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FIBER DYNAMICS IN TURBULENT FLOWS: SPECIFIC TAYLOR
DRAG*
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Abstract. In [N. Marheineke and R. Wegener, STAM J. Appl. Math., 66 (2006), pp. 1703-1726],
an aerodynamic force concept for a general air drag model based on a stochastic k-e description for
a turbulent flow field is derived. The turbulence effects on the dynamics of a long, slender, elastic
fiber are specifically modeled by a correlated random Gaussian force and in its asymptotic limit on a
macroscopic fiber scale by Gaussian white noise with flow-dependent amplitude. The present paper
states quantitative similarity estimates and numerical comparisons for the choice of a Taylor drag
model in a given application.
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1. Introduction. The understanding of the motion of long flexible fibers sus-
pended in highly turbulent air flows is of great interest for textile manufacturing in
the melt-spinning process of nonwoven materials. Disregarding the fiber’s influence
on the flow, the authors of [13] stated a stochastic partial differential system that
describes the dynamics of a single slender elastic fiber in a turbulent flow. The tur-
bulence effects are modeled by a correlated Gaussian aerodynamic force. Applying a
global-from-local force concept for general air drag models, we can derive these effects,
particularly, on the basis of homogeneous Gaussian fields for the randomly fluctuating
local velocity components of the flow. Their construction satisfies the requirements of
the stochastic k-e¢ turbulence model and Kolmogorov’s universal equilibrium theory
on local isotropy. On macroscopic scales, white noise with flow-dependent amplitude
turns out be a good approximation for the original correlated force according to £2-
and L£>°-similarity estimates. In the following, we show the applicability of this general
force concept under conditions of a real melt-spinning process by choosing an empir-
ically motivated Taylor drag; see Figure 1. Then, the simplified force model satisfies
the demands of accuracy on the relevant fiber scale while drastically facilitating the
numerical computations at the same time.

For convenience we start with a brief summary of the models for fiber dynam-
ics and aerodynamic force. Dimensional analysis of turbulence and fiber behavior
reveals the characteristic interaction scales for our application in section 2. On the
fiber macroscale the mean flow dominates the swinging of the fiber, whereas the
energy-bearing turbulent vortices of the mesoscale cause the entanglement and fine-
loop forming on the fiber that are crucial for the quality of the resulting nonwoven
materials. The interest in a macroscopic description of the fiber dynamics justifies
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Fic. 1. From left to right: Turbulent flow in a melt-spinning process, mean velocity flow field
by the k-e€ model, and turbulence effects on fiber dynamics. Photo by industrial partner.

the use of the simplified force model, as it contains all crucial correlation information
of the mesoscale according to the stated quantitative similarity estimates. From the
choice of the Taylor drag model, we derive a linear drag operator and thus the con-
crete correlated and uncorrelated global forces in section 3. Their effects on the fiber
dynamics are numerically compared in section 4 by using an introduced curvature
measure which yields very convincing results.

1.1. General aerodynamic force model. In the following, we recall the basic
models from [13] that are crucial for the description of the fiber dynamics in a turbu-
lent flow. Consider a single long flexible fiber that is fixed at one end and suspended
in a subsonic highly turbulent air flow with small pressure gradients and Mach num-
ber Ma < 1/3. Let [ denote the fiber length and d its diameter with aspect ratio
d/l < 1. Whereas the fiber influence on the turbulence is negligibly small due to the
slender geometry, the turbulent flow essentially determines the dynamics of the fiber.
The motion is modeled by a system of stochastic partial differential equations with
algebraic constraint of inextensibility that is deduced from the dynamical Kirchhoff—
Love equations for a Cosserat rod being capable of large, geometrically nonlinear
deformations,

(1.1) pAOyr(s,t) = O[T (s,t) Osr(s,t)] — EI Dgsss1(s,t) + pAg + f‘m(r(.), 8, t),
(1.2) [[0sx(s,t)[l2 =1,

with Dirichlet boundary conditions at the fixed end, Neumann at the free end, and the
position of rest as the initial condition. Here, r : [0,]] x R — R? might be interpreted
as the center line of the fiber with arc-length s and time ¢; its constant line weight
is denoted by pA. The internal line forces stem from bending stiffness indicated by
Young’s modulus £ and moment of inertia I as well as from traction. In this spirit,
the Lagrangian multiplier T : [0, 1] x Rar — R can be viewed as the modified tractive
force T = T; + EI||0ssr||3 containing tension T; and curvature ||dssr||3 due to bending.
The external line forces acting on the fiber arise from gravity g and aerodynamics £ .

The aerodynamic force term acts as the additive Gaussian noise in (1.1) due to
the applied general global-from-local force concept that is based on the stochastic
k-e description of the underlying turbulent flow. In particular, we consider here a
correlated Gaussian aerodynamic force £4" and its uncorrelated asymptotic limit on
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macroscopic scales £,

Iy, Wi (8,8) Worr
fN(r(.),s,t) do dr)'/?
(1.4) £47(x(.),s,t) = £(¥(s,t), Dsr(s, 1)) + Li(s,t) D> p(s, 1),

(1.3) £47(x(.), s,t) = £(v(s,t), s (s, 1)) + LE(s,1)

which depend on the chosen air drag model f : R x R? — R3 and its respective linear
drag operator Lf. A feasible air drag model is prescribed as a function of the mean
relative velocity between fluid and fiber, i.e., v(s,t) = u(r(s,t),t) — Or(s, t), and the
fiber tangent dsr(s,t). In analogy to the k-e turbulence model, the forces are split
into a deterministic part f, resulting from the mean flow velocity @ : R® x R — R3,
and a stochastic part f' coming from the turbulent fluctuations that are character—
ized by the turbulent kinetic energy k : R3 x RS’ — R* and the dissipation rate
e: R x RY — R*. In (1.3) the random fluctuations are modeled as Ito-integral

over a family of locally isotropic, homogeneous, incompressible Gaussian velocity
fields along the fiber {(w;’T)&t, (s,t) € [0,1] x RY), (o,7) € [0,1] x R§}, where
Wsry (0,7) € [0,1] x RY) denotes a Wiener process (Brownian motion). The
underlying fiber region N(r(.),s,t) = {(o,7) € [0,]] x R} | [|r(s,t) — r(o,7) —
a(r(s,t),t)(t — 7)|]2 < It A |t — 7| < tr} is determined by the turbulent large-
scale length [T and time tr. Moreover, the construction of the correlation tensors
Yo (1= 82, t1 — t2) = E[w} " (s1,t1) ® W} (s2,t2)] corresponding to the centered
velocity fields complies with the requirements of the k-e model, Kolmogorov’s uni-
versal equilibrium theory on local isotropy, as well as Taylor’s hypothesis of frozen
turbulence pattern, by choosing the following energy spectra E%7 € CQ(RSr ):

o,T *5 3 j
K / ZJ 105 (), Kk < K1,
(15) B = | Ko ol k< < i,
Ko gk *5/3 EJ . b] ( K )—j’ K> Ko,

1o [T =hrenn. [T B = HEID

2v

with viscosity v, Kolmogorov constant K% = Ck e(r(o,7),7)?/3, and further pre-
scribed constant fitting parameters a;,b;. In contrast, in (1.4) the integral effects
of the localized random fluctuations are incorporated into the amplitude D** of the
Gaussian white noise (ps., (5,t) € [0,1] x RY), i.e., the R3-valued random variable
limas,aty—0 VASALP(s,t) ~ N(O, I) is centered, reduced, and normally distributed.
In partlcular

s Est
(17) o= (s [ dm) Prnien

is proportional to the projector Py ,, onto the plane spanned by fiber tangent t = Osr
and normal n = (Vv —(v-t)t)/||v—(v-t)t||2, where 7, = v - n. Note that the existence
of the amplitude in (1.7), and thus of the uncorrelated force in (1.4), presupposes the
linear independence of fiber tangent and mean relative velocity.

2. Fluid-fiber interaction scales. The handling of fiber-turbulence interaction
is very difficult, as it is governed by many complex factors, including nature of the
flow field, turbulent length scales, and size and behavior of the fiber. The applicability
of the uncorrelated aerodynamic force £2" particularly depends on the characteristic
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TABLE 1
Typical fiber and flow parameter values in melt-spinning processes.

[ Fiber ]
Diameter d 30-100° m
Length l 2.5 m
Line weight pA 9.0-1077 kg/m
Bending stiffness EI 4.7-10710  Nm?
Absolute velocity w 1.0 - 10? m/s
Acceleration of gravity g 9.81 m/s?
Suspended height H 1 m

[ Flow ]
Density P 1.22 kg/m?
Absolute mean velocity U 1.0 - 102 m/s
Turbulent kinetic energy k& 1.0 - 102 m?/s?
Dissipation rate € 1.0-10° m?/s3
Viscosity v 1.5-107° m? /s

interaction scales of the considered fiber-flow problem. In a typical melt-spinning
process, fiber and flow are specified by the parameter values of Table 1. These yield
the following quantitative scales and similarity estimates between the correlated and
uncorrelated force by using dimensional analysis.

2.1. Turbulence scales. Turbulence is characterized by its wide range of length
and time scales. As their significance plays a decisive role in the coming analysis, we
focus on them and their interpretation.

Due to the underlying k-e turbulence model, we already distinguish between the
length and time scales of the mean motion and those of the fluctuations. The mean
motion and its scales are derived from the boundary conditions (geometry) and the
absolute mean flow velocity @. On the other hand, the fluctuations might be in-
terpreted as the turbulent effects of overlapping vortices of different sizes that are
indicated by the turbulent kinetic energy k, dissipation rate €, and viscosity v. The
smallest, viscously determined vortices are given by the Kolmogorov scales

=(5) e

Apart from that, the local correlation tensor -, [12, 13] provides additional
information about the size of the present turbulent structures. The structures in
the dissipation area (small lengths, thus high frequencies) are determined by the run
of the one-dimensional longitudinal correlation function ¢1(2) = 2/2% [;* 0.(E(k)/k)
sin(kz) dk, z € R around the origin and hence by k and ¢; see (1.6). For z < 1,
c1(2) = 2/3k—¢/(30v) 224+ O(z*) then describes a parabola that intersects the z-axis
at the dissipation length Ar, i.e., ¢1(Ar) = 0. Thus,

9 1/2
Ap = ( 0k‘1/>
€

represents the turbulent fine or microscale for the decay of the correlations.
In contrast, the large, macro, or integral scale

Jo~ tryo(z)dz 7 [o" B(r)/kdr
try(0) 2 [T E(k) dr

Ap =
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characterizes the mean coherence scale independently of longitudinal and lateral cor-
relations and can be interpreted as the typical size of the energy-bearing vortices. In
this context, the turbulent length proposed by the k-¢ model,

k3/2

ZT_ )
€

can be understood as the leading order term of Ar; compare with the modeled energy
spectrum of (1.5). The energy spectrum gives

Ck €2/3 _ _
AT = WTKeT (Allﬁll 5/3 + Blﬁlz 5/3) 5

where k1 and ko with ko > k1 > 0 are the solutions of the nonlinear system

k

-2/3 —2/3 .
Ak + BiK, = Cne? T fr
1/3
4/3 4/3 _ € o Jr
(21) Aslfl —+ BEK}2 = QCKV = fe = 672’

stemming from (1.6). After nondimensionalizing, § = (2kv/e)'/? ~ O(Ar) with
Ar/H < 1 turns out to be small, whereas the other coefficients A;, B;, fi, ~ O(1).
Thereby, A;, B;, 1 = 1, k, €, denote linear combinations of the fitting parameters arising
in (1.5), and Cx = 0.5 is the Kolmogorov constant. Substituting z; = KZ?/B, i =
1,2, we write 1 = fi/Ar — Bi/Arx2. Inserting this expression into (2.1) yields
a 4th order equation for xo that has two complex as well as two real solutions—
a negative and a positive. The feasible positive solution can be expanded in 6 as
XTg = xél)é + xé3)63 + O(6%), which results directly in a é-series for Ar,

(2.2) Ar=Filr+0()  with Fy = = A4 5 ~ 1.05.

2 CIB{/Q AZ/
In spite of the use of 4; in (2.2), the magnitude of F; can be treated as independent
of the differentiability order of the underlying chosen energy model. An ansatz for
a smoother energy spectrum, E € CY(R{), | > 3, certainly contains more fitting
parameters, but their influence cancels out in the definition of Fj. In this work, we
refer to It as the turbulent large-scale length.

Concerning the turbulent time scale for the decay of the energy-bearing vortices,
the length Ip and velocity scale up = k'/2 of the k-e model imply

tp = —.
€
As this scale does not take into account the advective influence of the mean flow, we
suggest additionally

k3/2

taA =

|5

€U

Moreover, the amplitude D of the uncorrelated force in (1.7) might also be
expressed by k and e, since it contains a moment of the energy spectrum. In our

case, we get [[° E(k)/k?dr = Ce?/3(Azry®® 4 Baky®/®), where Ay, By ~ O(1)
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are linear combinations of the fitting parameters. Following the approach above and
introducing the small parameter ¢, the expansion for the energy moment reads

o0 E 4
(2.3) / éf) dr = Fy k—z + O(6) with Fy = ———— ~ 0.80.
0 €

In leading order, the amplitude is consequently given by

1/2 ;92
(2.4) D(O><27TF2> LIS

Un €

Thus, the resulting correlations along the fiber (D)2 §y(s) 6o(t) can be interpreted
as being proportional to the turbulent energy k acting over the mean coherence length
It and over the characteristic turbulent fiber time T% = [ /U, that depends on the
geometrical relation between fiber orientation and mean relative velocity.

2.2. Fiber scales. For a better understanding of the fiber behavior in the tur-
bulent flow, dimensional analysis is applied on the fiber system (1.1), (1.2). Therefore,
we introduce a dimensionless zooming parameter h = L/H as a ratio of the typical
varying length of interest L € [0,!] and the fixed height of the suspended fiber H,
where [ denotes the fiber length.

Apart from H, the problem contains nine parameters: diameter d, line weight
pA, bending stiffness EI, fiber velocity W, acceleration of gravity ¢, flow density p®",
mean flow velocity @, mean relative velocity between flow and fiber v, and kinetic
turbulent energy k. The number of parameters can be reduced to four dimensionless:

Fr:KQ7 Gr:pA9H37 ]‘3:dp¢u7'];]31727 Pl:dpaer3k/,1/2,D'
gH EI EI EI

The Froude number Fr states the ratio of kinetic and gravitational potential energy,
the dimensionless gravity Gr the ratio of gravitational and flexural energies, and the
dimensionless mean P and fluctuating aerodynamic force P’ the ratio of aerodynamic
and flexural energies. Introducing dimensionless variables gives

EI
r(s,t) =H T*(S*at*)v ,Tt(sat) = ﬁ Tt*(S*at*)a

f(S,t) :dpam" (%) f*(S*,t*), f’(s,t) :dpazrk.l/2 (%) £ (8*,t*),

with s = L s* and ¢t = (L/W)t*. Here, two different scalings are used for fiber curve r
and arc-length s, r is scaled by the suspended height of the fiber H, and s by the typical
length of interest L. This choice is motivated by our interest in the whole spatial
domain of the fiber line while zooming in on certain fiber lengths. This allows us to
investigate the characteristic fiber behavior, e.g., bending, loop forming, crimping or
stiffness, arising on typical scales. Hence, the interplay of the fixed outer H and the
varying inner length L appears also in the factor of the tension part 7;. The bending
part is treated separately due to the composed structure of 7. For the scaling of the
aerodynamic force £7, it is sufficient to utilize its proportionality to the dynamic
pressure, since ||f%" ||y ~ dp®"||v||2 in the following. Thereby, the deterministic force
part f is based on the quadratic mean relative velocity, and the stochastic part f' on
the product of mean relative velocity and flow fluctuations that are expressed by k'/2.
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FIBER
dominance of entanglement and no turbulence effects
mean flow fine loops
macro meso micro
I
! d! k=L"1
| — 1
10 10° 10° 10* 10° 10° 107
| o
large-scale fine-scale Kolmogorov
TURBULENCE

F1G. 2. Scales of fiber-turbulence interactions in melt-spinning processes (cf. Tables 1 and 2).

The magnitude of the mean relative velocity v depends particularly on the direction
of mean flow and fiber velocity according to

(2.5) F(s,t) = [|a @ — W/h 8per*||a ¥ (s*,£°) = (5/h) ¥*(s*, t*).

It is minimal if @* and Oy«r* are similarly directed, and maximal if they are opposite
directed; thus o € [|ha — W], |ha+ W|]. The time scaling in (2.5) that is chosen with
respect to the fiber dynamics of the typical length L incorporates here the zooming
ratio h into the definition of v. Then, the dimensionless fiber system reads

Fr Gr 8tt* r’ = 88* ((h71 Tt* + h74 H(?ss*r*H%) as*r*) — h72 88338* r’ — h2 Gr (523
+Pf* +hP' £,
(Ds1*)? = R

For a melt-spinning process, the typical fiber and flow parameter values listed in
Table 1 yield

108 — 107,
106 — 107,

he~,
h <1,

h~l,

1 4B
Fr~ 10", Gr~10% P { h< 1,

, 107 — 108,
P~ {106 — 107,

where the aerodynamic similarity quantities P and P’ are roughly estimated by means
of the range of v. Varying the length of interest L and thus the zooming parameter
h = L/H reveals three characteristic scales for the fiber-turbulence problem in the
technical application that are worth considering in more detail; cf. Figure 2. In the
following we suppress the superscript * to keep the expressions short.

Macroscale: 1 > h > 1071,

FrGroyr = —h®>Gres + Pf+ hP'f'.

Over the whole length of the fiber [, the fiber dynamics is caused by the external
forces. In particular, the mean flow affects the fiber swinging.
Mesoscale: 101 > h > 1073,

Fr Grdyr = 0,((h Ty + h™4(|0ssr|3) Ost) — B2 Ogessr + PE+ AP f'.
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TABLE 2
Overview of turbulence and fiber scales as well as dimensionless numbers for the fiber-turbulence
problem deduced from the typical parameter values in melt-spinning processes (cf. Table 1).

[ Turbulence scales |

Large length scale It 1.0-1072 m

Fine length scale Ar 5.4-107% m

Kolmogorov length scale n 1.4-107° m

Turbulent time scale tr 1.0-1073 s

Advection time scale ta 1.0-10—% s
l Fiber scale ]
[ Typical length of interest L [0,2.5] m ]

[ Dimensionless numbers of fiber-turbulence problem ]

Zooming ratio h [0,2.5]

Froude number Fr 10!

Gravity number Gr 10%

Mean force number P 105 —-10°, h~1, [10°—-107],h <1
Fluctuating force number P’ [107 =108, h~1, [10°—-107], h <1
Spatial smoothing parameter Qas 10—2

Temporal smoothing parameter oy 10-3

This fiber scale coincides with the turbulent large-scale It of the energy-bearing
vortices. Here, the inner and outer forces acting on the fiber balance each other.
But the fluctuating part of the aerodynamic force f’ causes entanglement and fine-
loop forming which crucially determine the fiber dynamics.

Microscale: h < 1073.

By (h~4|0ssr|20,r) =0,  FrGroyr = —h 2 d,,,r + PE.

The inner forces, in particular the bending stiffness, dominate the total fiber behavior.
In contrast, the effects of the fine-scale A\t and Kolmogorov vortices of size n are
irrelevant for the fiber dynamics; here n < d (cf. Tables 1 and 2).

The time scales of the problem provide no further information, as they are related
to the length scales using the reciprocal of the fiber velocity W as a proportionality
factor. Due to its inertia, the fiber shows thus no reaction to turbulent structures
decaying faster than tiertia = PmicroH/W ~ 107%s, which includes the whole fine-
scale turbulence. The natural decay of the large-scale vortices in contrast is indicated
by tT ~ 1073 s and, under consideration of advection, by the mean flow by t5 ~ 10™*s.

Summing up, fine-scale vortices do not affect a fiber in the melt-spinning pro-
cess because of bending stiffness of the fiber. Thus, their influence (correlations)
might be neglected in the model of the stochastic aerodynamic force. In contrast,
the turbulent large-scale vortices cause entanglement and loop-forming, which play a
decisive role in the fiber behavior. But instead of resolving their effects explicitly, it
is sufficient to model them on the macroscale, as our interest focuses exclusively on a
macroscopic description for the fiber dynamics. This motivates the idea of approxi-
mating the correlated force by an integrated—still correlated—force. In the following,
the introduced uncorrelated aerodynamic force f% of (1.4) that contains the mean
turbulent coherences (integral correlations) turns out to satisfy the stated demands
on approximability.

2.3. Quantitative similarity estimates. To justify the applicability of the
uncorrelated force as a substitute for the original correlated force in our problem,
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we analyze its approximation properties by means of the similarity estimates taken
from [13].

SIMILARITY ESTIMATES (see [13]). Let as,a; € RY be spatial and temporal
smoothing parameters of the fiber-flow problem. Define E(k1, k2) := [ E(||k1, k2,1]2)/
(K1, k2,1)? dl with & = £(0,0) and S := = SUP,co,12[| Vi 5(&1,/-@2)||2 Then, the ap-
proximability of the correlated by the uncorrelated aerodynamzc force given in (1.3),
(1.4) is expressed by the following estimates:

L2 -similarity:

NG v2 a? 8E2 aj
) < 2 (a2 (14 £ N o0 (34 M ).
(2 6) IEQ —= \/é’ﬂ"Dn S CYS + ’l_}2 + _n + 37.[. aS + ,l—}n + = 3 )

L -similarity:

Icmém Slos (142) (Com (L)) 4+ 2 (Cym U+ [
w2y Un 2 o Ty \ 2 a
(e
2.7 +& sT—— 11>
=0 °(°“ vn+|vt|)]

where Uy, Uy are the tangential and normal component of the mean relative velocity
with respect to the (t,¥)-induced fiber basis of section 1.1 and ¢ = fol(l —cost)/ude.

The limit a; — 0, i = s,t, describes the smoothing over the whole R2. This
is unrealistic, as the fiber length [ prescribes a natural upper bound for the spatial
smoothing parameter «,. Thus, ay = I/l is certainly a reasonable value for the
macroscopic description of the turbulent flow effects on the fiber. The temporal flow
and fiber scales are related to the spatial ones by the respective velocities @ and W,
which motivates the choice of ay = tAW/l = a;W/4a.

Inserting the typical parameter values of Tables 1 and 2 yields for the dimension-
less smoothing values a; ~ 1072 and o;; ~ 1072 as well as for the quantities S and & in
standard international units (SI-units) S ~ 1 [m®/s?] and & ~ k*/e? ~ 1072 [m*/s?
according to (2.3). The order of the relatlve velocity can be approximated by o ~ 102
which implies |v;| € [0,10%] and 9, € [0,10%]. Thus, quantitative similarity estimates
in Sl-units depend drastically on the relation between fiber direction t = Jdsr and
mean relative velocity v, as they are expressed by

72, 51070 5,2 +107% 5,4, Tpee 107801 +10"%5,2

with n = (v — (¥ - t)t)/||¥ — (v - t)t2. In the case of t L ¥, we have v,, ~ 10? such
that Zy2 ~ 1077 and Zz~ ~ 10719 indicate very good approximation properties. But
even for smaller normal velocity components—down to 9" ~ 10~!—the uncorre-

lated force is a good substitute for the correlated one, since the deviations are little,

ie., Zp2 S 1071, Zpee ~ 1074, In fact, Oy ~ 1 in general, and the events o, < vC"

might be viewed as elements of a nullset, because the perturbing influence of turbu-
lence and fiber inertia prevents the fiber from moving continuously within the mean
streamlines. However, further numerical realization also requires their treatment, so
in section 3.3 we will deal with the arising singularity for v, — 0 which results from
the definition of the force amplitude D, (1.7).

3. Air drag model and its consequences. The numerical simulations of the
fiber dynamics imposed by the correlated and/or uncorrelated aerodynamic force rely
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essentially on the choice of an appropriate air drag model f and the derivation of the
corresponding linear drag operator Lf. We particularly distinguish between linear and
quadratic drag relations and discuss their applicability as well as their consequences
for our application.

3.1. Choice of drag model.

Stokes drag for turbulent flow. For slow viscous flows with Re < 1, Cox [4]
has developed an insightful analytical series approximation for the force distribution
along the length [ of a straight fiber. As the Reynolds number based on the fiber
diameter d approaches zero, the drag force per unit length along the fiber is propor-
tional to the relative velocity between fluid and fiber v(s,t) = u(r(s,t),t) — dr(s,t)
at fiber point s and time ¢. So,

(3.1) f(v,t) =CU9(t) v, CTY9t)=citot+c,(I-t®t)

gives the linear Stokes drag relation, where the drag tensor C% %9 depends on the
fiber orientation t = J,r in the surrounding flow. From the Stokes flow approximation,
Keller and Rubinow [10] have determined the drag coefficients ¢y, ¢; up to leading order
for smooth ellipsoidal filaments which also conform for small surface variations [1].
Gotz and Unterreiter [7], in contrast, have derived an integral equation model for the
drag force by applying a matching principle to the asymptotic expansions of the flow
field around slender ellipsoidal and cylindrical fibers of circular cross sections in the
framework of Stokes’ and Oseen’s equations. Then with p = p®"v,

. 8mu 2y 1\ 7! ipsoid _ ATH 20\ 1\
ellipsoid _ 1 = - ellipsoid _ Z7H 1 — | — =
c Re (n(d>+2> G Re \""\d) 2] >
. 8mh ary 1\ * : dmp ary 3\
cylinder _ 1 ) - = cylinder = — (1 — | — =
e 58 (o (1) 1) e ()Y

However, there is no slender-body theory that is strictly valid for the turbulent
flow with high Re that is of interest here, Re =~ 200. In the analysis of turbulence
effects on particles, a linear Stokes drag has successfully been applied to predict
particle motions in turbulent flows [15, 16, 18, 20]. Drag relations based on empirical
correlations have also been used [3, 14] as well as a modified Stokes drag that takes
into account particle oscillations [9]. As a necessary simplification, the form of the
drag force, (3.1), on the fiber under creeping flow conditions is assumed to be retained
for high Re turbulent flows. But (3.1) has been derived for a small Reynolds number
flow. Thus, it is only valid for infinitely thin, small fibers with d < n and [ < .
Anyhow, the relation is conferrable to longer fibers suspended in turbulent flow by
imposing the free-draining approximation, which has been used to model flexible fiber
motion [17] and polymer dynamics [6]. In this model, the fiber is considered to be
composed of a series of elements of length A;, where A; < 7. Each element meets the
necessary conditions for (3.1) to be valid. Assuming hydrodynamic independence of
each element allows (3.1) to be applied to all elements and thus to the entire fiber.

Taylor drag. For high Reynolds number flow indicated by Re € (20, 10°), Taylor
[19] has investigated the behavior of drag forces experimentally. Thereby, he has
discovered the nonlinear relation between drag and angle of attack a between the
flow direction and center line of an immersed straight slender body as well as the
influence of the surface roughness on the drag, which Lee [11] has applied successfully
to long, flexible fibers within a carding process.
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F1G. 3. Drag-relevant angle o € [0, 1] enclosed by relative velocity v and fiber tangent Osr.

As the drag force f lies in the plane spanned by the fiber tangent and the relative
velocity, it can be split into a tangential f; and a normal component f,, with respect
to the fiber orientation, i.e., t = dsr, n = (v — (v - t)t)/||v — (v - t)t||2; cf. Figure 3.
Then

(32) f(V7 t) = fn(v7 t) + ft (V, t)’

where
.3

(33) fn =0.5 pair dV2 Sin2 o+ 4 S n,
Re

(3.4) f, = 0.5p"" dv? (5.4 cos Sl}?a > t,
e

with sina = (v-n)/||v]|e, cosa = (v-t)/||v||2, and Re = dv/v, respectively. Equa-
tions (3.3), (3.4) suggest that a straight fiber with smooth surface does not feel any
drag when it is aligned parallel to the direction of the incoming flow. This does not
correspond to the experiments in [19] revealing that for small «, o — 0, fy can be
approximated by fy(«® = 7/36). In contrast, for a rough surface this situation of zero
drag does not appear because the Taylor expression reads

) 4 sin o
3.5 f=0.5p"" dv? [(sin2a+ ) n—i—cosat] .
(3.5) p =

For technical reasons, we rewrite (3.3)—(3.5) as
(3.6) fo = 0.5p"" dcy || Vall2 Vi, fo = 0.5p%" d ey ||vell2 Ve

with the empirical drag coefficients for smooth, resp., rough, fibers

(3.7) e =1+ 4/v/(d||vall2), cgmeoth = 5-4\/V||Vn||2/(dllvt||§),

h
Mt =1+ 4 Jvlvlz/(@dlval3), ™" = [IvIl2/[vello-

The high Reynolds number flow and the presence of very small vortices indicated
by the relation n < d in our application conflicts with the use of the heuristic linear
Stokes drag. Hence, we determine the aerodynamic forces on the smooth polymer fiber
under consideration by means of the empirically motivated nearly quadratic Taylor
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drag (3.6), (3.7), although this concept is examined only for high Re, but still laminar
inflow regime. Additionally, to exclude the zero drag in the case of parallelism of t
and v, we suggest a slight modification of the drag coefficient ¢;™°°*" that provides
more realistic results. As a smooth fiber lying parallel to the direction of the relative
velocity experiences the same tangential drag force as one being rotated by «a°, and
as vp = v — (v - t)t, we define

o._ ) Vn ¢ = [[vell2/[v]2,
(3.8) Vo = { v —sgn(v - t)c®||v]z2t else
with ¢® = cosa®. Here, the sign function, sgn(z) = 1 if z > 0, sgn(z) = —1 else,

includes equal and opposite directed vectors t and v. We have ||v3]|l2 = 0 if and only
if ||v]j2 = 0. Setting

(3.9) egmeot = 5.44/vl|valla/ (dlve]3)

thus yields a reasonable tangential drag model that is not only continuous but proves
to also be differentiable.

3.2. Linear drag operator. Proceeding with the derivation of the linear drag
operator Lf, we consider a generalized linearization approach for the modified Taylor
drag model f,

(3.10) f(v+u',t) ~ f(¥,t)+ LI, t, k) o/,

with mean relative velocity between fluid and fiber v and random Gaussian fluctuation
of the flow velocity u’. In the context of (1.3), (1.4), the first term represents the
deterministic part of the aerodynamic forces and the second term the stochastic one.

MODEL FOR LINEAR DRAG OPERATOR. Let f : R3 x R? — R3 be the modi-
fied Taylor drag model of (3.6)-(3.9). Then construct the linear drag operator Lf as
continuous composition

V(3. 1), w>1,
(3.11) Lf(v,t,k) = (1 — @) (an, (k) (I—Py) + ag, (k) Py)
+’W va(w_l ‘_’7t)7 @ S 17

with @ = ||¥||2 (2k)~'/2. The parameters are given by
1/2
(3.12) an, (k) = <2al211k +5V/25/V/33/27 gam(5/4) an, an, k*/* + 16/v/37 ai2k1/2> ,

(3.13) ay, (k) = /8/(3m)1/2 ackt/*

with an, = 0.5p%"d, a,, = p“"\/@, at = 1.35ay,, ¢® = cosa®, and gamma func-
tion gam.

Let the projectors on fiber tangent t = 9sr, normal n = (v—(v-t)t)/||[v—(v-t)t||2,
and binormal b = t x n be described by P, y) = x®y. In particular, we abbreviate
Py =Py and Pxy :=Px+Py, x,y € R3. Then, the operator V. f resulting from
(3.6)—(3.9) reads

_ = — 172 - — 1/2
Vo (¥,t) = (an, [Vnll2 + 200, [|[Vally"™) Pob + (an, [Vnll2 + an, [l ") Pa

—o1/2 —o—1/2,—
+2a 951157 Py + a9 2 (T t) Pl ve jea 1)

= —0|—3/2 o/ o . == = = .
+X (¥, 8) a9l %2 (¢ = [9e 2905 ) ([9¢ 13 Pe + (- £) [Pl Plem)-
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Although the use of the indicator function x(¥,t) = 1 for (||¥%¢2]|¥|]3') > ¢ and
X(¥,t) = 0 else, the introduction of v§, in (3.8) yields a continuous Gateaux derivative.
In the limit to t||¥, additionally it stays bounded, which is a big difference from an
ansatz based on Taylor’s original zero drag model with missing tangential component.

The Gateaux derivative Vf(¥,t)u’ is a good representative for the stochastic
part in (3.10) if the mean relative velocity is much higher than the fluctuations that
are characterized by the turbulent kinetic energy k, ie., [|¥]2 > E[u”’] = 2k. In
contrast, in case of ¥ = 0 it would provide a zero drag since

(T + ', t)|v—o = £(0,t) + Vo £(0,t) u’ + O((w)?) = 0 + O((0)?),

which is absurd, as the velocity fluctuations affect the fiber though vanishing mean
relative velocity

1/2 1/2
(3.14) (W, t) = (an, [[uhl2 + 2an, [ullly?) w) + 2allul” )y wj.

!/

Note that in (3.14) the direction n is exceptionally determined by u’, i.e., uj, =
u’ — u;. The fact that the expectations of drag and velocity fluctuations are equal,
ie., E[f(u/,t)] = E[u'] = 0, motivates the stated extension of the linearized approach
for v = 0. Keeping the directional vectors uj, ug, the coefficients with the specific
norms are replaced by the respective averaged quantity expressed by the kinetic energy
k such that the variance is correctly reproduced. Therefore abbreviate f := f(u’, t)

and consider

Eff ® f] = E[(f-t)?]t®t +E[f -n1)’]n; ® n; +E[(f-n2)?|ny @ ny
+E[(f-t) (f - n1)] (t®n1+n1t)
+E[(ft) ( )} (t®n2+n2®t)
(

+E[(f-ny) (f-n2)] (n1 ®nz+nz®ny)

with arbitrarily chosen orthogonal normal vectors ny,ns. The mixed expectations
vanish thereby due to the independence and odd appearance of the underlying veloc-
ity components, as for E[f] above. Because of the identical distribution of the drag
in the normal plane, we have E[(f - ny)?] = E[(f - n2)?] such that it is sufficient to
consider E[(f - n)2]. Using E[u’’] = 2k and the identical distribution of the veloc-
ity components yields their variance E[(u’ - e)?] = ¢ = 2k/3 with unit vector e.
The general (centered) moments are prescribed by the gamma function according to
E[[u’ - e*™] = (2rn0?)~1/2 fome_””z/(%z) dr = (20%)™ gam(m + 1/2)/y/m, m € RT.
Then

E[(f - t)?] = 4af E[Ju’ n°[| E[(0' - £)°] = (ay, (k) 0)*,
E[(f-n)?] = a} E[(u’ - 10)"] + dan, an, E[Ju’ - nf"/?] + 402 E[ju’ - n’] = (an, (k) 0)°
by means of (3.12), (3.13) such that
fo(u',t, k) := an, (k) ul, + ag, (k) ui = an, (k) (0 —u}) + ayg, (k) ug

describes a Gaussian random variable that has the same stochastic parameters, i.e.,
expectation and variance, as the original drag of (3.14). Moreover, it is linear in u’,
although we suggest that its coefficients depend on k. But the turbulent kinetic energy
has to be viewed as an input parameter for the generation of the flow fluctuations in
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the context of this work. Hence, Lf(v,t,k) = ap, (k) (I — Py) + at, (k) Py is taken as
the drag operator in the case v = 0.

For the secant complement that combines the two determined drag operators, all
functional dependencies of @ might be imaginable, e.g., squared, linear, or quadratic
in ||¥||2. But because of the lack of information about this intermediate domain,
i.e., ||[¥||3 € (0,2k), they are mathematically and physically as less motivated as our
proposed linear ansatz in (3.11).

3.3. Technical modification of force amplitude. Since the defined drag
operator Lf has a finite, nonvanishing limit for ¥, — 0, it is unable to balance the
arising singularity of the force amplitude in (1.7),

2 *® R 1/2 2.4) (21Fy\ /2 k2
D= (jr/ (f)d“> Pin = ( a 2) — Pin.
Un Jo €

K Un

Consequently, the uncorrelated aerodynamic force £ diverges in the case of the
linear dependence of t and ¥, whereas the correlated force £4" stays bounded, as we
have already seen in the similarity estimates (2.6), (2.7). Although the occurrence of
this single discrepancy is negligibly small, the further numerical realization requires its
handling. Thus, we suggest a slight technical modification of the amplitude that has
no influence on the proved approximation quality of the uncorrelated force. Replace
D by

(3.15)
. 12 o ? Pyn, w>1,
D = (2nFy)' /2 =

Nl A—w) @2 (Pt (I Py)/2) +win /Py, w<1,

with w = 0, /05"%; then

P p, w > 1,

, . oy \ /2 k2
lim £2°" =f + [ — —
o, st ) e ) (=) (an, (£)/2 (1= Po) + ay, (k) Py)

+lePt) b, w < 1u

coincides with the limit of the correlated force regarding the formal structure of the
terms. Here, the deterministic force part given by the modified Taylor drag of (3.6)
and (3.9) reads f = f; for ||¥]|2 # 0 and f = 0 else, and furthermore

= 02 _ ,0\52
z;m@ﬁuﬁﬁm+@ MZM)
Un Un

with 72 = (1 — sgn(¥ - t)¢°)||¥||2 < co. The modification in (3.15) can be interpreted
as cutting the amplitude D at the critical velocity v, = 9" and matching it contin-
uously with a linear extension. As the underlying (t, v)-induced set {t,n, b} loses its
basis properties in the limit v, = 0, we distinguish between the tangential and the
remaining projectors and introduce the normal independent splitting (Py+(I—-Py)/2)
instead of the original (Pg + Py,). Thus, the direction of £%" is no longer specified by
the mean relative velocity for @ — 0, as already indicated by 2.

The needed technical modification of the amplitude reveals the deficiency of the

modeled fluctuation velocity fields W;’T whose dynamics is based on a locally frozen
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turbulence pattern. Hence, the fiber experiences no temporal change of the corre-
lations if it moves within the mean streamlines, i.e., o, = 0. Alternatively to the
modification, one might question the underlying concept of frozen turbulence that
neglects the natural decay of vortices because of its large time ¢T and slow turbulent
velocity scale ur = k'/2 in comparison to the advection scales of the mean flow ¢4,
u. However, for a fiber suspended in turbulence, the actual temporal change of the
experienced turbulent coherences is prescribed by the velocity v!} = max{¥y, ur}.
This could be incorporated into the definition of the flow-dependent force amplitude

D by substituting 9" with ur. Then the characteristic turbulent fiber time reads
TJE = min{lt/vy,tT}. The consequences of the choice of the parameter v<"* are

illustrated in the numerical results of the next section.

4. Numerical simulations. The input flow data for the following numerical
simulations of the fiber dynamics stem from k-e computations of FLUENT 6.1 that
have been adapted with user-specific procedures to reflect the realistic turbulent flow
behavior of a melt-spinning process. The implementation of the fiber system (1.1),
(1.2) is based on a standard method of lines. The use of spatial finite differences of
higher order thereby yields the appropriate approximation of the algebraic constraint
(1.2). The time integration is realized by a semi-implicit Euler method, where an
adaptive time step control ensures stability and accuracy. The arising nonlinear sys-
tem of equations is iteratively solved by a modified Newton—Raphson method. As
the Jacobian matrices show a band structure, the computational effect of an iteration
step is proportional to the number of fiber points. Note that the aerodynamic forces
are explicitly included. Their quality depends crucially on the available flow data that
are linearly interpolated on the spatial and temporal fiber grid.

In the following, we briefly present the numerical algorithms for the realization of
the correlated and uncorrelated aerodynamic forces before we compare their effects
on the fiber dynamics by means of an introduced curvature measure.

4.1. Algorithms. Let I}, = {l € Ng | m <1 < n}. Let the spatial and temporal
fiber discretization be given by s; = iAs and t; = t;_1 + At;_1, top = 0 with fixed
space increment As, and adaptive time step At;, (i,7) € I} x I§*. Then denote
the respective function values at the fiber point s; at time ¢; with subscript ; and
superscript 7, e.g., r) = r(s;, t;).

The numerical generation of the correlated aerodynamic force f%7 utilizes
autoregressive moving average (ARMA) processes [2] for the centered, homogeneous,
independent, local fluctuation velocity fields w;’T along the fiber, whereas the imple-
mentation of the uncorrelated force £ is exclusively based on Gaussian white noise
b,

: 1/2 j
(As_’g%ﬁo(AsAtj) 2pl ~ N(0,1).

ALGORITHM 4.1 (computation of correlated force). Choose It and tT as charac-
teristic turbulent large scales of the problem. Consider a fized fiber and a time point
that is indicated by the index tuple (i,j) € 1§ x I§*.

1. Determine its corresponding index set N,

Jj—7 J—T7
Nl = (@) | |r] —rp =] Y Atjag|| <lr A Y Atjpig <tz
q=1 2 qg=1

with feasible tuples (¢, 7) € (I x I U (1§ x Ij)
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2. Compute the centered, homogeneous, local fluctuations (wf})z for all £ =
(l1,45) € NZJ For this purpose, consider a fixed €:
(a) Set the turbulent fine-scale length N = (20k*v/e)'/2.
(b) Determine the correlation index set (J¢),

J—7
(T = (@) | ||r] —xf — @Y Aty || <%
q=1 2
with feasible tuples
Izrlx‘if227 - ) f2:]'7€1<i7
(d) 7.) c (Ian XIZQZ)U(187 X_Ijj'l)a . ) £2:j_1a
(Ip x I2) U5 x I U I < ), by <j—1,
0 otherwise.

(c) If (JO)]#0,
then:

i

ii.

iii.

iv.

vi.

Define a bijective mapping p = {1,...,[(JO} — (J&)! and set

p(0) = (i, 7).
Consider the vectorial ARMA process

1(74)]]

(4.1) (W = (Whpo) = Y Ag(Wh)p(q) + (65
q=1

with unknown coefficients A, € R>3 and noise (&%)
that is assumed to be independent of (wfc)p(q).

Define Cp q) = E[(ch)p(p) ® (wfc)p(q)] forp,qg=0,...

~ N(0,K)

(78] by

means of the correlation tensor 'yf; in the canonical basis represen-
tation. Then particularly, C, ) =v§(0) and C, ) = C(q,p) hold.
Approzimate the lateral correlation function of v§ by c¢(2) = 2k¢/3—
€22/ (30v), i.e., ¥§(z) = (c1(2) + 20,¢1(2)/2)I — 0.c1(2)/(22)z ® 7,

z = ||zl [13].
Compute the coefficients A4 by solving

[CpH

(42) Z Cup.g A¢=Cpo, p=0,..., |(Jl)g| —1.

q=1

Calculate the covariance K of the noise term (ée)z from

[(74)7]
K= C,0) — Z Apc(p,p)Ag
p=1
(T8 =1 (75 [(T4T1—1 (78]

— Z Z A,C( Al - Z Z A, CpAl

p=1 g¢=p+1 p=1 g=p+1
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vil. Generate the correlated noise term (€%)) = (&1,2,€3) according to

its covariance K = (Kpq)p,q=1,2,3 and the ansatz

51 NN(07K11)7
& = by + &,
& = P& + 2o + &5,

where the parameters o, B1, B2 and the independent random numbers

&, &% are prescribed by

2

a=Kny/Kiy and Y  Kpg By = Kps for p=2,3,

q=1

fé ~ N(O, K22 — a2K11),
& ~ N(0, K33 — Bi K11 — B3 Kas — 23182 K12).

viii. Plug' the determined coefficients Aq of (4.2) and the correlated noise
(&4 of (4.3) into the ARMA process (4.1).

else, (J4)] = 0:
Set

, e\ 1/2 , 4
an o= (5) € wn (€~ N,

3. Determine the correlated aerodynamic force

)+ Lo (WLt ) [NV YRS (wh,

(4.5)  (fL)] =£(v].t] itk
LeN]

ALGORITHM 4.2 (computation of uncorrelated force). Consider a fized fiber
and a time point that is indicated by the index tuple (i,j) € I} x IJ*. Set w] =
(0n)] /0™ and let the projectors P depend on space and time

197112/ (2k])1/2, w! =
discretization. Then, the uncorrelated aerodynamic force is determined by

. o I F 7)2 ,
(1.6 (€] = f(l )+ | o ) gy
NN
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where
\% f(vl,tl)P(tn)]_' ¢, w! > 1,w! >1,
VoAl e]) (1= ol (B + (1= Ry)/2) 4wl By | €
o > 1w <1,
(0.~ () By ol By) -
& = tw! Vof((w!)~t v, t)) P, (. ] 5 wl <1lw! >1,

[m- ) g (K1) T+ ! Vb () 94, 60)] (1 — )y fd B

+(1 - >mﬂﬂwm
+[(1 = ) any (K]) T+ V()71 9, 8)],
(L=l TR+ By o] € ol <l <1,

and & ~ N(0,1); i.e., the components (&)} ~ N(0,1), | = 1,2,3, are independent
and normally distributed.

Regarding memory and computational effort, Algorithm 4.1 is extremely costly.
Apart from the two searching procedures in steps 1 and 2(b), it requires in general the
solving of | N| linear systems of 3|J| equations for each fiber and time point specified
by (i,7), step 2(c)v. Thereby, the cardinal numbers |N| and |J| depend not only
on the fiber dynamics at (¢,7), but also crucially on the spatial and temporal grid
size, which should be chosen to be a compromise between computational capacity
and desirable accuracy of the correlation structures to be realized. The required 3|N|
Gaussian deviates for step 2(c)vii are here generated by the Box—Muller method [5].
In comparison to Algorithm 4.1, Algorithm 4.2 is obviously enormously cheaper and
faster. Its evaluation is independent of the chosen discretization and needs only three
Gaussian deviates per fiber and time point. .

In case of large-scale resolution, where N7 = {(,7)} and (J¢)] = 0 for all (i, j)
in Algorithm 4.1, the correlated aerodynamic force f%" is obviously approximated
numerically by the uncorrelated £2", since (4.4), (4.5) correspond to the white noise
approach of Algorithm 4.2 with As ~ It and At ~ tp in (4.6). But, also for fine-scale
resolution, the respective numerical representatives match very well as far as their
effects on the fiber dynamics are concerned. To show the statistical coincidence of their
influence, we analyze the imposed fiber dynamics by means of a curvature measure in
the following. Thereby, we restrict the comparison exemplarily on a fixed appropriate
fiber discretization because of the extremely long run-time and the enormous memory
demands of Algorithm 4.1.

4.2. Results. Simulating the motion of an inextensible slender fiber swinging
freely in a turbulent flow field, we show the similarity of the macroscopic effects on
the fiber that are caused by the correlated and uncorrelated force model. For this
purpose, we introduce the following curvature measure.

DEFINITION 4.1 (curvature measure). Letr?, (¢,7) € I3 < I, be the spatially and
temporally discretized fiber line that is imposed by the aerodynamic forces according
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F1G. 4. k-e simulation results for turbulent flow. Top to bottom: Stationary two-dimensional
vertical mean stream ||Ql|2, kinetic energy k in SI-units.

to (1.1), (1.2). Then, its curvature measure at time t; is defined by

; 1 n—1 ;
K= n_1 Z [Assril2
=1

using the central difference Agor! = (r{+1 —or) 4 vl )/As%

Evaluating the fiber line over a certain time interval gives statistically comparable
parameters for IC, i.e., its mean p and its standard deviation o.

Apart from the similarity, the curvature measure states the significance of the tur-
bulent aerodynamic force for entanglement and loop-forming of the fiber. To illustrate
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F1G. 5. From top to bottom: Fiber exposed to £&" and £2i7 with v = 1073 m/s, resp., vT# =
(2k)1/2. Left: Instantaneous fiber dynamics. Right: Two-dimensional projections zoomed in.

these effects, we consider a fiber of length [ = 1 m and material properties according
to Table 1 that is initially hanging in the symmetry axis of a stationary, vertically
directed two-dimensional mean flow field @ (cf. Figure 4). The turbulent fluctuations
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F1G. 6. Curvature measures K over 500 time points for fiber exposed to stochastic forces for
5-102s. From left to right: Results for £%7, £33 with B¢ = 10723 m/s, resp., 5T = (2k)1/2.

cc

are prescribed by the stationary kinetic energy k and dissipation rate e. Then, the
resulting deterministic force part f is mainly vertically directed and the stochastic part
f’ is determined almost exclusively by the small horizontal fiber oscillations. Hence, if
the turbulent influence is neglected, the fiber is not excited out of its position of rest.
It has the characteristic curvature properties p = 0 and ¢ = 0 which will prescribe
our reference state. The used underlying flow data represent a realistic turbulent
stream, as might be expected in the deposition region of a melt-spinning process; see
the parameter values in Tables 1 and 2. Note that the illustrated geometry in Figure 4
is distorted in width to stress the flow behavior around the symmetry axis, eg-axis.

Exposing the fiber to the stochastic force models, we obtain the representatives of
a momentary fiber position that are visualized in Figure 5. Apart from the correlated
force, we distinguish hereby between the uncorrelated force effects by choosing two
variants for o<, ie., 0% = 1072 m/s and 0" = (2k)1/2. At first glance, the
behavior of the fibers seems to be straightforward and meaningless due to the chosen
draw ratio of meters. But, indeed, all three representatives show similar curvatures,
which becomes evident by zooming into the two-dimensional fiber projections; see
Figure 5 (right). Near the mounting, they hang down almost straight for the first
2 - 10~ ' m before they start to form loops. The observed oscillations then have a
typical range of 1073 up to 10~2 m, which corresponds with our asymptotic analysis
of section 2.2; see Figure 2. Considering the respective fiber motions for a period of
5-1072%s, we provide further results by the curvature measures K that are plotted
and statistically evaluated for comparable samples of 500 time points; see Figure 6
and Table 3. Thereby, all temporal evolutions turn out to be normally distributed.
The mean curvature measure of the uncorrelated force, 75" = 1073 m/s, differs less
than 1% from that of the correlated force. Also, the standard deviations fit very well,
and we obtain differences of only 2%. This shows very good agreement. This choice
of v¢" overcomes simply the singularity stemming from the underlying correlated
frozen turbulence pattern and therefore yields better approximation properties than
the other variant that additionally incorporates the decay of the vortices.

Summing up, the uncorrelated force model is undeniably a good substitute for the
correlated one on the macroscopic fiber scale. Leading to a statistically similar fiber
behavior, it requires—instead of days—only a few minutes of computational time for
the simulation of 5- 1072 s real time motion. Thus, it makes long-time fiber studies
possible, which is essential for practical application. Note that for the computation
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TABLE 3
Statistic parameters for the curvature measures K of Figure 6.

Stochastic Correlated Uncorrelated Without
force ¢ = 1073 [m/s] | o5 = (2k)1/2
K [1/m]
o 86.93 (100%) 86.33 (—0.69%) 82.99 (—4.53%) 0
o 13.83 (100%) 14.10 (+2.00%) 14.94 (+8.03%) 0
CPU-time Days ~4.5 min ~4 min ~1.5 min

of the deterministic reference case, Algorithm 4.2 is not needed. Moreover, due to the
absence of stochastic forces, a larger (adaptive) time step can be used. The increase
of At by one order, up to At ~ 107?s, together with the skipping of Algorithm 4.2,
leads to the bisection of the CPU-time observed in Table 3. Thus, it takes only
1.5 min CPU-time instead of 4 min as in the turbulent cases. All calculations have
been performed on an Intel Xeon processor, 2.8 GHz.

5. Conclusions. In [13], a general acrodynamic force concept is derived on the
basis of a stochastic k-e turbulence model for the flow field. The turbulence effects
on the dynamics of a long slender elastic fiber are modeled by a correlated Gaussian
force and in its asymptotic limit on a macroscopic fiber scale by Gaussian white noise
with flow-dependent amplitude. Choosing a specific Taylor drag model, this paper
has shown the applicability of the force concept for the handling of the complex fiber-
turbulence interactions as they occur in a typical melt-spinning process of nonwoven
materials. Moreover, it has stated the very good theoretical and numerical approx-
imation properties of the uncorrelated force. The introduction of the uncorrelated
aerodynamic force changes the character of the perturbation term into a localized
linear integrator such that the fiber dynamics is described by a system of partial
differential equations with additive Gaussian white noise. This enables not only a
theoretical analysis but also an efficient numerical realization. Adapting the fiber
system with appropriate boundary and initial conditions, the FIber DYnamics Sim-
ulation Tool (FIDYST) [8] developed at Fraunhofer ITWM, Kaiserslautern, applies
the presented algorithm to simulate the turbulent deposition region of melt-spinning
processes with hundreds of individual endless fibers. The simulation results are val-
idated with experimental data. However, note that for this purpose, further aspects
have to be taken into account, such as fiber-fiber interactions, sticky fiber bunches,
conveyor belt effects, or the affection of the turbulence by higher concentrated fiber
curtains.
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ANISOTROPY RECONSTRUCTION FROM WAVE FRONTS
IN TRANSVERSELY ISOTROPIC ACOUSTIC MEDIA*
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Abstract. This paper considers an inverse problem for a transversely isotropic three-dimensional
acoustic medium, where there is one preferred direction called the fiber direction along which the
wave propagates fastest and there is no preferred wave propagation direction in the isotropic plane,
which is the plane orthogonal to the fiber direction. In this medium the parameters to be recovered
are (1) the wave speed for a wave propagating in the direction along the fiber; (2) the wave speed for
a wave propagating in any direction which is orthogonal to the fiber direction; and (3) the unit fiber
direction itself. So four scalar functions are to be recovered. The data are the positions of four distinct
wave fronts as the corresponding waves propagate through the medium. The mathematical relation,
which is the Eikonal equation, between the wave front locations and the four unknown functions,
is nonlinear. Here it is established, perhaps surprisingly, that corresponding to the given data set,
there can be up to four possible solution quadruples. We present and implement an algorithm to
compute each of the possible solutions and show our selection criteria to obtain the correct solution.
The Eikonal equation, which relates the wave front positions to the unknown functions, is the same
equation obtained for the horizontally polarized shear wave (SH wave) which propagates in a linear
elastic system.

Key words. elastography, inverse problem, arrival time, anisotropic wave equation, transversely
isotropic medium, fiber direction
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1. Introduction. Motivated by wave propagation directional dependence in tis-
sue, the goal of this paper is to identify directionally dependent stiffness properties
from multiple wave fronts. The wave propagation model is an anisotropic wave equa-
tion, where the medium has one preferred direction, which we designate as the fiber
direction, where it has a faster wave speed and the waves propagating in the plane or-
thogonal to this preferred direction are slower and exhibit no directional dependence.
Our goal is the recovery of the unit fiber direction and the ratio of each of two distinct
stiffness coefficients to the density. The square roots of these two ratios define the
wave speed in the fiber direction and in the plane orthogonal to the fiber. We show
that in three dimensions there can be up to four discrete solution triples of two wave
speeds and the fiber direction, from four distinct wave fronts. The fact that there is
a discrete set of solutions is a direct result of the nonlinear relations, governed by the
Eikonal equation, between wave front directions, wave speeds, and the fiber direction.

Shear stiffness recovery has been of interest for about 15 years, and several
experiments are being investigated as follows:
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(1) tissue that is compressed as stiff tissue compresses less [4, 17];

(2) single frequency excitation, where stiff tissue exhibits low amplitude and stiff-
ness characteristics can be recovered from amplitude variations [8, 15, 19, 20];

(3) crawling or holographic waves, which are produced with excitations at two
nearby frequencies, and where phase wave speed can be recovered [14, 22];

(4) interior radiation force excitation at a single point produced by a single
ultrasound beam [16];

(5) interior radiation force excitation produced with two ultrasound beams whose
excitation frequency difference is in the KHz range [7];

(6) tissue surface line sources, or supersonic imaging that effectively produce line
sources orthogonal to the tissue surface and produce propagating waves with
identifiable fronts [2, 3]; the propagating front locations can be utilized to
recover tissue properties.

In each of the above six cases the goal is to image either (a) shear wave speed
which is roughly 3 m/sec in normal isotropic tissue and can more than double in
abnormal tissue; or (b) shear stiffness which can increase more than four times in
abnormal tissue. The goal is to identify abnormal inclusions, which are tumors.

Here we utilize the supersonic imaging experiment, in which a line source is
approximated by a set of interior radiation force pushes, produced by focused
ultrasound beams all at the same frequency, and made successively along a line. This
effectively induces a conical wave in three dimensions whose angle with the line of the
source is determined by how fast the succession of pushes is made and whether or not
the pushes begin deep in the tissue and move successively toward the surface or vice
versa; see Figure 1.1.

Our goal in this paper is to recover anisotropic tissue properties. Our motivations
are (a) that some normal, e.g., muscle, tissue is anisotropic and so mathematical
models must include this property; and (b) that it has been conjectured [18, 21]
that benign and cancerous tumors may have their own distinguishing anisotropic
properties. If indeed the latter conjecture is true, the recovery of anisotropic tumor
properties could be of considerable medical importance.

To give some background about what is known in the isotropic case, for con-
trast with the anisotropic case, we recall that previously we established uniqueness

. Transducer . Transducer . Transducer

(@ ( <%> ) ;
<§> <§> <§>
¢ + ()

Pulses are made quickly Pulses are made slowly Pulses are made slowly
from top to bottom from top to bottom from bottom to top

Fi1G. 1.1. Lllustration of three possible conical wave fronts (two-dimensional view) produced by
a succession of interior radiation force pushes. A transducer focuses ultrasound beams to produce
interior radiation force pushes and changes focal depth successively, either from top to bottom or
vice versa.
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results [10, 11], and the arrival time algorithm [10, 12, 13], to reconstruct wave speed
in isotropic media. There we showed that the positions of one propagating front es-
tablished the wave speed uniquely, and that there is at most one pair of the shear
stiffness 1 and the density p, corresponding to a given single displacement data as a
function of space and time, provided the medium is initially at rest. In this paper, we
establish that four distinct wave fronts in three dimensions yield up to four triples:
two distinguishing wave speeds and a fiber direction. We note also that if we are
given one of the possible triples and the solution of the anisotropic wave equation (as
opposed to only the wave front positions), then also there is at most one density p
corresponding to that triple.

Our paper is organized as follows. In section 2 we establish that our model has
finite propagation speed, that Lipschitz continuous fronts, defined by their arrival
times, satisfy an anisotropic Eikonal equation, and we refer to our very recent result
that establishes that arrival times are actually Lipschitz continuous; in section 3 we
give our analysis that there can be up to four discrete solution triples corresponding
to four distinct wave fronts; and in section 4 we show numerical results that includes
recoveries of an anisotropic inclusion embedded in an isotropic background.

2. Anisotropic acoustic models. We consider anisotropic models, where the
wave speed represented by +/csq/p in one preferred direction, which we call the fiber
direction, f, is larger than the wave speed 4/cgs/p in the plane orthogonal to the
fiber direction. In this plane, which we call the isotropic plane, the wave speed is
independent of direction. Our language and notation here are consistent with SH-
wave propagation in incompressible transversely isotropic linear elastic models, which
we will consider in a later paper.

Let Q be a bounded C? open connected subset in R™ for n = 2,3. Assume

peC (), M e [Cl(Q)}nxn is a symmetric matrix function, and

(2.1) _
Jap > 0 such that p(z) > ag, - M(z)T > ao|t]®> Vo € Q, Vi R™.

Then our anisotropic wave propagation model is
(2.2) V- (MVu) = puy in Q x (0,T)

with homogeneous initial condition, u(x,0) = u(x,0) = 0 in Q, and the boundary
condition is either Dirichlet or Neumann; u|spqx o,y = g or (v - MVu)|sax0,1) = I,
where v is the unit outward normal to 0f2. This is an anisotropic extension of the
frequently used isotropic elastography model; see [1]. We refer the reader to [6]
for techniques to establish existence and uniqueness for the initial-boundary value
problem associated with (2.2).

Remark 1. In terms of the SH-wave motivated assumptions mentioned above,
the stiffness matrix M is represented by

(2.3) M = coeI + (caa — co6) f @

where | ﬂ =1, cgqa > cg6 > 01in Q, and I and ® denote the identity matrix and
tensor product, respectively. Here our assumption that c4y > cgg is natural since in
biological tissue, e.g., muscle tissue, the wave speed is fastest in the direction aligned
with the fibers [9].

Since our medium is initially at rest, the wave propagates into the medium from
the boundary with a propagating front. In our next two theorems, following [10, 11],
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we establish that the wave whose propagation is governed by the above model has
(1) finite propagation speed, and (2) an arrival time, which we assume to be Lipschitz
continuous, that, under this assumption, satisfies the Eikonal equation.

THEOREM 2. Assume p and M satisfy (2.1). Let u € H*(Q x (0,T)) be a
solution of (2.2). Then for any open ball B.(xg) C Q, u has a finite propagation speed
in Be(xzo) x (0,T) with the mazimum speed

c= sup oul(x)/p(z),
zE€B.(x0)
where oy (x) is the largest eigenvalue of M(x).
The proof of the above theorem is along the same lines as that in the isotropic
case (Theorem 3.4 in [11]), once we redefine the energy by

1
e(s) == 5/0 {plus]? + Vu- MVu} dz, Cy:= Be_cs(z0) x {t =19+ s}.

So we omit the proof. R
As in [10] we define the arrival time, T'(z), of the wave as

(2.4) T(x) :=inf{t € (0,T) : [u(z,t)| >0}, z € Quxo,

where Q20 := {x € Q : u(z,t) # 0 for some ¢t € (0,7T)}, and we assume the solution u
of (2.2) is continuous. If 7' € C*(€2), then existing unique continuation results would
apply to show that the arrival time, T, satisfies the Eikonal equation given below.
Since our target medium is inhomogeneous, we then expect waves originating at more
than one point on the boundary to arrive simultaneously at the same interior points
of 2. In this case, T(x) could have kinks or at least be nondifferentiable there. Hence
Wwe assume T(x) is Lipschitz continuous and establish the following theorem.

THEOREM 3. Assume p € C1(Q) in addition to (2.1). Let u € H?(2 x (0,T)) N
Co(2 x (0,T)) be a solution of (2.2) with u(x,0) = ui(z,0) = 0 in Q, and either
of the following Dirichlet or Neumann boundary conditions: ulsax,ry = g or (v -
MNu)|poxo,r) = h. Suppose further that the arrival time T : Quzo — [0,T7] is
Lipschitz continuous. Then T satisfies the Eikonal equation

(2.5) p=VT-MVT a.e. inQuo.
In particular, when M is given in the form of (2.3), our Eikonal equation becomes
. 2
1 c c c vT
(2.6) A_66+<4466>_ .
VT2 P P P VT

Proof. Since T is Lipschitz continuous, V7' is well defined almost everywhere.
Note that (2.5) is merely a necessary condition for t = T'(x) to be a characteristic
surface with respect to the hyperbolic equation puy = V - (MVu). If we suppose
that ¢t = T(x) is a noncharacteristic surface, we can draw a contradiction, as done in
Theorem 2.10 in [10], which is based on Theorem 3.6 in [5] and a lemma on page 544
of [6]. See [10] for the details. 0

Remark 4. Tn fact, T according to the definition (2.4) may be discontinuous even
if the solution u is infinitely smooth. However, in this paper we adopt this definition

to make arguments simpler and clearer. Modifying the definition of arrival time by

T(x) := inf{t € (0,T] : l|[ullL2(vx (o)) >0Vopen VCQwithe eV}, ze€Q\Qpg,
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where Qp := [J{V C Qis an open set satisfying ||u||z2(v x (0,7)) = 0}, we have recently
established that 7' : Q\ Qg — (0,T] is actually Lipschitz continuous. This result will
be addressed soon.

Note that in the anisotropic case, the wave does not always propagate in the
direction orthogonal to the wave front (group or ray velocity is not always the same as
phase velocity). Nevertheless, under the assumption that T(x) is Lipschitz continuous,
the phase wave speed, ¢(z), in the direction orthogonal to the front, satisfies

(2.7) o(z)|VT| =1, clr)=c (m,VT),

and can be determined by the methods given in [10, 12, 13]; In later sections, we
will assume that this speed, ¢(x), has been determined from 7" so when we solve the
inverse problem,

—

find (ce6/p, caa/p, f) from multiple arrival times,

we will assume we know both 7'(z) and ¢(z).

Remark 5. In a later paper we will consider a transversely isotropic elastic
medium. Note that then (2.6) will be the Eikonal equation with M defined as in (2.3),
satisfied by the SH-wave phase ¢(z) in a geometric optics expansion, @ = de™*=¥(@)
where @ = dg + ié’l + ﬁﬁg + -+ is an asymptotic series with w > 1.

3. Reconstruction using four measurements. Having established the intrin-
sically nonlinear Eikonal equations (2.6) and (2.7) in section 2, we address the uti-

lization of these equations to recover the three unknown quantities (ces/p, caa/p, f)
from wave fronts T'. Since |f| = 1, this means that in three dimensions we have four
scalar functions to recover. It is natural then to investigate the inverse problem,

Ce6 Ca4 = .
(3.1) find (66, - f) from four distinct wave fronts {T}}j_;.

PP
Perhaps surprisingly, our analysis establishes that we can have a finite discrete (up
to four) set of triples that correspond to given four distinct propagating wave fronts.
We make this statement more precise below.

Let {T; }?:1 be four given arrival time data. Define the unit wave normal and the
corresponding phase wave speed by 77, := VTJ-/|VTj| and ¢; := 1/|VT}]|, respectively.
Recall ¢; can be estimated by solving (2.7) based on the methods given in [10, 12, 13].
Then the Eikonal equation (2.6) becomes

(3.2) = G + (Caa — Coo)| [ - 7517, 5 =1,2,3,4,

where we define égg := cg6/p and é44 := caq/p for convenience. As described in
section 2, we are assuming C4q > Cgg, which is a reasonable assumption, as the fiber
in biological tissue is normally stiffer than the background matrix. Thus ¢44 and cgg
are the upper and lower bounds of all possible c?, respectively. So we can define

d; = ,/c? —¢g6 > 0 and § := \/Cgq — 666]?7& 0, and from (3.2) we establish linear

relations for g,

(3.3) G-itj =+d;, j=1,2,34.

4

Then our task is to determine (g6, §) from the data {(7i;, c;)}j_;. Once we determine

Zo6, knowing 7 is equivalent to knowing ¢4 and f, since éas = g+ |g]? and f= J/lgl.
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In this section, we will show that égg is a root of a fourth order polynomial p(z)
(Theorem 13), and hence we may have four possible égs. For each g, we have
a generic uniqueness to determine § (Corollary 20) and an explicit formula for §
(Theorem 14). So we will have at most four possible solutions (égs, ¢4, f). Since égg
can be a multiple root of p(x), despite the generic uniqueness, it may look like we have
multiple ¢44 and f corresponding to a single ég¢ (Theorems 15 and 17). However, to
realize this special case, the data {(7i;, cj)};’le must satisfy one of a very special set

of conditions (3.10)—(3.12) that are unlikely to occur in the actual experiments.

3.1. Coordinate system and data preparation. For convenience, we assume
we have a well prepared data set, defined below, and fix an appropriate coordinate
system, defined as follows.

DEFINITION 6. We define two concepts for our data and a coordinate system.

(a) Data {(7ij,¢;)}Y}, are called compatible if ¢ > ¢z > ¢z > ¢4 > 0 and all of

the following are not vanishing:

D1 = det (ﬁg,ﬁg,ﬁ4), D2 := det (ﬁl,ﬁ3,ﬁ4),

D3 = det (ﬁl,ﬁg,ﬁ4), D4 = det (ﬁl,ﬁg,ﬁg),

where det denotes the determinant of a matrix consisting of three vectors.
This means that at any given point the normals to any three of the four wave
fronts are linearly independent.
(b) Data {fi},c; }?:1 are called well prepared if they are compatible and 73, M4 are
oriented so that D3 > 0 and D4 > 0.
(c) For convenience, set the coordinate system {€1, €3, €3} utilizing iy and fia by
- - - ﬁz — (’Fil . ﬁg)ﬁl R ﬁl X T_ig
1i=Mn1, €= ———=——=-, €3!= 5 ——.
|TL1 X nz‘ |’I’Ll X 77,2|
Since —fig and —ii4 also satisfy (3.3), any compatible data can be processed into
well prepared data. For well prepared data, we have

i1 = €1, flg = (fi1 - 2)€1 + |71 X fia]€s,

L L (8 xity) - (7 X )@ D,é. . . .

fig = (711 - i3)€1 (7% 2) ( - 3)% = 03 + (3 + 738,
|TL1 X 77,2‘ |ﬂ1 X n2|

. L oo iy X flg) - (M1 X 74)€2 Dsés . . .

fly = (A1 - 74)€1 ( 4) ( — ) ———— = a4€1 + B4€2 + Y4€3.
|n1 X 77/2‘ |n1 X TL2|

Here we have 73,74 > 0.

3.2. Lemmas based on two or three measurements. Two lemmas using
only two or three measurements are presented to show what information can be
obtained with the limited data sets.

LEMMA 7 (two measurements). Using only two data {(7;, cj)}?zl, Ces can be any
arbitrary number in (0, c3], and the first two components of § = G(Ces) are determined
up to four possibilities in terms of ¢gs and the measured data:

dgdl(ﬁ1~ﬁ2)> or :|:<d1 dgdl(ﬁ1~ﬁ2)>

|ﬁl X ﬁg‘ |ﬁ1 X ﬁg‘

(G-é1,§-6) ==+ (dh —

where di = /¢ — s and dy = \/c3 — Cgp.-
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Proof. From (3.3) for j = 1,2 we have §- &, = §- 71 = +d; and
+do =g -1 =g- [(ﬁl 'ﬁ2)€1 + |’f_i1 X ﬁgléﬂ = (’/_il ﬁ2)(§ 51) + |’f_i1 X ﬁ2|(§ 52)

Thus we get §- €5 = W

LEMMA 8 (three measurements). Using only three data {(ii;,c;)}3_,, éee can be
any arbitrary number in (0,c3], and § = §(Ces) is determined up to four possibilities
in terms of Ces and the measured data:

=di€1 +néy + = (ds — w)és, g2 = —d1€) —néy + - (d3 + w)és,

which completes the proof. ]

gz =di€1 +nex + - (ds — W)és, ga = —d1€) — 7€z + o~ (d3 +w)és,

where d; = ,/03—666 forj = 1,23, n = %7 N = %, w =
d1a3 +’/]ﬁ37 and & = d1a3 +’I7/83 Note that gk . ﬁg = dg > 07 k= 1,2,3,4.

Proof. From (3.3) for j = 3 we get +ds = §-7is = a3(g-€1) + F3(F- €2) +v3(g- €3).
From Lemma 7 we get

5 - (£dy — azdy — fan) = o (£dz —w) if (§- €1, €) = (di,7),
§ Fa = %(id3—|—0¢3d1 +ﬁ3n):%(id3—|—w) if (§'€1a§'€2):_(d17n)7
ST L (s — asdy — Bai) =  (Fda = @) if(5-01,§- &) = ()
- (Fds +azdi + B3n) = o (£ds + @) if (§-€1,7 €) = —(d1,7)
Thus we have eight possibilities:
g-en dy —dy dy —d;
g . é'2 = J n 3 diJZ] 3 4 ﬁ B 5 dijfl 5
g e e o
dy —dy dy —d;
n y -n 5 ﬁ 5 _77]
—ds—w —dstw —d3—@ —ds+o
73 ¥s 73 Y3

Since the second line is the same as the first line with opposite sign, which gives the
same fiber direction (§ and —g) in transversely isotropic media, we select the first
line that satisfies g - 73 = d3 > 0, and label the four triples in that line as g1, go,
G3: Ga- 0

Remark 9. Note that @1 . ﬁk)i:1 = (dl,—dg,d;;), (gg . ﬁk)i:l = (—dl,dz,dg),
(g3 - 7lk)j—y = (dv,d2,d3), and (g - 7ig)j_y = (—d1, —da, d3).

3.3. Four measurements. In the previous subsection, we showed that from
three measurements, g is a continuous parameter that can be anything in (0, ¢3] and
our solution (g6, §) can be any of four continuous families

{ (@6, 7x(@66)) = 66 € (0,¢3]} ey
But in this subsection we will show that for four measurements the set of possible
Ces becomes discrete, with a maximum number of at most four, and will provide an
explicit formula for ¢ corresponding to each cgg.
LEMMA 10. For {gx}}_, in Lemma 8, we get

d1D1 + dQDQ + d3D3 N *dlDl d2D2 + d3D3

— —

g1 -nyg= g2 - N4 =

D4 D4
o . dlDl — d2D2 + d3D3 N N —dlDl + d2D2 + dSDB
g3 - Mg = = y g4 Ny =

Dy Dy
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Proof. Because all of the others are analogous, we will show only the first case.
From Lemma 8, we have

d: diauy: g — ds D-
G- fis = dio +nfy + BT 0 10473 +1fuys —wys | dsDs
V3 Y3 Dy

. - - i n di7ia+dafi
Slnce d162 _ 7761 — dimio+dotly 73( ln/2\+ 27741)

X B, , we get

diagys +nBays —wys  di(ouys — azya) — n(B3v4 — Bays)
Y3 B 73 ~ ~
(d1€2 — T]éi) . (ﬁg X ﬁ4) o dlDl + d2D2
¥3 B Dy

)

which completes the proof. 0

THEOREM 11. Let well prepared data {ﬁj,cj};*:l be given. Then ¢g6 € (0,c3] is
the first function, cgs/p, in the solution of the inverse problem (3.1) if and only if égg
satisfies one of the following eight equations:

(34) :l:dlﬁl + dgﬁg + dgﬁg + d4ﬁ4 = O, dj = \/C? - 566 Z 0.

Proof. 1f ¢es € (0,¢j] is a solution, then there exist § and {d; > 0}j_, that
satisfy (3.3). By Lemma 8, § should be one of {gi}{_,, and by Remark 9 we have
(G- 71, §-1la, §- T3, §-74) = (£d1, £da,ds,+ds). Thus we have AX = 0, where

i1 Fdi
L fia  Fda L g
aelmrm ) (1),
g Fdy

For X to be a nontrivial solution, we must get 0 = detA = :FdllA)l + dgﬁg — dgﬁg +
dyDy, which proves the necessity. For sufficiency, from Remark 9 we know that all
four of the gi in Lemma 8 already satisfy (3.3) for j = 1,2,3 for any s € (0,c2]. In
addition, if ég¢ satisfies one of (3.4), then égs < cZ, and one of gy - 74 in Lemma 10
satisfies g, - 4 = £d4. So these particular gi and égg satisfy (3.3) for j = 1,2,3,4.
Therefore g6 is the first function in a solution of (3.1). O

LEMMA 12. Let II(a,b,c,d) be the alternating product

M(a.be,d) == ][] ((—1)ia F(=1)b+et (—1)%1).
4,5,£€{0,1}
Then we have I(a, b, c,d) = (Ag+ A2)?(Ag — A2)? +4(A; — A3)(A1 A2 — A3 A3), where
Ay :a2—|—b2, Ao :a2—b2, A3262+d2, A4:C2—d2.
Proof. The proof can be easily shown by tedious calculation. O
THEOREM 13 (determination of ¢gg). g6 satisfies one of (3.4) if and only if ¢es €

(0,¢2] is a root of p(x) := I(dy Dy, dy Dy, d3Ds, dyDy), where d; = dj(z) == N
Here p(x) becomes a fourth order polynomial

(3:5) p(a) = (la +12)*(la — 1)* + 4(h = l3)(WlF = 1a13),  1;:=1;(x) = ajz — by,

where ay = D? —tD%, ag = P% —D%},\ az = D} +D3,Aa4 = Dg — D32, by = c2D? +c3D3,
by = 2D} — c2D3, b3 = AD3 + ¢3D3, and by = c3D3? — c3D3.
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Proof. By definition, p(z) = H(Jlﬁl,dgﬁg,d3ﬁ37(i4ﬁ4) is simply a product of
the following eight factors:
+d1 Dy £ dyDs + d3D3 + dyDy.
Since d; = czj(éﬁﬁ), the fact that ¢es satisfies one of (3.4) is equivalent to finding a
root of p(x). Moreover, using Lemma 12 with A; = —;(x), we can easily show that
p(z) is the fourth order polynomial given in (3.5). 0

Since p(z) is a fourth order polynomial, we have at most four possible égg, and each
e satisfies at least one of (3.4), or equivalently, one of the following four equations:

2 _ 1212
_d4D47
2 _ 1212
_d4D47
2 _ 1212
_d4D47

* = diDj.

(d1131 + dzﬁz + d3ﬁ3
(d1 Dy + do Dy — d3 D3
(d1ﬁ1 - d2ﬁ2 + d3ﬁ3
(d1Dy — do Dy — d3 D3

— — ~—

w W w w

(
(
(
(

~—

Each equation corresponds to a product of two equations in (3.4). So we obtain the
following theorem, which provides the corresponding § (i.e., ¢44 and f) for each case
when égg solves one of the above four equations.

THEOREM 14 (determination of §). Let ées € (0,c3] be a root of p(z) given in
(3.5). Then Cgp satisfies at least one of (3.6)—(3.9), and for each case the corresponding

g is determined by

g1 if and only if ¢es satisfies (3.6),
) g2 if and only if ées satisfies (3.7),
9= gz if and only if Ces satisfies (3.8),
ga if and only if Ces satisfies (3.9),

where {gi}i_, are defined as in Lemma 8.

Proof. By Remark 9, (3.3) is already satisfied for j = 1,2,3. For j = 4, i.e.,
g -4 = *tdy, it is easily checked by Lemma 10 for each case. 0

Later we will show that generically only one of (3.6)—(3.9) is satisfied for each ¢gg,
and hence the maximum number of possible solutions (g, §) will be at most four.

3.4. Multiple g for a single ¢égg. Throughout the rest of the paper we will
assume that the data sets are well prepared. We define three special types of data
allowing multiple g corresponding to a single cgg:

|D1| < |D2|, Dj3 < D4, C%D% < C%D%, C%Dg < CiDz,

(3.10) N A N N A N
(3D? — 3D3)(D3 — D?) = (3D3 — 2D2)(D3 — D3),
(3 1) |131| < ﬁg, ‘ﬁ2| < B4, C%ﬁ% < C%ﬁ%, C%ﬁg < CZEZ,
1
C2D2—62D2 D2_D2 — 62D2—C2D2 DQ—D2,
44 22 3 1 33 1+1 4 2
( ) |.§1| < 54, ‘B2| < ﬁ3, C%ﬁ% < Ciﬁz, C%ﬁz < C%ﬁ%,
3.12

(3D — c3D3)(D3 — DY) = (c1Dj — i D})(D3 — D3).

First, note that we should have g < c? in order to have more than one §: the
reason is that if dy = \/c? — g6 = 0, then by Theorem 14 at least two of (3.6)—(3.9)
are satisfied, implying that at least one of di D1, doDs, d3Ds is zero, which is a
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contradiction. In the following theorem we will see that each of (3.10)—(3.12) actually
enforces g < C3.
THEOREM 15 (two g for a single égg).
(a) Both g1 and go are solutions < the data satisfy (3.10) and D1D2 <0
& Gg6 € (0,¢2) and it solves d2D2 —d1D1 and d4D4 = d3D3
Both g3 and gy are solutions < the data satzsfy (3.10) and D1D2 >0
& Gg6 € (0,¢2) and it solves d2D2 = d1D1 and d4D4 = d3D3
For the above two cases,

_— c%D2 — ch2 - ZDZ — 03D3 9
Cee — (O, 04).
D% D2 Di - D§

(b) Both g1 and §s are solutions < the data satisfy (3.11) and D, <0
& ¢g6 € (0,¢3) and it solves d3ﬁ3 = —dllA)l and d4lA)4 = idgf)g.
Both g» and Gy are solutions < the data satisfy (3.11) and D >0
& ¢g6 € (0,¢3) and it solves d3ﬁ3 = dlﬁl and d4134 = idgﬁg.
For the above two cases,
c%ﬁ% - c%ﬁ% B ciﬁz - c%ﬁ%

Gog = 0= 171 T4 22 o () ¢2).
66 D%—D% DZ—D% ( 4)

(¢) Both G and §y are solutions < the data satisfy (3.12) and Dsy < 0
& 6 € (0,¢2) and it solves d3133 —dyDy and dyDy = +d, Dy .
Both g> and g are solutions < the data satisfy (3.12) and Dy >0
& 6 € (0,¢2) and it solves d3D3 doDsy and dyDy = +d,D;.
For the above two cases,
Ce6 = Cil}i — CED% = 0325 — CA%D% € (0,¢3).
Di - D} Di — D3

Proof. Because all of the others are analogous, we will show only (c). For g
and gy to be the solutions, from Theorem 14 ¢gg must satlsfy (3.6) and (3.9). Since
d1D1 # 0, we must have d3D3 —ngg, and so d4D4 = idlDl For g> and g3 to be
the solutions, from Theorem 14 ¢gg must satisfy (3.7) and (3.8). Since dyD; # 0, we
must have d3D3 Cl21)27 and so d4D4 = :|:d1D1

Now we will show that the data satisfy (3 12) and Dy < <0, respectlvely, if ¢gp €
(0, c3) solves d3D3 :Fd2D2 and d4D4 = +d; D1 First note that D2 < 0, respectively,
since dg,ds > 0. For both cases, we get

D3(c3 — &g6) = d3D3 = d3D3 = D3(c3 — éao),

D3(c} — &s) = diD3 = 1D} = D}(c} — o),

21”2 2 12 21”2 2”2
_ D2—c2D D2-c3D
and thus we should have ¢gg = “3=3—272 = 4—4-%LZ1  So we have
D3-D3 D3—D?

(C§D3 - CQDQ)(D4 B%) = (03D4 - 01D2)(D3 Dg)

Moreover, since dy > do > d3 > dy, we get |1A91\ < ﬁ4 and |ﬁ2| < 53. From ¢gg > 0,
we also get C1D1 <c DZ and c3D3 < 3D3.
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Finally, we will show g € (0, ¢2), and it solves d3 D3 = Fds Do, dyDy = +dy Dy if
~ 212 212 N2
the data satisfy (3.12) and Dy < 0, respectively. Set dgg := “24=GD2 _ ciDi—ciDf
D35—D3 Dy —D7%

= c%. Thus ées € (0,c3) and

D4 ch2 c4f)4 c4ﬁ2
D2-D? D3-D?
solves d3D3 = d2D2 and d4D4 = d2D2 Since D2 0, Ggg solves d3ﬁ3 = :ngﬁg,
respectively, and d2D3 = d2D2. O

In each case in (3.10)7(3.12)7 the fourth order polynomial p(x) for &g in
Theorem 13 is now further simplified. We will use the following theorem to show
the generic uniqueness of ¢ in Corollary 20.

THEOREM 16. In each case in (3.10)—(3.12), p(z) in Theorem 13 becomes

0. Since ¢ > c3, we get Cgg = =

((ZA)g — ﬁ%)x — (ch2 — ch ))2 q1(x)  if the data satisfy (3.10),
p(z) = ((ﬁ% — D?)z — (2D2 — ch2)>2 q2(x)  if the data satisfy (3.11),
((ﬁi - ﬁ%)x - (ciD4 - ch2))2 gs(x)  if the data satisfy (3.12),

where q1, g2, and q3 are second order polynomials.

Proof. Because all of the others are analogous, we will show only the case (3.11).
First note that

= a1 + as = ap — ag = CL3—|—CL4 = a3z — Qg
D%: 2 ) D%: 9 ) Dg: 2 ) Di: ) )

~ by +b ~ by —b bs +b ~ bs — b
C?D%Z 1;‘ 27 chgz 12 2’ 2D3— 3;’ 4’ CiDi: 32 47

and define

ay+az3—az —a
2

by + b3 — by — by

A= 3

= ﬁ3 D% >0, B:= = CQﬁg—cfﬁf > 0.

Since we can show (a4 — ag)(bs — b1) = (az — a1)(bs — b2) from (3.11), we also get
A(bg — bl) = B(a3 — a1) and A(b4 — bg) (a4 — CLQ). Thus we get

A(li(z) — I3(x)) = (a1 — a3)(Az — B), A(la(z) — l4(x)) = (a2 — aq)(Ax — B).
Hence the polynomial in (3.5) becomes

p(x) = C3(Az — B)?*(l4 + 12)* — 4C1(Az — B)Q(x),

where C1 = #5%, Cy = #1522 and

Q(z) =112 — I3 [ly — Cy(Az — B))?
= (lh = 13) — I3(Az — B) [-214C + C3(Az — B)]
= (Az — B) [2C5l3l4 — C113 — C3l3(Ax — B)]
= (Az — B) [2C5l31y — C113 + Cals(lz — ly)] = (Az — B) [Cals(la + 1o) — C113] .

Hence we get p(x) = (Azx — B)?qa(), where go is a second order polynomial given by
QQ(iL') = 022(14 + l2)2 + 401212 - 4010213(12 + 14) 0
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For three possible g corresponding to a single égg, we consider another special
type of data that satisfies

|51‘ < ‘52| < 53 < ﬁ4, C%Bz < 62D2 < C3D3 < C4Di,

(3.13) 2D? — 2D? 2
and there exists a single K := %7% € (0,¢;) Vj>i.
D3 — D;

Note that (3.13) implies {(z;,y;) = (D?, 3D2)} are on a single straight line with
slope K > 0. From Theorem 15, we can easily prove the following theorem, showing
exactly when we shall get three § corresponding to a single ¢gg.
THEOREM 17 (three g for a single ég6).
(a) g1, go, g3 are solutions < the data satisfy (3. 13) Dy <0, and D2 >0
& g6 € (0,¢3) and it solves d4D4 = d3D3 = d2D2 —d1D1

(b) G1,G2,Ga are solutions < the data satzsfy (3. 13) D1 >0, and 132 <0
& g6 € (0,¢2) and it solves d4D4 = d3D3 = —d2D2 dllA)l.

(¢) 1,03, Ga are solutions < the data satisfy (3. 13) Dy <0, and Dy <0
& g6 € (0,¢2) and it solves dyDy = d3D3 = —d2D2 —dllA)l

(d) G2,33,Ga are solutions < the data satisfy (3. 13) Dy >0, and Dy >0
& g6 € (0,¢3) and it solves d4D4 = d3D3 = ngg d1D1

In each case, we should have o = K € (0,c3) as given in (3.13).

As in Theorem 16, the fourth order polynomial p(x) for ¢gs in Theorem 13 is also
further simplified when the data satisfy (3.13). The following theorem will also be
used to show the generic uniqueness of § in Corollary 20.

THEOREM 18. If the data satisfy (3.13), p(x) in Theorem 13 becomnes

Soa o o (¢ Dy, caDs,c3Ds,c4D
pa) = (z - K)? (H(D1,D2,D3,D4)x— oDy ez e 4)>,

where K € (0,c2) is given as in (3.13).
by by —bs

. _ ba _ — b=
Proof. Since as,a4,a1 —az < 0 and K = =g = e, we get

la(z) = axl(x), l(z)=aq(z), L(z)—I13(x)= (a1 —a3)l(z),

where [(x) := # — K. Hence the polynomial in (3.5) becomes p(z) = [I(z)]3Q(x),
where

Q(z) = (aj — a3)*l(z) + 4(ar — a)(ajli(z) — a3ls(x)).

Here Q(xz) is definitely a linear function, and from

Q'(0)
Q(0)

(a2 — a2)? + 4(ay — as)(a1a2 — aza?) = I(Dy, Dy, Dy, Dy),

—K (a3 —a3)? + 4(a1 — a3)(a3bs — a3by) R R R R
(bi — b%)2 + 4(b1 - bj)(blbi - bgb%) . H(Cth 62D27 63D37 C4D4)

- K3 - K3 )

we conclude Q( ) H(Dl,DQ,D3,D4)1‘ — FH(61D1,62D2,63D3,C4D4) O

Remark 19. From Theorem 17 we can easily prove that the four g1, g2, g3, Ga
cannot all be solutions at the same time for a single égg: If so, then d; D7 = 0, which
is a contradiction.
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3.5. Generic uniqueness of § for a single ¢gg. In this subsection we show
that generically only one of (3.6)—(3.9) is satisfied for each root ég € (0, c3] of p(x),
and hence generically the maximum number of possible solutions (Cgg, €44, f) is at
most four.

COROLLARY 20.

(a) Let ¢os € (0,c3] be a root of p(x) in (3.5) and m be its multiplicity. If we

denote by G(égs) the number of possible § corresponding to this Ceg, then
1 < G(¢e6) < min(m, 3).

(b) The number of all possible (Geg, Caa, f) is less than or equal to the number of
(multiply counted) roots of p(z) in (0,c3], which cannot exceed four.

(¢) Unless the data satisfy one of the special conditions (3.10)—(3.12), there exists
only one § corresponding to a single Cgg. So in this case, the number of
all possible (666,6447]?) is exactly the same as the number of (not multiply
counted) roots of p(z) in (0,c3], which cannot exceed four.

Proof. We first prove (a). For any root Cgg, at least one of (3.6)—(3.9) is satisfied,
so by Theorem 14 we have G(ég) > 1. Also Remark 19 says that G () < 3. Hence
it suffices to show G(égs) < m for m = 1,2. For a simple root (m = 1), if G(éss) > 2,
then by Theorems 15 and 16 we get m > 2, which is a contradiction. So we should
have G(égs) < 1. For a double root (m = 2), if G(&s) > 3, then by Theorems 17
and 18 we get m > 3, which is a contradiction. So we should have G(égg) < 2. (b) is
straightforward from (a), and so is (c¢) from Theorems 14 and 15. O

From all the above, we can summarize our algorithm as follows:

1. Make the compatible data to be well prepared.

2. Determine possible égs € (0, c3] by finding roots of the fourth order polyno-
mial p(x) in (3.5).

3. For each ¢gs € (0,c3] obtained above, check which one among (3.6)—(3.9) is
satisfied.

4. For each case, use Theorem 14 to determine g (equivalently, ¢44 and f)

Remark 21. If we use all of the information about the solution u of (2.2) (as
opposed to only the wave front positions T), which is actually measured in experi-
ments, then we can apply the same arguments of section 5 in [11]. That is, for one
of the possible triples (égg, Ca4, f) given there corresponds at most one density p cor-
responding to that triple under the Neumann boundary condition (for the Dirichlet
boundary condition, p needs to be specified on the boundary). Therefore, in this case,
we have at most four possibilities in determining four parameters (p, cgs, a4, f) from
the data set {u;(z,t) |z € Q, t € (0,T)}j;.

3.5.1. Examples. Here a complete set of examples is presented showing that
sometimes there exist no solution, a unique solution, two solutions, three solutions,
or four solutions. Here we converted the final solution into the standard coordinate
system to represent f

Ezample 22 (no solution). Consider the following well prepared data:

1 1 1 3
ﬁl :(1,0,0), ﬁ2: <_ﬁ,—\/§,0> s ﬁ3:(0,0,—1), ﬁ4: <0,2,—\2[>

with ¢ =9, 3 =3, 2 = g, and c2 = 1. Then the fourth order polynomial for &g is
given by p(z) = gzigs (18145 + 34592 + 2144027 + 71682 4 1024x*), which has no

root in (0, c3]. Hence there exists no solution matching the data.
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Ezample 23 (unique solution). Consider the same 7i; as in Example 22 with
3 =8,3="7,c3=2,and ¢} = 1. Then p(x) = g;(—188 + 252z + 5322 — 18z% + z*),
which has only one root ¢ss = (9 — v/137 — 32v/6) ~ 0.6719 in (0,c3]. Since &g
satisfies (3.7), from Theorem 14 we get the unique solution given by

Ce6 0.6719
Ca4 ~ 10.0514
7 (—0.8839, —0.2777, —0.3763)

Ezample 24 (two solutions). Consider the same 7i; as in Example 22 with ¢ = 9,
c3 =5, c2 =4, and ¢] = 3. Since these data satisfy none of (3.10)—(3.12), only one of
g will correspond to each root of the fourth order polynomial given by

p(x) = 55 (481 — 1488 + 12642 — 3842° + 6427).

This polynomial has two roots &1 &~ 0.5194 and &; ~ 1.2439 in (0, ¢3], where égs = &;
satisfies (3.7) and ¢gg = &2 satisfies (3.8). So by Theorem 14, we get two solutions:

Zo6 0.5194 1.2439
e | ~ 12.4873 , 42.2907
I (—0.8418, —0.0235, —0.5393) (0.4347, —0.8625, —0.2591)

Ezample 25 (three solutions). Consider the same 7; as in Example 22 with

3 =3,¢3=2 3 =3 and ¢ = 3. Since these data satisfy (3.12) and Dy > 0, by

2”2 2 "2

Theorem 15(c) we get two solutions go and s for égs = % = % Moreover,
471

we have p(z) = o= 3z — 2)? [z — (V2 - 2)] [z + (V2 + §)], which has another root

) =
o6 = V2 — & ~ 1.2476 in (0, ¢3] satisfying (3.6). So we get three solutions:

Ce6 0.6667 1.2476
544 3.6795 , 3.2525 ,
—0.8800, 0.0653, —0.4704) (0.9349, —0.2883, —0.2069)
0.6667
12.3205
(0.4475,—0.8617, —0.2392)
Ezample 26 (four solutions). Consider the following well prepared data:

1 1 31
i :(0a051)7 ﬁ2: <O7\/§7\/§>7 ﬁ?): <_{7250> 3 ﬁ4:(_15070)

with ¢ = 11, ¢ = 10, ¢3 = 9.9, and ¢; = 9.8. Since these data satisfy none of
(3.10)—(3.12), only one of g corresponds to each root of

p(z) = (14055561 — 66145202 + 115090022 — 88000> + 2500x%).
160000
This polynomial has four roots &; = 6.2722, &3 &~ 9.4936, £3 ~ 9.6576, and &, ~ 9.7766

in (0, c3], where égs = &; satisfies (3.8), and g = &5 satisfies (3.7), and &g = &3 and
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Ces = &4 satisfy (3.9). From Theorem 14, we get four solutions:

Eo6 6.2722 9.4936
G | ~ 14.8371 , 16.2959 7
7 (—0.6418, 0.1900, 0.7430) (0.2122, 0.8564, —0.4706)
9.6576 9.7766
11.2520 7 11.2149
(—0.2989, 0.2622, —0.9176) (—0.1275,0.3649, —0.9223)

4. Numerical implementation. Here we indicate the success of the approach
of using four data sets to solve the inverse problem. That is, find the triple (ég6, C44, f)
from four propagating fronts, where the four normals and corresponding (estimated)
wave speeds {(ﬁj,cj)};*:l are compatible; that is, the wave speeds are all different
and any three normals are linearly independent (see Definition 6(a)).

Furthermore, since we develop our theory under the assumption that the medium
properties may not be symmetric about the image plane, we calculate the three-
dimensional wave front in the neighborhood of the image plane. Our supersonic
excitations are assumed to be slightly out of the image plane to easily achieve the
linear independence mentioned above, and we expect that this configuration could
be realizable with a full planar array of transducers for three-dimensional imaging or
three lines of closely spaced transducers in a so-called 2%—dimensiona1 imaging setting
(see Figure 4.1(a)). For this synthetic data experiment we calculate the wave fronts
using a first order anisotropic Eikonal solver based on fast marching methods with
code developed at Rensselaer.

The successive supersonic imaging pushes to create the approximate line sources
are made at a sweeping speed faster than the background shear wave speed and
indicated by the multiple of the background shear wave speed (Mach number); hence
the label supersonic (see [3]). The background wave speed is indicated in each of the
labeled figures and also is given in our text description below. In our examples, the

When sweeping speed is 25 When sweeping speed is 1.1
0 40 /
0 4

0

.

[T

6

o
o

40

(1

®]
=

Fic. 4.1. (a) Configuration: Data are collected on three consecutive image planes (dashed
lines) by either a full planar array or three parallel, closely spaced linear arrays. Supersonic excita-
tions are slightly off the imaging planes (gray line). A generated conical wave front yields parabolic
intersections with each image plane. The shapes of parabola depend on the location and the sweeping
speed of supersonic excitations. (b) Observed conical wave fronts on the central image plane, when
the supersonic excitation line is 8mm away from the central image plane and 6mm away from the
left side.
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pushes are either made slowly from top to bottom (1.1 sweeping speed), slowly from
bottom to top (—1.1 sweeping speed), fast from top to bottom (25 sweeping speed),
or fast from bottom to top (—25 sweeping speed). Each set of pushes produces a
conical wave front in three dimensions whose intersection with the image plane is
generally a parabola but looks like a straight line for high sweeping speeds like +25.
See Figure 4.1(b).

We show two numerical reconstructions. For the first we have uniform anisotropy,
where the fiber direction is out of the image plane; see Figure 4.2. The uniform
anisotropic cube is 40 mm on a side with two excitation lines for the pushes, each
being 6 mm from the outside edge; note that the excitation lines are at different
distances from the image plane with one 8 mm from the image plane and the other
12 mm from the image plane. We take separately the two sweeping speeds, £1.1,
yielding four propagating fronts. It is assumed that \/Ggs = 1, /G4 = 2. Setting
up the three orthogonal coordinates with the x coordinate out of the plane, we show
our results for /44, /Ces, the wave speeds along and across the fiber direction,
respectively, and the squares of the fiber direction coordinates f2, 3, f2. In addition
we exhibit /Ces, v/Caa, and {¢;}j_; along the line z = 25, 0 < y < 40.

As we have seen in section 3, sometimes the fourth order polynomial for ¢gg may
have multiple roots in (0, ¢3], which is the source of our nonuniqueness. In this case,
we have chosen to select the largest possible root in (0, ¢3], as in all of our simulations
that choice consistently gave the correct recovery. Note that there are artifacts near
the projections of the excitation lines, y = 6, onto the image plane because the fourth
order polynomial is not well defined there (there four wave normals, 7;, are on one
plane perpendicular to our image plane, i.e., bj = 0, which yields p(z) = 0). But
otherwise the recovery is quite acceptable.

For our second simulation the excitation lines are in the same locations, but along
one line we take the sweeping speeds £1.1, 25, and along the second line the sweeping
speed is 25. Here the fiber is again out of the plane but only in the anisotropic
cube inclusion with 10mm on each side. The anisotropic inclusion is embedded in an
isotropic medium; see Figure 4.3. Again the recovery is quite acceptable; note that in
all images of the material properties we observe anisotropic cube edge effects, except
in the image for v/Cse.

Here, also in the first simulation, the points where all four wave speeds {c; ?:1
are so close (using some threshold) are considered as isotropic points. We established
a threshold, 6 = 0.01 for the first simulation and 0.04 for the second simulation, and
consider the points isotropic when max{c;}}_; — min{c;}}_; < émax{c;}j_,. For
isotropic points, we assign a zero vector to the fiber direction and set v/C44 = /G-
As mentioned before, the fourth order polynomial is not well defined on the excitation
lines, which stems from the fact that all four wave speeds are so close there. Because
those points are considered as isotropic points, they are buried in the isotropic back-
ground in the second simulation, while in the first simulation the isotropic excitation
line stands out in the anisotropic background. Compare the graphs near y = 6 in
Figures 4.2 and 4.3.

5. Conclusion. Here we address the following question: How do we obtain
anisotropic medium properties from a set of wave fronts? Our target application is
tissue shear stiffness imaging and we assume the medium is three-dimensional. There
is a fiber direction along which the wave speed, v/C4, is faster than in the plane or-
thogonal to the fiber where the wave speed is v/Cgg and directionally independent in
that plane. We show that from four wave fronts, where any three normals at each
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Wave speed traces for z = 25
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Fi1G. 4.2. Top left: Orientation of fibers, central image plane (neighboring planes are omitted)
and supersonic line sources. (a) Target wave speeds for uniform anisotropy, and fiber direction.
Gray dashed line depicts the line source projections in the image plane. (b) Reconstructed wave
speed along the fiber. (c) Reconstructed wave speed across the fiber. Top right: Graph shows the
wave speed traces for z = 25, 0 < y < 40, dashed lines in (b) and (c): along the fiber (top dotted
line), across the fiber (bottom dotted line), estimated wave speeds c; in the directions @i; orthogonal
to the four wave fronts (middle solid lines). (d)—(f) Squares of the fiber direction components.

point are linearly independent, we can have up to four distinct triples (égg, Ca4, f),
where f is the unit fiber direction. We exhibit examples to show that multiple solu-
tions can occur and show numerical reconstructions with synthetic data. The multiple
solutions are a result of the nonlinearity in the Eikonal equation.

From our work to obtain reconstructions we have observed the importance of
(1) having well-separated normals to the wave fronts, and that necessitates some
normals having out of image plane components; (2) the need for multiple image planes
to capture all three components of the normals; and (3) the fact that in a high
contrast subregion embedded in a constant medium, initially well-separated normals
may align themselves (the angle between their normals becomes smaller) at some
points, and at other points the angle may become larger. This angle change may
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Wave speed traces for z = 25
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Fic. 4.3. Top left: Orientation of fibers in the anisotropic cube inclusion and supersonic line
sources. (a) Target wave speeds and fiber direction in the background and in the anisotropic cube.
(b) Reconstructed wave speed along the fiber. (c) Reconstructed wave speed across the fiber. Top
right: Graph shows the wave speed traces for z = 25, 0 < y < 40, dashed lines in (b) and (c):
along the fiber (top dotted line), across the fiber (bottom dotted line), estimated wave speeds c;j in
the directions 7i; orthogonal to the four wave fronts (middle solid lines). (d)—(f) Squares of the fiber
direction components.

occur also at points beyond that subregion. The degree of this angle change depends
on the wave speed contrast, size of inclusion, and the initial incident directions. This
indicates important features in experimental design when wave fronts are used to
image anisotropic properties of the kind modeled in this paper.
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Abstract. The classic atomic mix approximation for particle transport in a stochastic spatial
medium is accurate when the material chunks in the medium are small compared to a mean free path.
In this paper, we show that for charged particle transport in a stochastic medium, the atomic mix
approximation is accurate when the chunk sizes are small compared to a transport mean free path.
For charged particle transport, the transport mean free path is generally several orders of magnitude
larger than the mean free path. Therefore, the result obtained in this paper greatly extends the
known range of applicability of the atomic mix approximation. Numerical results are given that
validate the asymptotic theory, and an application of the theory to a practical problem in radiation
oncology is discussed.
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1. Introduction. The atomic miz approximation is a classic technique in physics
and chemistry that has also been used for many years in the particle (radiation) trans-
port community [1]. The underlying (particle transport) problems are described by a
linear Boltzmann equation [1, 2, 3, 4], applied to a heterogeneous spatial medium con-
sisting of randomly located “chunks” of two or more materials. If the chunk diameters
are small compared to a typical mean free path and the chunks are distributed in
a statistically uniform way throughout the system, the atomic mix approximation
applies and the highly space-dependent cross sections can be replaced by their vol-
ume averages. The resulting approximate “atomic mix” Boltzmann equation, with
volume-averaged cross sections, then accurately determines the radiation flux. The
approximate atomic mix problem is much simpler than the original problem because
(1) it is not necessary to know the detailed structure of the physical system (it is only
necessary to know the cross sections and volume fractions of the constituent parts),
and (ii) the atomic mix Boltzmann equation with volume-averaged cross sections
is much easier to solve than the original Boltzmann equation, with highly space-
dependent cross sections.

Recently, Dumas and Golse have proved that the atomic mix approximation is
an asymptotic limit of the Boltzmann equation, for stochastic physical systems in
which the chunk sizes are small compared to a typical mean free path [5]. (This is the
physical regime in which the atomic mix approximation is commonly understood to
hold.) More recently, Larsen [6] and Larsen, Vasques, and Vilhena [7] have shown—
by a formal asymptotic analysis—that for 1-D (one-dimensional) diffusive stochastic
systems the atomic mix approximation is valid when the chunk sizes are comparable
to a mean free path.
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In the present paper, we consider 3-D charged particle transport problems that
are dominated by “soft” collision processes in which the particles experience very
small changes in direction and energy. We show that for such problems the atomic
mix approximation is a formal asymptotic limit of the linear Boltzmann equation in a
stochastic medium in which the chunk sizes are small compared to a transport mean
free path. For charged particle transport, the transport mean free path is usually
several orders of magnitude greater than a mean free path. Therefore, the result
obtained in this paper greatly extends the known range of applicability of the atomic
mix approximation.

Our theoretical approach employs two different asymptotic limits. First, we use
an asymptotic approximation developed by Pomraning [8]—valid when the mean
free path is small and particles experience very small changes in the direction of
flight and energy in a collision—to approximate the soft collision operator by its
Fokker—Planck limit [9]. This reduces the original linear Boltzmann equation to a
Boltzmann—Fokker—Planck (BFP) equation [10, 11]. Then we apply a generalization
of the asymptotic analysis of Dumas and Golse to the BFP equation to show that when
chunk sizes are small compared to a transport mean free path, the BFP equation limits
to its atomic mix approximation. The resulting atomic mix BFP equation is identi-
cal to the equation obtained by (i) formally replacing the original Boltzmann equa-
tion by its atomic mix approximation and (ii) applying Pomraning’s Fokker—Planck
approximation to the resulting atomic mix soft collision operator.

Therefore, the atomic mix BFP equation is an asymptotic limit of both the original
linear Boltzmann equation and its atomic mix approximation. This implies that, for
charged particle transport problems in a stochastic medium in which (i) soft collisions
dominate hard collisions and (ii) a typical chunk size within the medium is small
compared to a transport mean free path, the atomic mix model is an asymptotic
approximation to the linear Boltzmann equation.

The remainder of this paper is organized as follows. In section 2 we introduce
the original Boltzmann equation and present our formal asymptotic analysis. To
validate the predictions of the asymptotic theory, we present in section 3 the results
of realistic Monte Carlo simulations of electron beams penetrating random binary
systems of water and air. In work presented elsewhere [12], we have used the results
in this paper to develop a practical computer model of the human lung, in order to
assess the accuracy of certain treatment planning techniques in radiation oncology.
This application of the asymptotic theory is discussed in the concluding section 4 of
the present paper.

2. Asymptotic analysis. We consider the following particle transport problem:
Q-VU(x,QF)+X(x, E)¥(x,Q, F)
(2.1a) = /OO/ Y(x, - Q F — E)¥(x, Y E)IVIE', xeV,
(2.1b) \1:((;, 947;9) =02, Q,FE), £cdV, Q-n<0.
Our notation is standard:

(2.2a) x = (z,y,z) = position,

(2.2b) Q= (v1-p2cosvy,v/1—p?siny, p) = direction of flight,
(2.2¢) E = energy,
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and

(2.3a) U(x,Q, E) = angular flux (intensity),

(2.3b) Y(z, Q- Q,E — E) = differential scattering cross section,
S(x, E) = /OO/ S, Q- QE — E)dQYdE

(2.3¢) = S(zzatt::ing cross section.

Problem (2.1) describes a particle transport process within a physical system V.
The process is driven by a specified incident angular flux ¥® on the outer surface OV
of V. V is spatially heterogeneous, consisting of a large number of chunks of two
or more materials. Also, the scattering process in V' is dominated by soft collisions
(in which particles experience very small changes in direction of flight and energy),
but rare hard collisions (in which the changes in direction of flight and energy are
not small) can also occur. To separate these two types of scattering events, we use
1o = ' - Q = scattering cosine and write

(2.4) Y(x, po, B — E) = Sp(z, po, E' — E) + X, (x, po, E' — E),

where X, = differential scattering cross section for hard collisions and ¥, = differen-
tial scattering cross section for soft collisions (also called the “restricted” differential
scattering cross section). We define

En(w, E) = / / Sz, Q- QE — E')dQ'dE’
0 4m
(2.5a) = hard scattering cross section,

Er(az,E):/ /E(:c,ﬂ'ﬂ’,EaE’)dQ’dE’
0 A

(2.5b) soft (restricted) scattering cross section,
and clearly,
(2.5¢) Y(x,E) =%p(x, E) + 3 (x, E).

We also define the phase function for hard collisions:

Yn(x, po, B — E)

2. E — F)=

( 63’) ph(wvﬂ(% - ) Eh(ﬂl‘,El) ’

which by (2.5a) and (2.6a) satisfies

(2.6b) / / pn(z,Q - Q,E' — E)dQE = 1.
0 4m

Introducing (2.4)—(2.6) into (2.1a), we obtain
Q-VU(z,QE)+3,(x, E)¥(x,Q, E)
= / / Sz, B pp(x, ¥ - Q E — E)¥(x, Y, E')dQYdE
0 4m

(2.7a) + L,V (x,QFE),
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where L, is the restricted collision operator:

LT\If(a:,Q,E):/ / S (2, Q- E — B)U(x,Q, E') dYdE’
0 4m
(2.7b) — Y, (x, B)¥(x, Q, E).

To this point we have made no approximations; (2.7) are equivalent to the original
Boltzmann equation (2.1a).

Now we make our first approximation. Because soft collisions generate very small
changes in direction of flight and energy, the restricted (soft) differential scattering
cross section ¥ (x, uo, B/ — E) is very highly peaked near pg =~ 1 and E' ~ E. In
this situation, Pomraning [8] has shown that L, is asymptotically approximated by
the Fokker—Planck operator:

L9 (z,Q,E) ~ Lpp¥(z,Q,E)
_ Er,t'r(w7 E)

0 1

9 2
) [8#( /1‘)87#4_1_#287,)/2 V(z,Q, E)

0
(2.8) —&—6—ES’T(:137E)\I!(:E,Q,E)7

where
Srir(x, E) = / / 1-Q - Q2. (z,Q - QE — E)dQdE'
0 4

(2.9a) = restricted transport cross section,

Sr(z, E) = / / (E— ENS (2, - Q,F — E')dQ'dE’
0 4w
(2.9b) = restricted stopping power.

Introducing (2.8)—(2.9) into (2.7a) and using the boundary condition (2.1b), we obtain
the following BFP problem:

Q-VU(z,QFE)+ 3,(x, E)¥(x,Q, E)
= / / Sh(z, ENpn(z, Q- Q' E — E)V(z, Q' E")dQYdE’
0 4m
7] 1 02

Srin(®, E) [ 0 )
St (1) —— s | U(x, Q2 E
2B 1) b | e )
(2.10a) +%Sr(m,E)\IJ(m,Q,E), zeV,
(2.10b) U(x, Q,E)=0x,QF), zcdV, Q-n<0.

The BFP equation is well known in the literature [10, 11]. It provides an accu-
rate way to simulate transport problems in which soft collisions dominate but rare
hard collisions can also occur. The advantage of the BFP equation (2.10a) over the
Boltzmann equation (2.1a) is that the BFP equation contains neither a large scat-
tering cross section nor a highly peaked differential scattering cross section. (Hard
collisions, which produce large changes of direction and energy loss, have a relatively
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smooth differential scattering cross section.) Also, because the soft differential scat-
tering cross section is highly peaked near ug = 1, (2.9a) and (2.5b) imply

(2.11) Yoz, B) < 2 (z,E) < X(x, E).

Here Y71 is the mean free path (the mean distance between collisions), and . Lis

the (restricted) transport mean free path (the mean distance a particle must travel
for its direction of flight to change by an O(1) amount). Equation (2.11) implies that
the restricted transport mean free path is much larger than the mean free path.

The restricted stopping power S,.(x, E') has units of MeV /cm and the interpreta-
tion

Sy(x, E)ds = the energy loss that a particle at (x, E') experiences

(2.12a) through soft collisions while traveling a distance ds.

Therefore, the function

Sr(x, E
(2.12b) T(a,B) = (& E)

E
has units of cm ™! and the interpretation

T(x,E)ds = the fractional energy loss that a particle at (x, F) experiences

(2.12¢) through soft collisions while traveling a distance ds.

Now we write the functions X (x, E), X, 4 (2, E), and T'(z, E) in a useful dimen-
sionless form. These functions are highly space-dependent, due to the assumption
that the physical system V' consists of a large number of “chunks” of two or more
materials. We define a characteristic length \., by

(2.13) Ach, = typical width of a chunk in V,

and we introduce the dimensionless spatial variable

2.14 — .
(2.14) W

In terms of y, a typical chunk width is O(1).
We also define the characteristic lengths Ay, A+, and A, by

1
(2.15a) SV typical value of ¥y (x, E),
h
1
(2.15b) S typical value of X, ;- (z, E),
r,ir
1
(2.15c¢) S typical value of T'(x, E).

These characteristic lengths have straightforward physical interpretations: A is the
typical distance a particle must travel to experience a hard collision; A, is the
typical distance a particle must travel for its direction of flight to be altered through
soft collisions only by an O(1) amount; and A, is the typical distance that a particle
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must travel to lose an O(1) fraction of its energy through soft collisions. We make
the following assumptions:

>\h )\ch
2.1 Al: =0(1 =0(1
( 6) )\ntr O( )’ )\r,tr O( )7 c A7‘,757‘

< 1

Thus, An, Artr, and A, are comparable to each other and large compared to Acp.
Physically, this implies that a typical chunk width is small (O(g)) compared to the
distances over which the effect of hard collisions, soft angular deflections, and soft
energy loss are O(1). Alternatively, when a particle travels across a typical chunk,
the effects of hard collisions, soft angular deflections, and soft energy loss are small
(O(e))-

Since Ap, Ar¢r, and A, are comparable, the dimensionless functions

(217&) Uh(ya E) = )\r,trzh()\chy7 E) = Ar,trzh(wv E)u
(217b) Ur,tr(ya E) = )\T,trzr,tr(Achya E) = )\T,trzr,tr(m, E)7

S(x, E
(217C) t(yv E) = )‘T,tTT()‘Chy> E) = )\r,trT(w7 E) = )\r,tr (mE:, )

are O(1) in magnitude and vary by O(1) amounts when y varies by an O(1) amount.
Introducing (2.17) into the BFP equation (2.10a), we obtain

1
Q- VU(x,Q F)+ \ on(y, E)¥(x,Q, E)
r,tr
1 oo
- / / on(y, B )pn(y, - QB — E)U(x, ', E') dQ dE
rir JO 47

9.1 e
O 1 —p? 072

+ Ur,tT(y7E) |: 8 \Il(a:,ﬂ,E)

-~ 2
2A7'7t7' 8/1 (1 a )
0

—Lt(y, E)¥(x, 2, E).
Antr 8E (y7 ) (wﬂ ) )

(2.18) +

Now we express ¥ in terms of dimensionless spatial variables. Two fundamental
length scales are present in (2.18): A, = a typical chunk width, and A, = a typical
restricted transport cross section. In (2.14), we defined the “fast” dimensionless spa-
tial variable y = @ /Aqp, which describes O(1) variations in the problem data that take
place over the length scale of a chunk width. We now define the “slow” dimensionless
spatial variable

xr

2.19 =
( ) 8 )\r,tr7

which describes O(1) variations in ¥ that take place on the length scale of a restricted
transport mean free path, and we assume that ¥ is a function of both y and z:

(2.20a) U(x,QFE) =9y, 2 Q,F).

Then

1 1
(2.20b) Q- -VI(z,Q,E)=Q -V, ¥(y,z, Q,E))\ + Q- V. Uy, z, Q,E))\— .
ch ryitr
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Introducing (2.20) into (2.18), multiplying by A, s, and using € defined in (2.16),
we obtain

1
EQ ! Vyw(yvz7Q7E) + Q. Vzw(yaz7ﬂyE) + Gh(yaE)w(y7z7Q7E)

= / / Uh(yv E,)ph(y7 Q- Q/7 E' — E)?,Z)(y, z, Q/a El) dVdE'
0 4

orir(y,E) [ O 9 0 1 52
et Mg, — Q.E
- 2 L'M( “)8u+1—ﬂ2372 Y(y, 2,92, E)
0
(2.21) +op Bty E)d(y, 2, @, E).

Equation (2.21) is mathematically equivalent to the BFP equation (2.10).

Now we derive the leading-order term in a formal asymptotic solution of (2.21)
for ¢ < 1. To do this, we assume that y and z are independent spatial variables, we
introduce the ansatz

(2.22) Uy, 2, QE) =Y "u(y, 2,Q,E)
n=0

into (2.21), and we equate the coefficients of different powers of .
The first [O(1/¢)] equation in the resulting asymptotic hierarchy is

(223) Q- Vy’l/}O(yvzv Q, E) = Oa

which requires that ¢y be independent of the fast spatial variable y in the direction
of flight €. The general solution of (2.23) is

(224) 7/’0(1/»Z7Q»E) 21/;0[y—(y~ﬂ)ﬂ,z,Q,E],

where 1/~10 is arbitrary. Thus, the leading-order term 1)y in the asymptotic expansion
can exhibit fast spatial dependence in directions orthogonal to €. A less general
solution of (2.23) is

(225) wo(y,Z,Q,E):J)()(Z,Q,E),

which has no fast spatial variation. In the following, we assume that (2.25) holds,
rather than the more general (2.24), and we systematically derive an equation for 1&0 in
(2.25). To accomplish this we make an additional assumption A2, stated below, which
places a condition on the randomness of the media and is consistent with (2.25). If
A2 is not satisfied, then there may be circumstances in which the more general (2.24)
might hold. We discuss this in more detail in the final paragraph of this section.

Assuming that 1 is given by (2.25), where ¢ is undetermined, the next (O(1))
equation in the asymptotic hierarchy becomes

Q- Vi (y, 2, E) + Q- V.io(2,Q,E) + on(y, B)do(z,Q, E)
oo
:/ /ah(y,E’)ph(y,Q~Q’,E’HE)z/SO(z,Q’,E’)dQ’dE’
0 4

Jntr(y,E)[a ) 1027,

< gy - 9 Q. E
+ 9 a,U/ aﬂ =+ 1 _,UQ 8’}/2 LZJ()(Z, ) )

(1—p?)

o ~
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Integrating this equation over the line y 4+ sQ2, —R < s < R, using
Q- Vi (y+sQ,2,Q,E) = %@zﬂ(y +5Q,2,Q,F),

and then dividing by 2R, we obtain

% [1(y + RQ, 2,9, E) — ¢ (y — RQ, 2,9, F)]

LV oido(z, QL E) + bo(2,Q, E)

I

1 R
E[Rah(y+sQ,E) ds

1 /B .
ﬁ/ onpn(y + s, Q- Q E' — E) ds| (2, Q,E") dYdE’
-R

1|1 [F 0 0 1 0?7
— | = . O F —(1—p)=—4 ——— QF
+5 |5 | o+ B ds| | (1= )b s (2 B)
(2.27) +2E 1/Rt( +5Q, E)ds| )o(z,Q, E)
. 95 ok, Yy + s, s| Yo(z,Q, E).

Now we let R — oo. Using the assumption that v, is bounded, and introducing the
notation

(226) (Dal) = Jim 5o [ f+s2)ds,

which denotes averaging over the infinite line passing through the point y in the
direction 2, we obtain

Q- V.o(2,Q,E) + (on)a(y, E)fo(2,Q, E)
=/ /<Uhph>n(y,ﬂl'9,E’HE)zﬁo(z,Q’,E’)dQ’dE’
0 4w

1 0 0 1 027 -~
+§<0r,tr>9(yaE) [aLL(l_MQ)alL+1;128’)/2 ’(/Jo(Z,Q,E)
(2.29) + 9 Blaly. B) do(= 0, B),

oE

Now we make another fundamental assumption:
(2.30) A2: Each line-averaged quantity in (2.29) equals its volume average.

More explicitly, if we define the volume average

3
(2.31) onp(F) = lim ——— on(y, E) dy,
R—o0 4w R2 ly|<R

then we assume
(232) <O-}L>Q(yaE) = Eh(E)a

and similarly for the other line averages in (2.29). Assumption A2 places constraints
on the uniformity and isotropicity of the randomness in the physical system. These
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constraints are not true for all heterogeneous systems. For example, they are not true
for certain €2 for crystalline systems in which the spatial heterogeneities are small but
spatially periodic. However, for the randomized media considered in this paper, it is
reasonable to assume that A2 is satisfied. Equation (2.29) then becomes

Q- V.o(z,Q,E) +74(E) (2,92, E)

- / / o (- QB — B)do(z, 2, B') ddE
0 47

Grin(E) [ 0 b 0 1 027 -
et 2 — ) Q.E
+ 2 |:aﬂ< H )5',LL+17;L2 872 ’(/JO(Z, ’ )
o0 N

Finally, we convert (2.33) back to the original independent variables. We define

(234) \P0($,Q,E) = 12}0 <)\:1:797E> )

r,ir

and we use (2.17) to obtain

(2.35a) Aitr on(E) = X, (E) = volume average of ¥ (x, F),
)\Tltr TR - QE — E) =%, -Q,E — E)

(2.35Db) ’ = volume average of 3y, (z, Q' - Q, E' — F),

(2.35¢) )\Tltr Trir(E) = imr(E) = volume average of ¥, 4, (x, E),

(2.35d) /\Tltr FEt(E) = S.(E) = volume average of S,.(z, E).

Introducing (2.34) and (2.35) into (2.33), we obtain that the solution ¢ (x, Q, E) of
(2.1) has the asymptotic approximation

(2.36) U(z,Q,E) = Ug(z, 2, E) + O(e),
where Uy (x, 2, E) satisfies the BFP problem:
Q- V., Uy(x,QE) + Z,(E) Ug(x,Q, E)
= /000[1 Sh(Q-QE — E)Yy(z, ', E")dQ' dE’

Soi(E) [0 o O 1 02
s = i)y b | el )
(2.37a) + a%gT(E) Uo(x, Q, E),
(2.37h) Uo(x,Q,E) =0z, Q,E), xcdV, Q-n<O0.

Equations (2.37) are the atomic mix approximation to the BFP equation (2.10), with
the boundary condition (2.1b). We note that (2.37b) is the same as the original
boundary condition (2.1b). This is because we tacitly assumed that the prescribed
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incident flux U varies spatially on the slow spatial scale of A, ., not on the fast
spatial scale of A.p.

To summarize: we have formally shown that by separating the hard and soft
collision operators, and requiring the soft collision operator to be sufficiently peaked
for pg ~ 1 and E ~ E’, one can asymptotically approximate the Boltzmann equations
(2.1) by the BFP equations (2.10). Also, if (A1) the characteristic lengths defined
by (2.13) and (2.15) satisfy (2.16), and (A2) the average of the problem data over
any line equals the volume average, then the BFP equations (2.10) are asymptotically
approximated by the atomic mix BFP equations (2.37).

Now let us formally consider the atomic mix model of (2.1):

Q- VU (z,Q FE)+3(E)¥(x,Q,E)
(2.38a) = / / S(Q-QE — E)U(x, Y, E)dQVdE', €V,
0 4
(2.38b) U(x,Q,E)=0x,Q,F), xcdV, Q2 -n<0.

If we split the scattering operator in (2.38a) into the hard and soft collision opera-
tors and asymptotically apply the Fokker—Planck approximation, just as was done to
(2.1a), we will obtain exactly (2.37a).

Therefore, under the assumptions described above, (2.37) is an asymptotic limit
of both the Boltzmann equations (2.1) and their atomic mix version, (2.38). This
implies that the atomic mix (2.38) asymptotically approximates the original Boltz-
mann equations (2.1). This is the main result of this paper.

We note that (2.33) is consistent with the assumption (2.25) that the leading-
order term in the asymptotic expansion is independent of the fast spatial variable y.
(None of the cross sections in (2.33) depend on y. This follows from assumption A2,
(2.31), that any line average of each cross section must equal its volume average.) If
for a specified problem assumption A2 is not valid, then the cross sections in (2.28)
depend on y, and it seems inevitable that 1&0 will also depend on y. In this case, the
much more complicated (2.24) should be used as the solution of (2.23). We will not
consider this here because the application that we intend for the preceding asymptotic
theory satisfies A2.

3. Numerical results. To test the asymptotic theory, we have devised and
run a set of computer experiments using the Monte Carlo code PENELOPE [13].
We consider a sequence of 6.0 cm deep targets consisting of small droplets of water
randomly mixed in air. The volume fraction occupied by the water droplets is 0.201.
In the first set of experiments, a circular (radius = 1.0 cm) 2.0 MeV monodirectional
electron beam is normally incident on these targets. The electrons enter the targets
and deposit energy, slowing down to 0.1 MeV, at which point their remaining energy is
deposited locally. The asymptotic theory predicts that as the water droplets decrease
in size, the dose deposited by the electron beam will limit to the dose deposited in
the homogenized (atomic mix) target.

To predict the size of the water droplets for which the atomic mix approximation
becomes accurate, let us consider Figure 1, which provides data for electrons with
energies between 0.1 MeV and 10.0 MeV in water. (All the data shown in Figure
1 was taken from PENELOPE.) In this figure, the quantities E;tlT(E) = transport
mean free path, T~1(E) = E/S(E) = restricted range (the distance a particle with
energy E would travel while slowing down through soft collisions to zero energy if
its stopping power while slowing down were equal to S(E)), E,:l(E) = hard mean
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Fia. 1. Transport MFP, restricted range, CSDA range, hard MFP, and MFP of electrons in
water.

free path, and ¥, 1(E) = mean free path are plotted for water at normal density (1.0
gm/cm~1). Also plotted in Figure 1 is the continuous slowing down approzimation
(CSDA) range R(E), defined by

E dE/
o S(E)

(3.1) R(E) =

this is the pathlength that a particle with energy E will travel while slowing down
through soft collisions to zero energy. R(E) is included in Figure 1 because it provides
an alternate way to measure the distance in which O(1) changes in energy occur.
Figure 1 shows that R(E) and T—!(E) are comparable, and that there is a clear
separation between the electron mean free path and the more “macroscopic” transport
and hard mean free paths.

The asymptotic theory predicts that the atomic mix approximation is accurate if
the chunk sizes lie below the transport mean free path (MFP), restricted range, and
hard MFP curves in Figure 1. Interpreting this literally would place an upper limit
on the chunk size of about Ae, = 3 x 1072 cm. However, the definition of the hard
mean free path is somewhat arbitrary. (This definition depends on parameters chosen
to run the PENELOPE simulation; the distinction between hard and soft collisions is
not well defined.) Also, for most of the energy range of the electrons, the transport
MFP, CSDA range, and hard MFP lie well above A.;, = .003 cm. A less conservative
upper bound on the chunk size is A\;, = .01 cm, which is just below the minimum
values of X, }.(E) and T~!(E).

For the given electron beam, we ran a series of simulations in which the (uniform)
diameter of the droplets (Aep) was set to Aep, = 0.1,0.05, and 0.01 ecm. We also
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simulated the homogenized (atomic mix) target. The results of these experiments are
shown in Figure 2, which depicts isodose contours, normalized so that the maximum

dose is unity.

This figure shows that as the chunk sizes decrease from A.;, = 0.1 cm to 0.01
cm, the dose contours limit very well to the atomic mix result. The only significant
difference between the A.;, = 0.01 cm and atomic mix plots occurs on the 95% isodose
contour, within 1.0 cm of the boundary. All of our electron beam simulations indicate
such a phenomenon. The flux gradients are steep in these boundary locations, and
Aer, = 0.01 cm is not quite small enough for the atomic mix approximation to be valid

there.

1
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Radius (cm)

Radius (cm)

Fic. 2. 2.0 MeV electron beam contour plots.
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In the second set of simulations, a circular (radius = 1.0 cm) 3.4 MeV photon beam
is normally incident on the same targets as above. (The energy of the photon beam
was selected so that the electrons produced by Compton scattering would have roughly
the same energy range as in the electron beam experiments.) These simulations have
two Boltzmann equations: one for the photons and one for the electrons. The source
term for the photon Boltzmann equation is the prescribed incident photon boundary
flux. The source term for the electron Boltzmann equation is a volumetric term,
proportional to the rate at which photons Compton scatter. The photon mean free
path is on the order of cm, so the atomic mix approximation of these problems easily
applies to the photon Boltzmann equation. The relevant electron data is shown in
Figure 1, so as before, we predict that the atomic mix approximation for the electron
Boltzmann equation should be accurate when the chunk sizes are about 0.01 cm or
less.

The results (contour plots) of the photon beam experiments are depicted in
Figure 3. The four plots in this figure exhibit the same trends as in Figure 2; as
the chunk sizes decrease to about 0.01 cm, the contour plots converge to the contour
plot for the atomic mix approximation. The only noteworthy difference is that the
boundary effects seen in Figure 2 are not significant in Figure 3. This is likely because,
in the photon beam experiments, electrons are produced by the Compton scattering
of photons, and hence the electron “source” for the Figure 3 problems is much more
spatially distributed than in Figure 2.

Figures 2 and 3 are typical. (We ran multiple realizations for each plot shown in
the figures.) They indicate that when the chunk sizes become sufficiently small, the
atomic mix limit is attained, and that the asymptotic theory well predicts the chunk
sizes (Aep, = 0.01 cm) for which the atomic mix approximation becomes accurate.
Figure 1 shows that this size is about two orders of magnitude greater than a typical
electron mean free path.

4. Discussion. We have presented a formal asymptotic theory and accompany-
ing numerical results showing that the atomic mix approximation for charged particle
transport is valid for physical systems in which (i) soft collisions dominate, (ii) a typ-
ical chunk size is small compared to a transport mean free path, and (iii) the average
of any cross section over a line equals its volume average. The asymptotic theory uses
earlier work by Pomraning [1] and Dumas and Golse [5]. The Monte Carlo results,
generated by PENELOPE [13], are consistent with the asymptotic theory.

This work was motivated by the problem of theoretically assessing certain treat-
ment planning procedures used in radiation oncology (radiation cancer therapy). In
this field of medicine, carefully sculpted beams of high-energy photons and electrons
coverage inside a patient, with the intent of sterilizing a malignant tumor [14, 15, 16].
(Photon beams also produce electrons, through Compton scattering, and these elec-
trons deposit all the dose.) To model radiation beams penetrating the lung, standard
computer codes model the lung as a union of homogenized subvolumes of about 75%
air and 25% tissue (water), each subvolume having its own density, which is ob-
tained from computerized tomography (CT) scans [17, 18, 19]. (Thus, the atomic
mix approximation is used in each subvolume.) The proper resolution (size) of the
subvolumes is a matter of debate.

However, the lung is an extraordinarily complex organ, with a complicated hier-
archy of structures ranging from the principal bronchi (about 2 c¢cm in diameter) to
the alveoli (about 104 cm in diameter) [20, 21]. The mean free path of photons is on
the order of several cm, so the atomic mix model for the entire lung is acceptable for
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Fic. 3. 3.4 MeV photon beam contour plots.

photons. The results of this paper show that for random 75% air-25% water systems
with uniformly sized “chunks” of water, the atomic mix approximation (i) is accurate
with chunk sizes less than about 0.01 cm in diameter, but (ii) may be inaccurate
when the chunk sizes are larger. Since the human lung contains structures with a
large hierarchy of sizes, this result cannot be directly used to predict an optimal CT
resolution for treatment planning.

However, the work in this paper suggests a way to examine this problem: first,
construct a lung model in which all structures larger than a specified critical size are
explicitly included and all structures less than the critical size are approximated by
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atomic mix [12]. (The critical size is chosen as large as possible so that it does not
significantly affect Monte Carlo calculations of dose.) Then, compare Monte Carlo
simulations of this first model to Monte Carlo simulations of a second CT model,
obtained by homogenizing the first model over the user-prescribed CT subvolumes.
The differences in dose for the two models are due to the partitioning of the lung into
subvolumes. These differences will diminish as the subvolumes become smaller.

We have used PENELOPE to run realistic Monte Carlo simulations on our lung
models and have found that A.. = 0.05 cm is an acceptable critical value. A detailed
description of our lung model and preliminary results of comparisons with CT res-
olutions are given in [12]. We have found that for large CT resolutions, significant
errors in predicted dose can occur, especially for narrow beams that pass through one
or more “large” structures.

To conclude, we note from Figure 1 that a typical electron mean free path in tissue
is about 10~* cm. If it were necessary to explicitly model all lung structures compa-
rable to or greater than this size, then all structures within the lung would have to be
treated explicitly; this would be nearly an impossible computational task. Therefore,
the atomic mix result developed in this paper is a crucial theoretical element in the
strategy of using Monte Carlo techniques to assess the accuracy of existing treatment
planning methods for the lung.

We plan to continue this work—in particular, to more fully assess the accuracy
of different CT resolutions—and to report our results in future publications.

Acknowledgments. The authors gratefully thank Indrin Chetty for his encour-
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Abstract. We analyze the stochastic large time behavior of long supply chains via a traffic flow
random particle model. As items travel on a virtual road from one production stage to the next,
random breakdowns of the processors at each stage are modeled via a Markov process. The result is
a conservation law for the expectation of the part density which holds on time scales which are large
compared to the mean up and down times of the processors.
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1. Introduction. Traffic flow models for supply chains model the flow of items
through the chain as conservation laws for an item density p, depending on time
and a stage variable z. Stage x = 0 denotes the raw material, stage * = 1 denotes
the finished product, and the interval [0,1] models the intermediate stages of the
production process and plays the role of the “road” in traffic flow theory. Traffic
models have been used to model supply chains in [1, 2, 13, 5, 8] and, more recently,
to optimize them in [6, 7, 9].

In previous work [3] we developed a traffic flow model for a chain of suppliers
with a given capacity and throughput time. It is of the form

(1.1) Op(x,t) + OpF(x,t) =0, F(x,t) = min{u(z), V(z)p}.

Here z denotes a continuous supplier index, i.e., the stage of the process. p(z,t)
denotes the density of parts in the supply chain. To compute the number of parts,
i.e., the work in progress (WIP) W, () in a certain subset of processors, corresponding

to an interval (a,b) at a given time ¢, we have to compute Wy, (t) = fab p(z,t) dz.
As long as the processors run below capacity, the movement of parts is given by the
velocity V. So Vd(”; 3 is proportional to the throughput time of the processor occupying
the infinitesimal interval dz. The processors are assumed to have a finite capacity,
meaning that they cannot process more that p(z)dt parts in any infinitesimal time
interval dt. So the variables in (1.1) have units of parts/stage for p, parts/time for p,

and stage/time for V. We prescribe a general, time-dependent influx of the form

(1.2) F(0,t) = A(%)
for the conservation law (1.1).
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Equation (1.1) is derived rigorously in [3] from a discrete recursion for the times
each part arrives at each processor and from a limiting process for the number of parts
and the number of processors M — oo. However, this recursion relation is completely
deterministic, and the supply chain is therefore assumed to work like an automaton.
The goal of this paper is to include random behavior of the processors, i.e., random
breakdowns and random repair times, into the model. We model the breakdown of
processors by setting the capacity p(z) to zero. Thus, the model we consider consists
of (1.1), where u = p(x,t) is a time-dependent random variable. To be more precise,
we assume u(z,t) to be piecewise constant in space and of the form

M—1
(1.3) @) =D i (B Xy ) ()
m=0
where 0 = vy < --- < vy = 1 denotes a partition of the stage interval [0, 1], corre-
sponding to M processors, and the functions p,,(t), m =0,..., M —1, take on values

of either p,,(t) = 0 or p,, = ¢, where ¢, denotes the capacity of the processor in

the case when it is running. We assume that the on/off switches are exponentially

distributed in time; that is, we assume mean up and down times 7“7 and 72" and
generate the random signal p,,(t) by the following algorithm:

e Assuming that at time ¢ processor m has just switched from the off state to the

on state, choose Aty and Aty - randomly from the distributions dP[At};, =

s] = T% exp(—ﬁ)ds and dP[AtT = s] = Tdol,w“ exp(——gowm )ds.

down
e Set pum(s) = ¢y for t < s < t+ Aty and ppm(s) = 0 for t + At < s <
t+ At;’fn + At -
o At t =1t+ At} + Atl? . the processor is turned on again and we repeat the

above process.p

In this way we generate M random time-dependent signals which produce the random
capacity p(z,t) according to (1.3). For each realization of this process, we solve one
realization of the conservation law (1.1), thereby modeling the random breakdown of
elements in the chain. To illustrate this, Figure 1.1 shows one realization of one of
the signals, namely p(t), switching between p; = ¢; and p; = 0, and one realization
of the solution of the corresponding conservation law. Note that the conservation
law (1.1) exhibits, despite its simple form, a rather interesting feature. Since the flux
function F is uniformly bounded from above by u(x,t), it will necessarily become
discontinuous if the flux coming from the left exceeds this value. This can be the case
if p(x,t) is discontinuous in the stage variable x, which will certainly occur if p(z,t)
is generated randomly by the algorithm above. Since mass has to be conserved, the
discontinuity in the fluxes has to be compensated by é-functions in the density p. The
temporary buildup of these d-functions is what is observed in Figure 1.1.

The goal of this paper is to derive an evolution equation for the expectation
(p(x,t)) of the density p given by the stochastic process above. This provides us
with a rather inexpensive way to estimate the behavior of long supply chains, with
random breakdowns of individual processors, by solving directly one rather simple
conservation law for the expectation. The main result of the present paper is that
the expectation (p(z,t)) satisfies an initial boundary value problem for a conservation
law of the form
(1.4)

(8) Ou(p(. 1)) + 0, Fi(7, OV, (p)) = 0, Fu(r,C,V,(p) = 7C [1 = exp (W)] ,

(b) Fle=o = At), (p(x,0)) =0,
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sample capacity mu density rho
3 T T T

Fi1G. 1.1. Left panel: One realization of the random capacity p1(t) of the first processor. Right
panel: Density p from one realization of the conservation law (1.1) with random capacities.

where the piecewise constant functions 7 and C' are given by

TP

(1.5) T(x Z X vms0) () =25 dowm TP} down” Clx) = Z X v 41) (£)Cm

The result is derived in a limiting regime for large time scales and many parts and
processors. So, it holds when the behavior of the chain, given by the stochastic version
of (1.1), is considered on a time scale where a large number of parts arrive and the
on/off switches of the processors occur very frequently. Similar models have been
used on a heuristic basis, in the context of clearing functions, in [11, 14]. Our result
basically states two facts as follows:

e For a large number of parts, the function min{u, Vp} is, under the expecta-
tion, replaced by the function p[l — exp(—T)] which has the same limiting
behavior for large and small densities (the limits p — 0 and p — 00).

e The effect of the random on/off switches can be incorporated into the model
by replacing p by the on-capacity ¢ and multiplying the whole flux function
by the average time TM,_T_% the processor is on.

This paper is organized as follows. We prove the validity of the limiting equation
(1.4) in a somewhat roundabout way. We first discretize one realization of (1.1) by
a particle method, using the Lagrangian formulation of (1.1). Then we take the
appropriate limits. So, section 2 is devoted to the formulation of the particle method.
The limiting behavior is derived in section 3. In section 4 we verify our results
numerically and demonstrate the basic premise of the method, namely, that we can
accurately model the large time behavior of long chains with the mean field equation
(1.4). The proofs of section 3 are given in the appendix.

2. Particle formulation. As mentioned in the introduction, we will derive the
main result of this paper, the conservation law (1.4) for the expectation (p), from
a particle discretization of (1.1) in Lagrangian coordinates. Since we are going to
employ a mean field theory approach to the particle model in the next section, it is
essential that the particle formulation of (1.1) is invariant under permutations of the
particles. This will require some special considerations, and therefore we derive first
a particle formulation of the deterministic problem, i.e., for one fixed realization of
the random capacities p(xz,t). In section 2.2 we will then generalize this formulation
to the random case.
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2.1. The deterministic case. First, we reformulate problem (1.1) in Lagrangian
coordinates. The transformation from Eulerian to Lagrangian coordinates is given in
the usual manner by

1

(2.1) (a) p(z,t) /5(96 §(y,1)) dy,  (b) p(&(y,1), 1) BEw D)’

where (y, t) denotes the position of a particle with continuous index y at time ¢. The
derivative 0y§ = —% denotes the specific volume of the flow, i.e., the infinitesimal
distance between two neighboring particles, and the minus sign indicates that we
number the particles, at least initially, in order of their arrival, i.e., y1 < yo =
(1) > &(y2) = 0y¢€ < 0 holds. Note, that (2.1)(b) holds only in the absence of
caustics, that is, as long as the particles stay ordered and do not overtake one another,
whereas (2.1)(a) also holds in the presence of caustics. Using the transformation (2.1),
we see the conservation law (1.1) becomes

(22 o€l = o(6.0) =min { 1€ V(o)

p(&,1)
and reduces to a parameterized ordinary differential equation (ODE) for the trajec-
tories &(y, t). We consider a particle discretization of one realization of the stochastic
version of the conservation law (1.1) by replacing p(z, t) by the measure corresponding
to N particles

N
(2.3) pla.t) ~ Ay bz — &u(t))

n=1
(where we choose the symbol Ay for the particle weight so as to be notationally
consistent with (2.1)) and solve the system of ODEs

1(&n)
p(en)’ V(g")} '

The following three aspects are still missing in the consistent formulation of the par-
ticle method (2.4):
e We have to decide on an appropriate weight Ay of each particle.
e We have to define initial conditions for the trajectories &, to reproduce the
boundary condition (1.2) of the conservation law.
e We still have to define how to compute the density p(z,t) at z = £, from the
particle ensemble.
To address the first issue, we assume that we start from an empty system. In this case,
the total mass over all time is given by the integral over the influx A = fooo A(t) dt,
which we assume to be finite. To match this total mass A to the total mass in (2.3),
we set Ay = %
To address the second issue, we note that the flux F' of the Lagrangian formulation
(2.2) is given by

Fa,1) = / 5(x — E(y.t)ulE) dy = A(t) = F(0.£) = / 5(€(y,1))0(E) dy;

defining the initial condition £(y,a(y)) = 0 for the particles in the Lagrangian
formulation (2.2) implies

(2.4) Obn(t) = vp, v = min{

t

(2.5) ) = / §(t— ay) dy = a~'(t) = / A(s) ds.

0
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Thus, the arrival times a(y) have to be chosen as the functional inverse of the mono-

tone antiderivative of the influx function A(t), i.e., a(y) =t <= y= fot A(s) ds has
to hold. In the deterministic case, treated in [3], this implies that the arrivals a(y)
satisfy the ODE

2.2. The random case. We now consider the stochastic process for the com-
putation of the capacity variables p,,(¢) in (1.3). The assumption of an exponential
distribution of the up and down times 7“7 and 79°“" implies a Markov process. This
means that at each infinitesimal time, we can decide whether to switch the processor
from on to off and back with a constant frequency w,,(u) = W Thus, the

evolution of p,,(t) can be expressed by the process
(2.6) (a) pm(t+ At) = (1 — ri)pim (t) + rm(cm — m(t)), rm =0o0rr, =1,
(b) Plrm = 1] = Atwim (pm (1)),  Plrm = 0] =1 — Atwy, (i (t))-

This means that at each infinitesimal time step At, we flip a coin and decide whether
to switch, based on the probability Atw,,, with the frequency w,, given by

1 1
wm(0) = Tdown’ wm(em) = TP

It is a standard exercise in the analysis of Monte Carlo methods (cf. [10]) that this
algorithm results in exponentially distributed up and down times with means 7P
and down,
Remark. Note that the assumption of exponentially distributed up and down
times 7P, 749U allows us to formulate the on/off switches as the Markov process (2.6).
For a general probability distribution, the decision whether to turn the processor on
or off at each time step depends on the time it has been in its present state (i.e., its
history), leading to a model that is nonlocal in time. The case of a general distribution
of up and down times will be the subject of a subsequent paper.

The motion of the particles &, is now discretized in time, which leads to the

following time-discrete version of (2.4):

- —
(27) gn(t + At) = gn(t) + Atvn( 3 (t)v H (t))v
where the velocities v,, depend on the whole particle ensemble ? = (&1,...,&n) and,
in addition, on the random capacity vector 77 (t) = (u1,...,uar). We still have to
—

define a way to compute the density p(&,,t) from the particle ensemble & . As stated
before, the density p is given, in terms of the particle formulation, as the inverse of
the specific volume, i.e., the distance of two neighboring particles. Formulating this
in a way that is invariant under permutation of the particle index, we set

1 . gkffn .
(2.8) p(fn,t)mm{ Ay .§k>§n}.

Note that if the particles stay in descending order, this reduces to % = %, which
would be just the difference approximation to (2.1). The significance of the formula
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(2.8) lies in the fact that it is also valid if particles pass each other and the descending
—
order is destroyed. Therefore, we choose the velocities v, (¢, 77) as

(én, t)

29 (€0, F®) = min {wsn)
£n7 ZXm fn Mm

(gk _fn) gk >£n}a

Turning to the boundary condition, we replace the influx density A(¢) in (2.5) by a
measure of the form

A N
(2.10) AyZ(St—an _Nz:: (t—an).

The goal here is again to formulate (2.10) in such a way that the resulting particle
method is invariant under permutations of the particle index n. We do so by ran-
domizing (2.10), and we choose identically distributed random arrival times for each
particle, according to the probability distribution % So, we have

(2.11) &nlan) =0, dPla, =t] = %dt, A= /Oo A(t) dt
0

Equations (2.6)—(2.7), together with the definitions (2.9) and the initial condition

(2.11), give a complete set of rules to advance the particle positions ? and the
capacities 7 from one time step to the next, and these rules are independent under
permutations of the particle index. We will reformulate the system once more, to
essentially replace the boundary condition (1.2) by an initial condition. This is really
a technicality, and the reason for it is that, in the next section, we will derive equations
for the probability density of the particle ensemble. To this end it is notationally more
convenient to deal with a fixed number of particles in the system, instead of particles
which enter at random times a,,. So, instead of imposing the condition &, (a,) = 0,
we move the particles with an arbitrary, constant, and deterministic velocity—say
V(0)—as long as &,(¢) < 0 holds, and start them out at &,(0) = —=V(0)a,,. Obviously
&n(t) = V(0)(t — ay,) will hold for &, < 0 and the particle will arrive at &, = 0 at the
correct time.

So, in summary, the stochastic particle system, which will be analyzed in the next
section, is of the following form.

Start out at ¢ = 0 with

(2.12) (a) pm(0) = ¢, m=0,...,M —1,

(b) £,(0) = =V (0)a,, n=1,....,N, dPla, =t]= %dt.

N
To move particle positions & and capacities 7 for one time step At, compute

(2'13) (a) Mm(t + At) = (1 - Tm)um(t) + Tm(cm - Mm(t))a T =0 o0r rp =1,

(b) Plrm = 1] = Atwim (pm (1),  Plrm = 0] =1 — Atwy, (um (1)),
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(¢) &nlt + Ab) = &, (1) + Ato, (€ (), 7 (2),

- V(0) &n <0
(d) 'Un(f (t), H (t)) = <min{V(§n), 5" t) (fk — En) : gk > §n} gn Z O)

w(én,t) ZXm (En)pm (¢

Remark. We assume in (2.12) for simplicity that all the processors in the beginning
are on.

3. The evolution of the expectation. This section is devoted to the deriva-
tion of main result (1.4) from the particle model (2.12)—(2.13). There are three steps
involved. In section 3.1 we derive a high dimensional Boltzmann-type equation for the
joint probability density of the particle positions ? and the capacity variables 77 of
the previous section. In section 3.2, we then reduce the dimensionality of the problem
by employing a type of mean field theory for the conditional probability of the particle
positions for a given realization of the capacities. In section 3.3 we compute averages
over time scales which are much longer than the mean on/off switching times 7,/ and
rdown At leading order when the particle number tends to infinity, this procedure
leads to an evolution equation for the probability p(x,t) that an arbitrary particle in
(2.13) is at position z at time t. Up to a multiplicative constant, p can be identified
with the expectation (p) in (1.4).

3.1. The probability distribution. We now derive the evolution equation for
the probability distribution

F(X,Z,)dXZ = dP[€(t) = X, T (t) = Z],

-
where the particle ensemble & = (&,...,&n) is at the N-dimensional position
X = (x1,...,2y), while the processor capacities 1 = (u1, ..., lm) are in the state
Z = (z1,...,2m). We have the following theorem.

THEOREM 3.1. Let the evolution of particles ? and capacities [ be given
by (2.12) and (2.13). Then, in the limit At — 0 the joint probability distribution
F(X, Z,t) satisfies the initial value problem for the Boltzmann equation

(31)  (a) AF+ Y 0, [vn(X, Z,t)F] :/Q(Z, ZF(X,Z',t) dZ',

N
Y ()| [T e =
with the integral kernel @ given by

(3'2) ( ZQm Zms Zm, H 6 _Zk

k#m
(b) gm(2m; 2n) = wm(%)[é(cm = Zm = Zm) = 6(2 — 2Zm)].
Proof. The proof of Theorem 3.1 consists of summing up over all the possibilities

of choosing the random variables r,, in (2.13), and it is an exercise in multidimensional
Taylor expansion. It is deferred to the appendix.

(b) F(X,Z,0) =
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In terms of the probability distribution F(X, Z,t), the expectation {p(z,t)) in
(1.4) is then given by

N N N N
(53 (olet) =By [ 8o~ )P (€. 20) d€dZ = Ay Y puo.o)
n=1

n=1

Wlth pn(ﬂf7t) = fF(fl, e 7£n—17$7£n+17 e 75]\[7 Z, t) d€1, e ,gn_l,fn_;'_l, e 7§N dZ
being the probability density that particle number n is at position x at time t. The
density F(X, Z,t) is of course of too high a dimension to be of practical use, and the
goal of the next two sections is therefore to reduce the dimensionality of the problem.

3.2. Molecular chaos and mean field theory. Since the joint probability F
in (3.1) depends on the capacity variables Z as well, the usual assumption of statistical
independence (cf. [4]) has to be slightly modified. We first define the probability for
the capacity variables Z as G(Z,t) = [ F(X,Z,t) dX. Integrating out X in (3.1)
gives the initial value problem

M—-1

(3.4) (a) 8,G = / Q(2,2)G(Z',t) dZ', (b) G(Z,0) = ] 8(zm — )

m=0

for G. Note that we obtain a closed equation for G, which is an expression of the fact
that the capacities 77 evolve independently of the particles. Moreover, the individual
capacities p,, evolve independently of each other. This can be seen by the fact that
(3.4) has a solution of the form G(Z,t) = Hf\n/[;ol 9gm(2zm,1t), where the individual
probability densities g, (zm,t), for the state z,, of the processor m at time ¢, satisfy

the Boltzmann equation

(3.5) O gm(z,t) = /qm(z,z’)gm(z’,t) dz,

with the kernels g, given by (3.2)(b). We now define the conditional probability
s
density F¢(X, Z,t)dX = dP[¢ = X | @ = Z], which is the probability of the particle

=~
ensemble ¢ for a given realization of the 7. The conditional probability density is

defined by

F(X,Z,t)

(3.6) (X, Z,t)= Gz

G(Z,1) = / F(X, Z,1) dX.

Note that the definition (3.6) implies that F¢(X, Z,t)dX is a probability measure for
every fixed Z, ie., [ F¢(X,Z,t) dX =1 VZ holds. Using the definition of F*, (3.1)
becomes

(37)  AIGF)+Y 0n [oa(X, Z,HGF] = / Q(2,2'\F*(X, 2/ )G(Z' 1) dZ.

The standard molecular chaos assumption employed in particle physics (cf. [4]) now
takes the form that for a given fized realization of the i the different &, are indepen-
dently and identically distributed, i.e., that

F(X, Z,t) = ch(xn,Z, t), /fC(a:,Z, t) de =1VZ,t
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holds. The molecular chaos assumption implies therefore the ansatz

F(X,2,t) = G(Z,0) [ [ f*(wn: Z,1)

for the joint probability F' in (3.1). f¢(z, Z,t) is the conditional probability density
that any of the identical particles is at position x at time ¢ for a given state Z of the
processors. To obtain an evolution equation for f¢(x,Z,t), we integrate (3.7) with
respect to the variables x5 ...z and obtain

N

Gf“’(asl,Z,t)/vl(X, Z) I £, Z,t)das ... 2n

n=2

(3.8)0[GfC(z1, Z,t)] + Os,

:/M@wzwwmmmzw

To close (3.8) we have to compute the average mean field velocity u(x1, Z, f¢), given by

N
u(xy, Z, f€) = /vl(X, Z) ] #@n, Z,t)das . ..z,

n=2

asymptotically for large N. To this end, we recall from (2.13)(d) that for z; €
[Ym, Ym+1), the interval corresponding to processor number m, the velocity v (X, Z)
is given by

v1(X, Z) = min {V(xl), z—m(xk —x1): X > scl} .
Ay
Theorem 3.2 gives the asymptotic form of the mean field velocity u(z1, Z, f€) in the
limit for a large number of independent particles (N — 00).
THEOREM 3.2. For a given probability measure f(x) and for given constants V
and z,

N
(3.9) lim /min{V,Azy(xk —T1): T > xl} H fzyn) dra...xn

N—ocoAy—0

iy -oo(222)

holds where A = NAy is fized.

Proof. The proof is deferred to the appendix.

Thus, in the mth cell [y, Ym+1), we have that the average mean field velocity is
asymptotically given by (3.9) and can therefore be expressed by the piecewise constant
function

M-—1
(310) (a‘) th f Z Um, 'r17Zmafc)x[’ym,’merl)(xl%
m=0
() tnlor, e ) = 2 1= exp (- 22N

Therefore (3.8) reduces, under the molecular chaos assumption of many independently
distributed particles, to the mean field Boltzmann equation

(3.11) WGI + O, [ular, Z, f)Gf] = /dZ'Q(Z, Z') f (21, 2" G(Z"),
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with the mean field velocity u given by (3.10). The molecular chaos ansatz is compat-
ible with the initial condition (3.1)(b) for the probability density F'(X, Z,t). Using
(3.1)(b), we obtain the initial conditions

1

(3.12) J(@1,2,0) = 17550 (— Vx&))), G(Z,0) = ]:[ 8(2m — m)

m=0

for the evolution equations (3.11) and (3.4). Note that G still independently satis-
fies (3.4). This is essential, since it guarantees that f¢(z1, Z,t)dz; is a probability
measure, i.e., [ f¢(z1,Z,t) dzqy =1 VZ,t holds.

The probability density p,(z,t) of particle number n being at position x at time
t in (3.3) is, under the molecular chaos assumption, of the form

Pz, t) = pla,t) = /fc(:c, Z,t)G(Z,t) dZ Vn.
Since all the p,,’s are now identical, the expectation (p) is, according to (3.3), given by

(p(z,1)) = Ap(z,1).

So, the expectation (p) can be identified with the probability p up to the multiplicative
constant A, giving the total mass in the system. To obtain the evolution equation
(1.4) for the expectation (p) and the probability density p, we still have to average out
somehow the dependence of the conditional probability density f¢ on the processor-

state variables Z = (zq,...,2m—1). The evolution equation for p—and also for (p)—is
obtained by integrating out the Z-variable in (3.11). This gives
(3.13)

Op(a,t) + Bu[pU (2, 8.0)] = 0, pU(z,t,p) = / (e, Z, F)YG(Z, D) f (@, Z,1) dZ.

Because of the initial condition (3.12) for the conditional probability density f¢, the
conservation law (3.13) is subject to the initial condition

1 T
(3.14) P(@,0) = 3770 <_V(0)) '

Note that f€ still depends on all the capacity variables Z. Therefore (3.13) has to be
closed somehow by expressing f¢ in terms of p. In section 3.3 this closure is achieved
by considering a large time regime.

3.3. The large time regime. First, we note that in the setting of section 2.2
the capacities p,, can assume only two discrete values, namely p,,, = 0 and i, = ¢,
Therefore the probabilities g, (zm,t) in (3.5) are concentrated on these values, and
we have an exact solution of (3.5) given by

gm(2,t) = g (1)6(2) + g3, ()8(2 — €n).-
Inserting this into (3.5) and using the form of the integral kernels g, in (3.2)(b) gives
8(2)tgp (t) + (2 — €m)Otgp (t) = 4 (2,0) g0, (8) + G (2, €m) g (1)

= [~wm(0)8(2) + wmn(0)é(cm — Z)]ggl(t) + [~wm(em)é(em — 2) + wm(cm)é(z)}g}n(t).
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Comparing the coefficients of §(z) and §(z — ¢,,), we obtain that g% () are given as

solutions of the ODE system

(3.15)
8tgf9n = _Wm(o)ggn (t) + Wm(cm)g;n(t)v 61591%@ = wm(o)ggn(t) - wm(cm)gvln (t),

which preserves the property of g,,(z,t)dz being a probability measure, i.e., g +

gk = 1Vt holds. We now consider a regime where the on/off switches of the pro-
cessors occur very frequently compared to the overall time scale, i.e., T/ fdown 1,
W = % > 1. Thus we rescale the mean up and down times 7’ / down o5 well as
the frequencies w,, in (3.2) by r fdown _, el /down and w,, — %wm. Rescaling the
collision kernel @ in (3.11) correspondingly gives the system

(3.16)  O[GS] + 0ulule. Z, f)GF] /Q (2, 2V, 2/ )G(Z' 1) dZ,

with the rescaled collision kernel @ given, according to (3.2), by

(3.17) (a) qu (Zm, 2, H 8(zy, — 21),

m k#m
(b) @m(2m, Z’:n) = Wm(zin)[(s(cm - Z’:n — Zm) — 6(21/71 — Zm)]-

From the above derivation, we have that the probability density G(Z,t) of the proces-
sor status factors into M independent densities, supported on z,, = 0 and z,, = ¢y,
satisfying the rescaled version of (3.15). Thus, we have

M
(3.18) () G(Zt) = I] 9m(zmst),  gn(z,8) = g0 (D)8(2) + 9, ()6 (= =€),

(b) 58139971 = _WM(O)gg)n(t) + wm(cm)g}n(t), Eatgvln = Wm(o)ggz(t) - wm(cm)g}n(t)7

where the small parameter ¢ denotes the ratio of 747/@°w" to the overall time scale.
The ODE system (3.18)(b) has two dlstlnct elgenvalues namely zero and — M.
This, together with the condition that g9, + g = 1 V¢ holds, implies that the gi:t

will converge exponentially on an O(E) time scale towards their steady state

0 (o) — wm(Cm) L (o) = wm(O)
(319) gm( ) wm(O)—me(Cm)’ gm( ) wm(O)—me(Cm).

Therefore, we can, up to exponentially small terms, replace G(Z,t) by G(Z,00) in
(3.16). Note that G(Z,00) is a steady state of (3.4) and therefore satisfies

(3.20) /dZ’ Q(2,2")G(Z',00) = 0 VZ.

Replacing G(Z,t) by G(Z,c0) in (3.16), we obtain

(3.21) (a) G(Z.00){D1lS) + 0 lulw. 2, )17} = Q)
() Qalr) = [ dZ2'Q(2.2) (. 2)6(Z' ).

Expanding the conditional probability density f¢ formally in powers of € gives that,
in zeroth order, Qg[f¢] = 0 holds. Note that, because of (3.20), functions f¢ which
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are independent of Z are automatically in the kernel of the collision operator Qg in
(3.21). Theorem 3.3 states that the kernel of the collision operator consists essentially
of only such functions.

THEOREM 3.3. Any element of the kernel of the collision operator Qg defined
in (3.21)(b) is constant on the vertices of the hypercube H%:_OI [0,¢m]. So Qg[f] =0
implies that

(3.22)
fGziociemeozm) — f(z1...0.0 . 20) =0 Vm, YZ = (20,...,20M-1) GH{O,cm}

holds.

Proof. The proof is deferred to the appendix.

Theorem 3.3 allows us to compute the macroscopic velocity U(x, ¢, p) in the evo-
lution equation for the probability p in (3.13) in terms of p itself. Since in zeroth
order Qg[f¢] = 0 has to hold, f¢(z, Z,t) has to be constant on the hypercube vertices

YAS H%z_ol{(), ¢m }. In (3.13) we have to compute the flux as
(3.23) (a) pU(x,t,p) = /u(x, Z, f)G(Z,00) f(x, Z,t) dZ,
(0) plast) = [ (0. 200) dz.

Because of (3.18), G(Z,c0) is concentrated on the vertices HTAY{;Ol{O, ¢m}, where f€is
constant. Therefore the integral in (3.23)(a) factors, and we obtain

(3.24) Ula, t,p) = Uz, p) = / w(w, Z,p)G(Z, 00) dZ.

The derivation above actually computes the zero order term in a Chapman—Enskog
procedure for the Boltzmann equation (3.21). The next term would produce a diffusive
O(e) correction. However, this diffusive correction represents really only a small
correction since the mean velocity U of the zero order term is nonzero; i.e., we are
still in a primarily hyperbolic instead of a diffusive regime. We now have, in the large
time limit, closed (3.13) for the probability density p(x,t) that any of the identical
particles is at position x at time ¢. Since this density is up to the multiplicative
constant A identical to the expectation (p), i.e., (p) = Ap holds, we also obtain a
closed form equation for the expectation. This equation is of the form

(3.25) B (p(x, b)) + 0, [(p>U (x %)} = 0.

Using the initial condition (3.14) for the probability density p, we obtain that the
conservation law (3.25) is subject to the initial condition

(3.26) (p(z,0)) = ﬁ)\ <_V3(30)> .

We have now assembled all the ingredients for the main result announced in (1.4).
Computing U(z, p) in (3.24), using the form (3.10) of the mean field velocity u(z, Z, f€),
we have that in the interval [y, Ym+1), corresponding to the mth processor,

U(z,p) :/% [1exp (Ap;vnf@)] G(Z,00) dZ,  x € [Ym, Ym+1);
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holds. Using the fact that G(Z, o0) factors into a product of the g,,, and integrating
out all variables, except z,,, we obtain

U = [ 32 1= o0 (- 222D) | gn(amio) dim, € b

Zm

Using the formulas (3.18) and (3.19) for g,,(z,00), we integrate with respect to z,,
)

and replace p by %, obtaining for the velocity U (z, %) in (3.25)
(3.27)

which yields the flux function Fp = (p)U(z, %) in (1.4)(a), since wm (0)

. (@) Fem (D~
T,)Q’W holds. Note that the ratio W is not affected by the rescaling of
the mean up and down times 7/ %™ used in this section. Finally, we remove the

technicality of formulating the conservation law as a pure initial value problem, which
was used solely to keep the total mass constant in time and to define probability
densities. For x < 0 the velocities of the particles defined in section 2.2 are constantly
equal to V(0), and therefore also U(z,p) = V(0) for z < 0 will hold. The resulting
one way wave equation can be solved exactly and, using the initial condition (3.26),
we have

1

(ol 1)) = (ple =1V (0),0)) = 35A <t - VQ(UO)> for z < 0.

Because of flux continuity,

Filoos = (U ( <§>) eor = V(0) (p(0—, ) = A(®)

has to hold, which yields the boundary condition (1.4)(b). The boundary condi-
tion (1.4)(b) has to be interpreted in the following way. The flux function at influx
Fgls—o+ = (p)Ulz=0+ is, because of (3.27), bounded from above by the quantity
Tu C
this results in a flux discontinuity, and correspondingly in a é-function concentration
of the expected density (p) at the influx boundary at = 0.
Remarks.

e Equation (1.4)(a) says that the whole flux (and not just the capacity c,)

If the influx A(t) exceeds this value, as is possible in the transient regime,

. . . . . . up . .
is multiplied with the effective up-time W of processor m. This is

reasonable, since even for an empty system (p) < 1, the flow will be slowed
by shutting down the processors.

e A somewhat puzzling fact is that (1.4) does not reduce to the deterministic
conservation law (1.1) in the limit 79°“" — 0, i.e., in the case when the
processors are always on. The explanation is that the derivation of (1.4) is
based on the assumption of molecular chaos for the individual particles, and
this assumption is apparently not valid for the deterministic system.

e More precisely, it is the frequent on and off switches of many or all of the
processors which create the conditions of molecular chaos and the resulting
approximate statistical independence of the states. Numerical experiments
(not included here) have shown that the presented theory is not applicable;
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cf. the case when only one processor switches and the other processors are
simply in the on state all the time. (So 79°“™ = () holds for all but one of the
processors.)

e Note that we have made the somewhat arbitrary choice of first applying the
molecular chaos assumption in section 3.2 and then carrying out the asymp-
totics for large time scales; we could have reversed the order by carrying out
the large time scale asymptotics on the full equation (3.1) and then making
the assumption of molecular chaos on the manifold of the slow dynamics, i.e.,
on the kernel of the collision operator on the right-hand side of (3.1).

4. Numerical experiments. We now turn to numerically verifying the validity
of the approximate conservation law (1.4) for the expectation (p(x,t)). We do so
by comparing the average over realizations of the numerical solution of (1.1) to the
solution of (1.4). So, we first generate M random signals g, (¢),u = 0,..., M — 1,
as depicted in Figure 1.1, and compute the corresponding time-dependent capacity
function p(z,t) according to (1.3). For a given realization of u(x,t), the conserva-
tion law (1.1) is then solved by a standard Godunov method (see [3] for details and
cf. [12] for details on the Godunov method). This process is repeated many times for
different realizations, and one approximation to the expectation {(p(z,t)) is obtained
by calculating averages over different realizations. We compare this approximation to
the direct solution of the conservation law (1.4), also obtained by a Godunov method.
It should be pointed out that the Godunov method reduces to simple upwinding in
all cases, since the velocities always stay nonnegative. We employ only a first order
Godunov scheme since the individual realizations will develop é-function concentra-
tions as soon as the processors are turned off and p becomes zero in certain intervals.
The convergence of the first order Godunov method in this case is analyzed and doc-
umented in [3], whereas the convergence properties of higher order methods are not
so obvious. In all the example below we consider a chain of 40 processors (M = 40)
which are located in the stage interval x € [0,1]. For simplicity, we assume that
all processors have identical throughput times. This allows us to choose a constant
velocity V(z) = 1 in (1.1) and (1.4) by choosing an appropriate time scale. Thus,
T =1 is the throughput time of a part through the whole chain if all processors run
below capacity, and T' = 2 is the throughput time of an individual processor in this

10
case. We set 74P = gdown — % Vm. The processors run, on average, only half the

m
time, and we are in the large time scale regime of section 3.3 since € = % < 1 holds.

Experiment 1. In the first experiment we consider M = 40 identical processors
with a peak capacity ¢, =2, m = 0,...,39. Thus, the flux function Fg in (1.4) is
bounded by the effective capacity Tupj_% = 1. We start with an empty system
p(z,0) = 0 and use a constant influx A(¢) = 0.5, well below the effective capacity.
Figure 4.1 shows the expectation (p(z,t)) computed by averaging 200 realizations
of (1.1) and by solving (1.4). Note that we obtain a good quantitative agreement in
the size of the steady state distribution as well as in the transient behavior, i.e., the
velocity of the wave propagating from x = 0 to x = 1. From (1.4) we deduce that
the steady state density (p(x,00)) is given by the equation Fg(3,2,1, (p(x,0))) = A
or 1 —e{p(@:))/2 — (5,

Ezperiment 2. In the second experiment we keep the setup of the first experiment
but introduce a bottleneck in processors 11-20. The peak capacities c¢,, are shown
in Figure 4.2. Note that, because of our choice of mean up and down times 7,7 and
rdown the effective capacities are half the peak capacities shown in Figure 4.2. We
choose a constant influx A = 0.27. Again, Figure 4.3 shows the expectation (p(z,t))
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density tho mean field rho

F1G. 4.1. Ezperiment 1. Left panel: Density p from the deterministic conservation law (1.1)
with random capacities and constant influr A = 0.5. Averaged over 200 realizations. Right panel:
Ezxpectation (p) of the density p according to the mean field model (1.4) with constant influz A = 0.5.

peak capacities

processors

F1c. 4.2. Ezxperiment 2. Peak capacities ¢, for M = 40 processors.

density tho mean field rho

F1G. 4.3. Ezperiment 2. Left panel: Density p from the deterministic conservation law (1.1) with
random capacities and constant influr A = 0.27, 40 cells, and bottleneck in cells 11-20. Averaged
over 200 realizations. Right panel: Ezpectation {p) of the density p according to the mean field model
(1.4) with constant influx X = 0.27, 40 cells, and bottleneck in cells 11-20.

computed by averaging 200 realizations of (1.1) and by solving (1.4).

Ezxperiment 3. The promise of conservation law models for supply chains lies in
their ability to provide a relatively inexpensive way to model the transient behav-
ior of supply chains far from steady state regimes. Therefore, we perform the third
experiment for a regime which is truly far from equilibrium. We keep the setup from
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] 05 1 15 2 25 3 35

Fic. 4.4. Ezperiment 3. Transient influx density.

density tho mean field rho

F1G. 4.5. FExperiment 3. Left panel: Density p from the deterministic conservation law (1.1)
with random capacities and transient influz, 40 cells, and bottleneck in cells 11-20. Awveraged over
500 realizations. Right panel: Expectation (p) of the density p according to the mean field model
(1.4) with transient influx, 40 cells, and bottleneck in cells 11-20.

the second experiment but use a transient influx density, shown in Figure 4.4. Note
that the initial influx density A = 0.7 is below the effective capacity Tﬁﬁ%
most processors but exceeds the effective capacity for the bottleneck proceégors for
m =11,...,20. Beyond ¢ = 1 the transient influx A(¢) is then well below the effective
capacity for all processors. Thus, we will see a wave propagating through the first 10
processors 0 < x < 0.25, the buildup of queues in the next 10 bottleneck processors
0.25 < x < 0.5, and relaxation towards steady state after t = 1. Figure 4.5 shows the
expectation (p(z,t)) computed by averaging 500 realizations of (1.1) and by solving
(1.4). We observe again that the size of the peaks (the maximal queue length in front
of the processors) as well as their location in the (z,t) plane (the transient response)
are given accurately by the mean field model (1.4).

for

5. Appendix. We start by proving the evolution equation (3.1) for the joint
probability density F(X, Z,t) of the particle positions and processor states.

Proof of Theorem 3.1. Once the random variables r,, in (2.6) are chosen, the rest
of the evolution is completely deterministic. Summing up over all possible choices of
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the vector R = (r1,...,7ry) and weighting them with their probabilities gives

F(X,Z,t+ At) = / F(X",Z' ) [[ 6], + Atvn (X', Z") — )

) H[é((l — )2 + Tm(Cm = 2) = 2m)]

m

-H[é(rm — D Atwp(2),) + 6(rm) (1 — Atw,(2,))]dX'dZ'dR.

m

We formulate the above relation weakly in X by integrating against a test function

¥

X):
(L"').l)/w(X)F(X7 Zt+ At) dX = /dX'Z'R F(X', Z' (X' + AtV(X', Z"))
.H[5

(1 =rm)zi, + rm(Cm — 2p,) = 2m)]

m

-H[é(rm — D) Atwm (2)) + 6(rm) (1 — Atwp, (2))],

m

where the vector V' denotes (v1,...,vy). We Taylor-expand the terms on the right-
hand side of (5.1) in At up to first order and obtain, after some calculus,

/w(X)F(X, Z,t+ At) dX
:/dX F(X,Zat)w(x)+At/dX’F(X’,Z,t)V(X’,Z).vxw(X/)
+At/dXZ’F(X, Z' W(X)Q(Z, 7",

with the integral kernel @ given by (3.2). Letting At — 0, we see this gives the weak
form of

OF + 0y, [vn(X, Z,)F] :/dZ’Q(Z, ZhF(X,Z). 0

We now proceed to prove the form of the mean field velocity u(z1, Z, f€) in (3.10);
i.e., we prove Theorem 3.2. To prove Theorem 3.2 we will need the following auxiliary
lemma, giving the expectation of the minimum of m independent random numbers,
which are equidistributed in the interval [0, 1].

LEMMA. Let wy,...,w, be m independent random numbers, uniformly distributed
in the interval [0,1]; then the expectation of the random function min{wsy,...,wy,} is
given by
(5.2)

m
E, = min{wk:k’:l...m}Hx(OD(wk)dwl...wm:; m=1,2,...
) ) kil 5 m + 1 ) 3 ) )

where X(o,1) denotes the usual indicator function on the interval [0,1].

Proof. The proof is based on induction in m. We denote by R,,(s) the antiderivative
of the probability density of the function min{wy : k= 1,...,m}, where wq,...,wn
are m random variables, uniformly distributed in [0, 1]. So we have

R (s)ds = dPmin{wy : k=1,...,m}=3s], Rn(0)=0, R,(1)=1,
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and derive a formula for R, recursively. The derivative R/(s) is given by
R, (s) = /[0 . 6(s — min{wr, ..., wm dwy ... wm
= /[O e 6(s — min{min{wy, ..., wm-1},wm })dw; ...wn
= / 8(s — min{r,wy, PR, _1(r) drwpm,
[0,1]

= /[0 1]Q[H(r —wWn)0(s — wm) + H(wy —7)8(s — 1) RL,_1(r) drw,,

1 1
= / H(r —s)R.,_,(r) dr + R;n_l(s)/ H(wm — 8) dwp,.
0 0
Computing these integrals gives, because of R,,_1(1) = 1, the recursion

Ry, (s) =1=Ru1(s) + (1= s)R;, () = d%[s + (1= s)Rm-1(s)],

and because of R,,,(0) =0, Vm we obtain the recursive formula
(5.3) Ry(s)=s+(1—5)Rmn-1(s), Ri(s)=s.

Solving the recursion (5.3) via induction gives Ry, (s) =1 — (1 —s)™, m =1,2,....
The expectation E,, is now given by

1 1 1
1
Em:/o sR;n(s)ds:l—/O Rm(s)dsz/o(l_s)mdS:m' O

With the aid of the above lemma we are able to prove the mean field result of
Theorem 3.2.

Proof of Theorem 3.2. In order to prove (3.9), we have to compute the limit of
the quantity

N
u(z1,2,V, f) :/min{V,Azy(gc;C — 1), T > T1, k:2...N} Hf(acn) dxs ... 2y
n=2

as N — oo, Ay — 0 with NAy = A remaining constant, for a given probability
measure f and constants z and V. wu can be interpreted as the expectation of the
quantity min{V, Aiy(xk —x1), T > x1, k= 2... N}, where zs,...,zy are random
variables independently and identically distributed according to the measure f(x).
We note that the variable zj; contributes only to the minimum if 7 < xx < 1 + %
holds. For any k = 2,..., N let Ayp denote the probability that xy € (x1,21 + %)
holds. Clearly, p is given by
AyV(x)

1 et ~ Vif(z1)
Pffy . f(s)dsz

+ O(Ay),

and the probability that none of the xx, K =2,..., N, is in the interval, i.e., the prob-
ability that u = V holds, is given by (1 — Ayp)¥ ~1. We now compute the probability
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Pm that of the N — 1 variables o, ...,z N precisely m > 1 lie in the interval. p,, is
given by

N-1 . CNelem
(5.4) Pm = ( - )(Ayp) 1= AypV -t

where the binomial coefficient denotes the number of possible ways to choose m vari-
ables, and the other terms denote the probabilities that, for such a choice, the chosen
m lie in the interval and the others do not. In the case that precisely m variables
lie in the interval, their probability distribution can be replaced by the conditional
probability, given that we already know that they are in the interval. This conditional
probability is given by

AyV
q(s)ds = dP {mk =s|a € <x1,x1 + 'Z)]
or
f(s)
59 06) =Xy 221 (VR
Thus we obtain
N-1 5 m
u(zy,2,V, f) —pOV—|—mZ_:1pmAy/min{sk —x1: k= 1,...,m}kli[1q(sk) dsy ... Sm.

Substituting s = 21 + %wk in the integral gives

N-1

u(zy,2,V, f) =poV + Z pmV/min{w;c s k=1,...,m}
m=1
. H [szq <sc1 + szwkﬂ dwy ... wy,.

k=1

Computing the probability density according to (5.5) gives

AyV AyV 1% r + 2y
Lq <x1 + 4 wk> f(l—]k) = XJ[0,1] (wk) + O(Ay).

=~ X(o,1] (wk) 7

Thus, the wy, are up to order O(Ay) uniformly distributed in [0, 1], and we have

N-—1
(5.6) (w1, 2, Vo f) = poV + 3 puV B + O(Ay)],

m=1

with the integral F,, given by

E,, = /min{w;C ck=1,...,m} H X(0,1)(Wr) dwr ... Wiy
k=1

E,, is the expectation of the minimum of m uniformly distributed random variables

and, according to the auxiliary lemma (5.2), E,, = #ﬂ holds.
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Using this result in (5.6) gives
N-1 1
V.f)=V m | —— + O(Ay)| .
s V)=V 3 o | g o)

Because of (5.4) we have that Zm 0pm = 1 holds. Therefore, the O(Ay) term can
be neglected, although it appears inside the summation, and we have

-1 =\m NANN—-1—-m
(5.7 u(z,2 V. f) = Z T ( m )(Ayp) (1= Ayp)" 17" + O(Ay).
A simple application of the binomial theorem yields that

1 N_ 1 ambelfm . (a’+b)N - bN va b
— m+1 m o Na ’

N—-1

holds. With the obvious choice of a and b, we obtain from (5.7)

1—(1-Ayp)N 1—e P
V.f)=V———— 4+ O0(Ay) = V——— + O(Ay).
(Remember A = NAy = const holds!) Together with p = @ + O(Ay), this gives

(3.9). |

Finally, we prove the structure of the kernel of the collision operator Qg in
Theorem 3.3.

Proof of Theorem 3.3. From (3.17) we have that the collision kernel @ of the

operator Qg is of the form

qu (zms> 20) || 62k = 21),
k#m

Gm(2m, 2,) = wm(z;n)[(S(cm — Zm — 2p,) — 8(21, — 2m)]-

At the same time, we have from (3.18) that the steady state G(Z, o) of the processor
state distribution is supported only on the hypercube Hf\:{:—&{o, cm}. So G(Z,0) is
of the form

00) = [[m(zm)s  gm(zm) = 906(2m) + 93,6 (2m — Cm)-
Inserting this into the definition (3.21)(b) of the collision operator Qg gives
1= 3 [ anlom 2 650(0) + ghd e~ enF(2) T] 8l ~ (et a2
m k#m
Integrating out all variables except 2/, in each term of the sum above yields

— Z/qm(zm,z;n)[gfné(z;n) + gL 82 —en)f(z1... 2 . 2n) d2), H 9k (2k)

m k#m

= Z[qm(znn 0) g f (210201) + Gon (2 Em) G f (21 -+ €+ 21)] H 9 (2k)-
m k#m
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Using the form (3.17)(b) of the individual kernels g, gives

Qclf] =D {wm(0)[8(cm — 2m) — 8(zm)lgo f(z1-..0. .. 2n1)

m

Wi (€n)[6(2m) — 6(cm — 2m)|gh F(21 .. Cm - 201)} X H g (zk) -
k#m

Using the form (3.19) of the coefficients g2, (00) and g}, (c0) of the steady distribution,
and collecting terms, gives

Qalf] = 3 ) is(c,, - 2,) — o(e)

Afz 0o zn) = fz 2] [ oelze) -

k#m

Therefore Qg[f] can vanish identically VZ only if

flzroocemeoozpm) — f(z1...0...2p) = 0 Vm, VZGH{O,cm}

holds. 0
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CREEP, RECOVERY, AND WAVES IN A NONLINEAR
FIBER-REINFORCED VISCOELASTIC SOLID*

M. DESTRADET AND G. SACCOMANDI#

Abstract. We present a constitutive model capturing some of the experimentally observed
features of soft biological tissues: nonlinear viscoelasticity, nonlinear elastic anisotropy, and nonlinear
viscous anisotropy. For this model we derive the equation governing rectilinear shear motion in the
plane of the fiber reinforcement; it is a nonlinear partial differential equation for the shear strain.
Specializing the equation to the quasi-static processes of creep and recovery, we find that usual
(exponential-like) time growth and decay exist in general, but that for certain ranges of values for
the material parameters and for the angle between the shearing direction and the fiber direction,
some anomalous behaviors emerge. These include persistence of a nonzero strain in the recovery
experiment, strain growth in recovery, strain decay in creep, disappearance of the solution after a
finite time, and similar odd comportments. For the full dynamical equation of motion, we find kink
(traveling wave) solutions which cannot reach their assigned asymptotic limit.
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1. Introduction. Many biological, composite, and synthetic materials must be
modeled as fiber-reinforced nonlinearly elastic solids. Hence, the anisotropy due to the
presence of collagen fibers in many biological materials has been studied extensively
within the constitutive context of fiber-reinforced materials by several authors (see,
for example, Humphrey (2002) and the references therein.) In nonlinear elasticity, the
macroscopic response of an anisotropic material is given in terms of a strain-energy
function, which itself depends on a set of independent deformation invariants. This
formulation captures a great variety of phenomena related to the behavior of fiber-
reinforced materials, e.g., the examination of fiber instabilities, using loss of ellipticity
(see Merodio and Ogden (2002), (2003), and the references therein).

Generally speaking, a reinforcement is added to a given material with the aim of
avoiding a possible failure under operating conditions. Therefore it is important to
develop a detailed study showing how to introduce reinforcements into a material in
order to control the possible development of a boundary layer structure. Our goal here
is to provide a first step in this direction. We make several simplifications and ad hoc
assumptions. First, we limit ourselves to the consideration of only one fiber direction
and second, we consider a one-dimensional motion in the bulk of an infinite body.
Here the motion is linearly polarized in a direction normal to the plane containing the
direction of propagation and the direction of the fibers. We acknowledge that more
complex anisotropies, geometries, and couplings arise in biomechanical applications.
For instance, the mechanics of the aorta involves two families of parallel fibers, tri-
axial motions, and blood flow/arterial wall coupling. However, we argue that some
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major characteristics of biological soft tissues are encompassed in the choices of trans-
verse isotropy, of infinite extent, and of a motion governed by an ordinary differential
equation. Indeed the anisotropy due to the presence of one family of parallel fibers
complicates the governing equations to an extent which is only marginally less than
that due to the presence of two families of parallel fibers. Also, soft biological tis-
sues are nearly incompressible, and a (compressive) longitudinal wave is difficult to
observe; it thus make sense to focus on transverse shear motions, which are useful in
imaging technologies. Our third assumption is that the elastic strain energy is the
sum of an isotropic part and an anisotropic part (called a reinforcing model), in order
to model an isotropic base material augmented by a uniaxial reinforcement in the
fiber direction. Albeit strong, this constitutive assumption is now common and used
by many authors (e.g., Triantafyllidis and Abeyaratne (1983), Qiu and Pence (1997),
Merodio and Ogden (2002)). Finally, we assume that the solid is viscoelastic, and
here we assume not only Newtonian viscosity (proportional to the stretching tensor)
but also fiber-oriented (anisotropic) viscosity. That latter assumption is strong but
can be removed from our calculations by taking a constant to be zero. We believe that
it might be useful in modeling the well-documented physiological effect of stretching
training in sport medicine, which is that it affects the viscosity of tendon structures
but not their elasticity (Taylor et al. (1990); Kubo, Kanehisa, and Fukunaga (2002)).

We divide the article into the following sections. Section 2 presents the constitu-
tive model and the derivation of the equation governing the rectilinear shear motion.
As expected, this equation is nonlinear in the shear strain: it is a second-order partial
differential equation, with cubic nonlinearity. To initiate its resolution, we first look
at the quasi-static experiment of recovery in section 3. Then we have a first-order
ordinary differential equation, and we find that it can lead to unusual behaviors when
certain conditions (strong anisotropy, large angle between the shearing direction and
the fibers) are met. The same is true of the case of creep, treated in section 4. Basi-
cally, it turns out that the nonlinearity introduces ranges of material parameters and
angles for which an expected behavior—say, strain growth in creep—can be turned
on its head, and lead to strain decay with time in creep, say. In the course of the
investigation we develop synthetic tools of analysis which highlight the boundaries of
these ranges. They also guide us for the resolution of the full dynamical equation of
motion, which we tackle in section 5 for traveling wave solutions. Again the solution
may behave in an unexpected way, provided that the anisotropy is strong enough and
the fibers are in compression. Finally, section 6 recaps the results and puts them into
a wider context.

2. Basic equations.

2.1. The viscoelastic anisotropic model. We describe the motion of a body
by a relation x = x(X, t), where x denotes the current coordinates of a point occupied
by the particle of coordinates X in the reference configuration at the time t.

We introduce F = 9x/0X, the deformation gradient, and C = FTF, the right
Cauchy—Green strain tensor. We focus on incompressible materials for which all
admissible deformations must be isochoric, or equivalently, for which the relation
det F = 1 must hold at all times.

The body is reinforced with one family of parallel fibers. Our first assumption
is that the unit vector ag, giving the fiber direction in the reference configuration, is
independent of X. The stretch along the fiber direction is v/ag-Cag = /a - a, where
a = Fay.

We may now introduce the elastic part of our constitutive model. We consider
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the so-called standard reinforcing model, which is a quite simple generalization to
anisotropy of the neo-Hookean model (Triantafyllidis and Abeyaratne (1983); Qiu
and Pence (1997)). For the standard reinforcing model, the strain-energy density is
given by

2.1) W= g (I = 3) +70(Is — 1)?], where I; =tr C, I, = a,-Cap = a-a,
Here p > 0 is the infinitesimal shear modulus of the isotropic neo-Hookean matrix,
Yo > 0 is the elastic anisotropy parameter, and the invariant I, measures the squared
stretch in the fiber direction. Mechanical tests show that the neo-Hookean strain
energy function p(I; —3)/2 fits uniaxial data rather well for arteries (Gundiah, Ratcliffe,
and Pruitt (2007)), while the anisotropic term ~o(y — 1)? is adequate to describe a
reinforced material which penalizes deformation in the fiber direction (Merodio and
Ogden (2003)).

The spatial velocity gradient L(X,t) associated with a motion is defined as L =
grad v, where v = 9x/0t is the velocity, and the stretching tensor D is defined as
D = %(L + LT). For incompressible materials, tr D = 0 at all times. Newtonian
viscous fluids possess a constitutive term in the form 2vD, where v is a constant. For
our special solid, we modulate the Newtonian viscosity with an anisotropic term, by
replacing v with v[14y; (I4—1)], where 71 > 0 is the viscous anisotropy parameter. We
show in the course of the paper that this simple choice of anisotropic viscosity captures
the essential characteristics of attenuation in soft biological fibrous tissues. According
to Baldwin et al. (2006), ultrasonic measurements of freshly excised myocardium show
that “the attenuation coefficient was found to increase as a function of frequency in
an approximately linear manner and to increase monotonically as a function of angle
of insonification from a minimum perpendicular to a maximum parallel relative to the
direction of the myofibers.”

We are now ready to give the complete Cauchy stress tensor of our viscoelastic,
transversally isotropic material as

(2.2) T=—-pIl+pB+v(y—a®a]+ 2v[l + (I, — 1)|D,

where the p is the yet indeterminate Lagrange multiplier introduced by the incom-
pressibility constraint, and B = FFT is the left Cauchy-Green tensor.

2.2. Shear motion. We take a fixed orthonormal triad of vectors (i, j, k), and
call X, Y, Z the reference coordinates; hence X = Xi+ Yj+ Zk. The triad is such
that the unit vector in the fiber direction lies in the XY plane; hence,

(2.3) ag = cos #i + sin 0j

(say), where 6 € [0, 7] is the angle between the X-axis and the fibers.
We then consider the rectilinear shearing motion,

(2.4) z=X+ulY,t), y=Y, z=12

where the antiplane displacement wu is real and finite. Then the components of the
gradient of deformation F and of its inverse are given by

-U

7 )

1U0 1 0
(2.5) F=(010 F'l=1010
001 001
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F1G. 2.1. Variations of the squared stretch in the fiber direction: (a) with the angle and (b)
with the shear. When Iy > 1, the fibers are in extension; when Iy < 1, they are in compression.

where U = 9u/9Y is the amount of shear. The left and right Cauchy—Green tensors
are thus

U?+1U0 1 U 0
(2.6) B=| U 10}, C=|UU*+10|,
0 01 0 0 1

respectively, from which the expressions of the invariants I; and 14 follow,
(2.7) I, =34+U?% Iy=1+Usin20+ U?sin?4.

Figure 2.1(a) shows the variations of I, with 6 for several values of U between 0 and 1.
When I, > 1 the fibers are in extension, and when I, < 1 they are in compression; the
figure shows that this latter behavior occurs in a smaller and smaller angular range,
but is more and more pronounced, as the amount of shear is increased. Conversely,
Figure 2.1(b) shows the variations of Iy with U for several values of 6; when 0 < 6 <
7/2, the fibers are always in extension, and when 7 —tan=1(2) = 2.034 < 6 < 7, they
are always in compression for 0 < U < 1. We refer to the paper by Qiu and Pence
(1997) for similar figures and closely related discussions.

In the deformed configuration, we find that a = (cos@ + Usin)i + sinéj. The
remaining tensors required to compute the Cauchy stress tensor (2.2) are

(cosf + Usin®)?  (cosf + Usinf)sind 0
(2.8) a®a= [(cosf +Usinf)sinf sin? @ 0
0 0 0

ol o
co &S

|~
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so that the nonzero components of T are T33 = —p + p and

T = —p+ p(1+U?) + pyo(Iy — 1)(cos 6 4 Usin 6)?,
Tyy = —p + pu+ pyo(Is — 1) sin® 6,
(2.10)  Tio = pU + pryo(Is — 1)(cos O + Usinb) sin € + v[1 + v1(Ly — 1)]Us.

Now the equations of motion div T = pxy reduce to the two scalar equations
—pz + T2,y = puy and —py + Tho = puy. Differentiating the former with respect to
y and the latter with respect to x, and eliminating p,,, we arrive at a single governing
equation for the rectilinear shear motion:

(2.11) pUs = Uy, + pyo sin 0 [U(2 cos 6 + U sin 0)(cos 6 + U sin 0)l,,
+ Uty + vy18in 0 [UU¢(2cos 6 + Ussin6)], .

Using the scalings £ = ut/v and § = y/L (where L is a characteristic length to be
specified later on a case-by-case basis), we write this equation in dimensionless form as

(2.12) Uz = Uz + o sin® 0 [U(2 cos 0 + U sin 0)(cos 6 4 U sin 0);55
+ Uszp +718in0 [UU(2 cos 0 + U sin §)]

Y gy’
where ¢ = puL?/v%. This is the main equation of our study. For convenience we drop
the tildes in the remainder of the paper. We also introduce the functions

f(70,U,0) =1+ ~osin? (2 cos 6 4 U sin ) (cos 6 4 U sin 6),
(2.13) g(71,U,0) =1+ Usinb(2cosf + Usinb),

so that (2.13) is now
(214) el = [Uf(707 Ua 0) + Utg(717 Ua 0)]yy :

3. Nonlinear anisotropic recovery. Our first investigation is placed in the
quasi-static approximation, where we study the influence of elastic anisotropy and
viscous anisotropy on the classic experiment of viscous recovery. We imagine that the
material is sheared and that at ¢ = 0 the shear stress is removed: T12(0) = 0. Here
the characteristic length L is the displacement at ¢ = 0 from which the material will
relax to the unstressed state.

In the quasi-static case, we neglect the inertia term of (2.13) and may thus inte-
grate it twice to give the following first-order ordinary differential equation:

(3.1) Uf(v,U,0)+ Ug(n,U,0) =0.

Here we take the constants of integration to be zero, according to the context of
recovery, as explained above. We then solve the equation as

g(’YlvUv 0)
3.2 IILZT) g7 = ¢ + const.,
( ) / Uf(’}’(h U? 6) "

where the constant is computed so that U(0) = 1.

When 6 = 0, the fibers are not active with respect to the deformation, and we

recover the classical result of isotropic viscoelastic recovery: U(t) = et
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Fic. 3.1. Time recovery function when 6 = w/2: (a) v1 =0 and v =1, 5, 100; (b) 70 =5 and
~v1 = 0.5, 1.5, 2.5. The recovery function for an isotropic solid is also plotted (dotted curve).

When 6 = 7/2, the anisotropic effects are at their strongest. In that case the
integral above has a compact expression, and we find

(3.3) {HVOU? e

=e
1+

We now take 73 = 0 (no anisotropic viscosity) and vo = 1,5, 100 (recall that the fibers
are inextensible in the limit 79 — 00). Figure 3.1(a) shows that as the anisotropic
effect becomes more pronounced, the recovery is quicker; in other words, the influence
of elasticity becomes stronger as g increases. Then we fix vy at 5, for instance, and
look at the role played by the anisotropic viscosity, by taking in turn ~; /v = 0.5,
1.5, 2.5. We find in Figure 3.1(b) that, as expected, the viscous recovery is slower as
71 increases.

When 6 # 0, 0 # 7/2, other behaviors arise, which call for a detailed analysis. In
particular, the exponential, or near-exponential, decay toward zero as t — oo is not
necessarily ensured, especially when the anisotropic effects are strong and the fibers
are oriented at a large angle 6 > /2. Clearly, Uy = 0 when f = 0, according to (3.2).
Also, Uy < 0 when f and g are of the same sign, and U; > 0 when f and g are of
opposite signs. These two functions are quadratic in U. If they have no real roots in
U, then they are both of the positive sign and U; < 0. (This is clearly the case in the
region 0 < 6 < 7/2.) If they have real roots, then they may change sign, and U might
be an increasing function of ¢t. This happens for f and for g when 7/2 < 6 < 7 and

4

3.4 >
(34) o= cos2 fsin® @

>
M= o529’
respectively. In Figure 3.2, the region C corresponds to the first inequality, where the
delimiting curve has a vertical asymptote at 6 = 7/2, a vertical asymptote at 8 = m,
and a minimum at 6 = /4, 9 = 16; we recall that Qiu and Pence (1997) showed that



86 M. DESTRADE AND G. SACCOMANDI

RATIG

o 1
40 -
30
©
20
10
®
o 0.5 1 15 2 25 3 ©

F1c. 3.2. Recovery: regions where the sign of Uy may change.

when g > 16, “simple shear at certain fiber orientations involves negative shear stress
in the shearing direction for certain positive shears.” The region B corresponds to the
second inequality, where the delimiting curve has a vertical asymptote at § = 7/2 and
an horizontal asymptote at v; = 1. In the region A, neither inequality is satisfied.

3.1. Weak anisotropy. First, we take both vy and 7; in region A. This is the
simplest case because f and g are then both positive, and so U; is always negative
(damped recovery). We took several representative examples in this region (say,
0 = w/4, v0 = 20, 1 = 1) and checked, through integration and implicit plotting,
that the graphs are indeed of the same nature as those in Figure 3.1.

3.2. Strong elastic anisotropy. Second, we take ; in region A, by fixing it at
v1 = 1, say. In that region, g > 0 always, and thus the sign of U, is the opposite of the
sign of f. Then we take vy = 20, which is above the minimum of region C. In Figure
3.3, we plot the locus for the values of U as functions of # such that f(20,U,0) = 0.
Outside the resulting oval shape, f > 0, and inside, f < 0. We also plotted the line
U = 1, which intersects the oval at 0, = 2.136 and 0. = 2.221. Recall that
U0)=1.

When 0 > 0,,.x, U(t) starts at 1 and decreases because f > 0 so that U; < 0; as
U decreases toward 0, U; tends to zero according to (3.2)1, but takes an infinite time
to do so, according to (3.2)2; hence U = 0 is a horizontal asymptote and the recovery
is “classical”; see plot (i) in Figure 3.3, traced at 6 = 2.4 (notice, however, that the
recovery is not exponential because the second derivative of U clearly changes sign as
t increases, in contrast with e™?, traced in dotted lines).

When Oyin < 0 < Omax, U(t) starts at 1 and then grows until it hits the upper side
of the oval, taking an infinite time to do so; then this upper bound gives a horizontal
asymptotic value, above the initial value (see plot (ii) in Figure 3.3), traced at § = 2.2.
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F1G. 3.3. Types of time recovery functions for yo = 20, v1 = 1 (strong elastic anisotropy). The
amount of shear U starts at 1 for t = 0. Outside the oval shape, Uy < 0 and U decreases as in (i)
and (iv): decay toward zero; and in (iil): decay toward a value > 0. Inside the oval shape, Uy > 0
and U increases as in (ii): growth toward a value > 1. The recovery function e~t for an isotropic
solid is also plotted (dotted curves).

When 6, < 0 < Oin, where 6, = 2.124 is the angle at which the oval plot has a
vertical tangent, U(t) starts at 1 and then decreases until it hits the upper side of the
oval, below 1 but above 0; then this lower bound gives a horizontal asymptotic value,
above zero (see plot (iii) in Figure 3.3), traced at 6 = 2.125.

Finally, when 6 < 6,,, U(t) starts at 1 and then decreases until zero; then this
lower bound gives zero as a horizontal asymptotic value (see plot (iv) in Figure 3.3),
traced at # = 2.05. Notice that the second derivative changes signs three times as ¢
increases.

3.3. Strong viscous anisotropy. Third, we take g outside the C region, by
fixing it at 79 = 1, say. In that region, f > 0 always, and thus the sign of U, is
the opposite of the sign of g. Then we allow ~; to be in region B, and thus allow g
(and U;) to change sign with increasing 6, by taking v, = 3.0, say. In Figure 3.4, we
plotted the values of U as functions of 6 such that ¢(3,U,#) = 0 and obtained the
thick-line shape. Outside the shape, g > 0, and inside, g < 0. We also plotted the
horizontal line U = 1, which intersects the shape at 0,,;, = 2.356 and 0,,,, = 2.820,
and the vertical line 8 = 6,, = 2.186, which is tangent to the shape.

Now when 6 < 6, or 0 > Onax, U(t) starts at 1 and decreases until zero; as
U — 0, the denominator in the integral tends to zero, indicating that it takes an
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F1G. 3.4. Types of time recovery functions for vo = 1, y1 = 2 (strong viscous anisotropy). The
amount of shear U starts at 1 fort = 0. Outside the thick-line shape, Ux < 0 and U decreases toward
zero as in (i) and (iv). Inside the thick-line shape, Uy > 0 and U increases rapidly as in (ii), until
it ceases to exist. There is also an angular region O, < 0 < Oy where U decreases rapidly until
it ceases to exist; see (iii). The recovery function e~! for an isotropic solid is also plotted (dotted
curves).

infinite time to do so; hence, zero is a horizontal asymptote in these cases. To draw
Figure 3.4(i) we took 6 = 3.0, and for Figure 3.4(iv) we took § = 2.1; both graphs
show a somewhat classical decay with time.

However, when 6,1, < 0 < Omax, U(t) starts at 1 and then grows because U > 0
inside the thick line shape. Eventually U hits the upper face of the shape, where
g = 0; then by (3.1), either Uf = 0 or Uy — oo. Clearly, the first possibility is
excluded because U # 0 when it is larger than 1, and f # 0 when ~yq is outside the C
region. It follows that U grows and hits the upper face of the shape with a vertical
asymptote after a finite time (and then stops because it cannot increase further since
U; < 0 outside the shape, it cannot remain constant since U; # 0 on the shape, and
it cannot decrease since U; > 0 inside the shape). Figure 3.4(ii) shows such behavior
for U(t), traced at 6 = 2.4.

Finally, when 6, < 6 < Ouyin, U(t) decays from 1 until it hits the shape from
above after a finite time; see Figure 3.4(iii), traced at § = 2.2. Notice how quickly
the final value is reached, compared to the isotropic exponential recovery.
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3.4. Strong elastic and viscous anisotropies. In the case where both ~y and
~1 are in the region C, any combination and overlaps of the thick curves presented in
Figures 3.3 and 3.4 may arise. The tools presented in the two previous subsections are
easily transposed to those possibilities. A special situation arises when the locus of
f = 0 intersects the locus of g = 0; then, the numerator and the denominator in (3.2)
may have a common factor so that the integrand simplifies and a regular behavior
may appear. This situation is, however, too special to warrant further investigation,
and we do not pursue this line of enquiry.

4. Nonlinear anisotropic creep. Our second investigation is again placed in
the quasi-static approximation, where we now study the influence of elastic anisotropy
and viscous anisotropy on the classic experiment of viscous creep. As the resulting
analysis is similar to that conducted for recovery, we simply outline the main results.

We imagine that the material is sheared and that the shear stress is maintained:
Ty2(00) # 0. Here the characteristic length L is an asymptotic value of the displace-
ment. We neglect the inertial term of (2.13) and integrate it twice to give the ordinary
differential equation

(4.1) Uf(7,U.0) + Urg(m1,U,0) = const.,

where we took the constant of the first integration to be zero and the constant of the
second integration to correspond to the applied (constant) shear stress, as is usual in
the creep problem. More specifically, this constant is taken so that U(oo) = 1, and so
is equal to f(vo0,1,6); it follows that the equation above can be written as

(42) h(707Ua 0)(U7 1)+g(71aUa Q)Ut = Oa
where h is defined by

h(’YOa U, 9) = [Uf(’VO’ U, 9) - f(707 L 9)]/(U - 1)
(4.3) =1+ yosin?O[1 + cos? 0 + (U + 1) sin (U sin 6 + 3 cos §))].

We then solve the equation as

g(,)/laUa 0)
4.4 dU = —t t.
(44) / (U - Dh(ro. 0.6)  const.,

where the constant is computed so that U(0) = 0. Hence the equations governing
creep are almost identical to those governing recovery, with the difference that f is
now replaced by h.

Here we are mostly concerned with the question of how, if at all, a state of
shear can be reached such that, once removed, the unusual recovery behaviors of
the previous section emerge. Thus we concentrate on strong anisotropic effects, with
emphasis on strong elastic anisotropy (where the new function h is involved). We
traced the regions where g and h, and thus U;, may change signs and found that
the resulting graph is similar to that of Figure 3.2, with the main difference that the
minimum of region C is now located at § = 37/4 and 9 = 4. Thus unusual behavior
in creep may occur at much lower levels of elastic anisotropy than in recovery (where
the minimum is at 9 = 16). We recall that Qiu and Pence (1997) showed that when
Yo > 4, “simple shear at certain fiber orientations involves a nonmonotonic relation
between the shear stress in the shearing direction and the amount of shear.”
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Fi1G. 4.1. Types of time creep functions for vo = 20, yv1 = 1 (strong elastic anisotropy). The
amount of shear U starts at 0 for t = 0. Outside the thick-line shape, Uy > 0 and U increases as
in (1) and (v): growth toward 1, and as in (ii) and (iv): growth toward a value below 1. Inside the
thick-line shape, U decreases as in (iii): decay toward a negative value. The creep function 1 — e~ !
for an isotropic solid is also plotted (dotted curves).

4.1. Strong elastic anisotropy. We begin with the case where h plays a major
role, that is, when g is greater than 4. For the purpose of direct comparison with
the recovery problem, we take v9 = 20 and 7; = 1, as in section 3.2. Figure 4.1
displays the curve where h(20,U,60) = 0. Outside the thick-line curve, U; > 0, and
inside, U; < 0. The curve intersects the line U = 0 twice, at 6, = 2.136 and at
Omax = 2.221. These are the values at which f = 0 intersects U = 1 in section 3.2 (see
the thin-line shape), because by (4.3), h(20,0, Omin) = f(20,1,0min) = 0 and similarly
h(20,0,0max) = f(20, 1, 01max) = 0. We also display the vertical lines 6 = 6, = 2.664,
where h = 0 intersects U = 1, and 0 = 6, = 2.042, where h = 0 has a vertical
tangent. Recall that for creep, U(0) = 0.

When 0 > 0y, U(t) starts at 0 and grows toward 1; then Uy tends to zero according
to (4.2) but takes an infinite time to do so; hence U = 1 is a horizontal asymptote and
the creep is “classical.” See plot (i) in Figure 4.1, traced at § = 2.7 (the exponential
creep function of isotropic visco-elasticity (1 —e™!) is shown by the dotted line).

When Opax < 0 < Oy or when 6y, < 0 < Opin, U(t) starts at 0 and then grows
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until it hits the oval shape, taking an infinite time to do so; then this upper bound
gives a horizontal asymptotic value, below 1; see plot (ii) in Figure 4.1, traced at
0 = 2.5, and plot (iv), traced at 8 = 2.05.

When Opin < 0 < Omax, U(t) starts at 0 inside the oval shape, and thus it decreases
until it hits the lower side of the shape, taking an infinite time to do so; then this
lower bound gives a horizontal asymptotic value, below 0; see plot (iii) in Figure 4.1,
traced at 0 = 2.17.

Finally, when 6 < 6,,, U(t) can again grow toward 1; see plot (v) in Figure 4.1,
traced at # = 2.0. Notice, however, that the concavity of the curve changes as ¢
increases.

4.2. Strong viscous anisotropy. Here we remark that the function governing
the strength of the viscous anisotropy, namely g, is the same for creep as it is for
recovery. Thus, the region where U; might change sign because of strong viscous
anisotropy is the region B of Figure 3.1. Also, the locus of points where g = 0 is
typically displayed by the thick-line shape of Figure 3.4, and because g(v1,0,60) =1 >
0 always, this curve never crosses the abscissa U = 0. It follows that there is only one
situation where viscous anisotropy leads to anomalous creep, when 0,;, < 6 < Opax;
then U(t) starts at zero and grows toward the thick-line shape, which it reaches after
a finite time with a vertical asymptote.

4.3. Prestretch and nonlinear anisotropic creep. Here we show how anoma-
lous creep can be avoided (amplified) by stretching (compressing) the solid prior to
the shear. Hence, instead of (2.4), we consider the motion

1 1
(4.5) r=A"2X+Y,t), y=XY, z=A"2Z

The following decomposition of the associated deformation gradient shows that the
solid is stretched by a ratio A in the Y direction:

(46) F = F2F1, where Fz =

OO =

U
1
0

= o O
!
i
|

(Note that FoF; # F1Fa.) The kinematic quantities of section 2.2 are modified
accordingly. In particular,

1
(4.7) Iy = A "tcos? 0 4+ \2sin? 0 + UA2 sin 20 + U?\? sin® 6.

The end result is that the differential equation governing creep is changed from (4.2)
to

(4.8) W (90, U,0)(U = 1) + g* (71, U, ) Uy = 0,
where A* and ¢* are defined by

h’\(’yo7 U,0) = \? {1 + Yo sin? @[2A% sin? @ + 3A "' cos? § — 1
+ (U +1)sinf(Usinb + 3cos )]},

1
(4.9) ¢ (71,U,0) =1+~ (Atcos? 6+ A2sin® 6 — 1 + U2 sin 20 + U? A% sin” 6).

Figure 4.2 shows the loci of h* = 0 in the case of a strong elastic anisotropy (yo = 30,
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2.5

1.5

0.5+

-0.5

Fi1G. 4.2. Effect of prestretch on time creep functions for v9 = 30, y1 = 1 (strong elastic
anisotropy). The amount of shear U starts at 0 for t = 0. Inside the thick-line shapes, U decreases;
this situation may arise when the solid is not prestretched (A = 1) or when it is compressed (A = 0.8).
Outside the thick-line shapes, Uy > 0 and U increases; this situation may arise when the solid is in
extension (A =2, A =2.7).

v = 1), for several values of \. The figure clearly shows that the prestretch A can be
used to control the shape of these curves: if the solid is put in compression first, and
sheared for creep next, then the region of potential anomalous creep is increased; if
it is put under tension, then the area of the region rapidly decreases and eventually
disappears altogether.

5. Nonlinear traveling waves. So far we have looked at how the presence of
elastic and viscous fibers affects some quasi-static processes. Typically, creep and
recovery connect one state of constant shear (initial) to another (final). Now we
examine another class of solutions connecting two constant states of shear, this time
dynamically, by looking for traveling wave (kink) solutions.

The mathematical theory of one-dimensional transverse traveling waves in isotropic
viscoelastic materials with a Kelvin—Voigt type of constitutive equation is well groun-
ded; see, for example, Nishihara (1995) for a clear and complete mathematical ap-
proach, or Jordan and Puri (2005) for a specific and explicit example. A traveling
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wave is a solution to the equations of motion in the form
where c is the constant speed; also, U is such that

(5.2) lim U()=Us,  lim U(€)=Us,

£——o0

where Uy, and Ug are distinct constants. In what follows, we focus on the case where
Ur =0, Ug = 1. This case is general up to a rigid translation. Here we take the
displacement corresponding to Ug as the characteristic length L.

Substituting (5.1) into (3.2), we obtain

(5.3) ePU" = (Uf—cU'g)",
and then by integration,
(5.4) cU'g = (f —ec®) U + const.

By the requirement Uy, = 0, the constant must be zero. By the requirement Ui = 1,
we have

(5.5) f(v0,1,0) = ec?.

This equation prompts three remarks.
First, we must ensure that f(yo,1,6) > 0. Recall that, according to (2.13),

(5.6) F(70,1,0) = 1 4 o sin? 0(2 cos # + sin @) (cos 6 + sin 6),
and so
(5.7) df(70,1,0)/060 = ~o sin 0(4 cos® 6 + 9sin § cos®  — 3sin® 0).

In Figure 5.1(a) we plot the variations of [f(9, 1,6) — 1] /70 with 6, as well as those of
its derivative with respect to @ (scaled to 1/8). Clearly, the function (5.6), viewed as
a function of 6, has an absolute minimum and an absolute maximum. The minimum
is at é, say, such that tan @ is that root of the cubic 4 + 9z — 323 = 0 corresponding
to /2 < 0 < m; numerically, § = 2.1777. Then, solving f(yo, 1,@) = 0 for vy, we
find that f(vy0,1,6) > 0 when 0 < 79 < 7o = 18.490; and that when 9 > o, there
appears a range for § where f(v9,1,6) > 0 is not insured. Placing ourselves outside
that possibility, we deduce from (5.5) that, for a given 7o and a given 6, the wave
travels with speed

(5.8) c==x+vf(v,1,0)/c.

This is of course expressed in the dimensionless variables of length/L and timexu/v.
Turning back, if required, to physical variables, we would find that the wave travels
with the dimensional speed /uf(70,1,6)/v.

The second remark is that, according to (5.5) and (5.6), the wave (when it exists)
travels with maximum speed at the angle 6, say, such that tan 6 is that root of the cubic
4 + 9z — 323 = 0 corresponding to 0 < 0 < 7 /2; numerically, 6 = 1.0910. Hence the
directions of extremal speeds of propagation are always the same, whatever the values
of the constitutive parameters u, 7o, and 7;. This observation indicates the way for
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F1G. 5.1. (a) Variations with 0 of [f(v0,1,0) —1]/v0 and of its derivative, showing an absolute

minimum at § = 2.1777. (b) Variations of —3/tanf — 1 with 0, crossing the abscissa line at
0o = 1.8926.

an acoustic determination of the fiber orientation: if an experimental measurement of
the shear wave speed can be made in every direction of a fiber-reinforced viscoelastic
nonlinear material, then the fibers are at an angle 6 from the direction of the slowest
wave and at an angle 6 from the direction of the fastest wave. We recall that for
waves in an isotropic deformed neo-Hookean material, Ericksen (1953) found that the
fastest waves propagate along the direction of greatest initial stretch.

The third remark is that when (5.5) holds,

(5.9) f(v0,U,0) —ec? = U(U — 1) sin® 0 [U sin 6 + 3 cos 6 + sin 6] .

Then the separation of variables, followed by integration of the first-order differential
equation (5.4), leads to

9(71, U, 9)
(5.10) o .
U(U — 1)sin” 0[U sin 6 + 3 cos 0 + sin 0

U= Ef + const.,
c

where the constant of integration is arbitrary; without loss of generality, we take it to
be such that U(0) = 1/2.

Clearly, critical issues arise when either the numerator or the denominator change
signs (because then U’ changes sign, and it might not be possible to find a solution
satisfying the requirements (5.2)). We may take care of the numerator’s sign by
considering only elastic anisotropy (7o # 0) and discarding viscous anisotropy (y1 =
0); then g = 1. For the denominator, however, we note that U sinf + 3cosf + sin 6
can change sign for certain ranges of U and 0. Figure 5.1(b) shows the curve U =
—3/tanf — 1; on its left side, the denominator is positive; on its right side, it is
negative. Accordingly, the wave connects 0 to 1 (see Figure 5.2(a)) or is unable
to do so (see Figure 5.2(b)). In that latter case, the wave front grows toward an
asymptotic value which is less than 1; a second solution exists (dotted curve) with 1
as an asymptotic value, but in the £ — —oo direction.
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F1G. 5.2. Traveling wave solution for anisotropic elasticity (y1 =0): (a) at 0 = 1.8, (b) at 0 = 2.1.

As a final remark, we note that when ~y; is large enough to allow for the possibility
that g = 0 (strong viscous anisotropy), then a “singular barrier” arises; see Pettet,
McElwain, and Norbury (2000).

6. Discussion. In the course of this investigation on nonlinear anisotropic creep,
recovery, and waves for fiber-reinforced nonlinear elastic materials, we unearthed some
complex mechanical responses. For some range of the constitutive parameters and for
some angle ranges of the fiber arrangement, we saw that unusual and possibly aberrant
behaviors can emerge.

From a mathematical point of view, we gave a detailed explanation of the reasons
for these behaviors, by linking them to the singularities of the determining equations
for the amount of shear.

From the mechanical point of view, we pointed out that nonstandard behaviors
always occur when the angle between the fiber family and the direction of shear is
such that the fibers are compressed; see Figure 2.1. It has been widely demonstrated
that several types of instabilities may develop in the case of fiber contraction; see
the detailed studies by Triantafyllidis and Abeyaratne (1983), Qiu and Pence (1997),
Merodio and Ogden (2002), (2003), (2005a), (2005b), or Fu and Freidin (2004). For
example, Merodio, Saccomandi, and Sgura (2007) recently investigated a nonhomo-
geneous rectilinear shear static deformation for the standard reinforcing model (2.1)
and found nonregular solutions (that is, deformations characterized by a discontinuous
amount of shear) in fiber-contracted materials.

From a numerical point of view, we recall that a simple model, together with a sim-
ple class of solutions, allows a step-by-step control of the simulations. It would indeed
be hard to detect nonstandard behaviors by relying solely on a complex numerical
finite element method (omitting to conduct a simple analytical methodology such as
the one presented in this paper). For example, Holzapfel and Gasser (2001) present a
detailed computational study of some viscoelastic fiber-reinforced nonlinear materials,
but use values for the material parameters and for the angles which place their simu-
lations outside the problematic ranges. Other studies are placed in the framework of
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linear models (even for polymeric materials; see Liu, Kasyanov, and Schoephoerster
(2007)), which fail to capture nonstandard behaviors.

From an experimental point of view, our results suggest some simple yet revealing
protocols. In particular, it would be most valuable to investigate the existence and
the persistence of asymptotic residual shear strains, sustained after the shear stress
is removed, at levels not only below the value at initial time but also above (as in
section 3). So far we have identified only reports of experimental results concerned
with elastomeric materials reinforced with ineztensible fibers (and therefore with a
ratio between the shear modulus of the bulk matrix and that of the fibers of several
orders of magnitude), or concerned with moderate angles between the direction of
shear and the fiber direction.

From a biomechanical point of view, the results have meaningful implications for
biological soft tissues. First, the model captures adequately the elastic and the vis-
cous anisotropies of biological materials (Baldwin et al. (2006), Taylor et al. (1990)).
Second, although anomalous creep behaviors might preclude anomalous recovery
behaviors, it is still useful to study the latter, because they might nonetheless arise
in vivo following a stress-driven fiber orientation remodeling (Hariton et al. (2006)).
Third, the effect of the prestretch on nonstandard behaviors is significant theoreti-
cally (section 4.3) as well as practically. (In vivo experiments show that large static
prestretches of tendons reduce the risk of unexpected behaviors; see Kubo, Kanehisa,
and Fukunaga (2002).) Finally, the results of the traveling wave study (section 5)
may eventually lead to an acoustic (elastographic) determination of the fiber angle in
soft tissues, through an efficient, simple, and noninvasive investigation.

Obviously, our results must be improved, and several directions are possible.
Hence, two families of fibers have to be considered to give a better comparison with
in vivo results for soft tissues. Also, the more realistic models of fiber reinforcements
(such as the one proposed by Horgan and Saccomandi (2005) and by Gasser, Ogden,
and Holzapfel (2006)) must be incorporated into the present study, to identify with a
greater precision the range of parameters for which strange behaviors may occur.

Acknowledgment. G. S. thanks Gérard Maugin, Head of the Institut Jean Le
Rond d’Alembert, for his hospitality.
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ACTIVATION THROUGH A NARROW OPENING*
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Abstract. The escape of a Brownian motion through a narrow absorbing window in an otherwise
reflecting boundary of a domain is a rare event. In the presence of a deep potential well, there are
two long time scales, the mean escape time from the well and the mean time to reach the absorbing
window. We derive a generalized Kramers formula for the mean escape time through the narrow
window.
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1. Introduction. Kramers’ theory [12], [6] concerns the thermal activation of
a Brownian particle over a high potential barrier. It assumes that the barrier height
is much larger than the thermal energy. Its application to the theory of chemical
kinetics [20] gives the activation rate of the stochastic dynamics of a reactant molecule
over a potential barrier AE as the Arrhenius law

(1.1) k= Ae AB/keT,

where A is a function of temperature, friction, and the potential landscape. A similar,
but different situation arises, if the chemical reaction can be described as the diffusion
of a Brownian particle through a small opening in the boundary of a domain, whose
remaining boundaries are practically reflecting. Such a situation can occur, if the
reflecting boundaries are due to a high potential barrier with a small opening, whose
energy is not necessarily much higher than the thermal energy. This can happen, for
example, if the reflecting boundaries are due to a dielectric barrier, as in biological
membranes, and the small opening is a protein channel embedded in an otherwise
impenetrable membrane [7]. The small absorbing window setup is also a model for
the forward rate of chemical reactions, in which there are small binding sites for the
diffusing reacting molecule in the boundary of the domain [9]. The same setup also
describes the process of trafficking receptors on biological membranes [8]. The escape
of a free Brownian motion (without drift) through a small window was discussed in
[17], [18], [19]. Here we consider the narrow escape problem for a Brownian motion
in a field of force. The closely related problem of computing the principal eigenvalue
of the Laplace operator for mixed boundary conditions on large and small pieces of
the boundary was considered in [22], [23], [24], [11] (see section 6 for discussion).

We derive an Arrhenius-like formula (1.1) for the activation rate through narrow
openings. Specifically, we consider the diffusion of a Brownian particle in a potential
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field in a bounded domain (), where activation occurs if the particle goes through a
small opening 0f), in the boundary 92 of the domain. We assume that the remain-
ing boundary 052, reflects the Brownian trajectories. We find the dependence of the
rate constant on the potential, specific geometry of the opening and on the volume
or surface area of the domain. As in Kramers’ theory, we obtain different rate con-
stants for low and high barriers. The activation rates for the different geometries are
summarized in (4.6)—(4.13).

2. Formulation. As in classical theories [12], [6], [20], our point of departure is
the Langevin dynamics in R” (n = 2,3),

(2.1) m& + ne + Vo(x) = \/2nkpTw,

where m is the mass, 7 is the friction coefficient, ®(z) is the potential, T is temper-
ature, kp is Boltzmann’s constant, and w is a vector of n independent é-correlated
Gaussian white noises. In the Smoluchowski (Kramers) limit of large friction, the
Langevin dynamics (2.1) reduces to the Smoluchowski equation [16], [4], [6]

o1 2kpT .
(2.2) T+ ;V(Z)(:v) =4/ o w,

where v = n/m is the dynamics viscosity and ¢ = ®/m is the potential per unit mass.

The motion of the Brownian particle is confined to a bounded domain €2, whose
boundary 0f2 is reflecting, but for a small absorbing window 92, (02 = 99, U Q,.).
The assumption that the window is small means that

B 09| 1/(n—1)
(2.3) 6= ( 9] <1

(6 is a small parameter).
The probability density function (pdf) ps(x,t) of finding the Brownian particle
at location x at time ¢ satisfies the Fokker—Planck equation

0
(2.4) 7% =¢eAps +V - (psV o) = Lsps,
with the initial condition
(25> pé(w70) :p0<$),

and the mixed Dirichlet—Neumann boundary conditions for ¢ > 0

(2.6) ps =0 for =€ 0Q,,
Ops oo
(27) 5% +p5% =0 for =« S 897«,

where € = kgT/m, m is the unit outer normal at the boundary, and po(x) is the
initial pdf (e.g., po(x) = I—glu for a uniform distribution). The function

(2.8) us(x) = /000 ps(x,t)dt,
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which is the mean time the particle spends at @ before it escapes through the narrow
window, is the solution of the boundary value problem

(2.9) Lsus = —ypg for x € Q,

(2.10) us =0 for x € I,
Ous 0

(2.11) 5% + u(ga—z =0 for xedQ,.

The function gs = uge®/¢ is the solution of the adjoint problem
(2.12) Ligs = —ypoe?’s for xeQ,
0gs(x)

(2.13) on
gs(x) =0 for x € 9Q,.

=0 for ze€dQ,,

Equation (2.12) can be written in the divergence form
(2.14) v (e_¢/EVg5) = 1o,
€

The adjoint operators Ls and Lj, defined by (2.4), (2.9), (2.10), (2.11), and
(2.12), (2.13), respectively, have biorthogonal systems of normalized eigenfunctions,
{Yi(x,6)} and {@;(x,6)} (¢ =0,1,...), and we can expand

oo

(2.15) ps(x,t) = Z ai (8) Y (z, 5)6*>\i(§)t/7,

=0

where \;(6) are the eigenvalues of Ls. The a;(6) are the Fourier coefficients of the
initial function po (). In the limit § — 0 the Dirichlet part of the boundary conditions,
(2.6), is dropped, so that Ag(6) — 0 (the first eigenvalue of the problem (2.4), (2.7)
with 9Q, = 99), with the normalized eigenfunction

exp{—¢(z)/c}

(2.16) bo(x,0) = ,
i [ ety da

and ag(6) — 1. It follows from (2.8) and (2.15) that for all x € €2

(2.17) us(x) = ’YZ W — oo as 0 —0.
=0 v

In particular, the first passage time 75 = inf{t > 0 | z(t) € 9Q,} diverges. That is,
lims_.o 75 = oo on almost every trajectory x(t). Obviously, the mean first passage
time,

[]e
e
|
|
S

(2.18) (15) = /Q us(x)de =~ .

also diverges as 6 — 0. It is the purpose of this paper to find the orders of magnitude
of us(x) and (7s) for small .
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3. The Neumann function. The Neumann function for €2 is the solution of
the boundary value problem

AyN(z,y) = —6(x —y) for z,yeQ,

’ = — Q Q
n | Q| or T € 5 y € 8 5

with N(z,y) fixed at a given point, to ensure uniqueness. Using Green’s identity and
the boundary conditions (2.10)—(2.11) and (3.1) gives

62 [ Naw)dyu)dy
_ dus(y) ON (z,y)
- [wwaNway+ [ (N - 2550 as,

Ony
dus(y) 1 99(y)
= —us(x) + N(x,y S—f N(z,y)us(y ds
@)+ | Ny [ Ny as,
1
+ == us(y) dSy.
060y, 0

On the other hand, (2.9) gives
63) [ Newayus)dy
/N [W’O - 7v (U5v¢)] d
=—7/N:Bypo y—f/V N (@, y)us(y)Vyo(y)] dy
+2 [ ws®)Vy0(w) - Ty Ny dy

—1 [ Ny iy - 1 [ Ny 5L s,

99, 8TL

42 [ ) Vyolw) - Ty Ny dy.

Combining (3.2) and (3.3) yields

1 Ous(y)
— U dSy + N(x,
109 Joq, o(y)dSy 00 (@.9) Ony

=2 [ Nl dy+ - [ usw)Vyol) - 9y N y) dy.

(3.4) —ugs(x) + dSy

In view of (2.17), the integral [, N(z,y)po(y)dy can be neglected to leading
order, because it is uniformly bounded for smooth initial distributions! py as § — 0,
while all other terms in (3.4) are unbounded. For & € Q, at a distance O(1) away
from the window, the Neumann function is uniformly bounded.

LFor nonsmooth pg the integral is not uniformly bounded. For example, for pg = §(x — xo)
we have [ N(z,y)po(y)dy = N(z,x0), which becomes singular as  — x¢. However, this is an
integrable singularity, and as such it does not affect the leading order asymptotics in 6.
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Note that integrating (2.14) and using the boundary conditions (2.13), we obtain
the compatibility condition

0
(3.5) / AL I/
00, on €
Because of the fact that the normal derivative auabT(y) is negative on 99, (3.5) implies
Yy
that [, N(w,y)%(yy) dSy is uniformly bounded. It follows that for € €, at a

distance O(1) (with respect to §) away from the window, the integral equation (3.4)
is to leading order

1 1
~ 199 g us(y) dSy — Z /Q us(y)Vyo(y) - VN(z,y) dy,

(3.6) us(x)
which is the integral representation of the boundary value problem Lsus = 0 with
the no flux boundary condition (2.11) on the entire boundary (i.e., with 9Q, = 9Q),
whose solution is the Boltzmann distribution

(3.7) ug(x) ~ Cse ?@)/e,

Equation (3.7) represents the averaged time the particle spent at a point = at a
distance O(1) away from the absorbing window prior to absorption.
Due to the absorbing boundary condition (2.10), (3.4) reduces to

dus(y)

3.8 N(x,y ds.
I R

—1 1

= { us(y) dSy + f/ us(y)Vyo(y) - VyN(z,y) dy} (14 0(1))
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for all & € 0€),. Substituting (3.7) into (3.8) yields an integral equation for the flux
% into the absorbing window,

0

(3.9) N, y) 2 W) Sy = —Cse*@/5(1 4 0(1)) for 6< 1.

00, any

If ¢(x) does not change much in the window, we can use the constant approximation
¢(x) = ¢(window) = ¢g.
In three dimensions

(3.10) N(z,y) = | +vs(z,y),

dr|le —y
where vg is a regular harmonic function [10], and so the leading order contribution
to (3.9) is due to the singular part of the Neumann function. Thus the leading order
approximation % to the absorption flux is the solution of

1
(3.11) 7/ Ouo(y) dSy _ (o ~oo/e.
21 00, 3ny |.’1} — y‘

Note that the singularity of the Neumann function at the boundary is twice as large
as it is inside the domain, due to the contribution of the regular part (the “image
charge”). For that reason the factor -~ in (3.10) was replaced by 5-.
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4. Narrow escape. von Helmholtz [21] (see also Rayleigh [1] and others, e.g.,
[13]) solved the integral equation (3.11) analytically for the case of an elliptical ab-
sorbing window 92,

) Cse~%0/¢
(4.1) uo(y1,y2) _ 5€ ) ,
on Yr Y2
e B

where a and b are the ellipse semiaxes, and y = (y1,y2) are local Cartesian coordinates
in the ellipse. The value of the constant Cs is calculated using the compatibility
condition (3.5) to be

(4.2) s = HE©) oue,

2mea

where e is the eccentricity of the ellipse and K (-) is the complete elliptic integral of
the first kind. In a three-dimensional domain, the averaged time spent at point x
before escape through an elliptical absorbing window is given by (see (3.7))

(4.3) us(@) ~ ) o { $o — ¢(@) } .

2mea €

Equations (2.18) and (4.3) now give the mean escape time as

(4.4) (r5) = W/ﬂexp{—qs(:)}dw.

2mea

If the barrier is sufficiently high, we evaluate the integral in (4.4) by the Laplace
method, assuming that ¢ has a single global minimum ¢,, at x,,,

s I R - e ]

i=1

where w; are the frequencies at the minimum x,,. For reactions that consist in passing
through a small elliptical window (assuming no returns are possible), the reaction rate
is the modified Kramers formula

(4.6) K = L _awiwows  ape

(1s)  V2meyK(e) ’
where AE = ¢g — ¢, In the special case of a circular window, we obtain

dawiwows —AE/e
@mP e

where a is the radius of the window. Note that AE is not the barrier height. We
conclude that the activation rate is of Arrhenius form and has two contributions. The
first is due to the potential, while the second is due to geometry of the absorbing
window alone. Unlike the free diffusion case [17], [18], [19], geometrical properties of
the domain, such as its volume, are not included in the leading order asymptotics of
the reaction rate.

(4.7) R§ ~
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Second, in the limit of large €, the power series approximation

0@ —s0)/e _ 1 _ @) =0 () — d0)®

€ 2e2
n (4.4) gives
orea (¢) — o o\

4.8 kv ——— |1 ———"—=+4+0
(48) e (1T o)
where (@) = |Q| fﬂ x) dx is the spatial average of the potential. The rate can also
be rewrltten into an Arrhemus form as
(4.9) ~ _2MEQ_ (aB)/e

K(e)|Q ’

where (AFE) = ¢g — (¢). In the case of large ¢ the reaction rate depends not merely
on the geometry of the window but also on the geometry of the domain itself through
its volume. Large ¢ means that the motion is diffusion limited; therefore, fine details
of the potential are less important and the spatial averaged potential has only an
O(e71) effect.

Finally, we give rate functions for small and large ¢ for several geometries. For
the case of diffusion in a ball of radius R, the results of [17] show that

4 —1
ke~ =21 + = ln R +0 (g> e~ AB)E for &> AE,
719 a R
(4.10) \ B
N EawW1Wows a —AE/e
k 77(2@3/2 {1—1— R +O(R)} e for ¢ < AE.

We conjecture that the second order term is O(6Ind) also for a general three-
dimensional domain, though we were unable to prove it so far.

In two dimensions the singularity of the Neumann function is logarithmic, and so
the leading order approximation to the activation rate is

e e—(AE}/E

k ~ for > AFE,
1
(4.11) AE
—_— —AE/e
k ~ £ ;ule 61 for e < AFE.

The remainder O(1) is important, because in real life applications even if § is small,
In 1 is not necessarily large. In [18], [19] we have calculated the O(1) term for diffusion
in a circular disk, in a circular annulus, and on a sphere. These results extend in a
straightforward way to domains that can be mapped conformally onto these shapes
(e.g., all simply connected planar domains).

If the boundary of the absorbing window contains a singular point of 0€2, such as
a corner or a cusp, the order of magnitude of the activation rate may change. Thus,
if the window is at a corner of angle a, then the rate is [19]
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—(AB)/e
ko~ T& 61 for &> AE,
7 {m 5 0(1)}
(4.12) N
— /5
ko~ asé Y1 61 for ¢ < AE.

If the absorbing window is near a cusp, then (75) grows algebraically rather than
logarithmically. For example, in the domain bounded between two tangent circles,
the activation rate is

(d=t—1)e

]{j ~
79|

[6+0(8%)] e AEV/E for &> AE,
(4.13)

d=! = 1)e/wiws
ko~ ( 5 Jevies [6+0(8%)] e 2F/5 for < AE,
™

where d < 1 is the ratio of the radii.

5. Deep well—a Markov chain model. The modified Kramers formulas (4.6)
or (4.11) can be explained by coarse-graining the diffusive motion into a simplified
3-state Markov model, when the domain contains a deep well Qy C Q. The three
states of the Markov process are (i) state W—the trajectory is trapped in the deep
well; (ii) state D—the trajectory diffuses in the domain Qp = Q — Qy, outside the
well; (iii) state A—the trajectory is absorbed into the small hole. Once the trajectory
is absorbed into the small hole, its motion is terminated, and so A is a terminal state
of the Markov chain. For simplicity, we assume ©Q C R2.

Not all transition times between the different states are finite with probability 1,
and so not all mean transition times are finite. The particle leaves the well to the
outer in finite mean time, that is,

(5.1) Pr{rw_p <o} =1, Ermp_p <.

For small ¢, the mean time spent in the well, Ery_ p, is exponentially large and is
given by [14]

P*¢(xs)

2Ty | ————
62  Ew_p~ 07, [ olws) = olaw) |
20 /A { }

where v and s are the distance to and arclength on 0Qy,, respectively, xzy is the
deepest point of the well, zg is the point on 9Qy,, where ¢ achieves its minimum,
and H is the Hessian of ¢.

The time 7p_w, however, is not finite with probability 1, because there is a
finite probability Pr{rp_4 < 7p_w} of termination at A without returning to W,
and there is no return from A to W. Consequently, ETp_.y = co. However, ETp_. 4
and E[tp_w | Tp—w < Tp—a] are finite. For small ¢, 8, the conditional mean time
Elrp—w | To—w < Tp—a] is asymptotically the same as Erp_ for a problem
without the small absorbing window, because the conditioning changes the drift only
near A, to repel the trajectory from the window, and so the effect on the conditional
mean time is small, regardless of whether this mean time is long or short. The



106 A. SINGER AND Z. SCHUSS

transition probabilities from the outer domain to the absorbing window and to the
well are

Elrp—w | TD—w < Tp—A]

Pr{r <Tp_ ~
{rp—a p-w} Elrp—w | TD—w < Tp—a]l +E[tp_a | TDa < TD_W]’

(5.3)
Eltp—a | TD—4 < TD—W]
Elrp—w | TD—w < Tp—a] + E[tp_a | TDa < TD_W]’

PI'{’TDA,W < TD*)A} ~

respectively. The conditional mean transition time E[rp_w | 7w < Tp— 4| from
Qp to Qy is similar to (5.2),

oy o {¢<xs>—¢<m>}’

N

where xp is the deepest point of the potential in the outer domain, ¢(xw) < ¢(zp) <
¢(xg). The mean transition time E[rp_ 4 | Tp—a < Tp_w] from Qp to the absorbing
window is given by (4.11)

(54) E[TD_,W TD-Ww < TD—»A] ~

(5.5) ElTp—a | TD—a < TD—w] ~

2’)/1116_1 ox {qbo—(b(l‘[))}
e/ H(zp) P € '

If we assume that the effect of the small window on the mean escape time, In§~* (or
1/6 in three dimensions), is larger than that of the energy barrier, exp{[po—¢(zs)]/e},
then, according to our assumption that the potential is relatively flat outside the deep
well, E[TDHW | TD-w < TDHA] < E[TD*}A | TpD—A < TDﬂw], and so (53) implies

Eltp—w | TD—w < Tp—A]

5.6 P A<Tp_ ~ .
(56) 7o <7D-w} Eltp—a | TD—4 < TD—W]

The mean absorption times E7; .4 are finite for ¢ = D, W. They satisfy the
renewal equations

Erpa=Pr{rp—a < Tp_w}E[Tp—4a | TD—4 < TD—W]
(5.7) + PI"{TDHW < TDHA}ETWHA,
(58) Erw—a=Erw_p+Erp_a

(see [15]). Adding (5.7) and (5.8), and dividing by Pr{rp_a < Tp_w} = 1 —
Pr{rp—w < Tp—a}, we obtain

+ ETW_,D
Pr{TD*)A < TDHW} )

(5.9) Ery_a=E [TD_,A | Tpoa < TDﬁw]

Both E[tp_4 | Tp—a < Tp—w] and 1/Pr{rp_4 < Tp_w} have the same order of
magnitude as functions of §; however, Eryy_ p is exponentially large. Therefore,

]ETW*)D

5.10 Erpy_a ~ .
( ) W4 PI{TDHA<TDéw}
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Now, by (5.8), we have

1 Ery_,
(5.11) Erp_4 NETW*)D( 1) WD

Pr{tp_a < TD—w} Pr{tp_a <7p_w}’

because Pr{rp_4 < 7p_sw} — 0 as 6 — 0. The meaning of (5.10) and (5.11) is that
for each realization of the Markov chain, e.g., DWDW DW DW DW DW DW DA,
the number of visits in state D is larger by 1, or equal to the number of visits at
state W. The mean time that the particle spends at state W is exponentially larger
than the mean time spent at state D. Therefore, the mean time to absorption is
approximately the average number of visits at state D times the average time of
a single visit in the deep well. The average number of visits in state D prior to
absorption is 1/Pr{7p_4 < Tp_w}, as in a geometric distribution, and (5.10) follows.
We conclude that

(5.12) Etp_a ~Emw_ a;

i.e., the initial state (or location) of the particle has no (leading order) significance
for the mean absorption time (74), which by (5.6) and (5.10) is

]ETW—>D

5.13 ~Emy_a~ .
(5.13) () TW=a Pr{tp_.w < Tp—a}

Substituting (5.2), (5.4)—(5.6) into (5.13) yields

1
2yIn — _

- 0 ex $o — ¢(zw)

(5.14) () = s enp { 2=

in agreement with (4.11).

6. Summary and discussion. The narrow escape problem of a Brownian par-
ticle through a small absorbing window in an otherwise reflecting boundary was dis-
cussed in [8], [17], [18], and [19]. Here we solve the narrow escape problem for a
Brownian particle in a force field. In cases where there is a deep potential well inside
the domain, there are two time scales in the problem, the mean time to escape the
well and the mean time to reach the small window. We give explicit asymptotic ex-
pressions for the mean escape time when the time scales are comparable and in the
case where one is much longer than the other.

Matched asymptotics of two- and three-dimensional problems [22], [23], [24], [11]
yield the leading term in the expansion of the principal eigenvalue in three dimensions
and a full expansion in two dimensions. For the special case of the mixed Neumann
problem with a small Dirichlet window in the boundary, the leading term obtained
in [17], [18], [19] can be obtained by the application of the matched asymptotics
expansion to this problem. In this paper we generalize the method of [17], [18], [19]
to obtain the leading term for the corresponding boundary value problem for the
Fokker—Planck operator, though matched asymptotics can be applied to this problem
as well. The advantage of our method, as demonstrated in [17], is that it reveals
the order of magnitude of the second term in three dimensions, while the matched
asymptotics method does not indicate this in a simple way. In the particular case of
a ball with a small Dirichlet cap, the application of the special functions method of
Collins [2], [3] gave in [17] the unexpected estimate on the remainder term O(62 log §)
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to the expected leading term O(8). Another advantage of the present method is the
Helmbholtz integral equation (3.11) for the flux and capacity of the small window. This
equation is easier to solve numerically than the mixed Neumann—Dirichlet problem for
a half space, as required in the boundary layer equation of the matched asymptotics
expansion.
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Abstract. We analyze in this work a spatio-temporal optimal design problem governed by a
linear damped one-dimensional wave equation. The problem consists of simultaneously seeking the
spatio-temporal layout of two isotropic materials and the static position of the damping set in order
to minimize a functional depending quadratically on the gradient of the state. The lack of classical
solutions for this kind of nonlinear problem is well known. We examine a well-posed relaxation
by using the representation of a two-dimensional divergence-free vector as a rotated gradient. We
transform the original optimal design problem into a nonconvex vector variational problem. By means
of gradient Young measures we compute an explicit form of the “constrained quasi convezification” of
the cost density. Moreover, this quasi convexification is recovered by first order laminates which give
the optimal distribution of materials and damping set at every point. Finally, we analyze the relaxed
problem, and some numerical experiments are performed. The novelty here lies in the optimization
with respect to two independent subdomains, and our contribution consists of understanding their
mutual interaction.
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1. Introduction—Problem statement. Let us consider the following damped
wave equation posed in (0,7") x €

utr — Vi ([aX,, + B(1 — X)) |uz) + d(z) Xp,ur =0 in (0,T) x £,
(1.1) u=0 on (0,7) x 09,
u(0,7) = (), u(0,) = us (x) in 0,

for any bounded interval 2 of R and any positive time 7. X, and &, designate
respectively the characteristic function of two subsets wy C Q x (0,T) and ws C Q,
both of positive Lebesgue measure |w;| and |wz|. We assume that 0 < oo < § and that
the damping potential d € L>(; R™) is such that d(z) > d > 0 for all # € wy. Finally,
we assume that the initial data (ug,u;) are in Hg(2) x L?(2) and are independent of
w1,ws, and d. System (1.1) is then well posed, and there exists a unique weak solution
such that w € C ([0, T]; H} (©2)) N C* ([0, T]; L*(Q)) (see [16]).

As is well known, system (1.1) models the stabilization of an elastic string made of
two materials o and 3 located on wy and ((0,7") x ©2))\w1, respectively, by an internal
dissipative mechanism located on wy. The unknown (¢, z) represents the transversal
displacement of the string at the point z and at time ¢, while uy and u; designate the
initial position and velocity, respectively.
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Following similar works [9, 15], we address the very important question of deter-
mining the best space-time layout of materials « and 3 in Q% (0,7") and the best space
distribution of damping material in order to minimize some cost depending on the
square of the gradient of the underlying state u. Precisely, introducing the functions
ao,ap € L*((0,T) x Q;R% ) and

(1.2) a(t,z, Xy,) = Xy aa(t, z) + (1 — Xy, )ag(t, ),

we consider the following nonlinear optimal shape design problem:

T
(1.3) (P) inf I(le,Xw,‘,)://(uf+a(t,a:,/'\?wl)|ul.\2)dxdt
Koy 1 Xy 0JQ

subject to

w fulfills (1.1),
Xy, € L2 x(0,7);{0,1}), X, € L™(Q{0,1}),

(1.4) / X, (t,2)dx < Lo|Q| Vte (0,T), Ly € (0,1),
Q

/ X, (@)de < LalQ, L€ (0,1).
Q

The constraint (1.4)s requires that for all ¢ € (0,7) the volume fraction of the a-
material be lower than L, given in (0,1). The constraint (1.4)4 requires that the
volume fraction of the damping material be lower than Ly given in (0, 1).

Optimal design problems in conductivity and elasticity have been extensively
studied in the last decade from various perspectives (e.g., the homogenization ap-
proach [1, 24], shape derivative [6, 7], topological derivative [27], variational formula-
tion [5, 26], simulation-oriented approaches [4, 12], etc). Under the hyperbolic laws,
much less is known. A pioneer work in this direction is [18], where the author ana-
lyzes the hyperbolic G-closure for a similar optimal control problem (see also [17] for
a general report on dynamic materials). On the other hand, an interesting analysis
for optimal control problems under the wave equation in greater dimensions is de-
scribed in [8], where the control is a time dependent coeflicient. Let us also mention
[3], where the authors examine time-harmonic solutions of the wave equation, prove a
relaxation result for the corresponding design problem, and obtain existence of clas-
sical solutions for some particular cases. Finally, shape analysis for noncylindrical
evolution problems is considered in [7] (and the references therein).

More recently, a one-dimensional (1-D) hyperbolic optimal control design problem
with designs depending both on x and ¢ has been addressed in [20]. This corresponds
to the problem (P) with wy = @ and a minimization with respect to w; only. A
full relaxation of the associated problem is given and numerically justified if the gap
B —a > 0is large enough. On the other hand, the pure damping case (corresponding
to wi; = () and a minimization with respect to ws only) has been studied similarly in
[13, 21, 22]. Once again, it appears that the well-posed character of the problem relies
on the amplitude of the function d. In this work, we aim at mixing these two cases
and minimize I with respect to wy and ws simultaneously. In this respect, we derive
and analyze a well-posed relaxation of (P). The approach is based on an equivalent
variational reformulation of the original problem as a nonconvex vector variational
problem: following [2, 26], we transform our scalar problem with differential con-
straints into a vector variational problem with integral constraints (where the state
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equation is implicit in the new cost function). It is well known that the nonexistence
of optimal solutions for vector variational problems is related to the lack of quasi con-
vexity of the cost functional I (see [11]). Therefore, by using gradient Young measures
as generalized solutions of variational problems, we compute an explicit relaxation of
the original problem in the form of a relaxed (quasi-convexified) variational problem.

To the knowledge of the authors, this work is the first considering a bidesign
problem. Our contribution consists, first, of adapting relaxation techniques in this
case, and then, of studying the interaction between the two optimal designs w; and
wa.

The rest of the paper is organized as follows. In section 2, we describe in detail the
equivalent variational reformulation (denoted by (VP)) as well as a general relaxation
result when integrands are not continuous and may take on infinite values abruptly.
Section 3 presents the computation of the constrained quasi convexification of the
underlying integrand of (VP). The first part is concerned with the computation of
a lower bound—the constrained polyconvexification—by using in a fundamental way
the weak continuity of the determinant. The second part is concerned with the search
for laminates furnishing the precise value of the lower bound in an attempt to show
equality of the three convex hulls (poly-, quasi-, and rank one convex hulls). This
provides the well-posed relaxation (RP) stated in Theorem 3.4. In addition, the
optimal Young measure permits us to describe precisely the optimal microstructure
(see Theorem 3.5). Section 4 is devoted to the analysis of the relaxed formulation. In
section 5, we present some numerical experiments which justify the introduction of
the relaxed formulation (RP) and present a simple penalization technique to obtain
some elements of a minimizing sequence for (P) from the relaxed optimal solution of
(RP).

2. Variational reformulation and relaxation. In order to apply suitable re-
sults of calculus of variations [11, 25], we first reformulate the problem (P) into a
classical vector variational one. To this end, following [2, 19, 26], we use a char-
acterization of divergence-free vector fields. Precisely, since the subset wy is time
independent, the state equation of system (1.1) can be written as

(2.1) div(uy + d(x)Xoyu, —[ad, + B(1 — Xy,)]ug) =0,

where the operator div is defined as div = (J¢, V). Then, under the hypothesis
of simple-connectedness of 2 and from the characterization of the 2-D divergence-
free vector fields (see, for instance, [14], Chapter I), there exists a potential v €
H(2 x (0,T)) such that the above formula is equivalent to the pointwise constraint

(2.2) < oy 4 80— X)) ) — RV = —d(2)X,,, 0,
where
(2.3) a:(g> W:(;’i>, R:(? _01>

R is the counterclockwise m/2-rotation in the (x,t)-plane. We then introduce the
vector field U = (u,v) € (H*(Q x (0,T)))? and the manifolds A, \ as follows:

Ay ={Ae MP?: M_AY — RA® = )e1}, v=aq,B, and X € R,
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where A, i = 1,2, stands for the ith row of the matrix and

(2.4) M_W:((l) _07> 61:((1)).

It is clear that we can identify the design variable (X, , X,,,) with the vector field U =
(u, v); conversely, a pair U = (u, v) which verifies (2.2) determines characteristic func-
tions (X, X.,), so that we can consider the new design variables U = (u,v), where
U :R? — R? and VU(t,z) € R**?. Then, for any 2 x 2 matrix A = (a;;)1<i,j<2), We
consider the following three functions:

aty +an(t,x)al, if A€ Ay oU Ay o,
aiy +ag(t,x)aiy if Ae (AgoU A _a@yuvm)

W(t,x, U, A) =
) \(Aa,0 UA, _a@yum),
400 else,
1 ifA€NaoUA, _gvm,
Va(t7 x, [Jv7 A) = O lf A S (Aﬁ70 U Aﬁ,*d(m)U(l)) \ (A(x,O @] Aa,fd(a:)U(l)%
400 else,
1 if A e (Aﬁ,fd(:r)U(l) U Aa,fd(m)U(l))?
Vd(t, z,U, A) = 0 ifAe (Agyo U Aay()) \ (Aﬁ,—d(x)U(l) U Aa,—d(m)U(l))’
+oo else.
Then, noting that
(2.5) {z €, X, (z,t) =1} ={z € Q,V,(t,z,U,VU) =1} Vte (0,T)

and
(2.6) {r €0, X,,(x)=1}={z € Q,Vy(t,z,U,VU)=1 Vte (0,T)},

the optimization problem (P) is equivalent to the following vector variational problem:
T
(2.7) (VP) m = inf / / Wit 2, Ut 2), VUt 2))dwdt
0Ja

subject to
(2.8)
U= UV, U?)e HY((0,T) x )2,

UD(0,2) = uo(x), UM (0,2) =ui(x) in €,
UM =0 in (0,7) x 99,

/Va(t,w, U(t, 2), VUt 2))dz < Lo|Q| ¥t € 0,7,
Q

/ Valt, 2, Uty 2), VU (t,2)) x Va(0,, U(0,2), VU(0,2))dz < LaQ| Vit € [0,T].
Q
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Therefore, this procedure transforms the scalar dynamical problem (P), with differ-
entiable, integrable, and pointwise constraints, into a nonconvex vector variational
problem (VP) with only pointwise and integral constraints.
We are now going to analyze the nonconvex vector problem (VP) by seeking its
relaxation. We use Young measures (see [25]) as a main tool in the computation of
the suitable density for the relaxed problem. Let us recall the following definition.

DEFINITION 2.1. The constrained quasi convezification of the functional W is
defined as

(2.9) CQW(t,x,U, A, s, 1) = inf{ W(t,x, U, A)dv(A) : v € A} ,
v M?2x2
where

A= {1/ :v is a homogeneous H'-Young measure,
(2.10) F :/ AdV(A),/ Va(t,z,U, A)dv(A) = s,
M?2x2 M?2x%x2
/ Vi, U, A)du(A) = r Vit [O,T]}.
M2x2
We then introduce the following minimization problem:

T
(2.11) (RP) m= inf /0/QCQW(t,x,U(t,x),VU(t,x),s(t,x),r(x))dzdt

(U,s,r)
subject to
U=UWYU?)e HY(0,T) x Q)?,
UD(0,z) = uo(x), Ut(l)(O,a:) =ui(z) in €Q
(219) UM =0, in (0,T)x 9,

0<s(t,z) <1, / s(t,x)dr < L,|Q| Vvt e [0,T],
Q

0<r(z)<1, / r(z)dr < Lg4|Q).
Q

The functions s and r denote the pointwise volume fraction associated with the a-
material and the damping set, respectively.

Then, the following relaxation result (initially obtained in the elliptic case in
[2, 26]) can be proved: (RP) is a full relaxation of (VP) in the sense of the following
theorem.

THEOREM 2.2. Assume that the initial data of system (1.1) have the regularity

(2.13) (ug,u1) € (H*(Q) N HY(Q)) x HJ (D).
Then, problem (RP) is well posed and the following equality holds:
(2.14) m=m (i.e., inf(VP) = min(RP)).

Moreover, the minimum (U, s,r) codifies (in the sense of Young measures) the optimal
microstructures of the original optimal design problem.
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Remark 2.3. In order to represent the limit of the cost function I associated with
a minimizing sequence, say {X., j, Xw,;};, through its associated Young measure,
we need equi-integrability for the sequence |us ;| + a(t,z, X, ;)|Vu;|? (see [25]).
Equation (2.13) is a sufficient condition to get this equi-integrability. We refer to
[22, 23] for the details.

Therefore, Theorem 2.2 reduces the determination of a relaxed formulation to the
computation of the constrained quasi convexification CQW associated with W.

3. Constrained quasi convexification. In this section, we solve the optimiza-
tion problem (2.9), leading for all (U, F, s, ) to the value of CQW (¢, x,U, F, s,r). The
main difficulty is that we do not know explicitly the set of the admissible measures A
defined in (2.10). We then follow the same strategy as in [26]. Consider two classes
of a family of probability measures A,, A* such that

A, C AcC A~

We first calculate the minimum over the greater class of probability measures A*,
and then we check that the optimal value is attained by at least one measure over the
narrower class A,. This fact tells us that the optimal value so achieved is the same
in A, and hence we will have in fact computed the exact value CQW (¢, z, U, F, s, ).

Following [26], we choose A* as the set of polyconvex measures, which are not nec-
essarily gradient Young measures, and therefore obtain a lower bound (the constrained
polyconvexification). The main property of these measures is that they commute with
the determinant. This constraint can be imposed in a more-or-less manageable way.
We also choose A, as the class of laminates which is a subclass of the gradient Young
measures. By working with this class, we would get an upper bound (the constrained
rank one convexification).

In what follows, in order to simplify the expression, we note A, 1 for A, _ A(z) UM -

3.1. Lower bound: Polyconvexification. We compute the constrained poly-
convexification defined as follows.

DEFINITION 3.1. The constrained polyconvezification CPW of the functional W
is given by the following minimization problem:

(3.1) CPW(U, F,s,r) = min{ W(U,A)dv(A) :v e A*} ,
v M2x2

where

A*(F,s,1) = {1/ v is a homogeneous Young measure,

v commutes with the determinant,

F = / Adv(A),
M?2x2

s:/MZXQVa(U,A)du(A), r:/MZXQVd(U,A)du(A)}.

In this respect, we exploit that v belongs to the class A*. First, from the volume
constraints (3.2)4, the measure v has the following decomposition:

(3.3) v=s(rve1+ (1—7r)ao)+ (1—35)(rvg1+ (1 —r)vso)
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with supp(vy,2) C Ay a7 = @, 3, A =0,1. Therefore, if we introduce
F’Y”\:/ Advyy, v=a,8,2=0,1,
Ay x

then the first moment constraint (3.2)3 leads to the following expression:
(3.4) F=s(rF* +(1—r)F*%) +(1—s)(rF> +(1—-r)F"?).

Now, from the property F7* € A, we have, for v = a, 3,

7,0 v,0 _ 7,1 vl _
(35) { Fll»%g» F22 ;007 and { Fll,y)f F22 ’7’1>‘a
—Fy;" =~k =0, —Fy —yF5 =0.

Substituting (3.5) into the system (3.4), we obtain a noncompatible system on F7*
unless the condition

(3.6) Fi1+ Foo =71A

holds. Assuming henceforth this compatibility condition, (3.4)—(3.6) lead to

Fi'=ca, F'=c, F’=c, Fy'=ca, F}' =c,
g1 Fin—rsci —s(1—r)co — (1 —5)(1—7)c3
Fy = )
(1—s)r
3.7 F Fio— (8 —
(3.7) Flogo: 51 + BF12 — (B — a)rseq = filea),
(L=7)s(8—a)
—Fy —aFis — (B8—a)r(l —s)cs
FA0 = =
: T na-9@-a 7
where ¢; € R, ¢ =1,...,5, are parameters.

On the other hand, if we take a matrix A = (a;;)(1<i j<2) € Ay x With v = «, 8
and A = 0,1, then the equality

det A= AWM _ AN — xAWe,

and the constraint on the commutation yield

det I :/ det Adv(A)
M2x2

3.8 a
(3:8) = — S 4+ A (sFY A+ (1= ) FPY) + as(rSaq + (1 — 7)Sa,0)

+68(1 - S)(T‘S@l +(1- 7‘)5570),

where

2x2

(3.9) Syx = / aldvy A(A), v=a,3,A=1,0, S = / a3 dv(A).
Ay M

Similarly, the cost function can be written as
(3.10)

W(U,A)dv(A) = S1+aas(rSa1+ (1 —7)Sa0)+ag(l—35)(rSs1+(1—7)Ss0)-
M2><2
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Finally, using Jensen’s inequality, we obtain

/ alzdlj%)\
Ay

s

2
(3.11) Siyx :/ afydvy \ > = |F
A

s

and

2
= |Fi1|*.

Sl Z ‘/ audl/(A)
M2x2

As a conclusion, from (3.8), (3.10), (3.11), the polyconvexification problem (3.1) is
reduced to the following mathematical programming problem:

(MPP) s rélin ) S1 4 aas(rSai + (1 —7)Sa0) +ag(l —s)(rSg1+ (1 —1r)Ss,0)

subject to

det F = Mr(sFy + (1= s)FOY) = Sy
+as(rSa1+ (1 —7)Sa0)+ 61 —s)(rSg1+ (1 —71)Ss,0),
Soxn > (FBN? v=a,8, A=0,1 S > (Fi)?

The resolution of this problem leads to the following expression of C'PW.
PROPOSITION 3.2. The polyconvezification (3.1) is explicitly given by

(42
|Fia)? + W\ﬁﬂz + Py ?
ag ) if Y(F,s,r) =0,
(3.12) CPW(U,F,s,r) = +(1_S)(TQ)Q\OKF12 + P
400 else,
where
a
(F,s,7) = —det F — |Fi1 | + ArFiy + ————|BF12 + Fo |?
o1 SB—a)
' B 2
——|aF; Fo .
@ oap et
Proof. From (3.7), we obtain that
(3.14) r(sF 4+ (1= s)FYY) = Fiy — (1 —7)ea — (1 — s)(1 — )cs.

Consequently, the problem is

s Iélin : S1 4 aas(rSa1+ (1 —7)Sa0) +ag(l —s)(rSg1+ (1 —1)Ss,0)
1,5, x,Ci

subject to
(3.15)
det F = A(Fy1 — s(1—7)ca — (1 = s)(1 = 7r)c3) — 51
+as(rSo1+ (1 —7)Sa0) + 81 —s)(rSs1+ (1 —1)Ss0),
Saq >¢q, Sgi =2, Sao > filea), Spo > fi(cs), Si> (Fn)
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Since a, and ag are positive, the minimum is obtained when the equalities hold in
(3.15)2 with a suitable choice of the constant ¢y and cs in (3.15);. Therefore, the
minimum is

(3.16) |Fl + aas(rei + (1= 1) fi(ca) + ag(1 = s)(re3 + (1 =) f3(c5))-

The minimization of (re + (1 — r)f2(c4)) with respect to c4 leads to

(317) Cq = (ﬂF12 + F21) = F1042,1

o
s(B—a)

and then

2
(3.18) (rci + (L —1r)fi(ca)) = < (BF12 + F21)> =ci=Sa1.

o
s(8—a)

Similarly, we obtain

—_

(3.19) Cy; = — (OéFlg + Fgl) = Flﬁél

(1—=5)(8—0a)
Then, Writing det F' = F11F22 — F12F21 = 7F121 + )\’I‘Fll - F12F21 from (36), the

relation (3.15); becomes

/\’I“FH — F12F21 = )\(Fn — 8(1 — ’I“)CQ — (1 — 8)(1 — 7")03) + ﬁ|ﬁFm + F21|2
p 2
+W|O¢F12+F21|

and implies the equality A(1 — 7)Fy1; = A1 — r)(sc2 + (1 — s)c3), and then (sco +
(1 — s)cz) = Fyp. This leads to the expression of CPW. Moreover, note that since
¢y = F% and ¢3 = F°, the relation Fyy = sF& 4+ (1 — s)F3° implies

(3.20) Fe0 = FPO =
and then, from (3.15)a,
(3.21) Fy'=Fy'=Fn. O

Remark 3.3. From (3.6), —det F' — |F11|* + A\rFy; is simply Fi2Fy; and

(3.22)
2 B 2
¢(F757T):F12F21+5 2|ﬁF12+F21‘ +W‘QF12+F21|

>
(B—a)
— |+ Fulas + 6 - 5)| [aBFia + Falal - 5) + )
does not depend explicitly on r.

The polyconvexification CPW gives a lower bound of the constrained quasi con-
vexification. In the next section, we prove that this bound is in fact attained.
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Aa,O Aa,l

1%
%

A\

Ap.o

Fic. 3.1. Geometrical decomposition of F'.

3.2. Upper bound: Searching laminates. In order to prove that the lower
bound given by the polyconvexification is in fact the optimal value, we now search a
measure v in the class A, of laminates which recover it. Precisely, we exhibit a v with
the decomposition (3.3) and first moment F' which satisfies a rank one condition.

First, from the optimality conditions (3.5), (3.17), (3.21) and the strict convexity
of the square function, we deduce that

11 (12) _ 5

V( ) :5F11 and I/’YvA = F{yQ,X,
and therefore

Uyx=0pya  withy=0q,8, A=0,1,

where the matrices F7* are

F F
Frl— 11 Yy ) , F0 — ( 11 Yy >
< 7Yy —Fi1—A =y, —Fun
with v = a, 8 and
#(ﬁp + Fy) __ 1
s@—a) BT BT A=)

The unique possible measure v which admits the decomposition (3.3) is then
(geometrically; see Figure 3.1)

(3.23) Yo

(aF12 + Fa1).

(3.24) v=238(répar + (L = 7)0pa0) + (1 — s)(répsa + (1 —7)0ps.0).

Let us now check that v is actually a laminate; i.e., we check that there is a rank one
connection between the support of deltas. On the one hand, for v = «, 8, the relation

vt 0 — ( 8 _0)\ ) =b®ez with b= (0,—)),e2 = (0,1)
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indicates that the direction of lamination of the set of damping has to be with normal
€. On the other hand, the relation

0 _
a,l . a,0y 3,1 . 38,0y __ Yo — Yp
(rF" + (1 —r)F*°) = (rFP +(1 —7r)F"?°) = ( Buys — e 0 )

= (0,90 — yp) ®e1 + (aya — Bys,0) ® €2

(3.25)
implies that v is a laminate if and only if

0 Yo — Yp >
d t = 0 <> o — _ o) = O
‘ ( Bys — aya 0 (Yo — y8)(BYs — aYa)

Furthermore, from (3.22) and (3.23), we obtain that

(3'26) '(/J(Fv S, ’I“) = 5(1 - S)(aya - ﬁzm)(ya - yﬁ)'

Consequently, the above rank one condition is equivalent to ¥ (F,s,r) = 0, which is
precisely the necessary condition for the polyconvexification to be finite (see Proposi-
tion 3.2). We then conclude that v is a first order laminate, i.e., belongs to the class
A,. Then, we remark that the conditions y, — yg = 0 and ay, — Bys = 0 are not
compatible because they imply yo = yg = 0 and then Fi5 = F5; = 0. We conclude
that the direction of lamination of the a or 3 material is e; = (0, 1) if yo —ys =0 or
e1 = (1,0) if Bys — ay, = 0.

In conclusion, for the measure (3.24), the quasi convexification CQW defined by
(2.9) coincides with C PW. Moreover, this provides an explicit expression of the full
relaxation problem (2.11) stated in the following paragraph.

3.3. Well-posed full relaxation (RP). From Proposition 3.2 and by setting
A = —d(2) UMD (t,x) = —d(x)u(t,z) and F = VU in (3.6), we obtain that the opti-
mization problem

U,s,r

. T
(3.27) (RP) min I(U):/O/QCQW(t,:E,U(t,:v),VU(t,w),s(t,:c),r(x))dxdt

subject to
U= (u,v) € (H'([0,T] x )%, ¢(t,z,VU(t x),s(t,z),r(x) = 0,
us + v, = d(z)r(z)u(t,z) in Qx(0,T),
UM(0,2) = uo(z), UL (0,2) =uy(z) in
UM =0 in 8Qx[0,T),
0<s(t,x) <1, /s(t,x)deLam\ Yt € 0,77,
Q

0<r(z) <1, /r(x)dngd\m,
Q

where
(3.28)

Fos,r) = [Flu|? + —2  18F+ Fy? + ——2 _|aFyy + Fy)[?
CQW(U, F,s,r) = |Fu| +5(ﬁia)2\ﬂ 12 + I +(1—s)([3—a)2|a 12 + Fo1)
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and
(3.29)
a
Y(F,s,7) = —det F — |Fy1[> + ArFyp + WWFM + Fy|?
+ %MFH + Fy|?
(1=35)(8-a)

for any

_(Fn Fio
F—(F21 Foy ) s, € R,

is a full well-posed relaxation of (VP) in the following sense.

THEOREM 3.4. The variational problem (RP) is a relaxation of the initial opti-
mization problem (VP) in the sense that

(a) the infima of both problems coincide;

(b) there are optimal solutions for the relaxed problem;

(c) these solutions codify (in the sense of the Young measures) the optimal micro-
structures of the original optimal design problem (see Theorem 3.5).

Moreover, we can compute explicitly optimal microstructures, as follows.

THEOREM 3.5. Optimal Young measures leading to the relaxed formulation are
always first order laminates, which can be given in a completely explicit form:

e for the damping case the optimal microstructures are

(3.30) r(z)é1 + (1 — r(x))bo

with normal direction of lamination es = (0,1);
e for the material case, the optimal microstructures are always

(3.31) s(x, )b + (1 — s(x,t))é3

with normal direction of lamination ez = (0,1) (if yo —ys =0) ore; = (1,0)
(if oy — Bys = 0), depending on each point.
Remark 3.6.

e The direction of lamination of the set of damping equal to e; = (0, 1) is in
full agreement with the time independence of the subset ws, support of the
dissipative term.

e It is interesting to note the influence of the damping term X,,,d(z)u; on the
order of the laminates associated with the optimal Young measure. Without
this damping term (i.e., when wy = )), the analysis of the relaxation of (P)
(see [20]) reveals that the constrained quasi convexification is recovered by
either first- or second order laminates, obtained when ¥(VU,s) < 0 and
¥(VU, s) > 0, respectively. Here, even for arbitrarily small positive value of
||d|| Lo () or |wa|, the optimal laminates are always of first order, obtained
on the set ¥(VU,s) = 0. This clearly highlights the smoother effect of this
term.

4. Interpretation of the relaxed problem (RP) in terms of u. The quasi-
convexified density depends on the gradient of U, verifies pointwise constraints, and
may take the value +oo abruptly. For these reasons, the numerical approximation of
the problem (RP) is not standard and is a priori tricky. In this section, taking advan-
tage of the compatibility conditions, we analyze more deeply the relaxed formulation
(RP) and eliminate the auxiliary variable v = U(?) introduced in section 2.
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From the relation (3.26), the set {F; ¢ (F,s) = 0} is decomposed into two disjoint
sets, {F;ya —yg = 0} and {F; ay, — Bys = 0}. Then, noticing that

Yo =Yg =0 <= Fo + Fra(as+5(1—s)) =0,

(4.1) Yo — Py =0 < Fy; + F L
Yo Ys = 21 12a_1s+ﬁ—1(1—s)

=0,

we may eliminate the variable F5; (i.e., v;) and write the quasi-convexified in terms
of F1; and Fis only, as follows:

[Ful? + (aas + as(1 = 5))[Fio| - if ya —ys =0,

QAo 2s+aga’(l—s .
(4.2) CQW(U.F,s,r) = |Fuf?+ 2222 Lo m | if ay, — Bys = 0,

+00 else.

We can now invoke the following lemma (we refer to [12] for the proof).
LEMMA 4.1. For all s € (0,1) and 0 < a < 3, we have

5 201 _
Zj =< a2fﬁ = ans+ag(l—s) < aaéétiﬂ)‘i (;8)25)’
(4.3) )
ag _ o+ p aa3?s +aga*(1 —s)
225 = st ap(l—s) = (a(1 — 5) + Bs)?

We are thus led to introducing the following problem:

. y T
(4.4) (RP) :inf I(s,r) = / / (ut(t,x)2 + G(s)ux(t,x)Q) dxdt
s,r 0 Q
subject to
use — Vo (H(s)ug) + d(x)r(z)us =0 in (0,T) x Q,
u=0 on (0,7) x 09,
(4.5) u(0,z) = ug(x), u(0,2) = uy(x) in ,
0<s(t,z) <1, [,s(t,z)de < La|Q| in [0,7] x Q,
0<r(z)<1, [,r(z)ds< L4Q] in
where
(46) G(s) :aas—i—aﬁ(l—s), H(S) :as—i—ﬂ(l—s) if Zf < Ol2fﬁ7
and
(4.7)
_aof?s+aga’(l—s) B 1 . ag _a+f
Gls) = (a(l —s)+ Bs)2 H(s) = a~ls+ 3711 —s) if o = 200

We assume henceforth that the positive functions a, and ag fulfill, for all z € Q,
either the property ag/ao < 28/(a+ 8) or ag/ay > (o + B)/2a.
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Problem (RP) with (4.6) (resp., (4.7)) is obtained from (RP) assuming that CQW
is given by (4.2)1 (resp., (4.2)2), then putting F = VU and A = —d(z)u(t,z), and
finally by eliminating the auxiliary variable v. Note that in the first case, H is the
arithmetic mean of («, 3), while in the second case, H is the harmonic mean.

Moreover, one cannot affirm, a priori, that problem (ﬁ’) is equivalent to (RP)
because the pair U = (u,v) which solves (RP) does not necessarily fulfill for all
(t,x) € (0,T) x Q the relation v, + uz(as + S(1 —s)) =0 (i.e., yo —ys = 0; see (4.1)
with F = VU) or for all (,z) the relation v; + u,(a™ts + 711 — s))~! = 0 (i.e,
ayo — Pys = 0). However, we may conjecture this equivalence thanks to the following
property. N

LEMMA 4.2. The equality inf(RP) = min(RP) holds.

Proof. Let us consider the first case in Lemma 4.1, ie., an/ag < 28/(a + 3),
leading to the arithmetic situation (4.6). In this case, (fﬁ)) is simply derived from
(VP) by replacing the set of characteristic functions X,,, € L*>((0,T) x Q,{0,1}) by
the larger set of density functions s € L>((0,T) x €,(0,1)). Therefore inf(f{\f’) <
inf(VP), and the conclusion follows from min(RP) = inf(VP) (see Theorem 2.2) and
min(RP) < inf (IﬁD) In the harmonic situation, we obtain the result using the same
arguments and Lemma 4.1. 0 .

We have transformed the problem (RP) into the problem (RP), where the auxil-
iary variable v does not occur anymore and is much easier to solve numerically. We
observe, however, that, since (RP) is not convex, one cannot ensure the existence of
solutions. The next section aims at investigating the numerical resolution of (ﬁ))

5. Numerical analysis of the relaxed problem. We address in this sec-
tion the numerical resolution of the problem (RP) in the quadratic case for which
(@a,as) = (1,1) and in the compliance case for which (aq,a) = (a, ). We first
describe an algorithm of minimization and then present some numerical experiments.
In order to simplify the presentation, we replace the volume constraint inequalities
(4.5)4 and (4.5)5 by constraint equalities.

5.1. Algorithm of minimization. We present the resolution of the relaxed
problem (RP) using a gradient descent method. In this respect, we compute the first
variation of the cost function with respect to s and 7.

For any n € Rt, n < 1, and any s; € L>=((0,7T) x ), we associate with the

perturbation s” = s 4+ ns; of s the derivative of I with respect to s in the direction
s1 as follows:
oI(s,r) o — lim I(s+nsy,r) — I(s, r)
ds n—0 n
THEOREM 5.1. If (ug,u1) € (H2(2) N HL(Q)) x HL(Q), then the first derivative
of I with respect to s in any direction sy exists and takes the form

7 T
(5.1) ol(s,r) s = / / (Gs(s)ui + H)s(s)uwng) s1 dxdt,
s 0JQ

where w s the solution of (4.5) and p is the solution in C*([0,T); HX(Q))N
CH([0,T); L*(Q)) of the adjoint problem
pit — Va(H(8)ps) — d(@)r(x)pr = uy + Vi (G(8)uy) in (0,T) x Q,
(5.2) p=0 on (0,T) x 99,
p(T,z) =0, p(T,z)=u(T, x) in Q.
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Similarly, the first derivative of I with respect to r in any direction r1 € L (Q) is
given by

al(s,r)

(5.3) 5 71 :/Qd(x)rl(x)/o u(t, x)p(t, z)dtdx.

Proof. We introduce the Lagrangian

5,0, 9) = // o7 + G(s)¢7) d:z:dt+//[¢tt H(s)¢s) +d(z )mt]quxdt

for any s € L=((0,T) x Q), ¢ € C([0,T]; H2(Q) 1 HA(Q)) N C([0, T]; HL(Q)), and
e C([0,T]; HY(Q)) n CL([o, ] 2(Q)) and then write formally that

ac 0 7] 7]
E 1= Ll o)+ (pLl 00 5 s )+ (.60, 50 ).

The first term is

(5.4) 5,6,0) 51 = //( w+H<wmQ&Mﬁ

for any s, ¢, ¢, whereas the third term is equal to zero if ¢ = u is the solution of (4.5).
We then determine the solution p so that, for all ¢ € C([0,T]; H?(2) N H(2)) N

CL([0,T]; HL(9)), we have
9 9¢
<8¢ ( (bv )77 1> :Oa

which leads to the formulation of the adjoint problem (5.2). Next, writing that I(s) =
L(s,u,p), we obtain (5.1) from (5.4). The relation (5.3) is obtained in a similar
way. |

In order to take into account the volume constraint on s and r, we introduce the
Lagrange multipliers v, € L>((0,T); R), 7 € R and the functional

f,y(s,r) =1I(s,r)+ /OT ~s(t) /Q s(t, z)dzdt +*yr/ r(z)dz.

Q

Using Theorem 5.1, we then obtain easily that the first derivatives of ’Ivv are

aI T
s1 —// Yu2 + H o(8)upps) st d;l:dtJr/ ”ys(t)/sld:cdt,
0 Q
T
M~r1 :/d(a:)rl(x)/ utpd:z:dtJr’yT/ ri(x)dz,
or Q 0 Q

which lets us define the following descent directions, respectively:
(5.5) s1(t,x) = —(Go(8)u2 + H o(8)uaps +vs(t)) V(t,x) € (0,T) x Q,

and

(5.6) ri(t,z) = — (d(x) /0 ! wy(t, )p(t, x)dt + %> Yz € Q.



124 FAUSTINO MAESTRE, ARNAUD MUNCH, AND PABLO PEDREGAL

Consequently, for any function 7, € L>(Q x (0,7),RT) with ||n]| 5 (0,1)x0)
small enough, we have E(s + ns81,7) < iy(s,r). The multiplier function -y, is then
determined so that, for any function 7, € L*°((0,T) xQ,R), |[s+nss1]|11(0) = La|Q|
for all t € (0,T), leading to

_ Ugst2)dz — La|Q) — Jons(t, 2)(Gs(s)uf + H o(s)taps) du
Jons(t,z)dx ’

Finally, the function 7, is chosen so that s + ns; € [0,1] for all (¢,2) € (0,T) x Q.
A simple and efficient choice consists of taking ns(t,z) = es(t, z)(1 — s(t,z)) for all
(t,z) € (0,T) x Q with € small and positive.

Similarly, the choice

_ or@)dz = LaQ) = fone(@)d(w) fy ue(t,0)p(t, ) dtda
fQ ne(z)dz

with n.(z) = er(z)(1 — r(x)) for all z € Q permits us to ensure the condition ||r 4+
nerillp) = Lal€. N
The descent algorithm to solve numerically the relaxed problem (RP) may be
structured as follows.
Let Q C R, (ug,u1) € (H*(Q)NHZ(Q)) x HF (), Lo, Lg € (0,1), T > 0,0 < a <
B, ag,aq € L=((0,T) x ;R%), and € < 1, 1 < 1 be given;
e Initialization of the densities s € L°((0,7 x ©;]0,1[) and r° € L*>(©;]0, 1]);
e For k > 0, iteration until convergence (i.e., |I,(sF1, rA+1) — [ (s%, rk)| <
1|, (s, 79)|) as follows:
— Compute the solution ugk . of (4.5) and then the solution pgr .« of (5.2),
both corresponding to (s,r) = (s, 7F).
— Compute the descent direction s¥ defined by (5.5), where the multi-
plier " is defined by (5.7). Similarly, compute the descent direction r¥
defined by (5.6), where the multiplier 7* is defined by (5.8).
— Update the density s* in (0,7) x  and the density 7% in Q:

G.7) s()

(5.8) Yr

PP = b poesk (1 — sF)sh, Pl =gk gk (1 — Rk

with ¢ € R™ small enough to ensure the decrease of the cost function,
sl e L°((0,T) x ©,]0,1]) and ¥+ € L°°(£, [0, 1]).

5.2. Numerical experiments. In this section, we present some numerical sim-
ulations for = (0, 1) in the quadratic case—(aq,ag) = (1,1)—and in the compliance
case—(aq, ag) = (e, §). Recalling the assumption 0 < a < 3, these two cases fall into
the arithmetic (see (4.6)) and harmonic (4.7) cases, respectively. From a numerical
viewpoint, we highlight that the numerical resolution of the descent algorithm is a
priori delicate in the sense that the descent direction depends on the derivative of
u and p, both solutions of a wave equation with space and time coefficients only in
L*>((0,T) x ;R%). To the knowledge of the authors, there does not exist any nu-
merical analysis for this kind of equation. We use a C%-finite element approximation
for v and p with respect to z and a finite difference centered approximation with
respect to t. Moreover, we add a vanishing viscosity and dissipative term of the type
(B — a)e?div(H (s)ugs) with e of order h—the space discretization parameter. This
term has the effect of regularizing the descent term (5.5) and leading to a conver-
gent algorithm. Finally, this provides an implicit and unconditionally stable scheme,
consistent with (4.5) and (5.2), and of order two in time and space.
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|
01 02 03 04 05 06 07 08 09 1 01 02 03 04 05 06 07 08 09 1
t t

Fic. 5.1. (aa,ag) = (a,B). Optimal density s"™ on (0,T) x Q for (a,B,d) =
left), (oo f,d) = (1,11,10) (top right), (o, 3,d) = (1,4,1) (bottom Ieft), and (a, 5,d)
(bottom right).

(1,1.1,1) (top
= (1,4,10)

In what follows, we treat the following simple and smooth initial conditions on
Q=(0,1):

(5.9) up(z) = sin(wz), wi(x) =0,

and o = 1. Results are obtained with h = At = 1072 (At designates the time
discretization parameter), e; = 107°, L, = 2/5, Ly = 1/5, T =1, s%(t,x) = L,, on
[0,7] x Q, r°(z) = Ly on 2, and € = 1072 (see the algorithm).

We highlight that the gradient algorithm may lead to local minima of I with
respect to s and r. For this reason, we consider constant initial density s° and r° as
indicated above, which does not privilege any location for w; and ws.

We discuss the result obtained with respect to the value of 3 and of the damping
function d(z) = dXq assumed constant in Q: precisely, for (3,d) = (1.1,1), (8,d) =
(1.1,10), (6,d) = (4,1), and (8,d) = (4,10).

5.2.1. The compliance case—(aq,ag) = (o, 3). The compliance choice is
the most usual one, because the corresponding cost function I (see (1.3)) coincides
with the energy of the vibrating membrane described by system (1.1). This case falls
into the harmonic situation (4.7), G(s) = H(s) = (a™'s+ 871(1 — s))7!, and we
get easily that G (s) = (o — 8)G?(s)/(af3). We present some results obtained with
the following data: Figures 5.1 and 5.2 depict the iso-values of the optimal density
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F1G. 5.2. (aa,ag) = (o, B). Solid line: Optimal density M for (o, B,d) = (1,1.1,10) (left) and
(o, B,d) = (1,4,10) (right). Dashed line: Optimal density ri""™ = X0.4,0.6] for (o, B,d) = (1,1.1,1)
and (ayﬂz d) = (1747 1)

s and r!"™ respectively (obtained at the convergence of the descent algorithm). In
agreement with [20] (case we = (}) and [22] (case wy = ), results depend qualitatively
on the gap 8 — « and d. When 8 — a and d are small enough (function of the data
of the problem), here («,3,d) = (1,1.1,1), we observe that the optimal densities
are characteristic functions. In this case, problem (f{\f’) coincides with the original
problem (P) (we check that when s € L>((0,T) x €, {0,1}), i.e., s#™ = X, , then
H(s"") = as™ 4 3(1—s") = aX,, +B(1—X,,)). The original problem is therefore
well posed in the class of characteristic function: X,,, = s"™ € L>°((0,T) x ©;{0,1})
and &, = rl"™ € L>(0;{0,1}).

Precisely, /"™ = X1/2-L4/2,1/2+L4/2) = X0.4,0.6), and the optimal position for the
damping zone is—as expected according to the symmetry of up—the centered one:
wo = [0.4,0.6]. Moreover, the optimal distribution of («, 3)-material is time dependent
(see Figure 5.1(top left)), and we observe that the weaker material « (black zone on
the figure) is located, for each time ¢, on the point (z,¢) where the amplitude of u(z, t)
is the lowest: on the extremities of 2 at time ¢ = 0, and on the middle at time ¢ ~ 0.5.

If now we consider a larger gap 8 — «, for instance («, 8,d) = (1,4,1), the limit
density s'™ is no longer a characteristic function and takes values in (0, 1), highlight-
ing microstructure (Figure 5.1(bottom left)). This suggests that the initial problem
(P) is not well posed in the class of characteristic functions and does not coincide with
the relaxed problem (ﬁf’) This also fully justifies the search and introduction of a
relaxed well-posed formulation. We observe also that this gap is not enough larger to
influence the density r/*™: we still have r!™ = X0.4,0.6]-

Similarly, when we increase the value of the damping function d (and therefore
the dissipation of the system), the limit density /™ is no longer a characteristic
function (see Figure 5.2 for (a,3,d) = (1,1.1,10) (left) and («, 3,d) = (1,4,10)
(right)) but remains symmetric with respect to x = 1/2. The optimal domain is no
longer the centered position but an infinite union of disjoint intervals (see section
5.2.3). This damping term with d = 10 changes significantly the dynamic of u and
perturbs the optimal dynamical distribution of («, 3)-material (see Figure 5.1(right)).
For (a, 3,d) = (1,1.1,10), the function s'*™ remains a characteristic function.

Finally, we plot the integrand of the cost function f, i.e., the energy E(t) =
Jo(lue|? + G(s""™)|ug [*)dz with respect to time (Figure 5.3). Although the system is
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F1c. 5.3. (aa,ag) = (o, B). Evolution of [,(lut|* + G(s"™)|uz|?)dx versus t € [0,T].

not necessarily dissipative when ws = (—we have the relation

%it) = Q/QHt(s)uidx72/Qd(x)7’(:v)ufdx

St

= zap(00 — —’LLQSU— xrmuQx

—we observe that the optimal (c, )-distribution leads to a dissipative system and
that the dissipation is monotonous with respect to (6 — ).

(5.10)

5.2.2. The quadratic case—(aa,ag) = (1,1). This case falls in the arith-

metic situation (see (4.6)), and the relaxed problem (RP) is then simply derived from
the original one by replacing (X, , X.,) by (s, 7).

Once again, the optimal distribution of («, #) and damping material strongly de-
pends on the gap of the coefficients. Moreover, the numerical results still suggest that
the original problem is not well posed if these gaps exceed critical values depending
on the data (see Figure 5.4). The main difference with respect to the compliance case
is observed for (, 3,d) = (1,4, 10): it appears that the density 7/ is a characteristic
function: 7™ = X|g.4.6) (see Figure 5.5). A greater value of d (for instance, d = 15)
is necessary to obtain values in (0, 1). This phenomenon is due to the dissipative effect
of the optimal («, §)-distribution and highlights the interaction between s and r (or
equivalently between wy and ws).

Contrary to the compliance case where the density varies somewhat smoothly (see
Figure 5.1), we observe in the bottom two panels in Figure 5.4 some high oscillations
of the optimal density s with respect to both ¢ and z (especially with (a,3,d) =
(1,4,10)). Due to the nonconvexity of the functional I(s,r) with respect to s in
the quadratic case, we recall that we do not know a priori whether the problem
(RP) defined by (4.4) is well posed: we can only ensure that inf(RP) = min(RP)
(Lemma 4.2). The situation is different in the compliance case because I is convex.
Therefore, these oscillations may be related to the possible ill-posedness of (f{f’)
These oscillations may also be caused, at least partially, by the numerical sensitivity
of the approximation, as discussed above. Figure 5.6 depicts the evolution of the
energy for the different values of «, 3, and d.
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F1G. 5.4. (aa,ap) = (1,1). Optimal density "™ (t,z) on Qx(0,T) for (o, B,d) = (1,1.1,1) (top
left), (ar 6,d) = (1,1.1,10) (top right), (@, B,d) = (1,4,1) (bottom left), and (a,,d) = (1,4, 10)
(bottom right).

0.1
0
L L L L L L L L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

FiG. 5.5. (aa,ag) = (1,1). Solid line: Optimal density "™ for (o, B,d) = (1,1.1,10). Dashed
line: Optimal density '™ = Xjo.4,0.6) for (o, B,d) = (1,1.1,1), (o, 8,d) = (1,4,1), and (o, 3,d) =
(1,4,10).

5.2.3. Extraction of a minimizing sequence (X_x, X,x) from the opti-

mal density (s!*™,r!¥™). Once we have the optimal microstructure of the («, 3)-
material and damping material codified by the optimal density s and r, it remains
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F1a. 5.6. (aa,ag) = (1,1). Bvolution of [,(|lut|? + G(s""™)|us|?)dz versus t € [0, T.

(from a practical viewpoint) to extract from (s r!"™) a sequence of characteristic
functions (X,x, A, ;) such that limy_. f(Xw;f7Xw§) = J(sltm plim),

Recalling that r'""(z) is the volume fraction of the damping material at point
x, we proceed as follows. Let us decompose the interval €2 into M > 0 nonempty
subintervals such that 0 = U;=1 m[x;,z;41]. Then, we associate with each interval
[, j41] the mean value m; € [0,1] defined by

. mj = " (x)dx
TR

and the division into two parts
(512) [JL‘j, (1 — mj)zj + mjxjH] U [(1 — mj).rj +m;ixit1, JL‘j_H].
Finally, we introduce the function 757" in L>°(£,{0,1}) b

M
(5.13) T?\;n T) = ZX[fﬂ_jy(l*mj)r.ﬂrmjﬂ?ﬁl](x)'

j=1

We easily check that [[r7" |11 (o) = [|r"™||L1(q) for all M > 0. The bivalued function
rh" takes more advantage of the information codified in the density r/™. Similarly,
usmg that s(t,x) is the volume fraction of the a-material at point (¢, x), we associate
with s/ a sequence of bivalued functions sk € L>((0,T) x ,{0,1}) (see [20]).
For (o, 8,d) = (1,4,10) and (aq,ag) = (a B3), Figure 5.7 represents the function
rhi" 4o associated with the density rlm of Figure 5.2(right). Similarly, Figure 5.8
represents the function %", associated with the optimal density sl of Figure
5.1(bottom right). Finally, we report in Table 5.1 values of I(s%",r2%™) for several
values of N and M. For M = N = 40, we obtain I(s5¢", r¢™) ~ 2.9803 which is very
near from the minimal value I(s"™, r!i™) ~ 2.9116. These numerical results suggest
the efficiency of this procedure to build optimal domains wy,ws composed of a finite
number of disjoints components and arbitrarily near the optimal distributions.
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FIG. 5.7. (aa,ag) = (o, B). Characteristic function associated with the optimal density rlim

for (a, B,d) = (1,4,10). I(s'™ rlim) ~2.9116. I(st™ rh¢", ) ~ 3.0360.

Fic. 5.8.

(aa,ag) = (o, B). (a,B,d) = (1,4,10)—Value of the cost function T(SN

{10, 20, 30, 40}.

(aa,ag) = (o, B). Characteristic function associated with
for (o, B,d) = (1,4,10). I(sh™, rlim) ~ 2.9116. I(sRi,,, 71"™) ~ 3.0755.

TABLE 5.1

N\M [ 10 20 30 40
10 5.6181 5.2869 4.7629 4.4181
20 5.0940 4.4721 4.0761 3.6712
30 4.4910 3.8931 3.4612 3.1321
40 4.2192  3.4821 3.0712  2.9803

the optimal density st'™

pen _pen

Y

) for M,N €
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6. Concluding remarks and perspectives. We have analyzed the response of
a 1-D damped string with respect to the spatio-temporal distribution of its longitudi-
nal stiffness. The relaxed formulation highlights the smoothing effect of the damping
term on the optimal spatio-temporal layout. Moreover, the numerical experiments in-
dicate the strong dependence of the optimal distribution on the initial data (ug,u).
In order to get free of this dependence, it would be interesting to consider, for instance,
an inf-sup problem of the form

(6.1) inf sup 1(Xor, Xy, w0, 1),
Ko Xz (ug,u1)€HE(Q)x L2(0)

where I designates the cost function (1.3). Another approach may consist of averaging
the cost function over all initial data of unit energy (we refer to [10] in a similar con-
text). Finally, at the numerical level, it seems important to investigate the numerical
approximation of the fully relaxed problem (RP) and compare it with the simplified

formulation (RP). These aspects will be addressed in the near future.
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ON POPULATION RESILIENCE TO EXTERNAL PERTURBATIONS*

LIONEL ROQUEST AND MICKAEL D. CHEKROUN?

Abstract. We study a spatially explicit harvesting model in periodic or bounded environ-
ments. The model is governed by a parabolic equation with a spatially dependent nonlinearity of
Kolmogorov—Petrovsky—Piskunov type, and a negative external forcing term —¢. Using sub- and
supersolution methods and the characterization of the first eigenvalue of some linear elliptic oper-
ators, we obtain existence and nonexistence results as well as results on the number of stationary
solutions. We also characterize the asymptotic behavior of the evolution equation as a function of
the forcing term amplitude. In particular, we define two critical values 6* and 62 such that, if é
is smaller than 6*, the population density converges to a “significant” state, which is everywhere
above a certain small threshold, whereas if ¢ is larger than 62, the population density converges
to a “remnant” state, everywhere below this small threshold. Our results are shown to be useful
for studying the relationships between environmental fragmentation and maximum sustainable yield
from populations. We present numerical results in the case of stochastic environments.
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1. Introduction. Overexploitation has led to the extinction of many species [4].
Traditionally, models of ordinary differential equations (ODEs) or difference equations
have been used to estimate the maximum sustainable yields from populations and to
perform quantitative analysis of harvesting policies and management strategies [17].
Ignoring age or stage structures as well as delay mechanisms, which will not be treated
by the present paper, the ODEs models are generally of the type

(1) Y~ rw) -y ),
dt

where U is the population biomass at time ¢, F'(U) is the growth function, and Y (U)

corresponds to the harvest function. In these models, the most commonly used growth

function is logistic, with F(U) = U(p — vU) (see [5], [25], [35]), where p > 0 is the

intrinsic growth rate of the population and v > 0 models its susceptibility to crowding

effects.

Different harvesting strategies Y (U) have been considered in the literature and
are used in practical resource management. A very common one is the constant-yield
harvesting strategy, where a constant number of individuals are removed per unit
of time: Y (U) = 4, with § a positive constant. This harvesting function naturally
appears when a quota is set on the harvesters [31], [32], [38]. Another frequently used
harvesting strategy is the proportional harvesting strategy (also called constant-effort
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harvesting), where a constant proportion of the population is removed. It leads to a
harvesting function of the type Y (U) = 6U.

Much less has been done in this field using reaction-diffusion models (but see [23],
[26], [29]). The aim of this paper is to perform an analysis of some harvesting models,
within the framework of reaction-diffusion equations.

One of the most celebrated reaction-diffusion models was introduced by Fisher [15]
and Kolmogorov, Petrovsky, and Piskunov [22] in 1937 (we call it the Fisher-KPP
model). Since then, it has been widely used to model spatial propagation or spreading
of biological species into homogeneous environments (see books [25], [28], and [40] for
a review). The corresponding equation is

(1.2) uy = DV2u + u(p — vu),

where u = u(t,z) is the population density at time ¢ and space position x, D is the
diffusion coefficient, and p and v still correspond to the constant intrinsic growth
rate and susceptibility to crowding effects. In the 1980s, this model was extended
to heterogeneous environments by Shigesada, Kawasaki, and Teramoto [37]. The
corresponding model (which we call the SKT model in this paper) is of the type

(1.3) uy = DV2u + u(p(z) — v(z)u).

The coefficients pu(x) and v(z) now depend on the space variable  and can there-
fore include some effects of environmental heterogeneity. More recently, this model
revealed that the heterogeneous character of the environment plays an essential role
in species persistence, in the sense that for different spatial configurations of the envi-
ronment a population can survive or become extinct, depending on the habitat spatial
structure [8], [12], [34], [36].

As mentioned above, the combination of a harvesting model with a Fisher-KPP
population dynamics model, leading to an equation of the form u; = DV?u + u(u —
vu) —Y (z,u), has been considered in recent papers, either using a spatially dependent
proportional harvesting term Y (z,u) = ¢(z)u in [26], [29], or a spatially dependent
and time-constant harvesting term Y (z) = h(z) in [23]. In these papers, the models
were considered in bounded domains with Dirichlet (lethal) boundary conditions.

Here we study a population dynamics model of the SKT type, with a spatially
dependent harvesting term Y (z, u):

(1.4) uy = DV2u + u(p(z) — v(z)u) — Y (z,u).

We mainly focus on a “quasi-constant-yield” case, where the harvesting term depends
on u only for very low population densities (ensuring the nonnegativity of w). We
consider two types of domains and boundary conditions. In the first case, the domain
is bounded with Neumann (reflective) boundary conditions; this framework is often
more realistic for modeling species that cannot cross the domain boundary. In the
second case, we consider the model (1.4) in the whole space RY with periodic coef-
ficients. This last situation, though technically more complex, is useful, for instance,
for studying spreading phenomena [7], [9], and for studying the effects of environmen-
tal fragmentation, independently of the boundary effects. Lastly, note that the effects
of variability in time of the harvesting function will be investigated in a forthcoming
publication [13].

In section 2, we define a quasi-constant-yield harvesting reaction-diffusion model.
We prove, on a firm mathematical basis, existence and nonexistence results for the
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equilibrium equations, as well as results on the number of possible stationary states.
We also characterize the asymptotic behavior of the solutions of (1.4). In section 3,
we illustrate the practical usefulness of the results of section 2, by studying the effects
of the amplitude of the harvesting term on the population density in terms of environ-
mental fragmentation. Lastly, in section 4, we give new results for the proportional
harvesting case Y (x,u) = q(z)u.

2. Mathematical analysis of a quasi-constant-yield harvesting reaction-
diffusion model. For the sake of readability, the proofs of the results of section 2
are postponed to section 2.5.

2.1. Formulation of the model. In this paper, we consider the model
(2.1) ug = DV2u + u(p(z) — v(z)u) — 6h(z)pe(u), (t,z) € Ry x Q.

The function v = u(t,z) denotes the population density at time ¢ and space position
. The coefficient D, assumed to be positive, denotes the diffusion coefficient. The
functions pu(x) and v(x) respectively stand for the spatially dependent intrinsic growth
rate of the population, and for its susceptibility to crowding effects. Two different
types of domains (2 are considered: either Q = RY or Q is a smooth bounded and
connected domain of RY (N > 1). We qualify the first case as the periodic case, and
the second one as the bounded case. In the periodic case, we assume that the functions
w(x), v(z), and h(z) depend on the space variables in a periodic fashion. For that,
let L= (Li,...,Lx) € (0,+00). We recall the following definition.

DEFINITION 2.1. A function g is said to be L-periodic if g(x + k) = g(x) for all
r=(x1,...,2n) ERY and k € [1Z x --- x LN7.

Thus, in the periodic case, we assume that u, v, and h are L-periodic. In the
bounded case we assume that Neumann boundary conditions hold: % = 0 on 01,
where n is the outward unit normal to 9€2. The period cell C' is defined by

C:= (Ole) X X (OaLN)
in the periodic case, and in the bounded case we set
C:=Q,

for the sake of simplicity of some forthcoming statements.
We furthermore assume that the functions y and v satisfy

(2.2) p,v € L°(Q) and Jr,7eRst.0<v<v(r)<v Vzel

Regions with higher values of u(x) and lower values of v(z) will be qualified as
being more favorable, while, on the other hand, regions with lower u(x) and higher
v(z) values will be considered as being less favorable or, equivalently, more hostile.

The last term in (2.1), h(x)pe(u), corresponds to a quasi-constant-yield harvest-
ing term. Indeed, the function p. satisfies

(2.3) pe €CIR), p. >0, p(s)=0V¥s<0 and p.(s)=1Vs>e,

where € is a nonnegative parameter. With such a harvesting function, the yield is
constant in time whenever u > ¢, while it depends on the population density when
u < €. In what follows, the parameter ¢ is taken to be very small. As we prove in
the next sections, there are many situations where the solutions of the mod