standard deviation (numbers in brackets) calculated
with 200 realizations. All numbers are in units of the wavelength λ.

Inclusion Reconstructiona

c0Σ−1 location R c0Σ−1
b location R

N = 3000 100 (400, 350) 30 99.8 [4.4] (400.0 [2.9], 350.2 [3.2]) 30.1 [8.4]
N = 6000 100 (400, 350) 30 100.0 [2.9] (400.0 [2.2], 350.0 [2.2]) 29.0 [5.9]

(A) (B) (C) (D)

Fig. 8. Distribution of reconstructed locations and radii with the method in scenario Ib. Plots
(A) and (B): for a medium with mean free path c0Σ−1 = 200λ. Plots (C) and (D): for a medium
with c0Σ−1 = 100λ.

the statistical instability of the wave energy measurements. In such a context, the
only solution to improve resolution is to have access to the measurements of scenario
II considered below.

4.2.2. Scenario Ib: Reconstructing all at once. We now consider the setting
where Σ and the inclusion’s parameters are reconstructed in a single step because
we do not possess any a priori knowledge of the statistics of the random medium.
Compared to scenario Ib, we have one more parameter to reconstruct, and possibly
many more parameters when the power spectrum is spatially dependent. However,
the reconstruction of these parameters is more adapted to the random medium 2 than
in scenario Ia. Reconstructions are based on minimizing the functional,

(40) (Σb,xb, Rb) = arg min
(Σ,x,R)∈Ξ

O(Σ,x, R),

where Ξ ⊂ R
3 is a set of constraints.

This scenario is of equivalent complexity to the previous one since only one ad-
ditional parameter is added. Moreover, as long as the inclusion is relatively small
compared to the size of the domain, it will not affect the reconstruction of Σ in any
significant way.

We show in Figure 8 the same reconstructions under scenario Ib as those obtained
under scenario Ia in Figures 5(A) and 5(B). The first two statistical moments of
the reconstructed locations and radii are listed in Table 4. We observe that the
reconstructed mean free paths, inclusion’s positions, and radii are very similar to the
parameters reconstructed in Figure 5.

4.2.3. Scenario II: Differential measurement. Scenario II relies on much
different measurements. We assume that we have access to wave energy measurements
in the presence and in the absence of the inclusion, and in both cases for the same
realization of the random medium (except at the location of the inclusion, where the
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Table 4

Reconstructed mean free path, location, and radius in scenario Ib for two different type of media.
aAveraged value and standard deviation (numbers in brackets) calculated from 40 realizations. All
numbers are in units of the wavelength λ.

Inclusion Reconstructiona

c0Σ−1 location R c0Σ−1
b location R

Medium 1 200 (200, 450) 40 200.6 [3.1] (199.5 [2.6], 450.7 [2.8]) 41.5 [5.7]
Medium 2 100 (200, 450) 40 99.0 [5.0] (199.5 [3.4], 450.1 [3.5]) 39.7 [7.0]

random scatterers are suppressed). However, we do not know the random medium
and thus have to model it macroscopically using a radiative transfer model. As in the
preceding case, the macroscopic model is parameterized by a unique parameter, the
mean free path c0Σ

−1.
As we said earlier, differential measurements allow for much more accurate recon-

structions. The reason is that the difference of the two measured energies depends
only on the inclusion. Therefore, with a kinematic picture in mind, where wave energy
packets are replaced by particles scattering in the random media, all the wave packets
that do not interact with the inclusion do not contribute to differential measure-
ments. These wave packets are the largest contributors to the statistical instability of
the random medium that hampers reconstructions of small objects in scenario I. The
measured wave packets that have interacted with the inclusion are also statistically
unstable. However, they are in some sense proportional to the inclusion, and in the
absence of external measurement noise, differential measurements allow one to recon-
struct arbitrarily small objects. They are not immune to the statistical instability,
and a statistical instability in the random medium of 10% may result in an error
on the location and radius of the inclusion on the order of 10% as well. However,
the limit in the size of the objects that can be reconstructed is governed by external
measurement noise and no longer by the statistical instability in the medium. The
two-step reconstruction process used in scenario Ia applies here as follows.

Step A. We use the measurements in the absence of an inclusion in the medium
to estimate the scattering cross-section of the medium. This is done by minimizing
(37) as before.

Step B. Once Σ has been found, we reconstruct the location (x) and the radius
(R) of the spherical inclusion by minimizing,

(41) (xb, Rb) = arg min
(x,R)∈ΞB

δO(x, R),

where

(42) δO(x, R) =
1

2

J∑
j=1

|δEj
T − δEj

W |2.

Here, δEj
T and δEj

W correspond to the difference of energies with and without the
inclusion for the transport model and the wave data, respectively, at detector j. In
practice, δEW is calculated by estimating the difference of the solutions to two Foldy–
Lax equations, and δEW is estimated by Monte Carlo using the variance reduction
technique introduced in [10]. The role of this variance reduction is to write the
difference δEW as the expectation of an appropriate process, rather than the difference
of two expectations, which requires a huge amount of particles to be accurate. We
refer the reader to [10] for additional details.
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Fig. 9. Distribution of reconstructed location and radius for 40 realizations with differential
measurement. Left two plots: c0Σ−1 = 200λ. Right two plots: c0Σ−1 = 100λ.

Table 5

Reconstructed mean free paths, locations, and radii based on differential measurements.
aAveraged value and standard deviation (numbers in brackets) calculated from 40 realizations. All
numbers are in units of the wavelength λ.

Real Reconstructiona

c0Σ−1 location R c0Σ−1
b location R

Medium 1 200 (375, 375) 10 199.8 [2.8] (374.8 [2.4], 374.6 [2.4]) 9.9 [2.3]
Medium 2 100 (375, 375) 10 100.1 [3.3] (375.8 [2.9], 375.0 [2.4]) 9.9 [2.2]

Reconstructions based on scenario II have been performed for two different mean
free paths c0Σ

−1 = 200λ and c0Σ
−1 = 100λ, respectively. The random medium

is again formed of an average of 6000 scatterers over [0 600λ]×[0 600λ] so that the
correlation length lc ≈ 7.75λ. The inclusion is located at coordinates (375λ, 375λ)
and has a radius equal to R = 10λ, which is significantly smaller than what we can
reconstruct under scenario I.

We show in Figure 9 the distributions of the reconstructed locations and radii for
the two random media.

The averaged value and standard deviation of the mean free path and the in-
clusion’s location and radius are summarized in Table 5. As we can observe, the
transport inversion does a relatively good job at locating the inclusion. However, it
misses the size of the inclusion by a much larger amount. This is understandable be-
cause the specular reflection model may not be totally consistent with the size of an
object with radius of order 10λ. For smaller objects, a more accurate radiation model
than specular reflection is necessary. We do not consider this issue further here.

Reconstructions based on differential measurement may be used in the monitoring
of cluttered areas, where we have access to energy measurements before and after the
inclusion is present.

4.3. Imaging the orientation of the inclusions. In the preceding sections,
we have obtained satisfactory reconstructions of inclusions based on low-dimensional
parameterizations of the inclusion. Since, as we have mentioned in section 4, the
inverse transport problem is quite ill-posed, we should not expect to reconstruct any
fine geometrical information about the inclusion. To demonstrate this, we consider
the reconstruction of half discs from wave energy measurements. Half discs are pa-
rameterized by their location, their radius, and the orientation θ of their flat portion
(with respect to the x-axis). We use the same minimization techniques as in the pre-
ceding sections with this additional parameter θ in the functional in (36) in the case
of direct measurements and in (42) in the case of differential measurements.
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Fig. 10. Reconstructions of half discs from direct and differential measurements in random
media with an average of 6000 scatterers and a mean free path c0Σ−1 = 100λ. From left to right:
A typical reconstruction from differential measurement; an ensemble averaged reconstruction from
differential measurement; a typical reconstruction from direct measurement; and an ensemble av-
eraged reconstruction from direct measurement. True inclusions are plotted with dashed lines and
reconstructed inclusions with solid lines.

We show in Figure 10 typical reconstructions obtained from direct and differen-
tial measurements. The radius of the inclusion is R = 30λ for the case of differential
measurement and R = 50λ for the case of direct measurement. In both cases, the half
disc is centered at position (375λ, 375λ). The reconstruction of the orientation is rel-
atively accurate. Based on simulations on 20 realizations, the averaged reconstructed
angle is 0.68π and the standard deviation is 0.16π for the case with differential mea-
surements. The average angle is 0.81π and the standard deviation is 0.19π for the
case with direct measurements. In each case, the exact angle is 3π

4 . The standard
deviations on the orientation thus correspond to roughly 20% of the error. The re-
construction of the orientation is, however, not as accurate as that of the radius (or
equivalently, the volume) and the location of the inclusion. The orientation is a finer
geometric property of the inclusion and is thus more difficult to observe. Even with
differential measurement, our experience is that we cannot faithfully reconstruct the
orientation of half disks with a radius smaller than 25λ. For direct measurement, we
can reconstruct the orientation when the radius of the inclusion is larger than 45λ.
Below these numbers, the reconstruction of θ becomes extremely noisy.

4.4. Imaging in the presence of blockers. In all of the above reconstructions,
the mean free path is sufficiently small so that the energy leaving the source, hitting
the inclusion, and coming back to the detectors without having interacted with the
underlying medium, i.e., the energy of the coherent wave field, is relatively small.
Inversions based only on the coherent information may thus fail to provide meaningful
information about the inclusion. One may, however, use larger wavelengths, which
are less affected by the random medium since the mean free path is much larger as
the latter scales like λ3. The assumption in scenarios I and II above is that we have
access to wave measurements at frequencies for which there is considerable multiple
scattering, i.e., for which the mean free path is relatively small.

There are, however, situations in which the coherent wave field can hardly be used
no matter which frequency we consider, for instance, when the inclusion we seek to
image is hidden by a large blocker. One can always argue that some energy reaches the
hidden inclusion by diffractive effects. Such fields, however, are quite weak according
to the geometric theory of diffraction and may well be below noise level as soon as
the propagating medium has unknown spatial fluctuations.

In such situations, randomness in the underlying medium may be helpful. In the
context considered in this paper of random media with multiple localized scatterers,
the wave energy may be modeled by a radiative transfer equation, and both the
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Fig. 11. Reconstruction of an inclusion hidden behind a large blocker. Top row: reconstruction
in scattering media with c0Σ−1 = 100λ. Bottom row: reconstruction in scattering media with
c0Σ−1 = 75λ. From left to right: a typical reconstruction, distribution of the reconstructed locations,
and histogram of the reconstructed radius.

Table 6

Reconstructed mean free path, location, and radius in presence of blockers. aAverage and stan-
dard deviation (numbers in bracket) calculated from 40 reconstructions. All numbers are in units of
the wavelength λ.

Inclusion Reconstructiona

c0Σ−1 location R c0Σ−1
b location R

Medium 1 100 (300, 380) 40 101.0 [2.9] (299.9 [2.6], 379.6 [2.9]) 39.7 [5.3]
Medium 2 75 (300, 380) 40 74.8 [3.3] (299.1 [3.1], 379.9 [2.6]) 39.0 [5.2]

blocker and the unknown inclusion may be modeled as constitutive parameters in
that equation. We consider here a situation where the blocker is large, spherical,
and known. It is sufficiently large to block direct paths from the source term to the
inclusion. The blocker is treated as any other extended inclusion in the Foldy–Lax
and transport models.

We consider the setup shown on the right in Figure 4. The blocker is located at
(300λ, 200λ) and its radius is 120λ. The inclusion’s center and radius are (300λ, 380λ)
and R = 40λ. All reconstructions are done based on differential measurements, i.e.,
under scenario II. The mean free path is estimated in the presence of the known blocker
and the inclusion’s parameters minimizing (42). Figure 11 shows reconstructions
in random media with (theoretical) mean free paths equal to c0Σ

−1 = 100λ and
c0Σ

−1 = 75λ, respectively. In each case, there would be a number of scatterers equal
to 6000 on average if the blocker was filled with scatterers so that lc ≈ 7.75λ. We are
therefore in the more stable of the two random media considered so far.

The average and standard deviations of the reconstructed parameters are shown
in Table 6. We observe quite good reconstruction capabilities. The images obtained in
the presence of the blocker are of a quality comparable to those obtained in the absence
of the blocker. Since the blocker is known and not so large so that no energy radiated
from the source can reach the inclusion and come back to the array of detectors, this
is consistent with what one expects from theoretical considerations.
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5. Conclusions. We have derived a radiative transfer equation to model the
energy density of mono-frequency waves propagating in random media composed of
localized scatterers. We have shown the validity of the model based on numerical
simulations, provided that the medium is sufficiently mixing. In our context, this
means that the number of scatterers needs to be sufficiently large so that sufficient
mixing occurs. Otherwise, the energy density becomes statistically less stable, i.e.,
depends more on the realization of the random medium.

When the medium is sufficiently mixing, the radiative transfer model is sufficiently
stable for imaging purposes. Inclusions buried in the random medium are modeled
as a constitutive parameter in the transport equation. We have shown numerical evi-
dence that the inverse transport method indeed allows for accurate reconstruction of
sufficiently large inclusions from wave energy measurements. Because inverse trans-
port problems are quite ill-posed, in the sense that noise may be drastically amplified
during the reconstruction, we have parameterized the inclusion by a small number of
parameters, typically its location and its radius for spherical inclusions.

For smaller inclusions whose influence falls below the noise level coming from
the statistical instability of the random medium, we have shown that differential
measurements, i.e., wave energy measurements in the presence and in the absence
of the inclusion, allowed for accurate reconstructions. Because the inclusions are
modeled by specular reflections of the wave energy at their boundaries, the inverse
model works for inclusions that are significantly larger than the wavelengths. For
smaller inclusions, the model needs to be modified and the inclusion treated as a point
source in the transport model with an appropriate radiation pattern that depends on
geometry (an isotropic radiation pattern for a small spherical inclusion).

The imaging methods developed in this paper have been validated with real-world
experimental data. The results are reported elsewhere [5].
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TIME-LOCAL DISSIPATIVE FORMULATION AND STABLE
NUMERICAL SCHEMES FOR A CLASS OF

INTEGRODIFFERENTIAL WAVE EQUATIONS∗
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Abstract. We consider integrodifferential equations of the abstract form H(∂t)Φ = G(∇)Φ+f ,
where H(∂t) is a diagonal convolution operator and G(∇) is a linear anti-selfadjoint differential
operator. On the basis of an original approach devoted to integral causal operators, we propose and
study a time-local augmented formulation under the form of a Cauchy problem ∂tΨ = AΨ+Bf such
that Φ = CΨ. We show that under a suitable hypothesis on the symbol H(p), this new formulation
is dissipative in the sense of a natural energy functional. We then establish the stability of numerical
schemes built from this time-local formulation, thanks to the dissipation of appropriate discrete
energies. Finally, the efficiency of these schemes is highlighted by concrete numerical results relating
to a model recently proposed for 1D acoustic waves in porous media.
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1. Introduction. In many physical problems where accurate dynamic models
are required, the contribution of some underlying and more or less ill-known dis-
tributed phenomena cannot be neglected. Although the precise local description of
such phenomena often appears excessively complex or even, in many cases, out of
scope, fortunately most of the time their macroscopic dynamic consequences can be
taken into account by means of suitable time-operators of a convolution nature, which
in fact summarize the collective contribution of many hidden parameters to the global
dynamic behavior of the quantities of interest. In that sense, such integrodifferential
models therefore conciliate accuracy and simplicity, up to the loss of the so-called
time-locality property. In opposition to standard Cauchy problems, for which the
future is conditioned by the present only, here all past evolution is involved via the
time-convolution. In past years, various problems relating to integrodifferential mod-
els have been studied in many fields. As examples we can cite [2, 7, 13, 16] in physics,
[6, 9, 12] in mathematical analysis or numerical simulation, [1, 11] in control problems,
[3, 10] in electrical engineering, [18] in biology, etc.

In the particular context of partial integrodifferential equations, the crucial prob-
lem of numerical simulation is in general quite difficult. This is due in one part
to the numerical complexity of quadratures of convolution integrals, which generate
highly expensive time discretizations, particularly when long memory components are
present. Beyond this first heavy shortcoming, the stability of numerical schemes is
in general very difficult to get, namely because standard techniques devoted to (or-
dinary) partial differential equations such as energy dissipation cannot be used for
integrodifferential equations. So, the construction of stable numerical schemes re-
mains an important challenge, and it can be expected that some specific methods
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devoted to analysis and approximation of convolution operators should be of great
help. This is the topic of the present paper.

In what follows, we consider partial integrodifferential equations of the abstract
form

(1.1) H(∂t)Φ = G(∇)Φ + f on (t, x) ∈ R
+∗
t × R

n
x ,

where H(∂t) is an invertible1 diagonal convolution operator, and G(∇) is an anti-
selfadjoint linear differential operator. Many propagation phenomena can be modelled
following (1.1). As significant examples, we can mention, for example, electromag-
netic waves in dissipative media [13], wave propagation in viscoacoustic media [6],
etc. In order to illustrate our results, we will consider in particular the following
model of 1D acoustic waves in a porous wall proposed in [5]: (H1(∂t)u,H2(∂t)P )T =
(−∂xP,−∂xu)T +f , where u and P stand for the velocity and the pressure of the gas,

and the symbols Hi take the form H1(p) = k p+a
√

1 + b p, H2(p) = k′p+ c p2

p+a′√1+b′p
.

On the basis of an original approach devoted to integral causal operators presented
in [14, 15] and successfully applied to various integrodifferential problems, namely in
[1, 2, 3, 10], we propose and study a new formulation, both equivalent to (1.1) and
time-local, written as the following Cauchy problem:

(1.2) ∂tΨ = AΨ + Bf on (t, x, ξ) ∈ R
+∗
t × R

n
x × Rξ, Ψ(0, ., .) = 0,

in such a way that the solution of (1.1) is expressed as Φ = CΨ. We show in par-
ticular that under a natural hypothesis on the symbol H(p), the formulation (1.2) is
dissipative in the sense of an energy functional derived, in some way, from the one of
the standard equation ∂tΦ = G(∇)Φ. Following a convenient method introduced in
[14], straightforward dissipative approximate versions of (1.2) are deduced by simple
discretization of the auxiliary variable ξ. We then study numerical schemes based on
classical discretizations relating to the variables t, x, and we establish their stability
in the sense of adapted energy functionals inherited from the continuous model.

The paper is organized as follows. Section 2 deals with the time-local formulation
of (1.1). It begins with a short presentation of the so-called diffusive representation of
causal integral operators introduced in [14]; then, the formulation (1.2) is deduced and
its dissipativity is established. In section 3, implicit and explicit numerical schemes for
(1.2) are stated and studied from the point of view of stability. Finally, the efficiency
of these schemes is highlighted in section 4 by means of some numerical simulations.

2. Time-local formulation of integrodifferential equations.

2.1. Time-local realization of causal convolution operators. In this sec-
tion, we present a particular case of a methodology called diffusive representation,
introduced and developed in [14] in a general framework.

We consider a causal convolution operator denoted by K(∂t), that is, for any
continuous function w : R

+ → R,

(2.1) (K(∂t)w)(t)=

∫ t

0

k(t− s)w(s) ds = (k ∗ w)(t);

the function K = Lk (the Laplace transform of k) is called the symbol of operator
K(∂t).

1We implicitly refer to an underlying algebra of causal convolution operators. For example, for
a Cauchy problem on R

+
t with null initial condition, the inverse of H(∂t) = ∂t is ∂−1

t : v �→
∫ t
0 v ds.
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Let wt(s) = 1]0,t](s)w(s), and let wt(s) = wt(t− s) be the so-called history of w.
From causality of K(∂t), we deduce(

K(∂t)(w − wt)
)
(t) = 0 ∀t;

then, we have for any continuous function w,

(2.2) (K(∂t)w)(t)=
[
L−1 (K Lw)

]
(t)=

[
L−1

(
K Lwt

)]
(t).

We then define

(2.3) Ψw(t, p) := ept
(
Lwt

)
(p) = (Lwt) (−p);

by computing ∂tLwt, and using Laplace inversion and (2.2), the following lemma can
be shown.

Lemma 2.1.

1. The function Ψw is a solution of the differential equation

(2.4) ∂tΨ(t, p) = pΨ(t, p) + w, t > 0, Ψ(0, p) = 0, p ∈ C.

2. There exists b0 ∈ R such that

(2.5) ∀b � b0, (K(∂t)w) (t) =
1

2iπ

∫ b+i∞

b−i∞
K(p) Ψw(t, p) dp.

Proof.
1. From (2.3), we have Ψw(t, p) := ept

∫ t

0
e−ps w(s)ds, and so

∂tΨw(t, p) = p ept
∫ t

0

e−ps w(s)ds + ept e−pt w(t).

2. From (2.2), there exists b0 ∈ R such that for any b � b0,

(K(∂t)w) (t) =
1

2iπ

∫ b+i∞

b−i∞
ept K(p)

(
Lwt

)
(p) dp =

1

2iπ

∫ b+i∞

b−i∞
K(p) Ψw(t, p) dp.

We denote by Ω the holomorphic domain of K. Let γ be a simple arc closed
at infinity and included in C

− = R
− + iR. We denote by Ω+

γ the exterior domain

defined by γ, and denote by Ω−
γ the complementary of Ω+

γ (see Figure 2.1). By use of
standard techniques (Cauchy theorem, Jordan lemma), the following lemma can be
shown.

Lemma 2.2. For γ ⊂ Ω such that K is holomorphic in Ω+
γ , if K(p) → 0 when

p → ∞ in Ω+
γ , then, for any closed simple arc γ̃ in Ω+

γ such that γ ⊂ Ω−
γ̃ (see

Figure 2.1),

(2.6) (K(∂t)w) (t) =
1

2iπ

∫
γ̃

K(p) Ψw(t, p) dp.

We now suppose that γ, γ̃ are defined by functions of W 1,∞
loc (R; C), also denoted

γ, γ̃. From classical techniques, the following has been shown in [14].
Theorem 2.3. Under the hypothesis of Lemma 2.2, if in addition the possible

singularities of K on γ are simple poles or branching points in the neighborhood of
which |K ◦ γ| is locally integrable, then
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Fig. 2.1. Example of γ and γ̃ arcs.

1. with ν̃ = γ̃′

2iπ K ◦ γ̃ and ψ̃(t, .) = Ψw(t, .) ◦ γ̃,

(2.7) (K(∂t)w) (t) =

∫
R

ν̃(ξ) ψ̃(t, ξ) dξ;

2. if γ̃n → γ in W 1,∞
loc , then

γ̃′
n

2iπ K ◦ γ̃n → ν in the sense of measures;

3. ψ(t, .) = Ψw(t, .) ◦ γ is the unique solution of the following Cauchy problem on
(t, ξ) ∈ R

∗+×R:

(2.8) ∂tψ(t, ξ) = γ(ξ)ψ(t, ξ) + w(t), ψ(0, ξ) = 0

and

(2.9) (K(∂t)w) (t) = 〈ν, ψ(t, .)〉 .

For convenience in what follows, we will indifferently denote by 〈ν, ψ〉 or
∫
ν ψ dξ

the duality product between a continuous function ψ and a measure ν (in particular,
for Dirac measures, ψ(a) =

∫
δaψ dξ).

Remark 1. In the limit case γ(ξ) = −|ξ|, we have Ω−
γ = ∅. The above results

remain valid, and we deduce from the symmetry of the problem that there exists a
measure μ such that

∫ +∞

−∞
ν ψ dξ =

∫ +∞

0

μψ dξ.

This particular case will be useful in practice when K is holomorphic in C \ R
−.

Definition 2.4 (see [14]). The measure ν defined in Theorem (2.3) is called the
γ-symbol of operator K(∂t).

In many cases, the arc γ can be constrained to satisfy a suitable additional condi-
tion which makes (2.8) of diffusive type [14]. The main advantage of the input-output
formulation (2.8), (2.9) lies in its time-local nature which allows us to use classical
methods devoted to Cauchy problems. In particular, stable and efficient schemes for
the numerical resolution of (1.1) can be straightforwardly built from discretizations
of problem (2.8) following standard techniques. This is the topic of the following
sections.
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2.2. Application to a class of partial integrodifferential equations. We
consider the problem

(2.10) H(∂t)Φ = GΦ + f on R
+
t × Ω Ω ⊂ R

m
x ,

where Φ = (Φ1, . . . ,ΦM )T is the unknown, H(∂t) is an invertible causal convolution
operator of the form

(2.11) H(∂t) =

⎡
⎢⎣

H1(∂t)
. . .

HM (∂t)

⎤
⎥⎦ ,

and G = G(∇) is a differential operator assumed to be anti-selfadjoint, that is,

(2.12) G∗
ij = −Gji,

where G∗
ij is defined by(

Gij u
∣∣ v)

L2(Ω)
=
(
u
∣∣G∗

ij v
)
L2(Ω)

∀u, v ∈ D(Ω).

As usual, suitable boundary conditions associated with G, not expressed here, can
complete the model (2.10). The γi-symbols νi of operators Hi(∂t)

−1 are assumed to
be positive measures. Note that this property appears as physically realistic in the
sense of an energy balance, as it will be highlighted later.

By expressing (2.10) under the form Φ = H(∂t)
−1 (GΦ + f) , we formally deduce

from the results of section 2.1, under a suitable hypothesis on H−1
i (∂t), the following

diffusive time-local formulation of (2.10):

∂tψ(t, x, ξ) = γ(ξ)ψ(t, x, ξ) + G 〈ν, ψ(t, x, .)〉 + f(t, x), ψ(0, .) = 0,(2.13)

Φ(t, x) = 〈ν, ψ(t, x, .)〉 ,(2.14)

where ψ := (ψ1, . . . , ψM )T , γ := diag(γ1, . . . , γM ), ν := diag(ν1, . . . , νM ), and 〈ν, ψ〉 :=
(〈ν1, ψ1〉 , . . . , 〈νM , ψM 〉)T .

Let us now consider the functional

ψ −→ Eψ =
1

2

∑
i

∫∫
νi |ψi|2 dξ dx =

1

2

∫∫
ψT ν ψ dξ dx ;

thanks to the positivity of νi, the functional Eψ is positive. We have the following.
Proposition 2.5. For any ψ solution of (2.13), and at any t such that f(t, ·) = 0,

the functional Eψ verifies

dEψ(t)

dt
� 0.

Proof.

dEψ(t)

dt
=

1

2

(∫∫
(∂tψ)

T
ν ψ dξdx +

∫∫
ψT ν ∂tψ dξdx

)

=

∫∫
ψT νRe(γ)ψ dξdx +

1

2

(∫
〈ν, ψ〉T G 〈ν, ψ〉 dx +

∫
(G 〈ν, ψ〉)T 〈ν, ψ〉 dx

)

=

∫∫
ψT νRe(γ)ψ dξdx

+
1

2

∑
i,j

[(
Gij 〈νj , ψj〉

∣∣∣ 〈νi, ψi〉
)
L2(Ω)

+
(
〈νj , ψj〉

∣∣∣Gji〈νi, ψi〉
)
L2(Ω)

]
.
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Because G is anti-selfadjoint, we then have

dEψ(t)

dt
=

∫∫
ψT νRe(γ)ψ dξ dx =

∑
i

∫∫
νiRe(γi) |ψi|2 dξ � 0.

Therefore, the time-local problem (2.13) is dissipative in the sense of the positive
functional Eψ. At this stage, standard methods of semigroup theory can be investi-
gated to study the well-posedness of this Cauchy problem in the associated energy
Hilbert space[19], from which will follow the well-posedness of problem (2.10) as a
simple consequence.

In practice, the numerical resolution of problems such as (2.10) presents major
difficulties due to the nonlocal nature of H(∂t)

−1. So, we focus here on the construc-
tion and analysis of numerical schemes for (2.13), from which approximate solutions
of (2.10) will be directly deduced. We mainly study the stability property, which
holds most of the technical difficulties.

3. Numerical schemes for (2.13). First note that in any case, it follows from
(2.14) that, in the sense of suitable topologies not specified here, approximations of a
Φ solution of (2.10) will be straightforwardly obtained from discrete approximations
ψ̃ of a ψ solution of (2.13) under the generic form,

Φ(tn, xk) � Φ̃(tn, xk) =
∑
l

αl ψ̃(tn, xk, ξl).

So, we build and study some numerical schemes for (2.10). A general technique for
ξ-discretization presented in [14] is first introduced, followed by the statement of
fundamental properties of generic x-discretizations, inherited from the properties of
operator G. Then, we consider different ways of using time discretization which define
different classes of implicit and explicit schemes.

3.1. ξ-discretization (see [14]). Consider K a Hilbert space such that ψ(t, x, .)

∈ K, and consider KL a sequence of subspaces of K of dimension L such that ∪LKL
K

=
K. Given a mesh {ξl}l=1:L, consistent approximations ψ̃L ∈ KL of ψ are then defined
by

ψ̃L(ξ) =

L∑
l=1

ψ(ξl)Λl(ξ),

where Λl are finite element functions belonging to KL in such a way that∥∥∥ψ̃L − ψ
∥∥∥
K

−→
L→∞

0.

We then deduce the finite-dimensional approximate state formulation of (2.13),

(3.1) ∂tψ(t, x, ξl) = γ(ξl)ψ(t, x, ξl) + G
∑
j

Cjψ(t, x, ξj), l = 1 : L,

where

Cl = diag(cl1, . . . , clM ), cli :=

∫
νi(ξ) Λl(ξ)dξ.
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Note that, in practice, only a few tens of ξl are necessary to correctly approximate each
operator Hi(∂t)

−1. More details on the ξ-discretization of diffusive state realizations
of convolution operators can be found in [14].

In addition, for consistency with positivity of measures νi, we will suppose that

cli � 0;

this property, which will play a central role, is satisfied namely if Λl � 0. The energy
functional associated with (3.1) is then

EL
ψ (t) =

1

2

∑
i,l

∫
cli |ψi(t, x, ξl)|2 dx =

1

2

∑
l

∫
ψ(t, x, ξl)

TCl ψ(t, x, ξl) dx

and verifies, in the same way as previously,

dEL
ψ (t)

dt
=
∑
l

∫
ψ(t, x, ξl)

TRe(γ(ξl))Cl ψ(t, x, ξl) dx(3.2)

=
∑
l,i

∫
cli Re(γi(ξl)) |ψi(t, x, ξl)|2 dx � 0.

3.2. x-discretization. In formulation (3.1), Gij is a differential operator; it is
approximate on a mesh {xk}k=1:K ⊂ R

m by

(3.3) (GijΦ) (xq) �
K∑

k=1

gqkij Φ(xk) ∀q = 1 : K,

where the coefficients gqkij define the approximation under consideration (for example,
finite differences [17], finite elements, or even more general Galerkin methods up to

suitable technical adaptations [4]). By denoting Φ̃ := (Φ(x1), . . . ,Φ(xK))T , (3.3) can
be written in a more condensed way, as follows:

((GijΦ) (x1), . . . , (GijΦ) (xK))T � GijΦ̃,

where we denote by Gij the matrix with terms gqkij . In what follows, for simplicity Φ̃
will be denoted Φ.

Because the operator G is anti-selfadjoint, it is natural to consider approxima-
tions which preserve this property. So the block matrix G with block elements
Gij ∈ MK,K(R) must be antisymmetric, that is,

(3.4) GT
ij = −Gji.

In what follows, we will denote by SGij the quantity

SGij := max

(
max

k

∑
q

∣∣∣gqkij ∣∣∣ ,max
q

∑
k

∣∣∣gqkij ∣∣∣
)
.

The Euclidian scalar product in C
K and the associated norm will be denoted

(X|Y ) =

K∑
k=1

XkYk, and ‖X‖ =

√√√√ K∑
k=1

|Xk|2.
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3.3. Stability analysis for an implicit scheme. We propose the following
class of time-implicit schemes, based on a Cranck–Nicholson time discretization:

(3.5)
ψn+1
i (ξl)−ψn

i (ξl)

Δt
= γi(ξl)

ψn+1
i (ξl)+ψn

i (ξl)

2
+
∑
k,j

Gikcjk
ψn+1
k (ξj)+ψn

k (ξj)

2
+ fn

i ,

where

ψn
i (ξl) = (ψi(nΔt, x1, ξl), . . . , ψi(nΔt, xK , ξl))

T

and fn
i = (fi(nΔt, x1), . . . , fi(nΔt, xK))T . In a more condensed way, (3.5) can be

written

(3.6)
ψn+1(ξl)−ψn(ξl)

Δt
= Γl

ψn+1(ξl)+ψn(ξl)

2
+G

∑
j

Qj
ψn+1(ξj)+ψn(ξj)

2
+ fn,

where ψn(ξl) = (ψn
1 (ξl)

T , . . . , ψn
M (ξl)

T )T , fn = (fnT
1 , . . . , fnT

M )T , Γl = diag(γi(ξl) IK),
Qj = diag(cjk IK), and G is the antisymmetric block matrix defined above.

Let us now consider the quantity

En =
∑
l

(
ψn(ξl)

∣∣∣ Qlψ
n(ξl)

)
=
∑
i,l

cli |ψn
i (ξl)|2 .

Note that, thanks to the positivity of coefficients cli, E
n is an energy candidate for

(3.6). We have the following.
Theorem 3.1. The implicit scheme (3.6) is stable.
Proof.

En+1 − En

=
∑
l

(
Ql(ψ

n+1(ξl) + ψn(ξl))
∣∣ψn+1(ξl) − ψn(ξl)

)
+
∑
l

2i Im
(
Qlψ

n+1(ξl)
∣∣ψn(ξl)

)

=
∑
l

Δt

2

(
Ql(ψ

n+1(ξl)+ ψn(ξl))
∣∣Γl(ψ

n+1(ξl)+ ψn(ξl))
)
+
∑
l

2i Im
(
Qlψ

n+1(ξl)
∣∣ψn(ξl)

)

+
Δt

2

∑
l,j

(
Ql(ψ

n+1(ξl) + ψn(ξl))
∣∣GQj(ψ

n+1(ξj) + ψn(ξj))
)
.

Because G is antisymmetric, we have∑
l,j

(
Ql(ψ

n+1(ξl) + ψn(ξl))
∣∣GQj(ψ

n+1(ξj) + ψn(ξj))
)

= 0,

so

En+1 − En

=
∑
l

Δt

2

(
Ql(ψ

n+1(ξl)+ ψn(ξl))
∣∣Γl(ψ

n+1(ξl)+ ψn(ξl))
)
+
∑
l

2i Im
(
Qlψ

n+1(ξl)
∣∣ψn(ξl)

)

=
Δt

2

∑
i,l

γi(ξl)cli
∣∣ψn+1

i (ξl) + ψn
i (ξl)

∣∣2 +
∑
l

2i Im
(
Qlψ

n+1(ξl)
∣∣ψn(ξl)

)
.

As En+1 − En is real, we have

En+1 − En =
Δt

2

∑
i,l

cli Re(γi(ξl))
∣∣ψn+1

i (ξl) + ψn
i (ξl)

∣∣2 � 0.
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3.4. Stability analysis for explicit schemes. In this section, we propose a
class of two-step explicit schemes of the form

(3.7) ψn+1
i (ξl) = ali ψ

n−1
i (ξl) + bli

∑
k

Gik

∑
j

bjk ψ
n
k (ξj) + bli f

n
i ,

where ali ∈ C, |ali| < 1, and bjk ∈ R
∗
+ depend both on time approximation and γi(ξl)

choices, and G is the antisymmetric block matrix associated with operator G.
Let us now study the stability of (3.7). We consider the functional

En =
∑
i,l

‖ψn
i (ξl)‖2

2 + Re
(
ψn+1
i (ξl)|ψn−1

i (ξl)
)
.

Lemma 3.2. If

(3.8) Re(ali) −
bli
2

∑
k,j

bjkSGik
> 0 ∀i, l,

then there exists K > 0 such that

En � K
∑
i,l

‖ψn
i (ξl)‖2

.

Proof. We have

En =
∑
i,l

‖ψn
i (ξl)‖2

2 +
∑
i,l

Re(ali)
∥∥ψn−1

i (ξl)
∥∥2

2
+
∑
i,l,k,j

blibjk Re (Gik ψ
n
k (ξj)| ψn−1

i (ξl)
)
.

Moreover, by using the following relation:

(3.9) ∀α ∈ R, ∀u, v ∈ C
K , αRe (u|v) =

|α|
2

(‖u‖2
+ ‖v‖2 − ‖u− sign(α)v‖2

),

we get

Re (Gik ψ
n
k (ξj)| ψn−1

i (ξl)
)

�
∑
p,q

|gpqik |
2

∣∣ψn
k (ξj , xq) + sign(gpqik )ψn−1

i (ξl, xp)
∣∣2

− SGik

2

∥∥ψn−1
i (ξl)

∥∥2 − SGik

2
‖ψn

k (ξj)‖2
;

so, as SGik
= SGki

,

En �
∑
i,l

⎛
⎝1− bli

2

∑
k,j

bjkSGik

⎞
⎠‖ψn

i (ξl)‖2
+
∑
i,l

⎛
⎝Re(ali)−

bli
2

∑
k,j

bjkSGik

⎞
⎠∥∥ψn−1

i (ξl)
∥∥2

+
∑

i,j,k,l,p,q

blibjk
|gpqik |

2

∣∣ψn
k (ξj , xq) + sign(gpqik )ψn−1

i (ξl, xp)
∣∣2 .

Remark 2. Note that condition (3.8) necessarily implies Re(ali) > 0; the hypoth-
esis |ali| < 1 is motivated by the term ali ψ

n−1
i (ξl) of (3.7).

Remark 3. Conditions of Lemma 3.2 are necessary conditions that link Δt (in ali
and bik) and the space discretization step (in SGik

).
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Let us now consider the quantity

En = En + En−1,

which, under the conditions of Lemma 3.2, defines an energy candidate for (3.7).
Then, we have the following theorem for stability of the class of explicit schemes
(3.7).

Theorem 3.3. Under the conditions of Lemma 3.2, and if for any k, j,
(3.10)

|ajk|2+
bjk
2

∑
i,l

‖Gik‖2
bli

(∣∣∣|ali|2+a2
li−ajkali−1

∣∣∣+bli
∑
p,q

bqp (|ali−ajk|+|ali−aqp|)
)

�1

and

(3.11) Re(ajk)(|ajk|2 − 1) +
bjk
2

∑
i,l

bli

∣∣∣|ajk|2 + a2
jk − aliajk − 1

∣∣∣ � 0,

then the scheme (3.7) is stable.
Proof. After computations and reorganization, we have

En+1 − En = En+1 − En−1

=
∑
i,l

|ali|2
∥∥ψn−1

i (ξl)
∥∥2

+
∑
i,l,k,j

blibjk Re
(
aliψ

n−1
i (ξl)

∣∣Gik ψ
n
k (ξj)

)

+
∑
i,l,k,j

blibjk Re
(
Gik ψ

n
k (ξj)

∣∣ψn+1
i (ξl)

)
+
∑
i,l

|ali|2 Re
(
ψn
i (ξl)

∣∣ψn−2
i (ξl)

)

+
∑
i,l,k,j

blibjk Re
(
aliψ

n
i (ξl)

∣∣Gikψ
n−1
k (ξj)

)
+
∑
i,l,k,j

blibjk Re
(
Gik ψ

n+1
k (ξj)

∣∣ψn
i (ξl)

)

−
∑
i,l

(
‖ψn−1

i (ξl)‖2 + Re
(
ψn
i (ξl)

∣∣ψn−2
i (ξl)

))
.

As Gik = −GT
ki, we have

En+1 − En =
∑
i,l

(|ali|2 − 1)
∥∥ψn−1

i (ξl)
∥∥2

+
∑
i,l

(|ali|2 − 1) Re
(
ψn
i (ξl)

∣∣ψn−2
i (ξl)

)

+
∑
i,l,k,j

blibjk(ali − ajk) Re
(
(ali − ajk)ψ

n
i (ξl)

∣∣Gikψ
n−1
k (ξj)

)

=
∑
i,l

(|ali|2 − 1)
∥∥ψn−1

i (ξl)
∥∥2

+
∑
i,l

(|ali|2 − 1) Re(ali)
∥∥ψn−2

i (ξl)
∥∥2

+
∑
i,l,k,j

blibjk Re
((

|ali|2 + a2
li − ajkali − 1

)
ψn−2
i (ξl)

∣∣∣Gik ψ
n−1
k (ξj)

)

+
∑

i,l,k,j,p,q

b2libjkbqp Re
(
(ali − ajk)Gipψ

n−1
p (ξq)

∣∣Gikψ
n−1
k (ξj)

)
.

By using (3.9) and the following relation:

Re (βu|v) =
1

2

(
|β| ‖v‖2

2 + |β| ‖u‖2
2 −
∥∥∥√βu +

√
βv
∥∥∥2

2

)
,
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and after reorganization, we obtain

En+1 − En =
∑
i,l

(|ali|2 − 1)
∥∥ψn−1

i (ξl)
∥∥2

+
∑
i,l

(
Re(ali)(|ali|2 − 1) +

bli
2

∑
k,j

bjk

∣∣∣|ali|2 + a2
li − ajkali − 1

∣∣∣) ∥∥ψn−2
i (ξl)

∥∥2

−1

2

∑
i,l,k,j,p,q

b2libjkbqp

∥∥∥√ali − ajkGip ψ
n−1
p (ξq) +

√
ali − ajkGikψ

n−1
k (ξj)

∥∥∥2

−1

2

∑
i,l,k,j

blibjk

∥∥∥∥
√
|ali|2+a2

li−ajkali−1ψn−2
i (ξl)+

√
|ali|2+a2

li−ajkali−1Gikψ
n−1
k (ξj)

∥∥∥∥
2

+
1

2

∑
i,l,k,j

blibjk

(∣∣∣|ali|2+a2
li−ajkali−1

∣∣∣+∑
p,q

blibqp(|ali−ajk|+|ali−aqp|)
)∥∥Gikψ

n−1
k (ξj)

∥∥2
.

By using the property
∥∥Gikψ

n−1
k (ξj)

∥∥ � ‖Gik‖
∥∥ψn−1

k (ξj)
∥∥ , we then get

En+1 − En �
∑
k,j

(
(|ajk|2 − 1) +

bjk
2

∑
i,l

‖Gik‖2
bli

[∣∣∣|ali|2 + a2
li − ajkali − 1

∣∣∣
+ bli

∑
p,q

bqp(|ali − ajk| + |ali − aqp|)
])∥∥ψn−1

k (ξj)
∥∥2

+
∑
i,l

(
Re(ali)(|ali|2 − 1) +

bli
2

∑
k,j

bjk

∣∣∣|ali|2 + a2
li − ajkali − 1

∣∣∣ ) ∥∥ψn−2
i (ξl)

∥∥2

−1

2

∑
i,l,k,j

blibjk

∥∥∥∥
√
|ali|2+a2

li−ajkali−1ψn−2
i (ξl)+

√
|ali|2+a2

li−ajkali−1Gikψ
n−1
k (ξj)

∥∥∥∥
2

−1

2

∑
i,l,k,j,p,q

b2libjkbqp

∥∥∥√ali − ajkGip ψ
n−1
p (ξq) +

√
ali − ajkGikψ

n−1
k (ξj)

∥∥∥2

.

So, if for any k, j,

|ajk|2+
bjk
2

∑
i,l

‖Gik‖2
bli

(∣∣∣|ali|2+a2
li−ajkali−1

∣∣∣+bli
∑
p,q

bqp (|ali−ajk| + |ali−aqp|)
)

�1

and for any i, l,

Re(ali)(|ali|2 − 1)+
bli
2

∑
k,j

bjk

∣∣∣|ali|2 + a2
li − ajkali − 1

∣∣∣ � 0,

then En+1 � En, from which we deduce En+1 � En−1. Consequently, we have
En � max(E0, E1); from Lemma 3.2, the scheme is stable.

In section 4, where a concrete application is presented, we will consider as follows
two particular explicit schemes of the form (3.7), based on two time discretizations
(the first one is rather classical, and the second can be expected to be more precise):

• In the first scheme, the time derivative is approximated by centered finite dif-
ferences; we then get

ψn+1
i (ξl) = (1 + 2Δt γi(ξl))ψ

n−1
i (ξl) + 2Δt

∑
k

Gik

∑
j

cjk ψ
n
k (ξj) + 2Δt fn

i ,
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which, after the change of variable ψ̃n+1
i (ξl) = ψn+1

i (ξl)
√

cli
2Δt , is rewritten under the

form (3.7) with

(3.12) ali = 1 + 2 Δt γi(ξl) and bjk =
√

2 Δt cjk.

• The second scheme is based on another time discretization, described in the
appendix and can be considered in the case where γi(ξ) is real (e.g., γi(ξ) = −ξ). It
is written

(3.13) ψn+1
i (ξl) = eγi(ξl)2Δt ψn−1

i (ξl)+
eγi(ξl)2Δt − 1

γi(ξl)

⎛
⎝∑

k

Gik

∑
j

cjk ψ
n
k (ξj) + fn

i

⎞
⎠;

after the change of variable ψ̃n+1
i (ξl) = ψn+1

i (ξl)
√

cliγi(ξl)

eγi(ξl)2Δt−1
, (3.13) is rewritten

under the form (3.7) with

(3.14) ali = eγi(ξl)2Δt and bjk =

√
cjk

eγk(ξj)2Δt − 1

γk(ξj)
.

The stability of those particular schemes is obtained as a corollary of the general
stability theorem, Theorem 3.3.

Corollary 3.4. Under the conditions of Lemma 3.2, and if Δt is small enough,
the two schemes (3.7), (3.12) and (3.7), (3.14) are stable.

Proof. For the first scheme, we have

ali = 1 + 2Δt γi(ξl) and bjk =
√

2Δtcjk,

so that, by supposing Δt small enough, conditions (3.10) and (3.11) are, respectively,
equivalent to

1 + 4Δt Re(γk(ξj)) � 1 and 4Δt Re(γk(ξj)) � 0,

which are both verified thanks to the property Re γ ⊂ R
−.

For the second scheme, we have

ali = eγi(ξl)2Δt and bjk =

√
cjk

eγk(ξj)2Δt − 1

γk(ξj)
,

so if Δt is small enough, then

ali ∼ 1 + 2Δt γi(ξl) and bjk ∼
√

2Δtcjk,

and the same analysis as for the first scheme can be made.
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4. Application to a porous wall model.

4.1. Problem under consideration. In the context of aircraft motor noise
reduction in the aerospace industry, a specific porous wall was proposed in [5] for
absorption of a wide part of the energy of incident acoustic waves. The following
frequency model of such a material has been established from analysis of harmonic
propagating waves:

(4.1)

{
e iω ρeff (iω) û + ∂xP̂ = 0

e iω χeff (iω) P̂ + ∂xû = 0
with

{
ρeff (iω) = ρ (1 + a

√
1+b iω
iω )

χeff (iω) = χ (1 − β iω
iω+a′√1+b′iω

),

where û and P̂ designate the Fourier transforms of the velocity and the pressure
in the porous medium, e denotes the thickness of the porous wall,2 ρeff (iω) and
χeff (iω) are, respectively, the effective density of Pride, Morgan, and Gangi [16] and
the effective compressibility of Lafarge [8], and ρ = ρ0 α∞, χ = 1

P0
, a = 8μ

ρ0Λ2 , a
′ =

8μ
ρ0Λ′2 , b = 1

2a , b
′ = 1

2a′ , 0 < β = γ−1
γ < 1. The physical parameters ρ0, P0, μ, γ,

α∞, Λ, Λ′ are, respectively, the density and pressure at rest, the dynamic viscosity,
the specific heat ratio, the tortuosity, the high frequency characteristic length of the
viscous incompressible problem, and the high frequency characteristic length of the
thermal problem. Note that all these parameters are positive by nature.

The aim of this section is to perform temporal simulations of these equations,
based on the schemes previously studied. In the time domain, (4.1) can be written
(by replacing p = iω by ∂t)

(4.2)

[
H1(∂t) 0

0 H2(∂t)

](
u
P

)
=

[
0 −∂x

−∂x 0

](
u
P

)

with

H1(p) = e ρ (p + a
√

1 + b p) and H2(p) = e p χ

(
1 − β

p

p + a′
√

1 + b′p

)
.

The analytic continuations of functions H1(p)
−1 and H2(p)

−1 are clearly decreasing at
infinity and holomorphic in C \R

−. So, from Theorem 2.3, the time-local formulation
(2.13) of (4.2) with γi(ξ) = − |ξ| is valid. It takes the form

(4.3)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tψ(t, x, ξ) =

[
−ξ 0
0 −ξ

]
ψ(t, x, ξ)+

[
0 −∂x

−∂x 0

](
〈ν1, ψ1(t, x, .)〉
〈ν2, ψ2(t, x, .)〉

)
,

u = 〈ν1, ψ1(t, x, .)〉 ,

P = 〈ν2, ψ2(t, x, .)〉 .

After computations, the γ-symbol νi associated with the operator Hi(∂t)
−1 is ex-

pressed (δ denotes the Dirac measure)

ν1(ξ) =
a

π e ρ

√
b ξ − 1

ξ2 + a ξ
2 − a2

1ξ>2a + k1 δ(ξ − ξ1),

ν2(ξ) =
a′ β

π eχ

√
b′ ξ − 1

ξ2 (1 − β)2 + a′

2 ξ − a′2
1ξ>2a′ +

1

e χ
δ(ξ) + k2 δ(ξ − ξ2)

2In the model, the unit of length for x is e, so x ∈ ]0, 1[.
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with

ξ1 =
a(
√

17 − 1)

4
> 0, ξ2 =

a′(
√

1 + 16(1 − β)2 − 1)

4(1 − β)2
> 0,

k1 =

√
17 − 1

e ρ
√

17
> 0, k2 =

β(
√

1 + 16(1 − β)2 − 1)

e χ(1 − β)
√

1 + 16(1 − β)2
> 0.

For the ξ-discretization, we consider the classical interpolation functions

Λl(ξ) =
ξ − ξl−1

ξl − ξl−1
1[ξl−1,ξl](ξ) +

ξl+1 − ξ

ξl+1 − ξl
1]ξl,ξl+1](ξ),

and coefficients cli are computed by a simple quadrature of
∫
νi(ξ)Λl(ξ)dξ.

4.2. Numerical schemes. In this example, G =
[

0 −∂x

−∂x 0

]
. We use centered

finite differences to approximate the derivative operator ∂x, so the matrix of the x-
discretization G is given by

G =

[
0 G12

G21 0

]
with G12 = G21 =

1

2Δx

⎡
⎢⎢⎢⎢⎢⎣

0 −1
1 0 −1

. . .
. . .

. . .

1 0 −1
1 0

⎤
⎥⎥⎥⎥⎥⎦ .

Note that this matrix is antisymmetric, so that the schemes studied in section 3 can
be used. Then, we consider the following:

• the implicit scheme

(4.4)⎧⎪⎨
⎪⎩

ψn+1
1 (ξl)−ψn

1 (ξl)

Δt
=−ξl

ψn+1
1 (ξl)+ψn

1 (ξl)

2
+G12

∑
j cj2

ψn+1
2 (ξj)+ψn

2 (ξj)

2
+ fn

1 ,

ψn+1
2 (ξl)−ψn

2 (ξl)

Δt
=−ξl

ψn+1
2 (ξl)+ψn

2 (ξl)

2
+G21

∑
j cj1

ψn+1
1 (ξj)+ψn

1 (ξj)

2
+ fn

2 ;

• the two particular explicit schemes of the form

(4.5)

⎧⎨
⎩

ψn+1
1 (ξl) = al1 ψ

n−1
1 (ξl) + bl1 G21

∑
j
bj2 ψ

n
2 (ξj) + bl1f

n
1 ,

ψn+1
2 (ξl) = al2 ψ

n−1
2 (ξl) + bl2 G12

∑
j
bj1 ψ

n
1 (ξj) + bl2f

n
2 ,

respectively, obtained with

ali = 1 − 2Δt ξl, bjk =
√

2Δt cjk and ali = e−ξl2Δt , bjk =

√
cjk

e−ξj2Δt − 1

−ξj
.

4.3. Physical interpretation of stability conditions. Obviously, to correctly
simulate wave propagation phenomena, explicit schemes must necessarily have a nu-
merical influence velocity at least equal to the maximal velocity of wave fronts in the
medium under consideration. When this is not the case, a consistent explicit scheme
cannot be convergent and is therefore unstable. So, it can be expected that the stabil-
ity conditions of section 3.4 applied to (4.5) can be in some way interpreted in terms
of high frequency wave velocity. More precisely, is the sufficient stability condition
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for (4.5) “optimal” in the sense that it is close to the necessary condition mentioned
above? This is studied in the present section.

Let us compute the expression of the high frequency wave velocity of model (4.2),
denoted by c. We have

(4.6)

{
u = −H1(∂t)

−1∂xP,
P = −H2(∂t)

−1∂xu,

so we get u = H1(∂t)
−1H2(∂t)

−1 ∂2
xu. Moreover [14],

Hi(iω)−1 =

∫
νi(ξ)

iω + ξ
dξ =

1

iω

∫
νi(ξ)

1 + ξ
iω

dξ, i = 1, 2.

So, when ω → +∞,

Hi(iω)−1 ∼ 1

iω

∫
νi(ξ) dξ.

The equation u = H1(∂t)
−1H2(∂t)

−1 ∂2
xu therefore behaves at high frequency as equa-

tion ∂2
t u = c2 ∂2

xu, with

c =

√∫
ν1(ξ) dξ

∫
ν2(ξ) dξ.

Similarly, we denote by cd the high frequency wave velocity of the continuous
model obtained after ξ-discretization of (4.2), in which Hi(iω) is replaced by its ap-

proximation H̃i(iω) [14] as follows:

(4.7) H̃i(iω)−1 =
∑
j

cji
iω + ξj

=
1

iω

∑
j

cji

1 +
ξj
iω

, i = 1, 2.

We have, when |ω| → +∞,

H̃i(iω)−1 ∼ 1

iω

∑
j

cji,

which leads to a high frequency behavior of the form ∂2
t u = c2d ∂

2
xu with

cd =

√∑
j

cj1
∑
j

cj2.

Thanks to the expression of cli, we then have, if H̃−1
i is sufficiently close to H−1

i ,

(4.8) cd � c.

Moreover, SG12 = SG21 = 1
Δx , so the stability conditions of section 3.4 applied to

(4.5) are Δt small enough and

(4.9) ∀(i, k) ∈ {(1, 2), (2, 1)}, ∀l = 1 : L, ali −
bli

2Δx

∑
j

bjk > 0.



1778 C. CASENAVE AND E. MONTSENY

For the first explicit scheme, (4.9) is expressed as

(4.10)
Δx

Δt
> vd := max

(i,k)
max

l

√
cli

1 − 2Δt ξl

∑
j

√
cjk,

where Δx
Δt is the numerical influence velocity of the scheme. For the second explicit

scheme, the order one approximation leads to the same condition. Then, we have the
following result:

Proposition 4.1. vd � cd.
Proof. Without loss of generality, we can consider that

vd = max
(i,k)

max
l

√
cli

1 − 2Δt ξl

∑
j

√
cjk = max

l

√
cl1

1 − 2Δt ξl

∑
j

√
cj2.

So we have

c2d =
∑

j
cj1
∑

j
cj2 � max

l

√
cl1
∑

j

√
cj1 max

l

√
cl2
∑

j

√
cj2

� max
l

√
cl1

1 − 2Δt ξl

∑
j

√
cj2 max

l

√
cl2

1 − 2Δt ξl

∑
j

√
cj1

�
(

max
l

√
cl1

1 − 2Δt ξl

)2 (∑
j

√
cj2

)2

= v2
d.

As expected, we deduce from (4.10) and Proposition 4.1 that the numerical in-
fluence velocity of the scheme necessarily satisfies

Δx

Δt
> cd.

The sufficient stability condition (4.10) is of course not necessary. However, in the
numerical results of section 4.4, the gap between this condition and the instability of
the scheme is small; then, this condition is quasi optimal in this case.

Remark 4. The numerical velocity vd of (4.5) could also be compared to that of a
(theoretical) scheme, in which the variable ξ remains continuous, by considering the

continuous equivalent of the quantity vd = max(i,k) maxl

√
cli

1−2Δt ξl

∑
j

√
cjk in (4.10).

Namely, by supposing by simplicity that νi are positive and continuous functions3

with bounded support, that Δξ = ξl+1 − ξl is constant and with Λl = 1[ξl,ξl+1], there

exists ν′li ∈ [νi(ξl), νi(ξl+1)] such that cli =
∫ ξl+1

ξl
νi(ξ) dξ = ν′li Δξ; so,

√
cli
∑
j

√
cjk =

√
ν′li
∑
j

√
ν′jk Δξ �

√
ν′li

∫ √
νk(ξ) dξ,

and therefore, with Δt such that 1 − 2Δt ξ � 0 for any ξ ∈ supp ν1 ∪ supp ν2,

vd � max
(i,k)

max
l

√
ν′li

1 − 2Δt ξl

∫ √
νk(ξ) dξ � v := max

(i,k)
sup
ξ

√
νi(ξ)

1 − 2Δt ξ

∫ √
νk dξ.

Then, similarly to Proposition 4.1, it can be easily shown that v > c. Note, however,
that besides the boundedness of supp νi, which is a quite unrealistic hypothesis, this
estimation can be in some cases excessively pessimistic.

3Dirac and L1
loc components could be similarly treated up to suitable technical adaptations.
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4.4. Numerical results. We give in this section some numerical results ob-
tained with the explicit schemes. The values of parameters are [5]

Λ = Λ′ = 0.1 10−3 m, ρ0 = 1.2 kg.m−3, P0 = 105 Pa,

μ = 1.8 10−5 kg.m−1.s−1, γ = 1.4, α∞ = 1.3, e = 5 10−2 m.

The frequency responses of the approximations of Hi(∂t)
−1 obtained with (4.7) are

given in Figure 4.1. Only 15 (resp., 20) ξl are used to approximate H1(∂t)
−1 (resp.,

H2(∂t)
−1) in a range of six decades with good accuracy.
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Fig. 4.1. Exact (—) and approximate (- - -) frequency responses of operators H1(∂t)−1 (left)
and H2(∂t)−1 (right).

For illustration, the evolution of P obtained from simulation with explicit schemes
is shown in Figure 4.2 (the two curves are superposed); the x-domain of (4.2) is
Ω =]0, 1[ and the boundary conditions are

P (t, 0) = (1 − cos(2πf t))1[0, 1
f ](t), u(t, 1) = 0,

with f = 5 kHz. We can clearly observe the dissipation and dispersion due to operator
H(∂t).

In Figure 4.3 we can see, at a particular time, the functions ψ1 which are involved
in the synthesis of u.
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Fig. 4.2. Evolution of P̃ =
∑

l bl2ψ2(ξl) (N.B.: the unit of length for the x-axis is 10−2m).
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4.5. Comparison between experimental and theoretical stability con-
ditions. In the case of explicit schemes, the (sufficient) stability conditions are as
follows:

Condition 1. Δt small enough.
Condition 2. ali − bli

2Δx

∑
k bkj > 0.

We propose to compare from numerical simulations the stability condition, Con-
dition 2, with the experimental one. In the same conditions as previously, for different
values of Δt

Δx , we test the experimental stability of the schemes and verify whether
Condition 2 is satisfied or not. The results are presented in Table 4.1 (resp., in Table
4.2) for the first (resp., the second) scheme. In the two cases, the results confirm
that Condition 2 is a sufficient stability condition. We can notice that the interval of
Δt
Δx values, for which the scheme is stable even if Condition 2 is not verified, is small
(1.48 10−4 to 1.98 10−4); then, this condition is in fact “almost necessary.”

Finally, to make the link with section 4.3, we can remark that the experimental
stability bounds are intimately linked to propagation velocities. Indeed, the values of
velocities defined in section 4.3 are (in length unit e per second)

c = 5992, cd = 5038, and vd = 6856,

which correspond to the physical values c = 299.6 m.s−1, cd = 251.9 m.s−1, and
vd = 342.8 m.s−1. We can remark that, as expected, the schemes become unstable
when Δx

Δt � 1
1.98 10−4 � cd, that is, when the numerical propagation velocity is less

than the model’s one.

Table 4.1

First explicit scheme.

Value of Δt/Δx Condition 2 Stability

� 1.4710−4 verified yes

from 1.48104 to 1.98710−4 not verified yes

� 1.9810−4 not verified no

Table 4.2

Second explicit scheme.

Value of Δt/Δx Condition 2 Stability

� 1.4710−4 verified yes

from 1.48104 to 1.9810−4 not verified yes

� 1.9910−4 not verified no

Appendix A. A particular time discretization. For a linear differential
system in C

M ,

∂tϕ = Aϕ + Bw, ϕ(0) = 0,

the solution ϕ is given by

ϕ(t) =

∫ t

0

eA(t−s)Bw(s) ds.

For w constant in [t− Δt, t + Δt], we have

ϕ(t+Δt) =

∫ t−Δt

0

eA(t+Δt−s)Bw(s) ds+

∫ t+Δt

t−Δt

eA(t+Δt−s) dsB w(t) = Fϕ(t−Δt)+Gw(t),
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with F = e2ΔtA and G = A−1(e2ΔtA−I)B. So we get the following numerical scheme:

ϕt+Δt = Fϕt−Δt + Gwt.

Note that this scheme is especially useful in the case where A is diagonal.
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AN INTERACTION THEORY FOR SCATTERING BY DEFECTS IN
ARRAYS∗
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Abstract. Wave scattering by an array of bodies that is periodic except for a finite number
of missing or irregular elements is considered. The field is decomposed into contributions from a
set of canonical problems, which are solved using a modified array scanning method. The resulting
interaction theory for defects is very efficient and can be used to construct the field in a large number
of different situations. Numerical results are presented for several cases, and particular attention is
paid to the amplitude with which surface waves are excited along the array. We also show how other
approaches can be incorporated into the theory so as to increase the range of problems that can be
solved.
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1. Introduction. Wave scattering by arrays of bodies is of fundamental impor-
tance in numerous engineering and physics applications. Here we are concerned with
the effect of one or more defects in an infinite, periodic array. This problem is of sig-
nificant current interest in several fields, including elastodynamics [19] and phononic
[7, 28] and photonic [1, 26, 5] crystals. The presence of defects leads to a significant
increase in difficulty in determining the scattered field, because the geometry is no
longer periodic. In particular, Rayleigh–Bloch (RB) surface waves (also known as ar-
ray guided surface waves) are excited if the array geometry and physical parameters
are such that these modes can exist. RB waves propagate without loss along an array,
and are evanescent in other directions. They are known to occur in a wide variety
of situations [15, 21, 18, 10]. One of the key goals of this article is to develop an
efficient and accurate method for the determination of the amplitude with which they
are excited. The theory is presented in a form that can be directly interpreted in a
number of different physical contexts. These include the acoustic case, in which the
wavenumber k is the ratio of the angular frequency ω to the speed of sound c, and the
interaction of linear water waves with bottom mounted, surface penetrating cylinders,
in which case k is the positive solution to the dispersion relation k tanh kh = ω2/g,
g being the acceleration due to gravity and h the quiescent fluid depth. For acous-
tics, Dirichlet and Neumann boundary conditions are used to model sound hard and
sound soft bodies, respectively, whereas Neumann conditions are appropriate for solid
bodies immersed in water. The method is also applicable in the electromagnetic and
elastodynamic cases, provided that the overall vector wave problem decouples into
separate scalar components.

Our first step in obtaining the field scattered by a defective array is to decompose
the solution into contributions arising from a set of simpler, canonical problems. This
is achieved by modifying the field generated when a wave interacts with a periodic
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array, so as to eliminate a finite number of elements, or replace these with bodies
of different sizes, shapes, or surface compositions. The procedure is independent of
the type of wavefunctions used to represent the field (i.e., cylindrical, spherical, etc.)
and is therefore presented in a general form in section 2. The canonical problems are
independent of the defect configuration and all aspects of the incident field, except the
wavenumber; they need not be solved again if these parameters are changed. In order
for the decomposition to be useful in a specific case, the relevant canonical problems
must be solved accurately and efficiently. The boundary conditions on the surface
of the array elements come into play at this stage, and therefore we must apply
an appropriate multiple scattering theory. This requires the use of certain results
concerning the periodic array, and these are readily available for problems involving
cylindrical wavefunctions; a summary is given in section 3. The canonical problems
for this case are then solved in section 4 using a special Fourier series. This approach
is closely related to the array scanning method [27, 16], which is typically used in
problems involving excitation by an aperiodic field, and in particular for the analysis
of antenna arrays [3, 4]. The idea is to create a periodic incident field by introducing
an array of phase-shifted sources, and then to integrate over a single period of the
phase shift so as to eliminate all but one of the sources. The procedure used in section
4 is similar, but its effect is rather different, and we shall refer to it as the “modified
array scanning method” (MASM). Instead of eliminating sources, the integration,
which must be performed using quadrature, enables us to replace one member of a
periodic array with a source. This is the most computationally intensive part of the
technique. Nevertheless, important parameters such as RB wave amplitudes can be
efficiently calculated to near machine precision. In contrast, other techniques such
as the filtering approach used for a related problem in [11] have limited accuracy.
Technical details regarding the method used to evaluate the relevant integrals are given
in the appendix. This method is chosen for simplicity and is open to improvement.

Considered together, the decomposition into canonical problems and the MASM
are similar to the “fictitious source superposition method” which was originally used
for a study of photonic crystals with a single defect [26]. This was later extended in
[5] to account for situations where more than one defect is present. Our formulation,
which is a generalization of earlier work in [22], is rather different and automatically
includes the case of multiple defects. Indeed, by first reducing to canonical problems,
we obtain an “interaction theory for defects” by means of which the solutions for a
wide variety of cases can be constructed at very little computational expense.

A representative sample of the numerical results that can be obtained is given
in section 5. We also demonstrate how the methods in sections 2–4 can be com-
bined with other approaches, such as infinite array subtraction [11] and the large
array approximation method used in [24], to widen the class of problems that can be
considered.

2. General theory. In this section we will show how the problem of wave scat-
tering by a defective array can be reduced to a set of simpler, canonical problems. This
is achieved using a procedure that is independent of the shape of the scatterers and
the boundary conditions that are to be applied on their surfaces. We therefore present
the theory from a general perspective, although for clarity we deal with the case of a
one-dimensional array in the two-dimensional setting. The extensions to higher array
dimensions and to three dimensions in space is straightforward, requiring only that
scalar indices are replaced by appropriate multi-indices.

Thus, consider an array of scatterers which is periodic, except for a finite number
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of missing, or possibly irregular, elements. The elements are labeled by an index
p ∈ Z, and the defects correspond to those values for which p is a member of the finite
defect set D. If p /∈ D, we shall say that scatterer p is regular. A (one-dimensional)
lattice of points rp is defined so that r = rp lies inside scatterer p if this body is
present in the array. The field in the vicinity of each scatterer is then expanded about
the point r = rp as a sum of incoming and outgoing wavefunctions. The former are
regular for all r, whereas the latter are singular at r = rp and regular elsewhere. The
choice of rp is of course not unique.

In the region exterior to the scatterers, all wavefields φ must satisfy the Helmholtz
equation

(2.1) (∇2 + k2)φ = 0.

The array is excited by the incident wave φi, and the total field is obtained by adding
the scattered response. Hence,

(2.2) φt = φi + φs,

where φs can be expanded in the form

(2.3) φs(r;D) =
∑
m

∑
p

Ap
m(D)Hp

m(r).

Here, the notation Hp
m represents an outgoing wavefunction of order m that is singular

at r = rp and regular elsewhere. Where no limits are placed on an index it is to be
understood that this ranges over all possible values. The radiation condition stipulates
that φs cannot include any contributions that are incoming from the far field, or that
increase in magnitude as the observer moves toward infinity. Initially, we consider
defects that consist of missing scatterers, in which case we must have

(2.4) Ap
m(D) = 0, p ∈ D,

so that there are no singularities in the field. Later we will show how the theory can
be modified to account for irregular scatterers, which is slightly more difficult.

The pivotal idea behind our procedure is to modify φs(r, ∅) (i.e., the scattered
field that occurs when there is no defect) by cancelling the singularities at r = rp for
each p ∈ D. The resulting wavefield does not include any radiation from the scatterers
for which p ∈ D, and no longer satisfies the boundary conditions on their surface. In
this way, the influence of these array elements is eliminated. The boundary conditions
on the surface of the regular scatterers are still satisfied, as is the radiation condition.

At a later stage, it is necessary to apply a multiple scattering theory in order to
satisfy the boundary conditions on the scatterer surfaces. This requires that, in some
region containing the surface of scatterer p, the total field can be represented in the
form

(2.5) φt(r;D) = φi
p(r;D) + φr

p(r;D),

where

φi
p(r;D) =

∑
m

Ipm(D)J p
m(r)(2.6)
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and

φr
p(r;D) =

∑
m

Ap
m(D)Hp

m(r).(2.7)

Here, J p
m represents a regular wavefunction of order m and φi

p is the total field in-
coming toward the point rp. It consists of the incident wave and the radiation from
all of the other scatterers. The second term on the right-hand side of (2.5) represents
the field outgoing from scatterer p. The relationships between the expansions (2.3)
and (2.5)–(2.7) can be found in [14, Chapters 2 and 3] for wavefunctions in a number
of separable geometries. The crucial point here is the nature of the regions where the
series appearing in (2.6) and (2.7) converge and therefore represent valid solutions to
the Helmholtz equation. The expansion of the incoming field (2.6) is valid inside a
simply connected region that contains the point rp. In fact, if we are to apply a mul-
tiple scattering theory based on the expansions (2.5)–(2.7), this region must contain
the whole of scatterer p. Thus, the field incoming toward a particular body can be
extended to the entire region inside that body, and there it continues to represent
a valid solution to the Helmholtz equation. The same cannot be said for the field
radiating from a particular body (equation (2.7)) because Hp

m(r) is singular at the
point r = rp. Note that the use of (2.5)–(2.7) to represent the field at the surface of
the scatterers imposes a geometrical restriction. For cylindrical and spherical wave-
functions, the maximum distance from rp to the surface of scatterer p must be less
than |rp − rp±1| [14, sections 2.5, 3.12].

As a starting point, for the case where D = ∅, we have

(2.8) φs(r; ∅) =
∑
m

∑
p

Ap
m(∅)Hp

m(r),

and we will assume that the coefficients Ap
m(∅) are known, since this is a periodic

geometry, and so the solution can be obtained relatively easily. Now, construct the
field φs(r;D) by writing

(2.9) φs(r;D) = φs(r; ∅) + ψ(r;D),

and observe that ψ(r;D) must satisfy the boundary conditions on the regular scat-
terers because φs(r;D) and φs(r; ∅) do so independently. From (2.3), (2.4), and (2.8)
we have the explicit representation

(2.10) ψ(r;D) =
∑
m

∑
p/∈D

[Ap
m(D) −Ap

m(∅)]Hp
m(r) −

∑
m

∑
p∈D

Ap
m(∅)Hp

m(r).

By considering the last term on the right-hand side (which is known) as an incident
field, and the other terms as the associated scattered response, it is now seen that
ψ(r;D) is the total field that occurs when an array with scatterers absent for p ∈ D
is excited by a distribution of sources located at the points r = rp, p ∈ D. We shall
refer to Hp

m(r) as the source of order m with unit amplitude, located at the point
r = rp.

Rather than solve for ψ(r;D) directly, we can reduce the problem to a set of
simpler, canonical problems by considering each source term in (2.10) separately.
Thus, introduce the potential ψq

n(r), which represents the total field that occurs when
a periodic array has a single element (labeled by q) removed and replaced by a unit
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source of order n. Crucially, if q ∈ D, then ψq
n(r) satisfies the boundary conditions

on the surface of all the regular scatterers. Now ψ(r;D) clearly consists entirely of
waves that are outgoing from the array, and therefore we can expand it into the form

(2.11) ψq
n(r) = Hq

n(r) +
∑
m

∑
p�=q

Cp,q
m,n Hp

m(r).

Here, we have introduced the convention that the indices to the right of the comma
describe the source, in this case referring to order n and position q. It is convenient
to simplify such expressions by defining

(2.12) Cq,q
m,n = δmn,

so that the first term on the right-hand side can be taken inside the series. To
avoid any possible misinterpretation, we emphasize that (2.11) does not represent a
homogeneous solution to the periodic (i.e., defect-free) array problem because the
appropriate boundary condition on the surface of scatterer q is not satisfied.

Next, we represent ψ(r;D) as a linear combination of the potentials ψq
n(r), q ∈ D;

thus

(2.13) ψ(r;D) =
∑
n

∑
q∈D

aqnψ
q
n(r).

If we substitute from (2.11) into (2.13) and rearrange the summations, we obtain

(2.14) ψ(r;D) =
∑
m

∑
p∈D

apmHp
m(r) +

∑
m

∑
p

∑
n

∑
q∈D
q �=p

aqnC
p,q
m,n Hp

m(r).

Comparing this with (2.10), we find that

apm +
∑
n

∑
q∈D
q �=p

aqnC
p,q
m,n = −Ap

m(∅), p ∈ D,(2.15)

which is a linear system of equations for the coefficients apm, and

∑
n

∑
q∈D

aqnC
p,q
m,n = Ap

m(D) −Ap
m(∅), p /∈ D,(2.16)

which then serves to determine the unknowns Ap
m(D). Equation (2.15) is an “interac-

tion theory for defects,” which is similar in nature to the standard interaction theories
for multiple bodies. If only a single scatterer is absent from the array, we retrieve
apm = −Ap

m(∅) so as to cancel the radiation emanating from r = rp, as we should
expect. A useful simplification now occurs if the array consists of periodic repetitions
of a single body. In this case the potentials ψp

m are identical up to a spatial shift, and
we need only determine ψ0

m. In terms of the coefficients Cp,q
m,n, we have

(2.17) Cp,q
m,n = Cp−q,0

m,n

and so there is a single canonical problem to solve for each value of m.
Finally, consider defects consisting of scatterers that are in some way different

from the other elements of the array. In this case, the method operates by replacing
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members of the periodic array for which p ∈ D with irregular bodies. In contrast to
the case of absent scatterers, Ap

m(D) is generally nonzero for p ∈ D. The singularities
at r = rp are no longer cancelled; instead they are adjusted so that for p ∈ D, the
expansion (2.7) represents a solution to the Helmholtz equation in the region exterior
to the new element. Consequently, the point r = rp must lie inside scatterer p for
p ∈ D (as it does for p /∈ D). The field ψ(r;D) can still be constructed from a linear
combination of the solutions to the same canonical problems, but in place of (2.15),
we now have

(2.18) apm +
∑
n

∑
q∈D
q �=p

aqnC
p,q
m,n = Ap

m(D) −Ap
m(∅), p ∈ D.

Equation (2.16) is unaffected. The presence of the additional unknowns Ap
m(D) on

the right-hand side of (2.18) is countered by the need to apply a boundary condition
on the surface of the irregular scatterers, and in section 5 we shall see how this works
in practice. While it is evident that replacing scatterers is more complicated than
eliminating them, the increase in difficulty is marginal. Essentially this is because the
extra requirement is to determine the field incoming toward r = rp for p ∈ D, but this
is no more difficult than determining the field incoming toward a regular scatterer,
which is always necessary.

A major advantage of this method over a more direct approach is as follows. Had
we simply applied an interaction theory to the defective array problem, we would be
faced with the inversion of a linear system of equations containing infinite sums over
the spatial indices. These have a very slow rate of convergence and present serious
difficulties in obtaining accurate results, even with the aid of modern computing
power. In contrast, (2.15), (2.16), and (2.18) contain only finite spatial sums. The
infinite order summation is of less concern, particularly at low frequencies, because
as |m| is increased the coefficients Ap

m converge rapidly to zero. Even in cases where
the scatterers are almost in contact, the convergence of the order sum is much more
rapid than that of the spatial sum; the former can be truncated at a relatively small
value of |m|. Of course, it remains to solve the canonical problems, and these involve
infinite linear systems containing spatial sums. However, these possess symmetries
that are not present in the overall problem, and as mentioned earlier, solutions to one
set of canonical problems can be used to construct the field for a number of different
cases. Thus, the decomposition described above is useful even in problems where the
MASM cannot be used effectively.

3. Array problems involving cylindrical wavefunctions. In order to solve
the canonical problems that arise in the interaction theory for defects, we must deal
with the boundary conditions on the scatterer surfaces. It is therefore necessary to
present subsequent material for a specific geometry, and since the theory of linear
arrays is well established for the case of cylindrical wavefunctions, this is a natural
choice. Here, we collect some results from pre-existing literature in this area that
will be needed later. It should be noted that the essential principles upon which the
method depends remain unchanged if wavefunctions from another separable geometry
are used. We will assume that the scatterers themselves are circular so as to present
the theory in the simplest possible form; however we will indicate how scatterers of a
different shape can be considered through the incorporation of transfer matrices.

Let all lengths be scaled on the distance between the centers of consecutive lattice
points, with these located at rp = (p, 0) in the (x, y) plane. According to the chosen
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scaling, the radius a of the regular scatterers must satisfy the inequality a ≤ 0.5. The
expansion (2.3) now takes the form

(3.1) φs(r;D) =
∑
m

∑
p

Ap
m(D)H (1)

m (krp)e
imθp ,

where (rp, θp) is a set of polar coordinates with its origin at the center of scatterer p

(see Figure 3.1), and H (1)
m (·) denotes a Hankel function of the first kind with order m.

This choice of outgoing wavefunction (rather than H (2)
m (·)) corresponds to an implicit

time-harmonic factor e−iωt. We also have a decomposition of the form (2.5)–(2.7),
with

φi
p(rp, θp;D) =

∑
m

Ipm(D) Jm(krp)e
imθp(3.2)

and

φr
p(rp, θp;D) =

∑
m

Ap
m(D)H (1)

m (krp)e
imθp ,(3.3)

where Jm(·) is the Bessel function of order m. As before, φi
p(r;D) represents the

total field incoming toward scatterer p, and this consists of the incident wave and the
radiation from all of the other scatterers. The expansion (3.2) is a valid representation
for φi

p(r;D), provided that rp < 1. In general, a transfer matrix appropriate to the
geometry of the scatterers relates the coefficients Ipm(D) and Ap

m(D), but for circular
scatterers, orthogonality leads to a matrix that is diagonal. Consequently, we can
write

(3.4) Ap
m(D) + ZmIpm(D) = 0,

where Zm is a scattering coefficient which is given by

Zm = Jm(ka)/H (1)
m (ka)(3.5)

for Dirichlet boundary conditions, or

Zm = J ′
m(ka)/H (1) ′

m (ka)(3.6)

for Neumann conditions. Other expressions for Zm can be used to model different
situations, such as impedance boundary conditions.

Scattering problems of this type can be separated into components that are sym-
metric and antisymmetric about y = 0 by decomposing the incident field φi into an
even (subscript “+”) and an odd (subscript “−”) function of y; thus

(3.7) φi
±(x, y) =

1

2

[
φi(x, y) ± φi(x,−y)

]
.

If the array is excited by incident wave φi
±(x, y), then the resulting coefficients Ap

m

and Ipm satisfy the identity

(3.8) Up
−m = ±(−1)mUp

m.

This often leads to useful simplifications, and also to an increase in performance
when inverting linear systems. For brevity, we will give equations for the complete
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rp

θp

Θ 1

a

x

y

Fig. 3.1. Schematic diagram of a periodic array with circular scatterers centered at the points
(p, 0) in the (x, y) plane, and a plane wave incident at angle Θ.

wavefield, and it is to be understood that these can always be decomposed in the
manner described above.

To conclude this section, we will now review the theory of periodic arrays, starting
with the method for obtaining the coefficients Ap

m(∅) in the case where the incident
field is the plane wave

(3.9) φi(x, y) = eik(x cos Θ+y sin Θ);

see Figure 3.1. Values for Ap
m(∅) are of course required as a starting point, and the

technique used to obtain them provides some motivation for the MASM developed
in section 4 to solve the canonical problems. First of all, we require a second set of
equations relating the coefficients Ap

m(∅) and Ipm(∅). This will form a closed system,
when combined with (3.4), and can be obtained using Graf’s addition theorem [14,
section 2.5]. For the specific case under consideration here, we have

(3.10) Ipm(∅) = imeipk cos Θe−imΘ +
∑
v

∑
j �=p

Aj
v(∅)X

p−j
v−m H

(1)
v−m(k|p− j|),

where Xp
v = sgn(p)v. Given that the only difference between the field at the point

(x, y) and that at (x + j, y), j ∈ Z, is a phase shift due to the incident plane wave,
this can be simplified by seeking a solution for which

(3.11) Ap
m(∅) = A0

m(∅)eipk cos Θ.

Enforcing the boundary conditions via (3.4), and then making use of (3.11), we obtain

(3.12) A0
m(∅) + Zm

∑
v

A0
v(∅)σv−m(k cos Θ) = −Zmime−imΘ,

which is a linear system involving only an order sum. The function σn(t) is a
Schlömilch series of order n, i.e.,

(3.13) σn(t) =

∞∑
j=1

[
e−ijt + (−1)neijt

]
H (1)

n (kj).

If the values of k and Θ are such that the Schlömilch series are divergent, the values
for Ap

m(∅) can be obtained as in [12]. Note that σ−n(t) = (−1)nσn(t).
The Schlömilch series is a type of lattice sum, and the capacity to evaluate these

accurately and efficiently is crucial to the analysis of wave interactions with arrays.



INTERACTION THEORY FOR DEFECTS 1791

For the case under consideration here, the well-known Twersky formulae [25, 8] can
be used. The singularity structure of σn(t) must be considered when applying the
MASM, and so we note that

(3.14) σn(t) = bn(t) + 2(−i)n+1

⎡
⎣μ0

n(t) +

∞∑
j=1

(
μj
n(t) + μ−j

−n(t) − δn0

πj

)⎤⎦ ,

where bn(t) is an entire function that can be expressed as a finite sum of Bernoulli
polynomials, and

(3.15) μj
n(t) =

[t + 2jπ − γ(t + 2jπ)]
n

knγ(t + 2jπ)
.

The function γ(t) is defined for real t via

(3.16) γ(t) =

{ √
t2 − k2 : |t| ≥ k,

−i
√
k2 − t2 : |t| < k.

For n = 0, 1, and 2, the summand in (3.14) is O(j−3) as j → ∞; for larger n it is
O(j−5) or smaller. The rate of convergence can easily be accelerated by expanding
the summand in (3.14) for large j. Where derivatives are required, the formula

(3.17)
dμj

n

dt
=

−μj
n(t)

γ(t + 2jπ)

[
n +

t + 2jπ

γ(t + 2jπ)

]

can be used. The infinite summation in the resulting formula for σ′
n(t) has a summand

that is O(j−3) as j → ∞ for n = 0 and n = 1, and O(j−5) or smaller for larger values
of n. Again, the convergence can be accelerated where necessary.

An important property of infinite periodic arrays is their capacity to support RB
surface waves in some circumstances. These propagate without loss along the array
and decay exponentially in other directions. The presence of RB waves corresponds
to the existence of nontrivial homogeneous solutions to the periodic array problem
with the form

(3.18) φt
RB(r) =

∑
m

∑
p

B̃meipβ̃ H (1)
m (krp)e

imθp ,

where β̃ ∈ R is an arbitrary phase shift. The coefficients B̃m satisfy the same system
of equations as A0

m(∅) (i.e., (3.12)), but with the right-hand side set to zero and

k cos Θ replaced by β̃; thus

(3.19) B̃m + Zm

∑
v

B̃vσv−m(β̃) = 0,

in which B̃m 
= 0 for at least one m. A straightforward method for finding the
appropriate values for β̃ is given in [6]. The associated coefficients B̃m are then
normalized so that

(3.20)
∑
m

|B̃m|2 = 1.
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Given the evident 2π-periodicity of the Schlömilch series (3.13), distinct solutions to

(3.19) can occur only for β̃ ∈ [0, 2π). Full details of the parameter ranges for which RB
modes have been found are given in [23]. Here we summarize the important details.

If the surface of the scatterers is subject to a Dirichlet boundary condition, then
RB waves do not occur [2]. On the other hand, if a Neumann boundary condition is
in use, then up to two distinct modes are known to exist. One of these is symmetric
about y = 0; this can occur for scatterers of any size, for a range of wavenumbers
0 < k < ks

max < π. The other is an antisymmetric mode which exists in the range
ka
min < k < ka

max < π, but only if a � 0.403. The cut-off values depend upon the
scatterer radius a. Outside the given ranges for k, the RB wave is replaced by a mode
that is evanescent in x. In both the symmetric and antisymmetric cases, the principal
value for β̃ lies in the interval (k, π) and corresponds to a right-propagating wave.

The associated left-propagating mode has the phase shift 2π − β̃ in place of β̃ and
the coefficient (−1)mB̃m in place of B̃m. As k → kmax, β̃ → π, i.e., the RB modes
become standing waves. The amplitude with which RB modes are excited is a key
parameter in the solution, and obtaining this is a major goal of our analysis. In what
follows, we will assume that exactly one type of RB mode occurs (i.e., symmetric or
antisymmetric). It is not difficult to modify our subsequent analysis if this is not the
case. In a problem where the incident wave has been decomposed using (3.7), there
is at most one mode for each component of the solution.

4. Canonical problems. In order to proceed, we must determine ψ0
n, i.e., the

total field that occurs when scatterer 0 is replaced by a unit source of order n. In this
case, we have the expansion

(4.1) ψ0
n(r) =

∑
m

∑
p

Cp,0
m,n H (1)

m (krp)e
imθp ,

where

(4.2) C0,0
m,n = δmn,

as in (2.12). A useful symmetry relation can be obtained by changing x to −x and y
to −y (and therefore rp → r−p and θp → π + θ−p) in (4.1). After applying (4.2) and
comparing the result to (4.1), we find that

(4.3) C−p,0
m,n = (−1)m+nCp,0

m,n.

As before, a linear system for the unknown coefficients can be obtained by locally
expanding ψ0

n about the point rp = 0; thus

(4.4) ψ0
n(rp, θp) =

∑
m

[
Kp,0

m,n Jm(krp) + Cp,0
m,n H (1)

m (krp)
]
eimθp .

An expression for the incoming field coefficients Kp,0
m,n in terms of the outgoing coef-

ficients Cp,0
m,n can be deduced from (3.10) by simply omitting the term due to plane

wave forcing. We find that

(4.5) Kp,0
m,n =

∑
v

∑
j �=p

Cj,0
v,nX

p−j
v−m H

(1)
v−m(k|p− j|),

and the boundary condition gives

(4.6) Cp,0
m,n + ZmKp,0

m,n = 0, p 
= 0.
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The MASM can now be used to obtain an expression for Cp,0
m,n. The principal idea

is derived from the original array scanning method [27, 16, 23], in which the unknown
coefficients are represented as Fourier integrals. First of all, introduce damping by
writing

(4.7) k = Re[k] + iε,

where ε > 0. This ensures the convergence of the summations over the spatial index
in subsequent equations. Once the solutions are obtained, we can take the limit ε → 0
to retrieve the time-harmonic field. Next, define the function fm,n(t) by writing

(4.8) fm,n(t) = i
∑
p

Cp,0
m,ne−ipt,

so that we have

(4.9) Cp,0
m,n =

1

2πi

∫ 2π

0

fm,n(t)eipt dt.

One motivation for this choice of representation is that the spatial dependence of the
integral is such that if we substitute (4.9) into (4.5), the sum over j will become a
Schlömilch series as in (3.13). Indeed, combining (4.5), (4.6), and (4.9), we find that

(4.10)

∫ 2π

0

[
fm,n(t) + Zm

∑
v

fv,n(t)σv−m(t)

]
eipt dt = 0, p 
= 0.

A second motivation for (4.8) is that the integration in (4.9) facilitates a simple means
by which the left-hand side of (4.10) can be made to vanish for all p 
= 0. If we now
write

(4.11) fm,n(t) + Zm

∑
v

fv,n(t)σv−m(t) = Fm,n(t),

then (4.10) becomes

(4.12)

∫ 2π

0

Fm,n(t)eipt dt = 0, p 
= 0.

By considering the Fourier series expansions of Fm,n(t), it becomes clear that (4.11)
can be satisfied if and only if these functions are constants, which we denote by Fm,n.
The values for these are fixed by setting p = 0 in (4.9) and imposing the requirement
(4.2); hence

(4.13)
1

2πi

∫ 2π

0

fm,n(t) dt = δmn.

Note that the system of equations (4.11) contains only an order sum, and also that the
source order n does not affect the operator on the left-hand side, which is of exactly
the same form as those appearing in (3.12) and (3.19), with the variable t taking the

place of the parameters k cos Θ and β̃.
In order to determine the coefficients Fm,n, we introduce the function gm,n(t) as

the solution to the linear system (4.11), but with the right-hand side replaced by δmn,
i.e.,

(4.14) gm,n(t) + Zm

∑
v

gv,n(t)σv−m(t) = δmn.
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Since the right-hand side is known, this system of equations can be inverted numer-
ically for any value of t at which both σn(t) and gv,n(t) are analytic. If (4.14) is
multiplied by Fn,u and then summed over all integers n, we see that gm,n(t) is related
to fm,n(t) via

(4.15)
∑
v

gm,v(t)Fv,n = fm,n(t).

Integrating (4.15) yields

(4.16)
1

2πi

∑
v

Fv,n

∫ 2π

0

gm,v(t) dt = δmn,

in view of (4.13). In principle, therefore, the solutions to the canonical problems are
now available—take the limit ε → 0 in (4.7) and then apply quadrature to compute
the integrals in (4.16). This latter step is discussed in the appendix. This done, the
resulting linear system can be inverted to yield Fm,n. However, taking the limit ε → 0
in (4.7) will cause singularities to appear on the real line, and so we must determine
the correct indentations for the path of integration.

First, for any k > 0, there exists λ ∈ Z such that Re[kλ] ∈ [0, 2π], where

(4.17) kλ = k + 2λπ.

Equation (3.14) shows that the function σn(t) has a branch point at t = kλ; another
is located at t = 2π− kλ. Note that Im[kλ] = ε, and Im[2π− kλ] = −ε. The functions
fm,n(t) and gm,n(t) will inherit these singularities via (4.11) and (4.14), respectively.
The special case in which kλ = 2π − kλ = π can be handled by adjusting the path of
integration in (4.9) to run from −π to π.

A second important possibility is that, after taking the limit ε → 0 in (4.7), there
may exist real values of t at which the matrix of known coefficients appearing on the
left-hand side of (4.11) and (4.14) is singular. These correspond to the existence of

RB waves, as discussed in section 3; at t = β̃ the left-hand side of (4.11) (and also
(4.14)) is identical to that of (3.19). In general, the Fredholm alternative permits

solutions at t = β̃ and t = 2π − β̃ if the functions fm,n(t) and gm,n(t) possess simple

poles at these points. Numerical results in [6] show that dβ̃/dk > 0, and so when

we add damping using (4.7) the pole at t = β̃ moves above the real line, and that

at t = 2π − β̃ moves below. If we now let ε → 0 in (4.7) so as to retrieve the time-
harmonic solution, we find that the correct indentations for the path of integration
are those shown in Figure 4.1. This is the only configuration that leads to a purely
outgoing scattered field in the limit

√
x2 + y2 → ∞. The residues at the poles of

fm,n(t) determine the amplitudes of any RB waves that are excited, and these make
a contribution to Cp,0

m,n that does not decay in the limit |p| → ∞. We now calculate

these, using the method in [23]. First, multiply (4.11) by t − β̃ and then take the

limit t → β̃. The residue of the function fm,n(t) at the pole must satisfy the resulting
homogeneous linear system, which is identical to (3.19), and hence

(4.18) Res
t=β̃

fm,n(t) = cnB̃m,

for some constant cn. Essentially, the coefficients B̃m describe the shape of the RB
wave, and cn is the amplitude. The same procedure can then be applied with β̃
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Re(t)

Im(t)

2πkλ

2π − kλ

eβ

2π − eβ

Fig. 4.1. Singularity structure and indented contour of integration in the t plane. The poles at
t = β̃ and t = 2π − β̃ do not occur if Dirichlet boundary conditions are imposed on the surface of
the regular scatterers, or if λ �= 0 (i.e., k > π).

replaced by 2π − β̃, (and B̃m by (−1)mB̃m) and the symmetry relation (4.3) then
shows that

(4.19) fm,n(t) = f̂m,n(t) + cnB̃m

[
1

t− β̃
− (−1)m+n

t + β̃ − 2π

]
,

where f̂m,n(t) is analytic at t = β̃ and t = 2π − β̃. Finally, substitute (4.19) into

(4.11), transfer the terms with denominator t− β̃ to the right-hand side, and take the

limit t → β̃ using L’Hôpital’s rule as appropriate. We can now apply the Fredholm
alternative to the resulting linear system. The left-hand side consists of a singular
matrix, multiplied by a vector of bounded functions. Therefore, a solution can exist
if and only if the right-hand side is orthogonal to the (nontrivial) solution to the
homogeneous adjoint problem [20, eqns. (5.7)–(5.9)]. The latter is easily shown to be

B̃m/Z∗
m [23], leading to the following equation for cn:

(4.20)
∑
m

B̃∗
mFm,n

Zm
= cn

∑
m

B̃∗
m

∑
v

B̃vσ
′
v−m(β̃).

Here, the superscript “∗” denotes the complex conjugate, and the prime a derivative
with respect to the argument. The residues of the function gm,n(t) can be calculated
in exactly the same way; simply replace f with g in (4.18) and (4.19) and Fm,n with
δmn in (4.20).

The asymptotic behavior of Cp,0
m,n in the limit |p| → ∞ can be obtained by noting

that fm,n(t) is 2π-periodic, this property being inherited from the Schlömilch series
via (4.11). Consequently, if the path of integration in (4.9) is closed in the upper
half plane, the contributions from t = iu and t = 2π + iu, u > 0, cancel each other.
Therefore, as p → ∞, we have

(4.21) Cp,0
m,n ∼ cnB̃meipβ̃ + Cm,n

eikp

p3/2
+ O(p−5/2).

Here, the second term on the right-hand side is the dominant contribution from the
branch point at t = kλ. The dependence upon p can be deduced by using the method
in [12] to show that fm,n(t) remains finite as t → kλ. Given that t = kλ is a branch
point of square root type, the result follows. In principle, one can also obtain a formula
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for the coefficient Cm,n using a similar technique, but this is somewhat involved. The
behavior of Cp,0

m,n in the limit p → −∞ can be deduced by closing the contour of
integration in (4.9) in the lower half plane; alternatively, the symmetry relation (4.3)
can be used.

A final point concerns the field incoming toward the source, which must be cal-
culated if we are dealing with defects that do not consist of absent scatterers. From
(4.4) it is seen that this amounts to finding the value of K0,0

m,n, which can be achieved
by setting p = 0 in (4.5). Both the spatial sum and the order sum can be evaluated
exactly. Thus, on using (4.9), we have

(4.22) K0,0
m,n =

1

2πi

∫ 2π

0

∑
v

fv,n(t)σv−m(t) dt.

Equation (4.11) reduces this to an integral whose value is known in view of (4.13),
the result being

(4.23) ZmK0,0
m,n = −δmn − iFm,n.

5. Illustrative results. In this section we present some numerical results for a
variety of different situations. We also show how the interaction theory for defects
can be combined with the infinite array subtraction technique developed in [11], and
the large array approximation used in [24] to validate results, and extend the range of
applicability. Particular attention is paid to the determination of the amplitude with
which RB waves are excited by the defects. Accurate computation by more direct
numerical methods is difficult (see the appendix, and also [11]), but our approach
is numerically efficient, and we are able to compute the amplitudes for all possible
k and Θ. In view of the number of cases that can be solved, we have not carried
out a comprehensive parameter survey, but instead we have attempted to provide a
representative sample of the types of result that can be obtained. In performing any
such calculations, the rapidly convergent order summations that occur throughout
our analysis must be truncated at some suitable value, which depends on the size of
ka. This must be chosen to be large enough to yield accurate results, but not so large
as to unnecessarily increase program execution time or generate near singular linear
systems. The truncation levels used by our numerical codes are the same as those
reported in [24]. Unless otherwise stated, Neumann boundary conditions are applied
on the surface of the regular scatterers.

5.1. Localized defects. In cases where the defects are confined to a small sec-
tion of the array, all of the relevant integrals can easily be evaluated by quadrature.
The asymptotic behavior of Ap

m(D) for large p can be obtained using (2.16), (2.17),
(3.11), and (4.21). A formula for large, negative p can be obtained in a similar way
by applying the symmetry relation (4.3) in (2.17). We find that, as p → ±∞,

(5.1) Ap
m(D) ∼ A0

m(∅)eikp cos Θ + (±1)mΓ
±
B̃mei|p|β̃ + O(|p|−3/2),

where

(5.2) Γ
±

=
∑
n

(±1)ncn
∑
q∈D

aqne∓iqβ̃ .

The quantity Γ
+

(Γ
−
) is the complex amplitude coefficient of the right- (left-) prop-

agating RB wave that is excited by the defect. This depends upon the solutions to
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Fig. 5.1. Contour plots showing the amplitude of the right-propagating RB wave, |Γ+ |, for
a = 0.25 with varying k and Θ. (a) D = {0}. (b) D = {0, 1, 2, 3, 4, 5}.

the canonical problems and the interactions between the defects via the coefficients
cn, and the sum over D, respectively.

Figure 5.1 shows contour plots of |Γ+ | with varying k and Θ, for a = 0.25 and
two different defect sets: D = {0} and D = {0, 1, 2, 3, 4, 5}. Figure 5.2 shows similar
plots, but for the antisymmetric RB wave on an array with a = 0.49. In all cases,
|Γ− | can be deduced by symmetry. The computation time required to obtain data
for figures such as these is greatly reduced by the fact that the canonical problems
need only be solved once for each value of k. The general trend for the amplitude
to increase with k is consistent with the cases of excitation at an array end [11],
and by an aperiodic source [23]. The upper limit for k is the cut-off (k ≈ 2.783 for
a = 0.25 and k ≈ 2.971 for the antisymmetric mode on an array with a = 0.49), above
which the RB waves cease to exist. For all values of k smaller than those shown, the
symmetric mode exists but is excited at a very low amplitude. The antisymmetric
mode does not exist for k � 1.796; for intermediate values up to those that are shown

in Figure 5.2 the excitation amplitude is small. The dependence of Γ
+

upon the angle
of incidence Θ exhibits a number of interesting features. First, the surface wave is cut
off completely as Θ → 0 and Θ → π. In fact, the total field vanishes in these limits,
as demonstrated in [12]; the presence of a finite set of defects has no bearing on this.
The cut-off at Θ = 0 is sharper in Figures 5.1(b) and 5.2(b) than it is in Figures
5.1(a) and 5.2(a); this is consistent with the case of excitation at the end of a semi-
infinite array, where the cut-off disappears, and the amplitude is generally greatest
at head-on incidence [11]. The two-peak structure, and the fact that the relative size
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Fig. 5.2. Contour plots showing the amplitude of the right propagating antisymmetric RB wave,

|Γ+ |, for a = 0.49 with varying k and Θ. (a) D = {0}, (b) D = {0, 1, 2, 3, 4, 5}.

of the peak at Θ ≈ 0.8π is reduced for the larger defect sets, is also consistent with
the case of excitation at an end. Finally, note that for the case where D = {0}, the
amplitude of the symmetric right-propagating RB wave is largest when Θ ≈ 0.8π,
which corresponds to an incident field whose x-component is propagating to the left.

The infinite array subtraction methods introduced in [11] provide a useful means
of validating results such as those shown in Figures 5.1 and 5.2. If we write

(5.3) Dp
m(D) = Ap

m(D) −Ap
m(∅),

then, on recalling that Ap
m(D) = 0 for p ∈ D, it is not difficult to use the results in

section 3 to show that the coefficients Dp
m(D) satisfy the linear system of equations

(5.4) Dp
m(D) + Zm

∑
v

∑
j /∈D
j �=p

Dj
v(D)Xp−j

v−m H
(1)
v−m(k|p− j|)

= Zm

∑
v

A0
v(∅)

∑
j∈D

eijk cos ΘXp−j
v−m H

(1)
v−m(k|p− j|), p /∈ D.

Note that the right-hand side has been simplified using (3.4) (with D = ∅) and (3.10).
If no RB waves are present, then we should expect that Dp → 0 as |p| → ∞. On the
other hand, if RB waves are present in the solution, their contribution can be isolated
by writing

(5.5) Dp
m(D) =

⎧⎪⎨
⎪⎩
D̂p

m(D) + Γ
−
e−ipβ̃(−1)mB̃m : p ≤ p0,

D̂p
m(D) : p0 < p < p1,

D̂p
m(D) + Γ

+

eipβ̃B̃m : p ≥ p1,
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where p0 and p1 are chosen so that the array is regular for p ≤ p0 and p ≥ p1.
Substituting this into (5.4), we find that the coefficients D̂p

m(D) satisfy a linear system
which has the same left-hand side as (5.4) and correction terms Lp

m and Rp
m (due to

the left- and right-propagating RB waves, respectively) added to the right-hand side.
A straightforward calculation shows that

Lp
m =

⎧⎪⎪⎨
⎪⎪⎩
−Γ

−
Zme−ipβ̃

∑
v

(−1)vB̃vS
p−p0

v−m (β̃) : p > p0,

Γ
−
(−1)mZme−ipβ̃

∑
v

B̃vS
1+p0−p
v−m (−β̃) : p ≤ p0

(5.6)

and

Rp
m =

⎧⎪⎪⎨
⎪⎪⎩
−Γ

+

Zmeipβ̃
∑
v

B̃vS
p1−p
m−v (β̃) : p < p1,

Γ
+

Zmeipβ̃
∑
v

B̃vS
1+p−p1

v−m (−β̃) : p ≥ p1,
(5.7)

where

(5.8) Sp
m(β) =

∑
j≥p

eijβ H (1)
m (kj);

this half range Schlömilch series can be efficiently computed using methods in [8].
The fact that the RB wave is a homogeneous solution to the periodic array problem
has been used to simplify Lp

m for p ≤ p0 and Rp
m for p ≥ p1. If we now solve the linear

system for D̂p
m(D), the solution will decay as |p| → ∞, but only if the correct values

for the RB amplitudes Γ
−

and Γ
+

are used.
As an example, consider the parameter set a = 0.25, k = 2.5, Θ = 0.1π, and

D = {0}, which is included in Figure 5.1. Figure 5.3 shows a logarithmic plot of Dp

for this case, where

(5.9) Dp =
∑
m

|Dp
m(D)|2 .

This provides a simple measure of the difference between the scattered fields in the
periodic and defective array problems. The data are obtained by truncating the
system (5.4) at |p| = 100. Clearly, Dp does not decay as |p| → ∞; instead it oscillates
about a fixed value corresponding to the amplitude of the RB wave. As in Figure
5.1, this is stronger to the left of the defect. The quantity D̂p is also plotted in

Figure 5.3. This is obtained by replacing Dp
m(D) with D̂p

m(D) in (5.9). Values for

Γ
−

(≈ 0.07613 + 0.02638i) and Γ
+

(≈ −0.04897 + 0.00176i) are obtained using (2.15)
and (5.2), with the canonical problems solved using the MASM. These values are then

used in (5.6) and (5.7). The fact that D̂p decays as |p| is increased confirms that these
amplitudes are indeed correct.

5.2. Irregular scatterers. In cases where the defects do not consist of absent
scatterers, we must close the system of equations for apm (2.18) by applying boundary
conditions on the surface of the irregular array elements. We will assume that the
irregular scatterers differ from the other array elements in either size, surface compo-
sition, or possibly both. In such cases, we can impose the boundary condition for the
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Fig. 5.3. Logarithmic plot of Dp and D̂p for a = 0.25, k = 2.5, Θ = 0.1π, and D = {0}.

irregular scatterers using an equation similar to (3.4), but with a different scattering

coefficient Ẑm; thus

(5.10) Ap
m(D) + ẐmIpm(D) = 0, p ∈ D.

As before, it is not difficult to incorporate transfer matrices so as to deal with scat-
terers of a different shape. Equation (5.10) is to be used in conjunction with

(5.11) Ap
m(D) = Ap

m(∅) +
∑
n

∑
q∈D

aqnC
p−q,0
m,n ,

which is obtained from (2.12) and (2.16)–(2.18), and is valid for all p. The simplest
way to proceed is to deduce an expression for Ipm(D) from (3.10) by replacing ∅ with
D. If we then use (5.11) to decompose Ap

m(D), the spatial sums in the resulting
expression can be evaluated using (3.10) and (4.5), leading to

(5.12) Ipm(D) = Ipm(∅) +
∑
n

∑
q∈D

aqnK
p−q,0
m,n .

The incoming field coefficients Kp,0
m,n on the right-hand side can then be eliminated

using (3.4) (with D = ∅), (4.6), and (4.23). This amounts to exploiting the fact that
(5.11) decomposes Ap

m(D) into contributions from fields that satisfy the boundary
condition for a regular scatterer at rp = a and contributions for which the local
expansion of the incoming field is known from (4.23). We find that

(5.13) −ZmIpm(D) = Ap
m(∅) +

∑
n

∑
q∈D

aqnC
p−q,0
m,n + i

∑
n

apnFm,n.

Finally, we can form a closed system for apm by combining (5.13) with (5.10) and
(5.11). The resulting expression is

(5.14) −iẐm

∑
n

apnFm,n+(Zm−Ẑm)
∑
n

∑
q∈D

aqnC
p−q,0
m,n = (Ẑm−Zm)Ap

m(∅), p ∈ D.
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Fig. 5.4. Contour plots showing Re[φt] for a = 0.25, k = 5.0, and Θ = 0.25π, with Dirichlet
boundary conditions applied on the surface of the regular scatterers. (a) D = ∅. (b) D = {0}. The
defect is a Neumann scatterer, also with a = 0.25.

As before, this determines the values of apm; (5.11) can then be used to find values of

Ap
m(D) for p /∈ D. Note that taking Ẑm = 0 returns the equation for absent scatterers,

and Ẑm = Zm yields apm = 0, as we should expect, since then there are no defects.
Figure 5.4 shows contour plots depicting the local effects caused by replacing a

single element in a periodic array with an irregular scatterer. The parameters used
are a = 0.25, k = 5.0, and Θ = 0.25π, and a Dirichlet boundary condition is applied
on the surface of the regular scatterers (shown as white with a black boundary). In
Figure 5.4(a), there is no defect, and the quasi-periodic nature of the field is evident.
In Figure 5.4(b), the field is modified using the solutions to the canonical source
problems, so that the Neumann boundary condition is now satisfied on the surface of
scatterer 0 (shown as black with a white boundary). Contour lines intersecting this
scatterer do so at a right angle to the surface tangent. The influence of the defect is
more significant in the region above the array, because the field in the periodic case
is relatively weak here.

For suitable parameters, irregular scatterers also cause RB waves to be excited.
Figure 5.5 shows contour plots of |Γ+ | for a = 0.25 with varying k and Θ, with
D = {0} and D = {0, 1, 2, 3, 4, 5}. The defects consist of Dirichlet scatterers with

radius a = 0.25. As before, |Γ− | can be deduced by symmetry. The pattern of
behavior here is quite different from the case of absent scatterers shown in Figure
5.1. The main qualitative difference lies in the dependence of |Γ+ | upon Θ; there is
no longer a second peak at Θ ≈ 0.8π. Elsewhere, the excitation is generally stronger
than it is in the corresponding cases in Figure 5.1.

5.3. Widely spaced defects. If the defects are spread over a large section of
the array, the evaluation of (4.9) by quadrature is no longer straightforward. This is
because we must calculate values for Cp−q,0

m,n for all p, q ∈ D, and if |p − q| is large,
the integrals are difficult to compute. There are a number of ways to proceed. One
possibility is to adopt a mixed strategy, obtaining Γ

±
using the MASM, and then

solving for the decaying contributions to Cp−q,0
m,n using the infinite array subtraction

technique discussed in section 5.1. This yields approximate values for all of the
unknown coefficients, and is therefore a particularly attractive idea if results for a
large number of different defect sets are to be computed. Alternatively, we can form
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Fig. 5.5. Contour plots showing the amplitude of the right-propagating RB wave, |Γ+ |, for
a = 0.25 with varying k and Θ; Dirichlet boundary conditions are applied on the surface of scatterers
for which p ∈ D. (a) D = {0}. (b) D = {0, 1, 2, 3, 4, 5}.

an approximate interaction theory by neglecting the decaying terms in (4.21) when
p3/2 � 1. This approximation was used in generating the data for Figure 5.6; it
amounts to assuming that significant interactions between widely spaced defects are
caused solely by the RB modes and has been shown to work well in practice in the
related case of a long, finite array [24].

The presence of such widely spaced defects in an array can lead to “near-trapping”
in the intermediate region. This effect was originally reported in [13] in a study of
interactions between water waves and long, finite arrays of bottom-mounted circular
cylinders. In this physical context, the force in the x direction exerted on cylinder p
by the total field (i.e., the integral of the pressure times the component of the outgoing
normal to rp = a that is parallel to the array), normalized using the force exerted on
an isolated cylinder, is given in [9] as

(5.15) Xp =

∣∣∣∣ 1

2Z1

[
Ap

1(D) −Ap
−1(D)

]∣∣∣∣ .
Figure 5.6 shows a contour plot of the horizontal force on an array element that
is equidistant between two widely spaced defects, each of which consists of a single
absent element. The scatterer radius a is 0.25, as in [13] and in the majority of cases in
[24]. The wavenumber is varied between 2.7 and the cut-off for RB waves (k ≈ 2.783),
using 1000 data points, and the angle of incidence is varied between 0 and π/2 using
500 data points. Results for Θ > π/2 can be deduced by symmetry. The plot reveals
that very large forces occur at certain discrete intervals in k and Θ. The strongest
force occurs at a wavenumber that is close to, but not exactly equal to, the cut-off for
RB waves. No significant peaks in the force occur for values of k smaller than those
shown. The causes of the near-trapping effect are explored in [24] for the case of a
finite array; the mechanism here is much the same. Essentially, RB waves generated
by one periodicity breaking feature (end or defect) are reflected back by the other.
The magnitude of the reflection coefficient increases as k → kmax. Peaks in the force
correspond to situations where the interference is predominantly constructive between
RB modes excited by the interaction of the incident wave with the defects and those
generated by reflection.
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Fig. 5.6. Contour plot showing the force exerted on scatterer 51, with a = 0.25 and D = {0, 102}.

6. Concluding remarks. By reducing the problem of scattering by a defective
array to a set of simpler, canonical problems, we have developed an interaction the-
ory for defects in infinite periodic arrays. This is similar in nature to the standard
interaction theory for a finite number of bodies. The simplest case is that of an array
with one or more absent scatterers. A straightforward extension to the theory that
allows irregular scatterers to be considered has also been presented. The MASM is
an effective means by which the canonical problems can be solved, and in particular
enables important field characteristics such as RB surface wave amplitudes to be effi-
ciently calculated to near machine accuracy. The canonical problems are independent
of the defect type and configuration and all aspects of the incident field except the
wavenumber, and need not be solved again if these parameters are changed.

Numerical results for various cases have been presented, with particular attention
paid to the amplitude with which RB surface waves are excited. The MASM is
particularly well-suited to cases in which the defects are localized. For defects that
are spread over a larger section of the array, we have shown how other methods such as
infinite array subtraction and the large array approximation can be incorporated so as
to overcome the difficulties that arise. All of the results that we have presented involve
arrays whose elements are circular cylinders. It is not difficult to modify our theory
so as to account for other shapes by using transfer matrices. More complicated cases
such as fully three-dimensional scattering problems can also be considered, provided
that the relevant analogue to the theory of periodic arrays summarized in section 3 is
available.

Appendix. Numerical quadrature. The most computationally expensive
procedure in applying the interaction theory for defects in arrays is the evaluation
of the integrals in (4.16) and (4.9). Quadratures must be performed on a contour
whose orientation with respect to the branch points is the same as that shown in
Figure 4.1, but in general it is convenient to move the path of integration away from
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Fig. A.1. Schematic diagrams of the contours Qa and Qb used for numerical quadrature.

the various singularities. Since the residues of the functions fm,m(t) and gm,n(t)
can be obtained using (4.20), the orientation with respect to the poles need not be
maintained. In choosing an appropriate contour, a number of factors must be taken
into consideration. These include the possibility of complex poles, contour length,
proximity to the known real line singularities, and the behavior of the exponential
term eipt that appears in (4.9). Obviously, the extent to which a computer program
can automatically adjust the contour to account for these factors has a significant
effect on its overall complexity.

The paths of integration used by our numerical codes when RB modes are present
are shown in Figure A.1. These are chosen for their relative simplicity, and we do not
claim that they are optimal. For most parameter values, the distance between the two
poles is at least as great as the distance between a pole and the nearest branch point,

i.e., 2(π− β̃) ≥ β̃−k, and so we use the contour Qa, which consists of two semicircular

arcs of radius π/2, centered at t = π/2 and t = 3π/2. As k → π, β̃ → π, and so the

two poles move close together. If 2(π− β̃) < β̃−k, then we integrate along Qb, which

consists of two semicircular arcs of radius (β̃ + k)/4 centered at t = (β̃ + k)/4 and

t = 2π − (β̃ + k)/4, and a third arc centered at t = π with radius 2π − (β̃ + k). A

residue contribution from the pole at t = β̃ must be included in this case.
To deal with the possibility of complex poles, we introduce the function d(t) as the

determinant of the matrix on the left-hand side of (4.11) (also (4.14)), so that poles
of fn

m(t) and gnm(t) can occur only at points where d(t) = 0. We then numerically
apply the principle of the argument [17, page 99] to log[d(t)] in the finite region(s) of
the cut plane enclosed by the original path of integration (Figure 4.1) and the new

contour (Figure A.1). Aside from t = β̃ and t = 2π − β̃, no poles that interfere with
the deformations used here have been found. Additional poles were found on the line
t = π+iu, u ∈ R, but only for large values of |u|. It should be noted that we have not
searched exhaustively across the parameter ranges for a and k. A uniform partition of
the contours Qa and Qb is used by our numerical codes, and the three-point Gaussian
formula is applied on each subinterval. In cases involving multiple defects, efficiency
can be greatly improved by storing values of fm,n(t) at the partition points used for
the largest value of |p| at which the integral in (4.9) must be evaluated and by making
repeated use of these.

It is of some interest to compare the accuracy achieved by the MASM with that
of the filtering technique [11], which can also be used to solve the canonical problems.
The filtering technique requires the truncation and inversion of linear systems involv-
ing slowly convergent infinite spatial sums. We should therefore expect the MASM
to achieve a superior degree of both accuracy and performance. An ideal parameter
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Table A.1

Convergence in |c0| and performance in computing |cn| for a = 0.25 and k = 2.5.

Modified array scanning Filtering
NSI |c0| % change time (s) SPT |c0| % change time (s)
99 0.1361053213 4.24 70 0.1360833934 4.36

149 0.1361053214 0.0000000039 6.40 90 0.1360096190 0.0542126301 8.55
199 0.1361053214 0.0000000003 8.57 110 0.1361554350 0.1072100718 14.33
249 0.1361053214 0.0000000000 10.72 130 0.1361523637 0.0022557485 21.68
299 0.1361053214 0.0000000000 12.90 150 0.1360562815 0.0705696206 31.55

for comparison is the quantity |cn|, i.e., the amplitude of the RB wave that is excited
by a source of order n replacing the scatterer centered at the origin. Table A.1 shows
typical performance and accuracy figures that can be achieved by the two methods.
The parameters used are a = 0.25 and k = 1, which lead to β̃ ≈ 2.586, and the com-
putations are performed using Fortran 2003 on a machine with a 2.5GHz processor.
Note that the times given are those required for the simultaneous computation of cn
for all n up to the order truncation. The abbreviation NSI stands for the number of
subintervals into which the contour is divided. The value for the spatial index p at
which the linear system used in the filtering method is truncated is denoted by SPT.
The dependence of computation time upon NSI is clearly linear, whereas increasing
SPT leads to a significant decrease in performance. The results obtained by the two
methods are in agreement up to the degree of accuracy that can be expected of the
filtering method [11]; this requires the inversion of a large linear system of equations
and is susceptible to round-off errors. It is clear that the MASM yields far greater
accuracy, and is also much more efficient.
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